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Abstract

Accurate capacity planning is essential to ensure uninterrupted services and network stability through
peak hours for the transport core network of KPN. This involves a trade-off between minimizing the
risks of capacity shortages and costs of capacity expansions. High network loads are occurring more
frequently and their magnitude is increasing. This necessitates measures to foresee high load situa-
tions before network capacity is surpassed. Currently, planning is based on manual predictions that
lack substantiation. This research aims to improve network capacity planning by development of a
forecast for the next year.

An analysis of the daily maximum traffic data of the transport core is performed, to determine the most
suitable models for the prediction of network traffic. The data analysis, employing time series decompo-
sition, revealed non-stationary trends and annual seasonality; traffic decreases throughout the summer
and increases in the winter. An upward trend in the frequency and intensity of traffic peaks, highlights
the growing demand and shifts in usage behavior. The extreme traffic peaks in the historical data were
correlated to F1 race days and other anticipated events.

Two algorithms that integrate exogenous variables were assessed to predict the extreme values. The
models either yielded inaccurate traffic predictions or encountered challenges in interpretability and
pattern recognition, with the limited amount of data available. In response to these limitations, a de-
composed forecast was created that predicts the trend and seasonality. Furthermore, Extreme Value
Analysis (EVA) was implemented to address the extreme values in the data.

The final prediction framework combines the decomposed forecast with EVA for the next six quarters
and outperforms the othermodels. Themodel effectively captures extreme values and provides insights
into the maximum expected peaks and risk levels. The substantiated forecasts of the EVA model and
the manual predictions yielded comparable results. However, the EVA model provides better insights
into the likelihood of exceeding specific traffic values, which enhances capacity calculations and preci-
sion.

The prediction framework has been integrated into the business interface of KPN, whichmarks the initial
step in the automatization of short-term capacity planning. The research insights emphasize the intri-
cate nature of accurate prediction of future demand and advocate for scalable solutions beyond building
new capacity. These solutions range from short-term mitigation to long-term strategies designed to al-
leviate high network loads. They underscore the importance of the implementation and integration of
dynamic decision-making within a digital twin of the network to ensure sustained effectiveness.
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1
Introduction

1.1. Data traffic growth
The use of the Internet has become an indispensable part of life. Through the convenience of mobile
devices, the ubiquity of wireless networks, and the reliability of high-speed fixed broadband connec-
tions, people can access online services from anywhere. Due to advancements in technology, such as
fourth-generation (4G) or fifth-generation (5G) connectivity and fiber optics, faster network speeds have
become attainable. With the increased popularity of smart devices, new trends, and higher network
speeds, the demand for network capacity grows rapidly. As more and more people rely on telecom-
munication, it is expected that the demand for data traffic will continue to grow at an unprecedented
rate [1]. To keep up with this demand, the telecommunications sector has been continuously innovative.

At present, the majority of network traffic can be attributed to video services. Multiple applications have
emerged in recent years for video on demand (VOD) content and real-time event streams. Due to the
widespread accessibility of 4G and 5G, people have been provided with increased flexibility to watch
sports or television programs on their mobile devices from any location. Additionally, operators provide
interactive television, which creates other data traffic on the network (more on this is described in Sec-
tion 2.2). Moreover, in the aftermath of the global COVID-19 pandemic which significantly changed the
dynamics of everyday life, hybrid work has become the current norm. The necessity of remote work
due to health concerns and lockdowns prompted rapid adjustments by telecom companies to support
work from home. This shift not only reshaped the professional landscape but also induced a significant
impact on the usage behavior of internet services. The need for video conference applications such as
Zoom, resulted in a ten times increase in usage [2].

Currently, companies are in the midst of a digital transformation. New technologies such as cloud com-
puting, Artificial Intelligence (AI) and Internet of Things (IoT) provide companies with more advanced
and adaptable infrastructure options [3]. This digital transformation is evident in various markets and
with that, new challenges arise for network operators. High bandwidth services such as cloud gaming
or Augmented Reality, Virtual Reality (AR/VR) will demand a robust and efficient network infrastruc-
ture that meets the growing consumer demand. Until now, increased traffic loads on the network have
mainly been caused by (high-quality) video streams. With these new technologies on the horizon, it is
expected that other high-bandwidth services may become the main cause of increased demand. In the
future, AR/VR or cloud services could significantly impact the usage behavior of internet services and
the required capacity of the network. Therefore, efficient digitalization strategies are essential for the
continued growth and evolution of wireless communication systems. These strategies aim to optimize
network operations and deliver high-speed, reliable connectivity to users.

Network capacity planning
High bandwidth services lead to an increased load on the network and emphasize the need for a ro-
bust telecom infrastructure. In addition, the dynamic usage behavior in network traffic underscores the
critical importance of this. In this dynamic landscape, telecom operators have to adapt to technological
advancements and usage trends. Hence, it is necessary to implement strategies for innovation and
optimize processes. To be able to handle services that demand high bandwidth, capacity management
is performed to provide high-quality experiences to users.

1



1.2. The KPN network 2

Capacity management revolves around a systematic measurement of the volume of traffic on equip-
ment and strategic expansion of capacity when required. Anticipation of high traffic load and risks in
the network, are significantly involved in the decision-making of capacity planning [4]. It holds an es-
sential role in the enhancement of operational efficiency within capacity management. Through close
monitoring and analysis of the traffic load on the network, capacity planning ensures that the network
infrastructure can scale to meet future requirements. This approach helps mitigate the risk of outages
in the services provided and sustain a high Quality of Service (QoS) to end users [5]. To realize this,
insights into current and future demand are required. Estimates on future demand are needed, as
decisions on changes in the network infrastructure have to be made well in advance. Consequently, a
prediction of the network throughput is necessary. To achieve this, historical data on traffic usage must
be understood to generate a prediction. This analysis combined with an accurate forecast, is highly
valuable to make timely investments in the network and deliver uninterrupted daily services to clients.

1.2. The KPN network
One of the biggest telecom providers in the Netherlands is KPN. The company offers a wide range of
services for telephony, data, and television on its fixed and mobile networks. KPN has over 10 million
mobile subscribers and offers services to over 4 million broadband customers [6]. The fixed and mo-
bile network of KPN is considered to be one of the biggest networks compared to other Dutch providers.

The transport core network of the company is comprised of fiber optics. At present, the company is ex-
panding the fiberization from the central hubs in the transport core to the last-mile access. The last mile
access refers to the last components in a telecom network to reach the end user. This includes fiber
optics that extend to the distribution cabinet, but also fiber optics that extend to houses of customers,
or Fiber to the Home (FTTH). The fiber roll-out aims to have 80% of the Netherlands covered in fiber
optics in 2026. This network of fiber increases the possible bandwidth provided to users of the network.

The Netherlands is divided into 161 areas and each area is served by a Metro Core (MC) location.
These are network interface points, also known as Points of Presence (POP), where the fiber optic
cables in a particular area converge. The data is then transmitted through distribution points to other
POPs or end users. These distribution points are referred to as Digital Subscriber Line Access Multi-
plexers (DSLAM), for copper, or Optical Line Terminals (OLT), for fiber. These DSLAMs and OLTs are
connected to the local distribution cabinets that connect the network to the end users. All of these sta-
tions are connected and form the network of KPN. The high-level structure of the network is illustrated
in Figure 1.1 and comprises three layers; the service layer, the transport core, and the access layer.

The service layer consists of various domains in the network that offer services for voice and data
communications. More on the service layer and the domains that are provided is described in Section
2.1. All of the network cables used to deliver services from the service platforms to the end user are
connected via the transport core.
The transport core serves as the primary infrastructure of the network and is composed of high-capacity
transmission lines and switches. It is the most vital part of the network and manages the highest
capacity load. The traffic to the transport core originates from the service platforms that are connected
to this transport core. It aggregates all the data of the service platforms and distributes the data to
the access nodes. Moreover, all the internet traffic from the connection between the global internet
exchange and the network passes through this core.
The access layer is the part of the network that connects customers to the services of the transport
core. For mobile services, the access network includes cellular towers that provide coverage. Access
is distributed across the country with 161 MC locations. Every MC connects a network area of the
Netherlands to Metro Bridge (MB) nodes. These are connected through access nodes to all DSLAMs
and OLTs that provide the connections to users.
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Figure 1.1: High-level view of the network

The transport core has used fiber optics for transmission in the past decades. Before the use of fiber
optics in the access layer, copper cables were the primary mode to transmit data. The capacity of cop-
per cables has improved to transmit larger amounts of data. Despite evolution to accommodate newer
technologies, the distance to the transport core remains a challenge for copper cables. Fiber optics is
a more recent technology in which data transmission is provided by cables that consist of thin strands
of glass. Data is transformed into a pattern of light signals with different wavelengths, which enables
simultaneous data transmission on multiple channels. Fiber optics are less susceptible to interference
and maintain a strong signal over longer distances. This results in higher capacity transmission possi-
bilities compared to copper cables. Nowadays, telecom operators use fiber optics more and more to
transmit data to the last mile access.

The roll-out of fiber optics in the access layer provides higher speed per user. However, if all users
employ high bandwidth services on the network simultaneously, bottlenecks in the transport core can
occur. To keep up with the enormous increase in end-user speeds due to the mass deployment of fiber,
the capacity of the transport core will also need to increase. Therefore, the emphasis of this research
is on capacity planning for the transport core, as interruptions in the transport core have the highest
impact on the network. A shortage of capacity here can lead to service interruptions for the whole
country. Hence, the goal is to proactively assess the required capacity to minimize the risk of capacity
shortages.

1.3. Problem definition
To provide continuous services to customers and maintain a stable network in peak hours, a safe mar-
gin for network traffic capacity is designed into the network. If this safe margin is exceeded, a network
outage will occur and no services will be available for customers. It is vital to prevent outages at all
times, as they diminish network reliability, have financial repercussions and will result in reduced cus-
tomer satisfaction. Additionally, to build extra capacity in the transport core involves long lead times
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and high costs. Investments in overcapacity and excessive infrastructure must be avoided. Capacity
planning is a trade-off between minimizing the risk of capacity shortages and strategic investments. To
tackle this challenge, it is important to consider that high network loads will occur more often and the
magnitude of this load is increasing. This is apparent in the historical data of the network throughput.
Moreover, due to the rapid roll-out of fiber, the total amount of traffic and the magnitude of extreme
loads in traffic will increase. It is essential to foresee this high load before traffic will exceed the capac-
ity of the network. To address the question of the demand necessary for capacity planning, predictions
of network traffic are computed.

Currently, network traffic predictions for the next four quarters are performed manually, which involves
numerous parameters for complex equations. The calculations of these forecasts occasionally lack
adequate substantiation, whilst clarity is essential for business purposes that concern significant in-
vestments. This forecast can be validated and challenged by a model, that considers other sources
for predictions, particularly an analysis of the historical data and its outliers. Furthermore, this model
is the initial phase of an automated capacity planning process. Hence, this project will focus on the
improvement of capacity planning, provide predictions and model events with an unexpectedly high
load, for which a manual estimation does not suffice. This is to ensure continuity and reliability in the
services provided to customers.

1.4. Research questions
The main objective of this research is to improve the forecast of network traffic and implement an au-
tomated model for capacity planning purposes. Based on the research insights, potential recommen-
dations are considered for implementation in the network infrastructure. The main research question is:

How to forecast network traffic including extreme values in order to improve and automate net-
work capacity planning?

To help answer the main research questions, the following sub-research questions arise:

1. What is the underlying cause of the extreme network traffic peaks observed in the historical data?
2. Is it possible to use a machine learning algorithm to create a network traffic prediction model with

exogenous variables, that predicts extreme values?
3. Is it possible to use Extreme Value Analysis to forecast network traffic peaks, including the risk of

exceeding a certain level, and how can this be implemented?
4. How does the prediction model perform compared to the manual prediction method that has been

used until now?
5. How could the prediction model and the insights in network traffic from this research contribute

to new solutions in network design?

1.5. Thesis synopsis
The process of this study is described in the next chapters. Chapter 2 describes more background
on the transport core, the current situation of capacity planning and the design requirements for imple-
mentation of the model. In Chapter 3, previously done research on this matter is described and the
approaches considered relevant for this project. Chapter 4 explains the analyzed data and its charac-
teristics. This data is used as input for the possible prediction models, for which the methodology is
described in Chapter 5. In this chapter, a machine learning model and statistical approaches are com-
pared. Thereafter, the final framework for the prediction model and its results are explained in Chapter
6. Additionally, Chapter 7 elaborates on the implementation of the model in the business interface for
real-time usage. Moreover, possible recommendations for the network and mitigation solutions are de-
scribed in Chapter 8. Lastly, Chapter 9 concludes the results of this study, a discussion of the research
and the opportunities for future development.



2
Capacity planning for KPN

This chapter describes background knowledge on the transport core, current capacity planning, and
design requirements. Moreover, the impact of this research is explained. Lastly, more elaboration is
given on the implementation of the design of the framework to ensure that the model is usable for
business purposes.

2.1. Transport core
The core layer of the network, the transport core, comprises four data centers. The transport core data
centers are located in the cities of Zwolle, Arnhem, Rotterdam, and Amsterdam, the so-called ZARA
locations. The optic fiber lines that provide the transmission between these four data centers consist
of multiple 100G transmission lines. The four data centers of the transport core are each connected to
all other ZARA locations. This is to ensure continuous services for each data center, in case one of the
connections or ZARA locations fails.
The transport core is the backbone of the network, which facilitates the transport of the network traffic
between the service layer and the access layer. It acts as a central hub where the traffic from the
service domains is aggregated and transported across the entire network. The time series covers the
period from March 9, 2020, to October 1, 2023. It includes 1302 days of network traffic data; traffic is
measured in five minute intervals and the maximum peak per day is stored. The time series of Mobile
Core is of shorter length due to the delayed availability of measurements of this service domain.

The traffic of the Data Center and Video Data Center were previously part of a single Data Center
domain. The Video Data Center was created due to the implementation of a new protocol for the
Content Delivery Network (CDN) of the Data Center. More on this is elaborated on in the functionalities
of the domains in the service layer below:

• Data Center: Various service platforms are connected to the Data Center, for television, voice,
and cloud applications to be accessible to customers.
Firstly, the core of the voice network is provided here, which enables users to make phone calls.
Also provided here is the Domain Name System (DNS), which assigns domain names to IP ad-
dresses to help users access websites and other services.
The CDN provides real-time live streams of television programs via multicast and VOD (non-live)
streams via unicast. As will be elaborated on in Section 2.2.1, popular VOD content is available
from decentralized CDNs at the access layer. Less popular VOD content is provided at the ser-
vice layer. The CDN follows two protocols; the first protocol is provided from this domain and
the second protocol is provided from the Video Data Center. In the future, all streams will follow
HTTPS.

• Video Data Center: The requested television streams of the second protocol and streams of
content applications provided on the network of KPN, are accessed through this domain. For
example, customers who request less popular video content and other Internet content via fixed
Internet, will generate traffic through this domain. Popular video content is again decentralized to
the access layer.

• Internet Peering: This domain contains all further traffic from the Internet and other content
applications, accessed on the fixed network. Furthermore, it contains the traffic load from the
mobile networks. This is because themobile networks are built on the fixed network and therefore,

5
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the throughput traverses from the Mobile Core domain to the Internet peering domain. Hence,
a part of the throughput from this domain reflects the data generated by unicast streams from
mobile devices.

• Wholesale: All Wholesale Ethernet Access Services for Wholesale customers, thus other com-
panies that offer services by using the KPN Network, are accessed from this domain.

• Mobile Core: Mobile data and voice communications are connected to the mobile core. All
streams of mobile data are visible in the throughput of this domain.

2.2. Current situation
Capacity planning is crucial to ensure that the network evolves with the larger traffic demand. Failure
to anticipate high traffic loads on the network can result in expensive scale-up efforts or, in the worst
case, network outages. Implementation of capacity expansion plans in the fixed transport core requires
time. Ergo, investments in the network infrastructure must be made at least six months in advance.
Consequently, predictions are computed to make well-informed decisions on this matter in time. It is
a continuous process for fixed core capacity management and involves many phases, as illustrated in
Figure 2.1.

Figure 2.1: Process of capacity planning for the transport core.

1. Initially, the load on the network is collected through monitoring tools.
2. These measurements are updated every five minutes and allow for real-time monitoring of net-

work load. This data is temporarily stored for continuous observation of network traffic over the
past 24 hours. The throughput is measured every five minutes and the maximum throughput
value recorded within that day, is saved for additional insights.

3. Followed by this, the current capacity of the physical equipment is assessed.
4. The current throughput is then analyzed and the capacity is compared with the measured through-

put.
5. Subsequently, the daily peak values of the historical and current throughput are used to estimate

future demand.
6. Based on these numbers, decisions are made on where and when to expand capacity in the fixed

transport core network. This is a trade-off between cost and efficiency for capacity expansions.
The unpredictability of network traffic adds complexity to this process. Moreover, the duration of
construction and installation varies based on the complexity of the expansion. For instance, the
construction of a server cabinet demands more time compared to the installation of free slots on
a current network module.

With this knowledge, strategic network investments are made. This is an iterative process; it is evalu-
ated and repeated to meet the larger traffic demands to keep the network stable. The current strategy
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requires that the network must be built with a sufficient amount of extra capacity, to handle high net-
work traffic loads in potential worst-case scenarios. These scenarios are designed for the worst-case
situations, in which network errors across various components result in the most significant disruptions.
The network must be able to handle the maximum amount of load that has been recorded on the links,
with the effects of a worst-case scenario. These redundancy measures are designed into the network
to ensure that the network remains stable. However, data traffic grows and to build excessive capacity
expansions on potential worst-case scenarios is very expensive. This could be improved more cost-
effectively when further insights are available into the future trends and usage behavior of customers.

Currently, estimates on future demand are computed manually. Various factors on technical develop-
ments, market share and bit rate, are taken into account to determine the required capacity in the future.
These factors include fiber-optic rollout, statistics from external parties and expected releases of video
or gaming applications. The capacity planning team of the company uses two types of forecasts at the
moment, which are a long-term and short-term estimation of the throughput. The long-term forecast es-
timates the growth of the traffic in three years or beyond and is required for strategic plans over a longer
period. The short-term forecast is the prediction of the required future demand in the next four quarters.

This research aims to improve and automate the short-term forecast process. The short-term forecast
should be calculated for six quarters in advance and should give the maximum expected throughput
per quarter. Specifically, it has to describe the expected peak value that will be reached in one day
on a specific domain in the network. Therefore, the daily peak value is considered the first design
requirement for the model.
At present, the maximum expected throughput is calculated for all different domains within the service
layer, which are linked to the transport core. However, the short-term forecast is computed every
quarter for the next four quarters instead of six quarters. This is because annual budgets are set for the
network infrastructure, which determines the investments possible for scaling up capacity every year.
Hence, the second design requirement is to produce a one year forecast. Nevertheless if feasible with
the dataset, the extension of the forecast to six quarters would be preferable.

2.2.1. Decentralization of content
Followed by the insights gained from capacity management, some measures have been taken to re-
duce the traffic load in the transport core. This traffic was generated by applications in the service layer,
which caused high loads on the network. As a result, some content has been decentralized and is now
delivered by a CDN at the access layer. This approach eliminates the need for traffic to traverse from
the service layer through the transport core before it reaches the user. Hence, when users request the
content, the load is eliminated from the transport core and content can be accessed more efficiently.
This content comprises popular VOD content; non-live television programs, sports events that have
occurred and video content, all of which can be cached from a different location in the network. Due to
the high latency of current technologies that would occur when caching live content, decentralization
of content is only possible for programs that are not streamed live.

Live coverage of (sports) events employs different protocols for casting, which have been illustrated
in Figure 2.2. Firstly, live events can be viewed on television via a set-top box (STB) that employs
multicast or one-to-many communication. Multicast is an efficient transmission method, where one
dedicated stream is distributed to multiple users to deliver video content. When multiple users re-
quest the same content, the content server sends the packets once with a bitstream of, for instance,
5 Megabits per second (Mbps). The switches and routers forward content only to the hosts who have
requested it. Therefore, only one stream of 5 Mbps is required for this process, which is depicted
in Figure 2.2a. When live television is paused for a short time and started again, the connection to
the dedicated multicast stream is interrupted and the transmission mode shifts to unicast. Unicast, or
one-to-one transmission, is an alternative method that delivers content through unique connections as
shown in Figure 2.2b. Unicast is the primary method for streaming VOD content. When a user streams
content from their mobile device, a unicast connection is established in the network. If numerous users
simultaneously stream from their mobile devices, this results in multiple streams that require 5 Mbps
per user. This means that each user creates a unique connection rather than the usage of the live
television multicast stream, which places a substantial load on the network.
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(a) Multicast transmission (b) Unicast transmission

Figure 2.2: Two types of transmission employed to stream content to hosts.

2.3. Impact
As stated before, the load on the network is monitored by measurement of network data. This data
collection is used to analyze the throughput of the data throughout the day. From the measurements,
it is evident that the general trend of data is larger and network loads are bigger. Since the breakout of
COVID-19, there has been a 40% increase in data traffic in 2021 compared to February 2020 [7]. The
measurements also indicate that popular large-scale events are visible in the network data, such as the
Eurovision Song Contest or UEFA Euro matches. On both fixed and mobile networks peaks are visible
in the throughput, as more people watch events on their mobile devices. Insights from discoveries like
these are crucial for capacity planning and show the significance of the information that can be gained
from measured data. An analysis of historical data usage provides additional valuable perspectives
and is further explored in Chapter 4.

Formula 1 (F1) has gained significant popularity in the Netherlands and its races have become among
the most watched and streamed sports programs. Up to 60% more mobile download traffic than usual
was recorded in 2021 in the Grand Prix that secured the first Dutch F1World Championship title. Again,
the data traffic numbers of the network indicate the occurrence of F1 races, which is evident from the
peaks in those moments. Figure 2.3 shows the mobile data traffic during two Sundays. An increase of
50% is visible on the Sunday with an F1 race compared to a usual Sunday.

Figure 2.3: Comparison of mobile data traffic in Terabits per second (Tbps) during two Sundays in 2022 [8].

In March 2022, the streaming service Viaplay and KPN launched their distribution deal. This partnership
made the streaming service accessible to 3.6 million households in the Netherlands. Within this group
of potential viewers, Viaplay provides multicast transmission on the fixed network of KPN to customers
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to watch live content on their television channels. This network design decision minimizes the load on
the transport core for this type of casting. Without this approach, the multicast streams would have
been thousands of additional unicast streams in Mbps. This would have placed an excessive load on
the transport core, for which there would be insufficient capacity.

2.4. Contribution
Firstly, this research marks the initial phase in the design of a dynamic forecast model that uses his-
torical data as input. The intention is to integrate the model as a microservice for a digital twin of the
network and will be focused on capacity forecasts for network data traffic. A digital twin is a virtual
representation of a system or a process, that mirrors the behavior and characteristics of the physi-
cal environment [9]. This concept integrates data from various sources, which includes IoT devices,
network equipment and operational processes. As a result, a dynamic and comprehensive model is
created of the behavior of the actual network. This model can provide valuable insights into network
performance under certain situations, as it enhances the ability to monitor, analyze and respond to
possible real-time dynamics within the network. It allows operators to anticipate and address risks or
issues before they can impact the service quality of the physical network. The digital twin can be con-
structed from multiple components, where each component contributes to the modeling of the network.
One of these components is capacity planning, which is the focus of this study.
The goal of a dynamic forecast model is to eventually attain a just-in-time capacity strategy. This
strategy is aimed at the optimization of inventory usage to enhance efficiency and minimize costs. The
achievement of optimal resource allocation and capacity management hinges upon the ability to provide
timely and adequate resources and to adapt to inconsistent demands. In this context, the availability
of precise demand forecasts is a critical prerequisite.

Secondly, this study can provide insights into the manually conducted predictions. The quarterly calcu-
lations, performed in Excel, involve data from sources beyond historical throughput to estimate future
demand. These calculations consider numerous factors and at times, the procedures to derive the
predicted numbers lack clear explanations. For that reason, historical data will be assessed and the
knowledge gained will be leveraged to design a prediction framework. The results of this model can
then be employed to validate the manually conducted predictions and extract perspectives from histor-
ical time series data.

Thirdly, risk calculations will be performed to illustrate the demand expectations with a specific level
of risk, derived from statistical theories. This evaluation can help explore potential cost-benefit trade-
offs, that concern the network and its redundancy limits. It can assist in making informed decisions for
intelligent purchases and investments in the network.

2.5. Implementation
To ensure the applicability of the model for future work, the implementation will be carried out in a format
consistent with business perspectives. The designed model will be integrated into the programming
platform DataIku [10], which is used by the company. DataIku is a comprehensive data science plat-
form that is applicable for data science and machine learning applications. It provides a range of tools
and features to streamline the data preparation, model, and deployment processes. In the context of
this research, DataIku provides a visual interface seamlessly integrated with Python. This integration
allows users to construct, train and assess machine learning models using Python code. This interface
proves especially valuable, this creates a strong alignment between data science and strategic busi-
ness objectives.
A flow, or digital environment, will be created to integrate all the steps of the prediction framework. The
objective is to establish a real-time model that generates a daily forecast and visualizes these results
in a dashboard. A pipeline will be established that retrieves measured data from a database and incor-
porates it into the flow. This data consists of daily throughput data from the network and will serve as
input for the prediction framework. The data will undergo several steps of processing to acquire the
appropriate format for use as input in the model. The results of the model will be computed daily and
the results of this forecast can be visualized in a dashboard. Additionally, the results will be exported
to another cloud observability platform used by the company to monitor real-time network throughput.



3
Literature study

This chapter will delve into the literature utilized to acquire comprehensive background knowledge on
capacity planning to provide a high QoS and to do dimension core networks. Moreover, the applicability
of current literature to the network traffic andmodels that can be leveraged for prediction will be explored.
It serves as a review that examines diverse research topics and their relevance to the objective of this
study.

3.1. Capacity planning
Capacity planning is pivotal to ensure that telecom providers meet the bandwidth requirements guar-
anteed to customers. This process spans various domains within telecom networks, which include
mobile radio networks, internet routers, fiber optic connections between different locations and server
capacity for specific services such as DNS and CDN. The digital revolution and the rise of the inter-
net have transformed capacity planning into a complex and dynamic process, which covers not only
voice but also data, video and other services delivered over the network. Strategic decision-making is
crucial for service providers, who face the challenges of when to expand capacity, the required band-
width for the expansions and the suitable equipment to ensure compliance with the committed QoS [11].

Various telecom services require unique transport networks due to their distinct characteristics. Con-
sequently, capacity planning challenges come with specific objectives and constraints, which allow for
the application of diverse methodologies. For instance, a case study conducted with an undisclosed
prominent provider in Mexico demonstrated the effective use of inventory control techniques to imple-
ment a capacity expansion plan [11]. Similar to inventory management techniques in manufacturing,
this approach demonstrated its effectiveness in the optimization of operations. While it does not ad-
dress extreme value prediction, it offers insights into potential cross-disciplinary engineering-based
capacity planning strategies. Additionally, data center infrastructures require specialized traffic control
techniques [12]. A review explores data center network architecture, traffic properties and objectives,
and discusses challenges such as prioritization, load balancing and traffic scheduling. This highlights
the importance of the employment of a combination of various traffic control techniques across different
network layers to improve performance metrics.

In the domain of capacity planning for the ZARA core locations, accurate traffic predictions based on
historical data that includes extreme peaks, are essential. The complexity of capacity planning is signif-
icantly influenced by the transmission technology, user demand and planning horizon. If the forecasted
demand exceeds available capacity, it also involves decisions on the timing and quantity of new equip-
ment needed to meet additional demand. This process is complicated by the user demand, especially
in terms of throughput and latency for applications, that continues to rise.

Capacity expansions in telecom networks follow extended time cycles. Telecom operators commonly
need six months to integrate for instance a 4G and 5G layer and a span of two years for the construction
of a new base station [13]. Additionally, Capital Expenditure (CapEx) investments have to be justified
and proactive planning becomes essential. Therefore, the decision-making process requires accurate
predictions of future network performance and must take into account various scenarios about traffic
growth and capacity expansions. Overestimation of traffic growth should be avoided as it leads to high
costs. Moreover, equipment may remain underemployed, an undesirable outcome given the finite op-
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erational lifespan of hardware components.

Each planning problem in telecom networks depends on multiple factors, such as the number of users,
user speed and the overbooking factor [14]. In a study for a hypothetical operator in the Netherlands,
a calculation for this demand in Mbps per km2 is given. This can be obtained by the population density,
estimated smart device users and market share. The user speed relies on desired bit rates, while the
overbooking factor assumes that not all users will concurrently use maximum bandwidth. These pa-
rameters are intertwined with the network performance and reflect the intricate nature to predict future
demand for capacity management. Accurate predictions are essential to ensure network resilience for
critical failures and various traffic growth scenarios.

Big data analytics in telecom offers insights for capacity planning strategies [15]. Proactive network
optimization, particularly in 5G networks, is critical to address rapid traffic growth and demanding ser-
vice requirements [16]. The integration of big data analysis, cloud computing and machine learning
techniques to accurately forecast traffic demand and manage uncertainties, is a valuable approach. A
different paper proposed an adaptive capacity and frequency optimization method for wireless back-
haul networks using time series forecasting [17]. It emphasizes the shift from reactive to proactive
intelligent transport planning for mobile networks, as dynamic resource optimization proves to be an
effective approach that can be used in capacity planning.

The existing research elaborates on various methodologies to approach capacity planning. However, it
does not address the applicability for large-capacity fixed transport core networks and the management
of extreme values, which can have a significant effect on the network performance. This gap highlights
the need for prediction approaches that address extreme values in network traffic for capacity planning
purposes.

This literature review aims to dissect and understand the complexities of network traffic. It will focus
on prediction models for extreme values in network traffic, which enhances capacity planning in large-
capacity fixed transport core networks. Prediction approaches will be reviewed to address extreme
values, for efficient network design and capacity planning.

3.2. Network traffic predictions
An important part of capacity planning is to forecast future network traffic demand. Different method-
ologies for the prediction of network traffic have been researched in the past few years. An extensive
overview of these approaches is provided in the literature [18], however, there are still various gaps
for improvement as concluded from the current literature. The most relevant gaps are described below.

While many research papers underscore the importance of network traffic load prediction, there is
a gap in how these forecast models can be applied in real-world scenarios [18]. This limited prac-
tical application does not address optimization challenges, such as quality of service improvements,
comprehensive network control and more. There is a clear necessity for new solutions to be put into
practical applications and not only assessed in comparison to existing methods based on relative pre-
diction errors. Then the advantages of a particular model can be offered over another when deployed
in real-time production environments.

Furthermore, the existing literature on efficient prediction of network traffic for real-time applications [19]
primarily focuses on general network traffic prediction. This research therefore delves into the specific
aspect of the prediction for extreme network traffic values, a critical area that is often less explored.
Methodology to improve extreme value prediction will be explored, which contributes to the knowledge
base of network capacity planning. It prompts a closer examination of methods and their practical
implementations. Moreover, the real-world implementation for the transport core network of KPN aims
to bridge the gap, to offer actionable insights for the telecom company in the capacity management of
their network. Therefore, in this research, time series prediction methods are surveyed to determine
the approaches suitable for extreme value network traffic prediction of the fixed core network. This will
help improve the unique challenge of timely dimensioning the core network to obtain a stable network.
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3.2.1. Time series prediction
A common approach to realize network traffic prediction is the employment of time series analysis. The
aim is to identify patterns in historical data to incorporate them into the prediction model of future values.
Time series prediction can be described in several steps [20], as illustrated in Figure 3.1:

1. Data exploration and preprocessing: Firstly the time series dataset is explored to understand
the characteristics of the data. Preprocessing steps are also done to ensure that the format of
the data is suitable for building the model. This involves handling potential missing values or
inaccurate outliers.

2. Training-test split: Secondly, the time series is split up into a training set and a test set. The
training set is the sequence of data points before the forecast horizon which is used to build the
model. The test set involves the data to evaluate the performance of the prediction and is defined
by the forecast horizon.

3. Model selection and parameter tuning: The third step involves the model selection based on
the characteristics of the data. The set of parameters is selected by manual tuning or a search
technique. The input of the model consists of the training set, which is divided into samples
for training and validation, and a predefined parameter set. The algorithm tries to minimize the
predictive error by identifying the most optimal parameters. The prediction model is built with this
set of parameters and the training set is fitted.

4. Prediction and error calculation: In this step, a multistep prediction is performed for the period
of the forecast horizon. The prediction error can be calculated using these values.

5. Model evaluation: In the fifth step, the model can be employed to compare the forecast results
with the test set, to measure the accuracy of the model according to metrics like Mean Squared
Error (MSE) or Mean Absolute Percentage Error (MAPE). For some algorithms, this is also known
as the backtest.

6. Model deployment: The final step is to choose the most accurate model based on the evaluation
results. The selected model can be deployed to forecast the values for future periods with the
specified forecast horizon.

Figure 3.1: The process of a time series prediction model.

3.2.2. State of the art
Research on time series prediction in the context of capacity planning has extensively explored vari-
ous statistical models. As the field evolves, machine learning models have demonstrated enhanced
predictive capabilities, which play a crucial role in shaping adaptive and accurate forecasts for network
traffic prediction. Both statistical and machine learning models are examined and the models suitable
for addressing the challenges of network traffic prediction will be discussed.
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Statistical models
Statistical techniques can be employed to characterize network traffic [21]. The ARIMAmodel is a class
of statistical models that can be used to analyze and forecast time series data [22]. It stands for Auto-
Regressive (AR) Integrated (I) Moving Average (MA). It is based on autocorrelation, which relates to
the correlation between data points in consecutive time intervals [23]. ARIMA consists of the AR model,
which uses the lags of previous values, the I for differencing and the MA model, to determine the error
terms. As most time series models in real-life practice are not stationary, the time series have to be
made stationary to apply regression techniques to the time-dependent variables to make predictions.
This is performed by differencing the values of the time series by a specific order, which results in the
ARIMA model. The model uses three parameters ARIMA(p,d,q) to produce a forecast [24]. Seasonal
ARIMA (SARIMA) is an extension of the ARIMA model, designed to handle time series data with sea-
sonal patterns. It incorporates seasonal differencing to address the issue of seasonality in the data
and introduces the seasonal components; ARIMA(p,d,q)(P,D,Q)[m]. More on these parameters can be
read in Appendix B.1.

As an example, additive and multiplicative decomposition models and the Auto-Regressive Integrated
Moving Average (ARIMA) model are explored to forecast network traffic [21]. The data employed is
daily usage in four days and the results show that ARIMA provides the highest accuracy. A similar
study employed an ARIMA model to predict long-term evolution (LTE) throughput on weekdays, which
demonstrates accurate forecasts with the approach [25]. Regression ARIMA models have established
themselves as a prevalent choice to model linear time series data within a classical statistical frame-
work [26] [27]. ARIMA models are built under the presumption of stationary data. In applications
where various fluctuations are expected in the data, a decreased model performance can be expected.
Nevertheless, employing transformations to remove the non-stationarity in the input data, can partially
address this limitation [28].
However, ARIMAmodels fall short in capturing nonlinear patterns within the data as they do not support
time series with seasonal data [29]. This inability makes them ill-suited for modeling intricate dynamic
real-world scenarios. Therefore, SARIMA was introduced as an alternative method, for forecasting
Universal Mobile Telecommunication System (UMTS) data traffic [30]. This method does not only take
into account the trend elements, p, d and q but also the seasonal components; P, D, Q and m. In this
case, a seasonal difference can be performed. SARIMA has been extended with the use of exogenous
(X) variables to enhance accuracy by reducing error values. SARIMAX can be employed with exoge-
nous factors to predict the long-term performance of the electricity sector [31]. This demonstrates the
effectiveness of SARIMAX compared to the simpler ARIMA models.

Another study suggested a more complex model, which combines SARIMA components and the non-
linear Generalized Auto-Regressive Conditionally Heteroscedastic (GARCH) model [32]. This model
addresses long-term dependencies to characterize and predict mobile communication network traffic.
Moreover, a different paper employed a multiplicative SARIMA and Holt-Winters model for traffic pre-
diction, to examine short-term prediction [33]. From the existing literature, it can be inferred that the
integration of multiple models enhances robustness and improves the capability to uniformly capture
various patterns within a time series. Consequently, the adoption of hybrid models or the combination
of several models has become a commonplace practice. Despite this, it is noteworthy that ARIMA con-
tinues to be a standard among baseline models. SARIMA serves as a benchmark method for seasonal
data, which makes it a potential fit for the analysis of network traffic data.

Machine learning models
Significant advancements have occurred in the research landscape of time series prediction that use
machine learning models. Particularly, there has been a focus on addressing the complexities of dy-
namic and evolving datasets. The supervised Decision Tree and AdaBoost regressor learning algo-
rithms neglect long-term dependencies and fail to predict non-linear traffic behavior [34]. Recurrent
neural networks (RNN) on the other hand, can forecast traffic samples by employing a variable sliding
window algorithm. This algorithm uses the traffic data from the initial data points to predict future traffic
patterns, based on the training information. Given the limited size of the sliding window, past predic-
tions are reintroduced to predict future samples.
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Recent studies have explored more advanced techniques like Long Short-Term Memory (LSTM) net-
works and other deep learning architectures [35] [36] [37]. RNNs based on LSTM units, are designed to
overcome the inherent gradient disappearance issue in RNN models [38]. It demonstrates an effective
capability in non-linear time-series modeling. Furthermore, Gated Recurrent Units (GRU) were pro-
posed as a forecast approach, next to RNN and LSTM networks [39]. GRUs are a variation of RNNs,
that employ gating mechanisms to control the flow of information within their cells. The gates allow
the model to selectively update its memory over time. The results of the models on GÉANT and Abi-
lene datasets were promising for volume, packet protocol and distribution predictions. Another paper
focuses on accurate one-hour-ahead forecasts of telecom activity data from a telecom provider in Viet-
nam, using LSTM and GRU networks [40]. The results have shown that deep neural networks hold the
potential to analyze time series data from a telecom network. Moreover, the LSTM and GRU models
proved to be the most reliable for all performance criteria compared to the other methods tested, such
as the Artificial Neural Network (ANN) model. The models aim to capture the temporal dependencies
and patterns inherent in time series data.
A comparison between the two models was executed, to study the ability of the RNN architectures to
memorize sequences of varying complexity [41]. The learning rate and the number of units per layer
are identified as the most crucial hyperparameters. Overall, GRUs demonstrate superior performance
on low complexity sequences, while LSTMs excel on high complexity sequences. Considering more
extended forecast horizons, a single LSTM network may encounter challenges in the training process to
reach the most effective set of weights and parameters minimizing prediction errors. However, stacking
multiple LSTM layers can enhance the capacity of the model to capture complex patterns when dealing
with a larger amount of historical data.

Additionally, efforts have been directed toward incorporating exogenous variables and enhancingmodel
intractability. One of the models that can be improved by exogenous information is DeepAR [42] [43].
DeepAR is a machine learning method designed to generate probabilistic forecasts [44]. The RNN
architecture produces probabilistic predictions using Monte Carlo samples, which enables the compu-
tation of consistent quantile estimates in the prediction horizon. The cells used for modeling the RNN
structure are LSTM. DeepAR distinguishes itself from classical forecasting approaches in two key as-
pects. Firstly, the model learns seasonal patterns and covariate dependencies across multiple time
series automatically, minimizing the need for supplying covariates. It can model various types of sea-
sonal patterns. Secondly, the approach excels in providing forecasts for series with limited historical
data, as it leverages insights from similar items. This multivariate capability addresses scenarios where
classical univariate forecasting methods fall short. A DeepAR model that considers the non-linear and
non-stationary characteristics of network traffic was introduced for base cell station traffic [45]. The
proposed DeepAR model incorporates artificial feature sequences based on local moving averages
(LMA) to enhance the long-term prediction performance of multi-cell network traffic. It outperforms
other methods, such as ARIMA, XGBoost and LSTM in terms of accuracy and reliability of predictions.

3.3. Relevant prediction models
The time series contains extreme values that are important to forecast. Consequently, models that can
incorporate the use of exogenous variables to improve the prediction of these extremes will be chosen
for the design of the prediction framework. A statistical model and a machine learning model will be
compared and tested on their applicability to the dataset of the fixed core network.

The statistical model that will be employed is SARIMA(X), which is the extension of an ARIMA model.
Further details on SARIMA(X) and the model parameters are elaborated upon in Appendix B.1.
When choosing the machine learning model, it is important to consider the following. The employment
of complex deep learning models with numerous internal parameters becomes unfeasible when work-
ing with short time series. When a limited number of data points is available, less than a hundred data
samples for instance, the series may not be suitable for the complexity of a deep learning model. This
is particularly in situations that involve data aggregation at a lower granularity, such as monthly data,
as it may not effectively capture meaningful patterns within the data [46]. As the prediction framework
will be designed for the forecast of daily data, this should not be an implication. Moreover, the interpre-
tation of machine learning models, particularly deep learning models, can be a challenge due to their
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inherent complexity. A lack of transparency in the decision-making process is unwanted. The trade-off
between model performance and interpretability is a crucial consideration.

The machine learning model chosen for this research is DeepAR. This model has shown that it delivers
robust results. The challenge with DeepAR is that the algorithm employs deep learning techniques,
which is less interpretable than traditional statistical methods. However, the model is better at the
recognition of complex patterns in the data. In addition, various time series can be correlated to en-
hance model training. This possibility shows high potential when the correlation between the usage of
different domains is analyzed and used for a dynamic forecasting model.

While ARIMA models each time series independently and predicts univariate time series, DeepAR
learns from multiple time series simultaneously [44] and can create a multivariate prediction model.
This makes it capable of using information from similar items to make predictions, even when individ-
ual time series have limited historical data. This ability to see and consider patterns or similarities be-
tween different related time series is a distinct advantage of DeepAR over a traditional method such as
ARIMA. Although this offers predictive advantages, this aspect is not explored currently. This research
focuses on using individual time series as inputs to the forecasting models. This forms the foundation
of a fundamental analysis of time series forecasting for the two network components. Considering fu-
ture work, the significance of employing this method becomes especially valuable when working with
multiple network streams.

Extreme events or outliers in the data can adversely affect prediction models. In time series, extreme
events are typically characterized by extremely small or large values, that occur at random [47]. For
the prediction of time series with extreme values, the SARIMA models proved impractical for time
series data that contained extreme values [48] [49]. Moreover, deep learning approaches have to be
enhanced to focus on modeling extreme events more accurately [50]. A novel approach, using extreme
value theory and the incorporation of a Memory Network, was introduced to improve network capacity
planning for extreme values. Therefore, to tackle the challenge of extreme events, extreme value theory
can be considered to model extreme values.

3.3.1. Extreme Value Theory
As previously described, challenges arise for time series models that contain extreme events. Their ex-
istence can significantly impact the overall effectiveness of time series models. Extreme Value Theory
or Analysis (EVA) presents a potential solution to address these challenges. It is a statistical theory that
uses the extreme values of a time series and its tail distributions to provide insights into the occurrence
and impact of extreme events. It focuses on significant deviations from the median within probability
distributions. The objective is to forecast the likelihood of extreme events, that lie outside the available
range of data [51].

It is widely applicable in diverse domains [52], which includes finance, hydrology, road traffic prediction
and structural engineering. Examples of extreme events are financial market crashes or rare weather
phenomena, such as floods. For instance, the Netherlands has applied EVA for the challenges and
risks associated with floods, which is relevant in a country that is susceptible to sea level extremes.
Applications of EVA are specifically risk management, Value-at-Risk (VaR) estimation and insurance
[53]. These three topics can be described as follows:

• Risk management: It serves as a method to assess tail risk, which is the probability of extreme
events occurring. EVA models the distribution of extreme values and facilitates the quantification
of the likelihood of infrequent yet impactful events. This is a critical aspect in devising effective risk
mitigation strategies. Additionally, more precise modeling of extreme events becomes feasible,
which enables stakeholders to incorporate tail risk measures when making investment choices in
the network.

• VaR estimation: VaR is a risk metric that calculates the expected highest potential loss within a
specified time frame and confidence level. EVA offers a reliable approach to VaR estimation by
modeling the tail distribution of, for instance, financial returns. This method enables the estimation
of the potential losses in extreme situations and provides insights into worst-case downside risks
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associated with an investment [54].
• Insurance: EVA is useful in the insurance and reinsurance industries for modeling significant
losses arising from catastrophic natural events, such as hurricanes and earthquakes. Through
the examination of historical data, EVA aids insurance companies in estimating the tail risk linked
to these events. This enables them to set policy prices in alignment with potential risks. Rein-
surance companies similarly employ the theory to evaluate potential losses that can arise from
catastrophic events and their reinsurance requirements.

EVA has seen limited applications in the telecom sector, particularly in the domain of network time
series prediction. Nonetheless, the researches that employ EVA for telecom data are elaborated on in
the next described papers.
One study applies EVA to teletraffic data to investigate the heavy-tailed nature of internet traffic [55],
in this case the file length requested to a server. The analysis concludes that the requested file sizes
follow a long-tailed distribution, similar to a Pareto distribution, which indicates that the requests are
rare but significant. This shows that internet behavior can be modeled with EVA for the right tail of the
distribution.
Moreover, EVA is introduced to predict telecommunication quality deterioration with a small amount
of known data [56]. The analysis of throughput tail distributions outperforms other methods to predict
the tail distribution of unknown data. It is more accurate than empirical or Log-normal distributions and
enables cost-effective forecasting of significant events with reduced measurement and storage require-
ments.
Another paper focused on wireless network traffic analysis with extreme value theory [57]. EVA effec-
tively characterizes traffic data and shows a lower average deviation compared to other distribution
models such as Exponential and Log-normal. This demonstrates that EVA can be employed to esti-
mate extreme behavior in random processes, as it provides more accurate predictions and reduces
computational overhead.

The application of Extreme Value Theory in the analysis of extreme events has demonstrated its effec-
tiveness in this sector and especially in other disciplinary fields. The success of EVA is shown as it
outperforms other methods for network traffic data. This underscores its potential as a robust tool for
the development of accurate prediction models. For this reason, further exploration into the capabilities
of EVA will be described in Section 5.2.2.



4
Data analysis

This chapter will provide detailed information about the service layer of the network and available net-
work traffic data. Additionally, the chosen data to be used as input for the model will be visualized
and analyzed to gain deeper insights into usage behavior and traffic peaks in the network data. The
relationship between events and peaks will be investigated, which enables the creation of a predictive
model based on this knowledge.

4.1. Data selection
The downstream throughput of the network is measured by data collection instruments. These are
installed on each link within the network, to monitor the traffic load. The data measurement pipeline
stores only the date of the maximum throughput and does not store the timestamp correlated to the
daily peak. This prevents any analysis of the time aspect of the maximum throughput besides the date
of the measured peak.

The throughput of the transport core, which originates from the service layer, is measured at two lev-
els in the network. These levels are illustrated in Figure 4.1. The first level involves the throughput
of the connections between the specific provided services and the domains that facilitate these ser-
vices. These include external applications from content vendors. The second level includes the links
to the domains accessible from the transport core. The throughput measured here consists of the total
aggregated throughput of all different services for every service domain.

Figure 4.1: The levels where data is measured in the service layer.

4.1.1. Data granularity
Traffic prediction relies significantly on the time granularity of the dataset. This influences two main
aspects to choose a suitable prediction method. Firstly, the length of the available time series plays
a pivotal role in the forecast horizon possible. The forecast horizon defines the length for which the
prediction is calculated. It is important that during the training of a prediction model, the number of
observations must surpass the number of model parameters [58]. Secondly, the aggregation of the
data can influence the performance of the prediction models. Aggregation to a lower granularity can
eliminate variations in the data and result in fewer data points being available for training the model,
which affects the predictability of the data. Hence, it is important to establish a granularity aligned with
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the intended insights to be derived from the forecast results.

The data on the links from level 2 was chosen for this research. A significant factor in this choice was
the data granularity. Data granularity refers to the degree of detail present in the data structure. To
decide on the level of granularity, it is important to assess the data quality. The total throughput of the
measured datasets of level 1 and level 2 should be identical as they involve the same traffic. However,
measurement errors in the instruments can lead to variations in the data. The selection from which
level the measured data should be taken involved a trade-off. Data from level 1 provides more specific
insights into user behavior and service usage, but it is less accurate in terms of measurements. This is
because some traffic is not measured directly on the network links, as these numbers are provided by
external content vendors and thus the accuracy of the data can not be validated. On the other hand,
data from level 2 is more accurate as the traffic on these links is measured by instruments of the net-
work. However, it provides a higher-level granularity of service usage which offers fewer details about
user behavior. Nevertheless, the data of level 1 obtained numerous absent data values and as some
of these measurements were not all directly measured by the network itself this can not be retrieved,
so this dataset was excluded from the research. As data accuracy is crucial for a prediction model,
more accurate data is preferable. Hence, the measured data on level 2 is chosen for this research.

From January 2017 until March 2020, the stored data only includes the maximum traffic reached within
one day per week. This data represents the weekly historical data measured by the data collection
instruments. Since March 2020, the daily maximum throughput was also stored. This period coincided
with the onset of the COVID-19 pandemic in the Netherlands, which accelerated the digital transforma-
tion for companies. The usage of network traffic changed and the throughput increased drastically, as
people were suddenly forced to work from home [59]. Subsequently, this caused a shift in work pat-
terns as an increased number of people adopted a hybrid work model, that alternates between working
from home and in the office. This hybrid way has persisted in current society. Accordingly, the data
collected from the start of the pandemic until the present is more indicative of current and future usage
compared to the traffic data before the pandemic. In the forecast process, an underlying assumption is
that historical conditions resemble future conditions. Furthermore, the use of daily data is more suitable
for the design of the prediction model, as it provides more detailed information on specific situations
of high network peaks compared to weekly data. This is particularly important in light of the future
objective to create a dynamic prediction model that considers extreme values. Therefore, the dataset
chosen consists of the daily network traffic peak data spanning from March 2020.

4.1.2. The service domains
As described, the input data for the design of the prediction model was acquired from level 2; the links
that connect each service domain and the transport core. The goal is that the model will be employed to
predict the throughput of all service domains, to gain insights into the capacity needed on the transport
core links. It was chosen not to employ a time series that represents the maximum total throughput
of the transport core. Firstly, because the five time series can not be accurately aggregated to obtain
one time series for the throughput. As stated before, the daily peaks do not contain the time at which
the maximum daily value occurred. Therefore, aggregation of the five domains is not possible. This
would give a time series that contains all maximum throughput values per day, even though they might
not occur at the same time, which is not a realistic representation of the maximum throughput. If for
instance, multiple users stream live content, fewer people make use of VOD content. Secondly, an
aggregated time series would give a more high-level view of user behavior, which does not provide
enough granularity for the objective of this research. Hence, an analysis of one or more of these time
series will be focused on for the analysis.

As the prediction model had to be created for the current network infrastructure, the time series have
been considered as separate components. Estimation of network traffic uses past measurements of
identical links in the network to predict the throughput in the future.
All service domains show a recurrent pattern throughout the years. This pattern will be described further
in Section 4.2.3. The throughput of each domain has its characteristics:

• Data Center: The average throughput of the Data Center remains stable, except for the infras-
tructure change as previously described. The reallocation of the traffic load is apparent in the
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measured data and caused the sudden decrease in throughput.
• Video Data Center: The traffic load is reallocated to this new domain. After this change, the
average throughput shows to maintain the same level of traffic. This could be linked to the fact
that the CDNs efficiently employ multicast transmission, which ensures that extreme peaks are
not likely to occur. Also, the overall throughput is not that high as the most popular content is not
visible in this data, as this is decentralized to the access level.

• Internet Peering: In contrast, the time series of Internet Peering exhibits a steady growth in trend
and extreme peaks compared to the average throughput. The average throughput is the highest
of all five service domains.

• Wholesale: The traffic of the wholesale links remains generally stable compared to consumer
network traffic, due to the services provided. It involves consistent data patterns and is less
subject to unpredictable user behavior. A slight increase in trend is visible and contains a few
noticeable peaks.

• Mobile Core: The daily Mobile Core measurements began in April 2021, which resulted in a
shorter time series. Additionally, the amplitude of the Mobile Core throughput is smaller than that
of Internet Peering, which results in a smaller load on the transport core network. Nevertheless,
this time series provides valuable insights into customer streaming behavior and makes it an
important aspect to take into account.

The design of the prediction model for the transport core is based on the historical time series data
of one service domain. This is to create a comprehensive analysis of this time series. The choice
between the time series was based on the comparison of the different domains and their functionalities.
The conclusion was that the Internet Peering time series is the most valuable to analyze. This traffic
has the highest trend increase and shows the most deviations from the average throughput. The traffic
peaks become more extreme over time, thus this time series can be considered the most challenging
to develop an accurate model for. A model that can predict the throughput based on the characteristics
of the Internet Peering time series, should be able to predict the demand for the other service domains.
Moreover, the traffic data of Mobile Core has also been considered for time series analysis. Although
the traffic load is relatively smaller, this data offers valuable insights into user behavior.
For the design of a reliable prediction framework, the time series of the Data Center and Video Data
Center links are not suitable due to the sudden change in traffic behavior. Due to the alterations in
network behavior by the infrastructure adjustments in these domains, significant challenges to traffic
prediction methods arise in pattern recognition. Additionally, if only the part of the time series after the
change is taken into account, as this is the design of the current network, the time series are too short to
perform predictions with a forecast horizon of one year in advance. Furthermore, the wholesale traffic
is not considered for the time series analysis as it does not offer additional insights into user behavior,
given the nature of the service provided in that domain. For that reason, the time series of Internet
Peering and the Mobile Core are considered for subsequent time series analysis and design steps for
the model.

The prediction model will be constructed with the Internet Peering time series and insights derived
from the Mobile Core time series. Initial evaluation will focus on the Internet Peering dataset, followed
by its application to other time series. For shorter time series, necessary model adjustments have
to be made to enable predictions of the different domains. For the Data Center and the Video Data
Center, the model could be trained with a shorter forecast horizon until the time series taken after the
infrastructure change, extends to a sufficient length to be predicted for one year in advance.

Measurement pipeline
The selection of the time series for the prediction model showed that the current measured data has
its limitations. As explained in Section 2.2, the data is collected at five-minute intervals, which results
in a daily traffic profile of the network throughput. However, only the maximum value per day thus
one throughput value is stored and the daily traffic profile is discarded in the current data measurement
pipeline. This information holds potential value to enhance the network analysis in several ways. Firstly,
the daily throughput profile offers a more detailed perspective on network performance compared to
solely the peak value. It enables the creation of a more comprehensive dataset that incorporates
fluctuations and trends throughout the day, rather than solely the daily throughput. A daily traffic profile
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offers insights into user behavior and usage patterns over time. The distribution of traffic throughout
the day can help to accommodate fluctuations in demand and correlate the usage to events. Moreover,
a daily traffic profile could be created for every day of the week. The throughput flow varies throughout
the day but also per day of the week. This information can be invaluable to optimize resource allocation,
to obtain a dynamic prediction model in the future. This can lead to cost savings and improved network
efficiency.

4.2. Data preprocessing
The collected data of the Internet Peering and Mobile Core domains is analyzed and processed for
further examination. The other domains will be predicted with the same framework after the final de-
sign has been created. The process involves the transformation of raw data into the desired format,
addressing missing values through interpolation techniques and conduction of a time series analysis.
Key components of this analysis include time series decomposition and stationarity tests, which provide
a robust foundation for extracting meaningful insights from the dataset. Each step is executed to un-
cover patterns, trends and fluctuations within the data. This facilitates a comprehensive understanding
of the network traffic dynamics.

4.2.1. Data cleaning
The obtained daily peak datasets have a few days missing in the set. These are 9 days at the end of
August and 5 days at the beginning of September. These peaks are missing due to unstable measure-
ment tooling that stopped working. Therefore the incomplete dataset was interpolated after consultation
with the expert responsible for the maximum network throughput data. Table 4.1 shows the determinis-
tic procedure followed to interpolate the missing values [60], with Ydd/MM representing the maximum
throughput of that specific day (d) and month (M ). For instance, on Friday 21/08, the assigned value
is the mean of the maximum amount of traffic from the throughput on Thursday 20/08 and Saturday
22/08. As the following two weeks were missing, these throughput values could not be imputed from
the mean from the throughput the days before and after but had to be chosen using another solution.
Sunday 23/08, a Sunday without any event or F1 race day, uses the same throughput as the next first
Sunday without a race day, which was 20/09.

Table 4.1: Interpolation calculations for missing data values

Throughput missing Interpolation method
Friday 21/08 (Y21/08) Y21/08 =

Y20/08+Y22/08

2

Sunday 23/08 (Y23/08) Y23/08 = Y20/09

Monday 24/08 (Y24/08) to Friday 28/08 (Y28/08) Y24/08 to Y28/08 = Y17/08 to Y21/08

Saturday 29/08 (Y29/08) Y29/08 = Y22/08

Monday 31/08 (Y31/08) to Friday 04/09 (Y04/09) Y31/08 to Y04/09 = Y07/09 to Y11/09

4.2.2. Relative difference dataset
To isolate the extreme events of the daily maximum throughput, a new dataset is generated from the
historical time series that consists of the deviation between the average throughput and the daily peaks.
This approach has been adopted to improve the extraction of the extreme values, as the average
throughput varies seasonally. Due to this, a peak that occurs in the summer might be lower in absolute
value than a peak that occurs in the winter, but can be significant compared to the average throughput.
To achieve this, a rolling moving average of 31 days was computed for the throughput data. The moving
average of 31 days is chosen as this includes the throughput of four weeks in the calculation. If there
are any weekly patterns in the data, for instance, a higher throughput on Sundays and lower traffic
usage throughout the week, a 31-day window can better capture these patterns. Shorter windows with
like 7 days or 14 days, would introduce more daily fluctuations and short-term trends and would be
more sensitive to abrupt changes.
The moving average of 31 days represents the average throughput over a period one month and has
been calculated as shown in Equation 4.1. Here k is the size of the sliding window and yi is the ith
data point in the set of data points y1, y2, ..., yn [61] [62]. The sliding window is set on 31 days, thus the
data from the previous 30 days is needed in addition to the value of the current day, to determine the
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moving average for the current day.

MAk =
1

k

n∑
i=n−k+1

yi (4.1)

This results in the moving average with a window of 31 days as shown in Figure 4.2.

Figure 4.2: The Internet Peering time series with the moving average of 1 month.

Subsequently, for every day the difference between the daily throughput value and its corresponding
31-day moving average is calculated, as described in Equation 4.2. In this manner, the variations from
the expected mean are measured. This dataset is then used for the further EVA steps.

∆i = yi −MAk(i) (4.2)

This results in a new dataset, that contains the differences between the average throughput in a month
and the maximum peak per day. Figure 4.3 illustrates the dataset. It can be seen that the deviations
from the average throughput increase over time and peaks are more extreme than before.

Figure 4.3: Generated dataset ∆i of the Internet Peering throughput.
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4.2.3. Time series analysis
The time series analysis has been performed on the measured data points of the two domains shown
in Figure 4.4; 1302 days of Internet Peering and 898 days of Mobile Core. This data is used to assess
the characteristics of the data and to extract insights from the time series. The primary emphasis in this
analysis will be on the Internet Peering time series, with Mobile Core data included to provide additional
insights. The designed model will be implemented for these two domains, as described in Chapter 6.

Figure 4.4: The Internet Peering and Mobile Core time series chosen for the analysis.

Time series can be decomposed into distinct characteristics, which are trend, seasonality and noise
[63]. The trend of a time series is a long-term increasing, constant, or decreasing change over time.
Seasonality describes whether there is a recurrent pattern within the time series over a specific period,
such as weekly or monthly, which can be influenced by seasonal factors. Lastly, there is some unex-
plained variability in the data known as the residue. This accounts for the random fluctuations that are
not accounted for by seasonality or trend and is also referred to as noise.

Various patterns can be extracted from the time series data. Empirical analysis indicates that the
throughput of the time series increases over time and follows the same pattern every year. Seasonal
changes likely influence this in user behavior. To help recognize these underlying patterns, time series
decomposition can be performed. Classic decomposition has been performed with the programming
language Python [64] to obtain the different time series components by employing the multiplicative
model [65]. The idea is that the various components of the decomposition can be combined to obtain the
historical time series, through a multiplicative time series model. For the multiplicative model Equation
4.3 is used:

Yt = Tt ∗ St ∗Rt (4.3)

Here Tt represents the trend component, St the seasonal component and Rt the residual component.

The time series contains daily data and annual seasonality. The season length used to perform the
decomposition must be 365 days to extract this seasonality. The moving average sliding window is
therefore set on 365 days, which also determines the long-term trend throughout the years. The results
of the decomposition following the multiplication model for the Internet Peering time series, are shown
below in Figure 4.5.
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Figure 4.5: The multiplicative decomposition of the Internet Peering.

Figure 4.5 shows the decomposition by the multiplicative model. The throughput in Gb/s defines the
trend component. The seasonality repeats a yearly pattern as defined in the model. The y-axes of
the seasonality and the residual component of the time series model are factors instead of throughput
values. These factors represent the values that should be multiplied by the trend component to obtain
the historical time series. The same decomposition is performed for the Mobile Core time series and is
depicted in the appendix in Figure 6.9.
The components can be extracted from the Internet Peering time series by use of a multiplicative de-
composition model. Figure 4.6 provides a detailed illustration of the trend and seasonality components.

Figure 4.6: The trend and seasonality components of the time series.

The observed linear increasing trend indicates a consistent growth in traffic over the years, with a steep
slope reflecting an annual increase of 40%. This upward trend aligns with the expanding demand for
network services each year. Additionally, the time series exhibits an annual seasonality, as it depicts
a recurrent pattern influenced by seasonal factors. The throughput experiences an upward trend from
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the start of the calendar year, with traffic decreasing through the summer months. The highest amount
of traffic is reached during the winter months and two significant drops are evident on Christmas and
New Year’s Eve. Just after midnight on New Year’s Day the traffic increases drastically compared to
the day before and the same yearly pattern repeats itself. The magnitude of the seasonal component
increases as the traffic grows.

Stationarity
Empirically it is evident that the time series is not stationary. To confirm and to determine whether the
dataset is stationary, two tests have been conducted: the Augmented Dicky-Fuller test (ADF) [66] and
the Kwiatkwoski-Phillips-Schmidt-Shin (KPSS) test [67]. The ADF test aims to identify the presence of
a unit root in the time series:

• H0: The Null Hypothesis assumes that the series possesses a unit root, indicating non-stationary
due to its time dependent structure.

• H1: The Alternate Hypothesis suggests the absence of a unit root, implying that the series is
stationary.

When the p-value is smaller than the threshold, p < 0.05, the series is stationary. To further confirm
this hypothesis, the KPSS test is performed as well. This test operates in the opposite direction of the
ADF test, thus if p < 0.05 the series is non-stationary.

• H0: The Null Hypothesis of the KPSS test assumes a stationary trend or level stationarity.
• H1: The Alternate Hypothesis suggests the presence of a unit root thus implying the series is
non-stationary.

The results of these tests can be seen in Table A.1 in Appendix A.1. The outcome of the test shows that
the p-value is greater than the threshold of 0.05 and the Null Hypothesis can not be rejected, indicating
that the time series is non-stationary. The results of the KPSS test yield a p-value smaller than 0.010000,
which falls below the significance threshold of 0.05 and the Null Hypothesis is rejected. Consequently,
this indicates that the time series is indeed non-stationary. Therefore the time series must be made
stationary by differencing, which means subtracting the previous value by the current value. More on
the use of this differencing is explained in Section 5.1.1.

Autocorrelation
To see whether the series is autocorrelated, autocorrelation function (ACF) tests have been performed.
Autocorrelation states whether the previous values of the series, or lags, can help predict the current
value. Moreover, the partial autocorrelation function (PACF) has been taken. The lags show that the
traffic at a given time is influenced by the traffic in the previous period. This information is crucial
to capture the temporal dependencies within the data. The results are shown and elaborated on in
Appendix A.2. The autocorrelation plots help to determine the model orders for the ARIMA model.
More on the employed model orders is described in Section 5.1.1.

4.3. Usage behaviour
An analysis has been conducted to obtain insights into user behavior patterns. Firstly, the dataset has
been sorted to distinguish peak values that occur during weekdays and weekends. This segmentation
allows for an examination of Internet usage trends per week and is depicted in Figure 4.7.
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Figure 4.7: The week and weekend throughput values of Internet Peering.

It is evident that at the start of the dataset, a majority of the elevated peaks occur on weekdays. How-
ever, from the second half of 2021, there is an increase in peak values that occur during the weekends.
Particularly since 2022, the most significant peaks largely emerge during the weekends. This pattern
shift may be attributed to the influence of the COVID-19 pandemic, which led to cancellations or post-
ponements of numerous popular television events. If postponed, the events occurred towards the end
of 2021, which could explain the increase in peaks as F1 events often occur during the weekend.

Additionally, the data was organized and arranged based on specific days of the week. This arrange-
ment resulted in day specific traffic data spanning 186 weeks, which shows more details on the occur-
rence of the daily peak values. To visualize which days generate the most Internet Peering traffic, the
throughput for every specific day of the week is shown in Figure 4.8. Empirical examination reveals
that a majority of the highest peaks in 2020 and the initial half of 2021 occur on Tuesdays. Tuesdays
were often the days on which live press conferences on the pandemic measures occurred and could
explain the higher peaks on these days. Again, towards the end of 2021, the shift in high peaks that
mostly occur on the weekends instead of weekdays is evident. This can be attributed to the increasing
number of high peaks that can be observed for traffic on Sundays. This trend continues and intensifies
as time goes on. This confirms the increase of the network peaks on Sundays and as described in
Section 2.3, they can have a significant impact on the network. Moreover, the peaks on Sunday seem
to have a higher magnitude than on other days. This is an effect of the F1 race days. Overall the
magnitude of all peaks increases throughout the years.
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Figure 4.8: The throughput of Internet Peering for every day of the week.

Moreover, for every day of the week, the moving average with a sliding window of 52 has been calcu-
lated to obtain the average of the measured maximum throughout of the year. The results of this are
illustrated in the appendix in Figure A.3 and show the days with an overall higher load on the network.
This does not directly mean that the absolute highest peaks are measured on those days, but it can be
expected that most extremes are on the days with the overall highest throughput average. Other days
can still contain extremes, but one or two extremes in 52 weeks do not make a significant difference
on the average. The moving averages are computed to see whether there is a recurrent usage pattern
throughout the years. Two changes in user behavior are noticeable as the traffic on Sundays became
higher than the throughput of the other days. Furthermore, the overall throughput of Wednesdays be-
came higher than the traffic on Tuesdays and became the day with the second highest overall load.

Lastly, the average throughput per year for each particular day of the week was calculated. This pro-
vides other insights compared to the one year moving average depiction. The average throughput for
every day can be seen in Figure 4.9. Moreover, the changes in increase between the annual throughput
averages of every day have been calculated and reported in this figure. The percentages in 2020 are
0% as no change in increase can be calculated for the same year. The increase in average throughput
from 2020 to 2021 shows an increase of around 25% for all days. In the following year when 2022
happens, an increase of 25% can be seen for traffic on Sundays. The rest of the days had an increase
of less than 20%, which indicates Sundays generally exhibit a higher usage load. This substantiates
the change in behavior that was previously observed.
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Figure 4.9: The annual increase in average throughput for every day of the week of the Internet Peering dataset.

The changes in user behavior of the network traffic data show that the throughput does not show
consistent patterns during the past 3,5 years. These changes could for instance be explained by the
lockdowns due to COVID-19 and result in different usage of Internet services compared to now. To
understand the data, the peaks that are evident on specific days will be further analyzed to see whether
a correlation can be made between high throughput values and events.

4.4. Peaks and external events
The time series data has been visualized to explore potential correlations between specific peaks and
noteworthy events. Plotting the data helps identify patterns or anomalies that may coincide with signif-
icant occurrences. This visual analysis enhances the understanding of how external factors or events
could impact network traffic, providing valuable insights into the dynamics of the network. The hypoth-
esis that suggests that peaks are influenced by popular events, which could offer valuable insights for
prediction models, will be further investigated.
The impact of Formula 1 events on the network is evident. As discussed in Section 2.3, F1 races can
cause increased traffic peaks and are visible in the network throughput. Incorporation of this consider-
ation into the network design helps manage substantial peaks, as demonstrated in the case of letting
Viaplay provide a part of their content through multicast streaming. To examine the relationship be-
tween peaks and F1 race days, a dataset was created to document the occurrence of all F1 race days
starting from March 2020. While it is acknowledged that F1 race days contribute to a high network load,
this correlation was confirmed by plotting the time series of Internet Peering together with the race days.
Figure 4.10 shows the days on which a race took place on the peak corresponding to that day.
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Figure 4.10: F1 race days plotted on the Internet Peering time series.

Prior to the end of 2021, it is evident that race days did not result in a substantial increase in network
traffic. This might be influenced by the fact that F1 races were broadcasted by other television sports
channels and are therefore less visible on the network of KPN. These peaks were the result of other
significant events; for instance, some were caused by COVID-19 press conferences that were executed
by the Dutch government. However, since such events are not anticipated to recur, they have not been
further investigated. Additional peaks prior to 2022, can be correlated to football matches, which is the
most watched sport in the Netherlands. Particularly in 2021, the postponed Euro Cup 2020 matches
and Champions League matches caused high peaks in the network traffic.
This shows that the load on the network is dependent on the available content that the network offers
and the viewing habits of customers. A change in offered content can shift the patterns of network
traffic and cause other peaks. With new trends that will arise in the future, the highest peaks could be
caused by other services. Therefore, peak analysis with events is important to understand the capacity
demand.

Figure 4.11: Formula 1 race days plotted on the Mobile Core time series.
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A similar analysis can be conducted for the Mobile Core time series. Figure 4.11 illustrates that the
race days can more frequently be associated with high peaks in the Mobile Core traffic compared to
the peaks in the Internet traffic data. This underscores the importance that a correlation between time
series can provide valuable extra information for the prediction. This is expected since the throughput
of this domain mostly reflects the traffic generated by users streaming from their mobile devices. Both
figures clearly show that a large amount of peaks, especially in the last two years can be correlated to
F1 peaks, which are expected events. Taking these events into account when designing a prediction
model with exogenous variables, could improve the prediction of traffic.

However, it is also apparent that not all peaks can be attributed to F1 events. Other popular (sports)
events could be the cause of that. A few of them can be explained by football events. The FIFA
World Cup matches in November 2022 caused significant high peaks on the network. Moreover, a
significant high peak in the Mobile Core data on March 4th, 2023 can be associated with two popular
sports events that took place on that day. One was a football match between Ajax and Feyenoord
in the KNVB Beker tournament and the other was a World Championship 2023 Speed Skating event.
Although these events can be correlated to significant peaks on the network, they were not included
in the plotted figures. Since the documentation of the occurrence of these events had to be manually
created, including football matches and popular live (sports) events, the decision was made to focus
solely on F1 race days. This is to maintain a consistent overview of events that affect the network load,
as including all events that are popular amongst users, costs a lot of time to document and missed
events could result in training a model with inconsistent input information.

Most of these events are expected and are planned. However, some events are unexpected and thus
not planned. On February 15th, 2023 an event by Giro 555 caused high traffic on the network. This
was a fundraising campaign for an unexpected humanitarian disaster that happened a week before.
Events like these are unpredictable but can occur. Therefore it is crucial to anticipate and plan for fore-
seeable events in advance. This proactive approach ensures that the network is adequately prepared
for increased peaks. Unforeseen events of this nature can potentially lead to unexpected challenges
and therefore, addressing expected issues proactively allows for better mitigation strategies.



5
Forecast methodology

This chapter describes the methodology used and the steps taken in development towards the predic-
tion model. The initial phase of the research involves the employment of the time series data as input
for ARIMA and DeepAR. This assessment showed that these models did not provide accurate predic-
tions for the extreme values, which helps to determine further research steps to improve and obtain a
substantiated forecast. Therefore, a statistical method was chosen to predict the expected throughput
considering seasonality and trend, which involves the application of extreme value theory to the time
series to model the risk of extreme events.

5.1. Time series models
In time series prediction, datasets are analyzed to develop a model for a specific target variable. The
underlying relationship of the observations in the dataset is employed to predict multiple time steps, by
extrapolating the time series into the future [68]. To forecast, it is essential to ensure that the model
can be trained with a sufficient number of observations relative to the parameters involved [58]. In this
case, when a forecast of at least one year in advance is required, a historical training set of at least two
years is imperative. Additionally, the historical data should encompass at least as many observations
as the length of the longest anticipated seasonal pattern. Given the presence of an annual seasonality
pattern, a minimum of three years of historical data is essential for this research.

A prediction model is designed to gain insights into the capacity needed in the future. The time series
employed for the forecast models and the extreme value analysis, as described in Section 4.1, is the
Internet Peering data shown in Figure 5.1. The data features the highest daily throughput recorded in
the network between March 9, 2020 and October 1, 2023.

Figure 5.1: The daily maximum throughput of the Internet Peering component during a period of 3,5 years.

Figure 5.2 illustrates the evolution of the model development process, which unfolded in two distinct
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(a) The initial forecast methods. (b) The final chosen forecast methods used for the prediction model.

Figure 5.2: The steps taken in the development process towards a prediction framework.

phases. The initial concept, as depicted in Figure 5.2a was to develop a (machine learning) model with
the ability to predict the maximum expected traffic with additional knowledge of extreme events. This
external data encompassed anticipated events such as F1 races, World Cup and European Cham-
pionship matches, and more. Two distinct methods were explored to evaluate the feasibility of this
concept, as elaborated upon in Section 5.1.1. However, this concept proved infeasible as it did not
yield accurate results for the extreme values within the time series. Consequently, an alternative ap-
proach was pursued.

Subsequently, in the second phase illustrated in Figure 5.2b, a decomposed time series forecast ap-
proach was implemented. Then this forecast is integrated with an EVA model, to obtain the forecasts
on the extreme values of the dataset. This method leverages the statistical characteristics of the time
series, to ensure reliable and interpretable forecasts that are essential given their role in network design
decisions.

The results obtained from the forecast methods have been evaluated and compared to determine the
subsequent steps necessary for the final design of the prediction model. MAPE has been employed
to compare the performance of the prediction models [21]. This is a widely employed metric to assess
the accuracy of the prediction method. The model that exhibits the lowest error value represents the
optimal model, which indicates its ability to generate predictions that closely align with actual test data
values. Equation 5.1 depicts the formula employed to calculate the MAPE:

MAPE =
1

n

n∑
t=1

∣∣∣Yt − Ŷt

∣∣∣
Yt

× 100 (5.1)

Here t represents the specific period (1, 2, 3, ..., n), n the total number of observations and Yt the ob-
served throughput at time t. The MAPE is calculated by taking the absolute difference between the
predicted Ŷt and observed values, relative to the observed values.

The various models have been assessed on complexity and reliability, to determine which methods are
most applicable for real-time data. Moreover, this research aims to establish a framework for capacity
management. Therefore the integration of DataIku has been considered in the design process. Further
details regarding the usage of this platform are provided in the following section.

5.1.1. DataIku
Two prediction methods employed to evaluate the feasibility of the time series were examined and
produced with the use of the DataIku platform. AutoARIMA and DeepAR have been applied in DataIku
to predict the maximum daily throughput and their performance was assessed. These methods were
chosen as they both allow the use of exogenous variables to improve the forecasting accuracy [69].
To design a prediction model, the complete time series spanning 1302 days, was divided into a training
set and a test set, aligned with the intended forecast horizon of 365 days. This partitioning resulted in
a training set of 937 days and a test set encompassing the most recent 365 days. It was not feasible
to achieve a forecast horizon of six quarters due to the length of the dataset being 1302 days, falling
short of the required 1644 days. This discrepancy arises from the training requirements of the model,
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where a forecast horizon of 548 days necessitates twice that duration for training and an additional 548
samples for testing.

AutoARIMA
Automatic ARIMA (AutoARIMA) is a time series prediction approach that identifies the optimal param-
eters for the (S)ARIMA model [70]. It conducts a systematic search, with no constraints or user pre-
defined constraints, to select the parameter set that minimizes the specified information criterion, such
as the MAPE. This parameter set consists of the AR and MA model orders, the seasonal order and the
season length, considering factors such as the unit root tests for stationarity detection. This will result
in the highest possible accurate SARIMA model using the given time series for forecasting.

Two distinct tests were conducted to identify suitable parameters for the SARIMA model. In the first
test, no constraints were placed on the minimum or maximum values of the parameters. AutoARIMA
conducts a unit root test to determine the order of differencing d, which leads to the selection of the
optimal p and q parameters. Only the season length m needs to be determined in advance. In order
to incorporate the annual seasonality, it was initially desired to set a season length of m = 365 days.
However, due to computational constraints arising from the frequency of the daily input data, this sea-
son length was not feasible. Consequently, the season length was adjusted tom = 7 days. This allows
the model to take into account the weekly seasonality.
The second test involved iteratively selecting SARIMA parameters based on multiple tests that have
been performed on the data, which have been performed in Python. The results of these tests helped
to determine the model orders regarding the stationarity and autocorrelation lags. It also showed a
weekly seasonality and therefore a season length ofm = 7 days was validated. As explained in Section
4.2.3, the Internet Peering time series is non-stationary, which led to setting the differencing term d to 1.

The forecast horizon is set to 365 days or approximately one year. The SARIMA model from the au-
toARIMA approach without parameter constraints and the SARIMA model with determined parameters,
resulted in the same SARIMA model. The parameter set led to the ARIMA(1,1,1)(2,0,2)[7] model. The
forecast of the first model in DataIku is depicted in Appendix B.1. The results of the second forecast
model are depicted in Figure 5.3. The model resulted in a MAPE of 16.5%.

Figure 5.3: ARIMA(1,1,1)(2,0,2)[7] model on the Internet peering time series.

The backtest shows the performance of the prediction model when compared to the test set of the
historical data. As weekly seasonality is considered, the forecast consists of the weekly traffic pattern.
As a result, the trend and seasonality appear to be inconsistent with the expected growth based on the
historical data. The results show that the model of ARIMA(1,1,1)(2,0,2)[7] does not provide an accurate
forecast and therefore SARIMA is not a suitable approach for this time series input.
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DeepAR
In addition, the time series data was used as an input for DeepAR. DeepAR is a time series forecast-
ing model, developed by Amazon [71], designed to deliver accurate probabilistic forecasts for a wide
range of applications. The model architecture consists of a stack of RNNs parameterized by specific
features [44]. These are features that contribute to the learning process and they can be categorized
as item-dependent, time-dependent, or a combination of both. The features allow the model to capture
intricate relationships in the data. The model supports the use of exogenous variables, like Formula
1 race days, as additional input for training the model. Moreover, the approach goes beyond merely
forecasting the future values of the time series. DeepAR also calculates the quantile estimates to pro-
vide a basis for more informed decision-making. It can learn from multiple time series simultaneously,
which makes it suitable for datasets with numerous related sequences.

One model is trained using only the historical time series data. Moreover, another model is developed
that incorporates exogenous variables. In this case, the exogenous variables use the Formula 1 race
days as an extra input to train the model that peaks are expected on race days. This input consists of
an additional binary input column, where a ”0” indicates no Formula 1 race has taken place and a ”1”
indicates the occurrence of a Formula 1 race on that day. To obtain a forecast using these exogenous
variables, future values of this feature must be given to the trained model to predict the throughput.
Therefore, another column is added with the race days that will take place in the future, starting from
October 2, 2023 until the end of 2024. The results of the DeepAR model trained with the exogenous
variables are shown in Figure 5.4. Since this model incorporates exogenous variables, the figure dis-
plays predictions based on future exogenous input. A backtest was conducted, that yielded a MAPE
of 16.3%.

Figure 5.4: The results of the DeepAR model trained with F1 racedays [10].

The forecast of the DeepAR model without exogenous variables is elaborated on in Appendix B.2. The
results show that the model trained with exogenous variables recognizes a higher trend and peak be-
havior on Formula 1 race days. The overall throughput is higher and the model shows an increased
throughput on the race days, as shown in the appendix in Figure B.4. However, the MAPE of the model
is still 16.3%. Although the overall predicted throughput is higher, the trend does not grow as expected
as the magnitude appears to remain constant. Furthermore, the seasonality has disappeared. The
absence of the seasonal component could indicate that information linked to this seasonality, such as
summer and winter months should be used as exogenous input for the model. Also, the values on the
race days do show an increased throughput but are not as high compared to the average throughput,
as apparent for the high and sharp peaks in the historical data. It struggles to predict a significantly
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increased magnitude for the maximum throughput associated with race days. This challenge seems
to be due to the limited data available for training, given that the race days account for only 6%, or 78
days out of 1302 days, and are divided between the training and test data sets.

DeepAR has a better capability in extracting intricate patterns and the recognition of extreme peak
values from the time series, even when historical data is limited. This explains the improved forecast
results that the model gives compared to the results of the ARIMA model. However, the time series
forecasts conducted did not yield accurate predictions. The results of the DeepAR model imply that
the model does not recognize the seasonality and fails to show extreme traffic peaks. As a result, the
decision has been made to employ the decomposed time series for subsequent forecasting efforts.
Additionally, an extreme value analysis will be incorporated to enhance the predictive capabilities for
the extreme values.

5.2. Chosen forecast method with Extreme Value Analysis
To predict the throughput values of the Internet Peering time series, subsequent steps will be followed
as depicted in Figure 5.5. The initial stage involves the extraction of the dataset from reports that contain
the measured daily maximum throughput values. Subsequently, the dataset undergoes preprocessing
to derive a time series suitable for the framework.

Figure 5.5: The prediction framework with the chosen method of EVA.

Concurrently, two processes unfold. The first process is the calculation of the decomposed forecast.
This includes the predictions for both the trend and seasonality components. Hereafter, a 31-day mov-
ing average is applied to the combined decomposed forecast. This moving average is essential to
compute the absolute peak values with the results of the EVA model.
The second phase commences with the computation of the 31-day moving average for the original
time series. This moving average is then utilized to generate the ∆ dataset that encompasses the
differences between the average throughput over the past month and the daily maximum measured
peaks. This dataset is then used for the EVAmodel, for which threshold selection must be performed. A
threshold is determined based on the distribution of this dataset and exceedances beyond this thresh-
old are subjected to fit an EVA model. The model yields results for return levels, that represent the
expected deviations from the average throughput.
Then the two processes converge. The 31-day moving average derived from the decomposed forecast
is combined with the results of the EVA model. Consequently, the return levels are added to the moving
average, which yields the absolute expected forecast values. For these extreme value forecasts, the
model will also compute the risk levels at 5% and 1%. As a result, a prediction for 1,5 years in advance
can be calculated.

5.2.1. Decomposed time series approach
Time series that contain extreme values often pose challenges for accurate forecasts. As discussed
in the previous section, the employment of SARIMA or DeepAR models on the daily peak network
throughput is likely to yield inadequate forecasts. Consequently, an alternative prediction model has
been devised, that leverages the trend and seasonality. The multiplicative time series composition
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detailed in Section 4.2.3 unveiled distant characteristics, which allowed for the extraction of trend and
seasonality components. These characteristics can also serve as valuable inputs to forecast the time
series.The equation employed to perform a decomposed forecast, denoted as ŷt, is [65]:

ŷt = Ŝt · T̂t (5.2)

Ŝt represents the forecast of the seasonal component of the time series. This has been predicted using
a seasonal naive method, as the seasonality is consistent throughout the years. The seasonal naive
forecast is calculated by Equation 5.3.

Ŝt+h = St+h−m (5.3)
Here Ŝt+h represents the forecast for period t+h, where h represents the number of periods to forecast.
T̂t is the trend component, which can be predicted using a non-seasonal method such as ARIMA. More
on the decomposed forecast is described in Appendix B.3.

5.2.2. Extreme Value Analysis
EVA has been employed to enhance the decomposed time series forecast and to create a statistical
foundation for the evaluation of the results of the machine learning forecasts. This can be achieved
by the prediction of future extreme values and the period of occurrence of these throughput levels.
Accurate prediction of these extreme values holds significant importance. They define the maximum
capacity requirements of the network and thus determine the necessary design investments to meet
these requirements. Consequently, a lack of accurate foresight into future demand could lead to the
ceasing of the network to offer data and its services.

The extreme events are modeled using an extreme value distribution. Two methods can be used to
analyze the extreme values. The first approach is the Block Maxima approach, which is based on
the Generalized Extreme Value (GEV) distribution. The second method is the Peaks over Threshold
(POT) approach, which is based on the Generalized Pareto Distribution (GPD) [72]. They are suitable
for modeling the maximum or minimum values of a time series sample. In this case, the upper extremes
are important.

Peaks over Threshold
The chosen method is the POT approach. Using the Block Maxima method may prove inefficient when
one block contains a multiple number of extreme events. This results in the loss of useful data, as
is demonstrated by the application of the Block Maxima method on the Internet peering time series
in Appendix C. This loss can lead to less accurate estimates of extreme values thus potentially un-
derestimating the true risk associated with rare events. Additionally, in case a block lacks extreme
events, the Block Maxima method will still incorrectly label the highest value within that block as an
extreme event. Consequently, this leads to an inaccurate representation of the true extreme values
in the dataset. When working with a low granularity time series dataset, such as daily observations, a
more efficient approach is to avoid the usage of block maxima and use the POTmethod [73]. Moreover,
the POT approach is better suited for assessing tail losses, as it concentrates on the distribution of ex-
ceedances beyond a chosen threshold. This allows for a more detailed examination of extreme events.

The extreme events represent the realizations x of a random variable X, exceeding a sufficiently high
threshold u. When X is characterized by the cumulative distribution function F (x), the conditional
excess distribution function Fu(x) is stated in Equation 5.4, for exceedances X over a threshold [74]
[75].

Fu(x) = P (X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u)
(5.4)

As the threshold gets large, the Gnedenko-Pickands-Balkema-deHaan (GPBdH) theorem states that
the distribution converges toward aGPD [76]. The cumulative distribution function of the GPD is defined
in Equation 5.5 [77].

F (x) = 1−
(
1 +

ξ(x− u)

σ

)−1/ξ

for x ≥ u, ξ ̸= 0 (5.5)

The GPD has three parameters; the threshold u. the scale parameter σ and a shape parameter ξ,
which controls the tail weight of the distribution. The threshold u should be chosen high enough for the
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GPBDH theorem to be applied and should include a sufficient number of observations that exceed the
threshold value. It is essential to choose a value that is not too high as this results in an insufficient
number of extremes, which gives unreliable estimates. Selection of thresholds can be done in various
manners; graphical and numerical approaches [72]. More on how this threshold is selected for this
model is described in Section 5.2.2.
POT requires mutually independent extreme values. Therefore declustering can be used to filter de-
pendent observations so a set of extreme values can be obtained that are independent. The fixed
threshold will determine the extreme values and then a minimum length is set between each cluster, to
define every separate cluster. In this case, this length is set to one day as the daily data needs to be
analyzed for every possible peak value. Every extreme will be identified according to the set threshold
and then the GPD will be fit to the independent maxima.

To build a time series model with Extreme Value Theory, the next steps are taken:

1. Dataset of relative differences: A new dataset was created to facilitate the POT method for the
time series.

2. Threshold selection: A threshold is chosen that defines the data points considered as extreme
events. For this threshold the POT method is used, to ensure minimum data loss. The extreme
events are identified and extracted from the time series data for further analysis.

3. Model fitting and validation: As the POT threshold approach is chosen, the GPD is used to model
the extreme values. The GPD has been fitted to the extracted exceedances from the time se-
ries. This involved the parameter estimation of the GPD that best fit the data with the maximum
likelihood (MLE) method [78]. Then diagnostics plots are employed to evaluate the fitted model.

4. Monte Carlo Simulation for uncertainty estimation: A Monte Carlo simulation is conducted by
resampling the data to generate different datasets. For each dataset, the GPD is refitted to obtain
a new set of parameter estimates. This assesses the variability of the parameter estimates and
calculates a confidence interval for the return levels.

5. Return level estimation: The fitted distribution is used to estimate the probability beyond the ob-
served data range. This involves the calculation of the return levels corresponding to the specific
return periods. Moreover, risk level estimates are computed with the return periods associated
with these risks.

More on this is elaborated on in the next subsections.

Threshold selection
To determine the threshold, four methods were selected for the relatively short time series that spans
three and a half years. The first method was chosen from various graphical threshold techniques.
Graphical threshold techniques have resulted in uncertainty and subjectivity [79]. Therefore, solely the
Mean Excess (ME) plot was employed to help in the selection of the threshold. The plot aids in the
selection of an appropriate threshold and the evaluation of the adequacy of the GPD model for the
generated dataset. The ME plot is a visual representation that depicts the empirical ME function of a
random variable X following a distribution F [80]. It is defined as stated in Equation 5.6, where M(u)
is the ME function at threshold u [81]. It represents the expected excess of X over threshold u, given
that X exceeds u.

M(u) = E[X − u |X > u] (5.6)

In the case of an independent and identically distributed (iid) sample (X1, X2, . . . , Xn), an inherent
estimate based on the actual data points for this function is the empirical ME function M̂(u) shown in
Equation 5.7.

M̂(u) =
1

n

∑n
i=1(Xi − u) · I(Xi > u)∑n

i=1 I(Xi > u)
, u ≥ 0 (5.7)

Figure 5.6 shows the ME plot for the Internet Peering time series. The plot represents the thresholds
at which the ME function is evaluated. As the threshold increases, there is a steep decline in the ME
values which then stabilizes. This range is where the ME values do not change significantly and can be
considered for the threshold selection. Beyond this range, there is more variability in the ME values and
the plot declines again. This suggests that there are few extreme values above these high thresholds,
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which would lead to an unreliable estimate of the extreme value distribution. The shape from the top
left to the bottom right represents a decreasing trend that approaches zero for higher thresholds. This
implies that the shape parameter of the GPD is negative, ξ ≤ 0 and the distribution has a bounded tail.

Figure 5.6: The ME plot of the Internet Peering time series.

The other three methods have been chosen for their simplicity and effectiveness in various contexts.
The first one employs the upper whisker of the boxplot to identify outliers, based on the interquartile
range (IQR), which measures the middle 50% spread of the data [82]. It is calculated as the difference
between the third quartile and the first quartile. The upper bound is calculated as:

ub = Q3 + 1.5 ∗ IQR

This method is robust, non-parametric and based on a statistical measure that is less sensitive to
extreme values. It is a common rule and it effectively captures points that are outside the normal range
of the bulk of the data [82].
The second is the upper 10% quantile, which involves ordering the data of the time series in ascending
order and calculating the value at the 90th percentile:

u10% = Q0.9

This quantile-based approach guarantees that 10% of the most extreme data points will be considered
as potential extremes, regardless of the distribution of the data. This also helps to ensure a sufficient
number of extreme values for the POT model due to the fixed amount of exceedances.
Lastly, the threshold is chosen based on the square root of the sample size of the data k =

√
n [83]. The

top largest k values are ordered and the kth lowest value from these values is chosen as the threshold:

uk = min({x(1), x(2), . . . , x(k)})

This method should enable the estimation of a stable threshold, which is sufficiently high to exclude
non-extreme values whilst capturing adequate extreme values for robust analysis.

Table 5.1 shows the thresholds calculated based on the three approaches.

Method Threshold Number of exceedances
Upper Whisker ub 36
Upper 10 % Quantile u10% 128
k =

√
n uk 35

Table 5.1: Summary of thresholds.
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The upper whisker quantile was selected as the final threshold for EVA due to its robust and stan-
dardized approach, which does not assume any specific underlying distribution. It includes a sufficient
amount of data points for the EVA model and excludes non-extreme values of the distribution. More-
over, the threshold value indicated by the upper whisker aligns with the stabilization range in the ME
plot, where the average size of excesses over the threshold captures the tail behavior of the distribution.
This method provides a non-parametric, common statistical approach to identify extreme values. This
threshold was employed to extract the extreme values from the dataset, that surpass this threshold
value. Then the GPD has been applied to estimate the tail behaviour of the distribution.

Return level estimation
The objective of the EVA model is to present the maximum peaks, or return levels, that are expected
to occur in the future. The return levels of the distribution represent the magnitudes of the extreme
values, that can be reached within a specific return period. The return period T denotes the average
amount of time it takes for a specific event to occur again [73]. This is crucial to determine the required
network capacity.

To compute the return level, it is necessary to determine the probability of observing an extreme event
in the future. The probability distribution of an extreme event given that variable X has exceeded
threshold u is expressed in Equation 5.8, for x > u [73].

Pr{X > x|X > u} =

[
1 + ξ

(
x− u

σ

)]−1/ξ

(5.8)

The return level is the level anticipated to be reached approximately once every N years. If there are
ny observations annually, this corresponds to the N-year return level defined as follows [73]:

zN = u+
σ

ξ

[
(Nny · ζu)ξ − 1

]
, ξ ̸= 0 (5.9)

In Equation 5.9, ζu = Pr{X > u} represents the exceedance probability of an individual observation
over threshold u. To estimate the expected return level, the GPD parameters need to be replaced by
their respective maximum likelihood estimates. MLE is a statistical method employed to estimate the
parameters of a given probability distribution based on observed data. This technique involves the
identification of parameter values that maximize the likelihood function, to ensure the most probable
parameter set that results in the observed data for the chosen distribution. The Likelihood function,
denoted as L(ξ, σ), is the product of the probability density functions for each observed data point. The
function is given by [73]:

L(ξ, σ) =

n∏
i=1

f(xi|ξ, σ)

The Log-Likelihood function of the GPD is then described as in Equation 5.10.

ℓ(ξ, σ) = logL(ξ, σ) = −n lnσ −
(
1 +

1

ξ

) n∑
i=1

ln
(
1 + ξ

xi

σ

)
(5.10)

The ML estimates are then determined by differentiation and solved numerically in Python. The esti-
mator of ζu is defined as follows:

ζ̂u =
k

n
(5.11)

where n denotes the total number of observations and k denotes the number of observations that ex-
ceed the threshold. As the observed data points are independent and identically distributed (i.i.d.), the
number of exceedances above the threshold follows a binomial distribution Bin(n, ζu) and the estimator
in Equation 5.11 therefore serves as the maximum likelihood estimate for ζu = Pr{X > u}.

Monte Carlo simulation is a technique that enables the estimation of real-world scenarios where out-
comes may deviate from expectations. The method can be employed in EVA to explore the variability
of model predictions. It serves as a tool to comprehend and quantify the variability in return levels
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through confidence intervals. The confidence intervals characterize the range of maximum values ob-
served within a period.
Each iteration of the Monte Carlo simulation involves the generation of a dataset from the observed
extreme values and re-estimation of the model parameters with MLE. For each dataset, return levels
are calculated based on the probability distribution defined by the model for the specified return periods.
This calculation leverages the CDF of the fitted extreme value model. Each iteration yields a potential
return level, based on the newly estimated parameters derived from each sampled dataset.
Consequently, this process results in a distribution of return levels from which a 95% confidence inter-
val is derived, to quantify the uncertainty associated with the estimated return levels. The confidence
interval is computed by the identification of the 2.5th and the 97.5th percentiles from the return level dis-
tribution [84]. The 2.5th percentile is the value below which 2.5% of the simulated return levels fall and
the 97.5% percentile represents the value below which 97.5% of the values are observed. Collectively,
these percentiles encapsulate the central 95% of all values within the distribution. This range therefore
defines the confidence interval, which indicates a 95% probability that the true maximum return level
will reside within this range. This offers a measure of the predictive reliability of the model and the
uncertainty in extreme value predictions.

Risk analysis
For capacity planning it is important to balance the amount of capacity to install, and the costs associ-
ated, with the probability of a capacity shortage and potential network outages, thus the risk associated.
Therefore it is insightful to understand the maximum value that can be surpassed with a specified level
of risk. To determine this, the computation of return levels associated with a designated risk percent-
age is required. For this, the inverse of the return period T = 1/p in years is employed, where p is the
annual exceedance probability [85].

Suppose the risk of a capacity shortage over one year has to be limited to 1%. To determine the return
level with a shortage risk of 1% in one year, the 1/0.01 = 100 return value z100 (which has a return
period of Trisk = 100) has to be calculated. Hence, to limit the risk of a capacity shortage over the next
year to 1%, it is estimated that a capacity with value z100 has to be available in the network.
In general, if the risk of capacity shortage has to be limited to probability p% over a specific planning
horizon H, the Trisk-year return level zTrisk can be calculated with Equation 5.12.

Trisk =
H

p
(5.12)

The chosen return period size for the horizon of the model is one year, which conforms to the average
duration in the Gregorian calendar (365.2425 days). Therefore, a return period of 50 corresponds to
a 50 year event and a return period of 0.5 represents a half year event. Similarly to the 1% risk level
calculation, for the return level with a 5% risk in one year, the calculation is 1/0.05 = 20 which leads to
a return period of T = 20 a required capacity of z20.
The return levels that result from the risk calculation will be linearly interpolated to establish the risk for
each day of the quarter. Hereafter, the risk levels for each maximum expected throughput per quarter
can be derived.



6
Results

This chapter outlines the framework of the prediction model that was designed with the Internet Peering
data in the development process. This model for extreme values is tested on the Internet Peering time
series and its results will be described. Moreover, these predictions are employed to challenge the
manual forecasts. Furthermore, the framework is applied to the Mobile Core time series.

6.1. Framework of the model
The design process has resulted in the development of a structured framework that serves as a guide
to generate predictions. Figure 6.1 visually encapsulates all the steps that comprise the final framework
that is employed to forecast the time series data, as elaborated upon in the methodology chapter:

Figure 6.1: The prediction framework to forecast the maximum expected throughput values.

6.2. Decomposed forecast
The decomposed forecast is built on the forecasts of the separate components from the time series;
the trend and seasonality. The forecast results of the trend and the seasonality can be seen in Ap-
pendix B.3.1. These predictions are multiplied to obtain the naive time series prediction for the average
throughput calculation. The naive time series forecast results can be seen in Figure 6.2. The figure
shows the multiplied trend and seasonality of the time series, with the combined decomposed forecast
for six quarters in advance.

40
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Figure 6.2: The naive time series forecast with a forecast horizon of six quarters of the internet peering traffic.

The models of the decomposed forecast show that an accurate prediction for the average throughput
can be calculated with a MAPE of 2.0% for the ARIMA model of the trend and a MAPE of 0.0% for
the seasonality prediction. The moving average of 31 days of the prediction is then calculated, which
results in the prediction shown in Figure 6.3.

Figure 6.3: The moving averaged forecast of the internet peering time series.

The observed pattern of the prediction is consistent with the throughput trends of the time series that
were previously outlined.

6.3. Extreme Value Analysis
The input data that is used for the EVA is the computed dataset of ∆i depicted in Figure 4.3, which
contains the deviations from the average throughput to the daily peak. The distribution of the dataset is
visualized in Figure 6.4. The plotted graph of deviations against their corresponding frequency provides
a detailed analysis of the deviations of the dataset. It enables the identification of the frequency of
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occurrence of calculated deviations, which helps to discern the tail of the dataset. The plotted graph
reveals that the distribution of the dataset is reminiscent of a normal distribution, which is characterized
by a bell-shaped curve.

Figure 6.4: The distribution of differences and the threshold for the Internet Peering time series.

The threshold for the extreme values of this dataset was calculated at ub in Section 5.2.2 and the green
dotted line on the graph represents this value. The threshold determines which observations are con-
sidered extreme values and are used to estimate the GPD to model the right tail of the distribution of
the observations.

Figure 6.5 displays the deviations dataset with the calculated threshold. The graph showcases the
extreme values that exceed this threshold, thus qualify as exceedances, and illustrates a temporal
correlation in the increase of their magnitude. A total of 36 extreme values were identified for this
threshold and will be employed for the EVA model.

Figure 6.5: The selected extreme values of Internet Peering for threshold ub.
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Then the process involves the use of MLE to determine the GPD parameters from the observed data
and the model is fitted to the extreme values. The main goal is to identify the parameter values that
maximize the likelihood function and define its shape and scale. The threshold plays a crucial role
in the determination of the GPD parameters, where the first parameter is the threshold u. The MLE
computations have resulted in a scale parameter of σ = 298.907 and a shape parameter ξ = −0.173.
To evaluate the designed EVA model with these estimated parameters, the diagnostic results of the
fitted model are shown in Figure 6.6 and discussed below.

Figure 6.6: The diagnostics for the EVA model for Internet Peering.

• The return value plot: The return level plot shows the relationship between the 36 extreme
values and their corresponding return periods. These are calculated based on the number of
exceedances within the given period of observation. The extremes are ranked in ascending order
from 1 to n. With the Python function pyextremes [86], the ranks are used to find the exceedance
probability for each extreme value. The return period is then calculated from the exceedance
probabilities and the rate of extreme events. This depends on the number of extremes, in this
case 36 and the total duration of the time series from which the extremes were drawn. The red
line represents the expected theoretical values from the GPD model and the black dots are the
observed values of the dataset. The blue region depicts the 95% confidence interval for the
variability of the return levels. The observed extreme data is resampled for a thousand runs by a
Monte Carlo simulation, to compute confidence intervals for the return levels.

• The probability density plot: The probability density describes the likelihood of observing a
particular extreme value. The extreme values that align along the line, represent the conformity
to the GPD. Deviations from this line may indicate deviations from the GPD, however this is
expected with an estimation of a distribution. It can be seen that around the extreme values with
a higher magnitude, the probability density of the observed extreme values is higher than the
fitted GPD probability distribution. This can indicate that the extremes with this magnitude are
not as rare as expected for the GPD and therefore deviate from the fitted GPD.

• The Q-Q plot: The Q-Q plot is an empirical tool to compare the quantile of each observation and
the predicted quantile. The plot facilitates the evaluation of the goodness of the fit of the param-
eterized GPD model to the empirical data [87]. R2 is the correlation coefficient that quantifies
the degree to which the observed data points align with the expected theoretical quantiles of a
probability distribution of the GPD.
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• The P-P plot: This plot relies on an assumed probability for the measured events. It is assumed
that the largest observed event has the lowest probability of occurring. R2 indicates how closely
the empirical CDF of the data matches the CDF of the fitted GPD. The resulting R2 coefficients
indicate that the theoretical distribution provides a good approximation of the distribution of the
extreme values.
From the diagnostics can be concluded that the GPD model is a suitable fit for the extremes of
the daily throughput traffic.

As the model is fitted to the data, the expected return levels for the next six quarters can be computed.
The return periods for each day over the next six quarters have been determined and used to calculate
the return levels that correspond to the return periods. The graph illustrated in Figure 6.7 shows the
calculated return levels from the GPD model fitted to the extreme values. The EVA return levels of the
blue line represent the predictions of the expected deviations from the average throughput for the next
six quarters. The return levels do not define the absolute maximum expected traffic peaks, but only the
deviations from the 31-day moving average.

Figure 6.7: The unprocessed results of the EVA model for the next six quarters of Internet Peering.

As stated before, a Monte Carlo simulation was performed to estimate the variability of the return levels.
Although the model assumes the data points are i.i.d., the observed exceedances indicate an increase
in the magnitudes of peaks over time. To quantify this variability, n = 1000 bootstrap samples of the
extreme observations have been generated. This creates 1000 datasets based on the 36 extreme
observations in the original dataset.
This method recognizes that the frequency of extreme events within the next six quarters may vary
from the expected 36 extremes, which can significantly influence the likelihood of specific return val-
ues. Variability arises from a random selection of occurrences from the statistical distribution. While
the expected return values have already been computed with Equation 5.9, it is imperative to consider
potential variations in the distribution of these return levels.

Moreover, the expected return levels zTrisk corresponding to a 5% risk and 1% risk of occurrence have
been calculated. For each quarter in the future, the return periods associated with the risk levels were
employed to obtain these return levels. Table 6.1 yielded from the equations of the return periods.
The specified return periods can be used to calculate the return values with the associated risk levels
with Equation 5.9. These values are significantly higher than the expected return values, as can be
expected.
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Table 6.1: The return periods for the risk calculations.

Period of Occurrence Risk (%) Return Period (Years)
1 Quarter = 0.25 5 5

1 25

2 Quarters = 0.5 5 10
1 50

3 Quarters = 0.75 5 15
1 75

1 Year = 1 5 20
1 100

5 Quarters = 1.25 5 25
1 125

6 Quarters = 1.5 5 30
1 150

The predicted EVA return levels are then added to the forecast of the 31-day moving average, to obtain
the absolute expected traffic peaks. Figure 6.8 represents the absolute results of the prediction frame-
work, where the EVA results are combined with the moving average forecast. The resulting expected
extreme values with confidence interval can be seen in Figure C.2 in the appendix.

Figure 6.8: The results of the EVA model with risk levels for Internet Peering.

The graph shows the moving average forecast, along with the expected maximum throughput that is
represented by the blue dots. To interpret the results, it is important to keep in mind that the calculations
for the extreme values were performed with input data up until October 1st, 2023. From this point of
view, the prediction results can be read. The predictions do not give the expected peak value to occur
on a specific day. The blue dots describe the maximum peak expected to occur within the period until
that specific day, if the value were to occur on that specific day as it is added to the expected average
throughput of that specific day. This means that between October 1st and any specific day in the future,
the maximum throughput calculated for that day in the graph can be expected to occur within the period
until that day. The model expects the first values above the threshold to occur between October 1st
and November 2023 and from this date on, extreme values are expected.
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Moreover, the absolute risk values are depicted. The 5% and 1% risk values have the same interpre-
tation as the expected maximum throughput but with different chances of occurrence. The values for
the 5% risk have a 5% chance of being reached between October 1st and the corresponding date in
the future. This means that there is a 95% chance that the throughput will not reach this value within
that period. The same holds for the 1% risk extreme values. For these values, a chance of 99% can
be assumed for the throughput not to reach the 1% line.
For example, if the capacity needs to be determined with the requirement of a 5% chance of a capacity
shortage in the first semester of 2024, the maximum capacity described by the risk level of 5% within
this semester should be considered. This would be the return value of the 5% risk level, which is the
value around April 2024.

In the return values estimated by EVA, seasonality defines the maximum expected peak for Q2 and Q3.
In Q2 the expected throughput decreases and in Q3 the expected throughput reaches its low. Then at
the end of Q3, the throughput rises again in September with an upward trajectory in Q4. This indicates
that the maximum expected throughput value between the required capacity in Q2 and Q3 does not
change much.

The model calculates the maximum reached throughput per quarter based on the results. The same
holds for the risk values, where the highest expected risk values are computed per quarter.
The results are compared to the manually calculated predictions. These predictions are the numbers
that are presently used to determine whether equipment must be built for capacity. The forecast extends
until Q4 2024 since there is no prediction for Q1 2025 yet. The difference ∆Ŷ between the current
prediction and the EVA estimation is calculated in Table 6.2, in total throughput and percentage.

Table 6.2: The current manual forecast calculations compared to the results of the EVA model.

Quarter Manual prediction (Gb/s) EVA estimation (Gb/s) ∆Ŷ (Gb/s) ∆Ŷ (%)
Q4 2023 -4,4%
Q1 2024 0,6%
Q2 2024 -2,9%
Q3 2024 -7,2%
Q4 2024 -2,7%

The results of the manual predictions increase per quarter. Except for the throughput values of Q1 2024,
the manual calculations result in a higher throughput than the maximum expected throughput from the
EVA. This could indicate that the manual calculations use information that estimates the throughput
to increase more than the statistical characteristics provide. Moreover, no seasonality is seen in the
manual predictions.

Table 6.3 depicts the same results where the EVA and risk values have been rounded up to represent
the required throughput values for the estimation of extra capacity. This is because the service routers
in the network are built with 100 Gigabit ports, which allows them to transmit up to 100 Gb/s. The EVA
estimates show small differences compared to the manual predictions. The difference can be attributed
to the seasonality factor, which was not considered in the manual predictions. In terms of the number
of ports, this difference would mean that four ports in the service router would be required less per the
EVA estimates. This deviation can not be considered small, as four ports are a significant investment.
The EVA calculations suggest that this extra capacity is not expected and thus not needed, which
makes it a more efficient calculation. This concludes that the total increases estimated by both manual
and EVA predictions are comparable. The EVA predictions are based on substantiated calculations
and demonstrate that it is possible to predict the throughput by analysis of the time series data.
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Table 6.3: The current manual forecast calculations EVA estimates rounded up for implementation.

Quarter Manual prediction (Gb/s) EVA estimation (Gb/s) ∆Ŷ (Gb/s) ∆Ŷ (%)
Q4 2023 -3,8%
Q1 2024 1,9%
Q2 2024 -1,8%
Q3 2024 -6,9%
Q4 2024 -1,6%

The risk predictions at the 5% and 1% levels offer additional insights for capacity planning, beyond
the maximum expected throughput values from the manual predictions. The risk estimates reveal
that the initial gap between the expected capacity based on manual predictions and the risk values is
substantial. Similar to the expected peaks, the risk values from the EVAmodel consider the seasonality
of the dataset and explain this small difference. In terms of capacity expansions, this would mean a
difference of one port or three ports for the transport core links. The risk estimates suggest that the
capacity expansions could be performed later which could improve the cost-efficiency trade-off.

6.4. Mobile Core implementation
The framework should be implemented for all different domains. To evaluate the designed framework
of the Internet Peering time series for another domain, the time series data of Mobile Core has been
employed as input for the prediction model. Therefore, all steps as described in Section 6.1 were im-
plemented to calculate the predictions.

Firstly, the decomposition was performed for a window length of 365 days. The results of the de-
composition are depicted in Figure 6.9. These time series components can then be employed for the
decomposed forecast.

Figure 6.9: The multiplicative decomposition of the Mobile Core time series.

The time series of Mobile Core contains 896 days. However, to obtain a model with a forecast horizon
of six quarters in advance, a time series with a minimal length of 1096 days is required. Therefore, until
the dataset contains enough data points, a workaround has been created to compute the predictions.
Instead of six quarters in advance, a prediction horizon of one year is used. When the time series has
1096 measurements, the original prediction framework can be employed again to estimate the through-
put for six quarters in the future.
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The decomposed forecasts for one year in advance are shown in Appendix B.3.2. The moving average
of 31 days of the prediction has been calculated to obtain the prediction needed for the EVA model.
These results are depicted in Figure 6.10.

Figure 6.10: The moving averaged forecast of the Mobile Core time series.

Secondly, the dataset that contains the difference between the daily peak values and the average
throughput was created. Figure 6.11 shows the dataset with the values of ∆i.

Figure 6.11: Generated dataset ∆i of the Mobile Core throughput.

The calculated threshold yielded a value of ub and resulted in the 48 extreme values as depicted in
Figure 6.12.
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Figure 6.12: The selected extreme values of Internet Peering for threshold ub.

The MLE computations produced a scale parameter of σ = 52.084 and a shape parameter ξ = −0.426.
The diagnostics of the model are shown in Figure 6.13. The R2 correlation coefficient shows that the
GPD model is a suitable fit for the extremes but it is lower than the R2 of the Internet Peering time
series.

Figure 6.13: The diagnostics for the EVA model for Mobile Core.
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The 48 extreme values are used to calculate the EVA return levels with the fitted GPD model. This
results in the predictions for the next four quarters, illustrated in Figure 6.14. Moreover, the risk calcu-
lations have been performed for the return levels associated with a 5% and 1% risk of occurrence.

Figure 6.14: The EVA return levels of Mobile Core.

The return levels again represent the deviations from the 31-day moving average and thus represent
the predictions of the expected deviations from the average throughput for the next four quarters. The
return levels are added to the forecast of the 31-day moving average, to obtain the absolute expected
traffic peaks. Figure 6.15 depicts the absolute results of the prediction framework.

Figure 6.15: The results of the EVA model with risk levels for Mobile Core.

The EVAmodel calculates the maximum reached throughput per quarter based on the calculated return
levels.
The prediction framework can accurately be implemented for the Mobile Core time series by the adapta-
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tion of the forecast horizon of six quarters to one year. Additionally, this framework is applicable for the
Wholesale time series, to provide estimates on the maximum throughput and risk values for the next
six quarters. However, to apply the framework to the Data Center and Video Data Center domains,
a tailored adaptation of the framework is required due to the limited time series data available. It is
imperative to accumulate more measurements over time until a substantial dataset is acquired, that
allows for accurate throughput predictions for one year to six quarters in advance.



7
Implementation for real-time data

In this chapter, the implementation in DataIku is elaborated on and the steps involved to obtain a real-
time operational model for capacity management purposes.

7.1. DataIku pipeline
The final prediction framework with EVA and the DeepAR models have been designed in DataIku for
real-time further work. Although the DeepAR model did not yield accurate predictions, the algorithm
has shown its potential for further research and therefore was integrated into the pipeline created in
DataIku. A flow was created where the models have been implemented to enable their usage in ca-
pacity planning tools. This flow is initiated daily to update the historical dataset with the maximum peak
value from the previous day, to ensure a continuously updated daily forecast.

A pipeline has been created to obtain the daily data from the report that stores the maximum throughput
per day. This data is used to create the input dataset for the model. The pipeline is illustrated in Figure
7.1. The report contains the latest daily peak measurements and each day a new peak is added to the
dataset, which consists of the historical daily maximum traffic between March 2020 and October 2023.
This dataset can then be employed as input for the prediction framework with EVA and as a training
dataset for DeepAR.

Figure 7.1: The section in the flow that retrieves the report with the daily measurements.

In addition to the retrieval of the network traffic data, the pipeline also incorporates exogenous variables
in the pipeline for the DeepAR model. The daily data from the report is integrated into a newly gen-
erated dataset, which encompasses not only historical throughput records but also future race days.
The model trained on the historical dataset can compute predictions on the throughput with the use
of future exogenous variables. As the historical dataset is updated daily, the model is also retrained
daily with the new input data. Subsequently, the forecast results of the DeepAR model for the next
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year are exported daily to a monitoring tool. Within this tool, the forecast results can be compared to
the real-time data and plotted as the future capacity requirements.
The current exogenous dataset consists of the F1 races from 2020 until 2024. This dataset is divided
into historical data to train the model and future race days to compute the predictions. In the event of
the inclusion of distinct or supplementary events, like football games, a similar approach can be applied
that incorporates these specific event occurrences as exogenous variables.

The workflow that contains the prediction framework is shown in Figure 7.2. Firstly, the multiplicative
decomposition is performed on the time series to obtain the time series components for the decomposed
forecast. Then a seasonal naive model is trained on the decomposed seasonal forecast to obtain
the forecast results for the seasonality. This seasonal component is combined with the ARIMA trend
forecast and then employed for the Python code written for the EVA estimates.

Figure 7.2: The part in the flow that executes the EVA model.

The output of this pipeline is the dataset that consists of the results of the EVA model, which gives the
absolute maximum expected throughput values per quarter and the throughput values with risk levels
of 5% and 1%. Additionally, the EVA results are exported to the monitoring tool and the maximum
anticipated throughput values are documented. These results are employed to challenge the manual
predictions.

The EVA model that performs the risk computations and combines these with the average throughput
forecast, was developed within Visual Studio Code. The Python code written functioned without errors
and gave the results as described in the previous chapter. However, to incorporate this framework into
DataIku, issues emerged due to the discrepancy in Python versions between the two environments.
While Visual Studio Code operates with Python 3.11, DataIku ran on Python 3.7 at the start of this re-
search and currently runs on Python 3.9. This version disparity led to the emergence of new debugging
requirements specific to Python 3.9, which led to a significantly time-consuming process. Given the
dynamic nature of this code environment, the version will soon transition from 3.9 to 3.11. As such,
it is important to carefully consider and address this aspect for the continuity of this research and its
models, and take into account version changes that will occur in the future.

To operationalize the Python model within DataIku for real-time usage and business applications in the
future, a structured implementation plan was devised. Initially, a concise manual document has been
composed, which details the sequential steps within the DataIku workflow and specifies the parameter
configurations set for the models. This manual serves as a reference guide, to enable future users of
capacity management to seamlessly use and replicate the model and its processes.
Furthermore, a series of collaborative meetings have been conducted, with additional sessions sched-
uled in the future. These meetings serve a dual purpose; first, to facilitate the seamless handover of
the project for real-time integration and second, to pave the way for future research and improvements
to the model. Key stakeholders and experts are involved in these discussions, to enable the project to
evolve and leverage new data and insights. This will enhance its accuracy and relevance, to address
the evolving business needs for a more optimized capacity planning process. This iterative approach is
required to update this prediction microservice to the requirements for a dynamic network digital twin.
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Recommendations for the network

This chapter discusses recommendations for network capacity management, which leverages the in-
sights gained from designing a prediction model for network traffic. It offers opportunities to enhance
current measures and leverage data insights. Additionally, it outlines potential new solutions.

8.1. Current transmission measures
The analysis and research performed to design the prediction model for the network domains, have
resulted in valuable insights on historical capacity and future demand. These insights contribute to pos-
sible solutions for network capacity management, which aims to create a network that can adapt to high
demand. Currently, the network design is based on a static network model. For this network, various
measures have been implemented to reduce the load on the core network, as previously introduced in
Section 2.2.1. These measures are as follows:

1. To bring content that generates high traffic closer to the user in the network, which involves specific
television programs and other video streams. Decentralization of content can effectively mitigate
the load on the transport core network. To determine the content to decentralize, algorithms
identify the frequently watched programs. The placement of the content in the access layer closer
to the users, is a viable means to reduce the load on the transport core network. At present, the
algorithms only consider popular television programs as content to be decentralized.

2. To employ multicast as a transmission protocol for more content. Multicast replaces a dedicated
stream for each user, by one stream that provides identical content to multiple users, thereby sav-
ing bandwidth. However, it may not be feasible for all types of content or network infrastructures.
The one-to-many communication method employed by multicast makes it unsuitable for appli-
cations such as teleconferences and online collaboration. Although multicast supports media
streams, its inherent nature makes functionalities such as pausing the stream difficult to achieve.
Additionally, the implementation of multicast across different networks is a complex endeavor.
Within specific networks, its adoption is valuable for live streams of television programs.

Research has shown that video streams currently cause the most load on the network, specifically via
unicast transmission. Unicast streams are employed for content that is streamed to mobile devices
and content that is paused or requested at a later time by interactive television applications. Further
mitigation can be done, by replacing more unicast streams with multicast streams. Additionally, an
analysis on television programs that are paused or requested at a later time is currently not consid-
ered for content decentralization. Ratings of television programs and the ratio of live streams versus
delayed streams could be used, to understand which streams are most suitable to decentralize. This
data should be leveraged to determine which content to decentralize, which can help save bandwidth
in the core network.

Video stream services and channels such as Viaplay and ESPN currently offer multicast transmission
in the network of KPN. At this moment, multicast transmission is only provided to customers who watch
live content via television channels through a STB, as depicted in the current situation in Figure 8.1.
Users who stream this content in any other manner currently require unicast connections.
The expansion of multicast beyond STBs to mobile devices can result in significant bandwidth savings.
To achieve this, a converter is required that can effectively convert a unicast stream to multicast streams
for mobile devices. This solution, as illustrated in solution 1, would require only one dedicated stream to
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the core network. Video applications could provide live content via a unicast transmission to a content
server in the network, which converts this to a multicast stream to viewers of the content. This would
significantly reduce the load by more efficient transmission where only one bitstream is needed, instead
of thousands for all users individually.
The next solution, as illustrated in solution 2, would have live video content delivered through a unicast
transmission to a decentralized CDN in the access layer. From this point on, the CDN can deliver
unicast streams to each user who requests the content. This would decrease the load on the core
network and displace the load to the access layer where there is more capacity available.

Figure 8.1: The current protocol for non-live streams and the two solutions to stream content to mobile devices and the STB.

To apply these methods, it is necessary to use techniques that ensure low latency. An important re-
quirement to provide live streams of time-sensitive video content to users is low latency. Particularly
for live competitions, low latency ensures that users can watch the content in real-time as the events
unfold. It is unwanted for users to experience delays in their streams while their neighbors have already
reveled the outcome. Currently, the conversion technique needed for solution 1 does not provide a low
enough latency and is not implemented. For the second option, decentralization of live content also
has to deal with this problem. Content needs to be cached in media segments to be able to decentral-
ize the content. These media segments influence the latency directly. Before the content is cached
in various segments, saved and transmitted to the users, a high latency can be expected. Therefore,
to implement these techniques it is necessary to use more advanced techniques that ensure a low
latency.

8.2. Correlation of peaks
The analysis of time series data is essential to uncover insights into historical usage behavior. It has
been shown that there is a notable correlation between traffic peaks and well-known events such as
F1 race days, football matches and other popular events. This marks the initial phase of an analysis
that links network peaks to specific events. It is crucial to identify the content responsible for each peak
and understand its correlation with the magnitude of the traffic peak.
To achieve this, it is necessary to observe and document peaks, to understand and identify events that
are responsible for historical extremes. This will result in a labeled dataset that can be used for further
analysis. Albeit a time-consuming manual process, this gives valuable insights into the relationship
between events and network extremes. A more efficient approach could involve the employment of AI.
AI can offer a solution through the automatization of the analysis and correlation of peaks with known
events. The initial phase of training AI does involve manual content labeling, but the subsequent stages
benefit from an increased efficiency. With the employment of AI, it becomes feasible to discern which
events caused specific peaks in historical data. The algorithm has to identify patterns and associate
events with network traffic extremes and their magnitudes. If this is automated, a more efficient process
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is created than manual analysis.

To help create this foresight, the creation of an event calendar would be preferred. This calendar in-
cludes all significant occurrences that will cause high loads and have caused high peaks in the past.
This includes for instance sports events, highly anticipated game releases, or other updates. The cal-
endar has to be updated in real-time to obtain all potential situations that can cause a high load on the
network. This comprehensive data can then be used to prepare the network for possible high demand
moments. When this algorithm is trained and delivers accurate results, more valuable knowledge on
the correlations between the magnitude of network peaks and events is created. The input of exoge-
nous variables can be improved by this knowledge, which can contribute to a profound improvement in
predictions. A cause-and-effect relationship can enable the anticipation of specific high loads, to plan
for future network demands more effectively.

Moreover, it could pave the way for a systematic method to determine dynamically which content is
most essential to place in a decentralized CDN or provide with multicast transmission. Furthermore,
when certain events take place on the same day or other unexpected situations occur, the network is
more prepared to determine what network load will be caused by certain events and can calculate when
there is not sufficient capacity. For future network capacity management, it signifies a leap toward an
automated capacity planning process. Fewer Excel files have to be used, results are not only more
substantiated but are drawn from the measurement of insightful data. It marks the initial phase towards
the realization of a dynamic network model. One that can adapt to the larger demands of a network in
constant evolution.

8.3. Possible solutions
In the pursuit of the optimization of network performance, several mitigation solutions have been con-
templated that are driven by the main objective of capacity improvement. While the feasibility of each
solution may vary, they converge on a common goal, the reduction of network load.

• A dynamic CDN that can be implemented by adding extra edge capacity, when high loads due to
content streams are expected on the network. This can be deployed on the access level, which
shifts a part of the load to a lower level in the network, where more capacity is available per
user than in the core network. Popular content can be stored on edge servers, that are placed
at strategic locations closer to the user. This solution follows up the unicast to D-CDN unicast
transmission in Section 8.1.

• A lease system can be adopted that acquires additional resources without the need for the con-
struction of new physical equipment, which is a costly and time-consuming endeavor. Instead,
this concept envisions the use of currently built network modules, where available slots can be
temporarily leased to address capacity constraints. In extreme circumstances, these inactive
slots could be activated as a contingency measure, for which the company needs to pay when
the slots are used. To implement this strategy, negotiations with the vendor of server cabinets
are essential to secure the required resources for seamless integration.

• Illegal stream sites can contribute to network congestion due to the uncontrolled distribution of
content. To address this issue, a proposed strategy involves blocking traffic generated by unau-
thorized downloads and streams. The objective is to reduce the load and regain control of the
generated traffic within the network infrastructure. However, it is important to consider whether
service providers should take the initiative to implement these measures. While the government
has previously mandated restrictions on sites like Pirate Bay, it is unclear whether voluntary im-
plementation would be effective in the absence of regulatory directives. Some customers could
get dissatisfied with the services of the provider and could switch providers.

• For content delivery, the consideration can be made to reduce the quality of streams of some
data content, when the network capacity approaches its capacity limits. This would be a trade-off
between the optimization of user experience and network efficiency. The available bandwidth
could be adjusted and improved by dynamically scaling the quality of streams in response to real-
time network conditions. This has two implications. Firstly, one potential drawback is associated
with net neutrality principles. The net neutrality policy advocates equal and unbiased access to
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online content for all users. When Internet service providers selectively scale down the bitrate of
certain content, it could be perceived as a violation of net neutrality. It introduces differences in
types of content and users are not given equal access to available resources. However, in the
case that all network resources would fall out, this may be a temporary solution to keep network
performance sufficient to provide all services. Secondly, providers may not inherently possess
the authority to scale the available bitrate. The control over the bitrate quality typically resides
with the applications that deliver the content. This underscores the importance of collaborative
efforts between network providers and video content providers to address concerns related to
network efficiency without compromising the quality of user experiences.

• Bandwidth throttle for users at access levels can be another potential solution. When situations
are expected with high demands, this could prevent potential slowdowns or outages. This could
especially be valuable when the fiber rollout is finished and users have a lot of access to capacity,
for which the core network is not yet scaled for. Moreover, to distribute bandwidth evenly across
users and not have disproportionate shares in resources between users. This can be necessary
to mitigate low performance when network congestion arises. Again, careful consideration is nec-
essary to strike a balance that maintains fairness and user satisfaction, which prevents potential
concerns related to net neutrality or user experience degradation.

• The implementation of a self-learning algorithm that can dynamically load balance traffic. This
approach leverages AI to adaptively distribute network traffic, which optimizes resource utilization
based on historical patterns and real-time demands. The algorithm evolves as it receives new
data, which continuously refines the knowledge of the intricacies of the network to ensure optimal
performance. This would have to be implemented into the digital twin of the network.

Solutions summary
New solutions have been explored in this chapter to alleviate the network of high loads. All solutions
are considered by various considerations in Table 8.1. These considerations have been determined
through a team analysis with two experts on the network and the traffic loads. Feasibility refers to
whether the solution is realistic and achievable. The complexity assesses the level of difficulty asso-
ciated with the implementation of the solution. The flexibility is described as the possibility of dynam-
ically decreasing the network load. Lastly, customer satisfaction shows the impact on the network
performance for the customer.

Table 8.1: Comparison of network optimization solutions.

These solutions encompass diverse measures for the network, each with distinct purposes. Firstly,
the two new approaches for transmission, represent more long-term solutions to provide more efficient
transmission and avoid high network loads. This also holds for the implementation of the dynamic CDN.
Secondly, the leasing system serves as a short-term and temporary option, which is only feasible in
cases where financial arrangements can be negotiated. Finally, the other four solutions entail short-
term mitigation measures and focus on the management of the expected load through adjustments in
quality, services, and resource allocation, rather than expansion of capacity.
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Conclusion

This chapter provides a summary of the responses to the research questions and details the methods
employed to acquire these answers. Furthermore, it includes a discussion of the study and outlines
approaches for future work.

9.1. Conclusion
The objective of this research was to improve network capacity planning for the next year by developing
a forecast model that considers extreme values of network traffic. Insights into current and future net-
work traffic have been gained by the performance of a time series analysis, the evaluation of statistical
models and a machine learning algorithm. The research focused on network traffic data of the service
domains connected to the transport core network of KPN, especially Internet Peering and Mobile Core,
for which the time series were derived from the daily maximum throughput values.

The framework was designed for the Internet Peering data, as this time series was deemed the most
valuable to analyze. This was due to its highest trend increase and extreme traffic peaks, which pre-
sented a challenge for accurate model development. Moreover, the Mobile Core throughput was se-
lected for its valuable usage insights and to assess the designed framework. The data analysis, which
involved time series decomposition, uncovered increased non-stationary trends with an annual sea-
sonality. The examination revealed extreme traffic loads that can be correlated with F1 race days and
other expected events. This signaled the potential influence of exogenous variables on the accuracy
of forecasts.

Two distinct models, SARIMA and DeepAR, were evaluated for their predictive capabilities. SARIMA
was unable to discern complex patterns and was limited to weekly seasonality, thus proved unsuitable
for the Internet Peering predictions. In contrast, DeepAR demonstrated improved pattern recognition,
especially with the incorporation of F1 race days as exogenous variables. Despite the outperformance
of SARIMA, DeepAR exhibited challenges in seasonality accuracy and showed difficult interpretability.

To address these limitations, Extreme Value Analysis was introduced as a statistical approach that
focuses on extreme values in time series. The forecast model, which combined the decomposed fore-
casts and EVA, outperformed the other models. EVA effectively considers extreme peak values and
provides insights into the maximum expected peaks in the next six quarters. Additionally, it offered
information about throughput values associated with specific risk levels.

The substantiated forecasts of the EVA model are compared to the current manual predictions. Both
the manual predictions and EVA estimates yielded comparable results. Nonetheless, the EVA model
offers more insights into the likelihood of exceeding specific traffic values. This underscores its ability to
provide more efficient capacity calculations and enhanced precision. Moreover, the prediction can be
automated which enhances the consistency and controllability of the computations. Subsequently, the
framework was applied successfully to the Mobile Core time series with an adjusted forecast horizon.
This adaptation enables the model to predict the required capacity in the transport core network for all
service domains.
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Furthermore, the framework with EVA and the DeepAR model have been integrated into the employed
business interface for capacity planning purposes. Although DeepAR did not provide predictions of
sufficient accuracy, it exhibited promising results and was therefore implemented for further research.
An automated pipeline was designed to retrieve the daily maximum throughput for the input of the two
models. The models have been integrated into this pipeline, to obtain updated predictions with real-
time data. This framework can then be used to compute predictions for every service domain.

Exact estimation of future demand is an intricate challenge. However, peaks from popular events can
be expected and for this, to build new capacity is not the only solution to handle the increased load.
Various solutions can be employed to scale to the required demand. These solutions can be short-
term mitigation solutions or long-term measures that can alleviate high network loads. It is important
to consider customer satisfaction for the potential implementation of these solutions. The solutions
emphasize the need for careful implementation and integration of dynamic decision-making into the
digital twin of the network for sustained effectiveness.

To conclude, the development of a prediction framework with EVA offers an approach to extreme value
consideration in network capacity planning with risk estimates. This marks the first step in the automa-
tization of short-term capacity planning to enhance current operational processes. The model employs
historical data for a prediction microservice, which can be integrated into a digital twin of the network.
This research signifies the initial phase in the design of a dynamic capacity planning model. Ultimately,
the goal is to realize a just-in-time capacity strategy. Therefore, precise demand forecasts emerge as
a critical prerequisite for optimal resource management and capacity planning in the dynamic environ-
ment of telecom networks.

9.2. Discussion
This study has its limitations and uncertainties. These have been divided into three subcategories; the
dataset, the employment of SARIMA and DeepAR and lastly the framework with the EVA model.

The network traffic dataset
Firstly, through the inspection of the datasets integral to this study, a few considerations arise. The
recorded throughput reveals occasional gaps in the daily measurements due to the inherent instability
of the old measurement system. To address this, interpolation techniques were employed to render
the datasets suitable for time series prediction. It is imperative, however, to be cautious when inter-
preting the throughput when the data misses values. A mechanism to check the daily measurements
and whether they can still be retrieved is recommended, to ensure the accuracy of the throughput rep-
resentation on those specific days.

Secondly, the consistency of the dataset is complicated as network architecture changes occurred
during the measured years. This shift prompted the transfer of throughput among various network
components, particularly for the Data Center and Video Data Center. Consequently, the historical data
may exhibit inconsistencies, which poses challenges to the predictability of the time series that are
directly affected by the architectural transitions.

Thirdly, the datasets of three service domains have a constraint in length size. Daily measurements
for the mobile core domain were not available before October 2021, which resulted in a truncated time
series dataset compared to the Internet Peering domain. The granularity of the data before this was the
maximum recorded throughput per week, which makes it incompatible with daily data for the creation
of a longer dataset.
The architectural change of the newly originated Video Data Center from the Data Center resulted in two
time series that are constrained in length. The throughput of the Data Center has a sudden decrease
of 50% and the Video Data Center starts to take over this throughput until the two time series stabilize
in throughput with their distributed content. These time series are too short for a forecast horizon of
one year, so they are unsuitable for a one year prediction with SARIMA and DeepAR. The decision has
been made not to use the aggregated time series for the prediction as this is not representative of the
actual network infrastructure. Moreover, aggregation of these time series is not allowed as there is no
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evidence that the daily peaks are recorded at the same time.

Lastly, the current dataset does not contain time stamps. The available information does not indicate
at what time the daily peak occurred. Due to this, a more comprehensive analysis of the moments that
the network experiences high load and user behavior can not be conducted. The correlation between
the peaks and known events is solely based on the date and ratings.

SARIMA and DeepAR
Beyond the intricacies of the dataset, the examination of the seasonality is an important aspect. The
data seems to exhibit both weekly and annual seasonality patterns, which are considerations for the
development of accurate predictive models. SARIMA models only weekly seasonality while DeepAR
can model multiple types of seasonality. However, DeepAR failed to detect the seasonality for the
univariate predictions.

Furthermore, in the integration of exogenous variables for the prediction models, challenges arise. In
the case of the F1 race days dataset, a scarcity of significant data points is present. This is because
only F1 race days are included and thus little additional information is available for the model to be
trained on. Moreover, since the impact of F1 on the network began in 2022, data points before this are
even less significant. As a result, the 78 race days do not all correlate to significantly higher throughput
values. Moreover, the exogenous variables have been implemented as binary inputs and it has not
been researched whether a binary input results in the most accurate influence.

The granularity of the model was decided on daily data, as more comprehensive research could be
performed for this dataset. The forecast horizon for the univariate prediction models designed with
SARIMA and DeepAR was therefore limited, as the time series spanned three and a half years. If
weekly throughput values were considered for the design of the model, a longer historical time series
was available for the service domains. However, the significant evolution in data usage behavior over
the past decade could become a challenge as the usage of longer than three years ago may not be
representative of current usage patterns. Nonetheless, it could provide insights into the broader growth
trajectory of data usage.

Additionally, the accuracy of the models was evaluated with MAPE scores. This was based on the
backtest done on the time series. The requirement for the prediction models was to have a forecast
horizon of at least one year in advance. Therefore, all historical data was needed to design the pre-
diction models one year in advance, which meant that the predictions were calculated for the period
until October 2024. It was not possible to evaluate the prediction values on realizations of the actual
throughput, as this throughput had not occurred yet.

EVA
The final framework consisted of the combined decomposed forecast and the EVA model. The naive
seasonal algorithm assumes that the seasonality follows the exact pattern every year. However, in
real life, this seasonality could slightly change due to multiple reasons. For instance, summer holidays
could commence earlier or later, which would influence the data usage and would result in a change in
the seasonal pattern. The naive seasonal algorithm does not take into account these changes. More-
over, the naive seasonal forecast uses the annual seasonality from the decomposition to predict the
seasonality. If this decomposition contains some inaccuracies in modeling the seasonality, this would
mean that the forecast would repeat these inaccuracies into the future expected seasonality.

The dataset of ∆i is computed with a moving average of 31 days. It was assumed that this was the
most appropriate moving average for this granularity of data. As it defines the dataset of the differences,
this moving average must represent the overall average throughput. Whether this window size is the
best option, which it seems as the EVA model has a good fit, could still be questioned. Moreover, the
moving average uses the throughput values of the past 31 days. It could be argued the average of the
days before and after should be taken. However, this was not deemed feasible as the moving average
can not be computed with future values when the time series reaches its end.
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In addition, the threshold was computed with the IQR equation that is used to define the outliers in a
box plot. Various techniques can be used to determine this threshold, but as they all hold subjectivity
and uncertainty, it is important to consider the characteristics of the dataset. The three approaches
may produce thresholds that include non-extreme values, which leads to a biased model of the tail
and does not consider the actual shape of the tail. Moreover, the underlying data distribution is not
considered if the sample size is used. The upper whisker threshold was assumed the best fit for the tail
of the distribution. However, this threshold selection could have been validated with more methods.

The diagnostic tests conducted on the EVA model indicate that a GPD provides the best theoretical fit
to model the extreme values. However, it is uncertain if the actual distribution of the tail of the dataset
of∆i differs significantly from the assumed GPD distribution. Nevertheless, the Q-Q plots reveal a high
correlation coefficient, which suggests a good fit between the model and the data.

Finally, it is not possible to verify the estimated maximum throughput per quarter with the realizations
of actual throughput. This is because the model uses all historical data until October 2023 and the
next six quarters have not occurred yet. Thus the only way to assess the model is to compare the
manual predictions that are used for capacity planning with the new results. This comparison will help
to understand what the EVA predictions indicate for capacity planning.

In conclusion, these limitations underscore the complexity of a network traffic dataset that is coherent
with the behavior of people. There is no straightforward rigid framework that can be employed to predict
data associated with human behavior. Instead, a thorough analysis of the data is imperative to devise
such a framework.

9.3. Future work
Multiple recommendations arise from the results of this study to improve the prediction models and
extend the research to new insights.

Initially, a pivotal step forward involves a comparison of the prediction models with the actual through-
put realizations. This validation process is essential for the measurement of the accuracy and reliability
of the models in real-world scenarios, which provides valuable insights for further improvement of the
models.

This study has revealed a notable correlation between traffic peaks and major events such as F1 race
days and football matches. However, besides the F1 races, the other events have not been introduced
as exogenous information for the DeepAR model. The incorporation of these other events and the
determination of the optimal input format could enhance the predictive capabilities. For instance, the
use of a peak-to-average ratio instead of a binary input can be employed. The calculation of the peak-
to-average ratio for known events based on historical data peaks introduces a novel approach to the
refinement of exogenous variables.

Furthermore, the creation of an event calendar and testing it as exogenous variables holds promise.
This involves the incorporation of diverse events, with a range from sports spectacles such as the
Olympic Games to fundraiser events like Giro 555. These events could be extracted from news articles,
sports calendars and current proceedings. An event calendar would enrich the model and potentially
improve the accuracy of extreme peaks.

In addition, the data collected during the COVID-19 lockdown period is reflective of a unique time when
people were restricted to their homes. Although this data is more relevant to present-day behavior as
hybrid working has become a new trend, people are no longer required to stay at home. People have
resumed their usual routines, which include work at the office or educational institutes, as well as at-
tending events. Furthermore, the high loads caused by press conferences, prevalent in the lockdown,
are unlikely to recur. These shifts in usage behavior are inevitable and are a challenge for prediction
models. Nonetheless, the usage of this data is valuable, given the dynamic nature of network traffic
which continuously evolves with unexpected new trends, such as game releases or advancements in
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AR/VR technology and IoT. This underscores the importance of prediction models that exhibit resilience
to changes in user behavior, which has to be the focus of future tests.
Also, time stamps of network peaks should be recorded. Events that occur in the evening, such as
some F1 races, could be assigned a higher factor for exogenous input than events that occur by day,
as fewer people are expected to have time to watch then. If higher factors are assigned to these events,
the greater impact on the network load in peak hours is acknowledged. Additionally, it is essential to
understand the distribution of load over time, particularly in cases of concurrent events, for the opti-
mization of network resource allocation.

Furthermore, it is recommended to enhance the data measurement pipeline by retaining daily traffic
profiles alongside maximum values. This approach offers a more detailed perspective on network per-
formance and helps identify usage patterns. It also enables a dynamic prediction model for resource
optimization, which could lead to cost savings and improved network efficiency. Moreover, the usage
of daily traffic profiles can extend beyond capacity planning. For instance, they can be valuable for
anomaly detection, as they facilitate the identification of anomalies or irregularities in network usage
more effectively. Sudden drops or peaks in the throughput can be indicative of network issues or emerg-
ing trends. This allows for quicker responses and better troubleshooting.

This research demonstrated that the scope of data analysis and its applications is contingent upon
factors such as data storage and granularity. Increased data storage facilitates additional possibilities
for data analysis and deeper insights. Given the evolving landscape of AI, machine learning and other
emerging technologies, there is a need to reassess data pipelines and make informed decisions on
the retention or elimination of specific data. This is essential for the automatization of operational pro-
cesses and reconsideration of strategies.

Multivariate time series forecasts are the next step towards more comprehensive models. The DeepAR
model can learn from various time streams and should take into account external factors like weather or
concurrent events. For instance, the usage of Netflix tends to decrease when the weather is pleasant, a
pattern that could be captured by multivariate prediction. Additionally, Netflix usage may decline when
a larger audience is engaged in live television broadcasts. The adoption of a multivariate approach is
essential for the model to recognize and adapt to seasonality patterns more accurately.

A new addition to a dynamic model could be to translate the percentage of the load on resources into
costs. Currently, there are no insights on the overhead expenses. Understanding the cost implications
of network utilization provides essential insights to optimize resource management. A more efficient
and economically informed model could be created with this knowledge.

These proposals aim to enhance the predictive capabilities of the researched DeepAR and EVA mod-
els. The objective to improve network capacity planning can be extended by the improvement of data
insights and exogenous information, for real-world applicability.
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A
Time series analysis

A.1. Stationarity tests
Two tests have been conducted on the original time series from 09/03/2020 until 01/10/2023 to verify
that the time series are non-stationary, as has been empirically determined. The results of these tests
can be seen in Table A.1.

ADF Test
ADF Statistic: -0.4555151710733376
p-value: 0.9004090032725548
Critical Values:

1% -3.435469111362934
5% -2.8638006501960755
10% -2.567973589477539

KPSS Test
KPSS Statistic: 5.387415
p-value: 0.010000
Critical Values:

10% 0.347
5% 0.463
2.5% 0.574
1% 0.739

Table A.1: ADF and KPSS Test Results

A.2. Autocorrelation
To estimate the orders of the ARIMA model, the ACF and PACF plots for the Internet Peering model
were performed. This provides an initial reference for determining the appropriate lags to incorporate.
Figure A.1 shows the results of these functions. A seasonal cycle of 7 periods can be seen in the ACF
plot. This indicates that there is a repeating pattern in the dataset that occurs every seven days. This
recurring cycle suggests that there is a weekly seasonality within the time series.
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Figure A.1: The ACF and the PACF plots of the Internet Peering time series

The AFC plot shows a gradual decrease as the lags increase, which suggests a slow decay of correla-
tion and indicates that the time series is not stationary as shown above. The PACF plot tails off after the
first lag, which suggests that an autoregressive term of 1 could be a fit so AR(1) will be used for ARIMA.

Figure A.2 shows the test to determine the order of differencing needed for the Internet peering time
series. After the first order of differencing, the ACF plot significantly improves as it shows a quick drop-
off, which is a characteristic of a stationary series. The second order differencing plot does not show
a substantial improvement over the 1st order and might suggest over-differencing as indicated by the
alternating positive and negative lags. This can lead to loss of information and more model complexity.
Therefore, the time series is stationary after the first order of differencing and therefore d = 1 can be
used for the ARIMA model.

Figure A.2: Differencing of the Internet Peering time series

The ACF plot after the first order of differencing displays a significant spike at lag 1, followed by autocor-
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relation values within the confidence bounds for subsequent lags. This suggests that an MA(1) model
might be appropriate, as the series appears to be influenced by the error term of the immediate past
value. The lack of further spikes indicates that an ARIMA model with a component of order 1 could be
a good fit.

A.3. Throughput per day of the week
Figure A.3 demonstrates again that the traffic generated by users on Tuesdays has the highest overall
throughput, but during the second quarter of 2022, this changed to Sundays. On Saturdays, the load on
the network seems to be the lowest. People are most likely to do trips or enjoy activities on Saturdays,
which explains this traffic usage. The network traffic on all days has shown to be consistent during the
years, except for traffic on Sundays. Moreover, there appears to be a change in the day for which the
second most traffic is generated. The moving average on Wednesday shows to surpass the traffic on
Tuesdays. Both add to a significant change in usage behavior during the past 3,5 years, which can
cause complexity for time series prediction models.

Figure A.3: The one year moving average of Internet Peering for every day of the week.



B
Time series models

B.1. SARIMA
The ARIMA model combines AR and MA processes to create a composite model for time series data.
In the AR component, past values influence the current value. This is defined as described in the
following equation:

Yt = c+

p∑
i=1

ϕiYt−i + et

For the MA part, it considers past error terms which is described as:

Yt = µ+ et +

q∑
i=1

θiet−i

When these two components are combined, the following model is obtained that generates the forecast
[68]:

Yt = c+ ϕ1Yt−1 + ϕ2Yt−2 + . . .+ ϕpYt−p − θ1et−1 − θ2et−2 − . . .− θqet−q + et

Here Yt represents the actual values at time t, c is the constant term, and et the error terms at time t.
The model parameters consist of the AR parameter ϕi, for i = 1, 2, ..., p and the MA parameter θj , for
j = 1, 2, ..., q. The integers p and q are the model orders.

The SARIMA model is denoted by ARIMA(p,d,q)(P,D,Q)[m], where each parameter plays a distinct role
in the formulation of the model. Here d indicates the degree of differencing required to make the series
stationary andm the season length, thus the number of periods in each season. The selection of these
parameters is based on tests for stationarity and autocorrelation within the data, to ensure the model
is well-suited to capture the underlying patterns of the time series.

Figure B.1 shows the results of the first model. The historical time series is plotted, as well as the
backtest and the forecast. Due to the plotting settings of DataIku, the x-axis does not show all of the
historical data that was used as an input. Again the backtest is shown on the test set of the time series,
which is identical to that of the second model als both ARIMA approaches resulted in the same model.
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Figure B.1: ARIMA(1,1,1)(2,0,2)[7] model on the daily Internet Peering maximum traffic throughput in DataIku [10].

When additional input related to anticipated events is provided during model training, SARIMA trans-
forms into a SARIMAX model. The following equation allows for the incorporation of exogenous vari-
ables, where k is the number of exogenous variables:

Yt = α+

k∑
i=1

βiXi,t + . . .

Here Xi,t represents the exogenous variables and βi the coefficients for the exogenous variables.

Tests with AutoARIMA models have been performed to test whether the MAPE improved when exoge-
nous variables were used as input. Table B.1 shows the results of these tests. Only for the models
with a longer forecast horizon than 31 days, the results improved. The improvement in MAPE scores
for the AutoARIMA models suggests that these models perform better in capturing underlying trends
and patterns when predicting further into the future. The short-term fluctuations tend to smooth out and
the exogenous variables have a more significant impact on the forecast when considered over a longer
period.

Table B.1: Comparison of AutoARIMA models without and with exogenous variables.
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B.2. DeepAR
DeepAR is based on the architecture of an RNN cell. The equation of a simple RNN using the hidden
state h(t) is expressed as follows [88]:

h(t) = f(h(t− 1), x(t); θ) (B.1)

Equation B.1 shows the previous hidden state h(t − 1), the input x(t) at time step t and θ, represents
the parameter of the transition function f . The hidden state at the current time step is updated based
on the previous hidden state.

Min-max rescaling is a data preprocessing technique that scales input features to a specified range.
As the input column is based on 0 and 1, min-max rescaling is used to ensure uniform influence on
the model. Moreover, the epoch argument is set. The number of epochs determines the number of
iterations the data is passed through the neural network [89]. The most accurate model is with seven
epochs. This results in a MAPE of 9.7% and the prediction results are depicted in Figure B.2.

Figure B.2: The results of the DeepAR model with the Internet Peering time series as input [10].

Figure B.3: The results of the DeepAR model with the Internet Peering time series and exogenous variables as input [10].
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Figure B.4: The forecast values on race days (1) and not on race days (0) [10].

B.3. Decomposed forecasts
B.3.1. Internet Peering
Figure B.5 shows the seasonal naive forecast of the seasonal component of Internet Peering. The
MAPE of the seasonal naive forecast is 0.0%.

Figure B.5: The seasonal naive time series forecast of Internet Peering [10].

The trend component can be forecasted using a regression technique, like ARIMA. The ARIMA model
that resulted from the trend is shown in Figure B.6.
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Figure B.6: ARIMA(0,2,1) model fitted on the trend of Internet Peering.

The MAPE of the ARIMA(0,2,1) model is 2.0%. The trend is differenced twice and uses a moving
average model in order one to obtain the forecast. This model is then employed to forecast the time
series for 1,5 years in advance. The results of this forecast can be seen in Figure B.7.

Figure B.7: ARIMA(0,2,1) forecast on the trend of Internet Peering.

These values are used for the forecast of the trend component in the decomposed forecast.

B.3.2. Mobile Core
The seasonal naive forecast of the seasonal component of Mobile Core is illustrated in Figure B.8. The
MAPE of the seasonal naive forecast is 0.4%.
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Figure B.8: The seasonal naive time series forecast of Mobile Core [10].

The ARIMA forecast of the decomposed trend resulted in an ARIMA(0,2,1) model, which is depicted in
Figure B.9. The MAPE of the ARIMA(0,2,1) model is 0.1%.

Figure B.9: The decomposed trend forecast with ARIMA(0,2,1).



C
Extreme Value Analysis

Figure C.1 presented below, depicts the Block Maxima method applied to the Internet peering time
series. The blocks have been set to a size of 31 days, where the maximum value per 31 days is
considered as the extreme for that block. However, some blocks do not contain an outlier compared to
the throughput at that moment. This is for instance shown in the block before the end of 2020. Despite
this, the Block Maxima approach still considers the maximum value in the block as an extreme value.
Additionally, some blocks may have multiple extreme values, but only the maximum value is considered
for the EVA model. This may result in a loss of information and an inaccurate representation of the
extremes in the dataset. Therefore, the Block Maxima approach is not chosen for the EVA model.

Figure C.1: The Block Maxima threshold approach on the Internet peering time series.
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Figure C.2: The results of the EVA model for 6 quarters, with α = 95%.

Figure C.3: The predicted results of the prediction framework.
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