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Abstract: Inertial motion capture relies on accurate sensor-to-segment calibration. When two segments
are connected by a hinge joint, for example in human knee or finger joints as well as in many robotic
limbs, then the joint axis vector must be identified in the intrinsic sensor coordinate systems. Methods
for estimating the joint axis using accelerations and angular rates of arbitrary motion have been
proposed, but the user must perform sufficiently informative motion in a predefined initial time
window to accomplish complete identifiability. Another drawback of state of the art methods is that
the user has no way of knowing if the calibration was successful or not. To achieve plug-and-play
calibration, it is therefore important that 1) sufficiently informative data can be extracted even if large
portions of the data set consist of non-informative motions, and 2) the user knows when the calibration
has reached a sufficient level of accuracy. In the current paper, we propose a novel method that
achieves both of these goals. The method combines acceleration- and angular rate information and
finds a globally optimal estimate of the joint axis. Methods for sample selection, that overcome the
limitation of a dedicated initial calibration time window, are proposed. The sample selection allows
estimation to be performed using only a small subset of samples from a larger data set as it deselects
non-informative and redundant measurements. Finally, an uncertainty quantification method that
assures validity of the estimated joint axis parameters, is proposed. Experimental validation of the
method is provided using a mechanical joint performing a large range of motions. Angular errors in
the order of 2◦ were achieved using 125–1000 selected samples. The proposed method is the first truly
plug-and-play method that overcome the need for a specific calibration phase and, regardless of the
user’s motions, it provides an accurate estimate of the joint axis as soon as possible.

Keywords: inertial measurement units; gyroscopes and accelerometers; sensor-to-segment calibration;
kinematic constraints; joint axis identification; validation on mechanical joint

1. Introduction

Wearable inertial measurement units (IMUs) have become a key technology for a range of
applications, from performance assessment and optimization in sports [1], to objective measurements
and progress monitoring in health care [2], as well as real-time motion tracking for feedback-controlled
robotic or neuroprosthetic systems [3]. In all these application domains, IMUs are used to track or
capture the motion of mechatronic or biological joint systems such as robotic or human limbs. In this
work we consider such systems where the joint is a hinge joint with one degree of freedom. Examples
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of hinge joints include the knee and finger joints, which are essential in applications targeting lower
limb [4] and hand [5] kinematics.

In contrast to stationary optical motion tracking systems, miniature IMU networks can be used
in ambulatory settings and facilitate motion tracking outside lab environments. While this is an
important step towards ubiquitous sensing, one major limitation of the technology is that the IMUs’ local
coordinate systems must be aligned with the anatomical axes of the joints and body segments to which
they are attached. This sensor-to-segment calibration is a crucial step that establishes the connection
between the motion of the IMUs and the motion of the joint system to which they are attached.

Several different approaches have been proposed for sensor-to-segment calibration of inertial
sensor networks, from trying to align the sensor axes with body axes by precise attachment to predefined
calibration poses and motions; see, e.g., [6–9]. However, in all of these cases, the calibration crucially
depends on the knowledge and skills of the person who attaches the sensors or the person who
performs the calibration procedure. This might be acceptable in supervised settings with trained and
able-bodied users, but it represents a major limitation of IMU-based motion tracking and capture in
clinical applications and in motion assessment of elderly and children. Finding solutions for these
application domains and enabling ubiquitous sensing in daily life requires the development of less
restrictive methods for sensor-to-segment calibration.

Ideally, wearable IMU networks should be plug-and-play, and the sensor-to-segment calibration
should be performed by the network autonomously, which means without additional effort or
requirements on the user’s knowledge or on the performed motion. An important step towards this
goal was the development of methods that exploit the kinematic constraints of the joints to identify
sensor-to-segment calibration parameters from almost arbitrary motions [10,11]. For joints with one
degree of freedom (DOF), the feasibility of this approach has been demonstrated [12–15]. Methods have
been proposed that require the user to perform a sufficiently informative but otherwise arbitrary motion
during an initial calibration time window and determine the functional joint axis in intrinsic coordinates
of both IMUs, cf. Figure 1. It was recently shown that almost every motion, including purely sequential
motions and simultaneous planar motions, is informative enough to render the joint axis identifiable
unless the joint remains stiff throughout the motion [16].

j

S1

S2

G

j2

j1

r1

r2

Figure 1. The hinge joint system that we consider. The two segments rotate independently with respect
to each other only along the joint axis j. The sensor frames Si are rigidly fixed to their respective segments
and their relative orientation can be described by one joint angle, that corresponds to a rotation about
the joint axis. The joint axis expressed in local sensor coordinates is an important sensor-to-segment
calibration parameter in joint systems with one degree of freedom (DOF).

Several methods targeting different types of joints or sensor-to-segment calibration parameters
have been developed. In [17], a method for identifying the joint axes of a joint with two DOF was
proposed. Methods for identifying the position of the joint center relative to sensors attached to adjacent
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segments have been proposed in [12,18,19]. A method enabling automatic pairing of sensors to lower
limb segments have been proposed in [20].

The published kinematic-constraint-based methods constitute an important step forward but
still impose undesirable and unnecessary limitations. If the user does not move during the initial
calibration time window or if the motion is not sufficiently informative, the calibration will be wrong
and all subsequently derived motion parameters will be subject to unpredictable errors. For a truly
plug-and-play system, it is therefore crucial that the IMU network is able to

• Recognize how informative motions are and whether they render the joint axis identifiable;
• Wait for sufficiently informative data to be generated and combine useful data even if it is spread

and intermitted by useless data;
• Determine how accurate the current estimate of the joint axis is and provide only sufficiently

reliable estimates.

An IMU network with such properties can be used without the aforementioned limitations. Once it
is installed, it will autonomously gather all available useful information and provide reliable calibration
parameters as soon as possible, which immediately enable calculation of accurate motion parameters
from the incoming raw data as well as from already recorded data. To explain the practical value of the
proposed concept of plug-and-play calibration, we briefly compare this concept to the aforementioned
existing calibration concepts that use predefined motions [6–9] or arbitrary motions [10–15]:

Predefined-Motions: The calibration is based on the assumption that the user performs a sequence
of predefined motions and poses with sufficient precision within a predefined initial time interval.
The approach fails and provides inaccurate calibration without warning if

(a) The user performs the sequence of predefined motions and poses without sufficient precision;
(b) The user performs the sequence with sufficient precision but not within the predefined initial

time interval;
(c) The user performs sufficiently informative but otherwise arbitrary motions;
(d) The user performs no sufficiently informative motion at all, e.g., he/she moves with a stiff joint.

Arbitrary-Motions: The calibration is based on the assumption that the user performs sufficiently
informative but otherwise arbitrary motions within a predefined initial time interval. The motion
does not need to be precise, and it has been shown that sufficient excitation is provided by almost
every motion for which the joint does not remain stiff [16]. However, the approach fails and provides
inaccurate calibration without warning if

(a) The user performs a sequence of predefined motions but not within the predefined initial time
interval;

(b) The user performs sufficiently informative arbitrary motions but not within the predefined initial
time interval;

(c) The user performs no sufficiently informative motion at all, e.g., he/she moves with a stiff joint.

Plug-and-Play: The proposed sensor-to-segment calibration approach. It works well for all
mentioned cases and exceptions in the sense that it always provides accurate calibration parameters as
soon as the user’s motions are sufficiently informative, and it clearly indicates at all times whether the
desired calibration accuracy has yet been reached.

It is important to note that the cases without warning are very dangerous, because inaccurate
information is provided and claimed as accurate. In many applications, this leads to unacceptable
risks. This and the other listed differences between the two existing approaches and the proposed new
method have large implications for the way wearable IMU networks can be used in offline and online
applications.

Offline Applications include motion capture for ergonomic workplace assessment [21], for monitoring
of movement disorders [2] and for sport performance analysis [1]. In state-of-the-art solutions, the user
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performs an initial calibration procedure before (or after) recording data from the motions to be analyzed.
The user can only hope that the calibration was accurate enough. If the calibration was inaccurate, then
all recorded data is corrupted and might lead to false interpretation and conclusions. In contrast, when
the calibration is plug-and-play, the user starts recording data from motions that should be analyzed
immediately after attaching the sensors. Calibration automatically takes place as soon as sufficiently
informative data has been gathered. The system indicates that calibration has been successful, and the
user can be sure that all obtained measurements are valid and accurate. The identified calibration
parameters are used to evaluate the data that was recorded before and after the moment at which
accurate calibration was achieved.

Online Applications include real-time motion tracking for wearable biofeedback systems [22] as
well as robotic and neuroprosthetic motion support systems [23]. In state-of-the-art solutions, the user
first performs an initial calibration procedure before the sensor system is connected to an assistive
device that uses the measurements to provide e.g., biofeedback or motion support. The user can only
hope that the calibration was accurate enough. If the calibration was inaccurate, then the provided
biofeedback or motion support might be wrong and dangerous. In contrast, when the calibration
is plug-and-play, the user instead attaches the sensors and starts moving. As soon as the desired
calibration accuracy has been achieved, the sensor system automatically provides measurements to
the assistive device. The user can be sure that all provided biofeedback and motion support is based
on valid and accurate measurements.

In the present contribution we propose the first joint axis identification method for one-dimensional
joints that is plug-and-play in the aforementioned sense. The main contributions of the present work
are the following:

1. We leverage recent results on joint axis identifiability [16] to develop a sample selection method
that overcomes the limitation of a dedicated initial calibration time window.

2. To assure that the motion needs to fulfill only the minimum required conditions, we combine
accelerometer-based and gyroscope-based joint constraints and weight them according to the
information contained in both signals.

3. We propose an uncertainty quantification method that assures validity of the estimated joint axis
parameters and thereby eradicates the risk of false calibration.

4. We provide an experimental validation in a mechanical joint performing a large range of different
motions with different identifiability properties.

In the proposed system, successful calibration no longer depends on performing certain motions
in a predefined manner or time window but only on fulfilling the minimum required conditions at
some point. Moreover, the system knows when these conditions are fulfilled and provides only reliable
calibration parameters.

2. Inertial Measurement Models

Inertial sensors collectively refers to accelerometers and gyroscopes, which are sensors used to
measure linear acceleration and angular velocity, respectively. When the sensors have three sensitive
axes which are orthogonal to each other, the inertial sensors can measure these quantities in three
dimensions. Such sensors are referred to as triaxial. An IMU is a single sensor that contains one triaxial
accelerometer and one triaxial gyroscope. The measurements from the IMU are obtained with respect
to (w.r.t.) a reference frame, referred to as the sensor frame (S), its axes and origin corresponding to
those of the accelerometer triad. The axes of the gyroscope is assumed to be aligned with the axes of
the accelerometer. The measured quantities describe the motion of the sensor frame w.r.t. a global
frame (G) that is fixed w.r.t. the environment.

The accelerometer measurements at time tk, where the integer k is used as a sample index, can be
modeled as

yS
a (tk) = RSG(tk)

(
aG(tk) + gG

)
+ bS

a + eS
a (tk), (1)
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where aG ∈ R3 is the acceleration of the sensor w.r.t. the global frame and gG ∈ R3 is the gravitational
acceleration, which is assumed to be constant in the environment. The measurements are corrupted by
a constant additive bias bS

a and noise eS
a (tk) ∈ R3, which is assumed to be Gaussian eS

a (tk) ∼ N (0, Σa),
with zero mean and covariance matrix Σa. The superscript S and G are used to denote in which
reference frame a quantity is expressed in, and the rotation matrix RSG describes the rotation from the
global frame to the sensor frame, i.e., we have that

RSG(tk)
(

aG(tk) + gG
)
= aS(tk) + gS(tk). (2)

The multiplication between a rotation matrix and a vector is equivalent to a change of
orthonormal basis.

The gyroscope measurements are modeled as

yS
ω(tk) = RSG(tk)ω

G(tk) + bS
ω + eS

ω(tk), (3)

where ωG ∈ R3 is the angular velocity of the sensor frame in the global frame. Similar to the
accelerometer, the measurements are corrupted by constant additive bias bS

ω and noise eS
ω(tk) ∈ R3,

which is assumed to be zero-mean Gaussian eS
ω(tk) ∼ N (0, Σω). Note that the same rotation matrix

RSG as in (1) is used to rotate quantities from the global frame to the sensor frame because the
accelerometer and the gyroscope are contained in the same IMU and their axes are assumed to be aligned.
The gyroscope bias term bS

ω can be compensated for through pre-calibration of the gyroscopes [24].
In Section 7.5, we will evaluate the effect of uncompensated biases on the proposed method.

Biases and Gaussian measurement noise have been shown to be the dominating error sources, even
for low-cost IMUs [25]. However, for longer experiments or for low-quality IMUs, there are other types
of errors that may need to be considered. These errors can still be well compensated for by pre-calibration
or by online auto-calibration methods. Therefore, we only consider biases in our models, as these are the
dominating systematic errors. The bias terms ba and bω are not constant, but drift slowly over time [26].
Sensor manufacturers typically provide a bias stability metric for their sensors, which tells the user the
expected rate of the bias drift. Bias instability in inertial sensors is primarily caused by low-frequency
flicker noise in the electronics and temperature fluctuations [27]. If the bias drift is significant enough
that it needs to be compensated for, there are methods that model the biases as time or temperature
dependent, enabling continuous estimation of drifting biases (see, e.g., [28,29]). Such methods can
be used in combination with the method proposed in this paper. Low-quality IMUs may be affected
by other systematic errors such as non-unit scale factors and misalignments/non-orthogonalities in
the sensor axes. If the effect from these types of errors are non-negligible, it is advised to perform a
more sophisticated pre-calibration of the sensors to compensate for these errors. Methods for in-field
pre-calibration of such errors exist; see, e.g., [30–33].

3. Kinematics

The kinematic model of the hinge joint system has been described in previous works [12,15,16],
and is recapitulated here in Sections 3.1 and 3.2 for completeness.

3.1. Kinematic Constraints of Two Segments in a Kinematic Chain

Consider the kinematic chain model where we have two rigid body segments connected by a
joint. The joint can have 1, 2 or 3 degrees of freedom (DOF). Furthermore, consider the case where each
segment has one IMU rigidly attached to it in an arbitrary position and orientation. We therefore have
two sensor frames, denoted by S1 and S2, that are fixed in the center of the accelerometer triad of each
IMU. The DOF of the joint determines how many angles that are required to describe the orientation of
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S2 w.r.t. S1 and vice versa. We let subscripts i ∈ {1, 2} denote quantities belonging to a specific sensor
frame. Rigid body kinematics gives

aSi
i (t) = aSi

0 (t) + ω
Si
i (t)× (ωSi

i (t)× rSi
i ) + ω̇

Si
i (t)× rSi

i , (4)

where ai are the accelerations of the sensor frames with i ∈ {1, 2}, a0 is the acceleration of the joint
center, ωi and ω̇i are the angular velocities and angular accelerations of the sensor frames and t is
used to denote time-dependence of the kinematic variables. The positions of the joint center with
respect to each sensor frame are denoted by ri, which we assume to be unknown and constant for each
sensor. All quantities in (4) are vectors in R3 since they describe 3D motion. The acceleration of the
joint center expressed in either of the sensor frames has the same magnitude but a different orientation.
We have that

aG
0 (t) = RGS1(t)aS1

0 (t) = RGS2(t)aS2
0 (t) (5)

where RGSi are the rotation matrices that maps a vector expressed in Si into the global frame.
For convenience we shall for the remainder of this document drop the use of the superscripts

except for where it’s needed. Hence, the sensor frame of a kinematic variable will be given by subscript
i ∈ {1, 2}. We will also drop the use of t to denote time-dependence unless we want to refer to the
kinematic variables at specific time instances. The relationship in (4) is linear in a0 and ri and can
equivalently be formulated as

ai = aSi
0 + K(ωi, ω̇i)ri, (6)

where

K(ω, ω̇) =

−ω2
y −ω2

z ωxωy − ω̇z ωxωz + ω̇y

ωxωy + ω̇z −ω2
x −ω2

z ωyωz − ω̇x

ωxωz − ω̇y ωyωz + ω̇x −ω2
x −ω2

y

 , (7)

and where subscripts x, y, z denote the elements of the three-dimensional vectors. For convenience of
notation we will write Ki = K(ωi, ω̇i).

3.2. Kinematic Constraints of a Hinge Joint System

For a 1-DOF joint, the two segments can only rotate independently with respect to each other along
the joint axis. We let ‖ · ‖ denote the Euclidean vector norm, then the joint axis is defined by the unit
vector j ∈ R3, ‖j‖ = 1. We refer to such a joint as a hinge joint. We let j1 and j2 denote the direction of
the joint axis in the respective sensor frames. Since the two IMUs are assumed to be rigidly attached to
the segments, j1 and j2 are constant. The joint axis j expressed in the global frame must then satisfy

jG(t) = RGS1(t)jS1
1 = RGS2(t)jS2

2 , (8)

meaning that the vectors ji expressed in the two sensor frame has the same direction as j in the global
frame, see Figure 1, and time-dependence is only caused by the rotations of the sensor frames in the
global frame. We can decompose the angular velocities into one component that is parallel to the joint
axis and one that is perpendicular to the joint axis

ωi = ωji + ωj⊥i
, (9)

ωji = j>i ωi ji, (10)

ωj⊥i
= ωi −ωji = ωi − j>i ωi ji. (11)
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Since the two segments can only rotate independently along the joint axis, it follows that the
perpendicular components must have the same magnitude regardless of reference frame

‖ωj⊥1
‖ = ‖ωj⊥2

‖. (12)

The magnitude of the perpendicular component can also be computed from the cross product
between the angular velocity and the joint axis

‖ωi − j>i ωi ji‖ = ‖ωi × ji‖. (13)

Combining (12) and (13) we formulate the angular velocity constraint

‖ω1 × j1‖ − ‖ω2 × j2‖ = 0, (14)

which must be satisfied by hinge joint systems.
Looking at the projection of the accelerations onto the joint axis, from (6) we have that

j>i ai ji = j>i aSi
0 ji + j>i Kiri ji. (15)

Because ji has the same direction as j in the global frame, it must also be the same for the projection
of a0 onto ji, it follows from (5) and (8) that

jG>aG
0 jG = RGS1 j1 j>1 aS1

0 = RGS2 j2 j>2 aS2
0

⇒ j>1 aS1
0 = j>2 aS2

0 . (16)

By projecting the accelerations onto the joint axis and subtracting one from the other we get

j>1 a1 − j>2 a2 = j>1 aS1
0 − j>2 aS2

0 + j>1 K1r1 − j>2 K2r2

= j>1 K1r1 − j>2 K2r2,
(17)

where we see that only the rotational components of the accelerations remain on the right hand side.
The relationship (17) is the exact acceleration constraint of the hinge joint system. The right hand side
(r.h.s.) of (17) is zero if and only if either Kiri ⊥ ji or Ki = 0 are satified for all i ∈ {1, 2}. It is clear that
if the rotational acceleration components along the direction of the joint axis are small (j>i Kiri ≈ 0, ∀i),
the r.h.s. will vanish

j>1 a1 − j>2 a2 ≈ 0, (18)

which forms the approximate acceleration constraint for the hinge joint system.

4. Joint Axis Estimation

We assume that we have two IMUs, one attached to each segment of a hinge joint system.
Measurements from a completely unspecified motion has been collected. We will use yω,i to refer to
the gyroscope measurements (3) and ya,i to refer to the accelerometer measurements (1) from Sensor
i ∈ {1, 2}. We will use the non-indexed yω and ya to refer to measurements from both sensors as

yω =
[
y>ω,1 y>ω,2

]>
, (19)

and similarly for ya. We let DN = {yN
ω , yN

a } denote our data, which consists of N samples of recorded
motion. Each sample in the data set is assigned a sample index k ∈ {1, . . . , N}, such that tk refers to
the sampling time of the kth measurement relative to the beginning of the recorded motion.
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Given the data DN from the two IMUs, the variables we want to estimate are the unit vectors
ji which corresponds to the directions of the joint axis j in the two sensor frames. We let ĵi denote
the estimate of ji. Note that the joint axis in one sensor frame can be described by either ±ji since
a clockwise rotation w.r.t. the positive axis is equivalent to a counter-clockwise rotation w.r.t. the
negative axis. However, we require both j1 and j2 to have the same sign (direction) to correspond to
either ±j in the global frame, otherwise a clockwise rotation for one sensor might be considered a
counter-clockwise rotation for the other sensor and vice versa. That is, the sign pairing of the joint axes
in the sensor coordinate frames is important. Consequently, (±j1,±j2) is the correct sign pairing and
(±j1,∓j2) is the wrong sign pairing.

4.1. Formulating the Optimization Problem

We parametrize ji using spherical coordinates to enforce the unit vector constraint

x =
[
θ1 φ1 θ2 φ2

]>
, (20)

ji(x) =

cos θi cos φi
cos θi sin φi

sin θi

 , (21)

which then become the unknown parameters to estimate. The estimation problem for the joint axis is
formulated as

x̂ = arg min
x

V(x), (22)

V(x) =
N

∑
k=1

[eω(k, x)]2 + [ea(k, x)]2, (23)

where eω(k, x) and ea(k, x) are scalar residual terms, based on the angular velocity constraint (14) and
acceleration constraints (18) of the hinge joint system

eω(k, x) = wω [‖yω,1(tk)× j1(x)‖ − ‖yω,2(tk)× j2(x)‖], (24)

ea(k, x) = wa[j>1 (x)ya,1(tk)− j>2 (x)ya,1(tk)]. (25)

Two scalars wω and wa are used to change the relative weighting of the residuals.

4.2. Identifiability and Local Minima

For the gyroscope measurements to contain information about the joint axis, they have to be
recorded from motions where the joint angle is excited, i.e., when the two segments rotate independently.
These motions should contain either simultaneous planar rotations, where the segments rotate
simultaneously in the plane perpendicular to the joint axis, or sequential rotations of the segments.
However, stiff joint motions, which can have a significant angular rate but no independent rotation of
the segments, do not facilitate identifiability of the joint axis [16]. For the non-informative stiff joint
motions, the relative rotation of the two sensors can be described by a time-invariant rotation matrix R
and we have that

‖ω2(tk)× j2‖ = ‖R(ω1(tk)× j1)‖ = ‖ω1(tk)× j1‖, (26)

where we see that for any choice of j1, the vector j2 = Rj1 will minimize the gyroscope residual (24).
Therefore, we want motions where ‖ω1(tk)‖ 6= ‖ω2(tk)‖, which implies that the segments are rotating
independently and we require motions where ‖ωi(tk)‖ > 0 for at least some time, since ‖ωi(tk)‖ =
0⇒ ‖ωi(tk)× ji‖ = 0, ∀ji.
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If only acceleration information is considered, we get the following over-determined system of
linear equations  a>1 (t1) −a>2 (t1)

...
...

a>1 (tM) −a>2 (tM)


︸ ︷︷ ︸

=A

[
j1
j2

]
= 0, (27)

which has a unique solution if rank(A) = 5, in which case
[

j>1 j>2
]>

lies in the null-space of A. This
holds when the acceleration constraint holds exactly for all tk, the accelerations measured are exact
and the angular rate and angular accelerations of the sensors are parallel with j [16]. Therefore, for the
accelerometer, we want measurements that increase the separation between the column-space and the
null-space of A.

The proposed method uses both gyroscope and accelerometer information, and their relative
contribution to the cost function is controlled by the weight parameters wω and wa. Figure 2 shows
how the weights affect the cost function in the case that wa = 1 and wω is allowed to vary. For small
wω, the local minima corresponds to the correct sign pairing (±j1,±j2), whereas the local maxima
corresponds to the wrong sign pairing (±j1,∓j2). Note that each local minimum is equally valid
for small wω because of the periodicity of the spherical coordinates. The acceleration residuals are
relatively large whereas the gyroscope residuals are relatively small at the locations corresponding
to the wrong sign pairing. Therefore, as wω increases the gyroscope residuals will contribute more
to the cost function. The peaks associated with the wrong sign pairing are flattened and new local
minima will eventually appear at these locations. Therefore, for large wω an optimization method
(solver) can end up in the wrong local minimum. However, regardless of which sign pairing the solver

finds, the opposite sign pairing can always be obtained at x =
[
θ1 φ1 −θ2 φ2 + π

]>
. Therefore, if

our solver finds the estimate x̂(1) we can reinitialize at[
θ̂
(1)
1 φ̂

(1)
1 −θ̂

(1)
2 φ̂

(1)
2 + π

]>
, (28)

and obtain a new estimate x̂(2). Then we select the local minimum with the smallest value of the cost
function as our estimate

x̂ = arg min
x∈{x̂(1),x̂(2)}

V(x). (29)

Therefore, it is possible to find the correct sign pairing as long as V(x̂(2)) is numerically
distinguishable from V(x̂(1)). As discussed in this section and shown in Figure 2, the relative weighting
of the residuals determines how easy it is to distinguish a correct local minimum from a wrong one.
If wω is set to be significantly larger than wa, we expect the acceleration residuals to eventually become
so small relative to the gyroscope residuals, that the solver is no longer sensitive enough to detect the
difference between correct and wrong local minima.
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Figure 2. Shape of the cost function V(x) for a motion with simultaneous planar rotations of the
segments. The parameters θ1 and φ1 are fixed near their true values and θ2 and φ2 are allowed to vary.
From left to right, we see how the geometry changes as wω increases while wa = 1 is constant. As
wω increases, new local minima appear near the locations at φ2 + π from the previously existing local
minima. These new local minima correspond to the wrong sign pairing (±j1,∓j2).

4.3. Solving the Optimization Problem

The optimization problem (22) is a nonlinear least-squares problem. An efficient solver for such
problems is the Gauss–Newton method [34]. Given an initial estimate x̂(0) the Gauss–Newton method
iteratively updates the estimate according to

x̂(k + 1) = x̂(k)− α
(

J>(x̂(k))J(x̂(k))
)−1

J>(x̂(k))e(x̂(k))

= x̂(k)− α∆x(k)
, (30)

where k is only used here as an integer index denoting the iterations of the method and is not to be
confused with the sample index. The method uses the Jacobian matrix J(x) ∈ R2N×4, which contains
all first-order partial derivatives of eω and ea

J(x) =



∂eω(1,x)
∂θ1

∂eω(1,x)
∂φ1

∂eω(1,x)
∂θ2

∂eω(1,x)
∂φ1

...
...

...
...

∂eω(N,x)
∂θ1

∂eω(N,x)
∂φ1

∂eω(N,x)
∂θ2

∂eω(N,x)
∂φ1

∂ea(1,x)
∂θ1

∂ea(1,x)
∂φ1

∂ea(1,x)
∂θ2

∂ea(1,x)
∂φ1

...
...

...
...

∂ea(N,x)
∂θ1

∂ea(N,x)
∂φ1

∂ea(N,x)
∂θ2

∂ea(N,x)
∂φ1


, (31)

and e(x) ∈ R2N is the residual vector

e(x) =
[
eω(1, x) . . . eω(N, x) ea(1, x) . . . ea(N, x)

]>
. (32)

The term
(

J>(x)J(x)
)−1

is an approximation of the Hessian of V(x), which is given by

d2V(x)
dx2 = J>(x)J(x) +

N

∑
k=1

eω(k, x)
d2eω(k, x)

dx2

+
N

∑
k=1

ea(k, x)
d2ea(k, x)

dx2

, (33)
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where the higher-order terms are ignored, yielding

d2V(x)
dx2 ≈ J>(x)J(x). (34)

The partial derivatives of the residuals (24) and (25) in the Jacobian (31) are computed in the
following way using the chain rule

∂eω(k, x)
∂x

=
∂j
∂x

∂eω(k, x)
∂j

wω(k), (35)

∂eω(k, x)
∂j

=

 ∂(‖yω,1(tk)×j1(x)‖)
∂j1

− ∂(‖yω,2(tk)×j2(x)‖)
∂j2

 , (36)

∂(‖yω,i(tk)× ji(x)‖)
∂ji

=
(yω,i(tk)× ji)× yω,i(tk)

‖yω,i(tk)× ji(x)‖ , (37)

∂ea(k, x)
∂x

=
∂j
∂x

∂ea(k, x)
∂j

, (38)

∂ea(k, x)
∂j

=

[
ya,1(tk)

−ya,2(tk)

]
wa(k), (39)

∂j
∂x

=

[
∂j1
∂x1

0

0 ∂j2
∂x2

]
, (40)

∂ji
∂xi

=

− sin θi cos φi − cos θi sin φi
− sin θi sin φi cos θi cos φi

cos θi 0


>

. (41)

The term ∆x in (30) defines the search direction, and −∆x is a descent direction, meaning that
moving our estimate in that direction will decrease the value of the cost function. The scalar 0 < α ≤ 1
is known as the step length, which controls how far our estimates move in the descent direction.
By using a method known as backtracking line search [35], we find a value for α that is guaranteed
to lower the value of the cost function. If no such α is found or the change in the value of V(x) is too
small, below a set tolerance level Vtol, the Gauss–Newton method terminates and returns the estimate
corresponding to the current iteration x̂ = x̂(k).

The complete joint axis estimation method, including the steps of the Gauss–Newton method
and the re-initialization step (28) required to identify the minimum corresponding to the correct sign
pairing, is described in Algorithm 1.
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Algorithm 1 Joint axis estimation

Require: Data DN = {yN
ω , yN

a }, initial estimate x̂(0), tolerance Vtol, residual weights wω and wa.
1: for i ∈ {1, 2} do
2: k← 0. . Begin Gauss–Newton.
3: ∆V ← Vtol .
4: V(0)← V(x̂(0)). . V(x) defined by (23).
5: while ∆V ≥ Vtol do
6: Compute the Jacobian J(x̂(k)) and the residuals e(x̂(k)) according to (31) and (32).
7: ∆x(k)←

(
J>(x̂(k))J(x̂(k))

)−1 J>(x̂(k))e(x̂(k)).
8: Obtain step length α using backtracking line search.
9: x̂(k + 1)← x̂(k)− α∆x(k).

10: k← k + 1.
11: V(k)← V(x̂(k)).
12: ∆V ← |V(k− 1)−V(k)|.
13: end while
14: x̂ ← x̂(k). . End Gauss–Newton.
15: x̂(i) =

[
θ̂
(i)
1 φ̂

(i)
1 θ̂

(i)
2 φ̂

(i)
2

]>
← x̂.

16: x̂(0)←
[

θ̂
(i)
1 φ̂

(i)
1 −θ̂

(i)
2 φ̂

(i)
2 + π

]>
. . Initialize at − ĵ2.

17: end for
18: x̂ ← arg minx∈{x̂(1),x̂(2)} V(x). . Correct sign pairing.
19: return j(x̂).

5. Sample Selection

A key feature of plug-and-play estimation is that it should not require specific calibration data,
recorded from predetermined motions. Rather, such plug-and-play methods should be able to use data
recorded from arbitrary motions. Such data sets could be very large, and using all available data for
identification is often unnecessary and resource-demanding. It is also possible that very few samples in
the data set contain information about the joint axis. In a sense, too much bad information might ruin
the good information. To handle this, we propose a method for selecting samples to use for estimation.

In the following sections we assume that we want a maximum of Nmax gyroscope and accelerometer
measurements can be used to identify the joint axis, but that we have N > Nmax measurements available
to us to choose from.

5.1. Gyroscope

To distinguish between informative and non-informative motions, we use the difference in angular
velocity magnitude measured by the two gyroscopes

∆ω(k) = ‖yω,1(tk)‖ − ‖yω,2(tk)‖, (42)

which is a sufficient metric for detecting independent rotations of the sensors, and hence the two
segments. For stationary segments ∆ω(k) = 0. One thing to note is that ∆ω(k) cannot differentiate
between informative motions where ‖ω1‖ ≈ ‖ω2‖ and non-informative stiff joint rotations. For example,
the two segments can undergo simultaneous planar rotations, where the two segments rotate in different
directions but with approximately the same magnitude. However, for realistic motions, especially for
motions performed by humans, it is unlikely that independent rotations will have the same magnitude,
even for short moments.
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Each gyroscope measurement is given a score

sω(k) = ∆ω(l′) (43)

l′ = arg min
l
|∆ω(l)|, l ∈ (k− n, k + n) (44)

that is equal to the ∆ω with smallest magnitude in a window of 2n+ 1 samples. This is to avoid selecting
large outliers of ∆ω. For example, if the system is not completely rigid or the sensors are not rigidly
attached, the kinematic constraints are violated, and some samples of stiff joint motion can obtain a
large ∆ω value. However, if the outliers are relatively few, there should be ∆ω with smaller magnitude
among neighboring samples. In some sense, sω(k) assumes a conservative score for each sample.

When the score sω has been computed for all measurements, the list of measurements is sorted
in descending order such that sω(k′) ≥ sω(k′ + 1), ∀k′ ∈ (1, N − 1), where k′ is a new index variable
used to denote the sorted order. The first and last Nmax/2 of the sorted gyroscope measurements
are selected, or, equivalently, the measurements corresponding to the middle of the list, i.e., with
index k′ ∈ (Nmax/2 + 1, N − Nmax/2) are removed from the set of measurements. By doing this, the
algorithm will make sure that measurements with excitation in both sensors are selected, since ∆ω > 0
means that Sensor 1 has larger angular rate than Sensor 2 and vice versa for ∆ω < 0. The gyroscope
sample selection method is described in Algorithm 2. In essence, the algorithm picks half the required
points from either end of the sorted list.

Algorithm 2 Gyroscope sample selection

Require: Gyroscope data yN
ω , number of allowed measurements, Nmax, window size n.

1: if N > Nmax then
2: Compute sω(k), ∀k according to (43).
3: Obtain the sorted order k′ such that sω(k′) ≤ sω(k′ + 1), ∀k′ ∈ (1, N − 1).
4: Remove the N − Nmax samples yω(tk), ∀k′ ∈ (Nmax/2 + 1, N − Nmax/2) from yω.
5: end if
6: return yNmax

ω

5.2. Accelerometer

The acceleration constraint is accurate when the angular rate and angular accelerations are
small, since that makes the right hand side of (17) vanish. Note that linear acceleration terms in (17),
which are collected in a0, always cancel out. Therefore, we do not use the energy of the accelerometer
measurements to determine if the acceleration constraint is valid. Instead, we give each acceleration
measurement a penalty based on the average angular rate energy

Ei(k) =

{
1

2n+1 ∑k+n
l=k−n ‖yω,i(tl)‖2, n < k ≤ N − n

∞, otherwise
, (45)

where the average is calculated from a window of size 2n + 1, centered around each sample. This
angular rate energy statistic has been shown to be an effective detector of stationarity in foot-mounted
inertial navigation [36], so-called zero-velocity detection.

Small Ei(k) indicate that Sensor i is stationary. For the hinge joint system, it is sufficient for one
sensor to be stationary since the acceleration components in the plane normal to the joint axis does not
change the r.h.s of (17). If one sensor is stationary, then the other sensor can only have accelerations
that are induced by independent rotation, which has to be in the plane. For this reason, the penalty
given to each pair of acceleration measurements is chosen as

sa(k) = min{E1(tk), E2(tk)}. (46)
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As a first step of the accelerometer sample selection, measurements with sa(k) > Eth are removed,
where Eth is a scalar threshold parameter, which should be chosen to remove measurements for which
it is likely that the motion violates the acceleration constraint.

We also need to consider the conditions for identifiability of the joint axis. That is, we want
our measurements to increase the separation between the column-space and the null-space of the
matrix A in (27). In practice, A will have full rank regardless of the motion, since the measurements
are corrupted by noise and bias and the acceleration constraint does not hold for arbitrary motions.
However, if A has one singular value that is relatively small compared to the other singular values, it
can be considered to be approximately rank 5. Consider the singular value decomposition (SVD) of A

A = UΣW>, (47)

where the diagonal elements σ1 to σ6 of Σ ∈ RM×6 are the singular values and the columns of U and
W represents orthonormal bases in RN and R6, respectively. The columns of W are known as the
right-singular vectors of A, and each is associated with a corresponding singular value, i.e., if

diag(Σ) =
[
σ1 σ2 σ3 σ4 σ5 σ6

]
, (48)

W =
[
w1 w2 w3 w4 w5 w6

]
, (49)

the right-singular vector w1 is associated with σ1. The singular values are ordered σ1 ≥ σ2 ≥ . . . ≥
σ6 ≥ 0. We have that w1 is the direction in R6 where the rows of A are most coherent, meaning that

w1 = arg max
w,‖w‖=1

|Aw|, (50)

which has the interpretation that w1 is the direction that is most separated from the null-space of
A. The information about j that is contained in A is directly linked to the separation between the
null-space and the column space of A. The intuition behind this can be seen by comparing the system
of linear equations in (27) to the definition of w1 in (50), where it appears most unlikely that j should
be parallel with w1. In fact, the least-squares estimator for j given by

ĵ = arg min
j
‖Aj‖2, (51)

has solutions on the line in R6, which is spanned by w6, the right-singular vector associated with the
smallest singular value. If we add the constraints ‖j1‖ = ‖j2‖ = 1 the two solutions with correct sign
pairing, corresponding to (j1, j2) and (−j1,−j2) can be obtained through normalization. A problem
arises when multiple singular values are close to zero, in which case the value of ‖Aj‖2 will be small
in more than one direction, and the uncertainty in the estimate increases. If A is only allowed to have
Nmax rows, we should therefore only remove measurements whose rows in A are most coherent with
w1, the direction with most information. This way, we make sure that space is always allocated for
measurements with rows that do not align with w1, which over time should increase the discrepancy
between the two smallest singular values and increase the certainty of the least-squares estimator.

The coherence between a row in A and the right-singular vector w1 is computed as the vector
c ∈ RM, with the elements

ck =
|Akw1|
‖Ak‖‖w1‖

, (52)

Ak =
[
y>a,1(tk) −y>a,2(tk)

]
, (53)
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where Ak is the kth row vector in A, and ck has a value of 1 if Ak is parallel to w1 and 0 if they are
orthogonal. A ck > 0.5 means that Ak has most of its magnitude in the direction of w1. Therefore,
we choose to remove measurements with the largest sa(k) where ck > 0.5. This ensures that we also
keep good measurements in the w1 direction, while allocating space for measurements with new
information about j. The algorithm for selecting accelerometer samples is described in Algorithm 3.

Algorithm 3 Accelerometer sample selection

Require: Data DN = {yN
ω , yN

a }, number of allowed measurements Nmax, window size n, threshold

Eth.
1: if N > Nmax then
2: Compute sa(k), ∀k according to (46) using window size n.
3: Remove measurements where sa(k) > Eth from a.
4: N ← |ya|.
5: while N > Nmax do
6: Compute the SVD A = UΣW, with A given by (27).
7: Compute the coherence c according to (52).
8: Remove the measurement with largest sa(k) where ck > 0.5 from a.
9: N ← |ya|. . A changes in subsequent iterations.

10: end while
11: end if
12: return yNmax

a .

5.3. Online Implementation

The two proposed sample selection algorithms can be implemented for an online application.
For Algorithm 2, simply save the scores sω and re-use them when a new batch of data is available, new
sω only needs to be computed for the previously unseen measurements. The same principle holds for
Algorithm 3 and sa.

6. Uncertainty Quantification

When identifying an unknown quantity, it is useful for the user of the method to know if they
can expect their estimate to be accurate given the data that is available, or if more informative data
needs to be collected. Here we propose a method for quantifying both local and global uncertainty of
an estimate x̂.

The local uncertainty is obtained through estimating the covariance matrix of the estimation
errors using the Jacobian of the cost function. Global uncertainty is obtained through solving multiple
parallel or sequential optimization problems with different random initializations, then comparing the
resulting estimates to see if they correspond to the same joint axis.

The local and global uncertainty metrics are combined into an algorithm that can be used to determine
if a current estimate is of acceptable accuracy or if more informative data needs to be collected.

6.1. Local Uncertainty

We approximate the cost function V(x) (23) as a quadratic function near the estimate x̂

V̂(x) = V(x̂) +
1
2
(x− x̂)>H(x̂)(x− x̂), (54)

where H(x̂) ∈ R4×4 is the approximate Hessian of V(x) evaluated at x̂ according to (34).
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We make the assumption that the uncertainty can be captured by a Gaussian distribution. Given
the estimate x̂ and the covariance matrix Px, the probability that x is the true parameter vector is given
by the probability density function (PDF)

p(x|x̂, Px) = N (x̂, Px) =
1√

(2π)4|Px|
exp

(
−1

2
(x− x̂)>P−1

x (x− x̂)
)

. (55)

This is the same as assuming the estimation errors x− x̂ to be zero-mean Gaussian with covariance
Px. We are interested in finding Px to quantify the uncertainty of estimates. We now consider the
negative log-likelihood of this PDF

− log p(x|x̂, Px) = log
(√

(2π)4|Px|
)
+

1
2
(x− x̂)>P−1

x (x− x̂). (56)

Note the similarities to V̂(x) in (54). If (54) is a good local approximation of the cost function
and our estimator is unbiased, the distribution of the estimation errors x− x̂ will be asymptotically
(N → ∞) zero-mean Gaussian with covariance matrix [37]

Px ≈
(

Js(x̂)> Js(x̂)
)−1

, (57)

where Js(x̂) is Jacobian from (31) where the partial derivatives of the gyroscope and acceleration
residuals have been scaled by 1/std(eω(k, x̂)) and 1/std(ea(k, x̂)), respectively. Here, std(e(k, x))
denotes the sample standard deviation of the residuals

std(e(k, x)) =

√√√√ 1
N − 1

N

∑
k=1

(
e(k, x)− 1

N

N

∑
k=1

e(k, x)

)2

. (58)

We want to measure the uncertainty in terms of angular deviation

AD(v1, v2) = cos−1

(
v>1 v2

‖v1‖‖v2‖

)
, (59)

where v1 and v2 are vectors of the same dimension, AD(v1, v2) returns the positive angle between the
two vectors. Let

z = h(x) =

[
AD(j1(x), j1(x̂))
AD(j2(x), j2(x̂))

]
, (60)

xi =
[
θi φi

]>
, (61)

then we want to find the probability distribution of p(z) or its first two moments (mean µz and
covariance matrix Pz).

We use a Monte Carlo method to estimate the mean µz and covariance Pz [38]

xl ∼ N (µx, Px), l = 1, . . . , L (62)

zl = h(xl) (63)

µz =
1
L

L

∑
l=1

zl (64)

Pz =
1

L− 1

L

∑
l=1

(zl − µz)(zl − µz)
>, (65)
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where we let µx = x̂, Px is obtained as in (57) and h(xl) is given by (60). The covariance matrix Pz is
estimated by the unbiased sample covariance estimator, hence the division by L− 1.

The metric we will be using to determine local uncertainty is the mean plus two standard
deviations, µz + 2σz, where σz =

√
diag(Pz).

6.2. Global Uncertainty

The cost function V(x) may have multiple local minima. In the case that the local minima
correspond to either the correct or the wrong sign pairing of j1 and j2, we can find the correct one by
comparing minima located near the opposite sign of either j1 or j2. If these minima are not distinctly
different in terms of the values of V(x), we expect the estimates to have the correct sign half of the
times our method finds a solution given that the initial estimates are uniformly spread over the
parameter space. Furthermore, in the case where our data has little information about j, there may be
other local minima that corresponds to wrong solutions. Wrong local minima can still have low local
uncertainty, meaning that if our estimates are initialized near them, it is likely that wrong solutions
are found. Therefore, to be confident that the method has found the global minimum, we need to
solve the optimization problem multiple times with different initial estimates and compare the angular
deviations of the sequential estimates.

We compute estimates ĵ(t)i for t = 1, 2, . . . , T as

ĵ(t) =

 ĵ, t = 1

arg minj∈{+ ĵ,− ĵ}mini∈{1,2} AD(ji, ĵ(t−1)
i ), t > 1

, (66)

where ĵ(t)i is chosen as either± ĵ, such that one of the two estimated joint axes ĵi always has the sign that
is most consistent with its previous estimate. Note that this only forces either ĵ1 or ĵ2 to be consistent
with the previous estimate, whereas the other one may still be inconsistent. We then consider the
maximum sequential angular deviation as our metric for whether the estimate at time t corresponds to
the same minimum as the estimate at time t− 1

SEQAD(t) =

{
180◦, t ≤ 1

maxi∈{1,2}AD( ĵ(t)i , ĵ(t−1)
i ), t > 1

. (67)

The SEQAD(t) metric corresponds to the angular deviation of the joint axis estimate that is most
inconsistent with its previous estimate. Consecutive estimates will differ when there is no clear and
consistent global minimum. Therefore, if we observe that SEQAD(t) → 0 as t increases, we can be
more certain that the local minimum found by our solver corresponds to a global minimum.

6.3. Identifying Estimates with Acceptable Uncertainty

Suppose that we receive data sequentially, i.e., we obtain DN(t) = {yN(t)
ω , yN(t)

a }, ∀t ∈ {0, . . . , T},
the sets of N(t) gyroscope and N(t) accelerometer measurements that have been recorded from time
t = 0 to t. If we use sample selection according to Algorithms 2–3, then N(t) ≤ Nmax, ∀t. For each
DN(t) we obtain an estimate ĵ = j(x̂) by solving the optimization problem (22). Furthermore, we will
select the estimate associated with time t to be ĵ(t) as in (66), such that either ĵ1 or ĵ2 is consistent with
the sign of the previous estimate.

We now want to assess if ĵ(t) has acceptable uncertainty. Let Emax denote the maximum uncertainty
that we accept. We use the following two criteria to determine if the local and global uncertainty is
sufficiently small

• We require that µz + 2σz < Emax, where µz and σz are obtained from (64) and (65) through the
procedure described in Section 6.1.
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• We require that the sequential angular deviations given by (67) satisfy SEQAD(t) < Emax for
a minimum of nmin consecutive estimates, that were randomly initialized uniformly over the
parameter space. This is equivalent to

max
t′∈[t−nmin+1,t]

(
SEQAD(t′)

)
< Emax. (68)

We summarize the method for selecting an estimate ĵ(t) of acceptable uncertainty in Algorithm 4.

Algorithm 4 Identifying an estimate of acceptable uncertainty

Require: Data DN(t) = {yN(t)
ω , yN(t)

a }, ∀t ∈ {1, . . . , T}, number of Monte Carlo samples L, maximum

acceptable uncertainty Emax, threshold for minimum number of sequential estimates with

acceptable deviation nmin.
1: n← 0
2: for t ∈ {1, . . . , T} do
3: Obtain an estimate ĵ = j(x̂) by solving the optimization problem (22) using the data DN(t) and

Algorithm 1.
4: Obtain ĵ(t) from (66).
5: Compute the covariance matrix Px according to (57).
6: Compute µz and Pz according to the Monte Carlo method (62)–(65).
7: Compute SEQAD(t′), ∀t′ ∈ (t− nmin + 1, t) as in (67).
8: if µz + 2σ < Emax AND max{SEQAD(t′)} < Emax then
9: return ĵ(t).

10: end if
11: end for

7. Experiment

7.1. Data Acquisition

Data were collected from a 3D printed hinge joint system [39] with one wireless IMU (Xsens MTw)
attached to each segment; see Figure 3. The sampling rate was set to 50Hz for both IMUs. The operating
ranges of the IMUs were±160m/s2 for the accelerometers and±21rad/s for the gyroscopes. The IMUs
were attached in sockets such that the joint axis was parallel with the positive y-axes of the sensors
and both pointing in the same direction (same sign), that is

j1 = j2 =
[
0 1 0

]>
. (69)

The data consist of 14 recorded motions, listed in order below

1. Stationary system;
2. Free rotation, stiff joint, free joint axis;
3. Sequential rotation, horizontal joint axis;
4. Sequential rotation, tilting joint axis;
5. Simultaneous planar rotation, horizontal joint axis;
6. Simultaneous planar rotation, tilting joint axis;
7. Simultaneous free rotation, free joint axis;
8. [8–14] Same motions as 1–7, respectively, but with faster rotations.

The recorded angular velocity magnitudes for these motions are shown in Figure 4. For the
sequential rotation, Segment 1 was always rotated first while Segment 2 was stationary, which was
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followed by the converse motion. Horizontal joint axis means that the joint axis was aligned to be
approximately orthogonal to the gravitational acceleration vector. For the tilting joint axis case, the
angle between the joint axis and the gravitation acceleration vector was maintained at ≈ 45◦ for the
duration of the motion. For the free joint axis motions, the joint axis was not constrained to any
particular orientation, but rotated freely in space. The hinge joint system was equipped with a screw,
which when tightened prevented independent rotation of the two segments. The screw was tightened
when the system was stationary and during the stiff joint rotations. Measurements of the transitions
from one motion to another were removed from the recorded data, such that only the specified motions
of interest could be isolated. The first set of stationary data was used to estimate the gyroscope bias bω

in (3), which was then subtracted from all subsequent measurements.

Figure 3. The 3D printed hinge joint system, design by Dustin Lehmann, with the two IMUs (orange
boxes, 34× 58mm) attached.

Figure 4. The angular velocity magnitudes for the 14 different motions that were recorded. The vertical
lines and numbered sections indicate when the different motions begin and end.
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Because the optimization problem (22) is formulated based on the kinematics at each sample time,
and does not contain dynamics, we are allowed to shuffle around the measurements in our data set.
Using the 14 different motions, four scenarios were designed where the motions appeared in different
sequences. The sequences of motion for the different scenarios were

1. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14;
2. 1, 3∗, 10∗, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13, 7, 14;

∗only 500 samples (10 seconds) from motions 3 and 10, which contain motion in only Segment 1.
3. 6∗, 1, 8, 2, 9;

∗only 1000 samples from motion 6.
4. 1, 8, 2†, 9†, 6∗, 2†, 9†.

∗only 1000 samples (20 seconds) from motion 6.
†samples divided in half.

Scenario 1 is the original sequence in which the motions were recorded. Scenario 2 starts with
the sensors being stationary, then there is motion in only Segment 1, after which the system alternates
between the slower and faster motions, starting with non-informative stiff-joint motions. For this
scenario we expect to have good estimates of j1 before we have any excitation in Segment 2. Scenario
3 has early excitation of both segments followed by measurements from a stationary system and
non-informative stiff joint motion and Scenario 4 has the converse case where the excitation comes late
in the sequence. Scenarios 3 and 4 are also designed to contain more non-informative motions, as the
only informative motion is contained in the 1000 samples (20 seconds) from motion 6.

7.2. Evaluating Robustness of the Residual Weighting

To experimentally evaluate the robustness of the proposed method for different weights wω and
wa, we estimated the joint axis using data from motions 3 to 7 and 10 to 14. Data from a stationary
system and rotations with a stiff joint were not used in these evaluations since the joint axis is not
identifiable for these motions. The weights were chosen as

wω =
√

w0, wa =
1√
w0

, (70)

where we let w0 = wω
wa

determine the relative weighting of the residuals eω and ea. We estimated
the joint axis for 100 different values of w0, which had a logarithmic distribution on the interval
(10−3, 1010). For all different motions and for each value of w0 the initial estimates of x were selected
deterministically such that all possible sign pairings (±j1,±j2) and (±j1,∓j2) were selected equally
many times. The initial estimates for j1 and j2 were selected from a grid on the unit-sphere of R3 with 6
grid points the positive and negative axes. With all possible combinations for j1 and j2 this resulted in
M = 36 different initial conditions for the optimization algorithm. Here we use the root-mean-square
angular error (RMSAE) for both joint axes as the metric to evaluate performance

RMSAE =

√√√√ 1
2M

M

∑
k=1

AD(j1, j(x̂(k)1 ))2 + AD(j2, j(x̂(k)2 ))2, (71)

where AD is the angular deviation metric given by (59), and here we let the superscript k denote
the estimates obtained from different initializations. Since we consider (±j1,±j2) to be correct sign
pairings of the joint axis, we select the sign of ĵ1 which has the lowest AD. If, as a result of this, ĵ1
changes sign, the sign of ĵ2 is also changed. This way AD for ĵ1 will always be ≤ 90◦ whereas the AD
for ĵ2 can be up to 180◦, which corresponds to an error in the sign pairing.

7.3. Evaluating Sample Selection

To evaluate the proposed sample selection in Algorithms 2–3, we use the data according to the four
scenarios specified in Section 7.1. Starting with the first second of recorded motion and incrementally
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adding subsequent data in small batches of one second at a time. That is, we receive sequential batches
of data DN(t), ∀t ∈ {1, . . . , T} where T is the duration of the scenario.

We compute one estimate ĵ(t)i for each DN(t). For each new batch, the joint axis is estimated again
starting from a new initial estimate (i.e., no warm-start of the optimization method), which is randomly
selected from a uniform distribution. The reason for this is that we also want to evaluate if the estimates
are consistent over time, regardless of initialization of the optimization method. The relative weighting
of the residuals (70) was set to w0 = 50.

We compare the method when the proposed sample selection is used to the case where all available
data is used (Nmax = N(t)) for estimation for all four scenarios. When using the sample selection in
Algorithms 2–3, the maximum sample sizes of Nmax ∈ {1000, 500, 250, 125} were compared.

Other than N, the other user chosen parameters for the sample selection is related to the angular
rate energy penalty (45). The window size of n = 21 samples was used, which means the average energy
is computed for 0.42s of motion for our sensors. The threshold used to determine if the accelerometer is
stationary in Algorithm 3, was set to Eth = 1rad2s−2. This is around 10 times higher than the threshold
used for the angular rate energy detector suggested for zero-velocity detection in human gait [40].
Measurements that we discard in line 2 of Algorithm 3 are therefore likely to be of significant motion.

7.4. Evaluating Uncertainty Quantification

To evaluate the efficacy of the proposed uncertainty quantification, we will use the same sequential
batches of data for all four scenarios DN(t), ∀t ∈ {1, . . . , T} as in Section 7.3, but with a fixed maximum
number of samples N = 1000 chosen by Algorithms 2–3. Similarly to the procedure used to evaluate
the sample selection method one estimate ĵ(t)i is obtained for each new batch, and initial estimates are
independently randomized from a uniform distribution over the parameter space at each t. The relative
weighting of the residuals (70) was set to w0 = 50.

Here we use Algorithm 4, which returns an estimate ĵ, when the local and global criteria indicate
that the uncertainty is acceptable. This requires the user to choose the threshold for acceptable
uncertainty, Emax, and the minimum number of sequential estimates that should have angular deviations
below this threshold, nmin. For our evaluation we choose to set Emax = 3◦, and nmin ∈ {3, 10}.
Algorithm 4 is then deemed to be successful if AD(ji, ĵi) ≤ Emax. This procedure is repeated 100 times
for each scenario, with different randomized initial estimates each time.

7.5. Evaluating Robustness to Sensor Bias

We evaluated the robustness of the complete method, which includes Algorithms 1–4,
to measurement bias. The measurement bias refers to ba and bω in the measurement models (1)–(3).
In the other evaluations presented here, we have compensated for gyroscope bias by estimating bω

from the initial stationary data (Motion 1) and subtracting this bias from the subsequent measurements.
We have not compensated for any accelerometer bias since it cannot be estimated from only one
stationary position of the sensor. In this section, we will study the effect of sensor biases by adding
artificially generated biases to both the previously bias-compensated gyroscope measurements and
to the accelerometer measurements. These artificial biases have fixed magnitudes ‖ba‖ = 1m/s2 and
‖bω‖ = 1◦/s, but their directions are randomized by generating random unit vectors. To evaluate
the effect of the added artificial bias, M = 100 estimation runs are performed for all four scenarios,
with and without the added artificial bias. The artificial biases are first added to the measurements,
then the proposed method is applied as described in Section 7.4. Here, we set Nmax = 500, Emax = 1◦

and nmin = 10, other parameters are the same as in previous sections. We will use the RMSAE
metric (71) and the maximum angular error (MAXAE)

MAXAE = max
1≤k≤M

{AD(j1, j(x̂(k)1 )), AD(j2, j(x̂(k)2 ))}, (72)

to evaluate the performance of the method across all M = 100 estimation rounds for all scenarios.
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8. Results

8.1. Robustness

The RMSAE for the different motions and weights w0 are shown in Figure 5. Here, estimation is
done separately and using all samples for each motion, i.e., without sample selection. The optimal
choice for w0 appears to be in the interval of (101, 105), where the errors are small for all motions.

Figure 5. Root-mean-square angular error (RMSAE) (71) for different motions and weights w0. Normal
speed motions are shown in the top plots and faster motions are shown in the bottom plots. The plots
on the right show the same results as the plots to their respective lefts, but zoomed in.

8.2. Sample Selection

The angular errors for ĵ1 and ĵ2 obtained from testing the proposed sample selection as described
in Section 7.3, are shown in Figure 6. From these results, we can compare the use of Algorithms 2–3
for different sample sizes Nmax. This includes the case of Nmax = N(t), where N(t) corresponds to
making use of all samples that have been observed up to an integer t number of seconds.

Figure 7 shows which samples were selected for Nmax = 1000, for Scenarios 1 and 2 at the times
given by the vertical axes.

8.3. Uncertainty Quantification

With the parameter nmin = 10, the final errors were below Emax = 3◦ for all 100 estimation rounds
for all four scenarios, meaning the estimates obtained from Algorithm 4 were acceptable 100% of the
time. With nmin = 3 and the same Emax, the estimates were acceptable 8% of the time for Scenario
1, 81% of the time for Scenario 2, 100% of the time for Scenario 3 and 0% of the time for Scenario 4.
Figure 8 compares the local and global uncertainty metrics to the angular errors of a single estimation
round for each scenario and shows when Algorithm 4 accepted an estimate ĵ for nmin = 3 (leftmost
vertical dashed lines) and for nmin = 10 (rightmost vertical dashed lines).
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(a) Scenario 1. (b) Scenario 2.

(c) Scenario 3. (d) Scenario 4.

Figure 6. Angular errors over time for the four scenarios, see (a–d). Comparing the case Nmax = N(t),
where all samples up to time t are used for estimation to Nmax ∈ {1000, 500, 250, 125} samples being
chosen by Algorithms 2–3 at each integer t seconds. Colored lines define these different cases as given
by the legend in the top right. Vertical dashed lines and the numbers 1–14 are used to indicate from
which motions (see Section 7.1) the data comes from.

(a) Scenario 1. (b) Scenario 2.

Figure 7. The figure shows which samples from Scenario 1 (a) and Scenario 2 (b) that were selected by
Algorithms 2–3 with Nmax = 1000, at the times given by the vertical axes. Black/white indicates that a
sample were selected/not selected respectively. As time increases and more samples become available,
we see some previously selected samples being deselected in favor of new samples that are deemed
superior by the algorithms. Vertical dashed lines and the numbers 1–14 indicate from which motions
(see Section 7.1) the data comes from.
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(a) Scenario 1. (b) Scenario 2.

(c) Scenario 3. (d) Scenario 4.

Figure 8. The plots shows the local and global uncertainty metrics compared to the angular errors (red)
for the four scenarios, see (a–d). Local uncertainty is quantified by µz + 2σz, where µz is the estimated
mean AD (64) and σz is the standard deviation, computed from the estimated covariance matrix (65).
Local uncertainty (blue) is shown for both ĵ1 and ĵ2 for each scenario. Global uncertainty is quantified
by (68). The global uncertainty (green) with nmin = 10 is shown for each scenario. Horizontal dashed
lines show the accuracy threshold Emax = 3◦. Vertical dashed lines show when estimates ĵ were
accepted by Algorithm 4. For each scenario, the leftmost vertical lines show the case of nmin = 3
and the rightmost vertical lines show the case of nmin = 10, where Algorithm 4 terminates when the
estimates have reached the desired accuracy w.r.t. ground truth.

8.4. Robustness to Sensor Bias

The resulting RMSAE and MAXAE for the M = 100 estimation rounds with and without added
artificial bias are shown for all four scenarios in Table 1. Without the added artificial biases, the errors
were at most 2.16◦, and with the added artificial biases of magnitudes ‖ba‖ = 1m/s2 and ‖bω‖ = 1◦/s
the errors were at most 4.84◦.
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Table 1. Shows the RMSAE (71) and MAXAE (72) after M = 100 runs with and without artificial bias
for the four scenarios.

Scenario ‖ba‖ [m/s2] ‖bω‖ [◦/s] RMSAE [◦] MAXAE [◦]

1 0 0 1.55 1.67
1 1 1 1.73 4.41
2 0 0 1.58 2.16
2 1 1 1.97 4.84
3 0 0 1.50 2.07
3 1 1 1.58 3.09
4 0 0 1.47 1.98
4 1 1 1.30 2.32

9. Discussion

9.1. The Method Is Not Sensitive to the Relative Weighting w0

The parameter w0, which is defined from (70), controls the relative weighting of the residuals eω

and ea. As w0 increases, the relative weighting of the gyroscope residual is increased. As we see in
Figure 5, the optimal choice of w0 for most motions in terms of RMSAE (71), is somewhere in the large
range between 10 and 105. The errors are also small (< 3◦) for w0 < 10 for the slower planar motions
(3–6), which shows that the acceleration information can be reliable for these motions. However,
some larger errors can be observed for small w0 for the faster planar motion 12 and the errors are also
significantly larger for the free axis rotations (motions 7 and 14), which can be explained by the fact
that these motions violate the acceleration constraint, meaning that the r.h.s. of (17) is nonzero.

Since we can select any w0 from within such a large interval and still obtain similar performance,
our method is not sensitive to the relative weighting of the residuals. It makes sense that w0 > 10,
since the angular velocities, measured in rad/s, have smaller magnitudes than the accelerations, that
typically fluctuate around 9.82m/s2 due to the gravitational acceleration. Furthermore, the angular
velocity constraint always holds for a rigid hinge joint system. Hence, we expect the angular velocity
information to be more reliable. The method is robust for larger w0 up to 105 where the RMSAE
become large for motions 3 and 10. This large increase in RMSAE occurs when the acceleration residual
becomes numerically indistinguishable to the tolerance of the optimization algorithm, and it becomes
more likely that the method selects an estimate which corresponds to the wrong sign pairing. Therefore,
as w0 increases we see the RMSAE approach 90◦ as the AD for ĵ1 is still small but the probability of
selecting ± ĵ2 is approaching 0.5, meaning that approximately half of the estimates will have the wrong
sign pairing. This can also depend on the numerical tolerance and stopping criteria of the optimization
method, since a global minimum corresponding to the correct sign pairing might not be significantly
different from other local minima that correspond to the wrong sign pairing.

9.2. Sample Selection Offers Substantial Benefits

From the results shown in Figure 6 we see that we can achieve similar, and in some cases even
better performance by selecting relatively few measurements to use for estimation out of all N(t)
measurements that have been observed up to time t. For Scenario 1, Nmax ∈ {1000, 500, 250} have
angular errors within 0.5◦ and N = 125 have errors within 1◦ from the case with Nmax = N(t).

In Scenario 2, the errors for ĵ2 drop below 2◦ at t = 85s for the methods using sample selection, but
it takes until t = 135s for the method where Nmax = N(t) to stay consistently below 2◦. However, the
method with N = 125 again shows a slightly larger deviation from the others, with some momentary
spikes in error around t = 200s and t = 300s. Note that Scenario 2 is designed to have no independent
rotation of Segment 2 until t = 255s. So the only information about j2 until then has to come from the
accelerometer. This shows that carefully selecting accelerometer samples according to Algorithm 3 is
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beneficial, especially if angular velocity information is missing. Comparing the results from Scenarios
1 and 2, the final errors are very similar, indicating that the methods are not sensitive to the sequence
of motions.

Scenarios 3 and 4 represent challenging cases where only a small minority of samples contain
motion with independent rotation (only 20s of motion 6). In Scenario 3, we note that the final error for
Nmax = N(t) is significantly larger than the cases with Nmax ∈ {1000, 500, 250}, and for Nmax = 125
the final error for ĵ2 is at the same level as Nmax = N(t). Scenario 4 has a similar performance in terms
of final errors. However, Scenario 4 does not have any motions with independent rotations of the
segments until around t = 180s. The only information about the joint axis until that point comes from
the accelerometer, in Motions 1, 8, 2 and 9. The errors start to decrease around t = 150s when data
from Motion 9 comes in, but do not settle until after Motion 6. The large fluctuations in errors we see
for Nmax = 1000 during Motion 9 indicate that there are still at least two local minima corresponding
to the wrong joint axis at this point. Errors for Nmax < 1000 are smaller during motion 9, but still vary
between 5◦ and 20◦.

Using Algorithms 2–3 is therefore beneficial, not only for reducing the computational complexity
of the optimization problem, but it can even improve the performance in situations where gyroscope
information is limited. However, judging by Scenario 4 in particular, Nmax ≥ 1000 appears to be the
best choice in terms of overall performance. Even then, Nmax = 1000 is only a small fraction of the
total number of measurements. With a sample period of 0.02s, we have that N(t = 700) = 35000 and
N(t = 250) = 12500.

Figure 7 shows the samples that were selected over time from Scenarios 1 and 2 with Nmax = 1000
and which motions these samples come from. For both scenarios, we see that gyroscope samples
from non-informative motions 1,2,8,9 are all deselected by the end. Samples from these motions
are only kept until enough samples from informative motions have been parsed by the algorithm.
For the accelerometer, we see that samples from stationary sensors are preferred since many samples
of motions 1 and 8 are kept, which is in line with the penalty we give samples based on the angular
rate energy. It is also important that samples from other motions are selected since the criterion for
identifiability requires a strong separation between the nullspace and the column space of the matrix
A given by (27). Had the selection criterion of the accelerometer only been based on the angular
rate energy, we would risk ending up in the situation where all samples are selected from the same
stationary position, in which case all rows of A are linearly dependent. Lines 5–10 in Algorithm 3
prevent this by removing the worst samples that are coherent with the right-singular vector of the
largest singular value. This can be thought of as allocating space in the A matrix for novel information
by removing redundant information.

9.3. Reliability of the Proposed Uncertainty Quantification

We obtained reliable estimates with errors below that of the maximum acceptable error Emax = 3◦,
100% of the time when the parameter nmin = 10. However, estimates were not reliable for nmin = 3,
where the results were particularly bad for Scenario 1, with 8% of estimates of acceptable error and for
Scenario 4 with 0% of estimates of acceptable error. Both of these scenarios contained no informative
motions in the beginning, and we found that the estimates that were returned often had not used any
batch of informative data for estimation because the criteria for local and global uncertainty were
satisfied prematurely by Algorithm 4.

In Figure 8 it can be seen that local uncertainty metric µz + 2σz can be below Emax (horizontal
dashed lines) while the actual angular error fluctuates between values below and above Emax. This
occurs when there exist multiple other local minima than those corresponding to the true joint axis.
Furthermore, Figure 8 shows how the SEQAD remains large as the angular errors fluctuate in the
same way as the angular errors. Interestingly, Scenario 2 appears to fluctuate between one correct and
one wrong local minimum between t = 66s and t = 82s. If we assume that the probability of finding
the correct local minimum is 0.5, having nmin = 3 that means that the probability of ending up in
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the wrong local minimum nmin times in a row is 0.5nmin = 12.5%. This matches well with the results
obtained for Scenario 2, where 88% of the estimates were acceptable for nmin = 3.

For Scenarios 1 and 4, where the results were significantly worse for nmin = 3, it appears that
wrong local minima were dominating. These two scenarios have sequences of stiff-joint motion
before any informative motions are observed, which can explain why wrong local minima were found
more frequently. Scenario 3, which had informative motion in the beginning did not have this issue,
and hence 100% of the estimates were acceptable even for nmin = 3.

We can conclude that setting the parameter nmin sufficiently large is important for fully capturing
the global uncertainty. Sequential data dominated by non-informative motions in the beginning are
more sensitive to the choice of nmin. The results showed that Algorithm 4 successfully identified all of
the estimates that satisfied the accuracy criteria Emax = 3◦ when nmin = 10. Here, this corresponds to
10 consecutive estimates (computed once per second), that differed by 3◦ at most.

9.4. The Method Is Robust to Realistic and Uncompensated Sensor Bias

As shown in Table 1, even with added artificial biases of relatively large magnitudes ‖ba‖ = 1m/s2

and ‖bω‖ = 1◦/s, the errors were at most 4.84◦ across all M = 100 estimation runs for all four scenarios.
The average errors in terms of RMSAE were less than 2◦ even with the added artificial biases. As a
comparison, the IMUs used in our experiments had bias magnitudes in the order of ‖ba‖ = 0.1 m/s2

and ‖bω‖ = 0.5◦/s, so the artificial biases were significantly larger. This shows that the method is
robust to sensor biases of at least these magnitudes. However, we had to lower the threshold Emax from
3◦ to 1◦ to achieve this. This means that Algorithm 4 will be more conservative in selecting an estimate.
With added artificial bias and Emax = 3◦, the method would sometimes terminate prematurely, when
no informative motion had been observed because a global minimum that satisfied this threshold
value was found. Therefore, lowering Emax was required to achieve robustness to the added artificial
biases. It is therefore still highly recommend that pre-calibration of the biases is performed when
possible. If bias drift is significant enough to exceed the magnitudes tested here across the duration of
the experiment, it is advised to use a method that allows for online compensation of biases alongside
the proposed method. Lowering Emax is only an optional measure one would take in the unusual case
where late bias occurs and is not compensated for.

10. Conclusions

We have proposed a method which facilitates plug-and-play sensor-to-segment calibration for
two IMUs attached to the segments of a hinge joint system. The method identifies the direction of the
joint axis j in the intrinsic reference frames of each sensor, thus providing the user with information
about the sensors’ orientation with respect to the joint. Accurate sensor-to-segment calibration is
crucial for tracking the motion of the segments.

The method was experimentally validated on data collected from a mechanical joint,
which performed a wide range of motions with different identifiability properties. As soon as
sufficiently informative data was available, the method achieved a sensor-to-segment calibration
accuracy in the order of 2◦, assessed as the angular deviation from the ground truth of the joint axis.

The proposed method includes the following features that were evaluated separately using the
experimental data:

• Gyroscope and accelerometer information are weighted and combined, which makes the joint
axis identifiable for a wider range of different motions. Experimental evaluation showed that the
method is not sensitive to the weighting parameters, and that it performs comparably well for a
wide range of different motions across a large interval of weights.

• A method to select a smaller subset of samples to use from a long sequence of recorded motion
is proposed. Samples are selected from motions that yield identifiability, and measurements of
non-informative motions are automatically discarded. The experimental evaluation showed that
using between 125 and 1000 samples can achieve similar and in some cases even better performance
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than using all available samples collected from a long sequence of motions. Sample selection was
shown to be particularly beneficial when data consisted of more non-informative than informative
motions. Furthermore, using less samples for estimation reduces the computational complexity of
the estimation.

• A method to quantify local and global uncertainty properties of sequential estimates,
which provides the user with an estimate when criteria for acceptable uncertainty are met.
The method successfully identified estimates that satisfied the uncertainty criteria (Emax = 3◦).

The proposed method is the first truly plug-and-play calibration method that directly enables
plug-and-play motion tracking in hinge joints. For the first time, the user can simply start using
the sensors instead of performing precise or sufficiently informative motion in a predefined initial
time window, and the proposed method provides reliable calibration parameters as soon as possible,
which immediately enable calculation of accurate motion parameters from the incoming raw data as
well as from already recorded data. Regardless of the performed motion, it provides only parameters
that are actually accurate, which is not guaranteed by any state of the art method. This enables the kind
of truly non-restrictive and reliable motion tracking that is needed in a range of application domains
including ubiquitous motion assessment to wearable biofeedback systems.

In future work, the method could be extended to different joint types and be applied to motion
tracking in mechatronic and biomechanical systems. For the latter case in particular, it would be of
great interest to study the reliability of the method in non-rigid systems, such as human limbs, where
motion of soft tissue is significant.
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