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ABSTRACT  

Just before WW2 the French architect Jacques Couëlle invented a system to build 
structures, using ceramic tubes embedded in concrete, known as Fusée Céramique. 
During WW2 this system was used in France and Germany to construct barracks and 
shelters. After the war this system was applied in France, North Africa and The 
Netherlands to construct low-rise cylindrical vaults and domes for workshops, swimming 
halls, stations, schools and churches. Thanks to the ceramic infill the need of material and 
the dead weight of the vaults was minimal. For example in the city of Woerden, The 
Netherlands, a cylindrical low-rise vault was built with a span of 19,8 m,  a thickness of 
135 mm and a ratio thickness-span of 1:147. In 2012 this workshop was pulled down. 
During the sixties the costs of labour were rising and this system could not compete with 
other systems. Fifty years later most of these structures are pulled down. The remaining 
buildings do not meet the demands of the present concerning comfort, safety, insulation 
and need of energy. Nevertheless these structures are a fine example of engineering, so at 
least some of these vaults have to be preserved for the coming generations. In the past the 
low-rise vaults were designed for the permanent load and a modest live load. 
Unfortunately due to temperature variations and time dependent deformations the Fusée 
Céramique roofs are subjected to internal forces, which can cause cracks and reduce the 
stiffness and load bearing capacity substantially. Consequently some vaults are not safe 
and have to be strengthened.  

This paper describes for cylindrical Fusée Céramique vaults, composed of concrete 
and ceramics, the effect of the time dependent deformations concerning strength, 
stiffness, buckling risk and bearing capacity. To strengthen these vaults a cost-effective 
method is described, using the potentiality of the hangers, connecting the ties with the 
vaults, to reduce deformations and buckling length. Possibly this method can be used to 
strengthen and stiffen arches and vaults of concrete, masonry, steel and timber too. 
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INTRODUCTION 

Just before WW2 the French architect Jacques Couëlle invented a system to build 
structures, using ceramic tubes embedded in concrete vaults, known as Fusée Céramique, 
to reduce the dead weight and save materials. In 1954 this system was introduced in the 
Netherlands [1] to construct low-rise vaults and domes. During the sixties the costs of la-
bour were rising and this system could not compete with other systems. Fifty years later 
most of these structures are pulled down. The remaining buildings do not meet the de-
mands of the present concerning comfort, safety, insulation and need of energy. Never-
theless these structures are a fine example of engineering, so at least some of these vaults 
have to be preserved for the coming generations. Due to temperature variations and time 
dependent deformations Fusée Céramique structures are subjected to internal forces, 
which can cause cracks and reduce the stiffness and load bearing capacity substantially 
[2]. Probably some remaining Fusée Céramique vaults are not safe and have to be 
strengthened. This paper describes for these vaults a cost-effective method to increase the 
buckling resistance and load bearing capacity.  

 
 
 
 
 

 

 

 

Figure 1:  Low-rise Fusée Céramique vault, Woerden, The Netherlands [2]. 

STRUCTURAL DESIGN 

A Fusée Céramique element is a tube with a conical top, which can be shoven into the 
open rear of the next element. The elements have a length of 350 mm, an outer diameter 
of 80 mm and a thickness of 10 mm, see figure 2.  

 
 
 
 
 
 
 
 

Figure 2: Fusée Céramique element used in Woerden, The Netherlands. 

 The roofs were made on the site. A thin layer of concrete of 25 mm was poured on 
the mould, The fusées were pushed into the concrete and a second layer was poured on 
top of the first layer. In a section with a width of 1,0 m eleven elements were placed with 
a spacing of 10 mm and a centre to centre distance of 90 mm, see figure 3.  

 

126



  M.W.Kamerling 

4th WTA International PhD Symposium – Delft 2017  

Generally the low rise cylindrical vaults were designed with a ratio rise to the span of 1:8 
[3]. Low-rise vaults with a span smaller than 15 m were constructed with one layer of 
fusées and a thickness of 110 mm.  For vaults with a span larger than 15 m the thickness 
had to be increased. So was for a vault in Woerden, with a span of 19,8 m, the thickness 
increased to 135 mm [2].   

 
 
 
 
 
 
 
 

 

Figure 3: section of a  fusée vault perpendicular to the span. 

In the past the low rise vaults were designed according to the Theory of Elasticity [3].  
The effect of cracks was neglected. The vaults were assumed to be subjected to an equally 
distributed permanent load qg and live load qe acting symmetrically or asymmetrically at 
one side, see figure 4.  

  

 
Figure 4: Vault subjected to symmetrical permanent load and asymmetrical live load. 

The effect of the stiffness will be shown for a cylindrical vault, following a parabola, 
with a span of 14,4 m, a thickness of 110 mm and a rise of 1,8 m. The centre of the coor-
dinates is positioned at the crown. To resist the bending moments due to asymmetrical 
live load this vault was reinforced with bars Ø6 – 180 in the top and bottom. In practice 
these vaults were not reinforced with distribution bars. Table 1 shows the area and second 
moment of the area of the Fusées, concrete and steel reinforcement.  

 
Area of the fusées: Af = 11 × ¼  × (802 - 602) = 24,2 × 103 mm2 
Area of the concrete: Ac = 1000 × 110 -  11× ¼  × 802  = 54,7 × 103 mm2 
Area of the re-bars 2Ø6-180:  As = 2 ×¼ × Ø62 × 1000/180 =  314           mm2 
Second moment of the area, fusees: If = 11 ×  × (804 – 604) /64 = 15,1 × 106 mm4 
Second moment of the area, concrete; Ic = 1000 × 1103/12 -  11×  × 804 /64 =  88,8 × 106 mm4 
Second moment of the area, steel: Is = 2 × 157 × (½ ×110 – 15 – ½ ×6)2  = 0,43 × 106 mm4 

Table 1: Area and second moment of the area of the Fusées, concrete and steel for a width of 1,0 m. 
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The stiffness of the fusées, concrete and reinforcement was assumed to be respective-
ly: Ef = 17000 MPa, Ec = 21000 MPa and Es = 2,1×105 MPa.  The stiffness of the vault 
with a with of 1,0 m was calculated with EA = Ei Ai = 1,63×109 N and EI = EiIi =  
2,2×1012 Nmm2.  

For an equally distributed load q the thrust follows from: H = ½ q × a2/f. For an 
asymmetrical live load qe the thrust follows from: H = ¼ qe×a2/f. At a distance x from the 
top the normal force follows from: Nx = (H2 + Vx

2)0.5.  The permanent load due to the 
dead load and finishing is equal to pg  = 2,2 kN/m2. According to the TGB 1955 the live 
load is assumed to be pe = 0,5 kN/m2. Table 2 shows the forces due to the permanent load, 
a symmetrical and an asymmetrical live load at a distance x = ½ a from the top.  

 
  Sym.   Asym.  
  perm. load live load perm. + live 

load 
live load perm. + live 

load 
shear force:  V   7,9 kN 1,8 kN   9,7 kN 0,9 kN   8,8 kN 
thrust: H 31,7 kN 7,2 kN 38,9 kN 3,6 kN 35,3 kN 
normal force: N 32,7 kN 7,4 kN 40,1 kN 3,7 kN 36,4 kN 

Table 2: Resulting forces conform the Theory of Elasticity, for t = 0, x = ½ a 

The critical buckling load was calculated with the well known expression given by 
Euler: Ncr =  EI/(s)2. With s the length of the vault from the top to the support. For 
asymmetrical buckling = 1. For a parabolic vault with a ratio f/l = 1:8 the length of the 
vault from the crown to support s = 1,04×a. Substituting the stiffness and length gives: 
Ncr = 387,3 kN. The ratio buckling force with respect to the normal forcen follows from: 
n = Ncr/Nd. For the permanent and asymmetrical live load: n = Ncr/Nd = 387,3/36,4 = 10,6, 
thus the effect of the second order is small.  

The vault is subjected to bending moments in case the live load acts asymmetrically at 
one side. The bending moment due to this load qe is equal to: Mo = qe×a2/16 = 1,62 kNm.   
For x = ½ a the concrete stresses due to the permanent and asymmetrical live load,  in-
cluding second order, are quite small:  c = - 0,48 +/- 0,85  × 10,6/(10,6 - 1) MPa.  

Actually the stresses are effected due to the time dependent deformations. Possibly 
the vault is cracked and these cracks can reduce the stiffness substantially.  

INSTANTANEOUS AND TIME DEPENDENT DEFORMATIONS 

The normal load acting at a section of the vault is resisted by the concrete, fusées and 
reinforcement. Due to a compressive load N the instantaneous specific deformation of the 
concrete, fusées and reinforcement is 0 = N/EA. The forces in the concrete, fusées and 
reinforcement follow from: Nc  = 0 EcAc; Nf  = 0 EfAf; Ns  = 0 EsAs. For the permanent 
load qg = 2,2 kN/m the average value of the normal force: N = 32,7 kN. For t = 0 the spe-
cific deformation: 0  = N/AE = 32700/1,63× 109  =  2,0 × 10-5. Table 3 shows for the 
fusées, concrete and reinforcement the distribution of the permanent load for time t = 0. 

 
c  = 0.020 ×10-3× 2.1 × 104  = 0.42 MPa        Nc = 0.42 × 54,7 × 103 =   23,0 × 103  N 
f  = 0.020×10-3× 1.7 × 104  = 0.34 MPa        Nf = 0.34 × 24,2 × 103 =     8,2 × 103  N                
s  = 0.020×10-3× 2.1× 105  =   4.20 MPa                                                               Ns = 4,20 ×     314       =        1,3 × 103  N           

Table 3: Stresses and forces due to the permanent load for time t = 0  

The distribution of the loads will change due to the creep and shrinkage of the con-
crete. Due to shrinkage and creep the specific deformation of the concrete will rise during 

128



  M.W.Kamerling 

4th WTA International PhD Symposium – Delft 2017  

time t with sc + 0. The total time dependent specific deformation during time t is equal 
to: sc +0 × (1+ 0).   The concrete is firmly attached to the fusées and reinforcement. 
The fusées and reinforcement will prevent partly the time dependent deformation of the 
concrete. The concrete, fusées and reinforcement are subjected to inner forces Fc , Ff and 
Fs. These forces are in balance, thus: Fc = Ff + Fs.  

Due to the internal forces the composite structure is subjected to a specific defor-
mation  Due to the internal force Fc the specific deformation of the concrete is de-
creased by Fc/AcEc. During the time t this specific deformation increases by creep with Fc 

k /AcEc. The force Fc is not constant but is increasing during the time t, the factor k 
compensates for the time dependency of this force. Scherpbier [4] showed that this factor 
k = ½. The specific deformation due to the internal force Fc including the creep is: Fc (1+ 
k )/AEc.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Deformations due to shrinkage and creep and the compensating forces for the vault composed of 
concrete, steel and  Fusées. 

 The specific deformation  and the internal force Fx for the concrete, fusées and 
reinforcement follows from: 
 
c =  sc +0   –  Fc (1+ k )  
            Ac Ec Ac 

Fc =     Ec Ac   × [ sc + 0    - Fs//EsAs ]       
  
       (1+ k )  

f  = Ff /Ef Af ; Ff =  Fs Ef Af / EsAs  
s =  Fs /Es As  Fs =   [sc +0 ] × Ec Ac /(1+ k )          

       1 + [Af Ef + Ec Ac /(1+ k )] /Es As   
 
 Table 4 shows the stresses and forces due to the time dependent deformations for 
the permanent load, calculated for a specific deformation of the concrete due to shrinkage  
sc  = 0.4 × 10-3 and a creep coefficient    = 3. The concrete is tensioned, probably the 
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concrete will be cracked. Due to the cracks the stiffness of the vault will be much smaller 
than assumed before.   

 Normal force  Stress: x = Nx /Ax  
concrete   -Nc +  Fc  = -23,0 + 107,9 = +  84,9 kN    c = +  84900/54700 =  +   1,55 MPa 
fusées -Nf -  Ff  = - 8,2    -   93,0 = - 101,2 kN      f  = - 101200/24200 =  -   4,2    MPa   
reinforcement -Ns -  Fs =   - 1,3  -   14,9 =  -  16,2 kN                                                          s  = -  16200 / 314    =  - 51,6    MPa   

Table 4: Stresses and normal forces due to the permanent load for time t.  

ULTIMATE STATE 

Nowadays structures are designed in the ultimate state to resist design loads, includ-
ing the safety factors. For the given vault, described previously, the maximal design load: 
qd = 1,2 × 2,2 + 1,5 × 0,5 = 3,4 kN/m. Due to the permanent load and asymmetrical live 
load the vault is subjected to a bending moment Md = 1,5 × 1,62 = 2,43 kNm and normal 
force Nd = 1,2 × 32,7 + 1,5 × 3,7 = 44,8 kN. For the ultimate state the stiffness is defined 
with a MN--diagram [5] for the ultimate design load: Nd =  44,8 kN, see figure 6. For 
Md = 2,43 kNm the stiffness EI = 0,32 × 1012 Nmm2.   

 
 

 
 
 
 
 
 

 
 

 

  

 

            

Figure 6: MN- diagram, ultimate state for a normal force Nd = 44,8 kN. 

The buckling force:  Ncr = ×0,32×1012//(1,04×7200)2 = 56,3 × 103 N. The ratio 
buckling force with respect to the normal force is very small: n = Ncr/Nd  = 56,3/44,8 = 
1,3. Due to the second order the bending moment increases much: Md = 2,43×1,3/(1,3-1) 
= 10,5 kNm. This bending moment, including the second order, is larger than the ultimate 
bending moment Mu = 4,9 kNm, so the structure is unsafe and has to be strengthened. 
Possibly hangers between the ties and vault can reduce the effect of the second order. Es-
pecially for renovations this can be very cost-effective. The potentiality of the hangers to 
reduce the effect of the second order will be studied for the described vault. 

TIES AND HANGERS 

Three or more  hangers, connecting the tie with the vault, can reduce the buckling 
length substantially, provided the slender hangers do not buckle. Palkowski [6] re-
searched for bridges the increase of critical buckling load in case all hangers are tensioned 
continuously due to the load acting on the deck. For a structure with three hangers the 
buckling length follows from: lbuc =  s = [1-cos ]1/2 × s ≥ ½ s. For an arch or vault with 
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f/a = ¼ and cos  = 0,8944: = (1-0.8944)1/2 = 0,32. Due to the hangers the factor  is 
smaller than ½, then the buckling length lbuc = ½ s is decisive.  

The hangers of a bridge with the deck hanging on the arches, are tensioned contimu-
ously.However the hangers of a vault, supporting the ties, are not tensioned continuously.  
Possibly some hangers are compressed if the vault is loaded asymmetrically. Slender 
hangers cannot resist compressive forces, so the buckling of the vault is only restricted by 
the tensioned hangers. Consequently the critical buckling length is not reduced much [2]. 
Curving the ties upward, by shortening the hangers, will tension all hangers and reduce 
the buckling length of a vault substantially. However a convex tie will decrease the lever 
arm amd increase the thrust, so the camber must be small, just enough to tension the 
hangers continuously. For the described vault the effect of the convex tie will be shown.  

Assume the coordinates of the tie are halfway the span and at a quarter of the span re-
spectively  c×f and ¾ c×f. Due to the curvature of the tie, the rise of the vault decreases 
with f×(1-c). For a vault subjected to an equally distributed load q the thrust increases 
with a factor 1/(1-c):  H = ½ q a × (a/f)/(1-c). The force S, acting at the hangers, follows 
from the equilibrium of the bending moments for the tie halfway the span and at a quarter 
of the span: S = H×c×f/a. For the vault the bending moments are for x = 0 and x = ½ a 
equal to zero. So the forces S do not increase the bending moment. 

 

 
 Figure 7: Vault with convex tie subjected to a symmetrical and anti-metrical load 
 

An asymmetrical load qe acting at half of the vault can be splitted into a symmetrical 
equally distributed load ½ qe and an anti-metrical load ½ qe , see figure 7. The thrust H 
due to the anti-metrical load ½ qe  is zero, so the force S is not effected by anti-metrical 
load. For x = ½ a the bending moment is still equal to: Mx = a/2 =  qe × a2/16.  

 
  Sym.   Asym.  
  perm. load live load perm. + live load live load perm. + live load 
shear force, x = ½ a  V 8,8   kN 1,9 kN 10,7 kN 1,0 kN   9,8 kN 
thrust: H 33,4 kN 7,6 kN 41,0 kN 3,8 kN 37,2 kN 
hanger S 0,4   kN 0,1 kN 0,5 kN 0,1 kN   0,5 kN 
normal force: N 34,5 kN 7,8 kN 42,3 kN 3,9 kN 38,4 kN 

 Table 5: Resulting forces for the vault with convex tie with c = 0,05. 
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Table 5 shows the results for a vault with convex ties and c = 0,05 for x = ½ a. Com-
paring the results of table 2 and table 5 shows that the normal loads do not increase much  
due to the convex tie.  

Due to the permanent load and asymmetrical live load the vault is subjected to a nor-
mal force and bending moment of respectively Nd = 1,2×34,5 + 1,5×3,9 = 47,3 kN and  
Md = 1,5 × 1,62 = 2,43 kNm.  

For a buckling length lc = ½ × 1,04 × 7,2 m the buckling force Ncr = 225,3 × 103 N. 
The ratio buckling force with respect to the normal force n = Ncr/Nd  = 225,3/47,3 = 4,8.  
Due to the second order the bending moment is increased slightly: Md = 2,43×4,8/(4,8 -1) 
=  3,1 kNm. This moment is smaller than the ultimate bending moment: Mu = 4,2 kNm.  
This vault with convex tie can transfer the ultimate design loads safely. 

CONCLUSIONS 

The time dependent deformations can reduce the stiffness of  Fusée Céramique vaults 
composed of fusées, reinforcement and concrete much. Possibly slender vaults are not 
safe concerning the buckling risk and have to be strengthened. Shortening the hangers 
will curve the ties upward. The convex ties will tension the hangers continuously. Ten-
sioned hangers reduce the buckling length of the vault substantially. However shortening 
the hangers will increase the normal forces, so it is advisable to curve the ties slightly, just 
enough to tension the hangers continously.  

Possibly the described method to strengthen the Fusée Céramique vaults can be help-
fully to preserve these slender vaults for the coming generations. Furthermore this method 
can be also used to design arches and cylindrical vaults efficiently, to save materials, to 
reduce the embodied energy and to decrease the emissions of greenhouse gasses. 
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