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Five Separate Bias Contributions in Time Series
Models for Equidistantly Resampled Irregular Data

Piet M. T. Broersen

Abstract—The use of time series models for irregular data
requires resampling of the data on an equidistant grid. Slotted
resampling transforms an irregular randomly sampled process
into an equidistant signal where data are missing. An approximate
maximum-likelihood time series estimator has been developed
to estimate the power spectral density and the autocorrelation
function of multishift slotted nearest-neighbor (NN) resampled
data sets. Resampling always causes bias in spectral estimates due
to aliasing in the frequency domain and to shifting the observation
times to an equidistant grid. Furthermore, orders of the time series
models that are too low can cause a significant truncation bias and,
probably, an additional missing-data bias, both of which disappear
if the model orders are taken high enough. Finally, a special bias is
present if the probability of making an observation at a certain
time depends on the instantaneous amplitude of the observed
signal. All five bias types are independent of the sample size and
will not diminish if more data can be used for the estimation.

Index Terms—Autoregressive (AR) models, nearest-neighbor
(NN) resampling, slotting, spectral analysis, time series, uneven
sampling.

I. INTRODUCTION

RREGULAR sampling occurs, in practice, if continuous-

time processes are observed at times determined by arbitrary
triggering events. Irregular sampling may naturally arise in
numerous fields, including geophysics, heart-rate analysis [1],
astronomy [2], climate research, and turbulent flow, if that is
observed with laser Doppler anemometry (LDA) [3]. A survey
of popular methods for the spectral analysis of irregularly
observed LDA data has been given [3], which includes direct
Fourier transforms, slotted correlation estimates with variants
[4], and sample and hold (SH) interpolation. A continuous-
time maximume-likelihood approach has been developed for
autoregressive (AR) models of irregular data [5]. However, the
likelihood had many local minima, and convergence to the
global minimum strongly depended on very accurate starting
values for the nonlinear search [6].

Sampled data models are often used for an approximate de-
scription of continuous-time systems. The possibility of retriev-
ing the system dynamics is improved by the use of relative error
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measures [7]. Additional problems are encountered if the con-
tinuous system includes stochastic disturbances [8]. The choice
of error definitions [7] and a sampling method [8] is very impor-
tant if a physical interpretation is the final purpose of the system
identification. In particular, if no filtering can be applied before
sampling, the continuous-time models are very sensitive to the
noise-generating mechanism in the sampling procedure [9].

Many continuous-time complications can be neglected if the
goal of signal processing is to obtain an estimate for the power
spectral density (PSD) of the data in a finite frequency range,
without trying to separate the system and noise. However, bias
problems are very important in all spectral estimates for irregu-
lar data, even in this simplified problem. SH replaces irregular
data by a contiguous equidistantly resampled signal. It can
give accurate results if the resampling frequency is lower than
f0/10, where fj is the mean data rate [10]. SH is accurate if all
grid points are close to actual irregular observations. However,
the same irregular observation can sometimes be substituted for
lower data rates at more than one equidistant grid point. Refined
SH methods can be accurate until frequencies slightly higher
than f/2, but the refined methods explicitly use the probability
distribution function of the irregular observation times. They
can only be applied if the observation times have a Poisson
distribution. Nearest-neighbor (NN) resampling substitutes the
closest observation on each equidistant grid node instead of the
last preceding that is used in SH. The properties of NN and SH
are similar.

In NN, multiple uses of single observations can be avoided
with the slotting principle. An irregular observation is only
substituted at an equidistant grid point if it is less than half
the slot width away. The grid point is left empty if no obser-
vation falls within the time slot. At first, the slotting principle
has been used in slotted autocorrelation estimation [4]. The
product of two irregular observations contributes to a certain
lag kA of the slotted autocorrelation function if their time
distance is between (k — 0.5)A and (k + 0.5)A, where A is
the slot width. However, the number of pairs that contribute to
different slots will have variations. Therefore, no variant of the
estimated slotted autocorrelation functions is positive semidef-
inite. Hence, its Fourier transform as spectral estimate is not
positive everywhere. No satisfactory solution for this problem
has been reported in the literature. In practice, it is common
to present only the parts of the spectra with positive estimates
while omitting the negative estimates. Most estimated spectra
of this method look very irregular and unreliable at higher
frequencies [4].

The slotting principle has been applied to the NN resampling
of irregular data on a regular time grid [11]. Slotted NN can give
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positive semidefinite estimates for the autocorrelation function,
with estimated spectra that are positive everywhere. It has bias
components, some of which can be reduced by taking a higher
resampling frequency. A second option for bias reduction is
a slot width smaller than the resampling distance [11]. The
slotting principle gives an equidistant signal, with data missing
at those grid nodes that are more than half the slot width away
from the closest actual irregular observation.

Spectral estimation for equidistant observations with miss-
ing data [12] is much simpler than the spectral analysis of
continuous irregular data. Jones described an efficient method
to calculate the exact likelihood for time series models in
missing-data problems [13]. An automatic time series algorithm
[12] used this missing-data method and outperformed all other
methods.

If time series models of too-low model orders are estimated,
this can cause a significant truncation bias and, probably,
an additional missing-data bias [12]. Truncation bias can oc-
cur because the estimation of models with more than 15 or
20 parameters may become cumbersome or very time con-
suming in missing-data problems. Fortunately, often, lower-
order models are sufficient. Missing-data bias is the influence of
higher order nonzero parameters on the lower order estimates.
Those bias contributions will disappear both if the model orders
can be taken high enough.

LDA measures the velocity of small reflecting particles that
move with the liquid or gas flow. The number of particles
per second that arrive in the measurement volume depends
on the flow velocity if the particles are uniformly distributed
in space. Therefore, the probability of making an observation
at a certain time depends on the instantaneous amplitude of
the observed velocity signal [14]. This bias type is generally
called velocity bias. Simple corrections have been given for
1-D flow [15]. The difficult 3-D problem has been described
for a known Gaussian flow pattern [16]. An additional prob-
lem is that the expected number of observations per second
with a certain velocity in a certain direction depends on all
three velocity components, whereas only one component is
measured.

This paper studies bias properties with the intention of bias
reduction. It has been shown that spectral estimates converge
to their biased expectation for increasing sample sizes [17].
Three groups of bias contributions can be distinguished for the
five separate bias causes: the bias during data collection, the
resampling or interpolation bias with the inevitable aliasing,
and finally, the bias due to the model choice in processing
the resampled data. The aliasing bias is determined by the
resampling frequency and the bias of shifting times to an
equidistant grid by the slot width. Truncation and missing-data
biases will only occur for low-order time series models if the
overall spectral shape is not described with acceptable accuracy.
So far, no adequate solution can be given for the velocity bias
in LDA data.

II. TIME SERIES MODELS

A brief introduction to the theory of time series models will
give the notation and clarify how parameters determine the
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PSD of a discrete-time signal. An AR moving average (ARMA)
(p, q) discrete-time process x,, can be written as [18], [19]

Ty + 1Ty 4+ F+ QpTy—p = p +biep_1 + -+ bgen—g

)]

where ¢, is a purely random discrete-time white-noise process
of independent identically distributed stochastic variables with
zero mean and variance o2. For resampled continuous-time data
with a resampling distance 7., the signal z,, is the observation
at time n7,.. Other values for 7, would give processes with
different parameters and 0'? in (1). The parameters of an esti-
mated ARMA (p, ¢) model represent a parametric estimate of
the autocorrelation function and of the PSD for the noisy data.
Generally, it is assumed that the data x,, represent a stationary
stochastic process [18]. In this paper, no additional assumptions
considering the underlying continuous-time process are neces-
sary. The only assumption is that the equidistantly resampled
data at times n7;. can be described as a regular stationary
stochastic process. This process describes the measured ob-
servations, and it can be a noiseless signal or the sum of a
desired signal and additive noise. The estimated spectrum will
then represent the PSD of signal plus noise in the discrete-time
frequency range.

The PSD h(w) of the model and the frequency range depend
on the resampling time 7.. The spectrum is fully determined by
the parameters in (1) together with the variance o2 and 7,
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The autocorrelation function at lags that are multiples of 7.
can, in principle, be computed by an inverse continuous-time
Fourier transform of (2). In practice, that would become an
approximation because a discrete transform will replace the
integral by a finite summation. However, exact formulas that
relate the autocorrelation directly to the parameters of (1) are
available and more accurate [19].

The accuracy of equidistant time series models can be eval-
uated with the prediction error PE. This can be seen as the
accuracy of forecasts of the future values of the observations
[20]. Care should be taken in using PE as the accuracy to pre-
dict independent new realizations of the same process [21]. The
prediction error PE(p’,¢') of an ARMA (p/,¢’) model with
arbitrary orders p’ and ¢/, respectively, is defined as the mean
square error of the one-step-ahead prediction with that model
in new fresh contiguous equidistant data. A normalized scaled
version PE,(p’,¢') can be computed without the availability
of new data in simulation experiments where the true ARMA
(p, q) process parameters are known [19]. This can be used in
missing-data problems and is independent of the variance of the
data [11], [19]

PE(p',q)

PE,(.d) = — 5

3)
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It can be used for pure AR models where ¢’ = 0 and for MA
models with p’ = 0. The minimum for the expectation of the
PE(p',q') for efficiently estimated unbiased ARMA (¢, q)
models from contiguous equidistant data is given by the number
of estimated parameters and the sample size N [19]

E{PE,(',q)} =1+ (' +q)/N. (4)

Unbiased models are characterized here by p’ > p and ¢’ > q.
Every additionally estimated parameter gives at least a contri-
bution of 1/N to (4), due to its estimation variance. Models of
orders lower than p and/or ¢ are truncated and biased. They will
often have a higher PE;(p/, ¢’) than that given by (4), and that
bias contribution does not depend on N. The prediction error
measure is a very general measure [20]. It will be used here as a
distance measure between biased ARMA (p/, ¢') models and a
true ARMA (p, q) process. It is related to the spectral distortion,
which is the integral of the squared difference of the logarithms
of the true and the estimated spectra [19].

III. Bias oF MSSNNR

Bias is present in all methods that use interpolation or resam-
pling techniques to transform irregularly sampled continuous-
time data into an equidistant discrete-time sequence. The
interpolation techniques that have been investigated include
zero-order hold, linear interpolation, polynomial interpolation,
splines, Shannon interpolation, fractal interpolation, and many
more [22]. The conclusion was that the visual appearance of the
reconstructed signal may look promising in some examples, but
the spectral bias could not significantly be improved in com-
parison to SH. SH substitutes true observations at shifted time
instants. The bias of SH is only less than 10% for frequencies
below f/20 [10]. Hence, most methods can only be applied
for extremely high data rates fy. All attempts to approximate
the signal at the resampling instants by interpolation, without
slotting, failed for higher frequencies [22]. However, it has been
shown that multishift slotted NN resampling (MSSNNR) can
give reliable spectra for frequencies up to 100 f and still higher.
Only the bias of this last method with slotting is treated in detail
in this paper.

Resampling irregular data inevitably gives two sources for
bias: aliasing and the shift of the time instants to a grid. After
equidistant resampling, the highest frequency f = 1/(27T}) or
w = 7/T, in the discrete-time spectrum is determined by the
resampling frequency fs = 1/7,. The discrete-time autocor-
relation function is the sampled version of the continuous
correlation R(7). The aliased true spectrum is given by [19]

[o.¢]

Z R(kT,)e %", —Tlr <w

k=—00

h(w) = < Ti 5)

Aliasing has a strong influence on the spectrum if the spectral
shape is rather flat at high frequencies. The smallest possible
influence of aliasing at w = 7 /T, i.e., the end of the frequency
range in (5), is an error of a factor of two. The aliasing error
can be rather small and concentrated in a narrow range close
to w = 7/T, for spectra with a steep decay at high frequen-
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cies. It is not possible to reduce the influence of aliasing in
irregular data by using antialiasing filters. The reason is that
neither continuous-time nor the usual discrete-time filters can
be applied to irregularly sampled signals.

NN resampling replaces an unevenly sampled continuous-
time signal by a contiguous equidistant discrete-time signal at
the resampling grid points nT).. At every grid point, the closest
irregular observation is substituted. The bias of NN will be
large unless the resampling frequency f, is much lower than
the mean data rate fj. Like many other resampling methods, the
spectral bias is already about 10% at f(/20. One of the reasons
is that the same observation is substituted at more grid points
if there is a gap between irregular observations that is larger
than twice the resampling distance 7;.. This causes a distortion
of the autocorrelation function at lag 7;. and a spectral bias.
The bias can be reduced and made independent of fy with
the slotting principle. In the simplest case, the slot width is
taken equal to the resampling distance 7;.. Slotted NN accepts
only an observation if it is within half the slot width from
the resampling time. This excludes the possibility that a single
irregular observation is used at different resampling points and
reduces the bias, at the cost of creating a missing-data signal
with gaps. Several methods exist for spectral estimation when
some data are missing [12]. However, most methods can only
be used for small missing fractions. Fortunately, one time series
method can still be used if more than 99% of the data are
randomly missing [12].

A further improvement of the bias is found with MSSNNR,
where the slot width w is made only a fraction of the resampling
distance [11]. Just taking w = T,./M, where M is an integer
number, gives disjoint intervals. Several irregular observation
times ¢; will not be within the small slots around ¢ = nT,.. They
would be lost in the resampling. An irregular observation at
t; gives a nonempty place for the resampled signal at n7, +
muw if

nT, + mw — 0.5w < t; < nT,. + mw + 0.5w
m=0,1,...,.M —1. (6)

All slots of width w are now connected in time, and every ¢;
is within a slot. If two irregular observations fall within the
same slot, the one closest to the slot center is taken, and the
other is discarded. The M shifted starting points in (6) give
M different equidistant missing data sequences, each with the
same resampling time step 7.

An example is given here to demonstrate the meaning of
M different sampled signals. If a continuous-time registration
would be available for all ¢, a discrete-time representation can
be made by sampling it at the instants n7;.. It is assumed that 7.
is small enough to reduce the influence of aliasing. M different
discrete-time signals could be extracted by using the resampling
instants nT, + mw, m=0,1,..., M — 1, with w =T, /M.
Those M signals would be similar for a small value of 7.
One single signal for one value of m would contain almost all
valuable information, and there is hardly anything gained by
evaluating all M signals with the same 7, = Mw. Nothing is
lost either, because all signals would give approximately the
same time series model. This changes if the M signals are
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obtained with the MSSNNR of (6) for irregular data. Now, each
signal is a missing-data record, with many data missing if a
small value for 7', or a large value for M is used. If the irregular
observation times are random, it may be expected that close
irregular observations at distances of approximately a multiple
of T, are present on different and independent time intervals
for each of the M missing-data signals. This is certainly true
for Poisson distributed irregular sampling instants and also for
many other irregular sampling schemes. Nearby observations
can always be predicted much better than observations that are
far away. They have the largest influence on the negative log
likelihood that is minimized in parameter estimation. Hence,
the influential parts for the M MSSNNR signals may be at
different places in time. Those M likelihoods are added to a
single likelihood value in the ARMAsel-irreg algorithm [11],
as if they were independent. It does no harm if they are
dependent, because every signal would then give the same time
series model. However, it can give better accuracy if they are
independent. Hence, it will reduce the estimation variance of
the parameters. AR parameters are estimated by maximizing
the sum of the M likelihoods together as a function of the
parameters [11]. The ARMAsel-irreg algorithm estimates AR,
MA, and ARMA models from irregular data that are resampled
with MSSNNR. The program automatically selects the best of
all candidate models and is available on the Internet [23].

The analysis in this paper assumes that the irregular observa-
tion instants are randomly and freely distributed over the time
axis. This applies to many practical problems. An exception is
found in heart-rate analysis [1]. If the average distance between
heartbeats is 77, it will almost never occur that the actual
distance is less than T'/2 or T'/3.

Similar patterns of the interarrival times are found in mea-
surements that are synchronized by the public Internet [24].
Fig. 1 shows an example where all irregular intervals are
between 0.02 and 0.04 s. The highest frequency that can be
evaluated in this example is 25 Hz, which is half the frequency
belonging to the shortest interarrival time. Specific solutions
have to be developed for those data. The integral pulse fre-
quency modulation model for the heartbeat rate describes the
instantaneous heart rate as a constant plus an irregular variable
part [1]. In this paper, it is assumed that the histogram of
the irregular interarrival times starts close to an interval with
the length zero. No further restrictions about the shape of the
histogram have been assumed; it may be Poisson distributed,
uniform, or anything else.

For random sampling intervals, the bias of MSSNNR is
reduced by increasing M, in comparison to the usual slotted
NN that is found for the choice M = 1. The probability density
function f(7) of the continuous-time lags 7 that contribute
to the resampled autocorrelation Ryes(kT)-) can be calculated
if the density of the irregular sampling instants ¢; is known
[11]. The expectation of the resampled autocorrelation is then
given by

w

R (KT,) = / R(ET,. +7)f(r)dr, n#0

Ries(0) = R(0). )
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Histogram of inter-arrival times of data synchronized by internet
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Fig. 1. Histogram of the interarrival times of measurements where a very
precise clock sends synchronization pulses over the Internet.

This is a convolution in the continuous time domain of the true
autocorrelation R(7) with the symmetric density function f(7),
followed by sampling at 7, and by adding white noise. The
resampled autocorrelation at shift zero is given by the sum of
squares of irregular observations and does not suffer from time
shifts. It is favorable that the true autocorrelation at shift zero
is left unchanged. The biased resampled discrete-time spectrum
has both the bias caused by shifting irregular times to a grid and
aliasing bias. It follows (5) as

hres(w) = Z Rres(kTT)e_jWka -

k=—cc

<w< (¥

™ s
T, T,

For narrow functions f(7), the outcome of (7) will converge
to R(kT,) and the influence on the spectral density is given
by the aliasing only, like in (5). Shifting the time instants to
a grid gives an effect that is additional to aliasing because
the autocorrelations R,.s are weighted averages of neighboring
autocorrelation lags 7.

For high data rates or dense irregular sampling, if the slot
w=T,/M is wider than the average distance Ty = 1/fo
between the irregular observations, several observations will
mostly fall within one slot, and only the one closest to the
center of the slot nT,. + mw is accepted in MSSNNR [6],
which means that the probability density f(7) in (7) is narrower
than the slot width w, and f(7) depends on the probability
density of the individual irregular observation times. This
case is not further treated because slotting is not necessary for
very dense irregular sampling. Ordinary NN or SH resampling
without slotting will give accurate spectral estimates for very
low frequencies. The error is less than 50% for frequencies
below fo/27 Hz [10]. The influence of the SH operation on
the spectrum, without slotting, can be described by adding step
noise to the true spectrum followed by filtering. Therefore,
even the spectrum of broadband white noise becomes colored
after SH resampling [10].

If w is much smaller than 7(, however, most slots will remain
empty. The total width of f(7) cannot be greater than 2w if all
individual irregular observations are less than w/2 away from
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the center of the slot. The shape of f(7) turns out to become
almost triangular for Poisson distributions of the individual
observation times. In the limit for small values of w, it will
become independent of the original density of the observation
times. The probability density of the contributing continuous
time lags can then be approximated with [11]

T /M — 7|
M)=—"F—
f(T’ ) (TT/M)2 )
f(r)=0,  |7|>T./M. ©)
The bias of the MSSNNR signal in time domain depends

on the convolution R(7)*f(7). The white-noise correction is
given by

0 < |r| < T,/M

ARw(0) = RO) - [ RE)@ar (0)

—w

The equivalent operation in the frequency domain is the multi-
plication of the PSD with the transfer function that belongs to
(9), followed by adding white noise with power AR,qs(0) to
the filtered spectrum.

The filter factor for the slotted spectral density is the Fourier
transform of the triangle of (9). That is the real symmetrical
Fejer kernel [18] with the main lobe between +M /T, and
—M /T, Hz. Hence, the main lobe is always wider than the total
discrete-time frequency range of the resampled signal, which
extends from —1/(27,.) to 1/(2T;.) Hz.

The effect of a slot width that is much smaller than the resam-
pling distance 7T;. is shown in Fig. 2. Only the frequency range
below 1/(2T,.) is shown in the figure. Taking a smaller slot
width diminishes the spectral filtering. Furthermore, a smaller
slot gives a smaller value of AR,c(0) in (9). The numerical
value of the transfer function at f = 1/(27T;) is 0.409, 0.812,
0.950, and 0.9873 for M = 1,2,4, and 8, respectively. The
magnitude of the transfer function can be compared with the
bias due to aliasing. That is at least a factor of two at the end
of the frequency domain. The maximum filter effect gives 0.409
for w = T,., and the smallest aliasing would give a factor of two.
Aliasing adds power, and the filter removes power; therefore,
in theory, both effects could counteract. It will turn out that
the white-noise correction (10) can be more important than the
filter effect.

In comparison with the values in Fig. 2, the spectral multipli-
cation factor « for SH resampling is given by [10]

1
T )

This factor is about 0.9 for f = f/20. The factor is about the
same for many other methods that do not use slotting [22].
For that reason, those methods can only accurately be used
for frequencies that are much lower than fy. The mean data
rate fy is not important in Fig. 2. Its only role is that the
resampling distance T, must be much smaller than the mean
distance To = 1/ fo. This is the same as requiring a resampling
frequency that is much higher than the mean data rate.

Y

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 5, MAY 2009

R e R

c
Ke]
© 09¢r
c
2
3
‘w 08¢
C
g
k] L
e 0.7
§ w=T,
© 0 S - w=T,/2
g ‘‘‘‘‘ w=T./4
< os} -==w=T/8
P
0 0.1 0.2 0.3 0.4 0.5

- normalized frequency T,* f

Fig. 2. Real symmetric transfer function that is the Fourier transform of the
triangular impulse response f (7, M) of MSSNNR in (9). The true continuous-
time spectrum is multiplied with this transfer function factor.

If aliasing is not very small, filtered contributions from
higher continuous-time frequencies should be added to those in
Fig. 2. These contributions can be important. A typical result
follows for a broadband white-noise example with irregular
sampling, which has a frequency range that is much greater
than fy. Aliasing is very important then. The usual SH or NN
resampling without slotting produces a colored spectrum [3].
However, MSSNNR has no effect on the autocorrelation func-
tion for broadband white noise if that is zero for all lags greater
than 7, —w in (7). Hence, there is no filtering operation.
In simulations with various sample sizes, the ARMAsel-irreg
algorithm selected the white-noise model. The presentation
in Fig. 2 for a limited frequency range gives a misleading
impression in this example due to the very large aliasing that
takes place.

The filter effect of shifting the time instants can be made
much smaller than the effect of aliasing. Folding the infinitely
wide continuous-time spectrum gives an error of spectral alias-
ing of at least a factor of two at the end of the discrete-time
frequency range, given by 1/(2T,.). However, the aliasing error
may be concentrated in a small part of the frequency range,
for steep spectra. The shift bias becomes already very small
for w = T,./8 in Fig. 2 because the real filter transfer function
is almost equal to one. Therefore, in many applications, using
w="T,/2 or w=T,/4 may be advisable to reduce the filter
effect of shifting observation times to a grid.

The bias due to aliasing can only be diminished by using
a higher resampling frequency. Afterward, the bias of shifting
slotted time instants to a grid can still be made as small as
desired by using denser and denser grids, with a smaller slot
width w. The disadvantage is that the total number of grid
points at distance w increases for the same number of irregular
observations, and more grid points are left empty. This gives
a greater missing fraction, and the estimation of time series
parameters becomes less accurate and takes more computing
time [12]. The theoretical limit for f(7) is a delta function,
and the spectrum finally approaches the aliased spectrum of (5).
Therefore, it is sufficient if the bias due to shifting is made small
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Influence of aliasing and shift bias on PSD for slope -4
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Fig. 3. True PSD with constant log—log slope until very high frequencies, the
aliased spectrum, and the effect of slotted shifting for a moderate slope.

in comparison with the inevitable aliasing bias. However, the
white-noise contribution of (10) to the spectral bias depends on
the shape of the true autocorrelation function, and no general
expression for its magnitude can be given.

For a useful theoretical approximation of the bias with (7),
it was not necessary to compute the exact integral of the true
continuous autocorrelation function. The bias could be com-
puted with a discrete-time approximation of the autocorrelation
function. It becomes accurate if at least about ten lags of the true
autocorrelation are available in the range from —w to w. This, in
turn, means that the true continuous-time spectral density must
be known up to frequencies of 5M /T, Hz to use a discrete-time
version of (7) for the bias evaluation of resampling.

IV. BIAS FOR SPECTRAL SLOPES

The complete shifting and aliasing biases can only be given
for specified examples. A simple example is a spectrum con-
sisting of two straight lines in the double logarithmic represen-
tation, with a transient part. The spectrum is given by

¢
(14 f/10)~

where a constant C' is the low-frequency slope, and « is the as-
ymptotic slope in the double logarithmic plot. C' is an arbitrary
constant for the variance of the process. The influence of the
slope will be investigated, with the resampling time 7;. =1 s.
The mean data rate fy has no influence on the aliasing. It has
no influence on the shifting bias either if it is much smaller than
1 Hz, for example, less than 0.1. Otherwise, the triangular shape
in (9) is no longer applicable.

Fig. 3 shows the results for o« = 4. The effect of aliasing is
visible above 0.3 Hz. The effect of the shift bias converges to
the bias of aliasing for w < 0.257,.. A further reduction of the
slot width no longer has much influence. The filtering effect
in Fig. 2 would diminish the spectral density at the end of the
discrete-time frequency interval; the white-noise contribution
of (10) adds most to the logarithmic spectrum at the frequencies
where the spectrum is weak. It is clear that the latter effect is
dominating in the shift bias of MSSNNR.

S(f) = 12)

1375

Influence of aliasing and shift bias on PSD for slope -8

true PSD

100 § = = = gliased
----- biased w =1
“““ biased w = 1/2
10_1 | biased w = 1/4|]
[m] biased w = 1/8
o &
o c~,
g 2 1t i
g10?y
©
13
2 1073
1074}
I~ -
0 0.1 0.2 0.3 0.4 0.5

— frequency [Hz]

Fig. 4. True PSD with constant log—log slope until very high frequencies, the
aliased spectrum, and the effect of slotted shifting. 77 = 1's.

TABLE 1
ALIASED FRACTION AND PFE¢ OF ALIASING, WHITE-NOISE
FRACTION OF SHIFT BIAS, AND PEs OF THEORETICAL ALIASED
SHIFT SPECTRUM AS A FUNCTION OF THE SLOPE «,
WITH w = T /2 IN ALL CASES; T» = 15

o Aliased PE, ARies(0)/R(0)  PEg
fraction alias shift
2 0.13 10! 1.032 0.0968 1.030
4 0.24 107 1.013 0.0075 1.013
6 0.60 10°° 1.009 0.0041 1.288
8 0.18 107 1.008 0.0034 2.735

Fig. 4 shows what happens if the slope is steeper and the
spectral level at the end of the frequency range is weaker. The
difference between the aliasing and the shift biases is much
greater here. The shift bias will finally converge to the aliasing
bias but for a much smaller slot width than T;. /8.

Table I shows that the aliased fraction quickly drops for
steeper spectral slopes. The fraction is defined as the ratio of the
integrated continuous-time PSD above the Nyquist frequency
1/(2T;) to the power below that frequency. If the spectrum
decreases with f~¢, the integral of the tail will decrease with
f~o*1. The white-noise power AR,.5(0)/R(0) also becomes
smaller, but the decrease is much slower. Therefore, the influ-
ence of the shift bias becomes stronger than that of aliasing for
steeper spectra. The value of the prediction error caused by the
shift bias is much greater than that caused by aliasing for slopes
steeper than six. This agrees with the results in Figs. 3 and 4,
with a limited and a large shift bias, respectively.

Table II shows that a smaller slot width can theoretically
give a better bias accuracy of the spectral estimates, with a
lower value of PFE. The estimation variance is not considered
here, but it would make the value of PE a little bit higher for
the estimated spectra. The white-noise power (10) depends on
the slot width w. The theoretical value of the PE of aliasing
without time shifts is about 1.009. It follows that the accuracy
of aliasing can finally be obtained for smaller values of the slot
width. Taking it smaller than 7;./32 will hardly improve the
accuracy any further in Table II. A disadvantage of a small slot
width is the increasing number of empty points in the resampled
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TABLE 1II
WHITE-NOISE FRACTION OF SHIFT BIAS AND PREDICTION
ERROR OF SHIFTING AS A FUNCTION OF THE SLOT WIDTH
FOR THE SPECTRUM WITH SLOPE SI1X; T = 1s

w/T, ARyes(0)/R (0) PEj
1 0.16 107! 1.799
12 0.41 1072 1.288
1/4 0.10 102 1.086
1/8 0.26 1073 1.026
1/16 0.64 10 1.013
1/32 0.16 10* 1.010

signal, which gives an increased estimation variance. A smaller
slot gives more equidistant grid points for the same number of
irregular data. This leads to more missing data. In practice, the
slot width is often taken as T,./2 or T /4.

The correction of the SH bias with the refined SH method [3]
can improve SH spectral estimates if they are obtained at ob-
servation times that are Poisson distributed. Those corrections
undo the filtering effect with the inverse of (11). Furthermore,
an estimate is made for the white noise that is involved in
SH resampling. However, the accuracy will certainly not be
acceptable for frequencies higher than fy. So far, MSSNNR is
the only resampling method that can give a low bias in spectra
for frequencies above fj.

Possible corrections for the white-noise level in (10) have
been considered for MSSNNR. However, the correction of
the estimated spectrum would require too much a priori in-
formation about the data, e.g., assuming that the data are
noiseless. Most practical data will be noisy, particularly at high
frequencies. Many true spectra with different spectral slopes or
additive noise above 1/(27,.) would give almost the same result
for the filtered PSD plus noise. Hence, it is hardly possible to
use noise correction to extract additional useful information
from estimated spectra with shift bias. The idea of refined
reconstruction is not useful for MSSNNR. Instead, using a
smaller slot width is possible for every spectral shape and does
not require any assumption about the data.

V. MISSING-DATA AND TRUNCATION BIASES

A second group of bias terms is applicable to spectral es-
timation with time series models. Those models are used for
the MSSNNR signal with ARMAsel-irreg. Two sources of bias
have been defined for this group. The first is the truncation bias,
which is caused by selecting underfitting models with a lower
order than the true process. The reason for underfit is that no
candidates with high-enough orders are considered. That might
be for computational reasons. Not all details can be represented
by such models. The magnitude of the truncation bias is inde-
pendent of the sample size N, like the aliasing bias and the
bias due to shifting irregular times to a grid. It depends on
the magnitude of the omitted true parameters of higher orders.
Fortunately, many different spectra can quite accurately be ap-
proximated with five or six AR parameters and often even less.

As an example, truncated low-order AR models of the
process with the spectrum of (12) have been studied. The true
process has an infinite AR order with many small parameters.
Truncated AR models have been derived from the parameters of
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TABLE 1II
PE; OF TRUNCATED TRUE AR MODELS AS A FUNCTION OF THE MODEL
ORDER FOR THE SPECTRUM OF (12) WITH THE SLOPE o = 6

order PE;
0 28.499
1 5.067
2 1.611
3 1.110
4 1.032
5 1.012
6 1.005

the true process, and the P E; has been computed as a function
of the model order.

Table III shows that the truncation bias is quite important for
orders one, two, and three. It is rather small for all AR orders
greater than three. The truncation bias is then comparable to the
aliasing and the shift biases and the inaccuracy that is caused by
estimating the parameters. PFE; for order zero is the accuracy
of the AR(0) or white-noise model; it is equal to o2 /o2.

This example shows that low-order AR models can describe
this type of smooth discrete-time spectra with a high accuracy.
In general, low-order AR models describe the overall shape
of the PSD, with broad peaks. However, narrow peaks are
smoothed in low-order models. Only very high order models
give an accurate shape of those peaks. Spectra with narrow
details may require much higher AR orders [25].

A second bias in this group is only relevant for missing-data
problems [12]. Generally, AR models are estimated recursively,
for increasing model orders. The parameters of the lower order
model, together with an additional parameter zero, are used
as the starting values for the AR model of one order higher
[11]. AR(1) models are always computed for data with a higher
order, as an intermediate step. Whereas only observations at
distance T, contribute to the AR(1) parameter of contiguous
data, observations at multiples of 7, will also contribute to
the estimate of that parameter if data are missing [12]. This
causes an additional bias in estimated models if the order of
the estimated model is lower than the true process order. This
bias can only be large if the best possible approximation of the
spectrum of the truncated model is still far from the true spectral
shape. Therefore, it is not very important in practice, because
those models will not be appropriate for the given data anyway.
It explains why simulations with AR(1) and AR(2) models do
not always converge to the truncated expectations of the PFE
values, like those in Table III for the orders one and two. This
bias can only be present in models where the truncation bias is
very important and disappears for higher orders.

VI. VELOCITY BIAS

The bias that is treated so far is caused by operations on the
irregular data, and the first four bias contributions are indepen-
dent of the measurement equipment. The third group contains
bias terms that are caused by the measurement equipment that
delivers the irregular data. This may be a poor calibration, a
poor measurement principle, or poor information exchange over
long distances. Reduction of this bias, if possible, does not
depend on the signal processing but on the specific equipment
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that is used. No general methods to reduce that bias can be
given.

The fifth bias that is discussed is important for data of
LDA measurement devices. The application of time series
models to the spectral analysis of irregular turbulence revealed
an important bias in LDA observations [25]. Velocity bias
is present if the probability of making an observation at a
certain time depends on the instantaneous amplitude of the
observed velocity signal [14]. Early corrections were limited
to the 1-D probability density function of the velocity [15].
Recently, experimental evidence showed important differences
between the histograms of hot-wire measurements and LDA
observations of the same turbulent process [25].

Corrections for the velocity bias have been proposed in
slotted autocorrelation estimators [14]. Weighting functions
for the individual irregular observations depend on the transit
time of a particle, the interarrival time, or the inverse of the
instantaneous volume flux [14]. These can give a correction for
the higher probability of finding irregular observations with a
high velocity. Unfortunately, the velocity bias has the greatest
impact in the high frequency range of the spectrum, which
mostly is rather inaccurate for slotted correlation methods.

The influence of velocity bias can be small for a flow with
a low turbulence level. With low turbulence, the mean value of
the velocity is much higher than the standard deviation of the
velocity variations around the mean. However, the velocity bias
can be very important if the variations are large in comparison
with the mean. This may happen if the mean velocity is zero.
This is the situation where LDA data are most sensitive to
velocity bias.

Fig. 5 shows a histogram of the velocity of observations of
the same turbulent flow process with a normal or Gaussian
amplitude distribution. The data have been produced with a
benchmark generator [26]. It is obvious that the variance of the
biased data differs from the unbiased variance. That difference
will be even stronger for the PSD, which is the distribution
of the total variance over the frequency interval. Furthermore,
it is not possible to derive the multidimensional Gaussian
distribution function of all data together from their individual
histograms. It is useful to determine a histogram like that
in Fig. 5 for irregular observations that are made with LDA
equipment. If unexpected valleys or dips are found, it is likely
that velocity bias is present. Spectral estimates obtained with
any method should then be considered with care.

VII. BENCHMARK DATA

The separate bias contributions can only be determined ex-
actly for specific examples for which the observation procedure
is known. In a turbulent flow, a Heisenberg spectrum is a well-
known spectral prototype. It is given by [11], [26]

c
(1+ £/100)5/3(1 + f/1000)16/3

S(f) = 13)

with the two constant slopes of —5/3 and —7 in the double
logarithmic plot. C' is an arbitrary constant for the variance of
the process.
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Fig. 5. Histograms of 10000 Gaussian benchmark data with mean velocity
zero, without and with velocity bias.

The MSSNNR has been used in an automatic computer pro-
gram denoted as ARMAsel-irreg, which estimates time series
models from irregular data [23]. In a first application of the
ARMAsel-irreg algorithm to simulated irregular data, good
results have been obtained for estimated AR models with a
known and low order [6]. It has been demonstrated that using
very high resampling rates is not a problem for the ARMAsel-
irreg algorithm [11]. The spectra of practical bubbly flow data
[27] have been analyzed until frequencies that are 250 times
higher than the mean data rate fy. The algorithm performed
well until very high frequencies, even if the observation time
instants are not Poisson distributed. In many circumstances,
the probability density of the observation times has no direct
influence on the spectral estimates. An exception has been
shown in Fig. 1. The application of the irregular time series
algorithm requires that the data are stationary and stochastic.
In particular, variable data rates or dropouts with large gaps
between the data cause no problems. The smallest interarrival
distances between the irregular observations set a limit to the
smallest useful resampling time 7., which should at least be
as large as that distance. There is no reason to suspect that the
distribution function for the arrival times will strongly influence
the spectral estimates of ARMAsel-irreg.

Attention is focused to the influence of the slot width in
MSSNNR on the quality of the selected spectrum. It is assumed
that the resampling frequency is high enough to reduce aliasing
and that AR models of low orders can approximate the global
spectral shape. This eliminates truncation and missing-data bi-
ases. The bias of MSSNNR can still be influenced by choosing
the slot width. Benchmark data for (13) are generated with a
program that is available on the Internet [26]. The true spectrum
is shown in Fig. 6 for the chosen discrete-time frequency range.
The constant slope in the log—log spectrum continues for higher
frequencies. The slotting bias in the autocorrelation function
has been computed with (7)—(9). The true biased spectra, with
the theoretical biases of aliasing and shifting included, are
shown in Fig. 6 for two values of the slot width w. The true
biased spectrum for w = T,./4 is already close to the aliased
spectrum computed with (5), with PE, = 1.040; PE, = 1.408
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Fig. 6. True, biased true, and estimated spectra for 7- = 0.2 ms and two slot
widths w = T and w = T} /4, both with selected AR order four for N =
50 000.

for w = T,.. The bias can hardly be reduced further by taking a
smaller slot width in this example. The true and biased spectra
almost coincide for the largest part of the frequency range. A
small difference with the true spectrum is seen for frequencies
above 1400 Hz for w = T,./4. The bias difference is somewhat
greater for w = T, and starts at about 1200 Hz.

The PE; values for the estimated AR(4) models in Fig. 6
were 1.391 and 1.112 for w = T, and T;./4, both rather close
to their theoretical minimal expectations. Fig. 6 shows that the
estimated AR(4) spectra are close to their biased expectations.
Therefore, choosing a slot width smaller than 7,. can improve
the accuracy. A similar investigation with 7, = 0.25 s showed
that sometimes, ten irregular observations could be sufficient to
obtain a global spectral estimate [17]. If only few observations
are available, it was better to choose w = T;. because then, the
missing fraction was smaller.

Table IV gives the accuracy of the estimated AR models for
increasing sample sizes of the benchmark data (13) and 7} =
0.25 s. Less than ten irregular observations are generally not
enough to obtain reliable estimates. It is remarkable that the
accuracy of the estimated AR(1) and AR(2) models does not
improve much if more data are available because the realized
value for the PE of estimated models is already close to the
biased expectation for less than 100 observations. It requires
higher AR orders to get accurate spectra. The truncation bias is
dominant for AR model orders one and two. The final row gives
the expectation of PFE; for truncated true models, with the best
possible parameters for the low-order aliased and shifted model.
The estimated AR(2) models do not converge to this theoretical
value. That is the effect of the special missing-data bias that
can occur in models of orders that are too low. The effect is
only rather strong for AR(2) models in this example.

For higher orders, the main bias contribution is the bias (7) of
shifting the observation times to a grid. The expectations in the
rows denoted by E{PFE,} do not become significantly smaller
for orders higher than six for truncated true AR models with
alias and shifting biases included; the results for those orders
are not reported in this paper, and in practice, they would not

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 5, MAY 2009

TABLE 1V
PFEg FOR THE ESTIMATED AR MODELS IN A SINGLE SIMULATION RUN
AND ITS EXPECTATION FOR THE TRUNCATED BIASED AR PROCESSES
AS A FUNCTION OF THE MODEL ORDER AND OF THE SAMPLE SIZE.
SLOTTED NN USED T} = 0.25 ms AND w = Ty OR w = T /4. THE
FINAL ROWS IN EACH BLOCK GIVE THE EXPECTATIONS OF PFEg FOR
TRUNCATED BIASED TRUE MODELS IF w = T} AND T} /4

N AR(1)  AR(2) AR(3) AR#) AR(S) AR(6)
w=1T,
10 1.73 1.50 1.46 2.87 8.57 3292
100 1.77 1.33 1.27 1.59 1.68 2.30
1000 1.76 1.44 1.20 1.20 1.14 1.16
10000 1.75 1.43 1.16 1.22 1.20 1.21
E{PE} 1.73 1.31 1.18 1.19 1.19 1.19
w=T,/4
10 1.87 1.63 2.73 7.24 7.34 20.33
100 1.75 1.40 1.81 4.90 5.90 10.74
1000 1.77 1.40 1.09 1.73 1.64 1.57
10000 1.76 1.49 1.09 1.11 1.03 1.57
E{PE} 1.73 1.29 1.08 1.04 1.02 1.02

be selected by a good order-selection criterion [6]. The values
1.19 and 1.02 for the AR order six in the final rows are still
the same for the AR(100) model. Therefore, the accuracy of
the estimated model cannot increase much further by taking
more than 10000 observations unless the slot width is made
smaller. However, the aliasing effect will then be the limiting
factor for the accuracy, with a minimum value around 1.01 in
Table II. It is very unlikely that AR orders higher than five will
ever be selected for this benchmark example with the chosen
resampling time and slot width.

The bias will not decrease if more observations are available;
only the estimation variance can become smaller. Due to this
estimation variance, the accuracy of the estimated AR(6) model
is still significantly worse than its biased expectation for N
equal to 10000 for w = T;./4. The accuracy of the estimated
AR models of orders that are higher than five will become
better for larger sample sizes but never better than 1.02 for
this slot width. In particular, for the order six, it is clear that
a smaller slot width will require many more observations to
obtain accurate models. The missing fraction and, hence, the
estimation variance increase for a smaller slot width.

VIII. CONCLUSION

Only continuous-time spectra can be unbiased for irregu-
larly sampled processes. In equidistantly resampled data, three
groups of bias contributions can be recognized: the bias during
data collection, the resampling bias with the inevitable alias-
ing, and, finally, the bias due to the model choice in signal
processing.

A data-collection bias in LDA experiments is called velocity
bias. This may occur if the turbulent velocity variations are not
small in comparison with the mean flow velocity. Precautions
about this bias type should be taken during data collection.

Resampling irregular data into an equidistant missing-data
problem causes aliasing bias. This is made smaller by using a
higher resampling frequency. Equidistant resampling without
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slotting can be used for accurate spectra until frequencies that
are less than 10% of the mean irregular data rate. Higher
frequency ranges are only accurate if slotting is applied. A
good resampling method is the MSSNNR procedure. The bias
that is caused by shifting the irregular observation times to
an equidistant grid is diminished in MSSNNR by using a slot
width that is smaller than the resampling distance.

In processing the resampled signal with time series models,
truncation and missing-data biases can appear. They become
small if the model order is high enough to describe the sig-
nificant spectral details. The influence is obvious if low-order
models are studied, and it explains what happens then. How-
ever, order selection will not select the models of orders that
are too low in practice, and those low orders need no further
attention.
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