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1
INTRODUCTION

Parts of this chapter have been published as Rieger, B., Nieuwenhuizen, R.P.J., Stallinga, S. IEEE Signal Pro-
cess. Mag. 32, 49–57 (2015). [1]
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2 1. INTRODUCTION

1.1. LOCALIZATION MICROSCOPY
Fluorescence microscopy is currently the most important tool for visualizing biolog-
ical structures at the sub-cellular scale. The combination of fluorescence, which en-
ables a high imaging contrast, and the possibility to apply molecular labeling, which
allows for a high imaging specificity, makes it a powerful imaging modality. The use
of fluorescence microscopy has risen tremendously, in particular since the introduc-
tion of the green fluorescent protein (GFP) in the mid 1990s and the possibility to
genetically engineer cells to express these proteins. Fig. 1.1 shows the basic layout of
a fluorescence microscope. Excitation light of a certain wavelength is reflected via a
dichroic beamsplitter and projected onto the specimen via the objective lens of the
microscope. The light is absorbed by the fluorescent labels and re-emitted, slightly
Stokes-shifted by ∼10-100 nm, at a larger wavelength, typically a few nanoseconds
later. The emission light is captured by the objective lens and directed towards the
camera via the dichroic beamsplitter.

lens

camera

tube
lens

dichroic
mirror

slide with
specimen

α

NA = n sin α

excitation
beam

emission
filter

objective

Figure 1.1: Schematics of an epi-fluorescence light microscope. The excitation light is focused onto the
sample and the emission light is captured by the same lens and recorded on a camera. The dichroic mirror
is chosen such that it reflects the excitation light but transmits the fluorescent emission light, which is of
slightly larger wavelength. The objective is characterized by the numerical aperture NA, which combines
the refractive index of the immersion medium n and the maximum angle α at which light is captured.

The resolution of a state-of-the-art microscope is limited by diffraction to a length
scale λ/2/NA, where λ is the emission wavelength and NA = n sin(α) is the so-called
numerical aperture (NA) of the microscope, where n is the refractive index of the im-
mersion medium n andα is the marginal ray angle of the collected beam (see Fig. 1.1).
For visible light and high-NA immersion objectives this gives resolutions ∼ 200 nm.
While this is sufficient for imaging many sub-cellular structures, it is insufficient for
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providing an image of the molecular machinery that underlies the functioning of the
cell. Electron microscopy, however, can reveal image detail on the order of nanome-
ters, but does not allow live-cell imaging nor efficient specific labeling.

Over the last decade a number of optical nanoscopy techniques have been pro-
posed to bridge the resolution gap between electron and conventional light microscopy.
Localization microscopy is one of these super-resolution techniques [2–5]. These
techniques rely on the localization of single fluorescent molecules, which was already
commonly done for example in the field of single particle tracking before the advent
of localization microscopy [6]. In localization microscopy, the fluorescent labels are
photo-chemically manipulated to switch on and off stochastically, such that at each
instant in time only a sparse subset of all molecules is in the on-state in which they
can fluoresce. By now there is a whole plethora of stochastic switching mechanisms
and suitable fluorescent labels [5]. The required ratio of on/off times to see only sin-
gle emitters in a region of size λ/NA depends on the labeling density, camera frame
time, etc. but is typically less than 1/100. Recording many frames of blinking emit-
ting molecules thus provides a sequence of images of different random subsets of all
molecules. The active molecules appear as well separated spots that can be identified
and processed to provide the position of the molecules. The localization precision is
on the order of λ/NA/

√
Nph ≈ 10 nm with Nph the number of detected photons (typ-

ically a few hundred to a few thousand). Assembling the localization data obtained
from all frames into one visualization of the final super-resolution image reveals de-
tails on the length scale of 10-100 nm; this is about one order below the diffraction
limit of conventional light microscopy.

The necessary technology for localization microscopy is not prohibitive: a state-
of-the-art setup only requires a fluorescence microscope, powerful light sources and
a camera with high quantum efficiency and low readout noise. Next to this hard-
ware, software for image processing and analysis is essential for extracting the desired
molecular locations in a robust, optimal and fast way.

1.2. IMAGE PROCESSING STEPS
This section details the image processing and workflow from raw camera frames to
the visualization and quantitative analysis of the super-resolution image. Fig. 1.2
shows an overview of this workflow.

1.2.1. SEGMENTATION

The first step in processing the raw frames consists of identifying and segmenting
regions of interest (ROIs) that contain the emissions of single fluorescent emitters.
Usually this is done by thresholding the raw frames based on the pixel intensity rel-
ative to the (local) background noise level [2, 3]. Pixels in which the value is larger
than a fixed threshold value or larger than a multiple of the background intensity b
are taken as the center of ROIs that are used for localization of possible fluorophore
positions in the next processing step.

Besides this basic thresholding approach, more advanced segmentation algorithms



1

4 1. INTRODUCTION

Data acquisition Segmentation

Localization

Post-processing

t 

 

dr
ift X

Y

tWidefield image

t

po
si

tio
n photon count

fre
qu

en
cy

filter
keep

3 μm

3 μm

Super-resolution
Visualization

combined
localizations

Processing pipeline

r

co
rr

el
at

io
n

r

cl
us

te
rin

g

Quantification

Figure 1.2: The complete pipeline for generating a two-dimensional super-resolution image based on raw
frames of sparsely activated fluorophores. The consecutive steps in this pipeline are: acquisition of raw
data, segmentation of regions of interest (ROIs), localization of potential fluorophores in the ROIs, post-
processing of the localizations (e.g. filtering, frame connection, drift correction), and visualization of the
localizations.
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have also been proposed. In one proposed method, the raw images are first decom-
posed into wavelet maps to separate the fluorescence signal from blob-like sources
from the background intensity and noise [7, 8]. Subsequently ROIs are identified us-
ing a watershed segmentation algorithm.

Another approach to identifying ROIs makes explicit use of local hypothesis test-
ing against the null hypothesis that a pixel belongs to the local background. This
is achieved by computing the P-value for each pixel under the assumption that it is
drawn from a normal distribution with the local mean and standard deviation of pixel
values as parameters [9]. A related method that was proposed for single particle track-
ing employs a likelihood ratio test in each pixel. In this test, the ratio is computed
between the likelihoods of the null hypothesis and that of the hypothesis of having a
single emission from a fluorophore in the center of the pixel, assuming that the noise
per pixel is Gaussian [10] and the width of the PSF is constant. Under the null hypoth-
esis this ratio follows a chi-squared distribution. Pixels are thus thresholded based on
the P-value of the chi-squared distribution for the likelihood ratio value of that pixel.
Finally, a recent method employed a likelihood ratio test between the likelihoods of
PSF model fits with and without an emitter in each pixel[11]. False discovery rate
control was then applied to simultaneously test the significance of all the likelihood
ratios in all pixels and use the significant pixels to define ROIs for localization.

Segmentation algorithms typically assume a locally uniform background inten-
sity. This is reasonable if the ROI is only a few pixels wide, unless there is a high de-
gree of autofluorescence and the fluorophores themselves are relatively dim. For such
cases, temporal median filtering has been proposed as a method for estimating the
local background intensity [12].

1.2.2. SINGLE MOLECULE LOCALIZATION
Once ROIs in the raw data have been segmented, the next step is to estimate the po-
sitions of the emitting fluorescent molecules in these regions. The most common
approaches for this are the center of mass algorithm (CM) and algorithms that fit a
Point Spread Function (PSF) model to the data with a (weighted) least-squares esti-
mator (LS) or a maximum likelihood estimator (MLE).

The CM algorithm computes the center of the intensity distribution. In the ab-
sence of any background intensity, this estimate corresponds well to the emitter’s true
location. However, for non-negligible background intensities this leads to a bias to-
wards the center of mass of the background intensity, which is usually in the center
of the ROI. Therefore the local background intensity needs to be estimated and sub-
tracted before the center of mass can be computed.

LS and MLE algorithms attempt to fit a PSF model to the pixel intensities in a
ROI. Typically the PSF model consists of a circularly symmetric Gaussian function for
two-dimensional localization microscopy:

PSF
(
x, y

)= 1

2πσ2
g

e
− (x−xc )2+(y−yc )2

2σ2
g . (1.1)

Here the parameters xc and yc denote the position of the emitter in the x- and y-
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direction andσg specifies the width of the PSF. The Gaussian PSF model is not derived
from optical theory, but is instead chosen for its conceptual simplicity and computa-
tional efficiency. However, for typical imaging conditions, the Gaussian PSF approx-
imates the theoretical PSF sufficiently well for accurate and precise localization [13,
14].

From the PSF model follows the expected intensity μk per pixel k that is fitted to
the data:

μk = I0

∫
Ak

PSF (u, v)dud v +b, (1.2)

where I0 denotes the sum intensity of the fluorophore, b the expected background
photon count and the integration runs over the area Ak of the k-th pixel. The param-
eters that are to be estimated are thus xc , yc , I0,b and possibly σg .

In addition to an optical model for μk , fitting the PSF model to the data also re-
quires a noise model for the imaging system. LS algorithms implicitly assume a Gaus-
sian noise model, whereas the slower but more precise MLE algorithms assume a
Poissonian noise model. The latter algorithms can be implemented on a graphical
processing unit (GPU) to estimate the positions of many emitters in parallel and so
achieve real-time computation [15].

An important issue in localization microscopy is the precision with which single
fluorophores can be localized [16–18]. This is often analyzed using the concept of the
Cramer-Rao lower bound (CRLB), which expresses the lowest variance of any unbi-
ased estimator of a fluorophore’s position for a given noise model [19]. For a Poisso-
nian noise model, a good analytical approximation for this bound is given by [20]:

Δxl oc
2 = σ2

e

N

(
1+4τ+

√
2τ

1+4τ

)
. (1.3)

Here N is the number of signal photons, σ2
e =σ2

g +a2/12 with a2 is the pixel area, and

τ is a normalized dimensionless background parameter τ= 2πσ2
g b/

(
N a2

)
with b the

number of background photons per pixel.
The noise in the commonly used sCMOS and EMCCD cameras deviates from the

Poisson noise model in two important ways. sCMOS cameras suffer from a small
amount of (pixel dependent) Gaussian readout noise, which effectively acts as if b is
increased with the variance of the readout noise [21]. EMCCD cameras suffer much
less from readout noise due to the electron multiplication process. However, the
stochasticity of this process also introduces so-called excess noise, which typically
deteriorates the localization variance Δxl oc

2 by a factor of two [22]. Balancing the
effects of readout noise and excess noise implies that sCMOS cameras are preferred
over EMCCD cameras, except in extremely low light conditions that are not typically
encountered in localization microscopy [21]. Other considerations in choosing be-
tween cameras are that EMCCD cameras have a better photosensitivity, and that sC-
MOS cameras typically have a smaller physical pixel size and faster frame rate. Finally,
sCMOS cameras require a calibration of the gain and readout noise of each pixel for
accurate localization, because they often vary substantially among different pixels on
the same camera.
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1.2.3. POST-PROCESSING

After all the segmented ROIs have been processed by the localization algorithm, post-
processing of the raw localizations is needed.

In the first post-processing step raw localizations are usually filtered. The goal
of this filtering is to remove localizations that do not represent accurate position es-
timates of single fluorescent molecules, for example because they are due to over-
lapping emissions of multiple fluorophores or due to autofluorescence or residual
sample contaminations. The filtering is usually done based on information that is
returned by the localization algorithm, such as the estimated intensity of the fluo-
rophore, the localization precision, the width of the PSF, and based on the goodness
of fit of the model to the data [2, 23]. The latter can be expressed as the (weighted)
sum of squared errors between the fitted model and the data or as a ratio between the
likelihoods of a fluorophore being present or absent.

In the second post-processing step, localizations originating from the same flu-
orophore in consecutive frames of the raw image sequence are combined. This is
attempted by searching for localizations in subsequent frames that are also spatially
proximate, typically within a few times the estimated localization precision. The ra-
tionale for this operation is that fluorophores are often visible in multiple consecutive
frames before transitioning into a stable dark state or photobleached state, whereas it
is unlikely that a nearby fluorophore starts emitting during this time. In practice, fluo-
rophores will not always be localized in all frames before going into a stable dark state,
either due to failures of the localization algorithm or due to short blinking events dur-
ing which the fluorophores briefly stop emitting light. Therefore, spatially proximate
localizations are usually still combined if they are only a few frames apart in time [24].

A third common post-processing operation is to correct for drift during the ac-
quisition. Since localization microscopy experiments can last anywhere from a few
minutes up to several hours, the sample often moves relative to the detector over dis-
tances larger than the localization precision of about 10 nm. This movement can be
reduced with hardware solutions, for example by mechanically fixing the objective
lens to the stage or by using a control system that actively controls the position of the
sample in the image plane [25, 26]. Axial drift, causing the sample to drift out of focus,
must be suppressed or controlled just as well as the lateral drift in the image plane.

One option is to add fiducial markers such as fluorescent microbeads to the sam-
ple that are visible during the entire acquisition [2]. These fiducial beads can then be
localized and used to determine the position of the sample at each moment in time.
Another option for drift correction is to estimate the shifts between images of the
sample at different time points. This can be achieved by determining the maximum
of the cross-correlation [25, 27, 28] between these images, which can either be raw
camera images or super-resolution images that visualize the localizations from these
frames. The latter, however, is preferred for precision due to the larger high-frequency
content of the super-resolution image. The shift estimation should not be done be-
tween subsequent images only, as this leads to compounding of registration errors,
but between image pairs further apart in time. The main benefit of this approach is
that it does not require any changes on the experimental side.
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1.2.4. VISUALIZATION
The final step in the processing pipeline from raw data to super-resolution image is
the actual visualization of the data. For standard fluorescence microscopy acquisi-
tions, this sampling occurs in the camera where the pixel positions along with the
magnification determine the sampling of the image. In addition, the values per pixel
are determined by the number of recorded photons per pixel bin that are translated
into analog-to-digital units (ADU) with a linear amplification factor. Unlike these
standard fluorescence microscopy techniques, localization microscopy does not sam-
ple an image at pixel locations but produces a list of coordinates that represent the es-
timated fluorophore locations. Several methods have been proposed for visualizing
localizations in pixelated images that can be shown on a display device. Chapter 3 in-
troduces the most common of these methods and compares them both qualitatively
and quantitatively.

1.2.5. EXTENSIONS
Until now, the discussion focused in detail on the complete pipeline for generating a
two-dimensional super-resolution image based on raw frames of sparsely activated
fluorophores. Here we will address several extensions of this pipeline involving lo-
calization in three dimensions, multicolor localization and imaging with overlapping
spots.

3D LOCALIZATION

One important extension of two-dimensional localization microscopy imaging is the
localization of fluorophores in three dimensions. This requires that information about
the axial position of the fluorophore is present and can be extracted from the record-
ings.

A first approach to this problem is to modify the optical setup such that the shape
and/or size of the PSF can be uniquely related to the axial position of the fluorophore.
The most common method to achieve this is to introduce astigmatism into the optical
system [25]. This causes the minimum width of the PSF in the x and y-direction to
occur at different axial positions. The position can then be determined based on the
ellipticity of the PSF.

A second approach to obtain the axial position is to modify the setup such that
multiple images of the fluorophores with different defocus are simultaneously ac-
quired. This is usually accomplished with a beam splitter that splits the emission
light into two channels with different optical path lengths to the camera, such that
the two images of the fluorophores are defocused with respect to each other [29].

For both these approaches to 3D localization, the PSF model that is used in the
basic 2D localization algorithm needs to be modified. The modified PSF model must
provide a specification of the appearance of the fluorophore for the full range of axial
positions under consideration and for all image channels on which it is observed. The
PSF shapes for 3D localization techniques may be difficult to describe in an analytic
formula such as the Gaussian PSF model. An example of this is the double-helix PSF,
where a spot doublet rotates with the axial focus position [30]. In such cases, the
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PSF can also be determined numerically or empirically. The latter approach then
requires subsequent interpolation between the measured axial positions to provide a
full specification of a fluorophore’s appearance.

MULTICOLOR LOCALIZATION

Another important extension of the basic pipeline is the imaging of different labeled
molecules in an experiment. A common method for doing this is to label these molecules
with fluorophores with different emission spectra [31]. Wavelength dependent beam
splitters are then inserted in the emission light path such that the light at different
wavelengths ends up at different parts of the camera or at different cameras. The
observed fluorophores can subsequently be classified into the different used species
based on the fraction of the photons of each fluorophore ending up in the different
color channels. Usually though, the beam splitters are optimally selected such that
each color channel only shows a single fluorescent species.

An important problem that arises when imaging fluorophores in different color
channels is the registration of the various channels with respect to each other. This
needs to be done with an accuracy comparable to the localization precision, which
is typically 10% of the camera pixel size or less. A common solution employs fiducial
markers that are visible in all color channels. These markers are first imaged and lo-
calized, and subsequently a non-affine mapping function is computed which maps
the positions of the markers in one color channel to their positions in the other chan-
nels [32].

An alternative approach to multicolor imaging is to use photoswitchable dye pairs
with different activator dyes but identical reporter dyes [31]. In this way, the wave-
length of the illumination can be used to determine which dye pairs are activated and
therefore which labeled molecules are imaged. The emitted light of all reporter dyes
can then be imaged in a single image on the camera, thus circumventing chromatic
aberration problems and obviating the need for a registration procedure between dif-
ferent images.

Finally, approaches have recently been proposed for simultaneous measurement
of fluorophores’ emission wavelength and positions. One option to accomplish this
is to introduce a diffraction grating in the emission light path[33]. This introduces
satellite spots adjacent to the main spot. The emission wavelength of the fluorophore
can then be estimated from the distances between the spots. A second option is to
split the emission light in two paths and introduce a dispersing prism in one of the
two paths, which makes it possible to measure the emission spectrum of each emitter
in widefield[34].

HIGH DENSITY METHODS

A common problem when localizing fluorophores is that segmented regions of in-
terest contain overlapping spots of multiple active fluorophores. This issue is partic-
ularly important when the density of active fluorophores is high. Several solutions
have been proposed that attempt to fit a PSF model to each of the spots in the region
of interest, either by fitting spots one by one [35] or by finding the model with the
number of PSFs that best matches the data [36].
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Several other methods for dealing with overlapping spots have been proposed
that do not estimate fluorophore positions, but rather estimate the density of fluo-
rophores instead. One such approach is to deconvolve the entire raw dataset [37].
This means that for each frame, a fluorophore density is estimated which has the
highest likelihood of producing the experimentally recorded data after convolution
with the PSF. To achieve sub-diffraction resolution, this density is sampled with a
smaller pixel size than the experimental data. The estimation also incorporates a
prior probability for the density per frame that promotes sparsity: because relatively
few emitters are active in each frame, the solution should also have few pixels with
nonzero density. A related approach to estimating the density is provided by com-
pressive sensing [38, 39]. Unlike the deconvolution approach, an estimate ρ

(
x, y

)
is

made for each frame independently which minimizes the balanced sum between a
data misfit term and sparsity promoting ‘L1-norm’ of the form

∑
x,y

∣∣ρ (x, y
)∣∣. A sub-

tlety in these approaches is that, in principle, the final estimated density is a relative
rather than an absolute estimation of the molecular density, as fluorophores can re-
appear in the on-state multiple times during the data acquisition.

The final approach to be mentioned here is called the Bayesian analysis of the
blinking and bleaching (3B) method [40]. In this method, the on- and off-switching
and bleaching behavior of each fluorophore is modeled as a Markov process. Using
this model, many different estimates are made of the number of fluorophores, their
positions and their activity in each frame. These estimates are then all used to cre-
ate a probability map of the positions of the fluorophores. A major drawback of this
method is its high computational cost.

1.3. MOTIVATION AND OUTLINE OF THIS THESIS

From the introduction above it becomes clear that localization microscopy produces
radically different data than other fluorescence microscopy techniques. Although a
pixelated image can be rendered, the data consist fundamentally of a list of local-
izations. Moreover, these data reveal information about biological structures at an
order of magnitude smaller length scale than before. Therefore the major question
that needs to be addressed is how to correctly interpret these data for maximum in-
sight into the underlying biological structures and processes at the nanoscale. This
presents both opportunities and challenges that can be addressed with new quanti-
tative image analysis methods.

The evident opportunity with localization data is that biological structures can
now be analyzed at a much smaller length scale. Structures that seem to overlap in
diffraction limited images can be clearly distinguished using localization microscopy.
Moreover, localizations provide information about individual molecules independent
of neighboring molecules. New image analysis methods are therefore needed for
quantitative measurements in these images to fully capture the available informa-
tion. These measurements can then be used to condense this information into com-
prehensible quantities that facilitate the interpretation of the data, but also to craft
and test models of the underlying biological structures and processes.
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A substantial challenge with localization microscopy data is to prevent overinter-
pretation of the details that appear to be visible in the images. Localizations may
appear as very determinate features in images because they relate very precisely to
the molecules they are derived from. However, there is actually substantial stochas-
ticity involved in the labeling, activation and localization of these molecules. Unlike
degradation of images in other types of microscopy, caused for example by photon
shot noise or blurring due to diffraction, this is not evident in the images in the same
way. Thus new methods are needed to objectively determine what can be interpreted
in these images when visual inspection of the images falls short. This prevents that
misinterpretation of the data leads to incorrect biological conclusions.

A second major challenge with localization microscopy data is that the analysis
methods need to be suitable for the nature of the data. On the one hand this implies
the conceptual necessity that measurements must take into account that the data
consist of a list of localizations. Therefore they cannot rely on image representations
with set pixel sizes. On the other hand there is also a practical issue involved here: im-
age analysis techniques usually assume that structures appear continuous in images
and that noise sources operate independently in each pixel. Both of these assump-
tions are typically not met in localization microscopy. Therefore new image analysis
techniques need to be developed specifically for localization microscopy.

This thesis describes several new image analysis techniques that have been devel-
oped specifically to address these challenges for a number of key applications. The
remainder of this chapter provides an outline of this thesis and an overview the tech-
niques that will be described.

1.3.1. THESIS OUTLINE
Chapter 2 is concerned with resolution measurement. The tremendous improvement
in resolution is perhaps the most salient difference between diffraction limited mi-
croscopic images and localization microscopy images. This raises the question what
the resolution is that is obtained. Chapter 2 introduces an image-resolution measure
centered around Fourier Ring Correlation, which is commonly used for resolution-
assessment in the field of cryo-electron microscopy[41–43]. We use the FRC resolu-
tion to analyze the trade-off between localization precision and labeling density. In
addition, we discuss how the FRC can be corrected for spurious correlations that arise
when molecules are localized multiple times to prevent biases in the computed reso-
lution.

Chapter 3 is concerned with data visualization. Localization microscopy does not
have a natural way of visualizing the data that are produced, although several visual-
ization methods have been proposed. In chapter 3 we use the FRC resolution mea-
surement to objectively compare these visualization methods with simulated data.
In addition, we discuss how the different methods conform to users’ expectations of
the relation between the image and the sample, which have been formed for other
fluorescence microscopy methods, such as widefield or confocal imaging.

Chapter 4 is concerned with a major application of localization microscopy which
is the quantification of the molecular composition of biological structures. This re-
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quires that numbers of localizations can be related to numbers of labeled molecules
or binding sites. In chapter 2 we find that, surprisingly, spurious correlations in the
FRC can be used to estimate the number of localizations per labeled molecule. Chap-
ter 4 shows how this method is substantially refined by rigorously accounting for pho-
tobleaching of fluorophores and the stoichiometry of the number of fluorophores per
molecule.

Although the method in chapter 4 enables accurate estimation of the number of
localizations per labeled molecule, it is vulnerable to undercounting when not every
molecule of interest is indeed labeled. Chapter 5 addresses this problem by extending
the method from chapter 4 for well-defined macromolecular complexes such as the
nuclear pore complex (NPC). We introduce a method to infer the number of protein
copies per subunit in a complex, in which we combine the localizations from multiple
NPCs in a single statistical analysis. We determine for which experimental conditions
this approach is viable in a simulation study, and subsequently apply the analysis to
experimental data of Nup160 and Seh1 molecules in NPCs.

Chapter 6 is concerned with the analysis of multicolor fluorescence images rather
than single color images. These images are commonly probed for functional inter-
actions between molecules in different channels using co-localization analysis. This
chapter extends this basic co-localization analysis by including the orientations of
the structures on which the molecules reside. The combination of co-localization
and orientational alignment of structures will be referred to as co-orientation. The
analysis is applied to experimental images of cytoskeletal filaments.

Finally, chapter 7 provides some concluding remarks about the work presented in
this thesis as well as an outlook and recommendations for future research.



2
MEASURING IMAGE RESOLUTION

IN OPTICAL NANOSCOPY

Resolution in optical nanoscopy (or super-resolution microscopy) depends on the local-
ization uncertainty and density of single fluorescent labels and on the sample’s spatial
structure. Currently there is no integral, practical resolution measure that accounts
for all factors. We introduce a measure based on Fourier ring correlation (FRC) that
can be computed directly from an image. We demonstrate its validity and benefits on
two-dimensional (2D) and 3D localization microscopy images of tubulin and actin
filaments. Our FRC resolution method makes it possible to compare achieved resolu-
tions in images taken with different nanoscopy methods, to optimize and rank differ-
ent emitter localization and labeling strategies, to define a stopping criterion for data
acquisition, to describe image anisotropy and heterogeneity, and even to estimate the
average number of localizations per emitter. Our findings challenge the current focus
on obtaining the best localization precision, showing instead how the best image reso-
lution can be achieved as fast as possible.

Parts of this chapter have been published as: Nieuwenhuizen, RPJ., Lidke, K.A., Bates, M., Leyton Puig, D.,
Grünwald, D., Stallinga, S. & Rieger, B. Nat. Methods 10, 557–562 (2013). [44]
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2.1. INTRODUCTION
The first and foremost law of conventional optical imaging science is that resolution
is limited to a value on the order of λ/NA, with λ equal to the wavelength of light and
NA to the numerical aperture of the imaging lens. Rayleigh and Sparrow captured this
law by empirical resolution criteria. These criteria were placed on solid foundations
by Abbe and Nyquist, who defined resolution as the inverse of the spatial bandwidth
of the imaging system. This diffraction limit, however, can be overcome by numerous
optical nanoscopy techniques, notably stimulated emission depletion(STED[45]), re-
versible saturable optical fluorescence transitions (RESOLFT[46]), the family of local-
ization microscopy techniques such as photoactivated localization microscopy (PALM),
stochastic optical reconstruction microscopy (STORM), ground state depletion mi-
croscopy followed by individual molecule return (GSDIM), and direct STORM (dSTORM)
[2, 3, 47, 48] and statistical methods as blinking fluorescence localization and super-
resolution optical fluctuation imaging (SOFI) [49, 50].

These revolutionary developments raise the question: what is resolution in diffraction-
unlimited imaging. The resolving power of the instrument is often coupled to the
uncertainty of localizing single emitters, that is, point sources. The closely related
two-point resolution can be given a precise meaning in the context of localization
microscopy[51], thus generalizing the Rayleigh criterion of conventional microscopy.
These concepts characterize the resolution in images in which the structure of inter-
est can be defined by a limited number of molecules – such as images of the nuclear
pore complex[52] – or when investigating the relative position of different molecules[53].
However, if more-or-less continuous structures with a large number of potential la-
beling sites are imaged – for example, actin filaments or organelle membranes – then
it is clear that the average density of localized fluorescent labels must also play a role.
As early as the first demonstration of localization microscopy for cell imaging[2], it
was noted that “both parameters – localization precision and the density of rendered
molecules – are key to defining performance...”. The effects of labeling density and
photoswitching kinetics on resolution have since been investigated experimentally[54,
55]. Recently, an estimation-theoretic resolution concept was presented[56] that com-
bines both labeling density and localization uncertainty using an a priori model of
the sample. We conclude from all prior work that neither the average density of local-
ized molecules needed for random Nyquist sampling nor the localization uncertainty
alone is a suitable measure to characterize the resolution. In addition, the resolution
depends on a multitude of other factors such as the link between the label and the
structure, the underlying spatial structure of the sample itself, and the extensive data
processing required to produce a final super-resolution image comprising, for exam-
ple, single-emitter candidate selection and localization algorithms. Ultimately, only
an integral, image-based resolution measure, not depending on any a-priori infor-
mation, is suitable for determining what level of detail can be reliably discerned in a
given image.

Here we propose an image-resolution measure that can be com¬puted directly
from experimental data alone. It is centered on the FRC (or, equivalently, the spec-
tral signal-to-noise ratio), which is commonly used in the field of cryo-electron mi-
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croscopy (cryo-EM) to assess single-particle reconstructions of macromolecular com-
plexes[41–43]. We have used the FRC resolution to analyze the trade-off between lo-
calization uncertainty and labeling density, and we have applied it to monitor res-
olution buildup during data acquisition and to compare different localization algo-
rithms. Quantification of the spatial correlations in the image leading to this resolu-
tion measure also provides a means to estimate the average number of localizations
per emitter contributing to the image.

2.2. RESULTS
To compute the FRC resolution, we divide the set of single-emitter localizations that
constitute a super-resolution image into two statistically independent subsets, which
yields two subimages f1 (�r ) and f2 (�r ), where�r denotes the spatial coordinates. Subse-
quent statistical correlation of their Fourier transforms f̂1

(
�q
)

and f̂2
(
�q
)

over the pix-
els on the perimeter of circles of constant spatial frequency with magnitude q = ∣∣�q∣∣
gives the FRC[42]

F RC
(
q
)=

∑
�q∈circle

f̂1
(
�q
)

f̂2
(
�q
)∗

√ ∑
�q∈circle

f̂1
(
�q
)2
√ ∑

�q∈circle
f̂2
(
�q
)2

. (2.1)

For low spatial frequencies, the FRC curve is close to unity; and for high spatial fre-
quencies, noise dominates the data and the FRC decays to 0. The image resolution is
defined as the inverse of the spatial frequency for which the FRC curve drops below
a given threshold. We evaluated different threshold criteria used in the field of cryo-
EM[41, 57–59] and found that the fixed threshold equal to 1/7 ≈ 0.143 [59] is most
appropriate for localization microscopy images (see Appendix 2.A.1). The FRC reso-
lution concept and the steps needed to compute it are illustrated in Fig. 2.1. FRC reso-
lution describes the length scale below which the image lacks signal content; smaller
details are not resolved in the image. Resolution values will always be larger than
those based on localization uncertainty or labeling density alone.

2.2.1. THEORETICAL CONSIDERATIONS AND SIMULATIONS
FRC resolution allows predictions to be made about the impact of different imaging
and sample parameters on the achievable resolution; these predictions are based on
the expectation value of the FRC curve, which is given by

〈
F RC

(
q
)〉=

∑
�q∈circle

(
Q +N

∣∣ψ̂(
�q
)∣∣2)exp

(−4π2σ2q2
)

∑
�q∈circle

[
2+

(
Q +N

∣∣ψ̂(
�q
)∣∣2)exp

(−4π2σ2q2
)] , (2.2)

where N is the total number of localized emitters, σ is the average localization uncer-
tainty and ψ̂

(
�q
)

denotes the Fourier spectrum of the spatial distribution of the flu-
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Figure 2.1: The FRC principle and trade-off between localization uncertainty and labeling density. (a) All
localizations are divided into two halves, and the correlation between their Fourier transforms over the
perimeter of the circle in Fourier space of radius q is calculated for each q , resulting in an FRC curve in-
dicating the decay of the correlation with spatial frequency. The image resolution is the inverse of the
spatial frequency for which the FRC curve drops below the threshold 1/7 ≈ 0.143, so a threshold value at
q = 0.04 nm−1 is equivalent to a 25 nm resolution. Error bars indicate theoretically expected s.d. (Ap-
pendix 2.A.2). (b) Simulated localization microscopy image of a line pair with mean labeling density
ρ = 2.5 × 103 per μm2 in the area occupied by the lines and localization uncertainty σ = 7.6 nm (line
distance 70 nm, cosine-squared cross-section). (c) Constant resolution in theory (lines) and simulation
data (circles) for line pairs as in b as a function of localization uncertainty and labeling density. Regions
of localization uncertainty–limited resolution (blue) and labeling density–limited resolution (yellow) are
separated by the red line ρσ2 = e/(6π). (d) Simulation results for localization uncertainty versus image
resolution for different fixed total measurement times. Camera frame rates were varied to match the on-
times of the emitter. The minima of the curves fall on the line R = 2πσ that separates the yellow region (not
enough emitters localized) from the blue region (emitters not localized precisely enough).

orescent emitters (for a derivation, see Appendix 2.A.2). The parameter Q is a mea-
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sure for spurious correlations due to, for example, repeated photoactivation of the
same emitter. Each emitter contributing to the image is localized once for Q = 0 and
in general Q/(1−exp(−Q)) times on average, provided the emitter activation follows
Poisson statistics. Careful analysis of the spatiotemporal correlations in the image
and the emitter activation statistics (including effects of photobleaching) can provide
a way to estimate Q and correct for its effect on image resolution as well as to esti-
mate the number of fluorescent labels contributing to the image, as is discussed in
section 2.2.3. Analytical expressions for the resolution can be derived for particular
object types (such as line pairs) often used in resolution definitions (Appendix 2.A.3).
The resolution R for an image consisting of two parallel lines with a cosine-squared
cross-section and mean labeling density ρ in the area occupied by the lines is

R = 2πσ√
W

(
6πρσ2

) , (2.3)

where W (x) is the Lambert W-function[60]. Two regimes can be identified in which
changes in either labeling density or localization uncertainty have the most impact
on improving the resolution. At the boundary between these regimes, the relative
gains in resolution due to changes in either quantity are equally large. This trade-off
occurs at R = 2πσ (Appendix 2.A.4), which corresponds to

ρσ2 = e

6π
≈ 0.14. (2.4)

The regionρσ2 < e/(6π) is labeling-density limited, whereasρσ2 > e/(6π) is localization-
uncertainty limited (Fig. 2.1). The exact boundary between the two regimes depends
on the underlying object, so the boundary value for the two-line example serves only
as a rule of thumb (Appendix 2.A.4). For example, for M parallel lines, we obtain
a value e/(3πM). From this it may be inferred that the trade-off occurs for a value
smaller than 0.14 for any intricate but irregular object structure.

The same trade-off as above may also manifest itself in the optimization of image
resolution, given a fixed total acquisition time (Fig. 2.1b,d). Suppose that the photon
count per localization is improved by increasing the on-times of the emitters while
keeping the emitters’ brightness and the number of simultaneously active emitters
constant: this then also reduces the total number of labels that can be localized in a
given acquisition time. Therefore, longer single-emitter events yield more accurate
localizations, but at the expense of a lower recorded emitter density[2, 61]. Again,
the optimum is R = 2πσ, independent of the object (Appendix 2.A.4). Tuning the on-
times as described here may be done in the design phase of an experiment by the
choice of label or buffer composition.

2.2.2. RESOLUTION BUILDUP DURING DATA ACQUISITION
To test and evaluate the FRC resolution measure, we imaged tubulin networks in fixed
HeLa cells labeled with Alexa Fluor 647 using localization microscopy (Fig. 2.2a and
section 2.4). The resolution improved with acquisition time (Fig. 2.2b–f), or, equiv-
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alently, with the density of localized labels. The trade-off point between the local-
ization density and uncertainty limited regimes lay at R = 2πσ = 61 nm. Therefore,
the resolution values for Figs. 2.2b–e were labeling-density limited, and the trade-
off point was just crossed at the end of the data acquisition. Real-time monitor-
ing of the resolution buildup by real-time single-molecule fitting algorithms[62] pro-
vides a much needed stopping criterion for localization microscopy data acquisi-
tions. The FRC resolution concept is also sensitive to differences in localization un-
certainty (Fig. 2.2g–i). Maximum-likelihood estimation (R = 58±1 nm) is theoretically
optimal[15] and is slightly better than least-squares fitting (R = 60±1 nm) and supe-
rior to centroid fitting (R = 88±2 nm). All specified uncertainties are computed from
20 FRC resolution estimates obtained from different random assignments of localiza-
tions to half data sets (s.e.m.). Because the effect of the parameter Q on the resolution
for this data set was found to be negligible, it was not necessary to correct for it.

Sample drift is a common annoyance in optical nanoscopy, as motion has to be
limited to a few nanometers over typical acquisition times of many minutes. We an-
alyzed the drift in localization microscopy data of the actin cytoskeleton of a fixed
HeLa cell labeled with phalloidin coupled to Alexa Fluor 647 (Fig. 2.2j) without the
use of fiducial markers[27]. A drift of ∼ 70− 100 nm was found with this procedure
and corrected for. Computed resolution values before drift correction (Fig. 2.2k,l;
R = 79± 1 nm) were much worse than those after drift correction (Fig. 2.2m,n; R =
54±1 nm), which is in agreement with the apparent detail in the images (Fig. 2.2k–n).
For this data set also, the effect of Q was found to be negligible.

2.2.3. ESTIMATION OF THE NUMBER OF LOCALIZATIONS PER EMITTER

Multiple localizations per emitter due to, for example, repeated photoactivations lead
to spurious correlations between the two image halves, resulting in overoptimistic
resolution values. This is particularly problematic for cases involving large numbers
of localizations per emitter, low localization uncertainties and low labeling densities.

The FRC can be corrected for this effect by estimating the spurious correlation
parameter Q in Eq. 2.2. To that end, we divided the numerator of the FRC by the
weighted average of the function exp(−4π2σ2q2) over the distribution of localization
uncertainties. The parameter Q is proportional to the minimum of that curve, which
takes the form of a broad plateau if Q � 1 (section 2.4). To test this method, we ana-
lyzed a two-color image of tubulin labeled with both Alexa Fluor 647 and Alexa Fluor
750 ([63]; Fig. 2.3a–c). The resolution values for Alexa Fluor 647 and Alexa Fluor 750
without correction (25±1 nm and 34±1 nm, respectively) were much lower than the
resolution derived from the cross-channel, that is, when taking the two color images
as data halves for the FRC (118±2 nm). This difference was due to the multiple local-
izations per emitter, which affect the one-color FRC curves but not the cross-channel
curve. The FRC curves and attendant resolution values were much more similar after
correction. The remaining differences in the calculated resolution values reflected
the differences in labeling density (the density of localizations was 4.0×103 μm2 for
Alexa Fluor 647 and 1.3× 103 μm2 for Alexa Fluor 750) and localization uncertainty
(9.2 nm and 12 nm, respectively). We checked the data sets of Fig. 2.2a,j for spu-
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rious correlations and found Q = 0.28 and Q = 0.33, respectively, which led to cor-
rected resolution values equal to 62±2 nm and 66±1 nm, respectively. This means
that neglecting to correct for spurious correlations gave rise to an underestimation
of the resolution value by only several nanometers. These estimated values for Q are
smaller than the values for the data set of Fig. 2.3 primarily because Q scales with the
data acquisition time, which is much smaller in Fig. 2.2a,j than the 1.4×105 frames
in 39 min and 3.0×104 frames in 25 min for Alexa Fluor 647 and Alexa Fluor 750, re-
spectively (Fig. 2.3). Other reasons for the discrepancy of Q values may be found in
differences in photobleaching behavior and preprocessing for candidate selection of
single-emitter events (from false positives, for example). Finally, the density of local-
izations for Fig. 2.2 is close to 104 μm2, 1–2 orders of magnitude larger than the den-
sity in other data sets. In the limit of high labeling density, the effects of spurious cor-
relations are negligible compared to the intrinsic image correlations (sections 2.A.2
and 2.A.3). We point out that the correction method appears to be quite sensitive to
(the distribution of) the localization uncertainty, and to any residual effects of drift,
and must therefore be applied with care.

The estimation of the average number of localizations per emitter from the spu-
rious correlation parameter Q also makes it possible to count the actual number of
fluorescent labels that contribute to the overall image. Although such counting has
been demonstrated for irreversibly photoactivatable fluorophores[64, 65], only a few
studies have investigated the possibility of counting with reversibly photoswitchable
dyes[66, 67]. One approach is based on pair correlation functions[65, 66], but un-
like our method, it requires a model for the correlations in the spatial distribution
of the fluorescent labels. Neither do we require a calibration experiment, in contrast
to cluster kymography analysis, for example[67]. A potential complication for our
method is that deviations from Poisson statistics of emitter activations due to pho-
tobleaching may lead to overestimation and in some cases underestimation (Q < 1)
of the number of localizations per emitter (Appendix 2.A.2). The same caveat applies
to alternative approaches[66, 67]. Chapter 4 will discuss how these deviations from
Poisson statistics may be overcome. Calibration experiments on sparsely distributed
labeled antibodies on a glass surface indicated that Q values for the data (Fig. 2.3)
overestimated the true number of localizations per emitter by a factor of 1.5 for Alexa
Fluor 647 and 1.7 for Alexa Fluor 750, even though the Q parameter was estimated
much more accurately. Taking into account all factors leads to an estimated number
of localizations per molecule equal to 7 for Alexa Fluor 647 and 11 for Alexa Fluor 750,
which is in qualitative agreement with values reported earlier[68]. We found the la-
beling densities to be 6.0×104 μm2 (Alexa Fluor 647) and 1.2×102 μm2 (Alexa Fluor
750).
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Figure 2.2: The effect of localization density and data processing on resolution. (a) Localization microscopy
image of tubulin labeled with Alexa Fluor 647 in a HeLa cell (R = 58± 1 nm for the whole image, where
uncertainty reflects s.e.m. of 20 random repeats of FRC resolution calculation). Acquisition time was
T = 12 min within 1.4×104 frames, the localization uncertainty was σ= 9.7 nm after merging nearby local-
izations in subsequent frames (2.4) and the density of localizations was ρ = 6.0×102 per μm2. (b–e) Magni-
fied insets of two crossing filaments (upper boxed region in a) constructed from fewer time frames showing
poorer resolution (indicated by the distance between the blue arrows). (f) Resolution (R) buildup during
acquisition, with R = 2πσ plotted in blue, showing a transition from density-limited to precision-limited
resolution. (g–i) Reconstructions of lower boxed region in a by different localization algorithms showing
maximum-likelihood estimation (g; MLE, R = 58±1 nm), least squares fitting (h; LS, R = 60±1 nm) and
centroid fitting (i; CEN, R = 88±1 nm). (j) Localization microscopy image of the actin cytoskeleton (F-actin)
of a fixed HeLa cell labeled with phalloidin coupled to Alexa Fluor 647 after correction for sample drift of
∼ 70–100 nm during acquisition. The image was obtained from 5.0× 104 frames in 8 min (σ = 8.0 nm,
ρ = 8.2×103 μm−2, ρσ2 = 0.52, 2πσ = 50 nm). (k–n) Magnified insets of reconstructions before (k,l; left
boxed region in j) and after drift correction (m,n; right boxed region in j). Resolutions before and after drift
correction were R = 79±2 nm and R = 54±1 nm, respectively. The arrows indicate regions of sharper detail
after drift correction.
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Figure 2.3: Spurious correlations from a two-color localization microscopy image. (a) Overview image of a
tubulin network labeled with both Alexa Fluor 647 (magenta) and Alexa Fluor 750 (green). The inset shows
the quality of registration. (b) Uncorrected FRC curves for the magenta and green channels are higher than
that for the cross-channel because of spurious correlations from repeated photoactivations of individual
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FRC resolution calculation. (c) FRC curves corrected for spurious correlations all yield similar resolution
values (108±1 nm for Alexa Fluor 647, 133±2 nm for Alexa Fluor 750, 121±2 nm for the cross-channel).
(d–f) Scaled FRC numerator curves showing a plateau for intermediate spatial frequencies, which is used
to estimate the correction term and Q parameter. For this correction (2.4) we used a mean and width of
the distribution of localization uncertainties equal to 9.2 nm and 2.8 nm for Alexa Fluor 647 and 12 nm and
2.0 nm for Alexa Fluor 750.
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2.2.4. RESOLUTION IN 3D, ANISOTROPIC AND HETEROGENEOUS CON-
TENT

The FRC resolution concept can be generalized and extended in several ways. The
first way addresses image anisotropy, which may arise, for example, from line-like fea-
tures in the image or from differences between the axial and lateral resolving power
in 3D imaging[69]. Anisotropic image resolution can be described similarly to FRC by
correlating the two data halves in Fourier space over a line in 2D (Fourier line corre-
lation, FLC) or plane in 3D (Fourier plane correlation, FPC) perpendicular to spatial
frequency vectors�q . Spatial frequencies for which the FLC or FPC is above the thresh-
old in the image are resolved. The FPC for a 3D image of a tubulin network labeled
with Alexa Fluor 647 (Fig. 2.4) using the bifocal method[70] shows clear anisotropy
with filaments oriented mostly in the xy plane along the x direction. Therefore, the
FPC is highest in the y direction, orthogonal to the filaments, and worst in the z di-
rection. Another way in which the FRC resolution concept can be generalized targets
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Figure 2.4: Spurious correlations from a two-color localization microscopy image. (a) Representation of a
3D localization microscopy image of a tubulin network, with the axial coordinate in false color. (b) Orthog-
onal slices of the Fourier plane correlation (FPC). (c–e) Cross-sections of the FPC for this data set in the
qx qz plane (c), qy qz plane (d) and qx qy plane (e), with added threshold contours for F PC = 1/7 (black
lines). The FPC clearly shows the anisotropy of image content resulting from the line-like structure of the
filaments (the highest image resolution is perpendicular to the filaments) as well as from the anisotropy in
localization uncertainty (the lowest resolution is in the axial direction).

local variations in the density of the sample’s spatial structure. Local image resolution
can be obtained from resolution values of overlapping subimage patches.
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2.3. DISCUSSION
The FRC resolution concept can be naturally extended to STED, imaging with an ex-
tended diffraction limit such as structured illumination microscopy[71], and conven-
tional confocal and widefield imaging. It is possible not only to conceptually extend
the FRC method but also to measure the resolution directly from experimental data.
This stands in contrast to recently introduced unified resolution concepts[56], which
provide only a rigorous theoretical framework. The FRC resolution is most easily
computed from two images of the same scene that differ only in noise content. The
resolution then depends on the signal-to-noise ratio, spectral image content and (ef-
fective) optical transfer function. The width of the effective point-spread function
replaces the role of the localization uncertainty. In the limit of infinitely high signal-
to-noise ratio, the FRC resolution reduces to Abbe’s diffraction limit (for the conven-
tional fluorescence imaging modalities) or to the limit that has been proposed for
STED[72] (Appendix 2.A.5). For any extension of the FRC concept, systematic depen-
dencies between image halves due to, for example, fixed-pattern noise or common
alignment references must be prevented. Alignment references have caused partic-
ular problems for the application of the FRC concept in the field of single-particle
cryo-EM[73].

We envision that FRC resolution may be used for characterizing and optimizing
fluorescence labeling and data processing strategies in general. The FRC resolution
may be used to rate different approaches for faster super-resolution image buildup
that deal with high densities of simultaneously active emitters[35, 36, 38]. Access
to the number of molecules in a multimolecular complex, such as the spliceosome
or transcription machinery, without the need to make assumptions about their spa-
tial structure adds a new dimension to the application of optical nanoscopy with
reversibly switchable fluorescent dyes. Most notably, a resolution measure as pro-
posed here is indispensable for advancing the blooming field of optical nanoscopy
because it provides a quantitative guide for reliable interpretation of data, thus en-
abling sound biological conclusions.

2.4. MATERIALS AND METHODS

2.4.1. COMPUTATION OF FRC AND FRC RESOLUTION

COMPUTATION

The starting point for the computation of the FRC resolution is a set of estimated flu-
orophore locations along with the numbers of the frames from which they originate.
In order to calculate the resolution from a set of localizations

{
�ri
}
, the following steps

were followed for experimental data:

1. The set of N localizations was divided into two half sets N1 and N2 of size N /2
by splitting the timeseries into blocks of 500 frames and assigning an equal
number of blocks randomly to each half set. Alternatively, half sets could also
have been obtained by simply assigning localizations randomly to half sets or
by splitting the timeseries in two parts.
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2. The localizations from each half set were binned into images f1 and f2. For
the experimental data, the bin sizes (i.e. the superresolution pixel sizes) were
taken to be p times smaller than the camera pixel size, typically p = 10 (10 nm
backprojected pixel size). See Appendix 2.A.3 for a further discussion about the
choice of pixel size.

3. An intensity mask M (�r ) was applied to the binned images to taper the edges.
For this work, a Tukey window[74] was used which has the form M (�r ) = m (x)m

(
y
)

where:

m (x) =
{

sin2 (4πx/L) if x < L/8 and x > 7L/8

1 if x ≥ L/8 and x ≤ 7L/8
(2.5)

Here L denotes the size of the field of view.

4. Both binned images were Fourier transformed.

5. The FRC was obtained for spatial frequencies q = 1/L,2/L, . . . by calculating:

F RC
(
q
)=

∑
�q ∈ring

f̂1
(
�q
)

f̂2
(
�q
)∗

√ ∑
�q ∈ring

f̂1
(
�q
)2
√ ∑

�q ∈ring
f̂2
(
�q
)2

, (2.6)

where �q ∈ ring ≡ {
�q | q ≤ ∣∣�q∣∣< q +δq

}
where δq = 1/L = l is the pixel size in

Fourier space.

6. Since the FRC curve is often quite noisy, it was smoothed with a LOESS (locally
estimated scatterplot smoothing) method[75] with a second order polynomial
and tri-cube weight function around each q over a span Δq = 1/(20l ), where l
is the pixel size.

7. The first intersection qres between the resulting smoothed FRC curve and the
threshold was used to finally calculate the resolution R = 1/qres.

Please note, that the term
∑

�q ∈ring f̂1(�q) f̂2(�q)∗ is real, if f1(�r ) and f2(�r ) are real, be-

cause then it holds that f̂ (�q) = f̂ (−�q)∗ and in each term f (�q)+ f (−�q) the complex
part cancel out. Note that we assume square sized images f1(�r ) and f2(�r ) for ease
of computation. If the images are non-square the images must be extended through
zero padding or the ring averaging must be replaced by averaging over ellipses as the
pixel size in Fourier space depends on the linear size of the image. The uncertainty of
the FRC resolution value is found by evaluating the resolution for typically 20 different
random splittings of the entire dataset. The resulting mean and standard deviation
are the reported numbers.
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BRIGHT SPOTS

Localization microscopy images sometimes contain clusters of localizations with a
diameter of a few times the localization precision σ where the density of localiza-
tions is very high. These clusters may for example be due to anomalous fluorescent
molecules that are active during a large part of the total measurement time. However,
the localizations in these clusters can represent a substantial fraction of all localiza-
tions and are very close together. This close spatial proximity translates into large
correlations in the high spatial frequency components of the images that are not rep-
resentative of the other parts of the image. Therefore these clusters are considered to
be artifacts. Thus it is often necessary to suppress the influence of these clusters. One
approach that we adopted to this end was to mask out these clusters if they were not
on the main structures. Remaining bright spots were suppressed by the procedure
to merge nearby localizations in time, which is further outlined below, and by limit-
ing the number of binned localizations per superresolution pixel to a maximum of 5.
For the data of Fig. 2.2a all these approaches were adopted: most bright spots were
removed by segmenting the cell in the widefield image and deleting all localizations
outside the cell. For the data in Fig. 2.2j, no masking of regions outside the cell was
applied since the entire field of view is filled. For the other experimental datasets only
the merging of nearby localizations was used to reduce the influence of bright spots.

SPURIOUS CORRELATIONS

Multiple localizations of the same emitter result in substantial correlations at all spa-
tial frequencies. The result is that the numerator of the FRC contains a term(
2πqL

)
NQ exp

(−4π2q2σ2
)

(or the weighted average of this quantity over the distri-
bution of localization uncertainties) that belongs to the denominator of the FRC. Here
L is the size of the field of view. Correction for this effect then requires that this spu-
rious term is estimated and corrected for. The first step in estimating the spurious
correlations consisted of calculating the numerator of the FRC and dividing by the
number of pixels in the Fourier ring resulting in a function ν

(
q
)
:

ν
(
q
)= 1

2πqL

∑
�q ∈ring

f̂1
(
�q
)

f̂2
(
�q
)∗ . (2.7)

Subsequently, ν
(
q
)

was divided by H
(
q
)

sinc
(
πqL

)2, where H
(
q
)

is the factor in the
correlation averages related to the localization uncertainties which depends on the
mean σm and width Δσ of the distribution of localization uncertainties, which is
taken to be Gaussian (see Appendix 2.A.2):

H
(
q
)= 1√

1+8π2Δσ2q2
exp

(
− 4π2σ2

mq2

1+8π2Δσ2q2

)
. (2.8)

Also the low pass filtering effect of the localization uncertainty and finite pixel size
was removed through division. Therefore the result should have an expectation value
1
4 N

(
Q +N S

(
q
))

. Here S(q) is defined formally in Eq. (S.23), as the ring average of the
spectral signal content of the image. In order to estimate NQ/4 in a robust manner,
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the logarithm of
∣∣∣ν(q)/H

(
q
)

/sinc
(
πqL

)2
∣∣∣ was taken and smoothed and log(NQ/4)

was then estimated as the minimum of this smoothed logarithm. The smoothing was
accomplished through robust LOESS (locally estimated scatterplot smoothing)[75]
with a second order polynomial and tri-cube weight function around each q over a
span Δq = 1/(10l ).

The logarithm of
∣∣∣ν(q)/H

(
q
)

/sinc
(
πqL

)2
∣∣∣ typically looks like a function that ini-

tially decreases, then levels off to a constant plateau value and finally increases again.
The mean and width of the assumed Gaussian distribution of localization uncertain-
ties are adjusted to get a horizontal plateau of the largest possible width. This proce-
dure, though manually executed, can be used to estimate these parameters with an
accuracy of typically one to two nanometer. A plateau results when Q � N S

(
q
)
, so

that
∣∣∣ν(q)/H

(
q
)

/sinc
(
πqL

)2
∣∣∣ ≈ NQ/4. For large q , the noise on the absolute value

of ν
(
q
)
, which has an expected value of about N /

√
32πqL, is blown up by the factor

1/H
(
q
)

/sinc
(
πqL

)2. Therefore the aforementioned procedure will also yield a nar-
row plateau and thus a finite estimate for Q even in the case where Q 
 N S

(
q
)
, i.e.

when there is no plateau due to Q. In this case Q will be overestimated and therefore
there will be an overcorrection for spurious correlations.

FLC AND FPC COMPUTATION

The Fourier Line Correlation (FLC, n = 2 dimensions) or Fourier Plane Correlation
(FPC, n = 3 dimensions) are evaluated numerically as follows. The entire image is
again split into two sub-images f1 (�r ) and f2 (�r ), with Fourier transforms f̂1

(
�q
)

and
f̂2
(
�q
)
. The FLC and FPC are defined similar to the FRC or FSC as:

G12
(
�q
)

√
G11

(
�q
)

G22
(
�q
) , (2.9)

where the correlation averages are now defined as averages over lines (n = 2) or planes
(n = 3) perpendicular to �q :

G j l
(
�q
)= ∑

�q ′∈ line/plane

f̂ j
(
�q ′) f̂l

(
�q ′)∗ , j , l = {1,2}, (2.10)

where the summation over the line/plane means �q ′ ∈ {�q ′|(�q ′ ±�q)�q = 0}.
For n = 2 the implementation of a line average boils down to a Radon transform,

executed with the MATLAB (The Mathworks) function ‘radon’. For n = 3 the plane
average is done by first rotating f̂1

(
�q
)

and f̂2
(
�q
)

to a grid with �q oriented along the z-
axis, executed with the function ‘rotation3D’ of the DipImage toolbox (www.diplib.org),
and subsequent averaging over the x and y directions in the rotated frame. Averaging
over lines/planes with an orientation that is not aligned with one of the coordinate
axes is possible but computationally much more costly than the rotation procedure.
In order to save computational time the 3D Fourier transforms to get f̂1

(
�q
)

and f̂2
(
�q
)

are done on the full data cube of L×L×L super-resolution pixels, and all the rotations
are done on a cropped M ×M ×M cube where M is adjusted so that the FPC drops
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below the threshold close to the edge of the cropped data cube. For the dataset of
Fig. 2.4 we used L = 1024, M = 191 and 10 nm superresolution pixels.

Note that square/cubic image sizes are used for convenience. Only square/cubic
images have isotropic pixel sizes in Fourier space if the pixel sizes in real space are
isotropic. Further information on the computation of FRC and FRC resolution is pro-
vided in Appendix 2.A.1.

2.4.2. SIMULATIONS

GENERAL SETUP

Simulations were conducted in MATLAB with the use of the image processing toolbox
DipImage and several c-language and CUDA codes that were compiled to MATLAB
mex-files and run from within the MATLAB environment. Localization microscopy
data without multiple localizations per emitter (Q 
 1) were simulated as follows:
Poisson noise is added to an object image serving as the ‘ground truth’ (which has
pixel values larger than zero). The resulting value per pixel is taken to be the simu-
lated number of emitters in that pixel, and a number of random points equal to this
value is generated for each pixel. Each of these points is then displaced according to
a zero-mean normal distribution with variance V ar (Δx) = V ar

(
Δy

) = σ2, in order
to obtain the simulated data (i.e. localizations). Localization microscopy data with
multiple localizations per emitter were simulated in a similar way. The only differ-
ence is that each of the simulated emitter positions is used to generate a binomially
distributed number M j of offspring points (i.e. localizations) instead of one. All of
these offspring points are then displaced with a zero-mean normal distribution with
variance V ar (Δx) =V ar

(
Δy

)=σ2.

FIGURE 2.1B

The result in Fig. 2.1b was obtained by simulating measurements without multiple
localizations per emitter (i.e. Q 
 1) for ‘ground truth’ images of the form:

o (�r ) =
{
ρ (1−cos(2πx/d)) if |x| < d and

∣∣y∣∣< a
2

0 otherwise
(2.11)

This was done for d = 20,40, . . . ,100 nm and σ = 1,2, . . . ,30 nm, with a pixel size of
1 nm and nph = 500. For each d and σ, 400 simulations were carried out for a den-
sity of localizations ρ = 2× 104 μm−2. The value of ρ for which the resolution was
calculated was varied in these simulations by taking 2%,4%,. . .100% of the simulated
localizations at ρ = 2×104 μm−2. However, the resolution could not be obtained by
calculating where the FRC curve falls below the threshold because the FRC is not ap-
proximately monotonically decreasing for this object. Instead, contour lines in the
ρσ-plane were generated for each d where F RC (1/d) = 1/7. These contour lines are
equivalent to lines of constant resolution R = d .

FIGURE 2.1C

The result in Fig. 2.1c was obtained in a similar way as the result in Fig. 2.1b. How-
ever, in the simulations for Fig. 2.1b, ρ and σ are used as independent variables,
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whereas for Fig. 2.1c ρ is determined by both Ttotal and σ: σ = σ0/
√

φphTframe and
ρ = MsimTtotal/Tframe. Here σ0 = 90 nm, φph = 5.0 · 104 s−1 is the number of col-
lected photons per emitter per unit time and Msim = 0.2 μm−2 is the number of si-
multaneously active emitters[76]. Localized emitter localizations were simulated for
this figure 100 times for Ttotal = 30 minutes, Tframe = 10−3,10−2.8, . . . ,10−1 sec. and
d = 10,15, . . . ,60 nm. The FRC curve was calculated by taking the localizations up to
1, 5, 10, 20 and 30 minutes out of these sets of localizations of 30 minutes to vary
Ttotal. Lines of constant measurement time Ttotal were then calculated by taking the
contour lines in the σR-plane where F RC

(
q = 1/R

)= 1/7.

2.4.3. EXPERIMENTAL SETUP AND METHODS

FIG. 2.2A: IMAGING OF TUBULIN FILAMENTS

The first samples that were used for experimental validation of the results from the
simulations were tubulin structures in human epithelial cervical cancer (HeLa) cells.
These cells were plated on aminosilane coverslips in Labtex 8-well chambers (Nunc).
Cells were fixed for 10 minutes in 4% paraformaldehyde in cytoskeleton buffer (10
mM MES pH 6.1, 138 mM KCl, 2 mM EGTA, 0.32 M sucrose, and 3 mM MgCl2), and
afterwards put in 50 mM Ammonium Chloride in phosphate buffered saline (PBS) to
quench the fixation process. Subsequently, the cells were washed 3 times in PBS and
permeabilized (0.5%v/v Triton X-100) for 2 minutes with 0.2% fish skin gelatin added
to reduce non-specific binding. Cells were then washed 3 times in PBS again and
subsequently labeled with anti-beta tubulin antibodies (9F3 rabbit monoclonal) con-
jugated to Alexa Fluor 647 dye molecules (Cell Signaling Technology Inc.) in PBS at
a concentration of approximately 1.0 μg/ml in the presence of 0.2% fish skin gelatin,
after which they were washed thrice in PBS. Before imaging the cells, a sparse dilution
of 1:105 of fluorescent beads (0.1 μm TetraSpeck microspheres, Invitrogen Inc.) was
put in solution for 3 minutes to enable drift correction. Next, the cells were immersed
in an oxygen scavenging buffer solution consisting mainly of glucose oxidase and cat-
alyze in PBS in the presence of glucose and 80 mM mercapto-ethylamine (MEA) as a
reducing agent.
Imaging of the samples was carried out in an epi-fluorescence microscope setup. This
setup consisted of the following components: an inverted microscope (IX71, Olym-
pus), a 1.45 NA TIRF objective (U-APO 150x NA 1.45, Olympus), 635 nm diode laser
(Radius 635, Coherent Inc.), 561 nm diode-pumped solid state laser (Crystalaser) and
an EMCCD camera (iXon 897, Andor) with EM gain set to 25. The epi-fluorescence
filter setup consisted of a dichroic mirror (650 nm, Semrock) and an emission filter
(692/40, Semrock). The samples were mounted in a 3D piezo stage (Nano-LPS100,
Mad City Labs). Images were taken in a TIRF configuration at 20 frames per second
for 14,000 frames, giving a total measurement time of about 4 min. Drift correction
was accomplished by moving the field of view to a preselected fluorescent bead and
imaging it with the 561 nm laser after every 1,000 frames of acquisition with the 635
nm laser on. Position estimates of the beads were then used to move the sample back
to its initial position at the beginning of the experiment.
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FIG. 2.2J: IMAGING OF ACTIN FILAMENTS

HeLa cells were cultured on #1.5 coverslips. After 24 hours cells were washed briefly
with PBS and fixed in 2 steps: A first incubation step in 0.3% Glutaraldehyde + 0.25%
Triton in cytoskeleton buffer (10 mM MES pH 6.1, 150 mM NaCl, 5 mM EGTA, 5 mM
glucose, and 5 mM MgCl2) for 2 minutes at room temperature and a second step
with 0.5% glutaraldehyde in the same buffer for 10 minutes at room temperature.
The sample was treated with 0.1% NaBH4 in PBS (freshly prepared) for 7 minutes
at room temperature to reduce background fluorescence[77]. Samples were exten-
sively washed with PBS and blocked with 5% BSA for 30 minutes at room temperature.
Staining with phalloidin (Invitrogen Inc.) diluted in 5% BSA in PBS to a final concen-
tration of 0.25 M was made overnight at a temperature of 4oC. Cells were washed
using first 0.1% Tween-20 in PBS and then PBS.
Imaging of the samples was carried out on a Leica SR-GSD microscope. This setup
consisted of the following components: an inverted microscope (DMI6000 B, Leica
Microsystems GmbH), a 1.47 NA TIRF objective (HCX PL APO 100.0x NA1.47), a tube
lens providing an extra factor 1.6x in magnification, 532 nm fiber laser (2RU-VFL-
P-1000-532-B1R, MBP communications Inc.), 642 nm fiber laser (2RU-VFL-P-1000-
642-B1R, MBP communications Inc.) and an electron EMCCD camera (Ixon DU-897,
Andor) with an effective EM gain of 50.6. The epi-fluorescence filter cube (642HP-
T) for imaging with the 642 nm laser consisted of an excitation filter (zet405/642x),
a dichroic mirror (t405/642rpc) and emission filters (et710 100lp and ET650LP). Im-
ages were taken in TIRF mode at 100 frames per second for 50,000 time frames, giving
a total measurement time of about 8 min. The epi-fluorescence filter cube (532HP-
T) for imaging with the 532 nm laser consisted of an excitation filter (zet405/532x), a
dichroic mirror (t405/532rpc) and emission filters (et600/100m and ET550LP).

LOCALIZATION AND IMAGE RENDERING ALGORITHMS FIG. 2.2:
The recorded movies were processed by estimating the emitters’ positions, as well as
the Cramer-Rao-lower-Bounds (CRLBs) for those events, using a fast algorithm[15] on
a Quadro 5000 GPU (NVidia). The method for finding candidate regions of interest for
position estimation has been documented in the literature[36]. Since the fitting algo-
rithm is expected to perform close to the CRLB for each fit, these CRLBs were taken
as estimates of the localization precision of the fits. The resulting events were filtered
in order to reduce the number of false positive localizations. The parameters used
for filtering were the estimated number of signal photons nph of the event (at least
250), the estimated localization precision σ (at most 30 nm for Fig. 2.2a and 35 nm for
Fig. 2.2j), the standard deviation of the Gaussian PSF model σPSF (101 − 161 nm for
Fig. 2.2a and 100 − 150 nm for Fig. 2.2j) and the information divergence between the
PSF model and the data in the fitted regions of interest (at least -120).
Fig. 2.2 shows a comparison between the maximum likelihood estimation algorithm,
least squares estimation and a centroid estimation scheme for the same localization
events[78, 79]. This means that the centroids were estimated for the same regions of
interest (ROI) in the raw data that contributed to the localizations in the maximum
likelihood image. For this estimation, the background was subtracted from the ROI
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image, negative pixel values were set to zero, and subsequently the center of mass
was calculated. The background value is the average of 24 edge pixels: the 32 edge
pixels of the 9×9 pixel ROI excluding the 4 highest and 4 lowest values.
Least squares fitting was done by minimizing the mean square error between the ob-
served ROI images and a Gaussian spot (integrated over the finite pixels), charac-
terized by the emitter position, spot width, signal photon count and a constant back-
ground. The mean square error function was minimized using a standard Levenberg-
Marquardt optimization routine, programmed in MATLAB.

The filtered localizations in Fig. 2.2j were corrected for stage drift using frame-
by-frame cross-correlation algorithm[27]. Time series were split into M (typically
M = 20) equal parts. For each of these parts a superresolution image was made by
binning the localizations into bins, typically of size 10 nm. Subsequently the dis-
placement of each image with respect to the first image was calculated and from this
displacement the drift was calculated for the time points at the boundaries of each
time block. Finally the average drift per time block was computed from the two drift
estimates at the boundaries of those time blocks and these were integrated in order to
come to an estimate of the sample’s trajectory over time which was subtracted from
the estimated fluorophore locations.

The Nraw drift corrected localizations were condensed into N < Nraw localization
events by grouping spatially nearby localizations that are less than Δ image frames
apart into single localization events, where Δ = 5 for the data in Fig. 2.2. ‘Nearby’
is defined here as having a distance less than three times the sum of the localization
uncertainty of the two to-be merged localization events. For the single grouped local-
ization, the position was taken to be equal to the weighted average of the localizations
with the inverse of the variances as weights. Also, for each grouped localization the
sum of the photon counts and background photon counts of the single localizations
were stored, and the estimated variance of the grouped localization was taken to be
the harmonic mean of the single localizations’ variances. This procedure improves
the localization uncertainty, as the average number of photons per localization event
now scales with the fluorescent on-time τon rather than with the frame time Tframe.

FIG. 2.3: TWO COLOR IMAGING OF TUBULIN FILAMENTS

Green monkey kidney BS-C-1 cells were fixed with formaldehyde (3%) + glutaralde-
hyde (0.1%) at room temperature in PBS for 10 min. The fixing step was followed by
quenching with sodium borohydride (0.1%) in PBS for 7 min. The fixed sample was
permeabilized in blocking buffer (3% BSA, 0.5% Triton X-100 in PBS) for 10 minutes
and stained with primary antibodies for 30 min in blocking buffer. The sample was
rinsed with washing buffer (0.2% BSA, 0.1% Triton X-100 in PBS) three times for 10
minutes each. Secondary antibodies were added to the sample (diluted in blocking
buffer) and left for 30 minutes at room temperature. The sample was then washed
three times for 10 minutes each with washing buffer. The sample was post-fixed for
10 minutes at room temperature with formaldehyde (3%) + glutaraldehyde (0.1%),
and then stored in PBS at 4 degrees C before imaging. For two-color imaging of
microtubules labeled with both Alexa Fluor 647 and Alexa Fluor 750, the primary
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antibody was rat anti-tubulin (Abcam ab6160, 1:100 dilution). The secondary an-
tibody was donkey anti-rat (Jackson Immunoresearch, 712-005-153). Two separate
labeled samples of secondary antibodies were prepared: one labeled with both Cy2
and Alexa Fluor 647, and the other labeled with Cy2 and Alexa Fluor 750, as described
previously[63]. These two samples of secondary antibody were mixed in equal por-
tions and used for labeling at a concentration of ∼2.5 μg/ml.
The microscope setup used for localization imaging has been described in detail
previously[80]. Briefly, an inverted fluorescence microscope (Olympus IX71) was
equipped with a 100X oil immersion objective lens (Olympus, UPLANSAPO100XO)
and an EMCCD camera (Andor DU-897) which enabled efficient detection of sin-
gle fluorophores. A custom built focus lock system was used to maintain sample
focus during all measurements. For imaging, photo-switchable Alexa Fluor 647 or
Alexa Fluor 750 were excited using 642 nm light or 752 nm light, respectively. Laser
light at 642 nm was generated using a fiber laser (MBP Communications, 2RU-VFL-
P-1500-642), and laser light at 752 nm was generated using a Krypton gas laser (Co-
herent, In nova I300C). Additionally, the microscope was capable of laser illumina-
tion at 488 nm, generated using an Argon-Krypton laser (Coherent, Innova I-70), and
561 nm, generated using a solid state laser (Cobalt, Jive). For detection of Alexa Fluor 647
fluorescence, a dichroic mirror (Chroma, Z660DCXRU) was used to split excitation
light from emitted fluorescence, and a bandpass emission filter (Chroma, ET700/75)
was used to filter the emitted signal. Fluorescence detection of Alexa Fluor 750 also
used a dichroic mirror (Chroma, Q770DCXR) and a bandpass emission filter (Chroma,
HQ800/60). The data was reconstructed from 138,749 frames at 60 frames per sec-
ond, giving a total measurement time of about 39 min (Alexa Fluor 647), and from
30,087 frames at 20 frames per second, giving a total measurement time of about
25 min (Alexa Fluor 750).

Imaging of tubulin labeled with both Alexa Fluor 647 and Alexa Fluor 750 was car-
ried out in two sequential steps. First, a dataset was obtained for the Alexa Fluor 750
channel, followed by a second dataset for the Alexa Fluor 647 channel. Fiducial mark-
ers were used to register the two images, creating the final two-color image[80]. Flu-
orescent beads (Invitrogen Inc., F8810) were bound to the sample and used as fidu-
cial markers for drift correction and image registration. Prior to imaging, the sample
was incubated with a solution of beads (2% solids stock solution diluted 1:50,000 in
PBS), which were allowed to bind to the sample for 1 minute. The sample was then
rinsed and incubated with PBS + 50mM MgCl2, which caused the beads to stick to
the surface of the coverglass. The buffer was then exchanged to imaging buffer, and
the dataset was collected.

The imaging medium consisted of a pH-buffer with an enzymatic oxygen scav-
enging system consisting of glucose, glucose oxidase, and catalyze to reduce pho-
tobleaching, and a thiol to facilitate photoswitching. The specific composition of
the imaging buffer was Tris (50 mM pH 8.0), NaCl (10 mM), glucose (10% w/v), β-
mercaptoethanol (143 mM), and the enzymatic oxygen scavenging system (1% v/v).
The enzymatic oxygen scavenging system stock solution (GLOX) was prepared by
mixing glucose oxidase powder (10 mg, Sigma, G2133) with catalyze (50 μl, Sigma,
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C100), in PBS (200 μl), and centrifuging the mixture at 13,000 rpm for 1 minute. The
data analysis used for localization microscopy and the nanoscale image registration
procedure, based on the positions of the fiducial marks, has been described in detail
previously[63].

FIG. 2.4: 3D IMAGING OF TUBULIN FILAMENTS

Swiss 3T3 cells were plated in 8 well chambers (Lab-Tek II, Nunc) overnight in stan-
dard DMEM phenol free media. Samples were washed twice with room temperature
PBS and then fixed with 4% PFA in cytoskeleton buffer (10 mM MES, 138 mM KCl, 3
mM MgCl, 2 mM EGTA, 0.32 M sucrose) for 30 minutes at room temperature. The
sample was then incubated twice for 5 minutes in 10 mM Tris in PBS. The sample was
permeabilized with a 1% BSA 0.1% triton solution in PBS for 15 minutes. During the
permeabilization the primary antibodies were added to an aliquot of the previously
mentioned blocking/permeabilizing buffer at a concentration of 12μg/mL. After per-
meabilization, the sample was incubated with the primary antibody (Sigma T8328
anti-B tubulin) at 12 μg/mL in permeabilization buffer for 1 hour at room tempera-
ture on an orbital shaker operating at a slow speed. The sample was then washed 3
times for 5 minutes with 1% BSA 0.1% triton solution. Secondary antibody labeling
was performed using an anti-mouse antibody (Jackson Immuno 715-005-150 anti-
mouse IgG) labeled with an average of two Alexa Fluor 647 dyes per protein. Labeling
was performed at concentration of 15 μg/mL in permeabilization buffer for 30 min-
utes at room temperature on an orbital shaker. The sample was again washed 3 times
for 5 minutes in PBS and post fixed for 10 minutes in 4% PFA, and stored in 0.05%
PFA in PBS solution until the time of imaging. Before imaging, samples were washed
2 times with 10 mM Tris for 5 minutes.
3D imaging was performed using a dual focal plane setup. To define the imaging
area, an adjustable slit was placed at the primary image position of the microscope
(Olympus IX71), followed by a relay lens system ( f = 75 mm, f = 50 mm) to create
1.5 magnification to a secondary image position. From there, a lens ( f = 125 mm)
was used to collimate the beam and a 50/50 beam splitter used to split the beam into
two, equal length optical paths. In one pathway an additional lens ( f = 1 m) was used
to create the second focal plane, giving an approximately 330 nm defocused imaged
compared to the unaltered beam path. The two optical paths were redirected by mir-
rors (two in each path), so that they both pass through an imaging lens ( f = 125 mm)
and image side by side onto the same EMCCD camera (Andor iXon 860). An emission
filter (FF01-692/40-25, Semrock) was placed after the f = 125 mm collimation lens.
Excitation light was provided by a 637 nm diode laser (ThorLabs HL63133DG). Sam-
ples were imaged in an oxygen scavenging buffer consisting of 10% (w/v) glucose, 50
mM Tris, 10 mM NaCl, pH 8.5, glucose oxidase, catalyze, and 20 mM MEA. Excitation
at 637 nm (ThorLabs HL63133DG) was 1 kW/cm2. 50,000 images were acquired at a
100 Hz frame rate. A 405 nm laser (DL405-010-O, CrystaLaser) was used to recover
Alexa Fluor 647 from the dark state and the power was adjusted by hand to provide
control over the active state duty cycle.
Position estimations were performed by maximum likelihood estimation using a Pois-
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son noise model and PSF models calculated from phase retrieved pupil functions[81].
Pupil function were retrieved for each focal plane independently. The parameters
position x, y, z, intensity I and background values bg1,bg2 were estimated simulta-
neously using both focal planes where x, y positions in each plane were connected
by a pre-determined transform matrix, the z position was connected by a plane sep-
aration that was found in the phase retrieving process, and the intensity I was related
with a pre-measured ratio factor.
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2.A. APPENDIX

2.A.1. COMPUTATIONAL CONSIDERATIONS

DATA SPLITTING

For this work, half data sets were obtained by splitting the timeseries into blocks of
500 frames and assigning an equal number of blocks randomly to each half set. Al-
ternatively, localizations could also have been assigned randomly to the half sets or
the timeseries could have been split into two parts to obtain two sets with half the lo-
calizations. Both these methods have some issues though. Random assignment may
cause spurious correlations due to localizations of a single emitter activation event
being assigned to both half sets. This will also happen if the block size for splitting
the data is too short compared with the on-time τon of the emitters.

Splitting the timeseries in two parts may cause the half sets to be overly dissimilar
due to systematic differences between the halves of the timeseries. Next to drift, for
example, photobleaching may occur and then the localizations in the second half set
arise from fewer emitters or from more photostable emitters. On the other hand, pho-
tobleaching may also reduce spurious correlations due to reactivation of previously
active emitters in the second half set for this splitting method. We have nevertheless
chosen for splitting the experimental timeseries in smaller blocks because it only has
the problem of spurious correlations and because it is more accurate in the absence
thereof.

DISCRETIZATION

Two issues regarding the discrete computation of the FRC curve require some further
discussion here. The first issue is the masking of the binned images. This masking is
needed to suppress high frequency components in the Fourier transforms that may
result from the edges of the binned images. It is a common technique in signal pro-
cessing [82] to suppress edge artifacts resulting from the digital Fourier transforma-
tion which cannot be avoided otherwise. If an object which is imaged extends up to
the edge of an image and no mask is applied, then the finite extent of the image acts
as a rectangular window M (�r ) which is 1 inside the field of view and 0 outside. In the
frequency domain this has the effect on the images f̂

(
�q
)

that:

f̂
(
�q
)→ f̂

(
�q
)∗ M̂

(
�q
)= f̂

(
�q
)∗L2sinc

(
πqx L

)
sinc

(
πqy L

)
. (2.12)

Here sinc(x) ≡ sin(x)/x and ∗ is the convolution operation. The window extends the
highly correlating low spatial frequency components into the higher spatial frequen-
cies due to the finite width and oscillating tails of the sinc functions. Therefore it
increases the FRC at those frequencies and leads to a higher threshold frequency qres.
In order to reduce this effect, a mask M (�r ) with a smooth drop-off to 0 at the edges
has to be applied which is narrower in the frequency domain. Note that qres will then
still be slightly overestimated, proportional to the finite width of M̂

(
�q
)
.

A second issue worth mentioning here is the effect of the pixel size in the binned
images (i.e. the superresolution pixel size) on the FRC. As a first consideration, pixel
sizes larger than R/2 will result in aliasing at spatial frequencies around qres. This will
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appear as additional correlation in the FRC and may therefore artificially increase the
estimated resolution. Furthermore, the pixel binning also acts as a low pass filter. If
l is the pixel size then the effect is approximately as if the exponential in Eq. 2.2 is
replaced by:

exp
(−4π2σ2q2)→ sinc

(
πql

)2 exp
(−4π2σ2q2) . (2.13)

At q = qres this is the same as replacing σ in Eq. 2.2 by:

σ2 →σ2
eff =σ2 −

log
(
sinc

(
πql

)2
)

4π2q2 . (2.14)

If we assume that R ≈ 2πσ and we require that the loss in the resolution from having a
finite pixel size should not be greater than 10%, the this leads to the requirement that

ΔR = 2π (σeff −σ) < 0.1R = 0.1 ·2πσ, (2.15)

which implies that

4π2σ2
effq

2
res −4π2σ2q2

res =− log
(
sinc

(
πqresl

)2
)
< 0.21, (2.16)

from which it can be deduced that

l < 0.25

qres
= R

4
. (2.17)

The recommendation is therefore to keep the superresolution pixel size smaller than
R/4.

THRESHOLDS

In the field of single-particle electron microscopy, there is no general consensus on
what threshold θ

(
q
)

should be used for the FRC or FSC. Three main kinds of thresh-
olds are used: The first is fixed thresholds (e.g. θ

(
q
) = 1/7 ≈ 0.143 [59] or θ

(
q
) = 0.5

[57, 58]). The second kind is sigma factor curves (θ
(
q
)∝ 1/

√
qL [41, 83]), which re-

quire the FRC to be larger than some multiple of the standard deviation of the FRC
for white noise (for which 〈F RC〉 = 0), with L the field-of-view. The third kind is in-
formation level curves[84]. The curves were derived based on the RMS value of the
numerator and denominator of the FRC curve which leads to the following approxi-
mation:

F RC
(
q
)≈ SN R

(
q
)+ (2/SN R

(
q
)+1

)
/
√

qL

SN R
(
q
)+ (2/SN R

(
q
))

/
√

qL+1
. (2.18)

The requirement that the information content per pixel log2 (1+SN R) is larger than
a certain number of bits (e.g. 0.5 or 1) results in the desired curves. Note here that
for 0.5 bits of information per pixel and large L, the threshold rapidly converges to
θ
(
q
) = 0.1716, which is close to the 1/7 threshold. The sigma factor and informa-

tion level curves are conceptually conservative: they are chosen such that even if due
to noise F RC

(
q
)

is larger than its expected value, the image should still be resolved



2

36 2. MEASURING IMAGE RESOLUTION IN OPTICAL NANOSCOPY

if it is above the threshold. However, since the FRC gives a single resolution figure
for an entire image, it should be seen as giving the length scale at which details are
resolved on average rather than with certainty. Moreover, these curves do not take
into account that the noise on F RC

(
q
)

is heavily suppressed by means of smooth-
ing. Therefore these conservative thresholds are inappropriate. The most commonly
used fixed threshold is 0.5 [85]. However, recent work [73] suggests that this thresh-
old appears to give a realistic resolution estimate because the FSC in single-particle
electron microscopy is often overoptimistic due to spurious correlations. In the ab-
sence of spurious correlations the threshold of 1/7 ≈ 0.143 was found to be more
adequate. Ultimately though, the correct threshold is determined empirically: it is
the one that corresponds best with what intuitively appears to be resolved in actual
images. From the results in Fig. 2.5 we conclude that the 1/7 threshold is the most
appropriate choice of threshold.

a b

c d e f

Figure 2.5: Evaluation of resolution threshold criteria. Simulations without multiple localizations per
emitter (i.e. Q 
 1) (b) for a Siemens star shaped object (a), for a density of localizations ρ = 2×103 μm−2

and a localization uncertainty σ = 20 nm. A circle denotes where the arms of the star can just be distin-
guished according to the resolution computed with the most common threshold criteria: 1/7 threshold
(83± 3 nm, green), half-bit threshold (100± 5 nm, magenta), 1/2 threshold (130± 7 nm, yellow), and 3σ
threshold (186 ± 9 nm, cyan). White scalebar: 100 nm. For the correct threshold, the arms of the star
should be distinguishable outside the corresponding circle and not distinguishable inside the circle. (c-f)
show the regions of (b) within the different circles of the top right image. They are shown to illustrate the
separability of the star arms in the absence of the visual aid from the regions outside the circles. Clearly,
the 1/7 threshold is most appropriate in these images.



2.A. APPENDIX

2

37

2.A.2. AVERAGE AND VARIANCE OF FRC
IMAGING MODEL

The object to be imaged, the ‘ground truth’ o (�r ), is labeled with fluorescent probes.
The distribution of fluorescent labels is described by the labeling density function:

ψ (�r ) =
K∑

j=1
δ
(
�r −�r em

j

)
, (2.19)

and depends on the set of positions
{
�r em

j | j = 1, . . . ,K
}

of the K labels.

Label j is activated and localized M j times giving a total number of:

N =
K∑

j=1
M j , (2.20)

localizations, at the set of positions
{
�r j | j = 1, . . . , N

}
. It is assumed that localizations

of the same emitter in subsequent image frames have been grouped into a single lo-
calization event such that there is only a single position estimate of an emitter each
time it is activated. The probability density for localization of an emitter at position�r
is given by:

Ploc (�r ) = 1

K

∫
d nr ′ h

(
�r −�r ′)ψ(

�r ′) , (2.21)

where h (�r ) is the localization Probability Distribution Function (PDF), which is taken
to be a Gaussian:

h (�r ) = 1

2πσ2 exp
(−|�r |2 /2σ2) , (2.22)

where the width satisfiesσ2 =σ2
0/nph in the absence of background. Hereσ0 is a mea-

sure for the width of the PSF of the optical system and nph is the number of photons
per emitter.

The usual way to argue that the localization PDF must be a Gaussian with vari-
ance decreasing as 1/nph is that a measurement with only one photon gives the PSF
as localization PDF, with variance σ2

0, so by repeating the measurement nph times
the localization PDF must be a Gaussian with variance given by σ2

0/nph. However,
this argument does not apply because the actual PSF has infinite variance as the in-
tegral

∫
d xd y PSF (x, y)

(
x2 + y2

)
diverges (the PSF decays with the second power of

the coordinates times an oscillating function). A different argument is related to the
asymptotic normality of the MLE-estimation of location. In case the number of signal
photons is large the statistical error in the position estimation is small. Then we may
approximate the log-likelihood with a parabolic function centered on the optimum.
This means that the likelihood function (which is equal to the localization PDF) may
be approximated with a Gaussian. In case of a non-zero background the same conclu-
sion may be drawn, albeit with a different dependence of the localization uncertainty
than the simple 1/

�
nph relation, and provided that the number of signal photons is

sufficiently large. We have used numerical analysis and the Kolmogorov-Smirnov (KS)
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test for finding out the similarity between the actual localization PDF and the Gaus-
sian distribution. We have performed numerical tests using fully vectorial modeling
of the PSF of a freely rotating dipole emitter with zero aberrations and zero back-
ground, and 500 signal photons [14], and the MLE localization routine implemented
on GPU for speed [15]. The KS-statistic (maximum difference between the CDF and
the Gaussian CDF) is typically 5−10×10−3 for 5,000 localizations. The statistical sig-
nificance of this residual deviation is characterized by the p-value, which takes val-
ues between 40% and 100% for the 5,000 sample runs. The validity of the scaling of
the localization uncertainty with the inverse square root of the photon count follows
from the fact that the variance of the localization error for MLE-estimation follows
the CRLB for a Gaussian ground truth PSF over a wide range of photon counts [15]. It
is noted that the Gaussian nature of the localization PDF would imply an infinite spa-
tial frequency content (no cut-off, as opposed to the PSF). However, extrapolating to
spatial frequencies corresponding to the sub-nm scale is not physically meaningful,
but down to that length scale the Gaussian provides an excellent description of the
localization PDF, provided of course the emitter is not too dim.

AVERAGE FRC
Each localization event is assigned to one of two groups with probability 1/2, leading
to a split N = N1 + N2 that is governed by the binomial distribution. The M j local-
izations of emitter j are also split into two parts M j = M1 j + M2 j according to the
binomial distribution. The two sub-images are described by the image functions:

fm (�r ) =
Nm∑
j=1

δ
(
�r −�r j

)
, (2.23)

for m = 1,2. The statistical averages of the two sub-images are simply:

〈
fm (�r )

〉= N

2
Pl oc (�r ) , (2.24)

In the Fourier domain these relations are:

〈
f̂m

(
�q
)〉= N

2K
ĥ
(
�q
)
ψ̂
(
�q
)

, (2.25)

with:

ĥ
(
�q
)= exp

(
−4π2σ2 ∣∣�q∣∣2) . (2.26)

The definition for the FRC-curve in Eq. 2.1 was given by:

F RC
(
q
)=

∑
�q∈ring

f̂1
(
�q
)

f̂2
(
�q
)∗

√ ∑
�q∈ring

f̂1
(
�q
)2
√ ∑

�q∈ring
f̂2
(
�q
)2

.
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Consequently, to obtain the average FRC-curve we need to calculate the 2×2-correlation
matrix elements:

〈
f̂m

(
�q
)

f̂ ∗
n

(
�q
)〉=

〈
Nm∑
j=1

Nn∑
l=1

exp
(−2πi�q · (�r j −�rl

))〉
, (2.27)

for m,n = 1,2. In order to evaluate these averages we must consider pairs of local-
ization events r j and rl . The N 2

m pairs appearing in the diagonal correlation matrix
elements can be divided in three distinct groups. These are the Nm pairs of identi-
cal localization events, the

∑K
j=1 Mm, j

(
Mm, j −1

)
pairs of different localization events

of the same emitter, and the Nm (Nm −1)−∑K
j=1 Mm, j

(
Mm, j −1

)
pairs of different lo-

calization events of different emitters. A similar division can be made for the Nm Nn

pairs in the off-diagonal correlation matrix elements. The Nm Nn pairs are necessarily
all from different localization events, namely

∑K
j=1 Mm, j Mn, j from the same emitter

and Nm Nn −∑K
j=1 Mm, j Mn, j from different emitters. The probability density for two

localizations of the same emitter is:

Ploc,S (�r1,�r2) = 1

K

∫
d 2r h (�r1 −�r )h (�r2 −�r )ψ (�r ) , (2.28)

and the probability density for localizations from different emitters is:

Ploc,D (�r1,�r2) = 1

K 2

∫
d 2r d 2r ′ h (�r1 −�r )h (�r2 −�r )ψ (�r )ψ

(
�r ′) , (2.29)

The Fourier transforms of these probability distributions are needed further on, and
are given by:

P̂loc,S
(
�q1,�q2

) =
∫

d 2r1d 2r2 Pl oc,S (�r1,�r2)exp
(−2πi�q · (�r1 −�r2)

)
= 1

K
ĥ
(
�q1
)

ĥ
(
�q2
)∗

ψ̂
(
�q1 −�q2

)
, (2.30)

P̂loc,D
(
�q1,�q2

) =
∫

d 2r1d 2r2 Pl oc,D (�r1,�r2)exp
(−2πi�q · (�r1 −�r2)

)
= 1

K 2 ĥ
(
�q1
)

ĥ
(
�q2
)∗

ψ̂
(
�q1
)
ψ̂
(
�q2
)∗ . (2.31)

Combining all these ingredients gives:

〈∣∣ f̂m
(
�q
)∣∣2〉 = 〈Nm〉+

〈
K∑

j=1
Mm, j

(
Mm, j −1

)〉
P̂loc,S

(
�q ,�q

)

+
〈

Nm (Nm −1)−
K∑

j=1
Mm, j

(
Mm, j −1

)〉
P̂loc,D

(
�q ,�q

)
, (2.32)

〈
f̂m

(
�q
)

f̂ ∗
n

(
�q
)〉 =

〈
K∑

j=1
Mm, j Mn, j

〉
P̂loc,S

(
�q ,�q

)

+
〈

Nm Nn −
K∑

j=1
Mm, j Mn, j

〉
P̂loc,D

(
�q ,�q

)
. (2.33)
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Evaluating the averages over the binomial distribution of the localizations over the
two sub-images gives:

〈
f̂m

(
�q
)

f̂ ∗
n

(
�q
)〉 = N

2
δmn + 1

4

〈
K∑

j=1
M j

(
M j −1

)〉
P̂loc,S

(
�q ,�q

)

+1

4

[
N (N −1)−

〈
K∑

j=1
M j

(
M j −1

)〉]
P̂loc,D

(
�q ,�q

)
. (2.34)

In case each emitter is localized only once it holds that:

K∑
j=1

M j
(
M j −1

)= 0, (2.35)

and as a result this term drops from the correlation averages. When emitters can
be localized more than once this term will be non-zero. This term represents the
spurious correlations between the two image halves, since having localizations from
the same emitters in both halves violates the assumption that they are independent.

In order to find an expression for the ensemble average of M j
(
M j −1

)
a statistical

model for on-off switching is needed. It appears that the number of activation cycles
M j for each emitter j is a Poisson distributed variable in case the on-off switching
statistics is described by a first order process and provided the ratio of the transition
rates between the on and off-states is very different from one. This can be proven
in the framework of the so-called asymmetric Random Telegraph Signal (RTS) model
[86]. Also in a STORM acquisition where activator-reporter dye pairs are switched
on with the same probability over many switching cycles, M j would be Poisson dis-
tributed. In practice, the switching kinetics are much more subtle and the approxi-
mation as a Poisson process is merely a working assumption. Suppose now that there
is a reservoir of Kr emitters and the average number of activation cycles is given by Q.
Then a total of K = (

1−exp(−Q)
)

Kr emitters is localized at least once and a total of
N =QKr localizations is generated. The average number of localizations per emitter
for the group of emitters that has been localized at least once is:

Qloc =
N

K
= Q

1−exp(−Q)
. (2.36)

Clearly, if the Poisson-rate Q goes to zero then the average number of localizations
per emitter (restricted to the group of emitters that has been localized at least once)
goes to one. It now follows that:〈

K∑
j=1

M j
(
M j −1

)〉= KrQ
2 = NQ. (2.37)

For a more general distribution of M j , this is modified to:〈
K∑

j=1
M j

(
M j −1

)〉= N

(〈
M j

〉+ V ar (M j )〈
M j

〉 −1

)
(2.38)



2.A. APPENDIX

2

41

Consequently, M j may be overestimated or underestimated if V ar (M j ) �= 〈
M j

〉
. For

example, if almost all emitters have been localized and the dominant cause of vari-
ation of M j is photobleaching, then M j becomes geometrically distributed which
implies that Q ≈ 2

〈
M j

〉− 2. This means that
〈

M j
〉

would be underestimated for〈
M j

〉< 2. For
〈

M j
〉> 2,

〈
M j

〉
is overestimated up to 100%. In general, photobleach-

ing will lead to a distribution of M j that is in between the Poisson distribution and
the geometrical distribution and will therefore also lead to an overestimation of up to
100%.

We may now further develop the expressions for the correlation averages using
that N � 1 and K � 1 and filling in the expressions for the localization pair distribu-
tion functions:

〈
f̂m

(
�q
)

f̂ ∗
n

(
�q
)〉= N

2
δmn + N

4

[
Q + N

K 2

∣∣ψ̂(
�q
)∣∣2]∣∣ĥ (�q)∣∣2 . (2.39)

These statistical averages must next be integrated over Fourier space with the Fourier
ring weight function:∫

d 2q ′ D
(∣∣�q ′∣∣−q

)〈
f̂m

(
�q ′) f̂ ∗

n

(
�q ′)〉= N

2
δmn + N

4

[
Q +N S

(
q
)]

exp
(−4π2σ2q2) ,

(2.40)
with:

S
(
q
)= 1

K 2

∫
d 2q ′ D

(∣∣�q ′∣∣−q
)∣∣ψ̂(

�q ′)∣∣2 , (2.41)

and where the isotropy and explicit form of the Gaussian localization PDF is used.
The Fourier ring weight function may be expressed as:

D
(∣∣�q ′∣∣−q

)= δ
(∣∣�q ′∣∣−q

)
2πq

, (2.42)

Recalling the definition of the FRC in this notation as:

〈F RC〉 =
∫

d 2q ′ D
(∣∣�q ′∣∣−q

)〈
f̂1
(
�q ′) f̂ ∗

2

(
�q ′)〉(∫

d 2q ′ D
(∣∣�q ′∣∣−q

)〈
f̂1
(
�q ′) f̂ ∗

1

(
�q ′)〉)1/2 (∫

d 2q ′ D
(∣∣�q ′∣∣−q

)〈
f̂2
(
�q ′) f̂ ∗

2

(
�q ′)〉)1/2

(2.43)
This results in the final expression for the statistical average of the FRC:

〈F RC〉 =
(
Q +N S

(
q
))

exp
(−4π2σ2q2

)
2+ (Q +N S

(
q
))

exp
(−4π2σ2q2

) , (2.44)

The ratio of the terms in the FRC nominator representing the genuine intrinsic image
correlations and the spurious correlations at the resolution threshold is N S

(
qres

)
/Q =

K S
(
qres

)
. It follows that the spurious correlations may be neglected provided the

number of emitters K is sufficiently high and the sample has spectral signal content at
qres. Solving the resolution threshold 〈F RC〉 = 1/7 then gives an apparent resolution:

R = 2πσ√
log(3Q)

. (2.45)
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Clearly, the apparent resolution is simply a linear factor times the localization uncer-
tainty.

A possible way to correct for the spurious correlations and come to a more re-
alistic image resolution follows from a hypothetical division of the entire group of
localization events such that all localizations of an emitter appear in either the first or
the second data halve, but not mixed. Such a procedure results in a modified average
FRC: 〈

F RC ′〉= N S
(
q
)

exp
(−4π2σ2q2

)
2+ (2Q +N S

(
q
))

exp
(−4π2σ2q2

) . (2.46)

This modified FRC can also be produced if the average residual correlation
∼ Q exp

(−4π2σ2q2
)

is estimated from the data and then subtracted from the FRC
nominator and added to the FRC denominator. This procedure for estimating the
spurious correlation parameter Q is outlined in section 2.4. Note that an effect of
the parameter Q is still present in Eq. 2.46, but now represents the trade-off between
the number of localizations per emitter and the total number of localized emitters at
constant total number of localization events. In this trade-off it is more favorable to
localize more emitters a fewer number of times.

The current model may be expanded by taking a distribution of localization un-
certainties into account instead of a unimodal value. The correlation averages
〈 f̂m

(
�q
)

f̂ ∗
n

(
�q
)〉 for a single value of the localization uncertainty must then be con-

volved with the distribution function of the localization uncertainty. Taking that dis-
tribution to be Gaussian with mean σm and width Δσ we must replace the localiza-
tion PDF factor H(q) = exp

(−4π2σ2q2
)

by:

H
(
q
) =

∫
dσ

1�
2πΔσ

exp

(
− (σ−σm)2

2Δσ2

)
exp

(−4π2σ2q2)

= 1√
1+8π2Δσ2q2

exp

(
− 4π2σ2

mq2

1+8π2Δσ2q2

)
, (2.47)

in all expressions for the expectation value of the FRC.

VARIANCE OF THE FRC
The variance of the FRC curve can be computed by using the following formula for the

variance of the correlation coefficient C = �v1 · �v2/
√
|�v1|2 |�v2|2 between two random

vectors �v1 and �v2 with the same mean [87]:

V ar (C ) =
(
2α2 +1

)(
α2 +1

)2 −α4
(
2α2 +3

)
n
(
α2 +1

)4 . (2.48)

Here n is the dimension of the vectors and α2 is defined as:

α2 ≡
∑n

i=1 〈v1,i 〉2∑n
i=1 V ar

(
v1,i

) =
∑n

i=1 〈v2,i 〉2∑n
i=1 V ar

(
v2,i

) . (2.49)
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This equation holds under the conditions that n is large and that the components
of �v1 and �v2 are independent. If �v1 and �v2 are associated with the real and imagi-
nary parts of the frequency components f̂1

(
�q
)

and f̂2
(
�q
)

in the Fourier rings, then it
appears that:

〈F RC〉 =
〈 ∑

�q∈ring
f̂1
(
�q
)

f̂2
(
�q
)∗

√ ∑
�q∈ring

f̂1
(
�q
)2
√ ∑

�q∈ring
f̂2
(
�q
)2

〉
≈

∑
�q∈ring

∣∣〈 f̂1
(
�q
)〉∣∣2

∑
�q∈ring

∣∣ f̂1
(
�q
)∣∣2

= α2

1+α2 , (2.50)

so that:

α2 = 〈F RC〉
1−〈F RC〉 . (2.51)

The quantity α2 can be interpreted here as the signal-to-noise ratio of a half data
image in the Fourier ring, (i.e. half the SNR of the total dataset). Substituting this into
Eq. 2.48 then gives:

V ar (F RC ) = 1

n
(1−〈F RC〉)2 (1+2〈F RC〉−〈F RC〉2) , (2.52)

where n is the number of pixels in a Fourier ring. Since the width of a Fourier pixel
is 1/L, where L is the linear size of the field of view, n = 2πqL and therefore one gets
finally:

V ar (F RC ) = 1

2πqL
(1−〈F RC〉)2 (1+2〈F RC〉−〈F RC〉2) . (2.53)

The careful reader may notice that this equation suggests that increasing L through
zero padding of the superresolution images would decrease the variance. However,
because neighboring Fourier pixels are actually slightly correlated, increasing L through
zero padding will increase the sampling in Fourier space but also leads to stronger
correlations among neighboring pixels. Therefore, the effective number of indepen-
dent pixels in a Fourier ring remains the same and the variance is not affected by zero
padding.

2.A.3. ANALYTICAL EXPRESSIONS FOR PERIODIC OBJECT MODELS
In this section we will work out explicit expressions for the FRC resolution for periodic
structures (gratings) with different cross-sections. In all cases we assume that the Q-
parameter is small, so Q 
 1. Under this condition, setting the right-hand side of
Eq. 2.44 equal to the 1/7 threshold criterion leads to the following equality:

N S
(
qres

)
exp

(−4π2σ2q2
res

)= 1

3
. (2.54)

This expression now needs to be solved to obtain an explicit expression for the FRC
resolution.
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GRATING WITH A COSINE CROSS-SECTION

Consider a periodic structure consisting of M ≥ 1 periods with period d and length L,
and with an average density of localized labels ρ. The total number of localized labels
is then K = MρdL. The labeling density function is given by:

ψ (�r ) =
{
ρ [1−cos(2πx/d)] if |x| < Md/2 and

∣∣y∣∣< L/2

0 otherwise
(2.55)

Fourier transforming results in:

ψ̂
(
�q
) = K

[
sinc

(
πM qx d

)+ 1

2
sinc

(
πMd

(
qx −1/d

))
+1

2
sinc

(
πMd

(
qx +1/d

))]
sinc

(
πqy L

)
. (2.56)

If L is sufficiently large, this gives the following expression for S
(
q
)

at q = 1/d :

S
(
q
)= 1

2πK 2

∫2π

0
dϕk

∣∣ψ̂em
(
�q
)∣∣2 ≈ d

πK 2

∫+∞

−∞
d qy

∣∣ψ̂em
(
�q
)∣∣2, (2.57)

where the last integral is evaluated at qx = q = 1/d , and so:

S
(
q
)≈ d

4π

∫+∞

−∞
d qy sinc2 (πqy L

)= d

4πL
. (2.58)

The resolution R = 1/qres follows from solving the threshold criterion Eq. 2.54. If the
grating can just be resolved, then R = d . It follows that an expression may be derived
for the required density of localized labels ρ for achieving a resolution R = d , given
the localization uncertainty σ:

ρ = 4π

3MR2 exp
(
4π2σ2/R2) . (2.59)

The dependence on the ratio σ/R is rather steep. For example, when σ/R = 1 the
exponential factor is already on the order 1017! Realistic minimum labeling densities
arise when σ/R is less than approximately 1/4. So, even though the resolution is not
determined solely by the localization uncertainty, the necessity of having practically
achievable labeling densities does imply that the minimum resolution is of the order
of the localization uncertainty. Eq. 2.59 can also be solved for the resolution R as a
function of the density of localized labels and the localization uncertainty:

R = 2πσ√
W

(
3πMρσ2

) , (2.60)

where W (·) is the Lambert W-function [88], which is the inverse of y = x exp(x). A use-
ful analytical approximation for the Lambert W-function is W (y) ≈ ln

(
2y
)−ln

(
ln
(
1+2y

))
[60].
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It appears that an increase in M leads to a better resolution. This implies that
adding grating lines to the global image improves the ability to distinguish neigh-
boring lines. The underlying reason for this is that a grating is a perfectly periodic
structure. Therefore, if M increases then the contributions of the different lines add
up in Fourier space and the SNR increases.

GRATING WITH A SQUARE CROSS-SECTION

In a similar way as above, it is also possible to derive the resolution for a grating object
consisting of M ≥ 1 lines of width a, length L and separation d > a. The density of
localised labels is ρ and the total number of labels is K = MρaL. For such an object,
the Fourier transform of the labeling density function ψ (�r ) reads:

ψ̂
(
�q
)= ρaL

sin
(
πM qx d

)
sin

(
πqx d

) sinc
(
πqx a

)
sinc

(
πqy L

)
. (2.61)

The ring average of the spectral density is found for sufficiently large line length L as:

S
(
q
)= 1

2πK 2

∫2π

0
dψ

∣∣ψ̂(
�q
)∣∣2 ≈ 1

πqK 2

∫+∞

−∞
d qy

∣∣ψ̂(
�q
)∣∣2, (2.62)

where the last integral is evaluated at qx = q , and so:

S
(
q
) ≈ sinc2

(
πqa

)
πq

[
sin

(
πM qd

)
M sin

(
πqd

)]2∫+∞

−∞
d qy sinc2 (πqy L

)

= sinc2
(
πqa

)
πqL

[
sin

(
πM qd

)
M sin

(
πqd

)]2

. (2.63)

The equation for solving the resolution is:

3Mρa

πqres
sinc2 (πqresa

)[ sin
(
πM qresd

)
M sin

(
πqresd

)]2

exp
(−4π2σ2q2

res

)= 1. (2.64)

The grating can just be resolved (qres = 1/d) if the density of localized labels satisfies:

ρ = π

3M aR

exp
(
4π2σ2/R2

)
sinc2 (πa/R)

. (2.65)

In the limit of thin lines (a 
 d) this may be inverted to give a resolution:

R = 2πσ

√
2

W
(
72M 2ρ2

linσ
2
) , (2.66)

where ρl i n = ρa. For a single line (M = 1) the equation for solving the resolution
simplifies to:

3ρa

πqres
sinc2 (πqresa

)
exp

(−4π2σ2q2
res

)= 1. (2.67)
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In the limit of large density of localized labels (ρa2 � 1) and small localization uncer-
tainty (σ
 a) this equation may be solved to give R = a, i.e. the resolution is equal to
the line width. This may seem counter-intuitive, but it reflects the fact that no details
smaller than the line width are present in the object itself. The predicted resolution
from M grating lines might be tested if super-resolution data is obtained for a sample
with a very sophisticatedly engineered ground truth [89].

EFFECT OF SPURIOUS CORRELATIONS

The preceding analysis provides some quantitative insights into the relevance of the
spurious correlations between the two sub-images for techniques with multiple lo-
calizations per emitter. The equation for the resolution for a grating with the cosine
cross-section for a non-zero Q-parameter is:

[
Q + MρlocR2

4π

]
= exp

(
4π2σ2/R2) , (2.68)

where ρloc = ρQ/
(
1−exp(−Q)

)
is the density of localizations, proportional to the la-

beling density and the average number of localizations per emitter (Appendix 2.A.2).
The effects of spurious correlations on resolution may be neglected provided the ratio
of the second and first term on the l.h.s. of Eq. 2.68 is sufficiently large. This happens
when ρloc satisfies:

ρloc �
πQ

M

(
2

R

)2

. (2.69)

This regime is typically found when the resolution is much worse than the Nyquist
resolution following from the density of localized labels ρ, i.e. R � 2/

�
ρ. Eq. 2.69

can be used as a self-consistency test for the need to correct for spurious correlations.
The resolution found without Q-correction and the estimated value of Q can be con-
fronted given the experimentally found density of localizations. If the inequality is
satisfied for, say M = 2, then there is probably no need to recompute the resolution
with Q-correction, as the magnitude of the correction does not outweigh the added
uncertainties of the additional processing steps.

RELATION TO NYQUIST SAMPLING

Consider Eq. 2.60 in the limit where σ→ 0. The resolution becomes:

R =
√

4π

3Mρ
, (2.70)

which is nearly equal to the Nyquist resolution RNyquist = 2/
�
ρ:

R =
√

π

3M
RNyquist ≈ RNyquist for M = 1, (2.71)

The FRC resolution is not exactly equal to the Nyquist resolution in this limit, be-
cause it is conceptually different: it describes for which spatial frequency q there is
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a sufficiently high signal-to-noise ratio rather than an absence of aliasing due to un-
dersampling. However, the Nyquist sampling theorem does not strictly apply since
localizations do not constitute samples of a bandwidth limited function. Therefore it
is not surprising that these two concepts give slightly different values for the resolu-
tion.

2.A.4. LABELING-LOCALIZATION TRADE-OFF

TRADE-OFF FOR A PERIODIC OBJECT MODEL

The expression in Eq. 2.60 can be used to analyze the impact of improvement in the
density of localized labels ρ and the localization uncertainty σ on the resolution.
Clearly obtaining infinitely many localizations yields R = 0, whereas perfect local-
ization at σ = 0 was shown in the preceding section to result in a finite resolution
value. This is the consequence of the imaging model, in which structures can have
infinitely many labels attached to them. Localizing all these labels yields a blurry im-
age without counting noise due to finite localization densities, which implies that the
signal-to-noise ratio is infinite for all spatial frequencies.

Alternatively one could ask whether marginal improvements inρ orσ yield greater
improvements in resolution. The trade-off point in which both improvements are
equivalent is found by requiring that the relative change in resolution for a given rela-
tive change in Nyquist area ∼ 1/ρ is equal to a relative change in resolution for a given
relative change in localization uncertainty area σ2, i.e. if we change either quantity
with a given percentage, the resulting percentile change in resolution must be the
same:

σ2

R

∂R

∂σ2 =−ρ

R

∂R

∂ρ
. (2.72)

Evaluating the derivatives results in:

σ2

R

∂R

∂σ2 = W
(
3πMρσ2

)
2
(
1+W

(
3πMρσ2

)) , (2.73)

ρ

R

∂R

∂ρ
= − 1

2
(
1+W

(
3πMρσ2

)) . (2.74)

It follows that:
W

(
3πMρσ2)= 1, (2.75)

implying that the resolution must be:

R = 2πσ, (2.76)

and that the optimum trade-off occurs for:

ρσ2 = e

3πM
. (2.77)

For a two-line object (M = 2) this corresponds to ρσ2 = e/6π ≈ 0.144. For M parallel
lines we obtain a lower value, from which it may be inferred that for any intricate
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but irregular object structure the trade-off occurs for a value smaller than 0.144. For
that reason the value sρσ2 = e/6π≈ 0.144 should be considered in practice only as a
rule-of-thumb.

TRADE-OFF IN GENERAL

The preceding analysis of marginal improvements in ρ and σ can be generalized by
not assuming a specific object model. For this analysis it is useful to revisit Eq. 2.46.
At q = qres, the expected FRC curve drops below the threshold, which means that at
this point qres = 1/R is an increasing function of:

A
(
qres

)= N exp
(−4π2σ2q2

res

)
. (2.78)

Therefore R has its minimum whenever A
(
q
)

has its maximum. Consider now the
relative changes in A due to changes in N and nph:

N

A

d A

d N
= 1, (2.79)

nph

A

d A

dnph
= −4π2nphq2

res
dσ2

dnph
. (2.80)

If σ2 ∝ 1/nph then these expressions are equal if 2πσqres = 1 so that R = 2πσ. This is
therefore the point where obtaining 1% more localizations has about the same effect
on A (and R) as obtaining 1% higher photon counts per localization. Hence R = 2πσ
marks the boundary between the regime R > 2πσ where the resolution is limited by
the number of localizations (labeling density) and the regime R < 2πσ where the res-
olution is limited by localization uncertainty.

If a limited amount of time is available, then R = 2πσ also marks the value of σ for
which R is optimal. The localization uncertainty can be improved by increasing nph.
However, when this is accomplished by increasing the on-time of the fluorophores,
this also reduces the total number of labels that can be localized in a given acquisi-
tion time. This is implied by the requirement of having a sufficiently large distance
between individual activated emitters at any point in time [61]. The decrease of σ
thus has a positive effect on resolution, whereas the decrease of N has a negative
effect on resolution, implying that an optimum can be found by balancing the two
effects. This trade-off was already identified in the first publication on localization
microscopy [2], where it was noted that ‘Including fewer, but brighter, molecules re-
sults in higher localization and crisper images, but at a reduced molecular density
giving less complete information about the spatial distribution of the target protein’.

This argument can be made quantitative by setting N ∝ τ−1
on and nph ∝ τon and

subsequently considering the following equation:

τon

A

d A

dτon
= τon

A

d A

dnph

dnph

dτon
+ τon

A

d A

d N

d N

dτon

= nph

A

d A

dnph
− N

A

d A

d N
. (2.81)
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This derivative is equal to zero when R = 2πσ, which means that this expression
marks the point where the best resolution has been obtained for the given amount
of time available. Since the resolution is assumed to always increase as more time
becomes available, this also implies that R = 2πσ marks when the resolution R was
obtained in the shortest possible amount of time.

The tuning of the switching kinetics of emitters outlined above is typically not a
very important issue yet for localization microscopy experiments. Often the choice
of fluorescent labels is constrained by the biological context, and under these con-
straints it is possible that some labels provide more photons in a shorter on-time than
other labels. Moreover, imaging does not always take place at the optimal density of
simultaneously active emitters, which means that increasing the on-time does not
require that fewer emitters are simultaneously active. However, with the rapid de-
velopments of new fluorescent dyes and proteins, this trade-off described above will
become more important in the future. Tuning may then be done by the choice of
the fluorescent label or buffer composition. Tuning of emitter switching kinetics in-
dependent of brightness was demonstrated for example for oxazine dyes using the
concentrations of the reducing and oxidizing agents in the imaging buffer [90]. Alter-
natively, if PALM imaging is combined with a triplet state relaxation scheme [91], the
bleaching rate could be decoupled from the excitation intensity, giving the bleaching
rate as tuning parameter. Then, in a fixed total time fewer but brighter single emit-
ter events yield more accurate localizations but at the expense of a lower recorded
emitter density [2].

MINIMAL TIME TO RESOLUTION

The rule R = 2πσ indicates for which σ the resolution R is obtained as quickly as pos-
sible. This is the conjugate of the result of Fig. 2.1c where it is shown that R = 2πσ
indicates when the highest possible resolution is obtained for a fixed total measure-
ment time. To support this insight, the simulations results from Fig. 2.1c were taken,
but this time lines of constant resolution R were calculated by taking the contour
lines in the σTtotal-plane where F RC

(
q = 1/R

) = 1/7. The resulting graph is shown
in Fig. 2.6. As in Fig. 2.1c, the lines from the simulated data show good agreement
with the theoretically predicted lines. Moreover, Fig. 2.6 shows that the red curve
corresponding to R = 2πσ does indeed seem to go through the points where the mea-
surement time Ttotal is minimal for each resolution in the simulations.

2.A.5. FRC RESOLUTION FOR OTHER IMAGING MODALITIES
The FRC resolution concept can be applied to imaging modalities for which the im-
age formation theory may be centered around the conventional concept of the Point
Spread Function (PSF). This applies to both diffraction-limited modalities such as
confocal or widefield fluorescence imaging, as well as to diffraction-unlimited modal-
ities such as STED. There the resolving power of the imaging system is given by a
modification of Abbe’s formula[72]

d = λ

2N A
�

1+ ISTED/I0
, (2.82)
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Figure 2.6: Solid lines indicate constant resolution as a function of the total measurement time Ttotal and
localization precision σ as predicted by Eq. 2.3 for two lines. The circles represent simulations averaged
over 100 realizations. The red separation line R = 2πσ goes through the shortest measurement time for
each resolution in theoretical and simulated data. Left of the separation not enough emitters are collected,
whereas to the right the emitters have not been localized precisely enough.

where the crucial parameter is now the ratio of the intensity of the STED beam ISTED

to the saturation intensity I0. This measure characterizes optics, properties of the
fluorophore and imaging conditions, but does not take the sample structure into ac-
count. We demonstrate here that the FRC resolution depends on the Optical Trans-
fer Function (OTF), the spatial frequency content of the sample and the noise level.
The resolution is always inferior to the spatial cut-off frequency for which the optical
transfer goes to zero. This maximum resolution is only reached in the limit of high
signal-to-noise ratio (SNR). So, for diffraction-limited modalities the FRC resolution
coincides with the Abbe-resolution in the limited of high SNR. For the STED case it
coincides with the formula of Eq. 2.82 in the limit of dense spatial frequency content
of the sample.

Starting point of the proof is the labeling density function for an object consisting
of fluorescent labels located at positions�r em

j for j = 1,2, . . .K :

ψ (�r ) =
K∑

j=1
δ
(
�r −�r em

j

)
. (2.83)

We assume that the on average nph photons are detected per emitter. Then the signal
part of the image is given by:

s (�r ) = nph

∫
d 2r ′ h

(
�r −�r ′)ψ (�r ) , (2.84)

with h (�r ) the PSF, which is normalized such that:∫
d 2r h (�r ) = 1. (2.85)
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In the Fourier domain the relation between the signal and the labeling density func-
tion is:

ŝ
(
�q
)= nphĥ

(
�q
)
ψ̂
(
�q
)

. (2.86)

The FRC requires two measured images:

f j (�r ) = s (�r )+n j (�r ) , (2.87)

for j = 1,2 where n j (�r ) is the noise. In order to simplify the analysis we assume that
the only noise source is shot noise from photon statistics. In that case the correlation
function for the two images is:

〈 f j (�r ) fl
(
�r ′)〉 = s (�r ) s

(
�r ′)+ s (�r )δ

(
�r −�r ′)δ j l , (2.88)

which gives after Fourier transformation:

〈 f̂ j
(
�q
)

f̂l
(
�q ′)∗〉 = ŝ

(
�q
)

ŝ
(
�q ′)∗ + ŝ

(
�q −�q ′)δ j l . (2.89)

If �q =�q ′ then:

〈 f̂ j
(
�q
)

f̂l
(
�q
)∗〉 = ∣∣ŝ (�q)∣∣2 + ŝ (0)δ j l

= n2
ph

∣∣ĥ (�q)∣∣2 ∣∣ψ̂(
�q
)∣∣2 +K nphδ j l . (2.90)

Taking the average over rings in Fourier space, using the assumption that the OTF is
rotationally symmetric, and defining (identical to the case of localization microscopy,
Eq. 2.41):

S
(
q
)= 1

K 2

∫
d 2q ′ D

(∣∣�q ′∣∣−q
)∣∣ψ̂(

�q ′)∣∣2 , (2.91)

with

D
(∣∣�q ′∣∣−q

)= δ
(∣∣�q ′∣∣−q

)
2πq

, (2.92)

the Fourier ring weight function, we obtain an expression for the expected value of
the FRC:

〈F RC〉 =
K 2n2

ph

∣∣ĥ (�q)∣∣2 S
(
q
)

K 2n2
ph

∣∣ĥ (�q)∣∣2 S
(
q
)+K nph

. (2.93)

Clearly, the FRC decays to zero for large �q as the OTF ĥ
(
q
)

also goes to zero for large �q
and is zero for |�q | ≥ qcut . The FRC resolution for the sum image is obtained by setting
the FRC equal to the threshold value of 1/7. This results in the implicit equation for
qres:

6K nph
∣∣ĥ (qres

)∣∣2 S
(
qres

)= 1. (2.94)

So, in general, the FRC resolution depends on the OTF Ĥ(q), the spatial frequency
content of the object S(q), and the level of noise (photon count). In the limit of infinite
SNR the resolution resulting from this analysis is given by:

ĥ
(
qres

)= 0, (2.95)
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which corresponds to the Abbe-resolution for diffraction-limited imaging systems. It
is stressed that the conclusions described here are not altered by obvious generaliza-
tions of the model, e.g. effects of finite pixel size and additional noise sources such as
readout noise.

The analysis for diffraction-limited systems can be readily extended to diffraction-
unlimited methods such as STED, taking the effective transfer at a given ISTED for
the OTF-function in Eq. 2.94. Interestingly, previous theoretical analyses of STED[72]
have shown before that the sample structure ultimately influences the resolution in
the case of finite intensities. For STED as well as for fluorescence nanoscopy tech-
niques it should be noted that this conclusion is contingent on the assumption made
here that the labels on the sample are the relevant signal source. If the labeled struc-
ture rather than the labels themselves is considered to be the signal source, then the
labeling process becomes a source of noise as well. Repeating the above analysis
with the labeling process included as a noise source then results in an extra term

2K n2
ph

∣∣ĥ (�q)∣∣2 in the denominator of Eq. 2.93. From this it can be concluded that the

labeling density, rather than the OTF, may become the limiting factor to resolution for
high photon counts in e.g. STED.



3
VISUALIZATION IN LOCALIZATION

MICROSCOPY

Localization microscopy lacks a natural way of visualizing the data that are produced,
which consist instead of sets of estimated fluorophore positions and possibly additional
parameters per position estimate. Therefore an important issue that remains is how the
data should be visualized. In literature a few methods are used on an ad-hoc basis, i.e.
histogram binning, Gaussian rendering, jittering, Delaunay triangulation, and quad-
tree visualization. We show that rendering localizations as Gaussian blobs with the
same size as the localization error distribution is superior to the other visualization
techniques in terms of the FRC resolution of the rendered images. Since this method
is also linear in the density of localizations and conveys information about the local-
ization precision, we conclude that it is the visualization method of choice. However,
the histogram binning method provides a similar resolution in a shorter computation
time and is therefore a good alternative method.

Parts of this chapter have been published as: Nieuwenhuizen, R., Stallinga, S. & Rieger, B. Cell Membrane
Nanodomains: from Biochemistry to Nanoscopy, chap. Visualization and Resolution in Localization Mi-
croscopy, 409–430 (Taylor and Francis, 2014). [92]
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3.1. OVERVIEW OF VISUALIZATION METHODS
Localization microscopy has no natural way to display the recordings. It does not
sample the image at pixel locations as in standard widefield microscopy. In widefield
microscopy images are typically recorded on a CCD camera. The pixels of the camera
together with the magnification of the objective lens naturally define the way how an
image is sampled. The back projected pixel size is chosen such that it fulfills Nyquist
sampling, i.e. a pixel should be smaller than half the diffraction limit d ≤ λ/(4N A),
with λ the wavelength of light and NA the numerical aperture of the imaging sys-
tem. The emission photons recorded per CCD pixel bin are translated into analog-
to-digital units (ADU) with a linear amplification factor (gain). These ADU are typi-
cally discretized into 8,12 or 16-bit integers and they represent the intensity or count
values. The recorded sample is therefore visualized as a pixelated image where the
discrete intensity scale is about linearly proportional to the recorded number of pho-
tons and thus the density of fluorescent molecules. The same natural visualization
is shared by confocal microscopy, where the CCD pixel is replaced by a point detec-
tion device such as a photomultiplier tube or an avalanche photodiode. The stepping
of the scan mirror naturally defines the pixel size. Please note that it is common to
have a regular (square) sampling grid of pixels and/or scan positions, but that is not
strictly necessary. Especially to avoid phototoxicity adaptive schemes of illuminating
and recording have been proposed [93, 94].

As localization microscopy lacks any of the above natural ways of visualization, it
is an important issue how data should be visualized. Basically the positions of sin-
gle fluorescent emitters are estimated from the asynchronous recordings of blinking
emitters. To this end different localization schemes are employed that estimate the
positions (i.e. a list of 2D or 3D coordinates), as well as the estimated fluorophore in-
tensities, background intensities, localization precisions and possibly other param-
eters depending on the localization method [15, 19, 62, 95]. Thus localization mi-
croscopy produces datasets but no images initially. To make these data comprehen-
sible, these localization data need to be translated into a visual representation in the
form of an image. Subsequently this image needs to be translated into brightness
values of the pixels in the display device. Reconstruction (in the Nyquist sense) of the
fluorophore distribution of the underlying imaged object from the set of localizations
is not considered to be a part of the visualization process.

This chapter is concerned with the choice of the visualization method for trans-
lating localization data into an image. Several methods have been proposed in the
literature which will be discussed here: scattergram plots [3], histogram binning [96],
Gaussian rendering [2], jittered histogram binning [23], Delaunay triangulation [97],
and quad-tree visualization [97]. Fig. 3.1 shows an illustration of the different visual-
ization methods, except the scattergram method. First we will describe and illustrate
of each of these visualization methods before moving on to the next sections which
discuss the merits and implications of using these methods.

Scattergram: each coordinate is plotted as a symbol, typically a cross or plus, in a
Cartesian coordinate system [3].

Histogram binning: the field of view is divided into a complete set of square pixel
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a b c

d e f

Figure 3.1: Illustration of different visualization methods. The images show the different visualization
methods applied to simulated localization data of filaments for a density of localizations ρ = 2.0 ·103μm−2

and localization precision σ = 10 nm. Panels: (a) The ground truth structure, (b) histogram binning, (c)
Gaussian rendering, (d) jittering, (e) Delaunay triangulation, (f) quad-tree visualization. Images are indi-
vidually 95 percentile stretched for better visibility on paper.

bins and the number of localizations that falls in each bin is counted and used to
assign intensity values to bins [96]. The size of the pixel bins should generally not
exceed one quarter of the image resolution in order not to deteriorate the resolution
[44]. Histogram images often appear rather noisy due to the low signal-to-noise-ratio
per pixel, which can be resolved by post-blurring the histogram images. This blurring
also prevents problems with aliasing if the sampling density of the display device is
too low. If a radially symmetric kernel is used for blurring then the image resolution
remains unchanged for reasonably isotropic structures [44].

Gaussian rendering: an image is rendered where localizations are represented
with Gaussian blobs with a width proportional to the estimated localization precision
in the respective axial and lateral dimensions [2]. Thus the resulting image conveys
information on the localization precision of each localization. It should be noted that
effects such as imperfect correction for stage drift effectively lead to an additional lo-
calization error that is not taken into account in the estimated localization precision.
Therefore the rendered Gaussian blobs cannot always be interpreted to be likelihood
functions for the positions of the fluorophores.

Jittered histogram binning: each localization gives rise to a fixed number of off-
spring points (typically 10 or 20) that are randomly displaced (i.e. jittered) with a
zero-mean normal distribution whose standard deviation is equal to the estimated
localization precision [23]. Thus for very large numbers of offspring points, this visu-
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alization method gives the same result as Gaussian rendering.
Delaunay triangulation: a tiling is created in the image plane using triangles

whose vertices correspond to the estimated emitter locations [97]. The triangles are
rendered with a grayscale intensity inversely proportional to the area of the triangle
such that higher local densities of emitters result in higher intensities. The size of the
triangles emphasizes the local density of localizations.

Quad-tree visualization: an image is formed using square pixels whose size de-
pends on the local density of localizations [97]. Initially the image plane is divided
into four pixels. Each pixel that contains more than a fixed threshold number of lo-
calizations is subsequently split into four subpixels. This process is repeated for the
subpixels, until each pixel contains fewer localizations than the threshold value.

3.2. QUALITATIVE COMPARISON OF VISUALIZATION METH-
ODS

With the multitude of available visualization methods, the question arises which method
is best for representing experimental data. A number of relevant considerations in
choosing a visualization method were discussed by Baddeley et al. [97]. Here we will
focus on the most important of those: the extent to which images produced with a
visualization method can be intuitively interpreted and the image resolution of these
images.

Intuitive interpretation of localization microscopy images requires that the im-
ages conform to users’ expectations based on other fluorescence microscopy meth-
ods, such as widefield or confocal imaging. In these microscopy techniques, the local
intensity in the image can be described by a convolution of the fluorophore density
in the sample with the effective point spread function. Hence the image intensity val-
ues are linear in the density of imaged molecules and typically vary smoothly due to
the effective blurring by the point spread function. This linearity is also inherent in
super-resolution imaging techniques such as STED [45, 98], structured illumination
[71, 99] and image scanning microscopy [100, 101].

The expected linearity of intensity values argues against the use of the scattergram
visualization method: at a high localization density the symbols in the scattergram
overlap and lead to a saturated image. The Delaunay triangulation and quad-tree
methods are also not linear in the density of localized molecules, but these do not
provided saturated images.

Linearity is more generally an issue for localization microscopy because the ac-
quisitions are nonlinear in the density of labeled molecules. Some molecules are not
localized in an experiment and do not contribute to the final image. Additionally,
fluorophore activation events are sometimes not recognized or rejected by the local-
ization software. This could happen for example if fluorophores are too dim to be
picked up by the algorithm that selects candidates for fitting or too dim to pass the
threshold for the allowed localization precision. Also if nearby fluorophores are si-
multaneously active such that their emissions overlap in the image plane then the
localization algorithm results in a position intermediate between the two simulta-
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neously active molecules. Although currently methods towards multi-fluorophore
fitting [35, 36, 38] are proposed, the application of these methods to non-ideal ac-
quisitions outside TIRF imaging remains a challenge. In the worst case, overlapping
emissions may result in unnoticed missing structures. Hence the final images are al-
ways nonlinear in the density of labeled molecules. None of the above visualization
methods, however, shows activation events missed by the preprocessing software for
candidate selection.

The smooth, blurry appearance of images produced with conventional fluores-
cence microscopy methods normally conveys a sense of the resolution of the imag-
ing system. Therefore, the Gaussian rendering and jittered binning methods vary the
apparent width of localizations in images to indicate how well the corresponding flu-
orophores can be distinguished from nearby molecules. The ability, however, to re-
solve structures in localization microscopy depends not only on the localization pre-
cision, but also for example on the labeling density [44]. Therefore the apparent size
of localizations in Gaussian rendering and jittered binning methods does not indi-
cate the actual image resolution. Delaunay triangulation and quad-tree visualization
emphasize local variations in the image resolution by adjusting the triangle sizes or
subpixel sizes to the labeling density. Unfortunately, these sizes do not correspond to
the image resolution that would be determined with the FRC method.

3.3. QUANTITATIVE COMPARISON OF VISUALIZATION METH-
ODS

The second consideration for choosing a visualization method that merits attention,
next to intuitive interpretation, is the actual image resolution in the image that is
produced. This issue will be addressed by studying the resolution of images produces
with different visualization methods for simulation data. By using simulation data
where the underlying imaged structure is known, it is possible to identify if the FRC
between images of two halves of the simulated data is biased. Such a bias could result
in inaccurate resolution determination for experimental data.

SIMULATION SETUP

Localization microscopy acquisitions of filaments were simulated where both the
chosen average localization precision σ and density of localizations ρ were varied.
For these simulations, the ground truth structure consisted of 100 filaments gener-
ated with a worm-like chain model [102–104] for a persistence length of 15 μm (i.e.
approximately the persistence length of F-actin [105]). Each filament had a random
starting position and starting orientation inside the field of view of 5.12 μm by 5.12
μm. All filaments were then Gaussian blurred with a standard deviation of 5 nm to
provide the filaments with a finite width. Subsequently, they were rendered in an
image with a pixel size of 2.5 nm.

For this ground truth structure, 100 acquisitions were simulated for each combi-
nation of densities ρ and localization uncertainties σ. For each acquisition, a Pois-
son distributed number of points was generated with a density proportional to the
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ground truth structure and average density equal to ρ. These points were then ran-
domly displaced with a Gaussian probability density with variance d 2 +σ2

0/nphotons

to simulate the finite label size and localization error. Here d represents the finite
size of fluorescent labels and had a value d = 5 nm. For each point σ0 was ran-
domly drawn from a normal distribution with a mean specified by 〈σ0〉 = 450 nm and
standard deviation of 0.1〈σ0〉. The parameter nphotons was randomly drawn from a
geometric distribution, which is the distribution for the photon counts of a photon
source whose duration has an exponential distribution. These values give a localiza-
tion uncertainty of 10 nm at 2000 photons.

The simulated localization data were used to compute the resolutions of the im-
ages generated by the various visualization methods. For each acquisition, the local-
izations were split into two half sets to obtain two images per visualization methods.
All images had pixel sizes of 5 nm, except the images obtained with Delaunay trian-
gulation which were rendered using the PALM Siever software [106] with a pixel size
of 2.5 nm. For the quad-tree visualization, the threshold number of localization per
pixel for splitting into subpixels was 6. Subsequently, the resolution was obtained
with these images by computing the FRC and finding the spatial frequency for which
the FRC dropped below the threshold of 1/7. To investigate potential biases in the
computed FRC curves, additional images were made with all localizations of each ac-
quisition. These were then used to compute the FRC between those images and the
ground truth structure. The spatial frequency at which this full data FRC crosses a
threshold of 1/2 should give the same result as before for unbiased resolution estima-
tion [59].

RESULTS

The results of the simulations are summarized in Figs. 3.2 and 3.3. Fig. 3.2 shows
the resolution between the full data images and the ground truth structure for the
various visualization methods. From this figure it becomes clear that generally his-
togram binning, jittering, and Gaussian rendering result in more or less the same res-
olution. Gaussian rendering provides the best resolution, especially when the mean
localization error σ is large and strongly affects the image resolution. This result will
be discussed in more detail in the next paragraph. Delaunay triangulation and quad-
tree visualization result in substantially deteriorated resolutions when the density ρ is
not very high. For Delaunay triangulation this deterioration is attributed to the hard
edges that are introduced. For the quad-tree method the deterioration is attributed
to the lack of shift invariance of the pixel splitting.

Fig. 3.3 shows that Delaunay triangulation and quad-tree visualization bias the
resolution estimation with two half data sets for small ρ and small σ. The bias is also
evident in Fig. 3.4 where the FRC curves between two half data sets are compared
with the expected FRC curves based on the FRC between the full data and the ground
truth images for these visualization methods. The irregular bias in the quad-tree FRC
curve for two half data sets also explains the irregularity in the resolution bias as a
function of ρ and σ for that method. All this implies that these visualization methods
should not be used to compute and assess the resolution for experimental data.
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Figure 3.2: Resolution for the different visualization methods as a function of the density of localizations
ρ and localization precision σ. The resolution is computed from the FRC between images of the full data
sets and the ground truth structure. The standard error of the mean is smaller than the marker sizes in this
plot.
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Figure 3.3: Bias in resolution estimation for the different visualization methods as a function of the density
of localizations ρ and localization precision σ. Rtr ue is the resolution obtained from the FRC between
images of the full data sets and the ground truth structure, whereas Rcomputed is the resolution obtained
from the FRC between two images of half data sets. The standard error of the mean is smaller than the
marker sizes in this plot.

THEORETICAL CONSIDERATIONS

This paragraph provides a theoretical explanation for why Gaussian rendering per-
forms better than histogram binning. To this end, the expected FRC will be derived
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Figure 3.4: FRC curves for (a) Delaunay triangulation and (b) quad-tree visualization. The FRC between
two images of half data sets is compared here with the curve that would be expected based on the FRC
between images of the full data sets and the ground truth structure.

for the case where the localization precision σ is not constant for both the Gaussian
rendering method and the histogram binning method. Consistent with the simula-
tions above, it will be assumed for simplicity that all fluorophores on the structure at
hand are localized exactly once.

Before deriving the expected FRCs, we provide a few definitions. Firstly, the ground
truth object for this derivations is given by:

ψ (�r ) =
N∑

j=1
δ
(
�r −�r em

j

)
, (3.1)

where δ is the Dirac delta function. The object depends on the set of positions{
�r em

j | j = 1, . . . , N
}

of the N fluorophores or labels. These labels are localized at po-

sitions
{
�r j | j = 1, . . . , N

}
with probability P (�r j ) = (2πσ2

j )−1 exp(−
∥∥∥�r j −�r em

j

∥∥∥2
/2σ2

j ). In

the following we assume no specific dimensionality, but typically �r j ∈ R2 or �r j ∈ R3.
For the three-dimensional case, the localization uncertainty is typically 2-3 times
worse in the axial direction than in the lateral direction [70, 107, 108], except for very
specific experimental setups [69, 109]. For the sake of compactness, two-dimensional
acquisitions with isotropic localization uncertainties will be assumed, although the
conclusions derived here are also valid for anisotropic localization uncertainties.

The set of localizations is split into two subsets of size N1 and N2 to produce two
images f1 (�r ) and f2 (�r ), with N1+N2 = N and N1 ≈ N2. The FRC between such images
is defined as given by Eq. 2.1. The expected value of the numerator of the FRC when
emitters are localized is〈 ∑

�q∈circle

f̂1
(
�q
)

f̂2
(
�q
)∗〉= ∑

�q∈circle

〈
f̂1
(
�q
)〉〈

f̂2
(
�q
)∗〉 , (3.2)
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where
〈

f (�r )
〉≡∫

d�r1 . . .d�rN f (�r )P
({
�r j
})

. For Gaussian rendering, the images are de-
noted by gm (�r ) with m = {1,2}, and equal to

gm (�r ) =
Nm∑
j=1

1

2πσ2
j

e
−∣∣|�r−�r j

∣∣|2/2σ2
j , (3.3)

with Fourier transformation

ĝm
(
�q
)= Nm∑

j=1
e
−2π2q2σ2

j e−i 2π�q ·�r j . (3.4)

For the case of constant σ j ≡σ∀ j , this expression simply describes a convolution of
the found positions r j with a Gaussian kernel of size σ. Assuming that σ j is given (i.e.
not a stochastic variable), the expected value of fm

(
�q
)

becomes:

〈
ĝm

(
�q
)〉 =

∫
d�r j

Nm∑
j=1

e
−2π2q2σ2

j e−i 2π�q ·�r j P
({
�r j
})

(3.5)

=
Nm∑
j=1

e
−2π2q2σ2

j

∫
d�r j e−i 2π�q ·�r j P

({
�r j
})

(3.6)

=
Nm∑
j=1

e
−4π2q2σ2

j e
−i 2π�q ·�r em

j ≈ 1

N
ψ̂
(
�q
) Nm∑

j=1
e
−4π2q2σ2

j . (3.7)

If the effect of low pass filtering due to finite pixel size is neglected, fm (�r ) for his-
togram binning is equal to

fm (�r ) =
Nm∑
j=1

δ
(
�r −�r j

)
, (3.8)

which leads to

〈
f̂m

(
�q
) |σ j

〉≈ 1

N
ψ̂
(
�q
) Nm∑

j=1
e
−2π2q2σ2

j . (3.9)

The difference between the two visualization methods already becomes apparent
here. Comparing Eq. 3.7 and Eq. 3.9 shows that an extra factor 2 appears in the ex-
ponent due to the extra blurring of the Gaussian rendering. For the expected value

of the denominator of the FRC, the expected value of
∣∣ fm

(
�q
)∣∣2 needs to be evaluated.
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For Gaussian rendering this goes as follows:

〈∣∣ĝm
(
�q
)∣∣2〉 =

〈
Nm∑
j=1

Nm∑
k=1

e
−2π2q2σ2

j e−2π2q2σ2
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)〉
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=
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e
−4π2q2σ2
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〉
. (3.13)

Thus, if the average spectrum of the object over rings of constant spatial frequency is

defined as S(q) = 1
N 2

∫
d 2q ′ δ(|�q ′|−q)

2πq

∣∣ψ̂(�q ′)
∣∣2, the expected FRC becomes

〈F RC〉 = N S
(
q
)〈

exp
(−4π2σ2q2

)〉2

2
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(−4π2σ2q2

)〉+N S
(
q
)〈

exp
(−4π2σ2q2

)〉2 (3.14)
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(−4π2σ2q2
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Similarly, for histogram binning the expected value of
∣∣ fm

(
�q
)∣∣2 is

〈∣∣ f̂m
(
�q
)∣∣2〉=
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e−i 2π�q ·(�rk−�r j
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(
�q
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which leads to the following expected FRC

〈F RC〉 = N S
(
q
)〈

exp
(−2π2σ2q2

)〉2

2+N S
(
q
)〈

exp
(−2π2σ2q2

)〉2 . (3.17)

The superiority of the Gaussian rendering over histogram binning now follows from
comparing Eq. 3.15 and Eq. 3.17 and observing that

〈
e−4π2σ2q2

〉
−
〈

e−2π2σ2q2
〉2 =

〈(
e−2π2σ2q2 −

〈
e−2π2σ2q2

〉)2
〉
≥ 0. (3.18)

The explanation for this general superiority following from the equations above is
that Gaussian rendering effectively weights the contribution of localizations to spa-
tial frequency components depending on their localization precision. This weighting
was already obvious from the comparison of Eq. 3.7 and Eq. 3.9 which showed that
Gaussian rendering introduces an extra factor 2 in the exponent. This causes the
exponentials corresponding to imprecise localizations to decrease faster and there-
fore those localizations contribute less to high frequency components. This leads to
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higher correlations at those frequencies. For a constant localization uncertainty for
all localizations, i.e. σ j ≡σ ∀ j , both visualization methods are equivalent as the dif-
ference in Eq. 3.18 is then equal to zero.

This derivation did not include the effects of finite pixel size and multiple local-
izations per emitter. Low pass filtering due to finite pixel sizes introduces an extra
damping of S

(
q
)

which is the same for histogram binning and Gaussian rendering.
For very large pixel sizes, the damping due to finite pixel size will be stronger than
damping due to the localization error, thus negating the benefits of Gaussian render-
ing. For multiple localizations per emitter, the impact of Gaussian rendering on the
FRC is more subtle and dependent on the statistics of the localization uncertainties
σ j .

3.4. DISCUSSION & CONCLUSION
The above results lead to the conclusion that the Gaussian rendering method pro-
vides the best resolution of the evaluated visualization methods. Please note that this
is only true if the Gaussian blobs reflect the localization uncertainty of each single
fluorophore and not if one applies one global Gaussian kernel to all localizations.
Since this method is also linear in the density of localizations and conveys infor-
mation about the localization precision it seems to be the visualization method of
choice. However, the histogram binning method provides a similar resolution in a
shorter computation time and is therefore a good alternative method. In particular,
the reduced computation time make histogram binning the preferred method for fast
and unbiased resolution determination. When this method is used for visualization,
it is recommended to post-blur the image, for example with a Gaussian kernel with
a standard deviation equal to the average localization precision. This reduces the
noise in the image without reducing the resolution. The jittering method provides a
compromise between the histogram binning and Gaussian rendering methods, with
a better resolution than histogram binning and typically a shorter computation time
than Gaussian rendering. Quad-tree visualization and Delaunay triangulation lead to
resolution deterioration and biased resolution estimation and are therefore not rec-
ommended.

A significant limitation of this simulation study is that the ground truth structure
and the Delaunay triangulation results had to be pixelated to compute their Fourier
transforms, even though they contain infinitely high spatial frequency components.
In principle this could lead to changes in frequency contents due to aliasing and the
effective low-pass filtering due to the finite pixel size. The resolutions, however, in
these simulations were typically more than twenty times the pixel size of these im-
ages. Therefore these problems should not play a role at the spatial frequencies where
the FRC drops below the threshold and should not affect the computed resolution.





4
QUANTITATIVE LOCALIZATION

MICROSCOPY

Quantification in localization microscopy with reversibly switchable fluorophores is
severely hampered by the unknown number of switching cycles a fluorophore under-
goes and the unknown stoichiometry of fluorophores on a marker such as an antibody.
We overcome this problem by measuring the average number of localizations per fluo-
rophore, or generally per fluorescently labeled site from the build-up of spatial image
correlation during acquisition. To this end we employ a model for the interplay be-
tween the statistics of activation, bleaching, and labeling stoichiometry. We validated
our method using single fluorophore labeled DNA oligomers and multiple-labeled neu-
travidin tetramers where we find a counting error of less than 17% without any cali-
bration of transition rates. Furthermore, we demonstrated our quantification method
on nanobody- and antibody-labeled biological specimens.

Parts of this chapter have been published as: Nieuwenhuizen, R.P.J., Bates, M., Szymborska, A., Lidke, K.A.,
Rieger, B. & Stallinga, S. PLoS ONE 10, e0127989 (2015).
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4.1. INTRODUCTION
Localization microscopy (e.g. PALM/STORM) is a powerful tool for imaging biologi-
cal structures on the nanoscale[2–4, 47, 48]. In order to yield information about the
molecular composition of the sample, localization microscopy images must be quan-
tifiable in terms of the density of fluorescently labeled molecules or of binding sites.
The relationship between these desired densities and the actual measured density of
localizations is non-trivial however, since the (average) number of localizations per
fluorophore and the labeling stoichiometry are unknown.

The use of photo-activatable fluorescent proteins (FPs)[2, 4, 64] offers a relatively
direct approach to counting and thus to obtaining the desired densities, provided
they switch off irreversibly after a non-interrupted on-state. In practice, however,
there are several factors that can either lead to overcounting or undercounting of
molecules[110]. Overcounting occurs when molecules are localized several times, ei-
ther due to short-term blinking during the on-state or due to long lived dark states
that effectively lead to reversible switching of FPs[67, 111]. In addition, overexpres-
sion of fluorescent fusion proteins, which is needed to substitute the native protein,
may also lead to overestimation of protein numbers relative to endogenous expres-
sion levels. Undercounting occurs when the weak signals from FPs are missed by the
localization algorithm or when FPs are not functional due to protein misfolding or
incomplete maturation[112–114].

Another method of labeling employs organic fluorophores, which typically have a
higher brightness and photostability than FPs, and thus have a higher probability to
be successfully detected and then to be localized more accurately[68]. Organic fluo-
rophores have not been widely used for quantification studies, however, as quantifi-
cation is complicated by undercounting problems due to incomplete labeling of po-
tential binding sites, and by overcounting problems due to reversible switching of the
fluorophores and unknown stoichiometry of the fluorescent labels on the marker (e.g.
antibody). These undercounting problems can only be solved in general by new ad-
vances in biochemical labeling techniques that result in a higher labeling efficiency.
Instead, we focus here on addressing the overcounting problems with computational
methods.

Efforts have been made in the past towards resolving the issue of overcounting
with reversibly switchable fluorophores. For example, in kymograph analysis sam-
ples are prepared with sparsely distributed fluorescent markers to calibrate the flu-
orophore switching kinetics[67]. Similarly, a titration method was recently proposed
where the concentration of markers during labeling was titrated to calibrate the num-
ber of localizations per marker[115, 116]. However, both methods are susceptible to
differences in the local chemical environment in the calibration conditions that af-
fect the switching kinetics and thus render the calibration inaccurate. Alternatively,
pair correlation analysis[65, 66] does not require a separate calibration experiment,
but relies on an over-simplified physical model (e.g. neglecting the effects of pho-
tobleaching). Methods addressing the short-term blinking of fluorescent proteins
(e.g. [64, 67, 111]) rely on spatiotemporal clustering of localizations of the same flu-
orophore. This does not work for reversibly switching fluorophores as the lifetime of
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the long-lived dark states is much longer than the timescale on which other nearby
fluorophores are activated.

In chapter 2 we have proposed the use of spatial frequency correlations in the re-
constructed super-resolution image to estimate the average number of localizations
per marker. However, in that chapter bleaching effects were treated in an ad hoc man-
ner and labeling stoichiometry was not considered. Here, we present a study of how
both effects can be accounted for to provide accurate quantification of localization
microscopy data in terms of the number of localizations per fluorescently labeled
site. Our method requires only limited calibration of the labeling stoichiometry and
is applicable to common labeling techniques (e.g. antibodies).

4.2. RESULTS

4.2.1. QUANTIFICATION WITH A SINGLE FLUOROPHORE PER SITE
The starting point of our analysis is a three-state switching model[117, 118] for a flu-
orophore consisting of an on-state, off-state and a bleached state. The on-off switch-
ing is characterized by a switching rate ksw = konko f f /(kon + ko f f ) and the photo-
bleaching by an effective bleaching rate kbl . Bleaching from the on-state, as well as
from the off-state, is taken into account. Therefore the effective bleaching rate kbl

depends on the rates of both bleaching channels. This model (see Appendix 4.A.2 for
a derivation) gives rise to an average number of activations per fluorophore:

〈M(t )〉 = M∞
(
1−exp(−kbl t )

)
(4.1)

where M∞ = ksw /kbl is the average number of switching cycles the fluorophore
undergoes before photobleaching. For small times (kbl t 
 1) the statistics of on-
off switching dominates the number of localizations of a single emitter, which then
follows a Poisson distribution with expectation value ksw t . For longer times (kbl t �
1) bleaching is more important and the number of localizations follows a geometric
distribution with expectation value M∞.

Measurement of the bleaching rate kbl from the cumulative number of local-
izations as a function of time is straightforward. Determination of the switching
rate ksw , or equivalently the asymptotic number of localizations per emitter M∞,
requires an additional measurement. Spatial correlation analysis with Fourier Ring
Correlation[44] enables the measurement of the correlation parameter
Q(t ) = 〈M(M −1)〉/〈M〉. This correlation parameter is related to the variance in M by
V ar (M) = 〈M〉 (Q−〈M〉+1). It depends on the parameters of the three-state switching
model as:

Q(t ) = 2(M∞−1)

(
1− kbl t

exp(kbl t )−1

)
. (4.2)

Measurement of Q(t ) enables the determination of M∞, as kbl is already known from
the fit to the cumulative number of localizations. The average number of localiza-
tions per emitter 〈M(t )〉 can be directly found from kbl and M∞ using Eq. 4.1. The
desired density of emitters then follows from the measured density of localizations
by dividing with 〈M(t )〉 at the final time point of the data acquisition.
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Figure 4.1: Quantitative localization microscopy with a single fluorophore per labeled site. (a) Three state
model with rates. (b) Cutout of total image of sparsely distributed DNA oligomers on glass labeled with
single Alexa Fluor 647 dyes showing well-isolated clusters of localizations. (c) Cumulative number of lo-
calizations and single-exponential fit. (d) Correlation parameter Q determined from the spatial image
correlations and fit with switching model shows agreement with the ground truth value determined from
the cluster analysis. The estimated value for the average number of localizations 〈M(t )〉 shows agreement
with the ground truth value determined from the cluster statistics. (e-g) Histograms of the number of local-
izations accumulated per cluster and model prediction at three time points during the image acquisition.

The three-state switching model for individual fluorophores has been validated
by experiments on isolated DNA oligomers labeled with single Alexa Fluor 647 dyes
on a glass substrate (Fig. 4.1a). Clearly recognizable isolated clusters of localizations
provide a ground truth for the distribution of localizations per emitter. First order
switching kinetics are confirmed by the observation of exponential on and off-time
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distributions (Fig. 4.2) giving τon = 26.6± 0.5 ms and τo f f = 18.0± 0.4 s. Fits of the
cumulative number of localizations (Fig. 4.1b) and the correlation parameter yield
kbl = (4.7± 0.1)× 10−3/s and M∞ = 11.0± 0.1. Both the correlation parameter Q(t )
and the predicted number of localizations per emitter 〈M(t )〉, which is found with
the estimated values of kbl and M∞, agree with less than 10% error with the ground
truth values obtained from the cluster analysis (Fig. 4.1c).

0 50 100 150

10−2

100

t
off

 (s)

1−
C

D
F(

t of
f)

0 0.1 0.2
10−4

10−2

100

t
on

 (s)

1−
C

D
F(

t on
)

0 2 4

x 10 4

10−4

10−2

100

n
photons

1−
C

D
F(

n
ph

ot
on

s
)

a b c

Figure 4.2: Linearity of switching kinetics. (a) Empirical distributions of the on- and off-times, respectively
ton and to f f , of individual fluorophores were obtained for the data of DNA oligomers labeled with single
Alexa Fluor 647 dyes on a glass substrate shown in Fig. 4.1. ton was determined by finding all localizations
belonging to the same activation event and determining the time between the first and last localization.
(b) The sum of estimated signal photons nphotons from the combined localizations shows a single expo-
nential distribution. (c) to f f was determined as the time interval between subsequent localizations of
the same fluorophore as determined by cluster analysis. The distribution of ton is mono-exponential, the
distribution of to f f is reasonably described with a single exponential distribution but possibly also by a bi-
exponential distribution, which can possibly be attributed to residual effects of sample contaminations.

Neglecting effects of photobleaching would lead to the estimate 〈M(t )〉 = Q(t )
which results here in an error of up to 47%. Note that the use of pair-correlation
functions for counting also comes down to an alternative procedure for estimating
the quantity Q(t ) [66], and would thus suffer from a comparable error when photo-
bleaching is neglected. The measured on and off-times of the clustered localizations
lead to a switching rate ksw = (5.6±0.1)×10−2/s, in reasonable agreement with the
value kbl M∞ = (5.2±0.2)×10−2/s obtained from the fit parameters above. Finally, the
distribution of the number of localizations per emitter as a function of time (Fig. 4.1d-
f) corresponds well to theory for the estimated values of kbl and M∞: p = 0.67, 0.91,
and 0.71, in one-sample two-sided discrete Kolmogorov-Smirnov tests at times t =
122, 243 and 365 s respectively, so no significant difference was found at a 0.05 signif-
icance level.

We applied our method to images of the Seh1 protein, a component of the Nuclear
Pore Complex (NPC)[119] tagged with mEGFP and labeled with anti-GFP nanobodies
(NBs) conjugated to Alexa Fluor 647 fluorophores. The degree of labeling (DOL) and
average brightness of the NBs were characterized with absorption spectroscopy and
Fluorescence Correlation Spectroscopy (FCS), respectively. This revealed that only
one emitter per NB contributes to fluorescence imaging due to quenching effects
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(Fig. 4.3a), implying that counting the number of fluorophores is equivalent to count-
ing the number of NBs. The resulting quantitative localization microscopy image is
shown in Fig. 4.3b. We found that the estimated number of NBs bound per NPC varies
between 3 and 17 (Fig. 4.3c). This indicates that the labeling efficiency was relatively
low, given the eightfold symmetry of the NPC and given that recent stoichiometry
data point to up to 32 Seh1 copies per NPC[120, 121].
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Figure 4.3: Quantitative localization microscopy of NB-labeled Seh1 in the NPC. (a) FCS-analysis of NB
stoichiometry indicating there is a single fluorophore per NB. (b) Cutout of quantitative localization mi-
croscopy image of NB-labeled Seh1 in the NPC (kbl = 4.8× 10−3/s and M∞ = 5.0). The numbers at the
green boxes indicate the estimated number of NBs within the box. (c) Histogram of the estimated number
of NBs per NPC.

4.2.2. QUANTIFICATION WITH MULTIPLE FLUOROPHORES PER SITE
In commonly used antibody labeling schemes there are S > 1 fluorescent molecules
per labeled site (e.g. antibody). The three-state switching model can be expanded
to incorporate this labeling stoichiometry (see Appendix 4.A.3) from which we obtain
an average number of activations per labeled site 〈M〉 and a correlation parameter Q:

〈M (t )〉 = 〈S〉M∞
(
1−exp(−kbl t )

)
, (4.3)

Q (t ) = 2(M∞−1)

(
1− kbl t

exp(kbl t )−1

)
+μM∞

(
1−exp(−kbl t )

)
, (4.4)

where the average number of emitters per site 〈S〉 and the stoichiometry parameter
μ = 〈S(S −1)〉/〈S〉 are novel parameters entering the description. The averages here
are understood to be averages over the distribution of labeled sites (sites with S ≥
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1). When each labeled site has only one emitter we have 〈S〉 = 1 and μ = 0, and we
retrieve the previously considered case of Eqs. 4.1 and 4.2. Expressions for the average
number of emitters per site 〈S〉 and the stoichiometry parameter μ can be derived
from models for the labeling stoichiometry (Appendix 4.A.3).

Primary antibody labeling may be described by Poisson statistics for weakly inter-
acting fluorophores. Then the DOL revealed by absorption spectroscopy corresponds
to the Poisson rate of the labeling process. It follows that the average number of emit-
ters per site 〈S〉 = DOL/

[
1−exp(−DOL)

]
and the stoichiometry parameter μ = DOL.

Quenching (usually attributed to dye aggregation[122–124]), invalidates the assump-
tion of weakly interacting fluorophores for larger DOL values[115] and a separate cal-
ibration of both the average number of emitters per site 〈S〉 and the stoichiometry
parameter μ (but not of the switching and bleaching rates ksw and kbl ) is then nec-
essary. The case of secondary antibody labeling is even more complicated as now the
stoichiometry of secondary to primary antibodies is relevant in addition to the stoi-
chiometry of emitters on the secondary antibodies (Appendix 4.A.3). Generally, prior
knowledge on the labeling via a calibration of the average number of emitters per site
〈S〉 and the stoichiometry parameter μ is needed to compute the average number of
localizations per labeled site 〈M(t )〉 from the cumulative number of localizations and
the correlation parameter Q(t ).

We validated the approach for estimating the number of localizations per site
with multiple fluorophores per site using a control sample of sparsely distributed
neutravidin tetramers on glass labeled with varying numbers of Alexa Fluor 647 fluo-
rophores. The labeling stoichiometry parameters were determined from FCS bright-
ness measurements and from the brightness statistics of single neutravidin tetramers
in the first frames of the sparse control samples (Fig. 4.4a and b). The values obtained
with the latter method were applied to estimate the number of localizations per neu-
travidin tetramer with a Root Mean Square Error (RMSE) of 17% of the ground truth
number, which was established by cluster analysis (Fig. 4.5a). This result appears to
be robust against errors in the calibration of the stoichiometry parameter μ, as varia-
tions in this parameter on the order of unity change the result by 10% or less.

The estimated switching model parameters M∞ and kbl do not vary significantly
with DOL (Fig. 4.5f), suggesting independent switching and bleaching of the detected,
non-quenched emitters (see also Fig. 4.4c). The remaining quenched emitters that do
contribute to the measured DOL in absorption spectroscopy do not appear to con-
tribute to the localizations (Fig. 4.4a and d).

Next, we applied our counting method to images of Immunoglobulin E (IgE) re-
ceptors in fixed Rat Basophilic Leukemia (RBL) cells labeled with IgE conjugated to
Alexa Fluor 647 (Fig. 4.5c). The data were analyzed assuming a stoichiometry param-
eterμ= DOL and an average number of emitters per site 〈S〉 = DOL/

[
1−exp(−DOL)

]
,

where the measured DOL = 1.5 was low enough to neglect possible quenching effects.
The density of receptors on the membrane was estimated as 81μm-2. This is on the
same order as e.g. Espinoza et al.[125], where on average 64±32μm-2 were obtained
in TEM images (252±123 receptors per field of view of (2266 nm)2 with a labeling ef-
ficiency of 0.8±0.1). Densities may vary substantially with cell incubation times and
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Figure 4.4: Stoichiometry calibration and characterization of neutravidin tetramers labeled with multiple
Alexa Fluor 647 labels. (a) Average number of labels per neutravidin tetramer and (b) stoichiometry pa-
rameter μ as a function of DOL calibrated from cluster brightness statistics and FCS measurements for
Phosphate Buffered Saline (PBS) and Oxygen Scavenging Buffer (OSB). Both indicate labeling according
to Poisson statistics for DOL values below about 2 and significant quenching effects for higher DOL val-
ues. (c) The photon rate during on-events and the photon count per on-event (i.e. localization) do not
depend on DOL. This indicates that single emitters are observed in the detected on-events and the bright-
ness and off-switching of these emitters are not affected by nearby emitters on the same tetramer. (d) The
time between localizations of the same neutravidin tetramer decreases with DOL indicating that multiple
fluorescent labels are observed per tetramer for higher DOL.

between cell types though, implying that more precise values cannot be specified.

4.2.3. HIGH DENSITY SAMPLES

Care must be taken when applying our analysis to samples that have markers with
mutual distances well below the localization precision due to high labeling densities
or clustering. Effectively these markers would be seen as a single labeled site by the
current correlation analysis algorithm, which causes overestimation of the number of
localizations per marker. Appendix 4.A.4 provides estimates for the labeling densities
above which problems are to be expected. As a rule of thumb, problems ar expected
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Figure 4.5: Quantitative localization microscopy with multiple emitters per labeled site. (a) Number of lo-
calizations per neutravidin tetramer as a function of DOL as estimated from the image correlations and the
ground truth values from cluster analysis, showing good agreement. (b) Fitted bleach rate kbl and switch-
ing rate ksw = M∞kbl as a function of DOL values for the same data, indicating independent activation
and bleaching per label. Error bars indicate the standard deviation among samples at the same DOL. (c)
Image of IgE receptors on the membrane of RBL cells labeled with primary antibodies with a DOL of 1.5
(kbl = 9.1×10−3/s and M∞ = 2.3).

when the density is higher than 1/σm (for filaments) or 1/2σ2
m (for punctate clusters),

where σm is the average localization precision.

An experimental approach to verify that counting results are not affected by high
density artefacts is to compare them with the results that are obtained by comput-
ing the correlation parameter Q(t ) in regions of relatively low labeling density. We
have analyzed an image of secondary antibody-Alexa Fluor 647 labeled Nup153 pro-
tein of the NPC in this way (Fig. 4.6). The densely labeled region with NPCs inside the
nuclear membrane gives rise to a correlation parameter Q(t ) that is about 2.4 times
higher than for the region with non-specifically bound antibodies outside the nuclear
membrane. This shows that the clustered antibodies inside the nucleus appear as a
single site for the estimation of Q(t ). However, the relative rate with which localiza-
tions are accumulated is similar, indicating similar bleaching behavior and identical
fluorophores in both regions. A fit to the correlation parameter Q(t ) for the outside
region gives kbl = 3.8 × 10−3/s and M∞ = 5.5, under the assumption that the out-
side region labeling entities are secondary antibodies, and using the calibrated fluo-
rophore to secondary antibody DOL equal to 1.2. Applying these values in a fit of the
correlation parameter Q(t ) for the region inside the nuclear membrane gives approx-
imately 2.7 secondary antibodies per NPC on average, which agrees with the ratio
of 2.4 between the localizations per NPC and the localizations per non-specifically
bound antibody outside the nucleus. The NPCs are likely to have multiple primary
antibodies, because this would explain the difference in the spread of localizations of
NPCs (16 nm) and localizations of the non-specifically bound antibodies outside the
nuclear membrane region (11 nm).

We also verified that the counting results in Fig. 4.3 are not affected by high den-
sity artefacts by computing the correlation parameter Q(t ) in a region outside the
nucleus with similar bleaching behavior. A fit to Q(t ) returned kbl = 5.3×10−3/s and
M∞ = 4.5 (compared with kbl = 5.3×10−3/s and M∞ = 5.0 inside the nucleus), which
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Figure 4.6: Quantitative localization microscopy with heterogeneous labeling density. (a) Overview image
(pixel size 10 nm, clipped for visibility) and (b) zoomed inset (pixel size 4 nm) of the dashed white box in (a)
of secondary antibody-Alexa Fluor 647 labeled Nup153 protein of the NPC in the nuclear membrane with
non-specifically bound (secondary) antibodies outside the nuclear membrane region. (c) The correlation
parameter Q for the region inside the nuclear membrane (red box) is higher than outside (blue box) due
to the tight clustering of the secondary antibodies labeling the Nup153 proteins. The relative number of
accumulated localizations at each time point is similar, indicating that the bleaching behavior is similar
and the sources of the localizations are identical in both regions.

showed that the estimation of Q(t ) was not substantially affected by clustering of Seh1
in these data.

4.3. DISCUSSION
The switching model assumes constant and uniform rates. Accordingly, all data was
acquired under conditions where the excitation and activation light intensities did
not vary spatially across the sample, nor change as a function of time during the ex-
periment. To adapt the method for experiments in which the switching rate is varied,
the illumination intensities should be recorded over time and included in a general-
ization of the switching model that includes time dependent switching rates. The
method has been demonstrated on Alexa Fluor 647 dyes, but applies to any fluo-
rophore that can effectively be described by the three-state switching model. Such a
description becomes problematic for the existence of multiple long lived dark states
with lifetimes on the same order of magnitude[118]. This would require a more sub-
stantial modification of the theory, in which the three-state model is expanded with
one or more additional states and two or more additional rates between the states.
Subsequently, the average number of localizations per labeled site 〈M(t )〉 needs to
be derived and expressed in a form that only depends on parameters that can be
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obtained from fits to the cumulative number of localizations and to the correlation
parameter Q(t ). Finally we note that fluorophore activation events that are missed
by the localization algorithm, so-called false negative localizations, do not affect the
accuracy of the method by more than 5 to 10% (see Appendix 4.A.3).

The analyses for the data presented in Figs. 4.1 and 4.5a showed that overcount-
ing errors on the order of 50% occur when neglecting reversible switching of the flu-
orophores and unknown stoichiometry of the fluorescent labels, as is typically done
for example in pair-correlation analysis[66]. As we noted before, the latter represents
an alternative approach for estimating the spurious correlation parameter Q(t ), and
could therefore be corrected for overcounting similar to how we treat the estimate for
Q(t ) from the FRC. However, the pair-correlation analysis does require a parametric
model for the correlations in the spatial distribution of the labeled sites, unlike the
FRC approach. In-vitro calibration of fluorophore switching and bleaching rates for
counting purposes may be susceptible to differences in the chemical environment
of the fluorophores. Comparing the estimated rates for Neutravidin on a glass slide
(Fig. 4.5) and inside cells indicates that differences in these rates of a factor 2 to 3 may
occur, which would result in similar differences in the estimated number of localiza-
tions per site.

In summary, we have developed a method for estimating the number of localiza-
tions per fluorescently labeled site in order to resolve overcounting problems with re-
versibly switchable emitters. For labeling entities with single fluorophores the method
can be used directly on the localization data. Otherwise the method requires only a
one-time calibration of the number of fluorophores per label as an additional input,
which can be used for all subsequent uses of that label. With spatial resolution ap-
proaching the molecular scale, this will expand the possibilities of researchers to ad-
dress questions about the molecular stoichiometry and spatial organization of pro-
tein complexes. This is essential to establish localization microscopy as a method
which may be used to not just observe the nanoscale “shape” of biological structures,
but also to obtain quantitative information about their composition.

4.4. MATERIALS AND METHODS

4.4.1. EXPERIMENTAL MATERIALS AND METHODS

PREPARATION OF FLUORESCENT DNA OLIGONUCLEOTIDES

To characterize the on-off switching kinetics of single reversibly switchable fluores-
cent molecules, a single Alexa Fluor 647 fluorophore was conjugated to the end of
a double stranded DNA (dsDNA) construct, and the construct was immobilized on a
glass surface for single-molecule imaging. DNA constructs were labeled as previously
described [31, 117]. Briefly, PAGE purified DNA oligos (30 base pairs in length) with
biotin and/or amine modifications at the ends were obtained from Eurofins Operon.
Amine-modified oligos were labeled post-synthesis with amine reactive Alexa Fluor
647 (Life Technologies, A20006) following the manufacturer’s protocol. Dye-labeled
oligos were purified using reverse-phase HPLC. Complimentary strands of DNA, one
with a biotin label and the other with a fluorescent label, were annealed to form fluo-



4

76 4. QUANTITATIVE LOCALIZATION MICROSCOPY

rescent biotinylated dsDNA. Annealing was carried out by mixing equimolar amounts
of the two complimentary strands in 10mM Tris-Cl (pH 7.5), 50mM NaCl, heating for
60s at 90◦C, and cooling to room temperature during ∼1 hr.

PREPARATION OF FLUORESCENT SECONDARY ANTIBODIES, NANOBODIES, AND NEU-
TRAVIDIN

Donkey anti-mouse secondary antibodies (Jackson ImmunoResearch # 715-005-150),
anti-GFP camelid antibody fragments (a.k.a. ”Nanobodies”, Chromotek, GT-250), and
Neutravidin tetramers (Life Technologies, A2666) were labeled with amine-reactive
Alexa Fluor 647 according to the manufacturer’s protocol. Briefly, unlabeled antibod-
ies, nanobodies, or neutravidin were mixed with amine reactive dye in a sodium bi-
carbonate buffer (0.1 M, pH 8.5), and the labeling reaction was left to proceed at room
temperature for 30 min. The labeled product was separated from unreacted dye by
running the reaction mixture over a gel filtration column (Illustra NAP-5 column, GE
Healthcare), and eluting in PBS. The labeled product was stored at 4◦C in PBS. The
degree of labeling (DOL) of the antibodies, nanobodies, or neutravidin was measured
using a UV/Vis spectrophotometer. The DOL was adjusted by varying the amount of
dye that was added to the reaction.

FCS CHARACTERIZATION OF FLUORESCENT NANOBODIES, NEUTRAVIDIN, AND SEC-
ONDARY ANTIBODIES

The fluorescence lifetime and brightness per particle of fluorescent antibodies, nanobod-
ies, and neutravidin were measured using a commercial FCS spectrometer (Evotec
FCS plus spectrometer, Evotec Technologies, Hamburg, Germany). This instrument
has been described in detail previously[126]. Samples were diluted in PBS or in MEA
imaging buffer (see below) and loaded into 96-well plates. The sample was illumi-
nated with a pulsed 633nm laser diode (Picoquant) and imaged using an Olympus
60X 1.2NA water immersion objective and a confocal detection scheme. Fluores-
cence intensity traces were recorded and analyzed using the Evotec FCS++ analysis
software. This yielded measurements of fluorescence brightness per particle and flu-
orescence lifetime for each sample.

SINGLE MOLECULE IMAGING OF IMMOBILIZED DNA AND NEUTRAVIDIN

The labeled dsDNA was immobilized on glass coverslips via a biotin-streptavidin link-
age. A biotinylated BSA solution (1.0 mg/mL, Sigma Aldrich) was first added to the
coverslip, followed by 0.25 mg/mL streptavidin (Life Technologies), and finally the
DNA sample at a low concentration (∼30 pM) in order to obtain a low surface den-
sity of DNA molecules such that individual molecules were well separated and op-
tically resolvable from each other. The surface was rinsed with 10mM Tris-Cl (pH
7.5), 50mM NaCl solution prior to the addition of each reagent. MEA imaging buffer,
described below, was added to the sample prior to imaging. Single molecule Neutra-
vidin samples were prepared in a similar way. A biotinylated BSA solution was first
added to the coverslip, followed by rinsing with Tris buffer, and then the neutravidin
sample was added at a low concentration (∼50 pM). Following a second rinsing step,
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the surface density of labeled neutravidin molecules was low enough such that indi-
vidual molecules were well separated and optically resolvable from each other. MEA
imaging buffer, described below, was added to the sample prior to imaging.

IMAGING BUFFER

All imaging experiments, including measurements of single molecule switching and
STORM imaging, were carried out in MEA imaging buffer as previously described[31,
117]. The imaging buffer consists of 50mM Tris-Cl (pH 8.0), 10mM NaCl, 10% Glucose
(w/v), 10mM β-mercaptoethylamine (pH 8.5, Sigma, 30070), and 1% of an enzymatic
oxygen scavenger system stock solution. The oxygen scavenging system was added to
the buffer immediately before use. The oxygen scavenger stock solution was prepared
by mixing glucose oxidase powder (10 mg, Sigma, G2133) with catalase (50 μL, 20
mg/mL, Sigma, C30) in PBS (200 μL), and centrifuging the mixture at 13.000 rpm for
1 minute.

FLUORESCENT STAINING OF CULTURED CELLS

For experiments involving actin imaging, Vero cells were plated on coverslips and
fixed in 4% paraformaldehyde for 10 minutes at room temperature. The cells were
permeabilized in 0.1% triton in PBS for 5 minutes, and then washed 3 times with
blocking buffer (2% BSA in PBS) for 5 minutes. Cells were then labeled with biotin-xx
phalloidin (Life Technologies, B7474) at 1:50 dilution in blocking buffer for 1 hour.
Cells were rinsed with PBS 3 times for 5 minutes, and then labeled with fluorescent
neutravidin (DOL 1.28) at a high dilution in blocking buffer for 1 hour. The cells were
rinsed in PBS before mounting in imaging buffer and imaging.

For experiments involving tubulin imaging, Ptk2 cells were fixed with ice-cold
methanol for 4 minutes, before washing 3 times for 5 minutes in blocking buffer. Cells
were labeled with mouse anti-tubulin primary antibodies (Sigma T6074) at 1:100 di-
lution in PBS for 1 hour at room temperature, followed by 3 washes for 5 minutes in
blocking buffer. The secondary antibody was added at a high dilution in blocking
buffer for 1 hour. The sample was rinsed in PBS before mounting in imaging buffer
and imaging.

For fluorescent imaging of Nup153, Vero cells were fixed, permeabilized, and blocked
as described above for the case of actin imaging. Cells were labeled with mouse anti-
Nup153 primary antibodies (Abcam ab24700) at 1:100 dilution in PBS for 1 hour at
room temperature, followed by 3 washes for 5 minutes in blocking buffer. The sam-
ple was inclubated with the secondary antibody in blocking buffer for 1 hour. The
sample was rinsed in PBS before mounting in imaging buffer and imaging.

For the NPC staining of Seh1, a Hela Kyoto cell line stably expressing an siRNA-
resistant version of the human Seh1 transcript tagged with mEGFP was established by
selection of cells transfected with pmEGFP-Seh1-s37879res[127] with 1 mg/mL Ge-
neticin (Life Technologies). To increase the degree of replacement of the endogenous
protein with the mEGFP-tagged version, the cells were repeatedly transfected every
48 hours over the course of 12 days with Silencer Select siRNA s37879 against Seh1
(Life Technologies) by solid phase transfection on siRNA-coated 24-well plates (for
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details on the coating procedure see Szymborska et al.[127]). After knock down, the
cells were transferred onto cover slips, allowed to attach and processed for staining
with Alexa Fluor 647-coupled anti-GFP nanobody as described before[127]. For imag-
ing we chose cells with low cytoplasmic GFP signal and excluded cells with aberrant
nuclear shape.

MICROSCOPE

All imaging measurements were performed using a custom built inverted fluores-
cence microscope, similar to that described previously[63]. To summarize, an in-
verted fluorescence microscope stand (Olympus IX71) was fitted with a 100X oil-
immersion objective lens (Olympus, UPLANSAPO100XO) which enabled efficient de-
tection of single fluorophores. A custom-built focus lock system based on the reflec-
tion of an infra-red laser from the sample was used to maintain sample focus during
all measurements. For STORM imaging, photo-switchable Alexa Fluor 647 was ex-
cited using 642 nm light, and in some measurements the sample was also exposed to
405 nm light to increase the activation rate of switching. A solid-state diode laser
(Oxxius) was used to generate 405 nm light, and a fiber laser (MPB Communica-
tions, 2RU-VFL-P-1500-642) was used to generate 642 nm light. The laser illumina-
tion was configured such that the illumination angle could be varied between an epi-
illumination geometry and a total internal reflection (TIRF) illumination mode. For
STORM data acquisition, the sample was illuminated with oblique illumination (not
TIRF) for reduced background signal. Fluorescence emission of Alexa Fluor 647 was
filtered using a dichroic mirror (Chroma, Z660DCXRU) and a bandpass emission fil-
ter (Chroma, ET700/75). Fluorescence was detected using an EMCCD camera (Andor
Technology, Ixon DU897).

IMAGING OF IGE
RBL cells were seeded on aminosilane coverslips in Lab-Tek eight-well chambers (Nunc).
The cells were then incubated for 60 min. at 37◦C with 1 μg/mL Alexa Fluor 647-
conjugated IgE with a dye/antibody ratio of 1.5. Subsequently, cells were rinsed thrice
for 5 min. in Phosphate Buffered Saline (PBS). Then, the cells were fixed in 4.0%
(wt/vol) paraformaldehyde and 0.2% glutaraldehyde in phosphate-buffered saline
(PBS) for 60 min at room temperature, after which they were rinsed twice for 5 min.
with 10 mM Tris and stored in PBS for imaging. Right before imaging, the cells were
immersed in an imaging buffer consisting of 450 μL 10% (w/v) glucose in 50 mM
Tris, 10 mM NaCl, pH 8.5; 50 μL oxygen scavenger buffer [14040U catalase (C9322-
1G, Sigma Aldrich), 1688U glucose oxidase (G2133-50KU, Sigma Aldrich) in 50 mM
Tris, 10 mM NaCl, pH 8.5; 5 μL 1M mercaptoethylamine (MEA), pH 8.5. The IgE
samples were imaged with an epifluorescence microscope setup, consisting of an in-
verted microscope (IX71, Olympus), a 1.45-NA TIRF objective (U-APO 150X NA 1.45,
Olympus), a 637-nm diode laser (HL63133DG, ThorLabs, with home built collima-
tion optics) and an EMCCD camera (iXon 897, Andor) with EM gain set to 200. Sam-
ples were mounted into a 3D piezo stage (Nano-LPS100, Mad City Labs). For sample
illumination and emission, a quad-band dichroic and emission filter set was used
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(FF01-446/523/600/677-25, Semrock). Images were taken in a TIRF configuration at
57 frames per second for 33,000 frames.

4.4.2. DATA ANALYSIS METHODS

LOCALIZATION ANALYSIS

Identification of regions of interest and estimation of the fluorophores’ position fol-
lowed established methods[15, 31, 36]. Localizations corresponding to the same acti-
vation event were subsequently combined by grouping spatially nearby localizations
in subsequent frames

into single localization events. ‘Nearby’ is defined here as having a distance less
than five times the sum of the localization uncertainty of the two to-be merged lo-
calization events. The tolerance in the distances was chosen relatively high because
the risk of accidentally combining localizations from different nearby molecules was
low in view of the sparsity of the image. The center position of the grouped localiza-
tions was determined as the weighted average of the localizations with the inverse of
the localization variances as weights. Localizations were filtered based on the photon
count per localization before and after combining localizations per activation event,
photons per activation event, activation event duration and fitted PSF full width at
half maximum. An overview of filter values is shown in Table 4.1. Photon count
thresholds were chosen relatively high to filter out localizations due to sample con-
taminations for obtaining accurate results in the cluster analyses. Localizations were
finally corrected for lateral stage drift using frame-by-frame cross-correlation, as doc-
umented elsewhere[27, 31].

Table 4.1: Parameters used for filtering localization events. Localizations were filtered for the minimum
number of photons per event before grouping, minimum number of photons per event after grouping, the
maximum duration of the event after grouping, and the maximum width (FWHM) of the Gaussian fitted to
the spot.

Dataset Photons Photons Duration Width (nm)
before after (frames)

DNA oligomers 500 5,000 100 377
Nuclear Pore Complex 1,200 2,000 20 283
Neutravidin 1,200 3,000 20 283
Tubulin 500 5,000 100 377

ESTIMATING THE CORRELATION PARAMETER Q
The first step towards estimating the number of localizations per marker consists of
estimating the spurious correlation parameter Q at various points in time; typically
30 time points were used. The first steps of this estimation of Q were the same as done
in chapter 2 and culminate in the determination of the numerator ν

(
q
)

of the Fourier
Ring Correlation (FRC) for spatial frequencies q = 1/L,2/L, . . . (L is the size of the field
of view). Briefly, the full set of estimated fluorophore positions is divided into two in-
dependent subsets. This yields two sub-images f1 (�r ) and f2 (�r ), where�r denotes the
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spatial coordinates. Subsequently the Fourier transforms of those images, f̂1
(
�q
)

and
f̂2
(
�q
)

respectively, are computed. The statistical correlation between those Fourier
transforms is then evaluated over pixels on the perimeter of circles in Fourier space
with radius q :

ν
(
q
)= 1

2πqL

∑
�q∈circle

f̂1
(
�q
)

f̂2
(
�q
)∗, (4.5)

At high spatial frequencies q , ν
(
q
)

is dominated by spurious correlations due to mul-
tiple localizations of the same site. Thus, the spurious correlation parameter Q is
computed by fitting ν

(
q
)

with the following model function:

H
(
q ;σm ,Δσ

)= 1√
1+8π2Δσ2q2

exp

(
4π2σ2

m q2

1+8π2Δσ2q2

)
sinc(q)2. (4.6)

This function describes the theoretical decay of the spurious correlations, assuming
that the uncertainties σ of localizations follow a normal distributed with unknown
mean σm and standard deviation Δσ.

The actual fit to ν
(
q
)

is obtained using a novel method which involves the mini-
mization of the cost function:

Cν (Q,σm ,Δσ) =−∑
q

exp

(
−
(
ν(q)−QH(q ;σm ,Δσ)

)2

d 2Q2H(q ;σm ,Δσ)2

)
(4.7)

where d was chosen to be 0.1. The rationale behind this cost function is that it pro-
motes parameters for whichν(q)/H(q) is constant for a large range of spatial frequen-
cies. This objective was used in chapter 2 as a requirement for the manually provided
parameters σm and Δσ. The search for parameters Q, σm and Δσ that minimize Cν

was done with the Nelder-Mead simplex algorithm. This algorithm was initialized
two times, where the starting values for the second optimization were randomly per-
turbed with respect to the first.

For each time t , this procedure of dividing localizations into subsets, computing
ν(q) and fitting it to obtain values for Q, σm and Δσ was repeated five or ten times
with randomly perturbed initial values for σm and Δσ. The median of the different
estimates of Q(t ) at each time t was then taken to obtain a robust estimation result
for Q(t ).

ESTIMATING THE NUMBER OF LOCALIZATIONS PER LABELED SITE

After the correlation parameter Q(t ) is obtained at various time points t , the next step
in estimating the number of localizations per labeled site M involves a simultaneous
model fit to Q(t ) and the cumulative number of localizations N (t ). This is achieved
by minimizing the cost function:

CQ (M∞,kbl , N∞) =
∑

t

{
(N (t )−Nmodel (t ))2

Nmodel (t )Nmodel (tend )
− (Q(t )−Qmodel (t ))2

Qmodel (tend )2

}
(4.8)
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where the sum runs over all times t for which the spurious correlation parameter was
estimated, tend is the total acquisition time, and:

Nmodel (t ) = N∞
(
1−exp(−kbl t )

)
(4.9)

Qmodel (t ) = 2(M∞−1)

(
1− kbl t

exp(kbl t )−1

)
+μM∞

(
1−exp(−kbl t )

)
. (4.10)

Optimizing CQ was again performed using the Nelder-Mead simplex algorithm. The
parameter μ was a separate manual input for the optimization for the purpose of this
work, obtained from a calibration detailed below. The fitted values M∞ and kbl are
used to obtain the final estimate:

M(t ) = 〈S〉M∞
(
1−exp(−kbl t )

)
(4.11)

where the average number of emitters per labeled site 〈S〉 was obtained from the
same calibration as μ. Potentially, μ could be obtained from a fit of Q(t ), completely
eliminating the need for calibration experiments. It turned out, however, that for the
datasets we considered this could not be done reliably, possibly due to residual errors
in extracting Q(t ) from the data or flaws in the switching model.

CALIBRATION OF THE LABELING STOICHIOMETRY

The stoichiometry parameter μ was calibrated for the Neutravidin data as follows.
The localizations obtained for the datasets of Neutravidin on glass were clustered as
described below. Subsequently, clusters were discarded if there was another cluster
within a square region of 7 CCD pixels around each of them. For the remaining clus-
ters, the site was localized in the first frame of the raw sequence to accurately deter-
mine the number of signal photons B of the site in that frame. If we assume that each
fluorophore is active during the entire first frame, then computing the average and
variance of the brightness over the found clusters provides the following equalities:

〈B〉 = 〈
Bsi ng l e

〉〈S〉 (4.12)

〈
B 2
〉

〈B〉 =
〈

B 2
si ng l e

〉
〈

Bsi ng l e
〉 +〈Bsi ng l e

〉
μ (4.13)

Here, Bsi ng l e is the brightness of a single emitter. For small DOL values it is as-
sumed that the labeling is described by Poisson statistics giving μ ≈ DOL and 〈S〉 ≈
DOL/(1−exp(−DOL)). A linear fit on the data points for 〈B〉 with DOL < 2 gives val-
ues for

〈
Bsi ng l e

〉
, which are subsequently used to find values for 〈S〉 for all for all DOL-

values. Similarly, a linear fit on the data points for
〈

B 2
〉

/〈B〉 for DOL < 2 is used to find
the parameters needed to compute μ for all DOL-values. It appears that the value for〈

Bsi ng l e
〉

fitted from Eq. 4.13 is a factor 1.4 higher than the value fitted from Eq. 4.12,
possibly due to a bias in the clustering procedure or due to a breakdown of the Pois-
son assumption. Bleaching in the initial switching-off phase of the data acquisition
may introduce a small bias in the calibration procedure towards higher values of 〈S〉
and μ (relative error at most about 1/M∞).
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In an alternative calibration approach, the markers were analyzed in solution with
Fluorescence Correlation Spectroscopy (FCS). The brightness per marker can be an-
alyzed to find values for 〈S〉 just as done for the cluster brightness analysis. Val-
ues for the stoichiometry parameter μ are found by inverting the Poisson relation
〈S〉 =μ/((1−exp(−μ))), which gives rise to biases in the quenching regime DOL > 2.

CLUSTER ANALYSIS

The ground truth for the distribution of the number of emitters per labeled site for
the data of Fig. 4.1c (DNA oligomers) and Fig. 4.5a (neutravidin tetramers) was estab-
lished from the following steps. First, an image was created in which each localization
was rendered as a Gaussian blob with a maximum of 1 and a standard deviation equal
to the localization uncertainty obtained from the localization algorithm. The pixel
size in these images was 8 nm. Subsequently, these images were thresholded at a
value of 10−3, 8-connected regions of nonzero pixels were identified and the localiza-
tions in these regions were assigned to clusters. For each cluster, the center position
was determined using weighted-least squares estimation. The sum of squared Maha-
lanobis distances from the localizations to their cluster centers was then computed
and clusters where this sum was significantly larger than expected for a sum of Gaus-
sian localization errors (at statistical significance level of 10−3) were discarded for fur-
ther analysis. Finally, clusters without localizations before a specified time threshold
were discarded on the suspicion that they were due to sample contaminations rather
than fluorophores; for the DNA oligomer data the threshold was at 10,000 frames, for
the Neutravidin data at the 95 percentile value of the times between localizations in
clusters. The remaining clusters of localizations were considered to be localizations
of the same labeled site.

For the somewhat denser tubulin samples a different clustering method was found
more suitable, based on nearest-neighbor linking. Localization events are considered
as belonging to the same cluster if their relative distance |�r | < R ≈ 2σ, with σ the local-
ization uncertainty. The likelihood of localizing an emitter at position�r from the true
emitter position is a Gaussian in x and y with standard deviation σ. Therefore the like-
lihood of two localizations of the same emitters at relative position�r is a Gaussian in
x and y with standard deviation

�
2σ, as follows by convolution of the two individual

Gaussian likelihood functions. It follows then that the likelihood of two localizations
of the same emitters at relative distance |�r | < R is:

P (|�r | < R) = 1−exp
(−R2/4σ2) (4.14)

so, for R = 2σ we find a likelihood for correctly linking two localizations of the same
emitter P (|�r | < R) = 1−1/e = 0.63. As typically each cluster consists of ∼ 10 localiza-
tions most clusters will be correctly detected. After initial nearest-neighbor linking
clusters with less than 2 or more than 50 localizations are filtered out. Subsequently,
the distribution of localization uncertainties of the detected clusters is evaluated.
Clusters with a localization uncertainty σ > σm + 2Δσ, with σm and Δσ the mean
and standard deviation of the distribution of localization uncertainties, are removed.
Next, the correlation Q values were evaluated on the filtered set of localizations and
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compared to the Q values from the found clusters. The value of R was chosen to op-
timize the correspondence between the two sets of Q values, and was found to be
R = 12 nm for the datasets at hand. The distribution of cluster based localization un-
certainties for this value of R turned out to have an average and standard deviation
with σm = 5.1 nm and Δσ = 1.9 nm, i.e. close to R = 2σ. This value is somewhat
higher than the precision of 3.0 nm found from the localization procedure, probably
due to residual drift correction errors.
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4.A. APPENDIX

4.A.1. THREE-STATE ACTIVATION-BLEACHING MODEL FOR SINGLE FLU-
OROPHORES

We consider switching between three states, the on-state, the off-state, and the bleached
state. The switching between the on and off-states is modelled with the Poisson dis-
tribution; i.e. in the absence of photobleaching the number of transitions from the
off-state to the on-state P sw

m satisfies:

P sw
m = r m

m!
exp(−r ) , (4.15)

where r = kswt with t the time and ksw the switching rate, which is related to the life-
times of the on and off-states by 1/ksw = τon +τoff. The bleaching is governed by the
geometrical distribution, namely the probability for bleaching at the m-th switching
cycle is:

P bl
m = b (1−b)m−1 . (4.16)

where b = kbl/ksw is the probability for bleaching during one cycle, with kbl the ef-
fective bleaching rate. Intuitively, for small time scales the statistics will be close to
the activation dominated Poisson-model, whereas for large times it will be close to
the bleaching dominated geometric distribution. For intermediate times t the prob-
ability for m activation cycles is the sum of two terms. The first is the product of
the probability P sw

m of having m switching cycles and the probability (1−b)m that the
emitter has not bleached in the m switching cycles. The second term is the product of
the probability P bl

m of bleaching during the m-th switching cycle and the probability
of having at least m switching cycles. In mathematical terms (for m ≥ 1):

Pm = (1−b)m r m

m!
exp(−r )+b (1−b)m−1

∞∑
n=m

r n

n!
exp(−r ). (4.17)

For m = 0 bleaching does not play a role, so the probability is then given by the Pois-
son term only:

P0 = exp(−r ) . (4.18)

It may be verified that
∞∑

m=0
Pm = 1, (4.19)

so that conservation of probability is satisfied. A rigorous derivation of these expres-
sions for Pm is presented in the next subsection.

Interestingly, the probability distribution of the number of activation cycles m
is equivalent to the distribution of the minimum of two random variables mPoisson

and mgeometric, where mPoisson is Poisson distributed with expectation value r and
mgeometric follows a geometric distribution with expectation value 1/b.
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The moments of this probability distribution can be calculated from the moment
generating function:

G (a) =
∞∑

m=0
Pm exp(am)

= exp(−r )+
∞∑

m=1

(
(1−b)exp(a)

)m r m

m!
exp(−r )

+b exp(a)
∞∑

m=1

(
(1−b)exp(a)

)m−1
∞∑

n=m

r n

n!
exp(−r )

= exp
(
r (1−b)exp(a)− r

)
+b exp(a)

∞∑
n=1

1− ((1−b)exp(a)
)n

1− (1−b)exp(a)

r n

n!
exp(−r )

= b exp(a)+ (1−exp(a)
)

exp
(
r (1−b)exp(a)− r

)
1− (1−b)exp(a)

. (4.20)

The moments follow from the derivatives of this function at a = 0:

M1 (t ) =
∞∑

m=1
mPm = dG (a)

d a

∣∣∣∣
a=0

= 1

b

[
1−exp(−r b)

]
, (4.21)

M2 (t ) =
∞∑

m=1
m2Pm = d 2G (a)

d a2

∣∣∣∣
a=0

= 1

b

[
1−exp(−r b)

]+ 2(1−b)

b2

[
1−exp(−r b)− r b exp(−r b)

]
, (4.22)

giving a correlation parameter Q as:

Q (t ) = M2 (t )−M1 (t )

M1 (t )

= 2(1−b)

b

[
1− r b

exp(r b)−1

]
. (4.23)

If we define the asymptotic value M∞ = limt→∞ M1 (t ) = 1/b then the results for the
average number of activations and for the correlation parameter Q may be written as:

M1 (t ) = M∞
[
1−exp(−kblt )

]
, (4.24)

Q (t ) = 2(M∞−1)

[
1− kblt

exp(kblt )−1

]
.. (4.25)

For kblt 
 1 we find:

M1 (t ) ≈ kswt , (4.26)

M2 (t )−M1 (t ) ≈
(
1− 1

M∞

)
(kswt )2 , (4.27)
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which is consistent with Poisson statistics provided that kbl 
 ksw. For kblt � 1 we
find constant values:

M1 (t ) ≈ M∞, (4.28)

M2 (t )−M1 (t ) ≈ 2M∞ (M∞−1) , (4.29)

consistent with a geometrical distribution with bleaching probability 1/M∞ = kbl/ksw

per activation cycle. These limiting cases fit with the a priori expectations.

4.A.2. DERIVATION OF MIXED POISSON-GEOMETRIC PROBABILITY DIS-
TRIBUTION

This subsection presents a derivation of the mixed Poisson-geometric probability dis-
tribution in Eq. 4.17.

The treatment is based on a generalization of the asymmetric Random Telegraph
Signal (RTS) model [86], which describes switching between two states. Here a third
state is introduced, representing the bleached state, which can in principle be reached
from both the on-state and the off-state of the emitter. So, the starting point is the
three-state model with state 0 (‘off-state’), state 1 (‘on state’), and state 2 (bleached
state) with four transition rates k01 (0 → 1), k10 (1 → 0), k02 (0 → 2), and k12 (1 → 2).
The total decay rate of state 0 is thus k0 = k01 +k02, and the decay rate of state 1 is
thus k1 = k10 + k12. The lifetimes of the on and off states are thus τon = 1/k1 and
τoff = 1/k0, generally τoff � τon. Suppose the system starts out in state 0 at time t = 0.
The probability that the emitter remains in state 0 and never is activated is:

g0 (t ) = exp(−k0t ) , (4.30)

for t ≥ 0. The probability that the system makes a single jump to state 1 in this time
interval is:

g1 (t ) =
∫t

0
d t ′ g0

(
t ′
)

k01 exp
(−k1

(
t − t ′

))
, (4.31)

the probability that the system makes two jumps and returns to state 0 is:

g2 (t ) =
∫t

0
d t ′ g1

(
t ′
)

k10 exp
(−k0

(
t − t ′

))
. (4.32)

The probability that the emitter bleaches directly to state 2 is:

h1 (t ) =
∫t

0
d t ′ g0

(
t ′
)

k02, (4.33)

and the probability it bleaches to state 2 after one transition to state 1 is:

h1 (t ) =
∫t

0
d t ′ g1

(
t ′
)

k12. (4.34)

Clearly, these probabilities can be calculated by iteration. This is accomplished most
easily by application of a Laplace transform:

ĝn (s) =
∫∞

0
d t gn (t )exp(−st ) . (4.35)
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If so desired, a transition to the Fourier domain can be made by the substitution s →
ε+iω and taking the limit ε→ 0 after the inverse (Fourier) transform. We find that for
n = 2m even and n = 2m +1 odd different relations hold:

ĝ2m (s) = k10

k0 + s
ĝ2m−1 (s) , (4.36)

ĝ2m+1 (s) = k01

k1 + s
ĝ2m (s) , (4.37)

ĥ2m (s) = k02

s
ĝ2m (s) , (4.38)

ĥ2m+1 (s) = k12

s
ĝ2m+1 (s) . (4.39)

Starting from ĝ0 (s) = 1/(k0 + s) this leads to the solutions:

ĝ2m (s) = βm

k0 + s
, (4.40)

ĝ2m+1 (s) = βm+1

k10
, (4.41)

ĥ2m (s) = k02β
m

(k0 + s) s
, (4.42)

ĥ2m+1 (s) = k12β
m+1

k10s
, (4.43)

with:

β= k01k10

(k0 + s) (k1 + s)
. (4.44)

The Laplace transform of the probability that the molecule is activated m times dur-
ing the time interval t now follows as:

q̂m (s) = ĝ2m−1 (s)+ ĝ2m (s)+ ĥ2m−1 (s)+ ĥ2m (s)

= k10 (k02 + s)+ (k12 + s) (k0 + s)

k10 (k0 + s) s
βm

= (k0 + s) (k1 + s)−k01k10

k10 (k0 + s) s
βm

= k1 + s

k10s

(
1−β

)
βm , (4.45)

and:

q̂0 (s) = ĝ0 (s)+ ĥ0 (s) = k02 + s

(k0 + s) s
. (4.46)

It may be checked that the sum satisfies:

∞∑
m=0

q̂m (s) = 1

s
, (4.47)
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giving that:
∞∑

m=0
qm (t ) = θ (t ) , (4.48)

implying that conservation of probability applies.
Only the subset of molecules that is activated at least once is accessible to analysis.

It follows that we need the renormalized probability distribution:

Pm (t ) = qm (t )

1−q0 (∞)
, (4.49)

for m ≥ 1 and P0 (t ) = 0. Here q0 (t ) can be found via an inverse Laplace transform:

q0 (t ) = k02

k0
+
(
1− k02

k0

)
exp(−k0t ) , (4.50)

giving q0 (∞) = k02/k0 and a normalization factor 1/
(
1−q0 (∞)

)= k0/k01 leading to a
probability distribution (in the Laplace domain):

P̂m (s) = k0 (k1 + s)

k01k10s

(
1−β

)
βm , (4.51)

for m ≥ 1.
An important simplification can be made for times t much larger than 1/k1 = τon.

In that case we may use the approximation:

P̂m (s) = k0k1

k01k10s

(
1−β

)
βm , (4.52)

with:

β = k01k10

k0k1 + (k0 +k1) s
, (4.53)

1−β = k0k1 −k01k01 + (k0 +k1) s

k0k1 + (k0 +k1) s
. (4.54)

At this point it is convenient to introduce the two physically relevant rates/time scales,
namely the activation and bleaching rates, defined by:

ksw = k0k1

k0 +k1
, (4.55)

kbl = k0k1 −k01k10

k0 +k1
= k01k12 +k10k02 +k02k12

k0 +k1
. (4.56)

The activation time constant is simply τsw = 1/ksw = τon + τoff. We also find that
k01k10/k0k1 = 1−kbl/ksw. Now the probability distribution can be written as:

P̂m (s) = ksw (ksw −kbl)
m−1 (kbl + s)

s (ksw + s)m+1 , (4.57)
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This expression may be rewritten in a form that is more amenable to inverse Laplace
transform:

P̂m (s) =
(
1− kbl

ksw

)m−1 km
sw

(ksw + s)m+1 + kbl

ksw

(
1− kbl

ksw

)m−1 km+1
sw

s (ksw + s)m+1

=
(
1− kbl

ksw

)m−1 km
sw

(ksw + s)m+1

+ kbl

ksw

(
1− kbl

ksw

)m−1[1

s
−

m∑
n=1

kn
sw

(ksw + s)n+1

]
, (4.58)

The inverse Laplace transform now gives:

Pm (t ) =
(
1− kbl

ksw

)m−1 (kswt )m

m!
exp(−kswt )

+ kbl

ksw

(
1− kbl

ksw

)m−1[
1−

m∑
n=0

(kswt )n

n!
exp(−kswt )

]

=
(
1− kbl

ksw

)m (kswt )m

m!
exp(−kswt ) (4.59)

+ kbl

ksw

(
1− kbl

ksw

)m−1 ∞∑
n=m

(kswt )n

n!
exp(−kswt ) ,

in agreement with the results of the previous subsection.

4.A.3. EFFECT OF LABELING STOICHIOMETRY
Suppose there are K labeling sites with Si (i = 1,2. . .K ) fluorescent emitters per site
which have Mi j activations ( j = 1,2. . .Si ). The number of activations per site is then:

Mi =
Si∑

j=1
Mi j . (4.60)

Suppose the statistics of the number of emitters per site is independent of the site
and has moments 〈S〉 and 〈S2〉. Suppose furthermore that the statistics of the num-
ber of activations of each emitter is independent of emitter and site and gives rise to
moments according to the three-state model:

〈Mi j 〉 = M∞
[
1−exp(−kblt )

]
, (4.61)

〈M 2
i j −Mi j 〉 = 2M∞ (M∞−1)

[
1−exp(−kblt )−kblt exp(−kblt )

]
, (4.62)

for all i and j and with M∞ = ksw/kbl. The Q-parameter determined from the spatial
correlation analysis is given by:

Q = 〈Mi
2 −Mi 〉
〈Mi 〉

, (4.63)
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with:
〈Mi 〉 = 〈S〉〈Mi j 〉, (4.64)

and:

〈Mi
2〉 = 〈S (S −1)〉〈Mi j 〉2 +〈S〉〈Mi j

2〉.

Combining all results gives:

Q = 2(M∞−1)

[
1− kblt

exp(kblt )−1

]
+μM∞

[
1−exp(−kblt )

]
, (4.65)

with:

μ= 〈S2〉−〈S〉
〈S〉 , (4.66)

a number characterizing the statistics of the number of emitter per site. The second
term on the r.h.s. is new compared to the previous analysis of the statistics per emit-
ter. Clearly, there are now three parameters that determine Q as a function of t , the
effective bleaching rate kbl, the asymptotic value of the number of activations per
emitter M∞ and the labeling stoichiometry parameter μ. The expected total number
of activations is:

〈N〉 =
K∑

i=1

Si∑
j=1

Mi j = K 〈S〉〈Mi j 〉

= K 〈S〉M∞
[
1−exp(−kblt )

]
. (4.67)

All that is lacking then to determine the number of labeling sites K is a connection
between 〈S〉 and μ. We consider now three examples in which there is a connection
between the mean and the variance of the statistical distribution of the number of
emitter per site.

The first example refers to having a monomer/dimer on each site with probabil-
ities P1 = 1−β and P2 = β. It follows that then 〈S〉 = 1+β and 〈S2〉 = 1+3β so that
μ = 2β/

(
1+β

)
. Measurement of μ from Q thus gives a value for β = μ/

(
2−μ

)
and

hence for 〈S〉 = 2/
(
2−μ

)
. So, the average degree of monomerization/dimerization

can potentially be measured in this way, in addition to the total number of labeling
sites.

The second example is for a Poisson distributed number of emitters per site. This
is a model for primary antibody labeling where multiple fluorophores are attached to
the antibody, under the condition that there is no significant fluorescence quenching.
The averages are over the subset of sites with at least one emitter. This gives 〈S〉 =
η/
(
1−exp(−η)

)
and 〈S2 −S〉 = η2/

(
1−exp(−η)

)
with η the Poisson rate, so that μ= η.

Possibly, the Poisson-rate can thus be measured directly from the fit of the measured
Q as a function of t to the model. In case η is large compared to unity then we simply
have 〈S〉 =μ= η.

The third example is a model for secondary antibody labeling, where multiple
secondaries can bind to a single primary, and where multiple emitters are attached
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to each secondary, i.e. now S = ∑n
i=1 Ti with n the number of secondaries and the

Ti the number of emitters per secondary. We will analyze the case where the n are
Poisson distributed with rate μ1 and the Ti with rate μ2. The probability distribution
of S is given by:

P (S) =
∞∑

n=0
P (S|n)P1 (n) , (4.68)

P (S|n) =
∞∑

T1=0
. . .

∞∑
Tn=0

P2 (T1) . . .P2 (Tn)δ

(
S −

n∑
i=1

Ti

)
, (4.69)

P1 (n) = μn
1 exp

(−μ1
)

n!
, (4.70)

P2 (T ) = μT
2 exp

(−μ2
)

T !
. (4.71)

We find that the probability of observing zero fluorophores is:

P (0) =
∞∑

n=0
P (0|n)P1 (n) =

∞∑
n=0

μn
1 exp

(−μ1
)

n!
exp

(−nμ2
)

= exp
(−μ1

(
1−exp

(−μ2
)))

. (4.72)

Restricting to the observed cases S > 0 implies we have to normalize the probability
distribution by a factor 1/(1−P (0)) and sum only over values S > 0. This leads to:

〈S〉 = 1

1−P (0)
〈n〉〈T 〉, (4.73)

〈
S2〉 = 1

1−P (0)

[〈n〉〈T 2〉+〈n(n −1)〉〈T 〉2] , (4.74)

giving:

μ= 〈T 2〉
〈T 〉 −1+〈T 〉

[〈n2〉
〈n〉 −1

]
. (4.75)

Here, the angular brackets indicate averaging over the individual probability distri-
butions for n and for the Ti . For the Poisson-distribution at hand this gives:

〈S〉 = μ1μ2

1−exp
(−μ1

(
1−exp

(−μ2
))) , (4.76)

μ = μ2
(
μ1 +1

)
. (4.77)

Generally prior knowledge on the distribution of secondaries per primary and the
distribution of fluorophores per secondary is needed to proceed. It appears that the
final counting result is not very sensitive to details of the secondary to primary label-
ing stoichiometry, i.e. errors in the value of μ1 are largely compensated by opposite
errors in the estimated M∞, giving a relatively robust estimate for the number of lo-
calizations per primary antibody. This can be understood semi-quantitatively as fol-
lows. In case there is little bleaching the fitting of M∞ is dominated to a large extent
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by the switching regime kblt 
 1. Then it holds that:

〈M〉 ≈ 〈S〉M∞kblt , (4.78)

Q ≈ (
μ+1

)
M∞kblt . (4.79)

So, given the measured correlation parameter Q as a function of time and bleach rate
kbl, the product A = (

μ+1
)

M∞ is fixed for all values of μ. It then follows that the
estimate for the number of localizations per primary antibody is:

〈M〉 ≈ 〈S〉
μ+1

Akblt , (4.80)

so that the stoichiometry only affects the final counting estimate via the ratio:

ζ= 〈S〉
μ+1

= 〈S〉2〈
S2
〉 . (4.81)

It turns out that the functional dependence of ζ on μ2 hardly changes with μ1 for
the range of values 1 < μ1 < 5, with relative variations on the order of 10%. In fact,
the dependence of ζ on μ2 in the range of values 1 < μ2 < 5 is also rather weak. It
should be noted that the current analysis neglects quenching, but in case that can be
safely neglected, it does show that the counting analysis is robust against errors in the
stoichiometry calibration.

4.A.4. ESTIMATION OF CORRELATION PARAMETER AT HIGH LABELING

DENSITY
In samples with high labeling densities or with tightly clustered labeled molecules,
the Q-estimation may be prone to overestimation because it mistakes correlations
due to the sample’s spatial structure for correlations from repeated localization of
the same labeling site. Here we will analyze under which conditions this problem is
expected to occur.

The Q-estimation algorithm attempts to fit a model function H(q) to the FRC nu-
merator, which describes the decay in spatial correlations due to localizations of the
same labeling site. H(q) depends on the unknown spread of localizations of a single
labeling site (i.e. effective localization error) due to localization error, errors in the
correction for stage drift and the finite size of the labels, and is parameterized in Eq. 6
as:

H
(
q ;σm ,Δσ

)= 1√
1+8π2Δσ2q2

exp

(
− 4π2σ2

mq2

1+8π2Δσ2q2

)
, (4.82)

whereσm is the mean of the effective localization error andΔσ it’s standard deviation.
The FRC’s numerator ν(q) can be expressed as:

ν
(
q
)∝ (

N S(q)+Q
)

H(q), (4.83)

where the term S(q) relating to the sample’s spatial structure is equal to:

S
(
q
)= 1

K 2

∫
d 2q ′ ∣∣ψ̂(

�q ′)∣∣2 δ
(∣∣�q ′∣∣−q

)
2πq

, (4.84)
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with K the number of labeling sites and ψ̂
(
�q
)

the Fourier transform of the normalized
density of labeling.

The algorithm will have difficulties estimating σm and Δσ when the decay of
S(q)H(q) and QH(q) cannot be distinguished very well. This would occur if the decay
of S(q) is still larger than Q at the spatial frequency q = 1/2πσm where QH(q) starts
to decay appreciably. Thus, we have the criterion:

N S(1/2πσm) <Q. (4.85)

If we take as an example structure a line of length L and Gaussian cross-section
with full width at half maximum w , then we have [44]:

S
(
q
)≈ 1

πqL
exp

(
−π2q2w2

2log(2)

)
, (4.86)

leading to the criterion for the linear density of labeled sites:

ρl i n = K

L
< 1

σm

(
Q

2M
exp

(
w2

8log(2)σ2
m

))
. (4.87)

If the width of the filaments is on the same order as the width of the localization er-
ror distribution and Q ≈ M , it follows that there should be fewer than one site per
2σm/e ≈ 0.74σm . In a more typical scenario Q ≈ 1.5M and thus the criterion becomes
less than one per 0.5σm .

Similarly, for a line with a rectangular cross-section and width w we would have [44]:

S
(
q
)≈ 1

πqL

(
sin

(
πqw

)
πqw

)2

, (4.88)

and thus we get the criterion:

ρl i n < 1

σm

(
Q

2M

)(
sin(w/2σm)

w/2σm

)−2

, (4.89)

or if w equals the full width at half maximum of the localization error distribution
that ρl i n should be less than one site per 1.23σm (pessimistic case) or one per 0.82σm

(typical case).
Thirdly, if we have a bell-shaped structure that can be described by a Gaussian

with standard deviation a, then the number of sites K in the structure should satisfy:

K < Q

M
exp(a2/σ2

m). (4.90)

Finally, if we have a circular structure with a radius a and K sites, then

S(q) =
(
2

J1(2πqa)

2πqa

)2

, (4.91)
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and therefore we obtain the criterion

K < Q

M

(
2

J1(a/σm)

a/σm

)−2

. (4.92)

For a ≈σm this gives K < 1.3 (pessimistic case) or K < 1.9 (typical case). For a ≈ 2σm

this becomes K < 3 (pessimistic case) or K < 4.5 (typical case).

4.A.5. EFFECT OF FALSE NEGATIVE LOCALIZATIONS
False negative localizations refer to events where a fluorophore is activated during
an acquisition but this fluorescence does not lead to a successful localization by the
reconstruction algorithm. This may happen for example if nearby fluorophores are
simultaneously active or if the fluorophore is very dim or the event is very short. The
consequence of false negative localizations is that the number of localizations per flu-
orophore does not correspond anymore to the number of activation events. Below we
will analyze the consequences assuming that the probabilities for activation events to
result in a successful localization Pl oc are independent and the same for all events.

Firstly, let us consider what happens to the expected number of localizations per
fluorophore Ml oc :

〈Ml oc〉 = 〈〈Ml oc |M〉〉 = 〈MPl oc〉 = Pl oc 〈M〉 . (4.93)

Here, M denotes the number of activations per fluorophore. Similarly, we find that:〈
M 2

l oc

〉= 〈〈
M 2

l oc |M
〉〉= Pl oc (1−Pl oc )〈M〉+P 2

l oc

〈
M 2〉 , (4.94)

from which it follows that

Q →
〈

M 2
l oc −Ml oc

〉
〈Ml oc〉

= P 2
l oc

〈
M 2 −M

〉
Pl oc 〈M〉 = Pl ocQ. (4.95)

Another important consequence of false negative localizations is that a fraction
P0 of all fluorophores is never localized. This fraction is given by:

P0 =
∞∑

m=1
b (1−b)m−1 (1−Pl oc )m = b (1−Pl oc )

1− (1−b) (1−Pl oc )
(4.96)

Finally, it can be shown that the probability distribution for the number of local-
izations per fluorophore is given by the same expression as in Eq. 4.17, if the following
substitutions are made:

r → r (Pl oc +b (1−Pl oc ))) (4.97)

b → b

1− (1−b)(1−Pl oc )
= b

Pl oc +b (1−Pl oc )
(4.98)

If b = 1/M∞ is not too large, then effectively only M∞ appears to be reduced by a
factor Pl oc . However, because M becomes smaller by the same amount, the accuracy
of the estimate for M does not deteriorate much. For example, if Pl oc = 80% and
M∞ = 5 then the estimate for M would be off by 5%.



5
DATA FUSION OF IDENTICAL

PARTICLES FOR STOICHIOMETRY

INFERENCE

The previous chapter introduced a method to overcome overcounting problems with
reversibly switchable fluorophores. However, undercounting problems due to incom-
plete labeling of the sample were not addressed. Here we examine how undercounting
problems can possibly be overcome when many identical copies of well-defined macro-
molecular complexes are available. A data fusion approach is adopted to align differ-
ent complexes and count the number of localizations per subunit of each complex. This
allows us to infer the number of protein copies in each subunit, using the distribution
of localizations per fluorophore from our method in chapter 4. The required conditions
for accurate inference are investigated in a simulation study. We tested our method on
the Nup160 and Seh1 proteins in the nuclear pore complex (NPC). Although prior evi-
dence points to 32 copies of these proteins being present in the NPC, our method assigns
the highest probability to an hypothesis of 40 copies per NPC. We therefore conclude
that the given experimental conditions did not allow for the accurate application of
our method.

A manuscript for a research article based on this chapter is in preparation. Authors: Nieuwenhuizen, R.P.J.,
Bates, M., Rieger, B. & Stallinga, S.
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5.1. INTRODUCTION
The quantification method in chapter 4 was used to overcome overcounting prob-
lems with reversibly switchable fluorophores. However, that method could not ac-
count for undercounting due to incomplete labeling of binding sites. Because the
fraction of successfully labeled binding sites is unknown and hard to calibrate, this
limits the counting precision that can be achieved in practice.

Undercounting due to incomplete labeling does not only pose a problem for our
quantification method. Other methods for reversibly switchable fluorophores based
for example on kymograph analysis[67] or pair-correlation analysis[65, 66] are sim-
ilarly capable only of estimating the number of localizations per labeled site. Only
methods based on titration of marker concentrations during labeling have been used
to overcome undercounting problems due to unlabeled molecules[115, 116]. How-
ever, as we noted in chapter 4, this method is susceptible to differences in the local
chemical environment in the calibration experiments.

Quantification methods for fluorescent proteins (FPs) suffer from related under-
counting problems. Not all FPs will be functional in an experiment due to protein
misfolding or incomplete maturation. Therefore a calibration experiment is often
performed to quantify the fraction of non-functional FPs[112–114]. However, some
undercounting remains as some of the FPs are missed by the localization algorithm
due to their weak signals.

Here we present a new approach to overcome undercounting problems for well-
defined macromolecular complexes. If many identical copies of these complexes are
available, then the data of these complexes can be combined into one single recon-
struction. This approach was previously developed in the field of cryo electron mi-
croscopy (EM) single particle analysis (SPA)[128–130]. In this field many thousands
of two-dimensional projections of macromolecular complexes are imaged and com-
bined into a single three-dimensional reconstruction. Recently this particle align-
ment approach was extended to localization microscopy data.

In a first application, Löschberger and coworkers aligned localizations of thou-
sands of identical copies of the nuclear pore complex (NPC) to create a reconstruc-
tion with a high signal-to-noise ratio (SNR)[52]. The NPC controls the transport of
molecules between the cytoplasm and the nucleus in cells. It consists of several
hundred proteins and has an eightfold rotation symmetry. Subsequently, similar ap-
proaches were used to elucidate the structure of the NPC[127], the Herpes Simplex
virus[131], and HIV particles in three dimensions[132].

In this chapter, we will use a similar data fusion approach to infer the number
of protein copies per subunit of a macromolecular complex using localization mi-
croscopy with reversibly switchable fluorophores. In particular we will consider the
NPC here as a model system. In line with the terminology used in cryo EM, we will
refer to such complexes as particles. Alignment of the particles is used to determine
to which subunit of the complex each localization belongs. The number of counted
localizations per subunit is then used to infer the number of protein copies in each
subunit, using the distribution of localizations per fluorophore from our method in
chapter 4. Fig. 5.1 provides a schematic overview of the method.
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Figure 5.1: Schematic overview of the stoichiometry inference method. Localization microscopy data are
obtained of a large number of structurally identical but incompletely labeled particles. These particles are
segmented from the images and aligned. Subsequently, the subunit membership of each localization is
determined, which is depicted here with different colors. The counted number of localizations per subunit
is used to infer the stoichiometry of the number of protein copies in a subunit of the particle.

5.2. THEORY

5.2.1. PROBABILITY FOR THE NUMBER OF LOCALIZATIONS PER SUBUNIT
The starting point for the analysis is the probability distribution for the number of
localizations M of a single fluorophore from Eq. 4.17:

Pm = (1−b)m r m

m!
exp(−r )+b (1−b)m−1

∞∑
n=m

r n

n!
exp(−r ) (5.1)

where r = ksw t and b = kbl /ksw . If we now consider a subunit of a macromolecu-
lar complex labeled with S = 2 emitters each labeled with one fluorophore, then the
probability P (M |S = 2) that the sum of localizations equals M is given by convolving
Pm with itself. In general the probability P (M |S) is found by convolving Pm in total
S −1 times with itself.

In practice the number of emitters per subunit is not fixed. Instead, there is a
probability P (Si ) that a subunit i has Si emitters. We will assume that each subunit
has Smax labeling sites with a probability η of being labeled, which implies that Si

follows a binomial distribution. This gives the following distribution for the number
of localizations per subunit Mi :

P
(
Mi |Smax ,η

)= Smax∑
Si=0

P (Mi |Si )
Smax !

Si !(Smax −Si )!
ηSi (1−η)Smax−Si . (5.2)

As the labeling efficiency η is not known, we will assume a uniform prior probability.
Consequently, P (Mi |Smax ) is found by integrating P

(
Mi |Smax ,η

)
over the possible

values for η.
If we now have a set {Mi } of numbers of localizations of K identical subunits, then

the total probability of obtaining that set is simply:

P ({Mi } |Smax ) =
K∏

i=1
P (Mi |Smax ) . (5.3)
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In the absence of any statistical dependencies between the sites, different outcomes
{Mi } are indistinguishable under changes in the ordering of the sites. However, ac-
counting for this indistinguishability only introduces a constant prefactor in the prob-
ability P ({Mi }), which will be irrelevant for our comparative analysis.

5.2.2. INFERENCE OF THE NUMBER OF MOLECULES PER SUBUNIT
Our goal is to determine the number of protein copies per subunit based on the
counted number of localizations per subunit {Mi }. This number of protein copies
is equal to Smax when each of these proteins corresponds to a single labeling site. We
will therefore compute the posterior probability that Smax molecules per subunit are
present, given the probability model in Eq. 5.3 and the available simulated or experi-
mental data. In this computation we will assume that the localization precision and
particle alignment are sufficiently accurate to unambiguously establish the subunit
membership of localizations.

Assume now that a limited set of competing hypotheses H1, H2, . . . is available for
the number of molecules Smax per subunit. The posterior probability that hypothesis
Hl is correct can then be computed using Bayes’ rule:

P (Hl | {Mi }) = P ({Mi } |Hl )P (Hl )∑
k P ({Mi } |Hk )P (Hk )

(5.4)

where P (Hl ) is the prior probability that Hl is true. For simplicity, we will assume
throughout this chapter that these probabilities are equal for all competing hypothe-
ses. If each hypothesis Hl simply corresponds to Smax = l , then
P ({Mi } |Hl ) = P ({Mi } |Smax = l ). Thus, if the switching rates in Eq. 5.1 can be mea-
sured, then the counted numbers of localizations per subunit Mi can be used to in-
fer number of molecules per subunit with Eq.5.4. If multiple datasets are available,
then Eq. 5.4 has to be used as an update rule: with each new dataset the probabil-
ity P ({Mi } |Hl ) from the previous dataset becomes the prior probability P (Hl ) for the
new dataset.

5.3. MATERIALS AND METHODS

5.3.1. SIMULATION METHODS
In our simulations we modeled the nuclear complex as a structure consisting of eight
points evenly distributed on a circle with a diameter of 100 nm. Each of these points
constitutes a subunit of the corresponding simulated structure. The structures were
randomly rotated and positioned in a field of view of size 10 μm by 10 μm. Structures
with a randomly drawn center position within 120 nm of another structure were dis-
carded for the subsequent simulation.

Next, a set of simulated localizations was obtained for each structure. For each
subunit, the S fluorophores were randomly drawn from a binomial distribution as-
suming Smax trials with success probability η (default value: η = 0.4). The positions
of these fluorophores were then displaced with a Gaussian probability density with
FWHM = 5 nm to account for the size of the antibodies linked to the fluorophores.
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Each fluorophore was then assigned a random number of localizations M . In line
with the results in chapter 4, M was obtained from the minimum of two quanti-
ties: Mpoi sson and Mg eo drawn from a Poisson distribution with an expected value of
ksw tend and a geometric distribution with an expected value of ksw /kbl respectively
(default values: kbl = 2×10−5 frame−1, tend = 5×104 frames and ksw /kbl = 7. Local-
izations were then finally displaced with a Gaussian probability density with standard
deviation σ, where a different value of σ was randomly generated for each localiza-
tion based on the following expression[20, 133]:

〈
σ2〉= σ2

a

nph

(
1+4τ+

√
2τ

1+4τ

)
(5.5)

where τ = 8πσ2
ab/(nph a2). Here we used the following values: the pixel size a =

100 nm, the number of signal photons per localization nph (drawn from a geometric
distribution with a default expected value of 5400), background photons b (average
of 9×9 Poisson distributed values with expected value of 20), and the PSF width σa

(Gaussian distributed with mean 0.3×λ/N A = 0.3×670nm/1.45 ≈ 138 nm and stan-
dard deviation of 2% of the mean; this is roughly the distribution we obtain when
fitting the PSF of Alexa Fluor 647 fluorophores and is in agreement with the range of
previously suggested values[14]). Localizations with fewer than 2000 signal photons
were discarded.

5.3.2. EXPERIMENTAL MATERIALS AND METHODS

PREPARATION OF FLUORESCENT NANOBODIES

Anti-GFP camelid antibody fragments (also known as ”Nanobodies”, Chromotek, GT-
250) were labeled with amine-reactive Alexa Fluor 647 according to the manufac-
turer’s protocol. Briefly, unlabeled nanobodies were mixed with amine reactive dye
in a sodium bicarbonate buffer (0.1 M, pH 8.5), and the labeling reaction was left to
proceed at room temperature for 30 min. The labeled product was separated from
unreacted dye by running the reaction mixture over a gel filtration column (Illustra
NAP-5 column, GE Healthcare), and eluting in PBS. The labeled product was stored
at 4◦C in PBS.

FLUORESCENT STAINING OF CULTURED CELLS

Hela Kyoto cell lines stably expressing siRNA-resistant versions of the human Nup160
and Seh1 transcripts tagged with mEGFP were established by selection of cells trans-
fected with respectively pmEGFP-Nup160-s23466res and pmEGFP-Seh1-s37879res [127]
with 1 mg/mL Geneticin (Life Technologies). To increase the degree of replacement
of the endogenous protein with the mEGFP-tagged version, the cells were repeatedly
transfected every 48 hours over the course of 12 days with respectively Silencer Se-
lect siRNA s23466 against Nup160 or s37879 against Seh1 (Life Technologies) by solid
phase transfection on siRNA-coated 24-well plates (for details on the coating proce-
dure see Szymborska et al.[127]). After knock down, the cells were transferred onto
cover slips, allowed to attach and processed for staining with Alexa Fluor 647-coupled
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anti-GFP nanobody as described before[127]. For imaging we selected cells with rel-
atively flat nuclei exhibiting high Alexa Fluor 647 signals.

IMAGING BUFFER

The imaging buffer consisted of 50mM Tris-Cl (pH 8.0), 10mM NaCl, 10% Glucose
(w/v), 10mM β-mercaptoethylamine (pH 8.5, Sigma, 30070), and 1% of an enzymatic
oxygen scavenger system stock solution. The oxygen scavenging system was added to
the buffer immediately before use. The oxygen scavenger stock solution was prepared
by mixing pyranose oxidase powder (10 mg, Sigma, P4234) with catalase (50 μL, 20
mg/mL, Sigma, C30) in PBS (200 μL), and centrifuging the mixture at 13.000 rpm for
1 minute.

MICROSCOPE

Measurements were performed using the same custom built inverted fluorescence
microscope as in 4, which was similar to that described previously[63]. To summarize,
an inverted fluorescence microscope stand (Olympus IX71) was fitted with a 100X oil-
immersion objective lens (Olympus, UPLANSAPO100XO, NA=1.4) which enabled ef-
ficient detection of single fluorophores. A custom-built focus lock system based on
the reflection of an infra-red laser from the sample was used to maintain sample fo-
cus during all measurements. For STORM imaging, photo-switchable Alexa Fluor 647
was excited using 642 nm light, and in some measurements the sample was also ex-
posed to 405 nm light to increase the activation rate of switching. A solid-state diode
laser (Oxxius) was used to generate 405 nm light, and a fiber laser (MPB Communi-
cations, 2RU-VFL-P-1500-642) was used to generate 642 nm light. The laser illumi-
nation was configured such that the illumination angle could be varied between an
epi-illumination geometry and a total internal reflection (TIRF) illumination mode.
For STORM data acquisition, the sample was illuminated with TIRF illumination for
reduced background signal. Fluorescence emission of Alexa Fluor 647 was filtered us-
ing a dichroic mirror (Chroma, Z660DCXRU) and a bandpass emission filter (Chroma,
ET700/75). Fluorescence was detected using an EMCCD camera (Andor Technology,
Ixon DU897).

5.3.3. PARTICLE ALIGNMENT
Structures were identified in images by cross-correlation with a template image con-
sisting of a ring with inner diameter of 50 nm and outer diameter of 140 nm in a
square region of 210 nm by 210 nm. Candidate regions that contained multiple NPCs
or unspecifically bound nanobodies were manually discarded for the analysis. The
position and orientation of each structure was then determined by alignment with a
template consisting of 8 evenly distributed points on a circle, with the position, rota-
tion and size as free parameters. In line with the approach we followed earlier[134],
these parameters were determined by minimization using the fminsearch function in
MATLAB of the following cost function:

D =−
8∑

i=1

∑
j

exp
(
− ∣∣�xt ,i −�xs, j

∣∣2 /4σ2
j

)
(5.6)



5.3. MATERIALS AND METHODS

5

101

where�xt ,i are the positions of the template points,�xs, j are the localizations belonging
to structure j and σ j are the corresponding localization precisions. Subsequently, the
results were filtered by discarding structures with: a fitted size more than one stan-
dard deviation from the mean fitted size; a number of localizations of less than 75%
or more than 400% of the average number of localizations per particle (in simula-
tions) or of the number of localizations corresponding to a representative manually
segmented structure (in experiments).

5.3.4. INFERENCE

The probability distribution for the number of localizations per fluorophore requires
estimates of the spurious correlation parameter Q. For the experimental data we ob-
tained 20 estimates of Q for each of 20 time points using localizations of sparse un-
specifically bound nanobodies outside the nucleus, similar to how the data in Fig. 4.6
were processed. This provided an estimate for Q independent of the localizations of
the NPCs themselves. For the simulated data, no unspecifically labeled markers were
used but instead the ground truth Q at 20 time points was corrupted with normally
distributed noise (default standard deviation 0.25). Values for the number of accu-
mulated localizations N were obtained from the localizations in the NPCs.

To infer the number of target molecules per subunit, we first counted the num-
ber of localizations per subunit. The localizations were assigned to different subunits
based on the nearest point in the template for each of them. Localizations were ig-
nored for the counting if they were too close (e.g. closer than 25 nm) or too far (e.g.
further than 70 nm) away from the fitted center position of the corresponding tem-
plate.

In the subsequent inference step, a bootstrap sample of values for Q was used to
estimate kbl and ksw . In this bootstrap sample, a set of 20 values for Q per time point
were randomly drawn with replacement from the 20 original values at that time point.
kbl and ksw were used next to compute the distribution of localizations per emitter
Pm . This was then used to compute the conditional probability matrix P (Mi |S) for
the number of localizations per subunit Mi given a number of fluorophores per sub-
unit S. Next, the log-likelihood was computed for each of 100 different values of the
labeling efficiency η under each hypothesis Hl for the number of binding sites per
subunit; in other words, we computed log

(
P
(
{Mi } |Hl ,η

))
. This log-likelihood value

was corrected for the filtering steps of the NPCs by subtracting Np logP f , where Np is
the number of particles and P f is the probability that the sum of eight independent
values of Mi would fall in the range that was allowed in the filtering of the aligned
particles. This procedure was repeated for 100 bootstrapped sets of values for Q. The
log-likehood values for different sets of Q were averaged for each value of η.

The averaged conditional log-likelihood values log
(
P
(
{Mi } |Hl ,η

))
were converted

into likelihood values by taking the exponent. These likelihoods were then multiplied
with the (uniform) prior probability for the labeling efficiency η and numerically in-
tegrated to obtain the likelihood P ({Mi } |Hl ) of each model. These likelihood values
were then used in Eq. 5.4 to compute the posterior probability of each model.
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5.4. RESULTS

5.4.1. SIMULATION RESULTS
To test the method for inferring the number of molecules per subunit, we simulated
localization microscopy datasets of structures consisting of eight equally spaced points
on a circle. Each point contained Smax = 1,2,3 or 4 target molecules (i.e. labeling
sites). Subsequently we tested our workflow for identifying and aligning the struc-
tures, classifying the localizations, and finally inferring the number of molecules per
subunit (i.e. points on the circle). The inference considered the hypotheses that the
number of molecules per site is either one, two, three, or four. We then computed in
what fraction out of 100 simulated datasets the method assigned the highest prob-
ability to the correct hypothesis. We used the following default parameters in these
simulations: 500 particles in the field of view, 40% labeling efficiency, 4 nm local-
ization precision, 4.42 activations per fluorophore, and a fraction of non-bleached
fluorophores of 1/e at the end of the acquisition (i.e. kbl tend = 1).
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Figure 5.2: Overcoming undercounting through data fusion in simulations. (a) Accuracy of the inference
method in simulations with varying labeling efficiencies η. For each value of η we show in which fraction
out of 100 simulations the method assigned the highest posterior probability to the correct hypothesis for
the number of molecules per subunit of a complex Smax . (b) The same as in (a), but instead of the labeling
efficiency we varied the number of particles in the field of view in the simulations. The x-axis shows the
number of detected particles in the field of view that were used in the inference.
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Figure 5.3: Influence of Q-estimation and localization precision on the inference. (a) Accuracy of the
inference method in simulations as a function of the bias in the values for the parameter Q. The bias is
expressed here as the fraction between the average Q per time point and the ground truth value Qtr ue
at that time point. (b) Accuracy of the inference method in simulations as a function of the localization
precision σ.
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Figure 5.4: Influence of switching kinetics on the inference. (a) Accuracy of the inference method in
simulations with varying numbers of on-events per fluorophore obtained by varying the switching rate ksw
in the simulations. (b) Accuracy of the inference method in simulations with various degrees of bleaching
of the fluorophores, obtained by varying the effective bleaching rate kbl . The total number of localizations
per fluorophore remained constant in these simulations by varying ksw as well.
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Firstly, we investigated whether our method could indeed be used to overcome
undercounting due to incomplete labeling. Therefore we tested the performance of
the method on simulated data for different labeling efficiencies (i.e. the fraction of
sites that were labeled). The results, which are shown in Fig. 5.2a, reveal that when
the labeling efficiency is 40% or higher, the method does indeed correctly infer the
right number of molecules per subunit in more than 90% of the cases. For lower la-
beling efficiencies, the fraction of correct inferences decreases because the method
incorrectly returns higher probabilities for models with too low values of Smax . In
other words, the method is biased towards lower numbers of proteins per subunit
under these circumstances. This indicates that the estimated values of the posterior
probability can be inaccurate, as the method does not consider possible biases in the
counted number of localizations per site. Such biases could result for example from
inaccurate alignment of the particles or from biases in the identification of particles.

Fig. 5.2b shows how the performance of the method depends on the number of
particles used for inference. This reveals that the number of particles required for
accurate inference is actually not very high: only about 200 particles suffice for ac-
curate inference. For lower numbers of particles, the method incorrectly returns
higher probabilities for models with too low values of Smax . Note that in other cases
more particles will be needed for similar performance, because each particle has
eight identical subunits in these simulations.

Next we investigated how the inference is affected by the accuracy of the estima-
tion of the correlation parameter Q, which is used to quantify the fluorophore switch-
ing rates. To this end we introduced a bias in the Q-values used to compute the dis-
tribution of the number of localizations per fluorophore in the simulations. Fig. 5.3a
shows the results obtained as a function of this bias. These results indicate that the
analysis is quite sensitive to the accuracy with which the parameter Q is estimated:
errors in the estimated Q on the order of 5 to 10% will already result in inaccurate
inference. We also investigated the influence of the standard deviation in the values
of Q per time point on the inference, but we found that the accuracy was not sub-
stantially affected for standard deviations in the tested range between 0 to 2, where
Q = 3.2 at the end of the acquisition.

In addition to the accuracy of the Q-estimation, we also considered how the lo-
calization precision affects the inference. The expectation is that a worse localiza-
tion precision results in less accurate particle alignment and consequently to errors
in the counted number of localizations per subunit. To test this we performed sim-
ulations for different numbers of signal photons per localization. The threshold on
the minimum photon count per localization was varied as well to keep the fraction of
subthreshold localizations constant. This allowed us to assess the accuracy of the in-
ference as a function of the localization precision. The results are shown in Fig. 5.3b.
This shows that indeed the accuracy of the inference deteriorates as the localization
precision becomes larger than 6 nm. This is about one sixth of the distance of 38 nm
between neighboring points in the structure in this simulation. Worse localization
precision causes the method to incorrectly return higher probabilities for models
with too low values of Smax . In addition, the labeling efficiencies with the high-
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est likelihood values increase for larger localization precisions. These observations
are attributed to an effective redistribution of localizations from sites with relatively
many molecules to sites with fewer molecules. In general, the required localization
precision will depend on this characteristic distance between molecules in different
subunits. Surprisingly, the accuracy of the inference also deteriorates here when the
localization precision becomes less than 1 nm, due to a failure of the particle align-
ment algorithm to converge. This is possibly the result of the finite label size which
effectively introduces a localization error larger than the fit precision. Modifying the
localization precision in Eq. 5.6 may overcome this issue.

A final set of simulations was used to investigate how the switching kinetics of the
fluorophores affect the accuracy of the inference. Therefore we simulated datasets
for different values of the switching rate ksw , while keeping the effective bleaching
rate kbl and the acquisition time constant. The result in Fig. 5.4a shows that the ac-
curacy improves with increasing numbers of on-events per fluorophore as expected.
Moreover, the results show that higher values of Smax require increasing numbers of
activations per fluorophore for accurate inference. Note here that only 69% of the on-
events actually result in a localization in our simulations, due to the filtering of local-
izations on photon counts. Therefore approximately 3 localizations per fluorophore
seem to be sufficient for accurate inference under these conditions.

The fraction of bleached fluorophores was varied in the simulations by chang-
ing kbl , while keeping the average number of localizations per fluorophore constant.
Fig. 5.4b shows that in fact photobleaching of the fluorophores leads to a slightly
worse performance of the method, especially for Smax = 4. This can be explained
by the fact that a narrower distribution is obtained for the number of localizations
per fluorophore when bleaching is absent (i.e. under Poisson statistics) than when
all fluorophores have bleached (i.e. under geometric statistics). Therefore different
numbers of fluorophores per subunit are more easily distinguished when bleaching
is limited. Note though that shortening the acquisition time will not benefit the infer-
ence, as this also results in fewer localizations per fluorophore.

5.4.2. INFERENCE OF THE NUMBER OF PROTEIN COPIES IN THE NPC
In order to test if our method can provide accurate inference of numbers of protein
copies, we applied it to images of Seh1 and Nup160 proteins in the human nuclear
pore complex (NPC). Both of these proteins are members of the Y-shaped Nup170
subcomplex. Recent evidence from mass spectrometry and electron microscopy sug-
gests that the human NPC contains 32 copies of this complex[120, 121]. These copies
form two eightfold symmetric reticulated rings on the cytoplasmic and nucleoplas-
mic side of the nuclear membrane. As before, the proteins were tagged with mEGFP
and labeled with anti-GFP nanobodies (NBs), each of which contained only one Alexa
Fluor 647 fluorophore that contributed to the imaging.

Fig. 5.5a shows (part of) one of the resulting images for Seh1. This image does in-
deed show the eightfold symmetry of the structure. However, the localization preci-
sion is not high enough to distinguish between each Seh1 protein and its counterpart
on the nearest Nup107 subcomplex on the same ring. Moreover, in this two dimen-
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sional projection of the NPC, the proteins on different rings appear to be situated in
the same lateral position. Therefore the images show eight distinguishable clusters
of localizations. For the following analysis we will refer to these eight clusters as sub-
units. Moreover, we will assume that all eight subunits on the NPC are identical, such
that they all contain the same average number of Seh1 and Nup160 copies.

To infer the number of Seh1 proteins per subunit for the dataset correspond-
ing to Fig. 5.5a, we first aligned the localizations of different NPCs. Fig. 5.5b shows
an image of the combined localizations from all the aligned NPCs. Subsequently
we determined the switching rate ksw and effective bleaching rate kbl using a re-
gion outside the nucleus, which contained sparsely distributed unspecifically bound
nanobodies. Fig. 5.5c shows that the number of accumulated localizations exhibits
the same time dependence in this region and inside the nucleus, suggesting identical
switching kinetics. Computation of the correlation parameter Q leads to the esti-
mates kbl = 4.8×10−3 s−1 and M∞ = ksw /kbl = 3.3 for the dataset corresponding to
Fig. 5.5a.

Next, the histogram of the counted number of localizations per subunit in Fig. 5.5e
was used to compute the likelihood values in Fig. 5.5f for different values of the label-
ing efficiency for each hypothesis for the number of Seh1 copies per subunit. This
reveals that the highest likelihood is obtained for the hypothesis of 4 copies per sub-
unit for a labeling efficiency of 27%. Fig. 5.5e also shows the maximum likelihood
prediction for the counted number of localizations under each hypothesis superim-
posed on the histogram. Finally, we used the computed likelihood values to compute
the posterior probability for the different hypothesis for the copy number of Seh1 in
Fig. 5.5g. For this particular dataset, the highest probability is assigned to the model
with 4 copies per subunit. Although previous mass spectrometry data points to 3
Seh1 copies per subunit instead[120], 4 copies per subunit would be consistent with
the structural evidence from electron microscopy[121].

When comparing the inference results in Fig. 5.6a for the different datasets that
were acquired for Seh1, we observe substantial variation in the posterior probabili-
ties assigned to different hypotheses. In fact, the most probability mass is assigned
to the hypothesis with Smax = 5 copies per subunit (i.e. 40 copies per NPC), although
including more models with Smax > 5 would introduce a further shift of probabilities
to higher copy numbers per NPC. Similarly, Fig. 5.6b shows the results for the Nup160
protein. Also here high probability values are assigned to the hypothesis of 5 copies
per subunit. However, both mass spectrometry and electron microscopy data have
provided substantial evidence in favor of 32 copies of Nup160 per NPC, which cor-
responds to 4 copies per subunit. Therefore we conclude that in these experiments
was not accurate enough to correctly infer the copy numbers of Seh1 and Nup160 in
the human NPC. Instead, the method appears to have suffered from a bias towards
higher copy numbers.

To analyze why the inference overestimates the number of protein copies per
NPC, we compared the experimental conditions to the simulation results in Fig. 5.2,
Fig. 5.3 and Fig. 5.4. Assuming that the ground truth for the number of Seh1 and
Nup160 copies per subunit is indeed 4, we find that: the maximum likelihood label-
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ing efficiency in these datasets ranged from 26% to 40% for Seh1 and 15% to 25%
for Nup160; the number of NPCs used for the analysis ranged from 140 to 382 for
Seh1 and 28 to 268 for Nup160; the typical localization precision was on the order of
2.5 nm in both cases; the estimated number of localizations per fluorophore ranged
from 2.2 to 3.0 for Seh1 and 1.4 to 3.0 for Nup160. Therefore the labeling efficiency,
the number of particles and the number of localizations per fluorophore were all in
the range where accurate inference may just be possible based on the simulation re-
sults. However, insufficienct labeling efficiencies, particle numbers and localizations
per fluorophore all led to biases to lower copy numbers per NPC in the simulations.
Therefore these conditions cannot explain the observed results.

The comparison with the simulation results leaves two possible explanations that
could account for the observed bias in the results. Firstly, it is possible that the cor-
relation parameter Q is systematically underestimated. The magnitude of the corre-
lation parameter Q in these experiments was on the order of 2 to 4. However, as we
saw previously in chapter 4, the estimation of Q has a typical precision on the order
of unity, which is on the order of 25% to 50% here. This is substantially worse than the
5% accuracy that was required in simulations to obtain accurate inference. Therefore,
the low number of activations per fluorophore, which in turn results in a low value for
Q, may well have been the limiting factor in these experiments.

An alternative explanation would be that the experiments deviate from the sim-
ulation model in some respect. For example, the simulations did not account for
missed localizations due to overlapping PSFs from simultaneously active fluorophores.
We found a possible indication for this in the azimuthal autocorrelation function of
localizations on the same NPC. We observed that the correlation between adjacent
subunits was reduced compared to the correlation between opposing subunits. Also,
false positive localizations, and inhomogeneities in the fluorophore switching rates
or correlations in the photoswitching of fluorophores on adjacent nanobodies within
the same NPC could give rise to a discrepancy between the simulations and the ex-
periments.

5.5. DISCUSSION

The simulation results in this chapter indicate how the inference is affected by vari-
ations in experimental conditions. The results cannot be used directly to derive the
necessary conditions for successful application of the method. However, these results
do show that better inference is obtained for higher labeling efficiencies, localization
precision and accuracies in Q-estimation, more particles and localizations per fluo-
rophore, and for lower levels of photobleaching. Moreover, the inference appears to
be particularly sensitive to biases in the estimation of the Q-parameter.

For the application of our method it is very important to check the quality of the
estimation of the Q-parameter, as well as the identification and alignment of parti-
cles. Possible biases in these steps can lead to inaccurate probability estimates in
the inference. However, this inaccuracy will not always be reflected in the returned
probability estimates. For example, if the Q-parameter is underestimated the infer-
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ence may return a probability value close to unity for the hypothesis that two protein
copies are present per subunit, when in fact only one protein copy is present. A pos-
sible test that may reveal if the Q-parameter was accurately determined is to compare
the histogram of the counted localizations per subunit {Mi } with the maximum like-
lihood prediction for the distribution of Mi . This could reveal discrepancies between
the data and the model caused by inaccurate estimation of the Q-parameter.

The accuracy of the inference method could be improved by developing better al-
gorithms for identifying and aligning particles. Moreover, the performance could also
be enhanced by including timing information of the localizations[40]. At present, the
inference only considers the set {Mi } of numbers of localizations per subunit at the
end of the acquisition. Instead the inference could also consider numbers of localiza-
tions per subunit at multiple time points {Mi (t )}. The probabilities of the sets {Mi (t )}
can be derived from the switching model in chapter 4. Including timing information
in this manner also introduces the possibility to estimate the switching rates ksw and
kbl from the counted localizations per subunit, thus obviating the need for the po-
tentially inaccurate Q-estimation. Alternatively, the inference could also be defined
with respect to the interval times between localizations in the same subunit[135].

The inference method was applied here to two-dimensional localization microscopy
data of particles with eightfold rotational symmetry. However, the method can also
be applied to three-dimensional data or asymmetric particles. This requires a dif-
ferent approach to identify and align the particles in those data[134], which does
not necessarily require a template structure. The inference itself does not require
any modification though, as long as the alignment accuracy and localization pre-
cision are good enough to determine to which subunit each localization belongs.
The inference could even be applied to well-defined parts of otherwise heteroge-
neous structures, if the identical copies of those parts can be identified in the im-
age and subsequently aligned. A similar approach was used in the field of cryo elec-
tron tomography, where sub-tomograms are averaged to obtain a higher resolution
reconstruction[136]. Furthermore, the method could even be extended for labeling
schemes with multi-fluorophore markers, such as primary antibody labeling. This
would require a calibration of the distribution of the number of fluorophores per
marker though, for example through counting based on photon antibunching effects[115].

Our method assumes that all labeling sites are equally likely to be labeled. How-
ever, in practice there may be differences in the accessibility of each site, for example
if they are on opposite sides of a membrane. Moreover, a marker labeling one site
may also reduce the accessibility of neighboring sites. This issue might be overcome
by abandoning the assumption that P (S) follows a binomial distribution. Instead, it is
also possible to estimate all the parameters P (S = 0|Smax ) . . .P (S = Smax |Smax ). Com-
paring different hypotheses for Smax then requires a prior probability for Smax which
accounts for the greater number of free parameters in the estimation with increasing
Smax .
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Figure 5.5: Example inference of the number of Seh1 copies in the NPC. (a) Cutout of a quantitative local-
ization microscopy image of nanobody-labeled Seh1 in the NPC. (b) Image of the combined localizations
after alignment. (c) Comparison of the relative number of accumulated localizations from NPCs and from
unspecifically bound nanobodies (NBs) outside the nucleus, which were used to estimate the Q-parameter.
(d) Median estimated values of the Q-parameter and corresponding model function for the fitted values
of the switching rates ksw and kbl . Error bars indicate the standard deviation among estimated values
per time point. (e) Histogram of the counted number of localizations per subunit of the NPC at the end
of the acquisition of about 6.6 min. in the corresponding dataset. The plotted lines show the maximum
likelihood predictions for the distribution under different hypotheses for the number of Seh1 copies per
NPC. (f) The likelihood of the labeling efficiency in this sample under the different hypotheses, normalized
to the highest likelihood. (g) Posterior probability for each hypothesis for the number of Seh1 copies per
NPC.
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Figure 5.6: Inference results for the number of Seh1 and Nup160 copies in the NPC (a) Results of the
application of our inference method to n = 7 datasets of the Seh1 protein, which were processed similarly
to the dataset shown in Fig. 5.6, whose results are also included here. (b) Results of the applications of our
inference method to n = 8 datasets of the Nup160 protein.



6
CO-ORIENTATION

Co-localization analysis is a widely used tool to seek evidence for functional interac-
tions between molecules in different color channels in microscopic images. Here we
extend the basic co-localization analysis by including the orientations of the struc-
tures on which the molecules reside. We refer to the combination of co-localization
of molecules and orientational alignment of the structures on which they reside as co-
orientation. Because the orientation varies with the length scale at which it is evalu-
ated, we consider this scale as a separate informative dimension in the analysis. Addi-
tionally we introduce a data driven method for testing the statistical significance of the
co-orientation and provide a method for visualizing the local co-orientation strength
in images. We demonstrate our methods on simulated localization microscopy data of
filamentous structures, as well as experimental images of similar structures acquired
with localization microscopy in different color channels. We also show that in cultured
primary HUVEC endothelial cells, filaments of the intermediate filament vimentin run
close to and parallel with microtubuli. In contrast, no co-orientation was found be-
tween keratin and actin filaments. Co-orientation between vimentin and tubulin was
also observed in an endothelial cell line, albeit to a lesser extent, but not in 3T3 fi-
broblasts. These data therefore suggest that microtubuli functionally interact with the
vimentin network in a cell-type specific manner.

Parts of this chapter have been published as: Nieuwenhuizen, R.P.J., Nahidiazar, L., Manders, E.M.M.,
Jalink, K., Stallinga, S. & Rieger, B. PLoS ONE 10, e0131756 (2015).
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6.1. INTRODUCTION
Cytoskeletal protein networks serve a number of crucial roles in living cells. Tradi-
tionally, three types of cytoskeletal networks are discriminated[137]. First, thin fila-
ments with a diameter of about 10 nm, which consist of actin polymers with associ-
ated cross-linking proteins and “muscle-like” myosins give stiffness to cells and play
important roles in the generation of motile forces. Second, microtubules, which con-
sist of hollow tubules of the protein tubulin with an outer diameter of approximately
23 nm. Microtubules run throughout the cell and play a dominant role as cellular
highways for the transport of cargo, which can be moved either outwards from or
inwards to the center of the cell by specific, ATP-consuming motor proteins. The
third type of cytoskeleton are termed intermediate filaments due to their interme-
diate unit-filament diameter. Over 60 different proteins such as keratins, vimentin
and lamins have been identified, most of which have a strict cell type-specific dis-
tribution. Whereas each of these filament systems, their subunits and methods of
polymerization have been the subject of many thousands of studies, remarkably little
is known on how the three principal filament systems may interact and collaborate to
keep the cell alive and functioning. This is due in part because imaging with confo-
cal fluorescence microscopy provides insufficient resolution to reliably discriminate
individual filaments in most cases, whereas electron microscopy does provide ample
resolution but is much less suited to routinely identify and track the different fila-
ments. The recent advances in optical super-resolution microscopy, including local-
ization microscopy [2–4, 47, 48] and STED microscopy[138] do provide sufficient res-
olution to distinguish individual fluorescently labeled filaments within the cell, and
they can be routinely applied in a convenient manner.

The availability of superresolved multicolor images of filaments introduces the
need for new quantitative tools to interrogate the organization of and mutual interre-
lations between the different cytoskeletal elements. Tools developed for diffraction
limited fluorescence microscopy focused on the problem of co-localization analy-
sis. This analysis asks whether images show evidence for possible interactions be-
tween the molecules imaged in both color channels. Typically the answer to this
question is expressed in terms of: 1) the Pearson correlation coefficient between the
intensities[139]; 2) the Manders coefficients, which are defined as the fraction of the
total intensity per channel that occurs in co-localizing pixels[140], i.e. pixels whose
values in both channels exceed certain thresholds; or 3) the overlap fractions of seg-
mented objects in both color channels[141].

The different measures of co-localization cannot simply be applied to localiza-
tion microscopy techniques; these techniques produce datasets consisting of coordi-
nates of localized molecules instead of intensity values in pixels. This suggests that
coordinate based analyses of distances between molecules should be used instead.
Proposed measures include: the pair-correlation function between coordinates in
two color channels[65]; a hypothetical potential energy function that is estimated
from the distances from each localization to the nearest neighbor in the other color
channel[142]; and the rank correlation between the distances from a localization to
its neighbors in the same color channel on the one hand and distances to its neigh-
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bors in the other channel on the other hand[143]. However, all these analyses only
consider the spatial proximity of molecules in different color channels. They do not
take into account that the molecules reside on extensive structures such as filaments
that have additional geometric features such as size, orientation or curvature.

Here we report a rigorous quantitative framework for analyzing the simultaneous
co-localization and similarity in orientation of structures in multicolor images. We
will refer to the combination of co-localization and orientational alignment as co-
orientation. We focus here on the orientation as a geometric feature as it presents
a particularly salient property of cytoskeletal filament networks. Because the orien-
tation varies with the length scale at which it is evaluated, we include this scale as
a separate informative dimension for the analysis. We demonstrate our methods on
simulated localization microscopy data of filament structures, as well as experimental
images of filamentous structures acquired with localization microscopy in different
color channels. Software for our co-orientation analysis is freely available in the form
of Matlab code at http://www.diplib.org/add-ons/.

6.2. MATERIALS AND METHODS

6.2.1. ORIENTATION MEASUREMENT

The co-orientation analysis starts with the determination of the orientation in each
color channel. The two images of two different molecular species imaged in color
channels l = 1,2 will be denoted with Il (�x). For now we will assume these to be
two-dimensional and we will discuss the generalization to three-dimensional im-
ages below. In this work we will only apply our methods to localization microscopy
data. The estimated fluorophore coordinates are converted into images by binning
them into two-dimensional histogram with bin sizes of 10 nm. It should be noted
here that although all subsequent operations are carried out on pixelated images,
this is not problematic when the pixel size is smaller than 1.5 times the localization
precision[44] because the information lost at small length scale is limited. For smaller
pixel sizes we do not expect that the choice of pixel size affects any outcomes. Note
also that in principle rendering localizations as Gaussian blobs the size of the local-
ization error distribution provides a better data representation than the histogram
binning applied here[92]. However, in practice this rendering is too slow due for the
large number of required renderings for the significance tests that are discussed be-
low.

The orientations of the filaments in the images are analyzed by considering ori-
entation space representations Il (�x,φ) [144], which quantify for each position�x how
much evidence there is for the presence of structures with an orientation φ. By con-
sidering multiple orientations, it is possible to determine the orientations of several
crossing filaments at the same location.

To compute I1(�x,φ) and I2(�x,φ), the images I1(�x) and I2(�x) are first filtered with a
set of orientation selective filters Φ

(
�x;φ

)
, which have an orientation φ between −π/2

and π/2 with respect to the x-axis. Applying these filters gives the orientation space
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representation:

Il
(
�x,φ

)= Il (�x)∗Φ
(
�x;φ

)
, (6.1)

where ∗ denotes the convolution operation, and the filters Φ
(
�x;φ

)
are defined by

their Fourier transforms:

Φ̂
(
�q ;φ

)=∫∞

−∞
Φ
(
�x;φ

)
exp(−i 2π�q ·�x)d 2r , (6.2)

as[145]:

Φ̂
(
�q ;φ

)≡ 2exp

(
−
(
φq −φ

)2

2w2
φ

)(
qso

)w2
q s2

o exp

(
−q2s2

o −1

2w2
q s2

o

)
. (6.3)

Here φq is the angle of�q with respect to the x-axis, wφ is the angular bandwidth of the
filter, so is the length scale for which the orientation is evaluated and wq is the band-
width of the filter with respect to the spatial frequency magnitude q = ∣∣�q∣∣. For this
work we chose wq = 0.8/so and the orientation scale so was determined by selecting
the smallest value that still had a good orientation selectivity upon visual inspection
of the orientation space representation. Generally, the scale should be set such that
the features of interest have a high contrast with respect to the local background and
a high contrast with respect to the responses at the same location to filters with dif-
ferent orientations. However, it does not make sense to choose a scale smaller than
the resolution of the images[44]. The width wφ is derived from the number of inde-
pendent orientations no that are analyzed via wφ = π/no . Here we used no = 41 for
simulated datasets and for experimental datasets, which gives an angular resolution
of about 77 mrad. This is on the same order as the angular extent of linelike structures
with a width w at a scale so which is w/so ∼ 0.05 (for w ∼ 10 nm and so = 200 nm).
Note that by definition Il

(
�x,φ+π

)= Il
(
�x,φ

)
.

Next, we take the absolute value of the orientation space representation and sub-
tract the minimum value per location �x. Subsequently we normalize the outcome
such that the sum over φ in each location equals the number of localizations by com-
puting:

Ĩl
(
�x,φ

)=
( ∣∣Il

(
�x,φ

)∣∣−minφ

(∣∣Il
(
�x,φ

)∣∣)∫π/2
−π/2

∣∣Il
(
�x,φ′)∣∣dφ′ −πminφ

(∣∣Il
(
�x,φ

)∣∣)
)

Il (�x) . (6.4)

Ĩl
(
�x,φ

)
can be interpreted as the expected density of localizations in channel l at po-

sition�x belonging to molecules in filaments with local orientation φ. The subtraction
of the minimum corrects for the non-zero response given by the filters Φ

(
�x;φ

)
for

orientations that do not correspond to the orientations of the filaments at�x.
For three-dimensional images, the three-dimensional orientation can be analyzed

in a similar manner, see e.g. [146]. The generalization of the normalization in Eq. 6.4
for three-dimensional orientation space representation involves normalization over
solid angles. However, the orientation difference can always be expressed as a single
angle.
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6.2.2. CO-ORIENTATION ANALYSIS
The next step in the analysis is to define a measure that quantifies both the co-localization
and orientational alignment of structures in the two color channels. For this pur-
pose we extend the concept of the cross-correlation function used in localization
microscopy[65] to the generalized cross-correlation function:

c
(
Δ�x,Δφ

)=π

〈
Ĩ1
(
�x,φ

)
Ĩ2
(
�x +Δ�x,φ+Δφ

)〉
〈I1〉〈I2〉

, (6.5)

where 〈.〉 denotes the averaging operation over both �x and φ. The averaging over
the spatial coordinate �x is restricted to the selected region of interest, which typi-
cally excludes regions outside cells. The multiplication with π gives c

(
Δ�x,Δφ

)= 1 for
statistically independent images. Often it will be convenient to compute the aver-
age of c

(
Δ�x,Δφ

)
over circles of constant distance |Δ�x| = r , which we will denote with

c
(
r,Δφ

)
. An illustration of the steps needed to compute c

(
Δ�x,Δφ

)
from the superres-

olution images is shown in Fig. 6.1.
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Figure 6.1: Steps for obtaining the co-orientation plot. To compute the co-orientation plot, the images
in both color channels are first processed by a filter bank of orientation selective filters (shown here for an
orientation scale of 100 nm). This provides orientation space representations of both channels with the
evidence per orientation in each pixel. The cross-correlation between these representations then leads to
the co-orientation plot showing the correlation c as a function of the distance between localizations and
angle between the filaments they belong to.

The cross-correlation in c
(
Δ�x,Δφ

)
is efficiently computed using three-dimensional

(x, y,φ) Fourier transformations:

c =π
FT−1

(
FT

(
Ĩ1
)

FT
(
Ĩ2
)∗)

〈I1〉〈I2〉FT−1
(|FT(W )|2) , (6.6)

where W is a two-dimensional binary mask image that has a value of 1 inside the
selected region of interest and 0 outside.
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The interpretation of c
(
r,Δφ

)
is as follows: for a typical point on a filament in

one channel, it is the density of filaments in the other channel at a distance r with
a relative orientation (i.e. angle with the first filament) of φ which is normalized by
the density that would have been obtained if the filaments were statistically indepen-
dent. Alternatively, it could also be interpreted as a normalized probability density
for two randomly chosen points on two filaments in different color channels to have
a separation r and an orientation difference φ between the filaments they belong to.

6.2.3. TESTING FOR STATISTICAL SIGNIFICANCE
A measure for the strength of the co-orientation in an image is given by the normal-
ized anisotropic Ripley’s K statistic K∥(R), which is computed as:

K∥(R) = 1

πR2

2

π

∫
A

∫π/2

−π/2
d 2Δx dΔφc

(
Δ�x,Δφ

)
cos

(
2Δφ

)
, (6.7)

where A denotes a circular domain with radius R. The rationale for choosing a cos
(
2Δφ

)
weight is the following: assuming that c

(
Δ�x,φ

)
is symmetric with respect to Δφ, this

weight returns the strength of the second nonzero term of a Fourier series expansion
of c

(
Δ�x,φ

)
. Therefore it expresses to first order the tendency of c

(
Δ�x,φ

)
to assume

higher values for smaller angles Δφ. Filaments with relative smaller angles contribute
positively to K∥(R) whereas perpendicularly crossing filaments have a negative con-
tribution. The first term in the same Fourier series expansion of c

(
Δ�x,φ

)
has a con-

stant weight with respect to Δφ and thus gives a result that is proportional to Ripley’s
K statistic and expresses co-localization rather than co-orientation. The higher order
terms in the Fourier series expansion could be used to describe more complicated
relationships between the co-localization and orientations of filaments.

The anisotropic Ripley’s K statistic K∥(R) was used to test the statistical signifi-
cance of the co-orientation of individual images. The radius R is chosen beforehand
by the experimenter and expresses the range of the co-orientation effect. In theory,
all possible radii R could be relevant and could all be tested, while keeping in mind
that tests at different radii are not statistically independent. However, in practice this
is unnecessarily complicated and a single radius R can be set such that the main peak
in the co-orientation plot at small distances r is captured in the significance test. Al-
ternatively, prior expectations about the range of physically meaningful effects can
also be used to determine a single value of R for testing.

The null hypothesis for the significance test is that the filaments in both color
channels do not interact and are thus statistically independent, which implies that
the expected value of K∥(R) is 0. The expected deviations from 0 under the null hy-
pothesis are very difficult to treat analytically due to the statistical dependencies be-
tween the localizations in each color channel[147]. These dependencies arise firstly
because the localized molecules are constrained in their positions because they re-
side in filaments and secondly because each molecule is localized multiple times.
Therefore we assume as a working assumption that under the null hypothesis, K∥(R)
is normally distributed with a mean value of 0 and variance σ2

K , which was estimated
as follows. Firstly, a circular region of interest is selected in the images. Next, the im-
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age of the second color channel is rotated with respect to the image of the first color
channel over equally spaced angles θ between 0 and 2π. Note that the ROI was cho-
sen to be circular in order to ensure that the sum of pixel values in each channel does
not change with the rotation. For each rotation we recomputed K∥(R), giving the co-
orientation strength per rotation K∥ (R;θ). The variance σ2

K was then computed as:

σ2
K =

(
1

nθ

∑
θ

K∥ (R;θ)

)2

+ 1

2nθ

∑
θ

(
K∥ (R;θ)−K∥ (R;−θ)

)2 , (6.8)

where nθ is the number of angles θ (see section 6.A.1 for a derivation). Given σ2
K , the

probability of having a value K∥(R) at θ = 0 under the null hypothesis is given by

P = 1

2

(
1+erf

(
K∥(R)

σK
�

2

))
, (6.9)

where erf(.) denotes the error function.
Note that our method resembles the approach of Van Steensel et al. [148] for qual-

itatively determining if the co-localization in diffraction limited fluorescence imaging
may be significant. In this approach the image in one color channel is shifted instead
of rotated. Furthermore, it is important to note that σ2

K does not accurately predict
the uncertainty in K∥(R) if the null hypothesis does not hold. Therefore it cannot
be used to test differences in co-orientation strength between images. Instead, sets
of values for K∥(R) obtained from several datasets representing one biological con-
dition can be compared with another set of values representing another condition
using standard statistical tests such as the Mann-Whitney U test [149].

6.2.4. LOCAL CO-ORIENTATION
In order to detect which parts of a region of interest exhibit the strongest co-orientation,
we developed a scheme for visualizing the local co-orientation strength. In this scheme
we determine K∥(R) in square subregions of the image with a size of 3R which were
displaced by multiples of R horizontally or vertically with respect to each other, i.e.
two-thirds of the pixels in each region overlapped with two-thirds of the pixels in each
adjacent region. For each subregion, we took the previously determined orientation
space representations Ĩl

(
�x,φ

)
and used it to compute c

(
Δ�x,Δφ

)
, where the average

densities 〈Il 〉 across the field of view were used in the denominator rather than the
averages per subregion. K∥(R) then follows from c

(
Δ�x,Δφ

)
as before.

To ensure a smooth visualization, the values of K∥(R) were assigned to the center
point of each subregion and linearly interpolated in between these points. A visu-
alization of the local co-orientation was then obtained by applying a blue overlay to
the image of the filaments, where the negative pixel values were set to 0, the brightest
3% of the pixels were clipped and the remaining pixels were linearly scaled between
0 and 255.

Note that in this visualization scheme, crossings of filaments lead to a low score
for the local co-orientation strength which may be unintuitive in some cases. Instead,
it is also possible to replace the cos(2φ) weight in the computation of K∥(R) in Eq. 6.7
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by a cos2(φ) weight. However, unlike with the cos(2φ) weighting, the cos2(φ) weight-
ing also makes the score sensitive to mere co-localization without orientational align-
ment. Therefore it is generally best to compare images with both kinds of weighting
for identifying areas with strong co-orientation.

A somewhat computationally faster method to approximate the local co-orientation
strength can be implemented using convolution operations. Specifically, the orienta-
tion space representation Ĩ1 has to be convolved with a kernel g

(
�x,φ

)= cos
(
2φ

)
O (�x/R),

subsequently multiplied by Ĩ2 and summed over φ, followed by a smoothing with a
kernel O (�x/3R) and finally a multiplication by a normalization constant. Here the
circular kernel O (�x) = 1 if |�x| < 1 and 0 otherwise.

6.2.5. SIMULATIONS OF TEST DATA

Simulated localization microscopy images in two color channels were obtained in
two steps. Firstly, two-dimensional images of filaments were generated for both color
channels. Secondly, positions of fluorescent molecules are generated and several lo-
calizations of each of these fluorophores were simulated.

The filaments in one color channel were generated according to the two-dimensional
wormlike chain model of Kratky and Porod [102]: All filaments consisted of 104 con-
nected segments of 1 nm. The position of the central segment was randomly posi-
tioned within a circular region with a radius of FOV

�
2+L/2, where FOV = 4μm is

the size of the field of view for the final image and L is the length of the filament.
This circular region was deliberately chosen to be large enough to ensure a homo-
geneous and anisotropic distribution of filaments within the field of view. The ori-
entation of the central segments was chosen randomly between −π and π. Angles
between subsequent segments of the filament were taken from a normal distribution
with standard deviation 1 nm/ξ, where ξ is the persistence length of the filament. The
filaments in the second color channel were obtained in various manners: firstly by
displacing each filament in the first channel over a fixed distance perpendicular to its
orientation; secondly by independently simulating them in the same way as the fila-
ments in the first channel but with a different persistence length; thirdly by displacing
each segment perpendicular to their orientation with a sinusoidally modulated mag-
nitude of the displacement such that the filaments in the second channel appeared to
be twisted around those in the first channel. Finally, image representations of the fil-
aments were made by counting the number of connecting points between segments
in pixel bins of 5 nm in size, and convolving the resulting images with a Gaussian ker-
nel with a full width at half maximum FW H M = 5 nm to account for the finite width
of the filaments.

Subsequently, localization datasets were simulated from the images of the fila-
ments. A Poisson distributed number of N fluorophores was obtained with a rela-
tive density proportional to the pixel values in the filament images. The positions
of these fluorophores were then displaced with a Gaussian probability density with
FW H M = 5 nm to account for the size of the antibodies linked to the fluorophores.
Each fluorophore was then assigned a random number of localizations M defined as
the minimum of two quantities: Mpoi sson and Mg eo drawn from a Poisson distribu-



6.2. MATERIALS AND METHODS

6

119

tion with an expected value of 25 and a geometric distribution with an expected value
of 11 respectively. Localizations were then finally displaced with a Gaussian proba-
bility density with standard deviation σ, where a different value of σ was randomly
generated for each localization based on the expression in Equation 4 in Ref. [20, 133]
and using the following values: the number of signal photons per localization nph

(drawn from a geometric distribution with an expected value of 2000), background
photons b (average of 9×9 Poisson distributed values with expected value of 1), and
the PSF width σa (Gaussian distributed with mean 0.3×λ/N A = 0.3×670/1.45 ≈ 1.38
and standard deviation of 2% of the mean; this is roughly the distribution we obtain
when fitting the PSF of Alexa Fluor 647 fluorophores and is in agreement with the
range of previously suggested values[14]). All images in which the simulated datasets
are visualized were obtained by rendering visualizations as Gaussian blobs with a ker-
nel size equal to σ.

6.2.6. ACQUISITION AND PROCESSING OF EXPERIMENTAL DATA

SAMPLE PREPARATION

Primary human umbilical vein endothelial cells (HUVECs) were purchased from Lonza
and cultured on fibronectin (Sanquin)-coated dishes in EGM-2 medium, supplemented
with SingleQuots (Lonza) at 37◦C and under 5% CO2 until passage 8. To stain vi-
mentin and tubulin, HUVEC cells were grown for 24 hours on cleaned #1.5 coverslips
in Medium 200 (Life technologies) with the addition of Low Serum Growth Supple-
ment (LSGS) (Life technologies) at 5%.

Immortalized Human Vascular Endothelial Cells (EC-RF24)[150] were grown in
a mixture of HUVEC cell medium, 25% DMEM and 25% RPMI. NIH-3T3 mouse fi-
broblasts were maintained in DMEM supplemented with 10% fetal calf serum (FCS)
as previously described[151]. The cells then were fixed with 10% MeS buffer (100
mM MeS, pH 6.9, 1mM EGTA and 1mM MgCl2) and 90% methanol for 5 minutes
on ice. After blocking with 5% Bovine Serum Albumin (BSA) for 1 hour, HUVEC
and EC-RF24 cells were incubated with rabbit anti-tubulin polyclonal antibodies (Ab-
cam) and mouse anti-vimentin monoclonal antibodies (Clone V9-Dako) for 1 hour.
NIH-3T3 mouse fibroblasts were stained with anti-tubulin antibody raised in mouse
(Sigma-Aldrich) and rabbit monoclonal antibody against vimentin (GeneTex). Sub-
sequently all the cells were incubated with goat anti-rabbit and goat anti-mouse an-
tibodies (Alexa 488, Alexa 647, Invitrogen) for 30 minutes. All the fixation and stain-
ing steps were done at room temperature. Control experiments were also performed
where the fluorophore types labeling the secondary antibodies were swapped to rule
out color-related artefacts.

In the case of actin and keratin, primary keratinocytes isolated from newborn (1-3
day old) plectin deficient mice were kindly provided by Prof. Sonnenberg (NKI, Am-
sterdam, the Netherlands)[152]. Glutaraldehyde fixation was used to preserve both
keratin and actin structure. Briefly, this fixation consisted of a first incubation step in
0.3% glutaraldehyde + 0.25% Triton in cytoskeleton buffer (10 mM MES pH 6.1, 150
mM NaCl, 5 mM EGTA, 5 mM glucose, and 5 mM MgCl2) for 2 min. and a second
step with 0.5% glutaraldehyde in the same buffer for 10 min. Subsequently, the sam-
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ple was treated with freshly made 0.1% NaBH4 in PBS. After fixation, samples were
extensively washed with PBS and blocked with 5% BSA for 40 minutes. Staining was
performed with rabbit anti-keratin 14 polyclonal antibody (Covance) and Phalloidin
conjugated to Alexa Fluor 488 fluorophores (Invitrogen). Samples were incubated
with a goat anti-rabbit secondary antibody labeled with Alexa Fluor 647 fluorophores
(Invitrogen) afterwards. All the steps were performed at room temperature. Control
experiments were also performed where the Phalloidin was labeled with Alexa Fluor
647 and the goat anti-rabbit antibodies with Alexa Fluor 488 to rule out color-related
artefacts.

MICROSCOPE

Samples were imaged on a Leica SR-GSD microscope (Leica Microsystems, Wetzlar,
Germany) equipped with 488 nm/300 mW, 532 nm/500 mW and 647 nm/500 mW
lasers and an EMCCD camera (Ixon DU-897, Andor). A 160x oil immersion objective
was used. Coverslips were mounted in a holder (Chamlide CMB, Korea) with 500 μL
consisting of PBS, merceptoethylamine (MEA, 50 mM) and newly developed oxygen
scavenging system consisting of Oxyrase (OXYRASE Inc, Mansfield, Ohio, U.S.A, 3%)
and lactate (20%) in PBS. Details will be described elsewhere. Before imaging, a wait-
ing time of 30 min. was observed to allow the sample to stabilize and avoid initial
drift. Images were then taken in TIRF mode at 100 frames per second with image
sizes of 180×180 or 400×400 pixels; the backprojected pixel size was 100 nm. For all
datasets, images with 642 nm illumination were acquired first.

LOCALIZATION ANALYSIS OF EXPERIMENTAL DATA

The acquired movies were processed by estimating fluorophores’ positions using a
fast algorithm[15] on a Quadro 5000 GPU (NVIDIA). The method for finding candi-
date regions of interest for position estimation has been documented in the
literature[36]. Localizations corresponding to the same activation event were sub-
sequently combined by grouping spatially nearby localizations (i.e. less than three
times the sum of the localizations’ precisions apart) in subsequent frames into single
localization events. The center position of the grouped localizations was determined
as the weighted average of the localizations with the inverse of the squared localiza-
tion precisions as weights. Localizations were then filtered based on the number of
signal photons per localization event and the PSF width. Subsequently, localizations
were corrected for lateral stage drift using frame-by-frame cross-correlation, as doc-
umented elsewhere[27, 31]. All images in which the experimentally obtained local-
izations are visualized were obtained by rendering visualizations as Gaussian blobs
with a kernel size equal to the estimated localization precision. Pixels whose values
were in the highest 2% (5% for Fig. 6.6e) of all non-zero pixels were clipped to obtain
sufficient contrast for display, and subsequently all intensities were linearly stretched
between 0 and 255.

Color channel registration Localizations of the Alexa Fluor 647 fluorophore (red)
channel were mapped onto the Alexa Fluor 488 fluorophore (green) channel using
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affine mapping. This mapping was estimated in a least squares estimation procedure
with 8 different datasets of (in total 448) fluorescent beads visible in both color chan-
nels. Briefly, 100 nm TetraSpeck microspheres (T7284 blue green orange and dark red,
Life Technologies) were diluted to a ratio of 1:100 and dried on ultraclean coverslip.
The bead-dried coverslips were mounted on the microscope with 500 μL of MQ water
and imaged on 8 different fields of view where beads were well separated. The beads
were localized using the same algorithm as above. The target registration error of this
mapping procedure was determined to be 16 nm (by leaving one of the recordings
at a time out when computing the mapping so that it can be independently used to
assess the error)[153].

6.3. RESULTS

6.3.1. SIMULATED DATASETS

To demonstrate the proposed co-orientation measurement method, we simulated
two-color localization microscopy datasets of samples with filament networks in both
channels with a well-defined relationship between them. As a first example, we used
a sample with 200 filaments with a persistence length ξ= 5 μm in the red color chan-
nel, labeled with 104 fluorophores in total; each of these filaments was accompanied
by a filament in the green color channel at a fixed distance of 50 nm. This resulted in
the dataset shown in Fig. 6.2a, and the corresponding co-orientation plot of the gen-
eralized cross-correlation function c

(
r,Δφ

)
in Fig. 6.2b (for a scale so = 200 nm for

the orientation analysis). The plot shows the distance r between the localizations in
both color channels on the vertical axis and the orientation difference φ between the
filaments to which those localizations belong on the horizontal axis. The plot shows
a clear peak at distance of approximately 50 nm and an orientation difference close
to 0, confirming that filaments are accompanied by another filament at a distance
of 50 nm in the other color channel. The enhanced correlation for larger angles φ is
caused by the finite size of the orientation selective filters: when filaments cross or
come in close proximity to each other, the filters give a non-zero response for orien-
tations other than those of the filaments themselves. For larger distances r > 200 nm,
c
(
r,φ

)
decays to a value of 1, meaning that filaments at those distances apart appear

statistically independent from each other.

As a second in-silico example, we used a sample in which there was no relation-
ship between the filaments in both color channels. Unlike the previous example, the
filaments in the green channel were now independently generated, but with a persis-
tence length ξ= 1 μm. A representative example of a result under this condition (out
of n = 500 simulations) is visualized in Fig. 6.2c and the corresponding co-orientation
plot in Fig. 6.2d. Clearly, the values of c

(
r,φ

)
in Fig. 6.2d are no longer substantially

larger than 1, and there is no longer a noticeable dependence of the co-localization
on the relative orientation of the filaments.

The third simulation example serves to illustrate the importance of the scale of the
orientation analysis. For this example, 50 filaments labeled with 5,000 fluorophores
were simulated for the red channel as before. The filaments in the red channel were
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Figure 6.2: Co-orientation plot of parallel and unrelated filaments. (a) Simulated data of parallel fila-
ments in two color channel channels and (b) the corresponding co-orientation plot, showing strong co-
orientation at a distance of 50 nm between filaments. The co-orientation plot shows the cross-correlation
between the color channels as a function of the distance between localizations in both channels (on the
horizontal axis) and the difference in the orientations of the filaments those localizations belong to (on the
vertical axis). (c) Simulated data of statistically independent filaments in two color channel channels and
(d) the corresponding co-orientation plot, showing no substantial co-orientation.

twisted around the green filaments with a maximum separation of 50 nm and with a
periodicity of one twist per 300 nm. The resulting dataset is visualized in Fig. 6.3a. Co-
orientation plots for these data were computed for scales so = 50 nm and so = 500 nm
for the orientation analysis, which are shown in Figs. 6.3b and 6.3c respectively. The
plot for so = 50 nm shows two peaks at orientation differences of about ±40◦, whereas
the plot for so = 500 nm only has a single peak at ±0◦. Thus these plots express how
indeed the filaments in both channels display co-orientation at larger length scales,
although at a shorter length scale there is a signature of the filaments crossing each
other. This shows that the scale so of the orientation analysis can itself be used as a
separate dimension for the analysis of co-orientation in an extensive co-orientation
assay. The shortest length scale for which the orientation analysis could be mean-
ingfully applied is determined by the resolution of the images[44]; at shorter length
scales the data do not contain enough information about the filaments for an accu-
rate analysis.
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Figure 6.3: Orientation scale as a dimension for analysis. (a) Simulated data of filaments in the green
color channel with filaments in the red channel twisted around them. (b) When the orientation is analyzed
at a scale of 50 nm, the co-orientation plot shows two peaks at positive and negative angles between the
filaments in both channels; (c) for a scale of 500 nm the peaks shift to the center of the plot indicating that
the filaments in both channels appear to run in parallel at that scale. The smallest scale for the orientation
analysis is determined by the FRC resolutions in both channels, are 34 nm (red) and 36 nm (green).

6.3.2. SIGNIFICANCE TESTING
The question that arises upon inspection of the co-orientation plots is for which val-
ues of c

(
r,Δφ

)
the co-orientation can be said to be statistically significant. To this end

we computed the normalized anisotropic Ripley’s K parameter K∥(R) with R = 200 nm
for the simulated datasets in Fig. 6.2 to quantify the co-orientation strength. Subse-
quently, we applied the significance test outlined in the materials and methods sec-
tion, which extracts the uncertainty in K∥(R) by rotating the image in the green chan-
nel with respect to the red channel over 49 equally spaced angles θ between 0 and 2π
and recomputing K∥(R) for every rotation. The profiles of K∥(R) as a function of the
rotation angle θ for the datasets in Fig. 6.2 are shown in Fig. 6.4. The dashed line in the
plot indicates the minimum value of K∥(R) at θ = 0 for which it would be significant
at a significance level of 0.05. The value of K∥(R) for the parallel filaments in Fig. 6.2a
turned out to be statistically significant (p = 2.0×10−37 
 10−3), whereas the value of
K∥(R) for the unrelated filaments shown in Fig. 6.2c was not (p = 0.079).

We validated the proposed significance test by simulating 500 datasets where the
filaments in both color channels were independent in the same manner as for the
data shown in Fig. 6.2c. For each of these simulations we applied the proposed sig-
nificance test and computed the p-value for the value of K∥(R) at θ = 0 for R = 200 nm .
We found that the p-values returned by the test were consistent with a uniform distri-
bution between 0 and 1 (see Fig. 6.5): a one-sample two-sided Kolmogorov-Smirnov
test revealed no significant difference at a 0.05 significance level (p = 0.47). This is
exactly what is required, as the returned p-values should report the probability of ob-
taining values of K∥(R) larger than the one being tested if the null hypothesis is true.
Additionally, the assumption that K∥(R) is normally distributed was not rejected in a
Shapiro-Wilks test at a significance level 0.05 (p = 0.42). However, 38 of 500 the sim-
ulated datasets had a p-value smaller than 0.05, which is significantly more than the
expected 25, indicating that the p-values obtained from the proposed significance
test are not exact. This is attributed to the RMS error of 31% in the estimated stan-
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Figure 6.4: Statistical significance test results on simulated data. (a) The normalized anisotropic Ripley’s
K statistic K∥(R) quantifies the co-orientation strength. Rotation over an angle θ of the color channels in
Fig. 6.2a relative to each other leads to a rapid decline of K∥(R); the residual fluctuations can be used to
determine that the value K∥(R) at θ = 0 exceeds the threshold for statistical significance at the 0.01 level
(dashed line). (b) The same plot for the data show in Fig. 6.2c indicates that the co-orientation there is not
significant for θ = 0.

dard deviation of K∥(R), since the normality of K∥(R) itself was not rejected. The test
can still be used though, provided that a somewhat more conservative threshold than
0.05 is chosen for the p-value.

6.3.3. APPLICATION TO EXPERIMENTAL DATA OF CYTOSKELETAL FILA-
MENTS

We applied the co-orientation analysis to experimental data of tubulin and vimentin
and of actin and keratin. Multicolor localization microscopy images of tubulin and vi-
mentin were obtained from primary human umbilical vein endothelial cells. Fig. 6.6a
and c show two clear example results at stable cell edges, with tubulin in red and
vimentin in green. The corresponding co-orientation plots in Fig. 6.6b and d con-
firm the strong co-orientation effect that appears to be present. The effect appears
stronger in b than in d, due to the lower density of the filaments which leads to a
stronger apparent bundling of the filaments. Correspondingly, the co-orientation
strength parameter K∥(R) for the selected circular ROI in Fig. 6.6a is larger than that in
the ROI in Fig. 6.6c, which are respectively 0.22 and 0.12 for R = 500 nm; in both ROIs
the co-orientation is statistically significant (p 
 10−3). The value of R = 500 nm
was chosen here such that the K∥(R) just incorporates the primary peak in the co-
orientation plots in the analysis. The observed co-orientation could also just be seen
when the co-orientation analysis was applied to the TIRF images of the cells shown
in Fig. 6.6a and c. Generally though, the higher resolution of SR microscopy is much
more suitable, and often will be necessary, to detect the co-orientation between these
intricate filament networks. Note that the filament networks in these images show a
clear preferential direction in these cells. Local deviations from these global trends
could be investigated for example by filtering out the dominant filament orientations
in the orientation space representations of the tubulin and vimentin images. Alterna-
tively, the co-orientation plot could be normalized with respect to its average value at
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Figure 6.5: Validation of the significance test. Results are obtained for 500 simulated datasets generated
in the same manner as Fig. 6.2c. Application of the significance test results in a uniform distribution of
P-values, as evidenced by the histogram in (a) and empirical cumulative distribution function in (b). The
values of K∥(R) exhibit a Gaussian distribution in the histogram in (c) and the quantile-quantile plot in (d).

each distance r in order to determine how the alignment changes with r independent
of the co-localization.

The observed co-orientation between vimentin and tubulin is not a universal fea-
ture of any image showing two types of filaments. Consider for example Fig. 6.6e,
which shows a localization microscopy image of actin (green) and keratin (red) ob-
tained from plectin deficient keratinocytes. As opposed to the previous images of
tubulin and vimentin, there is no apparent co-orientation between actin and keratin:
the corresponding co-orientation plot in Fig. 6.6f does not exhibit a strongly peaked
correlation score for small distances and small relative angles between the actin and
keratin filaments. Indeed, no significant co-orientation (p = 0.20) was found in a sta-
tistical significance test for R = 500 nm (p = 0.065 for R = 200 nm).
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Figure 6.6: Co-orientation analysis for experimental data of tubulin and vimentin and of actin and ker-
atin. (a) and (c) Localization microscopy images of tubulin (red) and vimentin (green) at stable cell edges.
The co-orientation plots for the ROIs demarcated by the white circles are shown in (b) and (d), showing
clear co-orientation at distances up to 500 nm (with a scale so = 200 nm for the orientation analysis). (e)
Localization microscopy image of actin (red) and keratin (green). The co-orientation plot in (f) for the
selected region of interest shows no significant co-orientation.
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To visualize how the co-orientation between filaments varies across the image,
we evaluated the local co-orientation strength K∥(R) in overlapping subregions of the
image. The resulting values are then shown as an overlay in the blue color channel on
top of the image of the filaments. Fig. 6.7 shows an example of tubulin and vimentin
filaments with this overlay for different values of R, with subregion sizes equal to 3R.
The blue overlay effectively highlights regions with the strongest local co-orientation,
where high densities of filaments with similar orientations are within a distance R
from each other. Increasing R causes more filaments to positively contribute to K∥(R).
However, it also leads to a less localized evaluation of the co-orientation strength. Re-
gions in the image with crossing filaments exhibit lower values, because locally there
is evidence both for and against orientational alignment of the tublin and vimentin.
An alternative visualization method that does not give this low response with cross-
ing filaments is demonstrated in Fig. 6.7d. In this method the cos(2φ) weight in the
computation of K∥(R) in Eq. 6.7 is replaced by a cos2(φ) weight. This leads to more
connected regions with high values in the blue channel, but this visualization also
highlights regions with mere co-localization where filaments are not aligned.

In larger images (i.e. of 18×40μm), it was apparent that co-orientation between
vimentin and tubulin occurred predominantly in the periphery of the cells, whereas
at the center, close to the nucleus, co-orientation appeared substantially less. When
we compared the right and left half of Fig. 6.8a respectively, we found K∥(R) = 0.11
(p 
 10−3) and K∥(R) = 2.9×10−2 (p 
 10−3) respectively for R = 200 nm.

We next investigated whether co-orientation between tubulin and vimentin is a
generic property of these filaments. We therefore compared data from HUVEC cells
(Fig. 6.8b) to data obtained from NIH-3T3 fibroblasts (Fig. 6.8d), which also express
both filament systems. Remarkably, little if any co-orientation was observed through-
out the cell in these fibroblasts: for the ROI in Fig. 6.8d we found no statistically signif-
icant co-orientation (K∥(R) = 4.4×10−2 and p = 0.14 for R = 200 nm). We also did not
observe a difference between peripheral and more central parts of the cells. This may
reflect lineage-dependency, i.e. a difference between endothelial cells and fibrob-
lasts. We therefore also studied a cultured endothelial cell line, EC-RF24 (Fig. 6.8c).
Indeed, we observed significant co-orientation (K∥(R) = 9.4×10−2 and p 
 10−3 for
R = 200 nm), but both strength and extent of colocalization appeared less than in
HUVEC cell (K∥(R) = 0.24 and p 
 10−3 for R = 200 nm).

These results show that our analysis methods makes it possible to quantitatively
address biological co-orientation. Associations between different filament systems
have recently attracted significant attention and may either indicate the existence
of physical crosslinks between the filaments[154] or, perhaps, reflect deposition of
intermediate filaments following their transport along microtubuli[155]. Our analysis
tools will enable addressing such questions in an unbiased and quantitative manner.

6.4. DISCUSSION

In this work, we describe a framework for the quantitative analysis of co-orientation:
the simultaneous co-localization and orientational alignment of structures in images.
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Figure 6.7: Visualization of the local co-orientation strength. (a-c) Localization microscopy images of
tubulin (red) and vimentin (green). Blue overlays show the local co-orientation strength K∥(R) in order to
highlight the regions with the strongest local co-orientation. Increasing R causes more filaments that are
further apart from each other to contribute to K∥(R), but also causes K∥(R) to appear less localized. (d) The

same image as (b), but with the cos(2φ) weight in the computation of K∥(R) in Eq. 6.7 replaced by a cos2(φ)
weight. This provides a visualization in which crossing filaments do not cancel the contributions to the
local co-orientation strength of parallel filaments. However, this visualization is also sensitive to regions
with mere co-localization where filaments are not aligned.

In this framework we consider generalized cross-correlation between color channels
as a function of spatial separation and orientational difference of structures. Addi-
tionally we quantify the (local) co-orientation strength using an anisotropic Ripley’s K
parameter and use it to test the statistical significance of the co-orientation. Our co-
orientation analysis sensitively and quantitatively describes spatial association be-
tween vimentin and microtubuli in HUVEC cells. Moreover, this association is cell-
type specific and appears to occur predominantly in the cell periphery.

Although the results presented in this manuscript are obtained using simulated
and experimental localization microscopy datasets, the methods proposed here can
be analogously applied to data obtained with other superresolution microscopy tech-
niques as well as widefield and confocal microscopy data if the resolving power is
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Figure 6.8: Co-orientation strength in endothelial and fibroblast cells. Localization microscopy images of
tubulin (red) and vimentin (green) in various cell types. (a) Large SR image of a HUVEC cell, showing that
co-orientation is predominantly observed in the peripheral parts (right), and not near the nucleus (left).
(b-d) Higher magnifications of comparable peripheral parts of (b) a HUVEC cell showing extensive co-
orientation, (c) a EC-RF24 endothelial cell with less, but still significant co-orientation, and (d) a NIH-3T3
fibroblast as an example of a cell-type with very little co-orientation. (e-g) TIRF images corresponding to b,
c and d and (h) quantification of the co-orientation strength for the circular ROIs in these three examples
for R = 200 nm.

appropriate for distinguishing the structures (e.g. filaments) in those images.
The co-orientation measurement is affected to some extent by experimental fac-

tors such as autofluorescence and background fluorescence from out-of-focus struc-
tures, apparent blurring of structures by the imaging system (e.g. due to diffraction
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or localization error), cross-talk between color channels, noise, and stochasticity in
the fluorescent labeling (see section 6.A.2 for a detailed discussion). Particularly the
localization error in localization microscopy and analogously the point-spread func-
tion in other microscopy techniques may have substantial effects on the measure-
ment outcomes. Firstly, they will lead to a change in the effective scale at which the
orientation of filaments is assessed. Secondly, they smear out the generalized cross-
correlation function c

(
Δ�x,Δφ

)
, causing the peaks in the co-orientation plot to de-

crease in magnitude and shift to larger values of the distance between filaments.

There are several practical aspects that merit attention when interpreting the out-
come of the orientation measurement and significance test. Firstly, it is important
to note that the measured co-orientation strength K∥(R) may decrease if the density
of co-oriented filaments in the field of view increases. This merits attention when
comparing the measurement outcomes for different cells or cell lines if their filament
densities are not similar. The co-orientation measurement could be made less sensi-
tive by changing the average values per channel in the denominator of c

(
Δ�x,Δφ

)
into

the root-mean-square values; however, this normalization has the important disad-
vantage of being sensitive to changes in noise levels, density of fluorescent labels on
the filaments, or localization precision.

Secondly, the density of filaments also affects the validity of the significance test-
ing method. Its derivation assumes a Gaussian distribution of K∥(R) under the null
hypothesis, which may not hold if the number of filaments in the field of view is small.
Furthermore, the accuracy with which the standard deviation of K∥(R) is estimated
under the null hypothesis also depends on the number of filaments in the field of
view. Therefore it is recommended to consider a more conservative significance level
than 0.05 when testing for statistical significance. Also, care should be taken with
strong co-localization in the absence of co-orientation, as it violates the assumption
of rotation invariance under the null hypothesis that is built into the test.

Thirdly, if no statistically significant co-orientation is detected, this does not im-
ply that no co-orientation effect is present. The likelihood of successfully detecting
co-orientation depends on how different the co-orientation effect appears from ran-
dom variations in the proximity and alignment of unrelated filaments. Stronger co-
localization or alignment therefore increase the detection probability. In addition,
the detection probability will be higher for larger numbers of filaments as random
variations tend to average out more. Of course, imaging more samples will increase
the probability of detection as well, provided that a suitable procedure for simultane-
ously performing multiple significance tests is used (e.g. false discovery rate control).

The visualization schemes that were proposed either underemphasize co-orientation
in regions with crossing filaments or overemphasize regions where co-localization
with little orientational alignment is present. These visualization schemes may be
improved in several ways. Firstly, a method for detecting regions with crossing fila-
ments in both color channels could identify where each scheme is most appropriate.
This could be achieved by a crossing detector per color channel and then feeding the
output into a co-localization measure. Secondly, higher order terms in the Fourier
series expansion of c

(
Δ�x,Δφ

)
could be used to describe the local geometry in regions
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with crossing filaments. For example, the term with cos(4φ) rather than cos(2φ) ex-
presses co-orientation between a filament in one channel and one of two orthogonal
filaments in the other channel.

Finally, the quantitative approach presented in this manuscript was specifically
focused on the analysis of co-orientation, i.e. the combination of co-localization of
filaments and the alignment in their orientations. However, the quantitative frame-
work presented here can be applied more generally to the analysis of co-localization
in conjunction with other geometric properties, such as the curvature or length of fil-
aments or diameter of filament bundles. The analysis would then entail the compu-
tation of the cross-correlation between color channels as a function of these geomet-
ric properties, possibly at multiple measurement scales. Deriving a scalar metric for
the magnitude of the observed effect similar to K∥(R) then allows for the assessment
of the local effect size and testing of its statistical significance. Approaches such as
these will be of great use for exploiting the wealth of information provided by super-
resolution microscopy images for studying the spatial arrangements of cytoskeletal
filaments and associated proteins relative to each other.
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6.A. APPENDIX

6.A.1. DERIVATION OF THE PROPOSED SIGNIFICANCE TEST
In this subsection we provide a justification for the significance testing procedure
described in the main text. The first assumption that is made is that K∥(R) follows a
Gaussian distribution. This is an hypothesis based on the idea that the images I1 and
I2 are actually sums of images of filaments. These filaments therefore all contribute
to K∥(R) in an additive manner, if we assume that the average density per channel is
more or less fixed. Assuming then that the contribution of each filament has a well-
defined mean and variance and that positions and orientations of filaments that are
far apart are only weakly correlated, we can invoke the central limit theorem which
describes that the distribution of K∥(R) should tend towards a Gaussian distribution.

The task is then to estimate the variance of K∥(R), assuming that the null hypoth-
esis that the filamens in both color channels are unrelated is true. This assumption
can be used because the significance test determines the probability under the null
hypothesis of finding an outcome for K∥(R) that is at least as extreme as the current
value. Now suppose that we have measured K∥ (R;θ) for several equally spaced angles
θ between 0 and 2π. We know that under the null hypothesis, the expected value for
K∥(R) is 0.

The variance of K∥ (R;θ = 0) can be expressed as:

Var
(
K∥ (R;θ = 0)

)= 1

nθ

∑
θ

Var
(
K∥ (R;θ)

)= 1

nθ

∑
θ

〈
K∥ (R;θ)2〉 , (6.10)

since rotations of one color channel by an angle θ should not affect any expectation
values under the null hypothesis: rotating one of the channels still leaves two inde-
pendent images. Note that the notation 〈.〉 denotes the expected value here instead of
the averaging operation. The discrete angle Fourier transform of K∥ (R;θ) is defined
as:

K̂∥
(
R; qθ

)≡∑
θ

K∥ (R;θ)exp
(−i qθθ

)
(6.11)

By applying Parseval’s theorem, we find that:

〈
K∥ (R;θ = 0)2〉=

〈
1

n2
θ

K̂∥
(
R; qθ = 0

)2

〉
+
〈

1

n2
θ

∑
qθ �=0

Re
(
K̂∥

(
R; qθ

))2 + Im
(
K̂∥

(
R; qθ

))2

〉
,

(6.12)
where Re(.) and Im(.) denote the real and imaginary part of a complex number re-
spectively. By definition we have that,

1

nθ
K̂∥

(
R; qθ = 0

)= 1

nθ

∑
θ

K∥ (R;θ) . (6.13)

The next step now to realize that because of the invariance of the statistics with re-
spect to rotation of one channel by an angle Δθ, we find that the distribution of
K∥ (R;θ) is the same as that of K∥ (R;θ+Δθ). This in turn implies that also K̂∥

(
R; qθ

)
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and K̂∥
(
R; qθ

)
exp(−iΔθ) are identically distributed, and by extension also that

Re
(
K̂∥

(
R; qθ

))
and Im

(
K̂∥

(
R; qθ

))
are identically distributed. Therefore:
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〉
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+
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(
1

2
K∥ (R;θ)− 1

2
K∥ (R;−θ)

)2
〉

. (6.14)

This shows that σ2
K is an unbiased estimator of the variance of K∥ (R;θ = 0) if it is

defined as:

σ2
K =

(
1

nθ

∑
θ

(
K∥ (R;θ)−1

))2

+ 1

2nθ

∑
θ

(
K∥ (R;θ)−K∥ (R;−θ)

)2 . (6.15)

The rationale for looking only at the imaginary part of K̂∥
(
R; qθ

)
is that true co-

orientation effects are expected to be symmetric with respect to positive and negative
rotation angles θ. Therefore, if the null hypothesis is false, this estimate of the vari-
ance will be lower and thus make rejection of the null hypothesis using this test more
likely.

6.A.2. INFLUENCE OF EXPERIMENTAL FACTORS ON THE CO-ORIENTATION

MEASUREMENT
The following sections provide a brief discussion of the most important experimental
factors that affect the outcome of the co-orientation measurement. To make the dis-
cussion applicable, we will discuss both the effects that play a role in localization mi-
croscopy, as well as the analogous effects in microscopy methods that do not rely on
stochastically activated or switching fluorophores. The latter will be referred to as de-
terministic microscopy techniques, and include among others widefield microscopy,
confocal microscopy, stimulated emission depletion (STED)[45, 138], and structured
illumination microscopy (SIM)[71, 156].

BACKGROUND

Background intensities in deterministic microscopy tend to result from out of focus
structures and therefore typically do not possess much fine detail. Similarly, in lo-
calization microscopy the localizations due to this background do not show much
small scale variation. Consequently, the effect of these on the orientation measure-
ment will be limited as low spatial frequencies associated with large scale variations
are suppressed by the orientation selective filters Φ̂

(
�q ;φ

)
.

The primary effect of the background then is to increase the average values of
the images I1 and I2. If we assume that the background is uncorrelated to the signal
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intensities I1 and I2 and we denote the background intensities in channels 1 and 2
with b1 and b2 respectively, then we find that the result is that:

c
(
Δ�x,Δφ

)→ 1+ (c (Δ�x,Δφ
)−1

)( 〈I1〉
〈b1〉+〈I1〉

)( 〈I2〉
〈b2〉+〈I2〉

)
(6.16)

POINT SPREAD FUNCTION AND LOCALIZATION ERROR

The localization error, and analogously also the point spread function for determin-
istic microscopy, has a double effect when it comes to orientation analysis.

Firstly, the effective scale at which the orientation is analyzed changes. Suppose
for a moment that the image I corresponds to an object ψ. If the point spread func-
tion h (�x) is approximated with a two-dimensional Gaussian function with standard
deviation σ, then the expected Fourier transform of the image I can be written as:

〈
Î
(
�q
)〉= ψ̂

(
�q
)

ĥ
(
�q
)= ψ̂

(
�q
)

exp
(−2π2σ2q2) (6.17)

Here ψ̂
(
�q
)

and ĥ
(
�q
)

are the Fourier transforms of ψ (�x) and h (�x) respectively. A sim-
ilar relationship holds for the expected Fourier spectrum in localization microscopy
if all localizations are obtained with have the same localization precision σ [44]. The
expected outcome of the application of the filter Φ̂

(
�q ;φ

)
to I is therefore equivalent

to: 〈
Î
(
�q
)
Φ̂
(
�q ;φ

)〉= ψ̂
(
�q
)

exp
(−2π2σ2q2)Φ̂(�q ;φ

)
(6.18)

It can be shown that up to a multiplicative constant, exp
(−2π2σ2q2

)
Φ̂
(
�q ;φ

)
can be

described by the same expression as Φ̂
(
�q ;φ

)
if we make the following parameter sub-

stitution:

so → so

√
1+4π2σ2w2

q (6.19)

wq → wq√
1+4π2σ2w2

q

(6.20)

Since wq so is typically chosen to be a fixed fraction, it follows that the net result is that
nonzero σ increases the scale so at which the orientation is evaluated. In theory, the
equations above also provide a means of correcting for this effect of increased scale.

The second consequence of the point spread function or localization error is the
blurring of c

(
Δ�x,Δφ

)
. If ĥ

(
q = 0

)= 1, then the average image value 〈Il 〉�x remains un-
affected. However, the numerator in the expression for c

(
Δ�x,Δφ

)
can be seen as a

convolution between Ĩ1
(
�x,φ

)
and Ĩ2

(−�x,−φ) over both �x and φ. The effect of con-
volving these with the point spread functions is therefore:

c
(
�x,φ

) → c
(
�x,φ

)∗ (h1 (�x)δ
(
φ
))∗ (h2 (−�x)δ

(−φ)) (6.21)

= c
(
�x,φ

)∗ (h1 (�x)∗h2 (−�x))δ
(
φ
)

, (6.22)

where ∗ denotes the convolution operator and δ
(
φ
)

is the Dirac delta function. Note
that if h1 (�x) and h2 (−�x) are known, then it might be possible to correct for their ef-
fects using deconvolution methods based on this insight.
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The significance of these effects depends on the ratio between so and σ. For local-
ization microscopy σ can be quite small, on the order of 5 to 10 nm, which means that
the the localization error should not affect the co-orientation measurement very sub-
stantially. For deterministic microscopy techniques, these effects will often be much
more significant, because the PSF is typically much wider.

CHANNEL CROSS-TALK

Channel cross-talk occurs when part of the intensity or localizations from molecules
belonging in one color channel appears in the other channel. Typically, this fraction
is quite homogeneous over the field of view, as the level of cross-talk is determined by
the emission filters. If we neglect the influence of noise for now, then the intensity in
channel l can be represented as:

Il (�x) → (
1− fl ,m

)
Il (�x)+ fm,l Im (�x) (6.23)

where fl ,m is the fraction of the intensity or localizations from molecules that are im-
aged with channel l ending up in channel m �= l . Assuming for convenience that the
minimal values of Il

(
�x,φ

)
and Im

(
�x,φ

)
are negligible, we find that:

Ĩl
(
�x,φ

)→
( ∣∣(1− fl ,m

)
Il
(
�x,φ

)+ fm,l Im
(
�x,φ

)∣∣∫π/2
−π/2

∣∣(1− fl ,m
)

Il
(
�x,φ′)+ fm,l Im

(
�x,φ′)∣∣dφ′

)((
1− fl ,m

)
Il (�x)+ fm,l Im (�x)

)
.

(6.24)
This shows that the impact of channel cross-talk on Ĩl

(
�x,φ

)
is nonlinear, due to the

nonlinearity in the operation of taking the absolute value. Therefore it is difficult to
predict the impact of cross-talk on the co-orientation measurement. However, if the
overlap of I1 (�x) and I2 (�x) after convolution with the filters Φ

(
�x,φ

)
is small, then the

cross-talk will approximately result in:

Ĩl
(
�x,φ

)→ (
1− fl ,m

)
Ĩl
(
�x,φ

)+ fm,l Ĩm
(
�x,φ

)
. (6.25)

This implies that c
(
Δ�x,Δφ

)
will be corrupted by contributions due to the autocorre-

lation of Ĩ1
(
�x,φ

)
and Ĩ2

(
�x,φ

)
with respect to both�x and φ.

In practice, effects of channel cross-talk should not be very substantial given that
many fluorophores are now available for large parts of the visible spectrum.

NOISE

Noise sources will usually not affect the expected value of c
(
Δ�x,Δφ

)
for deterministic

microscopy techniques, provided that they are uncorrelated between color channels
and that they do not affect the expect value of I1 and I2 These are reasonable assump-
tions for most types of high resolution microscopy, where dominant noise sources are
usually photon counting shot noise and additive readout noise.

For localization microscopy, the stochasticity in the number of acquired localiza-
tions per fluorescent emitter plays a similar role as the noise sources above. There
are factors that influence these variations for both color channels and may thus lead
to correlated errors, such as variations in local chemical environment, illumination
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power, and missed localizations due to overlapping emissions in high density regions.
In practice, the latter will usually have the largest impact, whereas the other factors
are usually not very substantial. However, all these effects would only lead increase
the apparent colocalization of both color channels, because they affect the density of
localization in space. The orientation estimation would not be affected much, so no
spurious co-orientation observations would be produced.

STOCHASTICITY IN LABELING

The process of fluorescently labeling a sample is another process that introduces
stochasticity in the image formation. Firstly, there is stochasticity in the number of
molecules that are labeled. For example, when fluorescent proteins are used then
some of the proteins of interest will be of the wildtype variety without the fluorescent
fusion protein. When antibody labeling is used, not all epitopes for the antibody will
actually be bound by an antibody. Secondly, there is also stochasticity in the number
of emitters associated with each of these markers such as antibodies: if secondary
antibody labeling is used then the primary antibodies may have a varying number
of secondary antibodies associated with them, and the number of emitters per sec-
ondary antibody may also vary.

If we make the reasonable assumption that these sources of stochasticity are un-
correlated between the molecules imaged in the different channels, then c

(
Δ�x,Δφ

)
remains unaffected: although the expected values of I1 and I2 are affected by these
sources of stochasticity, they have a more or less equal effect on the numerator and
denominator of c

(
Δ�x,Δφ

)
and therefore do not affect its expected value. The vari-

ance in the measurement of c
(
Δ�x,Δφ

)
may be substantially altered by these noise

sources though.
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7.1. CONCLUSION
Below we present the conclusions with respect to the main topics of this thesis. How-
ever, before we turn to the conclusions per topic, we will first reflect on the motivation
behind this thesis from chapter 1.

In chapter 1 we noted that new quantitative image analysis methods are needed
to fully capture all the information in an image. The methods to quantify molecule
numbers and measure co-orientation report quantities that characterize the struc-
tures in the images: the former by characterizing the molecular composition of the
structures and the latter by characterizing the relation between these structures.

In chapter 1 we also noted that new methods are needed to prevent overinterpre-
tation from visual inspection of images, which can lead to unsound biological con-
clusions. The co-orientation measurement was accompanied by a significance test
to prevent undue interpretation of an effect where insufficient evidence is available.
The FRC resolution is also primarily aimed at avoiding overinterpretation, by provid-
ing a lower bound on the size of details that can be interpreted in the images.

Finally we noted that these methods need to be suited to the nature of localization
microscopy data. Although the presented methods in this thesis all make use of pixe-
lated images in their software implementation, this pixelation in the images does not
substantially affect the measurements. We showed this in chapter 2 pixelation does
not reduce the image resolution more than 10% when the pixel size is smaller than a
quarter of the resolution.

7.1.1. RESOLUTION MEASUREMENT

Chapter 2 introduced Fourier Ring Correlation (FRC) as a practical resolution mea-
sure for localization microscopy. We showed that it is sensitive to both the localization
precision and density of localizations, but also other factors that affect the resolution
such as the sample’s spatial structure or specimen drift. The FRC can be computed
directly from the localization data, even in the presence of multiple localizations per
fluorophore, unlike alternative approaches based on the information transfer func-
tion [56] or kernel density estimation [157]. Moreover, the FRC provides an objective
measurement for the full image, unlike the common alternative approach of measur-
ing the full-width-at-half-maximum of manually selected structures in images.

In chapter 2 we showed that the FRC can be practically used to provide a stop-
ping criterion for data acquisition, to compare the performance of three localization
algorithms, to quantify the benefit of drift correction and to assess whether labeling
density or localization precision limits the image quality. Since the publication of
the FRC method for resolution measurement[44], the FRC has been similarly used to
benchmark the performance of localization algorithms[158], to assess the impact of
adaptive optics to reduce aberrations while imaging[159], and to compare drift cor-
rection algorithms[160]. This demonstrates the utility of FRC resolution for the de-
velopment and assessment of novel techniques because of its holistic consideration
of the factors affecting image quality. Many more applications can therefore be ex-
pected where the FRC is used to compare the performance of different techniques.
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7.1.2. VISUALIZATION
In chapter 3 we considered which visualization method is most appropriate for lo-
calization microscopy. On the one hand this consideration was based on an objec-
tive quantitative comparison of the FRC resolution obtained by different visualiza-
tion methods. The resolution of the Gaussian blob rendering method was found to
be optimal in our simulations, although the histogram binning method provides a
good alternative with a slightly worse resolution in a shorter computation time. On
the other hand, we also considered how different methods conform to users’ expecta-
tions of the relation between the image and the sample which have been formed for
other fluorescence microscopy methods. We concluded that Gaussian blob rendering
performs comparatively well on this aspect as well.

7.1.3. QUANTIFYING MOLECULE NUMBERS
Chapters 4 and 5 were dedicated to the problem of counting molecules using local-
ization microscopy with reversibly switchable fluorophores. Quantification methods
such as these are of great use in addressing important questions relating for example
to the composition of macromolecular structures or to the abundance and oligomer-
ization of signaling proteins. Already in chapter 2 we showed that spurious correla-
tions in the FRC contain information on how often the same molecule is localized.
In chapter 4 we developed a three-state model to relate the magnitude of the spuri-
ous correlations to the switching kinetics of the fluorophores and the stoichiometry
of the number of fluorophores per marker. We used this model to derive a method to
estimate the number of localizations per marker with a precision of 10 to 20%, which
requires only a simple one-time stoichiometry calibration.

The method in chapter 4 was demonstrated on Alexa Fluor 647 dyes, which is the
most common dye used for localization microscopy. We found that it could be effec-
tively described by a three-state switching model with a single long-lived dark state,
even though the existence of multiple long-lived dark states has been suggested for
this fluorophore[161–163]. Other fluorophores that can also be effectively described
by this model could similarly be used with our method.

A second assumption in the model is that each emitter on a multiple-labeled
marker either behaves independent of all other emitters or goes entirely unobserved
in an experiment due to quenching. This binary description of the behavior of the
emitters is necessarily incomplete. However, in practice this description enabled ac-
curate quantification of the number of localizations per Neutravidin tetramer.

An important limitation in chapter 4 is that only labeled molecules were quan-
tified, which can lead to undercounting errors. In chapter 5 we proposed that this
issue may be overcome if data is available of many identical structures, labeled with
markers that have a single emitter. We showed how the number of protein copies in
a subunit of a macromolecular complex could be inferred by including the labeling
statistics of the binding sites in the analysis.

In chapter 5 nanobodies were used as markers with effectively just a single flu-
orophore. As nanobodies are increasingly used for localization microscopy due to
their small sizes (∼ 15 kDa or 2 nm)[164], the relevance and applicability of our analy-
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sis method will increase as well. Moreover, rapid developments in labeling technolo-
gies are leading to additional methods for labeling molecules with single organic dye
molecules, such as SNAP, CLIP or HALO tags[165–168].

There are also major ongoing developments of fluorescent proteins and better
genome editing methods for introducing fluorescent proteins into cells, such as the
CRISPR-Cas system[169, 170]. This will benefit competing counting methods that
employ irreversibly switching fluorescent proteins. These methods are otherwise sus-
ceptible to undercounting because not all wildtype proteins of interested are replaced
by fluorescent fusion proteins, or to overcounting when the fusion protein is overex-
pressed to reduce the fraction of wildtype proteins.

7.1.4. CO-ORIENTATION ANALYSIS
In chapter 6 we turned to the analysis of functional interactions between molecules
in multicolor images. We extended the widely used co-localization analysis, by in-
cluding the orientations of the structures on which the molecules reside. The term
co-orientation was coined for the combination of co-localization and orientational
alignment. This analysis can be applied directly to any kind of fluorescence microscopy.
Additionally, other geometric features of structures could be considered in the analy-
sis instead of orientational alignment, such as the curvature or size of objects. Mea-
surements such as these will be crucial in characterizing how functional molecular
interactions relate to the architecture of the extended structures to which they be-
long.

To test the statistical significance of the co-orientation in experimental data, we
devised a data driven test based on the rotation of one color channel with respect to
the other. This allowed us to demonstrate significant co-orientation between tubulin
and vimentin filaments in a cell-type specific manner. The comparison between cell-
types was further supported with our method to visualize the local co-orientation.

7.2. RECOMMENDATIONS
The following list provides a number of recommendations for what should be done
to follow up the work in this thesis.

• A robust ImageJ plugin must be developed for the methods presented in this
thesis, particularly for resolution measurement. This will results in better dis-
semination in the biological community.

• The Fourier Plane Correlation (FPC) analysis is currently only semi-quantitative.
Schemes for weighting spatial frequencies in the FPC are needed to use the FPC
to accurately quantify the resolution in three-dimensional imaging. If attempts
to improve of the FPC prove unsuccessful, another option is to use the spectral
signal-to-noise ratio (SSNR) instead.

• The algorithm to correct for spurious correlations needs to be adapted for use
with the FPC or SSNR for three-dimensional resolution quantification.
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• The algorithm to measure the magnitude of spurious correlations should be
improved in two ways: firstly by automatically establishing the regime where
spurious correlations dominate the FRC; secondly by simultaneous estimation
at multiple time points in the acquisition, rather than independent estimation
at each time point.

• Further refinement of Gaussian blob rendering should be pursued. Firstly, the
amplitude of each blob can be varied with the likelihood that it indeed corre-
sponds to a single molecule[11]. Secondly, the rendering method may account
for the statistical dependence between clustered localizations when they derive
from the same molecule.

• The visualization of local co-orientation needs to be improved to deal with re-
gions with crossing filaments. Possible directions to address this issue are the
automatic detection of these regions, or the incorporation of higher order mo-
ments of the generalized cross-correlation in the analysis.

• The presumed quenching mechanism that leaves emitters on multiple-labeled
markers unobserved during an acquisition should be further investigated. This
would resolve the duality between observed and unobserved emitters in our
experiments in chapter 4. Possible approaches for investigation include spec-
troscopy or analysis of photon antibunching[115] in controlled samples such
as DNA origami structures[171, 172].

• A standardized quality assessment procedure should be developed for localiza-
tion microscopy data. FRC resolution measurement should be an integral part
in this. Additionally, this assessment should report several raw camera frames
from an acquisition, combined with overlays indicating segmented ROIs and
PSF model fits to assess false positive and false negative localization rates.

• The stoichiometry inference method in chapter 5 should be improved by in-
cluding timing information of the localizations in the analysis as well[40, 135].

7.3. OUTLOOK
In this final section, we provide a brief outlook on future developments relating to im-
age processing and analysis for localization microscopy. To put these developments
in context we will first consider the key requirements for localization microscopy
from the point of view of the application to biological problems.

Most applications of localization microscopy so far have depended critically on
its high resolution. In several important applications this enabled important new
insights of the architecture of cellular structures. Prominent examples include in-
vestigations of the spatial organization of integrin-based focal adhesions[53], the nu-
clear pore complex[127], periodic cytoskeletal structures in axons[173], and endo-
somal sorting complexes required for transport at HIV assembly sites[132]. Similar
investigations of the architecture of cellular structures consisting of many molecules
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in small volumes will require even higher resolutions to investigate the most intricate
details of their organization. In part this will require new labeling approaches and
fluorophores to enhance the labeling density and localization precision. Below we
will discuss several developments in image processing and analysis that benefit the
resolution of localization microscopy.

In addition to the critical need for a higher spatial resolution, further improve-
ment of the temporal resolution is also needed to enable live cell imaging. Until now
the application of localization microscopy to live cell imaging has been limited. How-
ever, super-resolution imaging in live cells would be extremely useful to image pro-
cesses in cells where the dynamics or order of events is crucial to their understanding.
Examples include the dynamics of lipid domains and heterogeneous protein organi-
zation in membranes as well as the dynamic assembly of structures such as signaling
complexes or virus particles[174]. Additionally, live cell imaging has the benefit that
it is less sensitive to imaging artifacts due to fixation, and can be used to monitor for
morphological changes due to cell stress from the imaging. Therefore we will discuss
the prospects for live cell localization microscopy below as well.

Finally, localization microscopy is not only useful for generating high resolution
images or movies that allow for visual interpretation of cellular structures and pro-
cesses. Instead, quantitative analysis methods can be used to directly characterize
these structures and processes from the localization microscopy data. The meth-
ods in this thesis for determining molecule numbers and quantifying co-orientation
are examples of such applications of localization microscopy. Quantitative measure-
ments such as these are highly useful for condensing the information in the data into
a comprehensible form and for revealing subtle but functionally important differ-
ences between cells under different environmental conditions or in different stages
of development or between different cell types. In addition, quantitative measure-
ments are also necessary for crafting or testing biological models of cellular processes
or structures. Below we will further discuss the need for new quantitative analysis
methods, as well as the possible use of high throughput imaging for obtaining high
data volumes.

7.3.1. MORE PRECISE LOCALIZATION

The basic image processing pipeline for single color two-dimensional localization
microscopy is currently well established. Theoretically optimal algorithms have been
published for segmenting and localizing single molecules in an acquisition with sparse
activation under typical imaging conditions[11, 15]. In addition, an approach was
proposed for three-dimensional imaging to obtain the lowest Cramer-Rao lower bound
(CRLB) with a single emission path in the optical system[175]. The utility of algo-
rithms for high density localization algorithms seems limited, as will be discussed
below in the paragraph on live cell imaging. Therefore, further advances in the per-
formance of localization algorithms will come from more accurate modeling of the
physical image formation.

Improvements in localization precision will require that higher photon counts are
obtained from fluorophores. However, the simplified PSF models that are commonly
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used now will no longer suffice as the photon count from single fluorophores in-
creases. Misspecification of the PSF model may become a dominant source of local-
ization error rather than the limited photon count, particularly for axial localization.
Very high localization precisions will therefore require the use of efficient localization
algorithms that account for aberrations in the optical system, vectorial effects and
possibly also imperfect rotational mobility of the fluorophores[14, 176, 177]. In addi-
tion, hardware demands on setups for high precision imaging will increase. For high
performance setups, the use of active feedback systems to prevent specimen drift[26]
and adaptive optics to correct for aberrations[159] will become obligatory. Aberration
correction will benefit from approaches to quantify aberrations during an acquisition
by PSF fitting on the imaged fluorophores.

The finite size of the marker molecule and the fluorophore becomes the limiting
factor to the localization accuracy when photon counts on the order of many thou-
sands have been obtained and an algorithm is available that accurately models the
PSF[14]. Further gains in localization accuracy may then be improved by using fluo-
rophores with limited rotational mobility. Polarization sensitive detection could then
be used to estimate the fluorophore’s orientation, which combined with a structural
model of the fluorophore and marker molecule could enable estimation of the point
where the marker binds to the structure of interest.

7.3.2. SUPER-RESOLUTION SENSING
Fitting a PSF model to a single fluorophore’s emission is not only useful to estimate
its position. For example, the PSF can also be modified to accurately measure the
emission spectrum of the dye by inserting a diffractive grating or dispersive prism in
the emission path[33, 34]. This allows for the simultaneous imaging of a number of
different fluorophore species, although efficient photoswitching of all fluorophores is
complicated by their conflicting requirements on the imaging buffer.

Other properties of a fluorophore other than information about its emission spec-
trum could be extracted from the PSF as well, such as the fluorophores’ brightness,
photoswitching rates, emission dipole orientation, rotational diffusion, or fluores-
cence lifetime. Each of these parameters could be used to encode information about
fluorophores’ surroundings, allowing them to function as densely sampled and pre-
cisely located sensors of their environment. This will require novel fluorescent probes
that enable accurate sensing but also provide high photon counts and good photo-
switching kinetics for localization. Also novel image sensors with very high frame
rates, such as SPAD sensors, may be useful for accurately measuring photoswitching
kinetics of fluorophores[178].

7.3.3. DATA FUSION FOR IDENTICAL PARTICLES
An intriguing application of localization microscopy can be found in the structural
biology of macromolecular complexes. Localization microscopy has a large potential
in this domain as a complementary technique to typically used X-Ray crystallogra-
phy and cryo electron microscopy (EM) techniques: it can obtain nanoscale local-
ization precision relatively deep inside intact cells with molecular labeling specificity.
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Therefore it can be applied to macromolecular complexes which are difficult to image
with these techniques, for example because they cannot be purified or crystallized
well. Moreover, localization microscopy images can be correlated with high resolu-
tion reconstructions of components of complexes obtained from X-ray or cryo EM
data. Also, the images can be correlated with cryo EM images of the entire complex
to confirm the accuracy of the localizations and to determine molecular positions
within the reconstructed electron densities. Together these techniques can therefore
be used to obtain molecular models of complex structures.

The application of localization microscopy to structural biology suffers both from
a limited localization precision and from finite labeling efficiency. In part these issues
may be resolved by the developments described in the previous paragraphs. How-
ever, data fusion with identical structures presents a complementary approach to ad-
dress these problems.

Data fusion with identical structures relies on the prior information that some
macromolecular complexes, such as the NPC, are always identical in composition
and geometry[52, 127]. We will refer to these complexes as particles. Different in-
stances of these particles can be registered to each other or to a template. Because
each site is labeled in some of the instances, this overcomes the problem of underla-
beling. In chapter 5 we applied this principle to estimate the number of Nup160 and
Seh1 copies per subunit in the NPC. However, significant challenges still remain in
aligning these particles in an accurate and computationally efficient manner[134].

An additional challenge is how to combine the aligned localizations to accurately
estimate the true molecular positions, based on their number, positions and timing.
In principle, if N localizations per molecule are available in total, this could provide
up to

�
N times more precise position estimates. With possible numbers of particle of

several thousands, the resulting precision could be extremely high indeed. In such an
analysis the incomplete labeling of particles may actually prove beneficial: the label-
ing stochasticity may perform a similar role as the on-off switching of fluorophores,
by providing instances where only one of several nearby molecules is imaged in a lo-
calization precision limited area. The method in chapter 5 may be of use in such an
analysis, by indicating the number of positions to be extracted from the localizations.

In addition to data fusion for the reconstruction of an image, localizations from
registered particles could also be employed to identify if nearly identical particles
can actually be subdivided into homogeneous subgroups, or to identify the principal
structural variations between particles. This type of analysis is commonly applied in
single particle analysis in electron microscopy (see e.g. chapter 4 in reference [128]).

Interestingly, data fusion with identical particles could also be used with STED
or RESOLFT microscopy. At very high depletion levels, the signal-to-noise-ratio will
eventually also limit their resolution. Averaging identical particles may then lead to a
single reconstruction with a vastly improved signal-to-noise-ratio. Moreover, with the
use of an accurate model for the PSF of the optical system, it may be possible to use
deconvolution as well to enhance the resolution of the averaged particle. However,
specific alignment algorithms would need to be developed, as incomplete fluorescent
labeling prohibits direct application of algorithms from electron microscopy.
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7.3.4. STRUCTURAL MODELING
In the absence of identical structures, an alternative image analysis approach to over-
come underlabeling is to model the structure. Often prior ideas exist for how an im-
aged structure should look. For example, cytoskeletal filaments should appear as
linelike structures in images. This prior knowledge could be expressed in a mathe-
matical model, which can then be used to estimate the positions of the filaments in
the image. Even a limited number of localized molecules could then suffice to recon-
struct an image of each filament.

The idea of using mathematical models of the structures for reconstructing lo-
calization microscopy images was first applied in Maji et al.[179], where filaments
were modeled as straight line segments. However, straight line segments provide a
relatively crude model of curved filaments, which limited the quality of the recon-
structed images. This demonstrates the necessity of accurate models to enable such
reconstructions.

An additional challenge for this approach is posed by the complex image forma-
tion in localization microscopy: molecules are typically labeled with multiple flu-
orophores, which are localized an unknown number of times, and each time with
a different precision. This results in statistical dependencies between the localiza-
tions. These dependencies complicate tests for the goodness-of-fit of different mod-
els, which will be required for selecting the right model to describe the data.

7.3.5. LIVE CELL IMAGING
One of the reasons for the widespread use of fluorescence microscopy in biology is
its use for live cell microscopy. So far applications of localization microscopy in this
area have been limited. Contributing factors include toxicity of the buffers typically
used for imaging, (toxically) high illumination intensities required for photoswitch-
ing, and low frame rates of the commonly used EMCCD cameras. Although photo-
toxicity can sometimes be reduced with selective plane illumination[180, 181] and
acquisition speeds can be considerably increased by using sCMOS cameras[21, 163],
video rate nanoscopy will likely remain infeasible in the coming years.

To achieve video rate localization microscopy with high spatial resolution, say
50 nm, a super-resolution image needs to be acquired every 20 ms. Chapter 2 recom-
mends that a resolution of 50 nm is most efficiently obtained for a localization preci-
sion of 8 nm. For the structure in figure 2.1 this would entail a density of localizations
of about 2000 per μm2, although different structures may require perhaps an order
of magnitude fewer localizations. Simulation results by Mukamel and Schnitzer[182]
suggest that for spatial frequencies q <σ−1

g information about the sample is most ef-

ficiently collected if the density of active emitters is lower than 0.02σ−2
g , where σg ∼

100 nm is the standard deviation of the Gaussian approximation of the PSF. This actu-
ally constitutes a regime in which spots from different emitters typically do not over-
lap, indicating a limited utility for high density localization algorithms. Together this
implies a frame rate of 50 kHz of raw camera images, which is far beyond the current
state-of-the-art. Moreover, the illumination intensities required at this frame rate will
almost certainly be very stressful and eventually lethal for cells, which limits the maxi-
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mum duration of the acquisition. Instead, the highest achievable temporal resolution
in the near future will be on the order of a few seconds per super-resolution image.

Intelligent image analysis algorithms could be used to circumvent these require-
ments. Firstly, localization microscopy offers the unique possibility to not only es-
timate the position but also the velocity of molecules in live cells. This allows for
improved interpolation of fluorophore positions between frames and thus reduced
camera frame rates. Such an approach would thus combine elements of static lo-
calization microscopy and single-particle tracking PALM[183]. The latter will remain
very useful for quantifying single molecules’ diffusive motion, rather than imaging
the motion of an underlying structure. Secondly, the use of structural models could
reduce the density of localizations required to sample a structure, as discussed above.

For less demanding resolutions, localization microscopy is not the only fluores-
cence microscopy technique that could be considered for live cell imaging; possi-
ble alternatives include confocal microscopy or structured illumination microscopy
(SIM) or superresolution techniques such as stimulated emission depletion (STED).
The suitability of each method depends on a tradeoff between spatial resolution, tem-
poral resolution, total acquisition time and (photo)toxicity.

A recent publication on nonlinear structured illumination microscopy [184] by
Betzig and co-workers argues that SIM is generally preferable because it is the most
photon-efficient technique for obtaining reasonably high resolutions. However, this
conclusion relies on an unequal theoretical comparison between STED, RESOLFT,
SIM, and localization microscopy. The image quality of STED, RESOLFT, and SIM was
quantified by comparing their effective optical transfer functions (OTF) to the noise.
The image quality of localization microscopy was determined instead by considering
arbitrary standards for the fraction of molecules that should be localized in periodic
structures. Further theoretical and experimental work is therefore required to provide
a fair comparison between these techniques, to determine under which conditions
there may be a place for localization microscopy in live cell imaging.

If live cell localization microscopy does indeed prove to be infeasible, an alter-
native approach for time resolved imaging is simply to image multiple fixed cells se-
quentially. This can then provide snapshots of different stages in a biological process.

7.3.6. HIGH THROUGHPUT IMAGING
Imaging multiple fixed cells is not only useful for observing snapshots of dynamic
processes. The availability of data from large numbers of cells also provides new op-
portunities for statistical analyses to quantify variations among cells. This would for
example enable the profiling of cellular phenotypes and provide inputs for systems
biology approaches to study cellular processes[185]. However, these sorts of analyses
require images of many hundreds or thousands of cells. Therefore, high throughput
systems would need to be developed to enable for the automated super-resolution
imaging to enable such an approach. Such a system could obtain on the order of
300 to 400 super-resolution images in 24 hours, assuming each acquisition requires
20,000 raw frames acquired with an sCMOS camera at 100 frames per second and an
overhead per acquisition on the order of a minute. High throughput data acquisition
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may therefore take several days but should not be infeasible.
High throughput imaging with localization microscopy will benefit from automa-

tion of tasks that are currently manually executed, such as: searching for suitable
cells for imaging, controlling illumination powers, identifying fiducial markers for
drift correction, controlling acquisition times per cell, and selecting images with a
high image quality. The latter two tasks could benefit from the FRC resolution mea-
surement as detailed in chapter 2. In addition, automatic interpretation of images
will require measurements of quantities such as the number of imaged molecules or
the co-orientation strength as described in this thesis, but also for example degrees
of clustering or co-localization[65]. Quantitative measurements such as these could
then provide the inputs needed for systems biology approaches.

7.3.7. IMAGE PROCESSING TOOLS
In this thesis several image analysis methods were discussed that were specifically
developed for localization microscopy. As was mentioned in chapter 1, a practical
necessity for the development of such methods is that common image analysis tools
are not suited to localization microscopy data. They typically assume that structures
appear continuous in images and that noise sources operate independently in each
pixel. Therefore new algorithms for common image processing tasks - such as edge
detection, segmentation, or size measurements - will need to be developed that are
specifically adapted to localization data. This requires a departure from standard im-
age processing ways of thinking about data in terms of pixels.
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SUMMARY

Localization microscopy is a powerful tool for circumventing the diffraction limit in
fluorescence microscopy. In this technique sparse subsets of the fluorophores label-
ing a sample are switched on and off, and subsequently localized with a precision on
the order of several nanometers. A high resolution image can then be built up from
the estimated positions. However, localization microscopy fundamentally produces
a list of localizations rather than an image. This introduces a critical need for new
quantitative image analysis methods that suit these data. This thesis describes sev-
eral of these methods, which we have developed.

The resolution in localization microscopy is not limited by diffraction. Instead we
propose an image based resolution measure based on Fourier ring correlation (FRC).
The FRC is both sensitive to the localization precision and the density of single fluo-
rescent labels in a sample, as well as other factors such as the sample’s spatial struc-
ture. We show how the FRC can be corrected for spurious correlations for acquisitions
where the same molecules are localized several times. The FRC resolution provides a
quantitative guide for the smallest details that can be reliably interpreted in images,
thus enabling sound biological conclusions.

Localization microscopy lacks a natural way of visualizing the data that are pro-
duced. Therefore we compare several proposed visualization methods, and show
that the best FRC resolution is obtained by rendering localizations as Gaussian blobs
whose widths are proportional to the corresponding localization precisions. His-
togram binning provides a good alternative though, with only a slightly resolution
in a shorter computation time.

A major application of localization microscopy is the quantification of numbers of
molecules in biological structures. However, the reversibly switchable fluorophores
which are commonly used for imaging suffer from overcounting due to multiple lo-
calizations of the same molecule. Here we provide a method to estimate how often a
marker such as an antibody is localized on average. The method makes use of the
build-up of spurious correlations in the FRC during acquisition, and draws upon
a model for the statistics of activation, bleaching, and labeling stoichiometry. Our
method achieves a counting error of less than 20% with single fluorophore labeled
DNA oligomers and multiple-labeled Neutravidin tetramers, without any calibration
of transition rates.

When overcounting problems are resolved, incomplete labeling of the sample
may result in undercounting problems instead. We address this issue for well-defined
macromolecular complexes such as the nuclear pore complex (NPC). We show how
the number of protein copies per subunit can be inferred by combining the localiza-
tions from multiple underlabeled complexes in a single statistical analysis.
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Co-localization analysis is a standard tool to probe multicolor fluorescence im-
ages for functional interactions between molecules in different channels. We extend
this into the analysis of co-orientation: the combination of co-localization and orien-
tational alignment of the structures on which the molecules reside. We employ this
analysis to show that microtubuli exhibit statistically significant co-orientation with
the intermediate filament vimentin in a cell-type specific manner.

Together these methods substantially advance our ability to reliably and quanti-
tatively interpret localization microscopy data and thereby enhances their utility for
biological research.



SAMENVATTING

Lokalisatiemicroscopie is een krachtige techniek om de diffractielimiet in lichtmicro-
scopie te omzeilen. Met deze techniek worden kleine subgroepen van de fluoroforen
die een voorwerp markeren aan- en uitgeschakeld en vervolgens gelokaliseerd met
een precisie in de orde van enkele nanometers. Een afbeelding met hoge resolutie
kan dan worden opgebouwd uit de geschatte posities. Lokalisatiemicroscopie pro-
duceert echter fundamenteel een lijst met lokalisaties in plaats van een afbeelding.
Dit introduceert een essentiële noodzaak om nieuwe kwantitatieve beeldanalyseme-
thoden te ontwikkelen die geschikt zijn voor dit soort data. Dit proefschrift beschrijft
een aantal van zulke methoden, die wij hebben ontwikkeld.

De resolutie in lokalisatiemicroscopie is niet beperkt door diffractie. Daarom in-
troduceren wij een resolutiemaat voor lokalisatiemicroscopie die uitgaat van de ge-
reconstrueerde afbeelding en gebaseerd is op Fourier ring correlatie (FRC). FRC is
zowel gevoelig voor de lokalisatieprecisie als de dichtheid van fluorescente molecu-
len in een voorwerp, maar ook voor andere factoren zoals de spatiële structuur van
het voorwerp. Wij laten zien dat de FRC gecorrigeerd kan worden voor de valse corre-
laties die ontstaan in acquisities waarin dezelfde moleculen meerdere keren worden
gelokaliseerd. De FRC-resolutie levert een kwantitatieve maatstaf op voor de kleinste
details die nog betrouwbaar kunnen worden geïnterpreteerd in beelden, wat gedegen
biologische conclusies mogelijk maakt.

Lokalisatiemicroscopie mist een natuurlijke manier om de data die geproduceerd
worden te visualiseren. Daarom vergelijken wij verschillende voorgestelde visualisa-
tiemethoden, en laten zien dat de beste FRC-resolutie behaald wordt door lokalisa-
ties weer te geven als Gaussische functies met een breedte die proportioneel is aan de
bijbehorende lokalisatieprecisies. Een tweedimensionaal histogram biedt echter een
goed alternatief, dat een enigszins slechtere resolutie oplevert maar minder rekentijd
kost.

Een belangrijke toepassing van lokalisatiemicroscopie is de kwantificering van
aantallen moleculen in biologische structuren. De reversibel schakelbare fluoroforen
die vaak gebruikt worden lijden echter onder overschatting als gevolg van herhaalde
lokalisatie van hetzelfde molecuul. Wij hebben een methode ontwikkeld om te schat-
ten hoe vaak een markeerstof zoals een antilichaam gemiddeld gelokaliseerd wordt.
De methode maakt gebruik van de opbouw van valse correlaties in de FRC tijdens
een acquisitie en is gebaseerd op een model voor de statistiek van activatie, bleking,
en stoichiometrie van fluoroforen per markeermolecuul. Onze methode behaalt een
schattingsfout van minder dan 20% met DNA oligomeren voorzien van een enkel flu-
orofoor en Neutravidinetetrameren voorzien van meerdere fluoroforen, zonder dat
er een kalibratie van de reactiesnelheden in het model nodig is.
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Als problemen met overschatting van aantallen moleculen zijn opgelost, dan wordt
onderschatting als gevolg van het onvolledig markeren van een voorwerp een pro-
bleem. Wij bieden een oplossing voor dit probleem voor welgedefinieerde macro-
moleculaire complexen zoals het kernporiecomplex. We laten zien hoe het aantal
eiwitkopieën per onderdeel van een complex kan worden bepaald door lokalisaties
van verschillende onvolledig gemarkeerde complexen te combineren in een enkele
statistische analyse.

Colokalisatie-analyse is een standaardmethode om meerkleurenfluorescentie af-
beeldingen te analyseren voor functionele interacties tussen moleculen in verschil-
lende kanalen. Wij breiden deze analyse uit naar de analyse van co-oriëntatie: de
combinatie van colokalisatie en uitlijning van de structuren waarop de moleculen
zich bevinden. We passen deze analyse toe om te laten zien dat microtubuli statis-
tisch significante co-oriëntatie vertonen met vimentinefilamenten op een manier die
afhangt van het celtype.

Samen bieden de hier beschreven methoden een substantiële vooruitgang in de
mogelijkheden om lokalisatiemicroscopiedata op een betrouwbare en kwantitatieve
manier te interpreteren. Dit vergroot het nut van die data voor biologisch onderzoek.
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