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ABSTRACT

Atropisomeric heterobiaryl primary amines are of significant interest in both organic and pharmaceutical chemistry. A series of
transaminases have been employed to synthesize these valuable compounds with high yields (up to 98% conversion) and excellent
enantioselectivities (up to >99% ee) via dynamic kinetic resolution of the corresponding heterobiaryl aldehydes. This process
features a Lewis acid-base interaction strategy to facilitate labilization of the stereogenic axis.

1 | Introduction

Axially chiral heterobiaryl amines are an important class of com-
pounds with significant interest in organic synthesis due to their
presence in natural products [1-3], pharmaceuticals [2, 4], and
chiral ligands [5-12]. These compounds exhibit diverse biological
activities and represent a widely prevalent scaffold in drug dis-
covery, particularly in the development of kinase inhibitors, anti-
cancer agents, and central nervous system drugs. In addition,
heterobiaryl amines serve as key intermediates in the synthesis
of functional materials, including organic light-emitting diodes
and organic semiconductors [13-15]. A particularly important
family within this class of compounds is that of axially chiral
biaryl benzylamines, which are prevalent in a wide variety of
bioactive molecules, such as allocolchicine and vancomycin
[16,17], and play a key role as alkylamine-derived chiral catalysts
[18-20] (Figure 1).

The stereoselective synthesis of these compounds remains chal-
lenging, as the presence of an aliphatic amino group can interfere
with catalytic cycles, thereby requiring extended synthetic

sequences to overcome this limitation. In this regard, traditional
methods for the synthesis of axially chiral benzyl amines have
relied on the use of chiral substrates, such as benzyl halides,
amides, and azides [21-23]. The swift advancement of transition
metal- and organocatalyzed atroposelective methodologies has
further enabled the development of more efficient and economi-
cally viable strategies for synthesizing these compounds [6, 24-29].

Recently, the Akiyama group identified biaryl hemiaminals as
effective intermediates for dynamic kinetic resolution (DKR),
owing to their facile in situ formation and ring opening. The
resulting imine species can undergo asymmetric transfer hydro-
genation (ATH), leading to axially chiral biaryl benzylamines
with high enantiomeric excess [30]. This racemization-based
approach was later integrated with hydrogen-borrowing catalysis
to enable a redox-neutral amination of biaryl substrates [31]. We
have also developed a strategy to synthesize axially chiral benzyl-
aryldiamines, taking advantage of the formation of related
bridged biaryl aminals to facilitate racemization. The fast equi-
librium with the open-chain amino-imino tautomer enabled a
DKR via Ru-catalyzed ATH, affording BINAM analogs in high
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FIGURE 1 | Selected examples of natural products and catalyst containing axially chiral benzylamines.

enantioselectivities. More recently, a highly enantioselective
Pictet-Spengler reaction catalyzed by chiral phosphoric acids
was reported for synthesizing axially chiral tetrahydroisoquino-
lines [32].

Biocatalysis, which offers the advantage of proceeding under
mild conditions while avoiding the use of heavy metals and oxi-
dants and generating minimal byproducts, represents an excel-
lent solution for the synthesis of these compounds [33-35].
However, biocatalytic methods for the synthesis of (hetero)biaryl
benzylamine atropisomers remain limited. Early efforts using
lipase-mediated kinetic resolution of racemic biaryl benzyl-
amines faced significant challenges, including low yields (below
50%) and poor enantiomeric resolution [36]. Very recently, the
desymmetrization of a set of biaryl dialdehydes using various
amine donors, generating the corresponding chiral amines in
the presence of different engineered imine reductases (IREDs)
with high optical purities and good yields [37, 38].

The biocatalytic atroposelective synthesis of biaryl amines has also
been accomplished through DKR of biaryl aldehydes with various
amines [39]. The process involves an aza-acetal bridge-facilitated
racemization of the initially formed racemic imine, followed by
stereoselective reduction catalyzed by IREDs, yielding the targeted
compounds with up to 99% enantiomeric excess and 99% conver-
sion. IREDs have also been employed in the DKR of heterobiaryl
and heterobiaryl N-oxide aldehydes, employing a racemization
mechanism that involves the formation of cyclic transition states
via interactions between the Lewis basic N-oxide and the weakly
acidic carbonyl group. This approach enables the efficient synthe-
sis of corresponding heterobiaryl secondary amines with excellent
enantioselectivities in the presence of benzylamine [40].

Aminotransferases or transaminases (ATAs) are pyridoxal
5’-phosphate (PLP)-dependent enzymes that catalyze the trans-
fer of an amino group from an amino donor to a keto acceptor

molecule, offering a promising biocatalytic alternative for amine
synthesis [41, 42]. ATAs are robust, engineerable enzymes featur-
ing high enantioselectivities and a broad substrate scope, which
makes them particularly attractive for green chemistry applica-
tions. Recent advances in protein engineering and directed evo-
lution have further expanded their substrate scope and enhanced
catalytic efficiency, enabling the synthesis of complex molecules
containing amino groups in high yields and selectivities [43, 44].
For these reasons, ATAs are one of the most applied and scaled-
up enzyme classes in industry [45].

Our group has demonstrated that relatively weak Lewis acid-
base interactions (LABIs) between strategically positioned func-
tionalities within (hetero)biaryl systems significantly reduce the
rotational barrier, thereby facilitating racemization in sterically
hindered substrates and enabling a DKR process [46-50].
With this aim, we have developed transformations aimed at
disrupting these Lewis pair interactions, leading to configura-
tionally stable and enantioenriched products. In this context,
biocatalysis has proven to be an excellent approach for the prep-
aration of optically active heterobiaryl alcohols and esters,
achieving high yields and optical purities using alcohol dehydro-
genases (Scheme 1A,C) [51, 52] and lipases (Scheme 1D) [53].
Herein, we describe the implementation of the LABI-based
strategy for the synthesis of heterobiaryl amines, including
N-arylindole diamines and 2-(quinolin-8-yl)benzyl amines via
transaminase-mediated DKR (Scheme 1B,E).

2 | Results and Discussion

Initial screening experiments were conducted to optimize
the biotransformation of the heterobiaryl indole aldehyde 1a
(5.0 mM), using a set of commercially available transaminases
(Codexis ATAs Screening Kit). As shown in Table 1, ten ATAs
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SCHEME 1 | Biocatalytic atroposelective DKR strategies based on LABIs as a racemization strategy. (A,C) DKRs of heterobiaryl alcohols
catalyzed by ADHs; (B,E) Synthesis of N-arylindiole diamines and 2-(quinolin-8-yl)benzyl amines via transaminase-mediated DKR (this work);
(D) Chemoenzymatic DKR of racemic heterobiaryl alcohols employing CalB and Shvo's Catalyst.

TABLE 1 | DKR of heterobiaryl aldehyde (+)-1a employing commercially available ATAs. Substrate (5 mM) was dissolved in an ethanolamine
buffer 0.1 M pH 7.5 with 10% v/v DMSO containing PLP (1.0 mM), iPrNH, (1.0 M), and the corresponding ATA (10 mg).

N\ Y ATA N\ NH,
N Buffer pH 7.5/ DMSO (10% v/v) N
NMe, - > NMe,
PLP/PrNH, (1.0 M)
30°C/24 h

(t)-1a (S)-2a
Entry TA [%]-2a* ee (5)-2a, %"
1 ATA-013 97 96
2 ATA-025 95 93
3 ATA-217 97 7
4 ATA-234 97 29
5 ATA-237 97 73
6 ATA-238 97 12
7 ATA-303 30 <3
8 ATA-412 13 <3
9 ATA-415 97 97
10 ATA-P1-GO5 71 79

Abbreviations: GC/MS, gas chromatography/mass spectrometry; HPLC, high performance liquid chromatography.
“Determined by Gas chromatography/Mass spectrometry.
Determined by HPLC after acetylation of the resulting amine 2a.

successfully catalyzed the formation of amine 2a, consistently  enantioselectivity (entries 7 and 8, respectively), the remaining
yielding the S-configured diamine atropisomer. While ATA- transaminases produced appreciable amounts of the target
303 and ATA-412 displayed low activity and lacked amine. ATAs 217, 234, and 238 yielded (S)-2a with low optical
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purities (entries 3, 4, and 6), whereas ATA-237 and ATA-P1-G05
showed improved enantioselectivity, affording the corresponding
chiral amine with 73% ee (entry 5) and 79% ee (entry 10), respec-
tively. The best results were obtained using ATA-013, ATA-025,
and ATA-415, which enabled the biocatalytic reductive amina-
tion with near-complete conversions and excellent optical puri-
ties, exceeding 93% ee (entries 1, 2, and 9). Notably, ATA-415
delivered (S)-2a with 97% conversion and 97% ee.

The influence of the substrate concentration of 1a on the activity
and selectivity of ATA-013 was evaluated. To enable comparison
across reactions conducted at different times, the space time yield
was defined as the millimoles of 1a consumed per liter per hour.
Bioconversion of aldehyde to amine (S)-2a increased with substrate
concentrations above 5.0 mM, reaching a maximum reaction
rate of 442mmol L™'h™ at 40 mM. The reaction rate decreased
at higher concentration, yielding 28.3mmol L™"h™" at 80 mM.
Nonetheless, this value remains higher than the rate observed at
5mM (18.8mmol L™'h™"). Across all substrate concentrations
studied, no effect on the amine selectivity was observed, with
(S)-2a consistently obtained in excellent optical purities.

Using the most efficient ATAs, we further explored the scope of
this biocatalytic atroposelective amination strategy by using a
series of 2-formylindoles 1b-h, bearing different substituents
on the indole ring (Scheme 2). Excellent results were obtained
in the amination of fluorinated derivatives, including 4-fluoro
(1d) and 6-fluoro (1e), as well as 6-methyl (1g) and 4-methoxy
(1h) substituted aldehydes, all exhibiting optical purities higher
than 90%. For instance, (S)-2e was obtained with 98% conversion
and 91% enantiomeric excess after 24 h using ATA-013 as the
catalyst, while enantiopure (S)-2g was obtained with complete

conversion when the same enzyme was used. In contrast, indoles
bearing 5- and 6-chlorine or 5-methyl substituents exhibited
moderate enantioselectivities, with enantiomeric excess values
ranging from 52% to 77%. Notably, no amination reaction was
observed for heterobiaryl aldehydes featuring a methyl substitu-
ent at the 3-position of the indole ring or a trifluoromethyl group
on the phenyl moiety.

Subsequently, we investigated the biocatalytic reductive amina-
tion of additional configurationally labile heterobiaryl aldehydes
under DKR conditions. Specifically, quinoline-based aldehydes
bearing naphthyl or tolyl substituents were evaluated as sub-
strates for the ATAs. Overall, these compounds exhibited lower
reactivity compared to the indole-derived aldehydes. The reac-
tion of 1-(quinolin-8-yl)-2-naphthaldehyde (1i) with most of
the biocatalysts tested failed to produce the desired amine 2i
(Table S4). The highest yield was observed using ATA-P1-G05
which afforded (R)-2i in 26% yield with excellent enantioselectiv-
ity (97% ee, entry 1, Table 2). Extending the reaction time to 72 h
resulted in an increased conversion of 65% conversion while
maintaining the same optical purity (entry 8). ATA-217 also
afforded (R)-2i with good optical purities (around 80%), albeit
with moderate conversion (entry 3). In contrast, ATA-234 yielded
slightly lower conversion and enantiomeric excesses. ATAs 237
and 238 were able to catalyze the formation of the opposite atro-
pisomer [(S)-2i], but with low conversions and moderate optical
purities, as shown in entries 5 and 6. In view of these results, the
reductive amination was also explored using ATA-117 from
Arthrobacter sp. and PjSTA-R6-830 from Pseudomonas jessenii,
both previously reported for their efficacy in synthesizing other
N-heterocycles [54, 55]. While ATA-117 exhibited no activity

x N7 ATA « A
\ Buffer pH 7.5/DMSO (10% v/v) \
NMe, - NMe,
PLP//PrNH, (1.0 M)
30°C/ 24 h
(+)-1b-h (S)-2b-h
ol F
cl NH NH NH
N
N? NMe, N? NMe, N? NMe, \ NMe,
(S)-2b (S)-2¢ (S)-2d (S)-2e
ATA-237 ATA-237 ATA-013 ATA-013

93% conv., 77% ee 26% conv., 63% ee

HsC NH NH
N HsC N

? NM92

(S)-2f
ATA-237
91% conv., 52% ee

SCHEME 2 |

(S)-2g9
ATA-013
>99% conv., >99% ee

71% conv., 94% ee 98% conv., 91% ee

OCH,

N NMez

(S)-2h
ATA-P1-G05
96% conv., 90% ee

? NMe2

Synthesis of heterobiaryl amines (S)-2b-h through DKR employing ATAs. Substrate (5 mM) was dissolved in an ethanolamine buffer

0.1 M pH 7.5 with 10% v/v DMSO containing PLP (1.0 mM), 'PrNH, (1.0 M), and the corresponding ATA (10 mg).
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TABLE2 | DKR of heterobiaryl aldehydes (+)-1i-m employing commercially available ATAs. Aldehyde (5 mM) was dissolved in an ethanolamine
buffer 0.1 M pH 7.5 with 10% v/v DMSO containing PLP (1.0 mM), iPrNH, (1.0 M), and the corresponding ATA (10 mg).

ATA
Buffer pH 7.5/DMSO (10% v/v)

OO NH,

h

, > N
PLP/PrNH, (1.0 M) W
30 °C/ t (h) N

(R)- or (S)-2i-k

1i: X: H

1j: X: 5-Cl

1k: X: 6-CF3

11: X: 4-CH;,

1m: X: 6-CH;
Entry X ATA t,h [%]-2i-k* ee (5)-2i-k, %° Config.
1 H ATA-P1-G05 24 26 97 R
2 H ATA-P1-B04 24 10 82 S
3 H ATA-217 24 29 82 R
4 H ATA-234 24 21 81 R
5 H ATA-237 24 15 52 S
6 H ATA-238 24 18 37 S
7 H PjSTA-R6-8 48 45 85 S
8 H ATA-P1-GO5 72 65 97 R
9 H PjSTA-R6-8 72 66 86 S
10 5-Cl ATA-234 24 10 73 R
11 6-CF; ATA-234 24 28 45 R
12 4-CF; PjSTA-R6-8 24 31 >99 S
13 4-CHj; ATA-234 24 51 83 R
14 4-CH; PjSTA-R6-8 24 30 >99 S
15 6-CH; ATA-234 24 85 79 R

“Measured by HPLC after acetylation of the resulting amines.

(Table S4), the amination reaction of racemic 1i catalyzed by
PjSTA-R6-8 yielded the opposite atropisomer to ATA-P1-GO5,
affording (S)-2i with 45% conversion and 86% ee after 48h
(entry 7), whereas performing the reaction for 72h led to an
increase of the conversion (65%, entry 9), while the optical purity
is maintained. Therefore, through appropriate biocatalyst selec-
tion, both atropisomers of amine 2i can be obtained with good
optical purities.

To gain insight into the origin of the enantioselectivity, we car-
ried out docking studies on PjSTA-R6-8. We docked the quino-
noid intermediate of both (R)- and (S)-1i into the active site using
YASARA, observing steric clashes and lower docking scores for
the (R)-enantiomer compared to the (S)-enantiomer (Figure 2).
Thus, it appears that the origin of the selectivity is due to steric
interaction in the active site. It should be noted that the docking
algorithm treated the dihedral angle of the chiral axis as
completely rigid, docking poses should be viewed with the appro-
priate level of caution. However, this rigidity assumption is not
unreasonable, as the rotation around the chiral axis is most likely
restricted within the enzyme active site.

Other heterobiaryl aldehydes bearing substituents on the quino-
line ring, namely, 1j (X: 5-Cl) and 1k (X: 6-CH;), were also
evaluated. The use of ATA-234 afforded exclusively the
corresponding (R)-amines, with amine 2j being obtained
in moderate conversion and 73% ee (entry 10). In contrast, the
6-trifluoromethyl derivative was converted into enantiopure
(S)-2k in 31% conversion using PjSTA-R6-8, whereas the
(R)-amine was obtained with a similar conversion but a signifi-
cantly lower enantiomeric excess (entry 11). Furthermore, alde-
hyde 1m gave (S)-2m in 75% conversion and 80% ee (entry 15).
For the aldehyde bearing a methyl substituent at the 4-position,
both amine enantiomers could be obtained depending on the bio-
catalyst employed. PjSTA-R6-8 catalyzed the transamination
with 30% conversion, providing enantiopure (S)-21 (entry 13),
whereas ATA-234 afforded (R)-21 in 50% conversion and 83% ee
(entry 14).

To improve the performance of P1-G05 and PjSTA-R6-8 in the
synthesis of (R)- and (S)-2i, respectively, the effect of the reaction
cosolvent was investigated. Biocatalytic aminations were con-
ducted using 10% v/v DMSO as a cosolvent to enhance substrate
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FIGURE2 | Docking of (S)-1i (left) and (R)-1i (right) into the active site of PjSTA-R6-8, with docking scores of 3.68 and 0.1 kcal mol ™, respectively.
Compared to the (S)-enantiomer, the (R)-enantiomer is involved in a steric clash with L417 and the imine bond is positioned further from the catalytic
K287 (pink). Noncatalytic residues within 4 A of the docked quinonoid (beige) are shown in green. Dockings were performed in YASARA and visualized

with PyMOL.

solubility. Additional polar solvents, including ethanol, DMF,
acetonitrile, and 2-methyltetrahydrofuran (a renewable biobased
solvent), were also evaluated (see Table S5). Among these, DMSO
consistently afforded the highest conversions and/or optical puri-
ties for both transaminase-catalyzed reactions.

As for the naphthyl derivative, ATA-P1-GO5 proved optimal for
the transamination of the tolyl derivative 1n, affording (R)-2n
with 24% conversion and 96% ee (entry 1, Table 3). Other ATAs
tested catalyzed the formation of the desired (R)- or (S)-amine
from 11 but generally exhibited lower conversions and optical
purities around 50%. PjSTA-R6-8 was also able to catalyze the
formation of atropisomeric amine (S)-2n, albeit with modest con-
version and 73% ee (entry 7) after 24 h. Extending the reac-
tion time to 96 h at 45°C improved conversion to 30%, while

maintaining enantioselectivity (entry 10). In contrast, increasing
the temperature negatively affects both activity and selectivity
of ATA-P1-GO05, yielding only 14% of (R)-21 with 85% ee after
96 h (entry 9).

The most suitable biocatalyzed transaminations for each of the
starting materials 1a-n were scaled up to the multimilligram
scale (Table 4). Reactions were conducted using the correspond-
ing heterobiaryl aldehydes (20 mM) for 48-72h, followed by
in situ acetylation of the resulting amines to afford the corre-
sponding chiral amides (S)- or (R)-3a-1, with yields from 35%
to 92% and optical purities between 52% and 99%.

Finally, computational studies at the DFT SMD(CH,Cl,)-BP98-

D3BJ/def2-TZVP level of theory (see Supporting Information)
were performed to estimate the racemization barriers of

TABLE 3 | DKR of heterobiaryl aldehyde ()-1n employing ATAs. Substrate (5 mM) was dissolved in an ethanolamine buffer 0.1 M pH 7.5 with
10% v/v DMSO containing PLP (1.0 mM), PrNH, (1.0 M), and the corresponding ATA (10 mg).

O o ATA
HsC =

Buffer pH 7.5/ DMSO (10% v/v)

Ol
H,C 2

N
=z
¢

PLP/PrNH, (1.0 M)
T (°C)/t (h)

- N
=
g

(x)-1n (R)- or (S)-2n
Entry TA T, °C t,h [%]-2n* ee (S)-2n, %° Config.
1 ATA-P1-G05 30 24 24 96 R
2 ATA-013 30 24 22 56 R
3 ATA-025 30 24 21 53 R
4 ATA-217 30 24 26 54 R
5 ATA-234 30 24 26 51 R
6 ATA-237 30 24 24 28 S
7 PjSTA-R6-8 30 48 17 73 S
8 ATA-P1-G05 30 48 26 94 R
9 ATA-P1-G0O5 45 96 13 85 R
10 PjSTA-R6-8 45 96 30 75 S

*Measured by HPLC after acetylation of the resulting amine 21.
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TABLE 4 | DKR of heterobiaryl aldehydes (+)-1a-1 at multimilligram scale in the presence of TAs.

Entry Aldehyde TA t,h Isolated yield 3i-k, %" ee 3i-k, %° Config.
1 la ATA-013 48 89 97 S
2 1b ATA-237 48 85 78 S
3 1c ATA-303 72 35 63 S
4 1c ATA-412 48 81 80 R
5 1d ATA-013 48 65 94 S
6 1e ATA-013 48 93 91 S
7 1f ATA-237 48 86 52 S
8 1g ATA-013 48 92 >99 S
9 1h ATA-P!-GO5 48 90 96 S
10 1i ATA-P1-GO5 72 65 97 R
11 1i PjSTA-R6-8 72 66 85 S
12 1j ATA-234 72 40 73 R
13 1k PjSTA-R6-8 72 25 >99 S
14 11 ATA-234 72 47 83 R
15 11 PjSTA-R6-8 72 30 >99 S
16 1m ATA-234 48 80 79 R
17 1n ATA-P1-GO5 72 42 96 R

“Isolated yield after chromatographic purification.
Determined by HPLC after acetylation.

2-(quinoline-8-yl) naphthaldehyde (1i) and its corresponding
amine derivative 2i. For compound 1i, a racemization barrier
of 21.1 kcal mol ™! was calculated, with a transition state featur-
ing the key N---CHO interaction. When the corresponding imine
derivative formed in the transamination is considered, the barrier
increases to 24.7 kcal mol ™. Nevertheless, both barriers are con-
sistent with racemization taking place at rates compatible with
DKR under the experimental conditions. In sharp contrast, a sig-
nificantly higher barrier of 30.5 kcal mol™ was calculated for the
amine 2i, conferring high configurational stability, with anesti-
mated half-life of 80.6 years at 25°C (the half-life has been
estimated from the calculated racemization barrier using the

ksT ,— AG*/RT
EX

Eyring equation, k = assuming first-order kinetics:
b =’”72). Furthermore, the rotational barrier around the C-N
stereogenic axis in the N-arylindole diamine 2a was also com-
puted. Unlike the aldehyde substrate 1la (calculated barrier
18.6 kcal mol™) [51], amine 2a lacks the LABI system, and
the calculated barrier of 27.8 kcal mol™ for the corresponding
transition state for atropisomerization is, as expected, substan-
tially higher, further supporting the configurational stability of
the products. The racemization barriers for amines 2a and 2i
were determined experimentally (see Supporting Information),
giving values of 28.0 Kcal mol™" for 2a and 31.7 Kcal mol™" for
2i, which are in good agreement with those obtained from

computational studies.

3 | Conclusion

An efficient biocatalytic DKR strategy for the atroposelective
synthesis of heterobiaryl amines has been developed, including
N-arylindole diamines and 2-(quinolin-8-yl)benzyl amines. This

novel approach exploits the transient formation of Lewis
acid-base pairs between the heterocyclic/NMe, nitrogen and
the in situ generated imino group, facilitating substrate racemi-
zation via a six-membered cyclic transition states. Subsequent
atroposelective reductive amination, catalyzed by transaminases,
enabled the synthesis of a broad array of atropisomeric hetero-
biaryl indole diamines and quinoline-based amines with moder-
ate to high yields and enantioselectivities. The resulting axially
chiral products represent valuable scaffolds with significant
potential as ligands in asymmetric catalysis.
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energies in kcal-mol”. Supporting Fig. S2: Calculated energy profile
for the rotation around the C—C axis of heterobiaryl amine 2i. Data
are relative free energies in kcal-mol’. Supporting Fig. S3:
Laplacian,V?p, of the electron density of intX on the quinoline plane
superimposed on its calculated molecular structure, showing bond criti-
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