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“Entia non sunt multiplicanda praeter necessitatem.
“Entities should not be multiplied beyond necessity. “

— William of Occam






CONTENTS

Acronyms

Summary

1 Introduction

1.1
1.2
1.3

ResearchQuestions. . . . . . . . . . . . . . . . . ...
Contributions. . . . . . . . . .. .. e e e
outline . . . . . . . . e e e e e e e e e

2 Brief overview of remote sensing methods and datasets

2.1
2.2
2.3
2.4
2.5

2.6
2.7

2.8

Introduction . . . . . .. L L L
Cloud computing - a new era for satellite image processing. . . . . . . . .
Multispectral satellite sensors and freely availabledata. . . . . . . . . ..

2.5.1 Variability of water spectral signatures due to natural and anthro-
POGENIC PIOCESSES « .« & v v v v v e v e e e e e e e e e e
2.5.2 Spectral and radiometricresolutions. . . . . . .. ... ... ...
2.5.3 Spatial and temporalresolution . . . . . . .. ... ... ..
254 Cloudsandcloudshadows. . . . . ... ... ... ........
255 Snowandice. . . . .. ... Lo oL
2.5.6 Topographiceffects . . . . . . . . ... ... oo,
Global static and dynamic surface water datasets. . . . . . . .. ... ..
Earth Observations and Volunteered Geographic Information . . . . . . .
2.7.1 Reservoirs and their storage dynamics. . . . . . . .. .. ... ..
Conclusions. . . . . . . . . . L e e

3 Surface water detection and dynamic local thresholding

3.1

3.2
3.3

3.4
3.5
3.6

Introduction . . . . . . ...
3.1.1 Otsuthresholding . . . . .. ... . ... ... .. ... ....
3.1.2 Cannyedgedetector. . . . . . . . .. . .. ...
Dynamic local thresholding of spectral water indices. . . . . . . . .. ..
Stepwise method of surface water detection for reservoirs . . . . . . . ..
3.3.1 ProsserCreekReservoir . . . . . . ... ... ... ... .....
3.3.2 Application of the dynamic thresholding method for water detec-
ton . . ... e
Variability of NDWI and MNDWI for noisyimages . . . . . . ... .. ..
Reconstruction of surface water area from noisyimages . . . . . . . . ..
Validation of the surface water detection method. . . . . . . . .. . ...
3.6.1 Model construction using cloud-free satellite images . . . . . . . .

13
14
15
16
19
20
23
24
25
26

29
30
31
33
33
36
36

39
40
40
43
44



CONTENTS

3.7 On the fusion of water masks estimated from multispectral and SAR sen-

3.7.1 Surface water detection SAR and speckle noise removal . . . . . . .
3.8 ConclusionsandDiscussion . . . . . .. ... ... ... ........

Probabilistic methods of surface water detection
4.1 Introduction . . . . . . . . . . .. e e e
4.2 Probabilistic graphicalmodels . . . . . . . ... ... o000,
4.3 Platenotation. . . . . . . . . ... e e e e
4.4 Discriminative vs. Generative methods . . . . . . . . ... ... ... ..
4.5 Probabilistic nature of the satellite observations . . . . . . ... ... ..
4.5.1 Sampling spectral reflectance values from multi-temporal Landsat
images forwaterand land pixels. . . . . . . .. ... .o
4.6 Probabilistic filling of missing pixels in surface water detection. . . . . . .
4.7 Application to the reservoir surface water area reconstruction . . . . . . .
4.8 Measuring performance of surface water detection with filling applied. . .
4.9 Analysis of residualsandoutliers . . . . . . .. ... ..o,
4.10 Difficult surface water detection examples . . . . . . . .. . ... .. ..
4.11 Conclusions and Discussion . . . . . . . . .. ... .. ... ..

Long-term surface water change detection

5.1 Introduction . . . . . . .. .. . ..
5.2 Long-term surface water change detection . . . . . . . .. ... ... ..
5.3 Topographic noise for inconsistent image collections. . . . . . . . .. ..
5.4 Conclusionsand Discussion . . . . . . . .. ... ... ... ...,

Earth’s surface water change for the last 30 years - Aqua Monitor

6.1 Introduction . . . . . . . ... .. L e

6.2 Method to estimate Earth’s long-term surface water changes . . . . . . . .

6.3 Earth’s surface water changes at 30m spatial resolution. . . . . . . .. ..

6.4 Surface water changeexamples. . . . . . . .. ... ... 0.,
6.4.1 Known and unknown (Myanmar vs North Korea) . . . . ... . ..
6.4.2 Luxury versus needs (Dubaivs Sinapore) . . .. ... .. ... ..
6.4.3 Nature versus Man-made (Ganges-Brahmaputra Delta vs Taji Najer

6.4.4 Disruptive versus gradual (Aral Lake vs Lake Mead) . . . . . . . ..
6.5 Near-shore coastal surface waterchanges. . . . . . . ... ... ... ..
6.6 Conslusionsand Discussion . . . . . . . . . . . ... .. .. ...,

Surface water map for Murray-Darling River Basin, Australia

7.1 Remote senisng and Volunteered Geographic Information (VGI) . . . . . .

7.2 Methods and studylocation. . . . . . . .. ... ... 0oL,
7.2.1 Study Site: Murray-Darling River Basin. . . . . . . .. ... .. ..
7.2.2 Input datasets used to extractwatermask . . . . . . . . ... ...
7.2.3 Derivation of hydrological variables: drainage network and HAND .
7.2.4 Method of water detection using Landsat8 . . . . . ... ... ..

57
61
63
66
67
67
69

71
72
74
78
78

81
82
82
83
83
87
87

87
87
87
88

91
92
93
94
94
96



ACRONYMS vii

7.2.5 Refining water detection using supervised classification based on

CARTand HAND. . . . . . . . . . . . i it i 99

7.2.6 Cloud-free Landsat 8 percentileimages . . . . . . . ... ... .. 99

7.2.7 River centerline estimation from Landsat 8 water mask . . . . . . . 103

7.3 Results . . . . . oL e e e e e e 104
7.3.1 Estimation of positional differences betweenrivers . . . . . . . . . 104

7.4 Positional differences between OpenStreetMap, Landsat, and SRTM . . . . 104
7.4.1 Goodness of fit between OpenStreetMap and Landsat water masks . 107

7.5 SupplementaryMaterials . . . . . . .. ... o oo L. 107
7.5.1 Gridsused duringanalysis. . . . . . .. ... ... .. ...... 107

7.5.2 Results asrasterand vectordatasets . . . . . . . ... ... .... 109

7.6 Website . . . . . . . .. e e e 109
7.7 Conclusionsand Discussion . . . . . . ... ... ... ... ...... 110

8 Conclusions, Discussion and Recommendations 111
8.1 Outlook. . . . . . . . e e e e 113
8.2 Recommendations . . . . . . . . . . . . . .. ... e 113
Acknowledgements 115
A Surface water detection source code 117
A.1 Local Otsu thresholding using Canny edge filter . . . . . . . . ... ... 118
A.2 Perona-Malik filter: anisotropic diffusion. . . . . . . ... .. ... ... 120

List of Publications 121






ACRONYMS

AWEI Automated Water Extraction Index. 12, 30
BN Bayesian Network. 52, 53, 55, 57

CART Classification And Regression Tree. 5, 96, 99, 102
CPD Conditional Probability Distribution. 52, 57

CRF Conditional Random Field. 52
DAG Directed Acyclic Graph. 52

EM Expectation Minimization. 53

EO Earth Observation. 1, 8, 23, 24, 26, 115, 116

HAND Height above the nearest drainage. 3, 5, 22, 23, 37, 78, 82, 95-97, 99, 102-104,
107,111,116

HSV Hue Saturation Value. 12

InSAR Interferometric Synthetic Aperture Radar. 24

IPCC Intergovernmental Panel on Climate Change. 1
KDE Kernel Density Estimation. 58
LOWESS Locally Weighted Scatterplot Smoothing. 45, 46

MCMC Markov Chain Monte Carlo. 53

MNDWI Modified Normalized Difference Water Index. 12, 19, 20, 30, 36, 40, 41, 82, 95,
98, 99, 101-103

MRF Markov Random Field. 52

NDSI Normalized Difference Snow Index. 19, 20

NDVI Normalized Difference Vegetation Index. 76, 95, 99

ix



X ACRONYMS

NDWI Normalized Difference Water Index. 11-13, 20, 22, 30, 34, 35,3941, 48, 69, 72-76,
95,102, 103

NED National Elevation Dataset. 21, 22, 56
OSM OpenStreetMap. 3, 5, 24-26, 88, 91, 92, 96, 107, 110

PDF Probability Distribution Functions. 52, 63

PGM Probabilistic Graphical Model. 52, 53

SAR Synthetic Aperture Radar. 3, 4, 9, 15, 24, 25, 30, 36, 47, 48, 63, 68, 69, 113
SDGs Sustainable Development Goals. 1

SRTM Shuttle Radar Topography Mission. 3, 5, 56, 78, 91, 92, 94-97, 102, 105-107, 110,
111,114

VGI Volunteered Geographic Information. 7, 92



SUMMARY

HIS thesis studies automated methods of surface water detection from satellite im-
T agery. Multiple existing methods are explored, discussed, and some new algorithms
are introduced to allow very accurate detection of surface water and surface water changes.

The methods range in applicability from the local level to global, and from detecting
high-frequency changes to low-frequency changes. Their trade-offs regarding the accu-
racy and applicability of the surface water detection methods are also discussed.

Several applications are presented to test the introduced methods. One of the stud-
ies focuses on a long-term global surface water change detection over the past 30 years
at 30m resolution. The other application looks at the generation of a permanent surface
water mask for Murray-Darling River Basin in Australia. Additionally, an in-depth vali-
dation for a small reservoir in California, USA is presented, to demonstrate performance
of the new methods.

The algorithms discussed in the thesis were applied and tested to process both pas-
sive optical multispectral and active Synthetic Aperture Radar (SAR) satellite data. Com-
bining data from all freely available satellite sensors requires harmonizations of the satel-
lite data, but also, significant computing resources. In this thesis, Google Earth Engine
parallel processing platform was used to perform most of the experiments.

We will see, that when studying surface water dynamics, the best results can be achieved
by combining discriminative and generative methods of surface water detection. This
way, the surface water can also be detected from satellite images where surface water is
only partially visible.

In the thesis, top-of-atmosphere reflectance images are used to detect surface water.
The atmospheric correction is not required when dynamic local thresholding methods
are used to detect surface water.






INTRODUCTION

CCURATE, efficient and high-resolution methods of surface water detection are needed

for a better water management. Datasets on surface water extent and dynamics are
crucial for a better understanding of natural and human-made processes, and as input
data for hydrological and hydraulic models. In spite of great progress in the harmoniza-
tion of freely available satellite data, efficient processing of higher level products remains
inherently non-automatable.

Monitoring of surface water extent and dynamics is essential for a better understand-
ing of natural processes, anthropogenic factors as well as climate change. This is becom-
ing more important because water resources are under pressure from economic sectors
such as industry, agriculture, energy, tourism, as well as domestic use. Furthermore,
water availability is decreasing, driving more regions into water insecurity FAO [2006],
McDonald et al. [2011].

Recent international agendas on climate change and environment demand objective
information on planetary land and water surface conditions and changes, to be able to
study the drivers behind them. The Sustainable Development Goals (SDGs) UN [2015]
define seventeen challenges to be achieved by 2030, and almost half of them will directly
or indirectly require up to date and high-resolution information on surface water. To
name some, sustainable management for water and its use for food production, the role
of the surface water for the spreading of deceases, and climate change.

The Intergovernmental Panel on Climate Change (IPCC) in the Technical Paper VI on
Climate Change and Water defines knowledge gaps in observations and our understand-
ing of the behavior of water. Moreover, with the variety and volumes of Earth Observa-
tion (EO) data available today, these gaps frequently mean the lack of proper algorithms
to process existing data. The raw data need to be processed properly to derive higher
level variables easily interpretable by a broader, frequently non-academic, community.

1.1. RESEARCH QUESTIONS

Many attempts have been made during the last decade to establish global scale surface
water coverage and occurrence NASA/NGA [2003], Lehner and D&ll [2004], Feng et al.
[2016], Yamazaki et al. [2015], but most of the studies so far were limited in spatial or
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temporal resolution, and accuracy. Many questions remain open, and the most impor-
tant one is the lack of our understanding of how surface water has been changing during
the last decades.

Accurate and fully automated detection of surface water from multi-temporal satel-
lite data at high spatial resolution is hard. For efficient and accurate surface water detec-
tion from EO data, we need to address issues of global objectivity, accuracy, applicability,
as well as provide access for a broad range of users. In the present study, this will be done
by answering the following questions:

¢ What are the limits of automated surface water detection methods?

* How to deal with typical issues such as accounting for clouds, hill shadows, snow,
ice and mixed urban and rural areas?

* How to extract the maximum information from very noisy images, where sur-
face water can be only partially visible?

* How to upscale methods to the global scale?

* How to streamline the use of satellite images from different passive optical and
active radar satellite sensors and what observation frequency can be achieved
in this case?

1.2. CONTRIBUTIONS
The contributions can be summarized as follows:

* A new method (M;) for accurate surface water detection has been developed,
based on local thresholding of spectral indices computed from multispectral satel-
lite datasets. The method is demonstrated to perform better than existing methods
to discriminate surface water from noisy satellite images. The limitations and the
prospects are discussed.

e A probabilistic method (M) is developed to reconstruct surface water from satel-
lite images where surface water is only partially observed (due to limited swath, at-
mospheric noise or snow/ice cover). It is shown that the new method can be used
to provide accurate estimates of reservoir surface water area from noisy satellite
images.

A statistical method (M3) was developed to estimate global-scale surface water
changes from medium-resolution multitemporal and multispectral satellite data.
The method was applied to process more than a petabyte of Landsat data to iden-
tify surface water changes globally.

* An in-depth small reservoir study was conducted, aiming at the reconstruction of
surface water area dynamics from satellite data. Here, we make use of the above
two methods (M; and M>) to process satellite data from multiple passive mul-
tispectral optical and radar sensors (Landsat, ASTER, Sentinel-2 and Sentinel-1).
The resulting water masks were validated against in-situ water level observations.
A very high correlation was obtained for both cloud-free and noisy images.



1.3. OUTLINE 3

 To address global water challenges, the first planetary-scale analysis of three decades

of satellite images has been performed, quantifying Earth’s surface water changes
at the 30m spatial resolution and occurring during the last three decades. Two ar-
eas were identified that contribute most to surface water gains (Tibetan Plateau)
and losses (Aral Sea). The results of the study are made freely available in the form
of a website (http://aqua-monitor.deltares.nl) with the help of the parallel
satellite data processing platform Google Earth Engine. The study was performed
by applying method M.

* Additionally, the same study analyzes surface water changes along the 40km coastal
buffer zone globally. The Chinese coast was identified as the largest contributor
to coastal changes, when aggregated by country, mainly due to land-reclamation
projects.

* Permanent surface water mask for the Murray-Darling basin has been estimated
using the method M;, Height above the nearest drainage (HAND), and supervised
classification for topographically difficult areas. The resulting surface water mask

has been made available for inspection in the form of a website (http://osm-water.

appspot.com). The water mask developed for Murray-Darling River Basin was
compared to the surface water vector dataset extracted from OpenStreetMap (OSM)
and a potential water mask derived from the 30m digital elevation model (Shuttle
Radar Topography Mission (SRTM)). The positional accuracy of the rivers is esti-
mated for three river datasets, and the results are discussed with regard to overall
surface water coverage and positional differences.

Eventhough most of the methods developed during this research were applied to
process multispectral satellite imagery, some of them are also applicable to process other
types of imagery, such as backscatter information generated by Synthetic Aperture Radar
(SAR).

The algorithms presented in this research were successfully applied to develop vari-
ous surface water datasets and software tools, allowing more accurate detection of sur-
face water and contributing to a better understanding of the Earth’s surface water extent
and dynamics.

A crucial aspect is also related to simplicity and reproducibility of the methods so
they can be easily extended to new datasets and will optimally use existing technical
infrastructure. In the present research, all methods are shared with the community with
an open-source license, to ensure they can be easily reused and extended.

1.3. OUTLINE

The thesis is organized as follows. Chapter 2 reviews the relevant literature and exist-
ing methods used to detect surface water from freely-available multispectral satellite
sensors. Additionally, it mentions Google Earth Engine - a parallel processing platform
used to perform most of the analysis used for this research. The results discussed in
the present thesis would be impossible to achieve without the adoption of this platform,
which revolutionized satellite data processing, enabling planetary scale analysis for re-
mote sensing researchers around the world.


http://aqua-monitor.deltares.nl
http://osm-water.appspot.com
http://osm-water.appspot.com
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Chapter number

Brief overview of surface Planetary-scale surface water Conclusions and

Introduction
water remote sensing :hangcs Recommendations

Surface water detection and Surface water mask for
dynamic local thresholding Murray-Darling, Australia

Probabilistic methods of
surface water detection

Long-term surface water
change detection

Figure 1.1: Thesis visual map

The next four chapters focus on the development of new methods for automated sur-
face water detection. Chapter 3 studies in detail various issues related to surface water
detection. Here, the method M, is introduced, based on the Canny edge detector and
Otsu thresholding to allow very accurate detection of surface water.

We will see how surface water can be detected very accurately even for very noisy
images. The method has ben validated using in-situ data available for Prosser Creek
Reservoir - a reservoir in California, USA. The method was also extended to process im-
ages from multiple passive sensor multispectral satellite missions: Landsat 4, Landsat 5,
Landsat 7, Landsat 8, ASTER, and Sentinel-2. It was also applied to process SAR imagery
from Sentinel-1. We also constructed a simple regression model using the highest qual-
ity cloud-free images. The model was used to evaluate performance of the method in
Chapter 4.

Chapter 4 focuses on the use of probabilistic methods to further improve surface
water area estimates (M5). Here we will see how a surface water mask can be recon-
structed even with a small number of noise-free pixels available. This is achieved by a
two-step approach, where during the first step, a high-resolution bivariate probability
density function is constructed from cloud-free images. Then, a method was developed
to infer the final surface water mask from the partially-observed water masks. We also
validate the results by comparing it to the model constructed in the previous Chapter, to
demonstrate that the method performance is improved.

In Chapter 5, a simple, yet powerful statistical method (Ms3) will be introduced to
analyze long-term surface water changes from a long series of images. We will see how
simple surface reflectance percentile composite images can be combined with a linear
regression to detect surface water changes and how these surface water changes can be
distinguished from other processes, such as cloud cover or snow. The main advantage of
this approach is that it allows to significantly speed-up parallel processing while preserv-
ing information about surface water changes. The method was then applied to process
about 1.5 petabytes of images from medium resolution (<30m) Landsat sensors as shown
in Chapter 6. The results of the study are also summarized in the form of surface water
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changes aggregated per river basin globally, as well as along the coastline, aggregated per
country.

Chapter 7 demonstrates the use of the methods developed in Chapter 3 to derive
permanent surface water mask for 2013-2015 the for Murray-Darling River Basin in Aus-
tralia. Three surface water masks will be compared, derived from three alternative sources:
30m multispectral satellite imagery (Landsat 8), OSM and SRTM. Here, a stepwise ap-
proach to detect permanent surface water from percentile composite images will be ap-
plied to analyze images measured by Landsat 8 mission. We will also see how the HAND
dataset can be used as a topographic mask to detect mountainous areas where commis-
sion error of surface water detection is present due to shadowing. The resulting water
mask is then refined using a supervised classification method based on Classification
And Regression Tree (CART), to perform the final clean-up of the dataset.

Chapter 8 summarizes the main findings, existing challenges and trends related to
methods of surface water detection as well as to the Earth Observation (EO) in general.






BRIEF OVERVIEW OF REMOTE
SENSING METHODS AND DATASETS

This chapter provides an overview of existing remote sensing methods used to process mul-
tispectral satellite imagery in general, and to detect surface water in particular. Their
main challenges, limitations, and trends will be addressed. Additionally, a short overview
of the freely available medium resolution multi-spectral satellite datasets, used in the cur-
rent work, is provided. A short discussion addresses the main challenges faced when ana-
lyzing satellite imagery at a global scale and high spatiotemporal resolution. To conclude,
a short overview of higher level water datasets, as well as alternative water datasets, such
as Volunteered Geographic Information (VGI), will be given.

Keywords: literature overview, datasets, multi-spectral satellite imagery, spectral water
indices, outline
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2.1. INTRODUCTION
ATER is one of the key sources of life on Earth, and is constantly changing. Waves
batter the coast causing erosion, river banks are transformed under the flow of
water, glaciers melt, resulting in new lakes and wetlands, reservoirs and harbors are con-
structed, and much more. Accurate estimation of these surface water changes is crucial
for better understanding and management of the natural and anthropogenic processes
causing them.

For decades, satellites were used to accumulate large amounts of information, re-
sulting in multi-petabyte archives of images collected. However, only during the last
decade, due to recent developments in cloud computing, we have started to transform
these massive amounts of data into valuable knowledge. The main limitations that pre-
vented analysis of these large archives of satellite data were their commercial nature. A
major change that has enabled exploration of surface water at high spatial and temporal
resolution was the opening of access to the Landsat mission data by NASA in 2008. More-
over, it took five more years to ensure that the first global-scale research results would be
produced where these datasets could be explored to their full extent Hansen et al. [2013].

The number of satellites orbiting Earth is constantly increasing, with their techni-
cal characteristics constantly improving, resulting in better spatial, temporal, spectral,
and radiometric resolutions. In the last few years, the number of EO satellites launched
into the Earth’s orbit, and the number of images observed has increased exponentially,
mainly due to the reduction of satellite sizes and the costs required for their delivery
to orbit. This rise of the satellite industry presents new scientific challenges, demand-
ing more efficient and robust methods to process massive amounts of data. With the
technological and methodological developments, the focus of the surface water analysis
shifts towards planetary-scale analysis, enabling development of a more complete un-
derstanding of the Earth’s natural and anthropogenic processes. Until recently Hansen
etal. [2013], Pekel et al. [2016], such planetary scale monitoring and long-term estimates
of land use changes with high spatial resolution were not feasible.

2.2. CLOUD COMPUTING - A NEW ERA FOR SATELLITE IMAGE PROCESSING

The massive growth in volumes of satellite data has resulted in alarge demand in storage,
computation and smart analytics to enable the analysis of planetary-scale data. Until
recently, such analyses were performed by highly specialized scientists and engineers,
and on a case-by-case basis. New cloud platforms for large satellite data analysis, such as
Google Earth Engine Gorelick [2012], are rapidly removing barriers from using planetary-
scale data.

The initiative to provide free access to supercomputer power for non-profit organiza-
tions and researchers was mentioned in 2009 for the first time', followed by the official
release of the platform in 20102, This platform provides access to a plethora of satel-
lite information in three ways: (1) storage of satellite data in the cloud; (2) provision
of computational resources; and (3) availability of analytical tools to process data into a
clear end-user product. Since then, it has resulted in numerous academic achievements,
which have helped to analyze and better understand Earth’s surface changes that have

Ihttp://blog.google.org/2009/12/seeing-forest-through-cloud.html
2http://blog.google.org/2010/12/introducing-google-earth-engine.html
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Figure 2.1: The number of Landsat and Sentinel scenes measured during the last four decades and used in the
analysis

happened in the last few decades Hansen et al. [2013], Pekel et al. [2016].

The datasets used in the current research account for more than 11 million freely
available medium resolution images observed by LANDSAT, ASTER, Sentinel-1, and Sentinel-
2 missions from the National Aeronautics and Space Administration (NASA) and the Eu-
ropean Space Agency (ESA) during the last four decades. For several examples, images
from the HYPERION hyperspectral sensor from the EO-1 mission will be used. There
are only about 86,000 HYPERION images available globally, which have been acquired
in the last fifteen years, but their spectral resolution is more than 20 times higher than
those of other sensors. The resolution of the sensors varies from 10-30m for optical and
SAR bands, and 90-120m for thermal bands. Figure 2.1 shows the total number of mul-
tispectral and SAR scenes acquired by these sensors during the past decades. The total
size of these datasets as of 2017 is almost two petabytes large. Analysis of a dataset this
large, requires the use of large-scale hardware and software infrastructure capable of
processing it.

Using a calculation similar to Wagner and Fritsch [2015], it would take two years to
download this dataset on a 100Mbit/s network, and then another 126 years to process it
from raw formats to Level 1 products on a single machine assuming 4Mbit/s processing
speed.

2.3. MULTISPECTRAL SATELLITE SENSORS AND FREELY AVAILABLE DATA

Multispectral satellite sensors and freely available data in raw form satellite images re-
quire the use of specialized algorithms, frequently adjusted to detect specific features,
quantify land use changes, or identify anomalies. The main reasons why satellite data
processing is hard, is that satellite images represent a complex mix of natural and human-
made processes, which are frequently very dynamic and interfere with each other. The
resulting observations are often limited by technical limitations of the sensors and data
processing pipelines. The presence of clouds, aerosols, and complex topographic condi-
tions, as well as technical sensor limitations, result in multiple types of noise or gaps in
the measurements, which need to be addressed before any valuable information can be
extracted from the satellite data.
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Figure 2.2: Spectral bands of the Landsat, ASTER, and Sentinel 2 satellite sensors. Atmospheric transmittance
is estimated using the MODTRAN4 model as discussed in Verhoef and Bach [2003]

The present research focuses mainly on the use of multispectral satellite imagery.
This includes 30m multispectral imagery measured using a Thematic Mapper (TM) sen-
sor, used for Landsat 4 and Landsat 5 missions, an Enhanced Thematic Mapper Plus
(ETM+) sensor, used for Landsat 7 mission, and an Operational Land Imager (OLI) and
Thermal Infrared Sensor (TIRS) sensors on board of Landsat 8. The spatial resolution
of most of these sensors is 30m, except for 15m panchromatic and 90-120m for thermal
sensors. For some parts of the present research, the data measured by a new 10m resolu-
tion satellite from ESA, Sentinel 2A, launched in 2015, as well as 15m resolution imagery
from the ASTER mission were used. All of the sensors mentioned above are capable of
measuring light in multiple spectral bands, comprising visible and infrared parts of the
electromagnetic spectrum as shown in Figure 2.2.

The processing of multispectral satellite imagery usually involves many steps, in-
cluding geometric and radiometric calibration. As for the Landsat and ASTER missions,
the raw images show uncalibrated radiance values for every spectral band, stored as
at-sensor measured digital numbers (DN,), which need to be converted into top-of-
atmosphere (TOA) spectral radiances (L;) and reflectances (p;). See Chander et al.
[2009] for details on the required steps. Generating spectral radiance values uses a linear
formula:

Ly=ayxQr+pPa 2.1
where
L, - spectral radiance at the sensor’s aperture [W/(m? x sr x um]
a) - band-specific rescaling gain factor [W/(m? x sr x um/DN]

B, - band-specific rescaling bias factor [W/(m? x sr x um/ DN}
Q) - quantized calibrated pixel value [DN]

For multi-temporal analysis, TOA reflectance needs to be calculated to compensate
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for image-to-image solar irradiance differences. These calculations can be done using
the equation:

7 x Ly x d?

=—°" 2.2
ESUN) x cos0; @2)

()

where

P2 - spectral reflectance, indicating amount of solar energy reflected from the Earth’s
surface of wavelength 1

d - Earth-Sun distance in astronomical units [AU]

ESUN) - mean spectral solar irradiance [W/ (m? x um] of wavelength A

0, - solar zenith angle [degrees]

A recent Global Monitoring for Environment and Security (GMES) initiative from the
European Commission (EC) and ESA resulted in the launch of two Sentinel-2 satellites
Drusch et al. [2012]. The data products provided by these satellites already include steps
shown by equations (2.1) and (2.2) and represent TOA reflectances for 13 spectral bands.

For higher-level data products, additional steps may be performed, such as atmo-
spheric corrections, usually required for a more accurate spectral analysis. Atmospheric
correction allows for compensating effects caused by aerosols, for more information see
Gao et al. [2006]. Additional steps may involve topographic correction, where local ef-
fects of relief are corrected for as well, such as in Tan et al. [2013].

In this study, if not otherwise specified, most of the analysis is based on the top-of-
atmosphere (TOA) spectral reflectance values. As will be seen later, this provides a good
compromise for water detection applications and allows the use of methods to combine
products generated by different satellite missions.

2.4. METHODS OF SURFACE WATER DETECTION FROM MULTISPECTRAL IMAGES

Luckily, spectral signatures of water in most clear-sky observations are very distinctive
and can easily be detected even when using only TOA data products, which are not cor-
rected for atmospheric effects.

However, limited spectral, spatial and radiometric resolution of the sensor and many
other factors may significantly influence the accuracy of the detected surface water Ji
et al. [2009].

Existing methods for surface water detection from multispectral satellite data use
the fact that water significantly absorbs most radiation at near-infrared wavelengths and
beyond. This fact makes it easy to detect clear water employing spectral indices, such as
the Normalized Difference Water Index (NDWI), McFeeters [1996]:

Pgreen — Pnir

NDWI = (2.3)

Pgreent Pnir
where pgreen and pyir correspond to the spectral reflectance of green and near-
infrared bands. By design, the index values (similar to normalized difference vegetation
index (Rouse Jr et al. [1974]) vary between -1 and 1, with water appearing mostly when
the index value is greater than zero.
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This index should not be confused with another, also called NDWI and introduced
by Gao [1996] to detect water-stressed vegetation. The Modified Normalized Difference
Water Index (MNDWI) Xu [2006], appears to be more sensitive, due to the use of the
shortwave infrared band instead of the near-infrared in NDWI. The authors claim that
the index results in better surface water detection in urban areas when compared to the
use of the near-infrared band.

Pgreen — Pswirl

MNDWI = (2.4)

Pgreen + Pswirl

While NDWI and MNDWI are among the most widely used spectral indices for wa-
ter detection, many other efforts have been made trying to develop a new spectral index
for surface water detection, based on a simple linear band combination Automated Wa-
ter Extraction Index (AWEI) Feyisa et al. [2014], Wlyq;5 Fisher et al. [2016] and based on
Hue Saturation Value (HSV) transformation Pekel et al. [2014]. An excellent overview
and comparison of performance for some of these indices for Australia can be found in
Fisher et al. [2016]. Even though the WI,;5 were reported to perform better than the
classical NDWI index, the general conclusion of the authors was that each index was
highly dependent on the composition of the validation pixels, and no index performed
best across all water and non-water pixel types. The same paper mentions that very few
studies were performed that compare the strengths and weaknesses of different spectral
water indices.

The detection of surface water from cloud-free images is simple, but doing this for
noisy images is hard. Most of existing methods, when applied to real-world satellite im-
agery, require manual tuning and, in general, need to be significantly adjusted to be used
for planetary scale analysis. The task of surface water detection becomes much more
challenging in the presence of cloud, haze, snow or ice.

2.5. WHAT ARE THE MAIN CHALLENGES OF SURFACE WATER DETECTION?

While water detection from cloud-free and ice-free multispectral images appears to be
trivial, it remains a very challenging task when working with real-world images. In this
case, clouds, snow, and ice may frequently be misinterpreted as water. The land surface
may be covered by snow for a significant portion of the year, especially in temperate and
cold climate zones. Additionally, errors of commission (false positive detection of water)
can be observed in areas with shadows due to topographic conditions or the presence of
clouds. Recently, Zhu and Woodcock [2014, 2012] introduced a set of methods for clouds
and cloud shadow detection which are currently employed by NASA/USGS to process all
Landsat images. To detect cloud shadows, these methods make use of information on
satellite sensor view angle and solar zenith/azimuth and are also used to produce Sur-
face Reflectance Landsat products®. These parameters, combined with elevation data,
can also be used to detect hill shadows Tan et al. [2013]. An alternative approach to
exclude clouds and shadows is the use of average reflectance composites instead of in-
stantaneous images Potapov et al. [2012], Hansen et al. [2013]. However, this averag-
ing usually damages spectral signatures of the surfaces, limiting the application of some
methods, such as spectral unmixing Keshava [2003].

3http://landsat.usgs.gov
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Figure 2.3: Hyperion image mosaic for 2002-2015, showing the variability of land cover, seasonal
vegetation changes and hill shadow processes over Felt Lake, USA, CA. Green and yellow edges in-
dicate values of NDWI = 0 computed using two band combinations: Ap1gp54 = [528nm,895nm]
(green) and Appy psp = [589nm,854nm] (yellow). Source: https://code.earthengine.google.com/
23048e43a9cf677d0b183224ecdldac8

2.5.1. VARIABILITY OF WATER SPECTRAL SIGNATURES DUE TO NATURAL AND ANTHRO-
POGENIC PROCESSES

One of the reasons why water classification from multispectral imagery is a very chal-
lenging task is that most of the observed surface water pixels are not noise-free. Mostly, it
is a mixture of spectral signatures generated by a combination of different materials ob-
served at a given time and location. Additional factors, resulting in spectral mixtures, are
the physical limitation of the satellite sensors, such as spectral and spatiotemporal res-
olution, but also, systematic errors of the data processing pipeline. Many of the factors
influencing spectral signatures of observed water bodies are caused by non-stationary
events, and are impossible to predict very accurately. These factors include movement
of clouds and aerosols in general, snow and ice cover changes, and suspended or diluted
substances present in water.

Figure 2.3 shows a few examples of multispectral satellite images, in this case, mea-
sured by hyperspectral sensor Hyperion. For this specific area, about 50% of the images
are covered or partially covered by clouds, haze or fog. The green and yellow edges show
where two variations of the NDWI index are equal to zero. It can be seen that the default
threshold fails to detect the water boundary correctly in most examples. This happens
mainly due to noise from clouds, shadows, and mixed pixels present in the images. Addi-
tionally, significant differences can be observed between two indices constructed using
slightly different band combinations. A more detailed analysis of the reasons why this
happens and different automated methods to overcome this problem will be discussed
in Chapter 3.

Figure 2.4 shows the actual variability of spectral curves observed for this location,
converted from DN numbers to radiance, and subsequently, to reflectance values. Mul-
tiple interconnected events result in increasing complexity of recovering the actual land
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Spectral Re flectance, |

Figure 2.4: Hyperion spectral signatures measured at-sensor for the images on 2.3 sampled as a mean around
waterbody center with a buffer of r = 90m radius. Most of the spectral signatures with the values p-400,m <
0.2 belong to water.

use classes observed at a given location and time.

Automatic and accurate reconstruction of surface water from very noisy images is,
in general, a tough task, and there is no method that works perfectly for all land use
types and atmospheric conditions. Most of the processes that occur in the same area
and are observed by the satellite sensor are very random, with unknown distribution
and are very hard to model using existing methods. However, some recent efforts in
applying more advanced statistical learning methods, such as Bayesian Networks Mello
et al. [2013], Conditional Random Fields Hoberg et al. [2015], Markov Random Fields
Elmi et al. [2016], and Deep Learning Chen et al. [2014], look very promising.

2.5.2. SPECTRAL AND RADIOMETRIC RESOLUTIONS

When working with multi-mission satellite data, the radiometric resolution is another
factor that may influence surface water detection. Radiometric resolution refers to the
sensitivity of the sensor to incoming radiation, which is characterized by the minimum
and maximum radiance values as well as the number of bits used to store measured
values. Usually, this value varies between 8 and 16 bits. For Landsat TM, ETM+, and
ASTER sensors, the effective radiometric resolution is 8-bit. For Landsat 8 and Sentinel-
2, it was improved to 12 bit (stored as 16 bit). For most of the applications, the effect of
these subtle changes in radiance is neglected. However, the effect of 8-bit radiometric
resolution may influence thresholds used to detect surface water, especially as water is
mostly represented in low radiance values.
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Figure 2.5: Examples of images with different spatial resolutions, from six different multispectral sensors,
Prosser Creek Reservoir, Nevada County, California, USA. Source: https://code.earthengine.google.
com/93e8cd71bbc2e58584f04645e8690279

2.5.3. SPATIAL AND TEMPORAL RESOLUTION

For the sensors studied in the present research, the spatial resolution of the sensors
varies between 10m to 30m for optical and SAR bands. For thermal bands, which were
used mainly for cloud and snow masking, spatial resolution varies in the range of 60m-
120m.

Figure 2.5 shows a few examples of cloud-free satellite images over the same area.
As can be seen, while medium (30m) to high-resolution (3m) images can be used to re-
solve most of the reservoir boundary variations, it may be a more challenging task to
accurately estimate surface area using images with coarser resolution. However, recent
developments of more advanced super-resolution image processing techniques based
on convolutional neural networks can be applied to reconstruct the actual shape of the
water boundary using even very coarse and damaged representations Ledig et al. [2016],
Shi et al. [2016], Johnson et al. [2016]. For remote sensing applications, a recent overview
of different methods based on the super-resolution paradigm can be found in Garzelli
[2016]. The use of these methods goes beyond the scope of this thesis.

A temporal resolution mismatch between observations and the actual changes oc-
curring on the land surface may significantly influence the applicability of satellite data
for multi-temporal analysis. However, for some specific types of surface water changes,
generative methods can be used to predict the actual state of waterbodies, by combin-
ing data from historical changes. One of these methods will be discussed in Chapter 4,
where a new generative algorithm will be developed to improve the estimation of surface
water extent. This method is then applied to fill in water pixels that are missing, either
due to the presence of noise, such as clouds or snow or due to the limited swath width of
the satellite.
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2.5.4. CLOUDS AND CLOUD SHADOWS

One of the recent advancements in single-image cloud and projected cloud shadow de-
tection is FMask?*, Zhu and Woodcock [2012], Zhu et al. [2015]. The method was so suc-
cessful that it is currently used to reprocess all Landsat images acquired. To fully elimi-
nate the influence of clouds and cloud shadows, more advanced methods are required,
focusing on (a) detection of pixels partially or completely damaged by atmospheric ar-
tifacts (b) filling of missing pixels using methods of statistical inference. The FMask al-
gorithm also provides surface water as a side product. However, the accuracy of the
resulting water mask can be very inaccurate, especially, when dealing with mixed pixels,
where images are only partially covered by cloud cover, as shown in Figure 2.8.

Detection and correction of effects caused by clouds and aerosols are one of the most
studied topics of optical remote sensing. Clouds, haze, fog, and other substances cause
absorption and scattering of the solar electromagnetic flux on its way to the Earth sur-
face, and then on the way back to the satellite sensor. Many methods exist that provide
atmospheric radiometric correction. The simplest approaches are the easiest to imple-
ment, such as dark-object subtraction (DOS) Chavez [1996], which is based on searching
for the darkest object in the image and subtracting it from the radiances observed at-
sensor. The drawback of this correction is that it may generate unrealistic results when
the darkest pixels do not represent an actual dark object. More advanced methods in-
volve simulation of the path radiances, using auxiliary data, such as information about
aerosols Second Simulation of a Satellite Signal in the Solar Spectrum (6S) Vermote et al.
[1997], Zhang et al. [2012] or MODerate resolution atmospheric TRANsmission (MOD-
TRAN) Berk et al. [1987].

Several satellite missions, such as Landsat, MODIS, and PROBA-V, already provide
higher-level surface reflectance (SR) products, where images are corrected for atmo-
spheric effects. Additionally, some of the data providers include a quality assessment
(QA) band, which indicates if the pixel is covered by clouds. However, the use of at-
mospherically corrected images from different satellite missions may result in a mis-
match between images, even though the resulting images look more appealing and bet-
ter match the ideal spectral signatures of different land cover types. At the time of the
writing of this thesis, the official NASA/USGS Landsat SR products were still provisional.
The documentation also mentions that the efficacy of SR correction is likely to be re-
duced in areas where atmospheric correction is affected by adverse conditions®:

(a) SR is not run for a scene with a solar zenith angle greater than 76° (b) SR quality
reduces for data acquired over high latitudes (> 65°) (¢) The panchromatic band is not
processed to SR (d) Hyper-arid or snow-covered regions (e) Low sun angle conditions
(f) Coastal regions where land area is small when compared to adjacent surface water
(g) Areas with extensive cloud contamination

Furthermore, there are issues with artifacts in the data over certain geographic areas,
specifically inland water bodies, areas of high relief, and areas with high aerosol abun-
dance.

The above issues with SR Landsat products, the inconsistency between different SR

4FMask algorithm source code: https://github.com/prs021/fmask
5Google Earth Engine Landsat 5 SR Dataset: https://code.earthengine.google.com/dataset/
LANDSAT/LT5_SR
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Figure 2.6: TOA reflectance (left) and surface reflectance (right) false-color composite image (swirl, nir, green).
Source: https://code.earthengine.google.com/e09497a0f8cd6d20b1ce3b29600b958d
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Figure 2.7: TOA reflectance (left) and surface reflectance (right) true-color composite image. Source: https:
//code.earthengine.google.com/e09497a0f8cd6d20b1ce3b29600b958d
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methods used for different satellite products (Sentinel-2, Landsat) as well as missing SR
products in some sensors (ASTER, EO-1) all resulted in this study mostly focusing on
the use of TOA reflectance images. The main reason for this is that most of the higher
level products use different atmospheric correction algorithms, which does not neces-
sarily lead to improved classification. Additionally, for single-image based classification
of surface water using adaptive methods, based on the maximum likelihood principle,
this type of correction may not be required Song et al. [2001].

Itis important to note that for water detection the use of TOA can even be preferable,
especially when working with multi-mission satellite products. The main reason for this
is that the auxiliary datasets used to generate SR products are usually of a coarser spatial
resolution, which may introduce additional error to the image, even though the resulting
spectral signal may be better.

In the next chapters we will see that, even without SR correction, the TOA images can
be used to detect surface water very accurately when automated methods of dynamic
thresholding are applied. Additionally, the use of SR products for surface water detection
may not be required when working with multi-spectral satellite imagery, because most
existing methods of surface water detection may use near-infrared and infrared bands,
which are less sensitive to aerosols. The effect of SR correction is much more evident
for the visible part of the spectrum (Figure 2.6) when compared to false-color composite
using infrared and near-infrared bands (Figure 2.7).

Eventhough existing methods of SR correction can significantly improve radiomet-
ric properties, most of the methods are based on a single image only (ACCA, Irish et al.
[2006]), which assumes that significant amounts of aerosols remain uncorrected, as well
as secondary effects, such as cloud shadows.
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Figure 2.8: (red), cloud shadows ( ) and surface water mask (blue) as detected by FMask algorithm.
Source: https://code.earthengine.google.com/b74dc921e6725cffd1b29bcabb6d3c43

Some of the recent enhancements of the methods include the use of multi-temporal
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methods to further improve the accuracy of cloud and cloud shadow detection methods,
TMask®, Zhu and Woodcock [2014]. The main idea of the method is to extend the multi-
step FMask algorithm with a new step, where a harmonic model is used to simulate the
most probable reflectance values. The method is based on the seasonal changes of the
reflectance values for pixels covered by vegetation. However, the authors mention that
the method may falsely identify ephemeral pixels as clouds or cloud shadows. In our
experience, the applicability of the method is limited in areas with significant surface
water dynamics. Additionally, the authors mention that the method performs extremely
slowly, making it nearly impossible to scale for global analysis where millions of satellite
images need to be processed. We will discuss in Chapter 4 how probabilistic models can
be used to identify clouds and cloud shadows as an alternative to this approach.

A comprehensive study on the cloud cover variability has been performed recently by
Wilson and Jetz [2016]”. Even though the study focuses on a 1km spatial resolution only,
it provides detailed intra- and inter-annual analysis of cloud cover frequency. These pa-
rameters can be crucial when developing data-driven models for cloud mask and cloud
shadow detection. However, methods of high-resolution cloud and cloud shadow de-
tection are still being developed, and no universal method yet exists that can provide an
automated way to detect clouds and cloud shadows at high spatial resolution.

2.5.5. SNOW AND ICE

Snow and ice can cover a significant portion of waterbodies in temperate and cold cli-
mates and need to be detected accurately to prevent misinterpretation of detected sur-
face water. In general, snow/ice can be easily detected. First, by using the thermal band,
because most waterbodies freeze at zero degree Celsius under normal conditions. In ad-
dition, methods of snow and cloud detection have been studied for a long time using a
Normalized Difference Snow Index (NDSI), Valovcin [1976], Hall et al. [1995], defined as:

Pgreen — Pswir

NDSI= ——— (2.5)
Pgreen  Pswir

where swir and green bands correspond to wavelengths of Ag een = 660nm, Asyir = 1600nm.

It must be noted that the MDNWI spectral index in 7.2 exactly repeats the definition of
the NDSI index. This fact makes it more difficult to discriminate water from snow when
using the MNDWI index. In general, a good separation still can be achieved by using
near-infrared as well, which is less sensitive to snow/ice content.

6TMask algorithm source code: https://github.com/prs021/tmask-algorithm
“http://www.earthenv.org/cloud
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Figure 2.9: An example of a Landsat 5 image from December 17, 2000 TOA composite image (left: swirl, nir,
green) demonstrating how the NDSI / MNDWI and NDWI spectral index values vary over a snow-covered wa-
terbody. Source: https://code.earthengine.google.com/3b5de713c26202cad46e5ddfc5deb7c2

As can be seen in Figure 2.9, the NDWI spectral index provides a more reliable way
to discriminate between surface water and land pixels when snow and ice are present.
This significantly limits the applicability of the MNDWI spectral index, to only the mul-
tispectral images measured during warm seasons of the year, or to temporal composite
images where snow cover is eliminated.

2.5.6. TOPOGRAPHIC EFFECTS
Topographic illumination effects, such as shadows from hills or buildings, may signif-
icantly disturb the signal measured by satellite sensors, causing false-positive surface
water detection. Additional illumination correction, known as topographic correction,
isrequired to compensate for these effects. llumination effects can be corrected by com-
pensating for solar radiance due to topographic effects, usually described by the Bidirec-
tional Reflectance Disturbance Function (BRDF), which defines how light is reflected at
the surface. In remote sensing, simplified formulas were introduced to compensate to-
pographic effects for Lambertian and non-Lambertian surfaces. Some of the best known
are the cosine model and C correction models Teillet et al. [1982]. Other models were de-
veloped later, such as the Minnaert, and SCS+C Smith et al. [1980], Teillet et al. [1982]. A
good overview of some of the methods can be found in Gao and Zhang [2009], Soenen
et al. [2005].

Most of the topographic correction models are based on the use of the relative solar
incidence angle, or illumination conditions, defined as:

IC = cos(0) cos(a) +sin(0) sin(a) cos(pg — P ) (2.6)

where 0 is the solar zenith angle, « is the topographic slope angle (0 = horizontal),
¢pg is the solar azimuth angle, and ¢, is the aspect angle of the topographic surface (0
=north). The resulting illumination variable IC varies between -1 and 1. The simplest
topographic correction methods assume that the surface is Lambertian (ideal surface,
diffusely reflects light in all directions, isotropic). The cosine model normalizes the re-
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flectance of any pixel based on the assumption that the total irradiance received at a
given location is directly proportional to the cosine of the incidence angle, the angle be-
tween the normal to the pixel surface and the solar zenith direction Teillet et al. [1982]:

2.7)

where L, is the corrected reflectance and L if the observed reflectance on the inclined
surface. The cosine model assumes that the surface is Lambertian and is independent of
wavelength. Further development of topographic correction algorithms resulted in the
introduction of more advanced, semi-empirical models, such as C correction Teillet et al.
[1982]. A variation of the empirical C model was then introduced by Tan et al. [2013],
which assumes non-Lambertian surfaces and is based on empirical rotation in the re-
flectance/illumination space. In topographically complex areas, the use of this model
can significantly reduce commission errors in surface water detection applications. To
demonstrate the effects of the topographic correction on surface water detection, an
empirical rotation model developed by Tan et al. [2013] is applied to process a Landsat
image focused on a reservoir located in a mountainous region (figures 2.10 and 2.11).

3 cos(@+C)
L,(A) = L(;L)IC+—C(M (2.8)

where A is a band-specific wavelength and the variable C = b/ a is an empirical coef-
ficient equal to the ratio of slope a and intercept b of a linear regression performed on
two images with different illumination conditions:

LA)=a()-IC+bQA) (2.9)

To demonstrate results of the application of this model, we have applied it to correct
satellite images in a hilly area around a small reservoir in California, USA, Lake Piru.

The results of the topographic correction can be seen in figure 2.10, and corrected
reflectance values for the near-infrared band are shown in figure 2.11. As we can see, the
topographic correction step significantly corrects original reflectance values. The cor-
rection was performed with the help of the 3m National Elevation Dataset (NED) Gesch
et al. [2002].
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Figure 2.10: An example of the topographic correction algorithm Tan et al. [2013] applied to a Landsat 8 false-
color composite image (swirl, nir, green) acquired on November 5, 2013. Original image (A), corrected image
(B), hill shade from NED (C), NDWI computed from the uncorrected image (D), and NDWI computed from
corrected reflectances (E). The dark circle indicates pixels used to produce the chart in figure 2.11. Source:
https://code.earthengine.google.com/90a3782edde7c0ef5ca895c800c1a688
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Figure 2.11: Original (left) and corrected (right) values for near-infrared band aggregated over the marked circle
areain 2.10

The above model provides better correction of topographic effect for multispectral
images (Tan et al. [2010]). However, the corrected image may still contain small arti-
facts caused by errors in the elevation model and more complex light interactions. It is
important to note that topographic correction may need to be avoided if a significant
variability of surface water mask between images takes place. In this case, topographic
correction may introduce local artifacts for the pixels where a mismatch occurs between
the digital elevation model and the surface water edge.

For surface water detection, an alternative method is to exclude pixels where the to-
pographic correction may be required. One way to perform this kind of masking is by
using the HAND topographic index Renno et al. [2008], Nobre et al. [2011], following
Westerhoff et al. [2013].

Even though the empirical illumination correction method described above was hardly
used for the research presented in this thesis, it can be very useful to generate a high-
frequency surface water dynamics for waterbodies locate in hilly areas in addition to the
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methods discussed in chapters 3, 4 and 5. As an alternative, in chapters 5 and 6 we will
use HAND to mask out errors in hilly areas for a global surface water change detection
study. Additionally, HAND is utilized in the Chapter 7 to identify hilly areas where an
additional unsupervised classification step is required to refine the surface water mask.

Even though topographic correction
algorithms may significantly improve the
overall image illumination for hilly ar-
eas, they may also introduce local arti-
facts when detecting surface water. The
main reason for this is that the digital
elevation models are mostly measured
at a specific time only, but the actual
waterbody boundary may vary a lot for
ephemeral water. To avoid these errors,
additional steps are required, for exam-
ple those described in Chapter 4, where
density-based methods will be used to in-
fer the actual water mask. Figure 2.12: Lake Piru, California, USA. &

In some cases, it is possible to avoid
the topographic correction step, for ex-
ample, when analyzing surface water changes using multi-temporal composite images,
based on a large number of observations. However this is only possible under the as-
sumption that the images are generated using image collections where illumination pa-
rameters (sun elevation and azimuth) are equally distributed. This will be discussed in
more detail in Chapter 5 and 6.

2.6. GLOBAL STATIC AND DYNAMIC SURFACE WATER DATASETS
Global-scale surface water and its dynamics have been very actively studied in the past
few years. This includes estimation of different static surface water masks, such as 250m
SWBD Farr et al. [2007] and MOD44W Carroll et al. [2009], as well as 30m GLCF Feng et al.
[2016] and 90m G3WBM Yamazaki et al. [2015]. An overview and comparison of some of
these datasets can be found in Lamarche et al. [2017]. Advances in big data technologies
and the massive growth of available satellite data have resulted in the appearance of
new high-resolution datasets, with a significant increase in both temporal (from static
to monthly) and spatial resolutions (30m) Pekel et al. [2016]. An overview of some of the
static and dynamic surface water products can be found in Yamazaki and Trigg [2016].

The upcoming SWOT mission (2021) promises to deliver twice every two weeks, mon-
itoring of 90% of global water bodies smaller than 100m. However, this will not answer
the question as to how surface water has changed during the last four decades. Moreover,
the accurate knowledge of historical surface water dynamics is very important to fill in
gaps in the trending hyper-resolution hydrological activities Wood et al. [2011], Bierkens
etal. [2015]. A good overview of the recent advances and trends related to satellite-based
EO for hydrology, in general, can be found in McCabe et al. [2017].

In addition to optical and radar surface water mapping, numerous studies were per-

8Source: Flickr, http: //www.flickr.com/photos/tomsaint/3281932913
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formed focusing on the reconstruction of surface water elevation changes using satellite
altimetry: HydroWeb ? Cretaux et al. [2005], DAHITI '° Schwatke et al. [2015], G-REALM
!1 Birkett et al. [2011].

Recently, multiple global studies were performed where a hybrid approach was im-
plemented to reconstruct reservoir and lake storage dynamics from satellite altimetry
combined with optical multispectral satellite data Khandelwal et al. [2017], GRanD Viewer
'2. An overview of some of the methods used to monitor large lakes and reservoirs as well
as some challenges can be found in Karpatne et al. [2016]. Integration of the data for both
water level and surface area changes can be used to generate high-resolution storage
changes Duan and Bastiaanssen [2013]. In many cases, having only surface water extent
changes should be sufficient for the reconstruction of the waterbody storage dynamics
Liebe et al. [2005], Annor et al. [2009]. However, for accurate estimates of water stor-
age dynamics, relations between volume and area need to be estimated very accurately.
Some of the recently developed methods include estimation of reservoir bathymetry
from SAR data, through Interferometric Synthetic Aperture Radar (InSAR) algorithms
Amitrano et al. [2014] or by estimating volume/area curves based on topographic sim-
ilarities Bemmelen et al. [2016]. Estimating area/volume curves is currently one of the
gaps to be filled using EO methods. This information is crucial for improving the local
relevance of global hydrological studies.

2.7. EARTH OBSERVATIONS AND VOLUNTEERED GEOGRAPHIC INFORMATION
Many global surface water mapping efforts rely on the information derived from EO
datasets, such as optical multispectral imagery, SAR imagery or radar altimetry. A com-
bination of remote sensing with existing GIS vector data sets that contain information on
water occurrence gets much less attention. GIS vector data sets are frequently measured
using high-resolution GPS devices or by manually digitizing aerial or satellite imagery. As
aresult, these datasets usually show much better precision and contain semantic infor-
mation, such as feature names, types, and other attributes. Their quality and complete-
ness are not uniform across the globe. One key global vector data set containing water
information is OSM Haklay [2010], initiated in 2004 and currently including more than 3
billion objects. From these, more than 8 million objects relate to water OpenStreetMap
[2016b]. Many environmental applications use OSM, including the extraction of paved
areas and surface water coverage for hydrological applications Schellekens et al. [2014].
The volunteered nature of OSM is the main factor making it less adopted by GIS pro-
fessionals Mooney et al. [2010] stressing the importance of the development of auto-
mated methods and tools to validate its quality in comparison to other datasets. A good
example of how OSM quality can be assessed can be found in Girres and Touya [2010],
showing how positional differences between linear and polygonal features can be ad-
dressed. Furthermore, the “increasing buffer” method, Goodchild and Hunter [1997]
can be used to estimate the quality of linear features. An excellent overview of papers
focusing on OSM quality can be found in Barron et al. [2014]. The latter also suggests us-

9HydroWeb: http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/

10DAHITL http://dahiti.dgfi.tum.de/en/

U G_REALM: https://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/
12GRanD Viewer: http://umnlcc.cs.umn. edu/GrandViewer/
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ing elements of ISO 19113:2002 13 such as completeness, error of commission/omission
or positional differences, to evaluate the OSM quality. Unfortunately, to our knowledge,
no academic literature exists focusing solely on the quality of water features present in
OSM and using global or nearly global remote sensing datasets.

In Chapter 7, we will compare surface water masks derived from OSM to see if it can
be used as a complementary dataset to generate global coverage, eventhough its local
coverage and quality may vary.

2.7.1. RESERVOIRS AND THEIR STORAGE DYNAMICS

Eventhough many of the global waterbodies may change over time, most of the existing
surface water vector maps are static, not providing any information on temporal spans
where these features are valid. However, many of these vector datasets are incomplete in
terms of spatial coverage. On the other hand, satellite data provide a way to extract spa-
tiotemporal variability of these waterbodies. However, semantics is missing in satellite-
based products that is available in vector topographic maps. Semantics includes many
attributes, such as the names of the waterbodies, the dam construction date, adminis-
trative information and much more. Some of these attributes, like construction time or
surface area variability, can be extracted from satellite data. Others, like names or tech-
nical characteristics, need to be collected manually. At present, a hybrid approach to
generate the best quality surface water maps seems to be the most promising, combin-
ing multi-temporal satellite information with existing vector maps, while also including
results from numerical models to estimate the variability of water-related parameters.

Alot of effort has been made in trying to map water bodies at a global scale. However,
existing databases are still scarce and fragmented, as can be seen in Figure 2.13'*. Here
we show the location of reservoirs collected by different databases, including 6859 reser-
voirs and lakes in GRaND Lehner et al. [2011], 4668 dams collected on Wikipedia15, more
than 150000 reservoir and dam locations available in OSM OpenStreetMap [2016b], and
33684 global dams collected by King’s College London Mulligan et al. [2009].

For many of these reservoirs, detailed data on storage changes are not available, yet
are required for an automated setup, generation and calibration, of surface and sub-
surface water models. In turn, these models are essential to optimize water manage-
ment and to answer challenges related to floods and water stress in the 215! century
Hirabayashi et al. [2013].

Most of the existing reservoir datasets are still incomplete, either regarding quality or
coverage, with the result that existing global hydrological models, such as eWaterCycle'®
and GloFAS'7, still make use of only coarse databases like GRaND, while missing many
small to medium size reservoirs Emerton et al. [2016]. A number of efforts were made
recently trying to develop methods to map and reconstruct storage of reservoirs from
optical multispectral and SAR imagery (Duan and Bastiaanssen [2013], Eilander et al.
[2014], Amitrano et al. [2014], Khandelwal et al. [2017]). However, applying these meth-

Bhttp://www.iso.org/iso/catalogue{_}detail.htm?csnumber=26018
Mpttp://bit.1ly/global-dam-locations
https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Dams
18http: //ewatercycle.nl

I7http://globalfloods.eu
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ods across multiple satellite sensors in an automated manner is still challenging. Hence,
the introduction of parallel processing platforms such as GEE and freely available ac-
cess to higher resolution data such as Sentinel-2 open new possibilities to improve these
datasets and to reconstruct historical surface water dynamics. The actual number of cur-
rently mapped small reservoirs and lakes is still unknown, as well as their surface area
extent and storage variability.

2.8. CONCLUSIONS

Many artifacts present in satellite images require the use of a multi-step approach when
the actual signal needs to be filtered from the noise, usually present in almost every satel-
lite image.

Remote Sensing (RS), in general, and EO in particular is a rapidly growing field. Dur-
ing the last decade, these fields have produced an enormous amount of new datasets,
with many datasets freely available. The amount of free data available is more than can
be digested by the research community in the short-term, so many multidisciplinary re-
search questions, on both technological and algorithmic sides, remain open.

One of the largest challenges is related to the harmonization of satellite data, simpli-
fying processing to extract valuable information from multiple satellite data products,
resulting in a higher temporal resolution. Fortunately, Google has solved many of these
technical issues by introducing the parallel satellite data processing platform Earth En-
gine.

Together with the remote sensing datasets, many other high-resolution Earth-scale
datasets have become available. One of the fastest-growing datasets is OSM, but in gen-
eral any other geo-referenced dataset can be applied. The main advantage of this type
of dataset is the presence of semantic information (river names, administrative areas,
property values and so on). This kind of information becomes crucial in performing
higher-level studies, focusing on the impact assessment of short or long-term events,
which can be observed from space. Integration, but also cross-validation of the datasets
with different origins will be crucial in maximizing the value of these datasets and in
improving their overall quality.

Technological developments and outreach efforts undertaken by large companies,
have resulted in the development of parallel processing platforms like Google Earth En-
gine. This platform has truly revolutionized the processing of satellite imagery and has
already led to a significant number of successful research efforts that would have been
unimaginable to perform otherwise because of the large volumes of data that need to be
stored and processed.

While many methods exist to process multispectral passive sensor satellite imagery,
the methods listed in this chapter should be, in my opinion, the first to try when pro-
cessing optical satellite imagery to address the task of surface water detection.

For surface water detection, the use of surface reflectance imagery will not neces-
sarily result in better quality water masks, while the process of the generation of high-
quality surface reflectance products is rather complicated.

With the growing volumes of data, the need for automated methods for surface wa-
ter detection from satellite images is higher than ever. One of the primary goals of this
research was to develop a set of fully automated algorithms and software tools to enable
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processing of multi-spectral satellite imagery for surface water detection at high spatial
and temporal resolutions. In the next three chapters 3, 4 and 5, more advanced unsuper-
vised methods will be introduced to address this.

For long-term studies, as well as for permanent surface water detection (Chapter 7),
the use of composite images may be sufficient, while for others, the highest temporal
and spatial resolution data may be required. As an example, to study rapid surface water
changes, such as floods, where the temporal resolution of physical processes is high and
may require processing of all possible data sources to quantify the actual surface water
dynamics, the highest temporal and spatial resolution data would be necessary.
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SURFACE WATER DETECTION AND
DYNAMIC LOCAL THRESHOLDING

The chapter discusses an automated surface water detection method, which can be ap-
plied globally and without the need for manual adjustments. A new method, based on
dynamic local thresholding of spectral water indices, is presented. The method allows
accurate detection of surface water from multispectral imagery even in the case of noisy
data. The simplicity of the method makes it attractive for large scale applications and
therefore can be used to address our research questions focusing on the accurate and high
spatiotemporal resolution surface water detection. Applicability of the method for images
with significant cloud and snow cover is tested. The method was applied to process both
top of atmosphere (TOA) and reflectance percentile composite images. Numerous exam-
ples demonstrate the applicability of the method as well as its drawbacks.

Keywords: M,, NDWI, MNDWI, unsupervised classification, Otsu thresholding, Canny
edge filter, snow, clouds, percentile composites.

This chapter is based on G. Donchyts, J. Schellekens, H. Winsemius, E. Eisemann, and
N. van de Giesen. A 30 m resolution surface water mask including estimation of posi-
tional and thematic differences using landsat 8, srtm and openstreetmap: A case study
in the murray-darling basin, australia. Remote Sensing, 8(5):386, 2016b.
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3.1. INTRODUCTION

UTOMATED methods for surface water dynamics detection from multispectral satel-

lite imagery were widely studied in the last two decades. Many studies were per-
formed to improve the accuracy of water classification and to avoid the need for manual
adjustments of thresholds. Early studies include the use of spectral indices and fixed
thresholds, such as NDWI McFeeters [1996] and MNDWI Xu [2006]. Recently, many new
spectral indices were introduced, such as AWEI Feyisa et al. [2014], WIzg0s Homer et al.
[2004], and Wl Fisher et al. [2016]. The main goal of these studies was to develop a
single multi-band spectral index providing better separability of water from other land-
use classes with the most stable threshold. While many of the studies have demonstrated
improved accuracy of water classification for both clear sky and mixed pixels, their aim
was mainly focused on the development of a new universal spectral index that can pro-
vide better separability between water and land. Furthermore, most of the method fo-
cused on atmospherically corrected imagery, and imagery with little to no noise.

Multiple studies provide a comprehensive literature overview of surface water de-
tection from satellite imagery. Some of the works propose to categorize the methods
of automated surface water detection, for example, Ji et al. [2009] has proposed the
next categories: (a) thematic classification Lira [2006] (b) linear unmixing model Sethre
et al. [2005] (c) single-band thresholding method Jain et al. [2005] (d) spectral water in-
dex method McFeeters [1996], Xu [2006], Feyisa et al. [2014], Hoberg et al. [2015], Fisher
et al. [2016]. Later, Yang et al. [2015] grouped surface water detection methods using the
following five categories: (a) digitizing through visual interpretation, a time and labor—
consuming strategy which is unrealistic to repeat detection despite its high accuracy
(b) density-slicing of a single band Frazier et al. [2000], Ryu et al. [2002], White and El As-
mar [1999], which applies a fixed threshold to a given spectral band for water extrac-
tion (c) supervised or unsupervised classification (d) spectral water indexes McFeeters
[1996], Xu [2006], Hoberg et al. [2015], Fisher et al. [2016], where a combination of two or
more bands has proven to be effective as well as convenient (e) image processing meth-
ods, such as mathematical morphology and object-based analysis Blaschke [2010], Lira
[2006], Yang et al. [2015].

Most of the classical methods of water detection mentioned above are based on the
use of spectral water indices (d), or perhaps, a supervised binary classification, where
images are classified into water and non-water classes. Even though recently developed
methods provide better classification accuracy, they mostly require manual threshold
adjustment to provide the best results. Therefore, their applicability to global studies,
preserving high accuracy, is limited. In addition, many of the studies focus on methods
that can be applied to process cloud-free satellite images or images, where the number
of noisy pixels is very low.

In this and the next chapter, the focus will be on a new unsupervised method of wa-
ter detection. The method was also tested with SAR backscatter imagery and provides
good results for water detection. The method is fully automated and accurately predicts
visible surface water, even in the presence of significant noise.

According to the classification of Yang et al. [2015], the method best fits the spec-
tral water indexes and object-based analysis categories, (d) and (e). In the next chapter,
the method will also be extended with a generative probabilistic framework to recon-
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struct missing water pixels, for example, due to cloud, snow, or other noise. In the above
classification, this extension falls under the category Machine Learning (ML) (¢); and
more specifically an unsupervised version of it, even though non-classical ML methods
are used to implement the algorithms. Methods of ML (¢) can be further separated into
several smaller sub-categories, such as supervised ML, unsupervised ML, and reinforce-
ment ML. A few more advanced methods were introduced recently, such as deep learn-
ing, generative adversarial networks Goodfellow et al. [2014]. Supervised ML is a classic
example of ML and has been evolving for a long time. It solves a problem of classification
or regression given a set of training examples. On the other hand, the definition of un-
supervised ML is much vaguer. One of the definitions describes it as a task of inferring a
function to describe hidden structure from unlabeled data. In general, the unsupervised
ML solves tasks similar to those that are solved by supervised ML, but in this case, with-
out any prior manual training required. Unsupervised ML does this by performing one
of the following tasks: (I) clustering (2) dimensionality reduction (3) density estimation.
The essential part of unsupervised ML is that all steps can be performed in an automated
manner. In practice, some tuning of the algorithm parameters is still required from time
to time.

Here, Otsu thresholding and Canny edge filters are used as building blocks for an au-
tomated water detection algorithm. The Canny edge filter is applied mainly to perform
dimensionality reduction (2). This step is followed by the use of the Otsu thresholding
step, resulting in an estimation of local threshold versus a global one. This results in
a much more accurate water detection, mainly because the focus is shifted only to the
most likely waterbody boundaries. In practice, a few additional steps may be required
when working with different types of multispectral imagery, for example, removal of spu-
rious edges based on the gradient of spectral index values, lengths of the edges, or topo-
logical properties. By combining image processing methods with the understanding of
multispectral signals available in the satellite images, a fully automated step-wise algo-
rithm for surface water detection is developed.

3.1.1. OTSU THRESHOLDING

In image processing and computer vision, Otsu’s method Otsu [1975] is used to auto-
matically cluster images using thresholding, or the reduction of a grayscale image into a
binary image (in a more general form — into several classes). Otsu thresholding makes
use of Fisher’s linear discriminant analysis Fisher [1936] to compute the optimal thresh-
old which discriminates the image into multiple classes in an optimal way. In a simple
form, the method allows finding a threshold to classify the image into two classes, C
and C;. This is done by analyzing the histogram of all values of the image, assuming that
they represent a bivariate distribution.

In a simple binary form, the idea is to select a threshold that minimizes the intra-class
(or within class) variance — the combined spread:

t = argmin (Uij(t)) 3.1
t

where O'%U(t) is the within-class variance, defined as:
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a?,(t) = Wi (a5 () + wi (Do (1) (3.2)

and wp,; and 03 , are the probabilities and variances of two classes, separated by the
threshold value at index t, where ¢ is one of the indices of the histogram, defined by L
levelsieZ;.

In the case of a histogram with L levels, the probabilities wy ; are defined as:

t
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i=0
where p is the total mean.

Minimizing the above sum 3.1 for each possible threshold is expensive. Otsu shows
that the same can be achieved by minimizing the intra-class (or within class) variance,
rather than maximizing the inter-class (or between class) variance ai:

o%(t) =0 — 0%, (1) = wo (po(£) — ) + w1 (1 (£) — )’ (3.8)

03 (1) = wo(Hw1 (1) (o () — r (1)) (3.9)

The optimal threshold is then obtained by maximizing the:
t = argmax (ai(t)) (3.10)
t

The resulting formula 3.9 is much easier to apply and can be computed by a single-
pass algorithm applied to the image histogram (spectral index in our case). In this study,
the algorithm is implemented using Google Earth Engine and JavaScript API so that it
can be applied to a large number of images. Moreover, this method is frequently used in
image processing libraries as one of the classical methods.

In our case, the red vertical line in the figures 3.2 and 3.9 indicates the optimal thresh-
old found using this method.
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3.1.2. CANNY EDGE DETECTOR
While global Otsu thresholding has been used successfully in many image processing
applications, applying it to process satellite images with large spatial extent can be chal-
lenging. One of the limitations of the threshold being computed from all image pixels is
that it includes all of the values present in the image, while we may be interested only
in the pixels representing specific features, such as boundaries between water and land.
To improve performance of the method, it may be easier to first reduce the image to in-
clude only pixels potentially representing a water and a land boundary before applying
the Otsu thresholding. A popular algorithm used in image processing to detect edges is
the Canny edge filter, which allows detection of a wide range of edges in images. The al-
gorithm was developed in 1986 by Canny [1986]. The algorithm allows for the detection
of edges with a low error rate, assuming that most of the edges are detected and that im-
age noise is not marked as an edge. To satisfy these requirements, the algorithm is con-
structed from a number of steps: 1) images are smoothed using Gaussian kernel to re-
move the high-frequency noise 2) intensity gradients are computed 3) a non-maximum
suppression step is applied to remove spurious edges 4) double thresholding is applied
to determine potential edges 5) edges are tracked by hysteresis: edges that are weak and
not connected to strong edges are suppressed.

During the first step, the image is smoothed, usually by convolving with the Gaussian
kernel of some fixed size. After that, the gradient and aspect are computed as:

G=,/Gi+G5 (3.11)

0 =atan2(G,,Gy) (3.12)

The aspect 6 is then rounded to one of the discrete angles representing vertical, hor-
izontal and diagonal lines (0°, 45, 90°, 135").

During the non-maximum suppression step, the edges get thinned followed by thresh-
olding and edge tracking, ensuring that only the strongest edges remain.

In our study, the Canny edge filter is combined with the Otsu thresholding method
to compute local threshold for spectral indices in a dynamic way. The algorithm was
coded using its JavaScript API. Some of the figures were generated using Python and the
implementation of algorithms from the scikit-image library Van der Walt et al. [2014].
The main parameters used to tune the algorithm were o and size of the Gaussian kernel
and the threshold used to remove edges. Both parameters were found empirically to
ensure detection of most of the water features present in the satellite images.

3.2. DYNAMIC LOCAL THRESHOLDING OF SPECTRAL WATER INDICES
Varying thresholds of spectral water indices may result in significant errors in resulting
surface water masks Yang et al. [2014]. Manual adjustment of the threshold is usually
required to overcome these errors, which become even more evident for multispectral
images where significant atmospheric noise is present. Also, spectral properties of open
water, as well as the land type next to the water may vary significantly across the globe.
In many cases, surface water constitutes only a small fraction of the overall land
cover, making it harder to detect with threshold based methods. Large local errors may
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be introduced when a constant threshold of 0.0 is used to distinguish between water and
land. The challenge is to establish a varying threshold that can be derived automatically.

The fact that water is almost never clear in the real world may result in significant dis-
tortions in the observed spectral properties, limiting the applicability of spectral indices,
especially when a single fixed threshold is used to separate water pixels from non-water
pixels. Typical variations of threshold values for different spectral water indices can be
found in Ji et al. [2009]. One of the approaches to overcome this problem is to use meth-
ods that allow detecting threshold values based on a histogram of all NDWI values in a
given area. One such method is Otsu thresholding Li et al. [2013], Yang et al. [2014]. In
fact, the Otsu method is very similar to the k-means method applied to the histogram of
spectral index values Liu and Yu [2009].

The use of dynamic threshold detection methods, such as histogram-based Otsu
thresholding, helps to overcome some of the problems. However, this approach does
not work when the fraction of water pixels is small. The main reason is that a number
of land-use types can be significant, resulting in that water pixels becoming practically
invisible, making them impossible to detect. A more detailed example can be found in
Chapter 7, where surface water of the Murray-Darling River Basin, Australia is estimated
from a multitemporal Landsat 8 dataset.

To handle this problem, two methods are applied sequentially (Canny edge filter
and Otsu thresholding) to spectral water index images. This allows detection of a lo-
cal threshold versus the global one. The application of the Canny edge filter with a very
high threshold applied to the spectral index image reveals only edges located near sharp
value changes. In the case of water spectral indices, this usually takes place when the
near-infrared band abruptly changes.

Potential water and land pixels located near water are then computed using mor-
phological dilation applied to the detected edges. It is important to note, that this ap-
proach can result in a skewed distribution in the case of thin, single pixel wide water
bodies (canals). To overcome this problem, a buffer with the size (dilation) equal to half
of the pixel is used in step 3. In an ideal situation, the resulting distribution should look
bimodal 3.1 so that a clear distinction between land and water can be made from this
distribution.

The proposed method consists of the following steps: 1) compute spectral water in-
dex, 2) compute edges using the Canny edge detector 3) dilate edges to capture most
probable water and land pixels located around waterbody edges 4) compute a threshold
value using the Otsu method, using only the pixels in the buffer 5) compute water mask
by applying the threshold.

As can be seen in Figure 3.2, the proposed method can capture smaller local features
better when compared to the use of the default thresholds.
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Figure 3.1: The method of dynamic local thresholding for water detection, Palm Jebel Ali, Dubai, UAE. Surface
water detected using new method (B) reveals more details, when compared to a naive NDWI=0 method (A).
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Figure 3.2: Frequency histogram of NDWI values without (left) and with (right) the use of Canny edge detection
filter, 0 = 1, th = 0.5. The red line shows the threshold estimate using the Otsu method.
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Pgreen — Pswirl

1= (3.13)
Pgreen + Pswirl
C=Canny(l,o,th) (3.14)
I.={IIeCa& S} (3.15)
T =0tsu(l;) (3.16)
Water ={I|I< T} (3.17)

where Canny - is a Canny edge detection filter, applied to the spectral water index I
and resulting in a masked image of edges C (3.1 red edges), in this example - MNDWTI; o
and th are the standard deviation and the threshold used by the Canny edge filter; S is a
fixed size dilation kernel,

3.3. STEPWISE METHOD OF SURFACE WATER DETECTION FOR RESERVOIRS

To validate the applicability of the above method and to test its performance, the method
was applied to reconstruct surface area changes for a relatively small reservoir with a
maximum surface water area of about 300ha and capacity of about 36 800 000 m3.

3.3.1. PROSSER CREEK RESERVOIR

The Prosser Creek Reservoir is located in Nevada County, California, USA and was con-
structed between 1959 and 1962 by the Unites States Bureau of Reclamation at an alti-
tude of 1750m above the sea level. The dam crest height is 50m, and the reservoir width is
about 0.5km. It impounds Prosser Creek and is used for both irrigation and flood control
during winter and spring.

The reservoir was selected for valida-
tion because high-frequency surface wa-
ter level data are available from USGS
(http://nwis.waterdata.usgs.gov/nwi

Daily water level data are used, mea-
sured at the dam during 1996-2016 (Fig-
ure 3.4). As can be seen, the reservoir
water level follows a typical seasonal pat-
tern, with almost constant water levels
during the winter season. However, dur-

ing some years, the reservoir was only
partially filled. Figure 3.3: Prosser Creek Reservoir, Nevada County,
California, USA. Image: Bureau of Reclamation.

To test the applicability of the surface
water detection method outlined above,
all freely available medium resolution (<60m) satellite images for this area were used,
measured by multiple multispectral (Landsat 4-8 and Sentinel-2) and SAR (Sentinel-1)
sensors. In total, 1297 images were collected using different sensors.


http://nwis.waterdata.usgs.gov/nwis
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Figure 3.4: Measured water levels, source: USGS
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Figure 3.5: Number of images acquired by different satellite missions analyzed

The reservoir surface area is on average 41% covered by clouds Wilson and Jetz [2016],
freezes during the winter season, and varies significantly throughout the years and sea-
sons, resulting in many images being fully or partially covered by clouds, cloud cover or
snow/ice.

The above method is applied to process TOA images, without the use of cloud or
snow masking, to see how good or bad different surface water detection methods will
perform. Subsequently, other processing steps were added, such as local Otsu thresh-
olding, mentioned above, and topographic masking, using HAND.

In the figures 3.6 and 3.7 a few typical Landsat images for our study area are pre-
sented, showing the variability of reflectance values in visible and infrared parts of the
spectrum. Twelve randomly selected images are used. Some of these images are espe-
cially difficult to process using most of the existing methods, while others are cloud-free.
Cloud cover forms the main type of noise present in most of these images. Some of the
images show significant snow cover presence, as well as ice.

As expected, surface water is slightly more visible in false-color composite images
where short-wave infrared and near-infrared bands are used. This happens because in-
frared radiation penetrates thin clouds better than visible light.

On several images, the effects of hill shadows, which can cause false-positive surface
water detection, are also present. The image acquired on 2015-10-08 also has a slight
amount of algae present near the dam, and the image acquired on 2014-02-23 is par-
tially covered by ice. We will see later in this chapter that these pixels will result in false-
negative surface water detection, and in general, can’t be corrected using the simple dis-
criminative methods discussed in this chapter. More advanced methods to correct these
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Figure 3.6: True-color image for Prosser Creek Reservoir, CA, USA. At-sensor reflectance (0,04, Pgreen, Pbiue)
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Figure 3.7: False-color image for Prosser Creek Reservoir, CA, USA. At-sensor reflectance (05ir1, Pnirs 0 green)
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errors will be discussed in the next chapter, where probabilistic methods will be applied
in a combination with local Otsu thresholding to estimate surface water.

3.3.2. APPLICATION OF THE DYNAMIC THRESHOLDING METHOD FOR WATER DETECTION

Applying the local dynamic thresholding method, introduced above, to the cloud-free
images where little to no effects from hill shadows were present allowed for the removal
of falsely detected water, and resulted in a slightly better water mask, Figure 3.8. Similar
to the previous example for Palm Jebel Ali (3.1), we can see from the histogram in 3.9
that the objective selection of the threshold using global Otsu would be difficult. The
reason is that the bimodal histogram on the left is skewed, and a very long flat valley
makes it difficult to decide which threshold value would be the most optimal. At the
same time, the histogram on the right represents NDWI values around strong edges in
the NDWI image; the optimal threshold selection becomes easier to compute. However,
we can also see that in this case, a much larger variability of NDWI values is present, due
to different land use types. Even though these disturbances are small, in some images
they may be significant, for example, when very distinctive land cover types are present
around the waterbody (sand, vegetation, man-made constructions).

In some cases, when local NDWI values result in a multi-modal histogram, the use
of the multi-class Otsu method would be more appropriate. As an alternative, smaller
overlapping areas may be used to limit land cover variability. Later, in Chapter 7 this ap-
proach will be applied to estimate permanent surface water from Landsat 8 reflectance
composite images for Murray-Darling River Basin in Australia.
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Figure 3.8: Method of dynamic local thresholding for water detection (Prosser Creek Reservoir). Dynamic
method of surface water detection (B) provides lower commission error due to hill shadows, when compared
to the naive NDWI=0 method (A).
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Figure 3.9: Frequency histogram of NDWI values without (left) and with (right) the use of local dynamic thresh-
olding.

3.4. VARIABILITY OF NDWI AND MNDWI FOR NOISY IMAGES

A more detailed analysis of the values of NDWI (Figure 3.10) and MNDWI (3.11) spectral
indices shows, that MNDWI may be a preferable index for some of the cloud and snow-
free images, providing a more sensitive way to discriminate water and land. However,
the index is, in general, much more sensitive to snow and cold clouds, making water de-
tection very challenging under these conditions. On the other hand, the MNDWI index
was reported to perform better in urban areas. In addition to snow, the MNDWI index is
also more sensitive to hill and cloud shadows when compared to NDWI.

As can be seen from the figures, under cloud-free conditions, both indices can be
used to discriminate surface water from the land. In addition, when working with at-
mospherically corrected images, a threshold value of zero is frequently a good starting
point for water detection. However, when a very accurate surface water mask needs to
be detected or when a high concentration of cloud (fog, haze) cover is present, the use of
a dynamic threshold is the only option.

In the next figures, where the detected surface water mask will be shown, the NDWI
will be used as the basis for water mask detection, combined with additional steps to
detect surface water.

3.5. RECONSTRUCTION OF SURFACE WATER AREA FROM NOISY IMAGES

To test the method, it was sequentially applied to a set of randomly selected images with
different atmospheric and land-use conditions as shown in figures 3.6 and 3.7. For most
cloud-free images, as well as for images covered by clouds, the algorithm was able to
detect surface water very accurately, without visible errors. However, for most images
where a mix of snow/ice and cloud cover was present or where the waterbody was par-
tially covered by snow (Figure 3.12), the results were unreliable, mainly due to the pres-
ence of snow pixels, which generated spurious edges. It is important to note that no
snow or cloud masking was applied before the water mask detection algorithm was ap-
plied. In practical applications, most of the images where cloud or snow cover is present
would be filtered as unreliable.

The performance of surface water detection for noisy images was improved dramati-
cally after the additional topographic mask was applied to the Canny edges using HAND
< 15m, which resulted in the removal of most of the spurious edges. The final water mask
can be seen in Figure 3.13.
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Figure 3.10: NDWI values for Prosser Creek Reservoir for selected dates, McFeeters [1996]. Source: https:
//code.earthengine.google.com/59461a0aae48edf382670062faclea3a
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Figure 3.11: MNDWI values for Prosser Creek Reservoir for selected dates, Xu [2006]
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Here we can see that the algorithm was able to detect water masks for all images,
covered by clouds, snow/ice, or a combination of both. However, for practical use in
water resource management applications, further additional processing is required to
convert these partial water masks to the actual surface water area values.

Another approach to detect surface water reliably for images partially covered by
snow and clouds, would be to take snow and cloud mask into consideration when fil-
tering out edges during the edge detection step. However, a very reliable detection of
surface water may be challenging when multiple types of noise are present at the same
time.
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Figure 3.13: Canny/Otsu, HAND < 15m

3.6. VALIDATION OF THE SURFACE WATER DETECTION METHOD

To validate the surface water detection method outlined here, and, to develop a simple
statistical model to be used for the validation in the next chapter, mostly cloud-free im-
ages were selected covering the reservoir area. The resulting surface water area values
were compared to the in-situ observed water levels as shown in figures 3.14 and 3.15.
Additionally, the outliers were identified, indicated in red in the figure. It appeared that
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for some of the values, the water level station values (during 1997-1998) were unreliable,
probably because of sensor problems. For two points, our criteria for the maximum al-
lowed snow/ice and cloud mask (<10 pixels) appear to be incorrect, resulting in higher
values for surface water.

It can be seen from the second chart that even when using only the cloud-free images
most of the peaks of the reservoir water level time series can be detected. For 2011-2013,
the only available images were measured by Landsat 7, with the SLC-OFF ETM+ sensor
problems, resulting in gaps in the satellite images.

3.6.1. MODEL CONSTRUCTION USING CLOUD-FREE SATELLITE IMAGES

After outlier filtering, a second-order polynomial model can be derived from linear re-
gression, resulting in correction of a 0.994 and RMSE = 4.7ha or 0.047km?>.
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Figure 3.14: Prosser Creek Reservoir surface area and water levels for cloud-free images using multiple optical
sensors (Landsat, ASTER, Sentinel-2)


https://landsat.usgs.gov/slc-products-background
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Figure 3.15: Prosser Creek Reservoir surface area and water levels for cloud-free images using multiple optical
sensors (Landsat, ASTER, Sentinel-2)
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Figure 3.16: Measured surface water levels (top) and estimated surface water area form all images acquired
during 1984-2016. The line in the lower chart is based on the Locally Weighted Scatterplot Smoothing
(LOWESS) regression.
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Figure 3.17: Measured surface water levels (top) and estimated surface water area form all images acquired
during 2009-2016. The line in the lower chart is based on the LOWESS regression.

Finally, the method was applied to process the rest of the (noisy) images, where the
reservoir is (partially) covered by clouds or cloud cover, resulting in significantly noised
spectral signals measured at the sensor. However, the resulting surface water area values
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were less reliable. The resulting surface water area values are shown in figures 3.16 and
3.17, combined with the non-parametric LOWESS regression Cleveland [1979].

The larger variability of surface water values after 2014 is caused by the estimates
from ESA Sentinel-1A images, where only a very small portion of the reservoir can be
seen in the image.

3.7. ON THE FUSION OF WATER MASKS ESTIMATED FROM MULTISPECTRAL AND SAR SEN-
SORS

One of the advantages of the use of Otsu-based methods is that it is much less sensitive to
radiometric differences between satellite sensors and may be used across images com-
ing from different satellites. As can be seen in 3.5, the number of overlapping satellite
missions has been increasing in recent years, resulting in daily, or more frequent, image
availability over our study area. The main challenge of fully automating water detection,
in this case, is still to correct evaluation of the confidence of the image pixels, to exclude,
or to detect, the presence of clouds, cloud shadows, and snow. Developing fully auto-
mated software that may work across different sensors and also be applied to millions of
locations becomes feasible. The Figure 3.18 demonstrates the results of water detection
applied across all of the medium resolution sensors (10m-30m) acquired in 2016 during
a period or high water level.

Sentinel-1 Sentinel-2 Landsat 4,5,7,8

Figure 3.18: Surface water mask reconstructed from multiple medium-resolution sensors (Sentinel-1, ASTER,
Sentinel-2, Landsat)

In fact, for the ASTER sensor, it was possible to successfully detect surface water
even using raw uncalibrated, but normalized radiance values, represented as DN num-
bers, without converting them to radiance or reflectance values. However, reliable detec-
tion of clouds and snow was harder to perform due to the variability of sun parameters.
Therefore, for the final version of the algorithm, the full version of the DN > radiance >
reflectance algorithm was implemented within Google Earth Engine using equations 2.1
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and 2.2.

3.7.1. SURFACE WATER DETECTION SAR AND SPECKLE NOISE REMOVAL

Not surprisingly, the algorithm has also shown good results when applied to backscatter
amplitude SAR images acquired by the Sentinel-1 ESA satellite (3.18, left). However, in
some images, it was very difficult to distinguish between spurious edges caused by Bragg
scattering (Liebe et al. [2009]). Surface water masks estimated from these images were
excluded for the construction of the regression model shown in 3.15.

The best results using SAR backscatter amplitude images were achieved after re-
moval of speckle noise. Many methods exist to remove speckle noise in SAR images,
with some of the most popular being Gamma Maximum a Posteriori (MAP) Lopes et al.
[1990] or a refined Lee filter Lee [1981]. At the time when this study was performed, no
implementation of a speckle filter existed within Google Earth Engine.

To address this, a new implementation was developed based on the method intro-
duced by Perona and Malik Perona and Malik [1990]. The filter is in fact based on a sim-
ple anisotropic diffusion equation, where a diffusion coefficient is parametrized using
values from the neighboring pixels.

Q—V(VI) (3.18)
or ¢ ‘

where I = I(x, y, t) denotes in this case intensity values of the backscatter signal, V is
a gradient operator, and ¢ = c¢(x, ¥, t) is an anisotropic diffusion coefficient, parametrized
using the nearest pixel values as:

1

- 3.19
¢ 1+ (G/K)? (5.19)

where G = || 1| is the absolute value of the gradient computed for the current image
pixel, and K is the user-defined coefficient.

In fact, the original paper defines two alternative version of the parametrization for
¢, resulting in similar results.

The implementation (see Listing A.2) is based on the simple explicit central-differences
numerical scheme, implemented using the convolution operator based on a set of 3x3
kernels.
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Figure 3.19: An example of results of Perona-Malik implementation within Google Earth Engine, com-
pared to original and Gaussian-smoothed images. Source: https://code.earthengine.google.com/
008a8e627389123fd61550929973463a

As can be seen in Figure 3.19, the image’s high-frequency noise is significantly de-
creased after applying the filter, while strong edges remain. In contrast, applying simple
Gaussian smoothing results in the removal of strong edges, reducing the accuracy of sur-
face water detection.

3.8. CONCLUSIONS AND DISCUSSION

A new method of dynamic local thresholding was introduced for surface water detection
from multispectral optical and SAR satellite imagery. The method is easy to implement
and is based on two popular image processing techniques: Canny edge filter and Otsu
thresholding.

One of the advantages of the algorithm is that it can be easily applied to process any
multispectral satellite imagery measured by any satellite mission, regardless of its spatial
and spectral resolution. This fact makes it attractive for global applications, where alarge
quantity of satellite data needs to be processed without user supervision.

All freely available medium resolution satellite images measured by NASA and ESA
within the Landsat, ASTER, and Sentinel missions were analyzed, and the resulting sur-
face water masks were compared to daily water level measurements for the period 1996-
2017.

The method was applied to reconstruct surface area changes at Prosser Creek Reser-
voir in California, USA. The reconstruction strongly matched the in-situ observation
data for cloud-free images. With cloud-free images, it was possible to achieve a per-
fect fit with the in-situ observation data. However, much more variability was observed
when using images with a significant amount of clouds or snow cover present.

In addition to passive optical satellite imagery, the method was also adjusted to pro-
cess Sentinel-1 SAR imagery. In contrast to multispectral imagery, where NDWI was used
to detect surface water, for SAR imagery, the backscatter amplitude was used to detect
surface water. To diminish the effects of speckle noise in SAR imagery, a new speckle
filter was implemented within the Google Earth Engine, based on Perona-Malik, to im-
prove the quality of images and to decrease the number of spurious sharp edges not
belonging to surface water.

While the method of dynamic local thresholding presented in this chapter provides


https://code.earthengine.google.com/008a8e627389123fd61550929973463a
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a way to very accurately estimate surface water masks, it is still insufficient to reliably
estimate surface water masks when surface water is only partially visible. In fact, the ac-
curacy of the resulting water masks varies a lot depending on the type of noise present in
the image. The method shows very good performance in the case of homogeneously dis-
tributed noise, such as fog or haze. However, for water bodies that are partially covered
by thick clouds or snow/ice, the results are less accurate, causing significant variability
of the final surface water area estimates.

In the next chapter, we will see how the resulting water mask can be further improved
using Bayesian methods. We will see how cloud-free historical images can be processed
using generative methods, by deriving a density function from cloud-free satellite im-
ages, followed by the reconstruction of the surface water area from partially-visible satel-
lite images.

Eventhough the method introduced in this chapter and further extended in the next
chapter has been validated for a single reservoir only (for demonstration purposes), it
was successfully tested to reconstruct permanent surface water area for the Murray-
Darling River Basin in Australia, where the resulting water mask was compared to other
water datasets for a very large area. Also, early results show, that the method can be eas-
ily transferred globally, given that the cloud and snow mask is estimated correctly (low
commission error). The next chapter discusses how these masks can be detected auto-
matically using the current methods and datasets.







PROBABILISTIC METHODS OF
SURFACE WATER DETECTION

A method has been developed to estimate surface water mask for noisy TOA reflectance
images, where water bodies can only be partially visible under thin clouds, haze, fog or
snowlice cover. The presence of these effects increases the need for high accuracy and more
frequent observations of surface water bodies, making it essential for rapidly varying sur-
face water bodies such as small reservoirs, wetlands, and floodplains. Monitoring these
waterbodies at high frequency is essential to understanding changes in the availability of
water for food, conditions of fisheries, ecosystems, and the occurrence of floods.

Here, a Bayesian Network is used as a framework to introduce the method and, finally, to
infer the actual surface water area from partially-visible surface water masks. The method
makes use of a high-resolution probability density function, which is estimated using a set
of cloud-free satellite images from measured by multiple freely available satellite missions
from NASA and ESA. Variability of TOA reflectance values for different land use and at-
mospheric conditions to estimate cloud and snow detection parameters in an automated
manner is explored. The method is validated using in-situ water level measurements.

Keywords: M,, probabilistic graphical models, filling, Bayesian Networks, KDE, inference.
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4.1. INTRODUCTION

N the previous chapters, we saw various methods to detect surface water at high ac-
I curacy. However, when a waterbody is partially invisible, for example, due to clouds
or missing pixels, these methods are insufficient to estimate the actual surface water. In
this case, more advanced methods are required to fill missing pixels. In this chapter, this
problem is addressed by making use of probabilistic graphical models, in particular, by
formulating the task of inferring the most probable water mask in the form of a simple
Bayesian Network.

The general idea is to combine methods discussed in the previous chapter with the
probabilistic estimate of surface water mask using a priori knowledge about surface wa-
ter. This will be done by generating a joint probability density function using surface
water estimates based on images where an accurate surface water mask can be gener-
ated.

This turns our task of detecting surface water from satellite data into a generative
class of models, where the most probable surface water mask is generated using density
functions, in contrast to the discriminative way of processing of satellite data.

Additionally, a Probabilistic Graphical Model (PGM) notation is used to discuss the
steps required to estimate (or infer) the actual surface water mask from available raw
satellite data.

4.2. PROBABILISTIC GRAPHICAL MODELS
PGMs (Koller and Friedman [2009]) is a rich framework for encoding probability distri-
butions over complex domains, in the form of univariate or multivariate (joint) distri-
butions. Random variables and their conditional dependencies are then expressed in
the form of a graph, where child nodes are usually represented by Conditional Prob-
ability Distributions (CPDs), either defined analytically or in a tabular form, and root
nodes are represented by marginal distributions. Two commonly used types of PGMs
are Bayesian Networks (BNs) and Markov Random Fields (MRFs). However, many other
types of PGMs exists today, such as Conditional Random Fields (CRFs), factor graphs,
restricted Boltzmann machines and many others.
Here, a BN notation is used, which is usually
expressed in the form of a Directed Acyclic Graph
(DAG). Consider the example of a simple network
as shown in 4.1. Here, X;_3 nodes represent ran-
dom variables and the shaded variable X, indi-
cates a variable that is measured.
The root nodes of the graph of a BN are defined
as marginal distributions, which are in general ex-
pressed as single-variable Probability Distribution
Functionss (PDFs), and all child nodes can then be
represented as CPDs, which can be expressed as
multivariate probability distribution functions.
This DAG can then be used to conduct statis-
tical inference, for example, to infer the unknown
variables X3 and X; by making assumptions about their distributions, while at the same

Figure 4.1: A simple Bayesian network.
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time, satisfying the available (measured) distribution of X;. The joint distribution of this
BN can then be expressed (factorized) as:

P(X1,X0,X3) =P(X1)P(X2 | X1)P(X3 | X3, X>) 4.1

or in a general form:

n
P(Xj,.... Xn) = [[ P(X;i | S)) 4.2)
i=1

where S; represents a set of parents of every node X;.

After defining the model, many types of questions can be answered, by means of di-
rect inference methods, such as conditioning parent variables and computing resulting
distributions of dependent variables, marginalization — deriving marginal distribution
by integrating over other variables, or by applying methods of learning to simulate the
graph as a whole and to infer hidden variables.

Many methods exist to perform inference in BNs, such as Markov Chain Monte Carlo
(MCMQ), or Expectation Minimization (EM). The main goal of these methods is to esti-
mate unknown distributions from known variables and hypothetical relations between
them. Many examples of PGMs as well as methods used to conduct inference in BNs are
given in Koller and Friedman [2009].

4.3. PLATE NOTATION

One of the useful notations used for BNs is a plate notation, which allows grouping of
multiple random variables of a similar type. In this way, more complex models can be
expressed by the network, as shown in Figure 4.2.

TOO® |O

Figure 4.2: An example of the use of plate notation (right) for Naive Bayes classifier graphical model (left).

The above graph, in fact, represents a model of a Naive Bayes classifier, where the
random variable w represents a distribution of some feature belonging to some class,
given a set of independent variables X; with known conditional distributions P(X;|w).
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During training, the model variables X; (conditional distributions) are defined. During
inference, the most probable class is selected, for example, by estimating the maximum
a posteriori probability.

4.4. DISCRIMINATIVE VS. GENERATIVE METHODS

In machine learning, a generative model is defined as a model where some variable val-
ues are generated from a joint probability density function. Generative models differ
from discriminative models in that they require the use of joint probability density func-
tion to be constructed, while discriminative models provide a way to model only the
target variables conditioned on observed variables Ng and Jordan [2002]. Some exam-
ples of generative models include Naive Bayes classifier, Gaussian Mixture Model, and
the Hidden Markov Model while examples of discriminative models include Logistic Re-
gression, Support Vector Machines, and Conditional Random Fields.

The method presented in this chapter can be classified as a generative one, as the
joint probability density function is estimated for pixels belonging to water P(x, y). How-
ever, it will be estimated in a discriminative way, by combining surface water masks de-
tected from cloud-free images, as was discussed in the previous chapter.

4.5. PROBABILISTIC NATURE OF THE SATELLITE OBSERVATIONS

Here, the multispectral satellite observations are expressed in the form of a Bayesian net-
work, to allow better reasoning about the methods used to detect surface water changes.
Eventhough, standard algorithms used to reconstruct marginal distributions were not
applied, the framework is a very rich way to express and explain probabilistic surface
water inference methods introduced later in this chapter.

In multispectral remote sensing using satellites, we can think of observed radiance or
reflectance values as random variables. In fact, the observed values represent a joint dis-
tribution in a multidimensional space (time, space, wavelength). Even though most of
the sensors provide 2D surface radiance values, the actual values are reflected from the
3D surface of the Earth. The actual values measured at-the-sensor represent a signal,
backscattered from the aerosol particles, and from the ground (frequently represented
by non-Lambertian surfaces). The actual path of the light is extremely complex and may
be impossible to model in a deterministic way. Interpreting this signal using probabilis-
tic models makes more sense.

For passive multispectral satellite sensors, the most important factors disturbing the
resulting radiance values are clouds and topographic effects. While many algorithms ex-
ist to detect clouds, modeling complex interaction of cloud and hill shadows, thin clouds,
fog or haze is extremely difficult. Additionally, physical parameters of the sensors, such
as spatial and radiometric resolution, result in observations of mixed signals, reflected
from multiple surfaces, such as different types of soil, water, and vegetation. Further-
more, surface water pixels may be fully or partially covered by snow and ice.

In Figure 4.3 the most important variables influencing the observed signal are shown.
Note, that the observed variables are shown as shaded circles and that wavelength, time
and space (x € R?) are defined using plate notation.

A more general task of remote sensing can be defined as a classification of the hidden,
or latent, variable Y, for every land-use type observed by the satellite. Clouds are
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t, X

topography

land use classes

hill shadows

N—

Figure 4.3: BN of a passive multispectral satellite sensor. Filled circles represent observed variables, with a
known distributions. Empty circles indicate latent variables that need to be reconstructed. The variable L
defines observed radiances, where values in the distribution are based on the solar parameters, cloud cover,
topography, as well as on the actual land use classes occurring at a given location. Plate notation is used to
indicate dependency on time, space and wavelength.
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introduced as a separate variable C, to stress, that it represents a noise and is not mixed
with the actual land use type hidden under the clouds or distorted by the cloud shadows.

To indicate a complex light interaction between clouds and Earth’s surface topog-
raphy, a separate random variable Z is added. It is a random variable, because it is
never measured exactly, and may be very noisy for most existing global digital eleva-
tion datasets, such as 30m SRTM or 3m NED. These errors can be very large (sometimes
50m) and may result in an incorrect interpretation of the observed pixels when used, for
example, to model illumination effects, as shown in Chapter 2.

The Sun parameters, Sy and Sg represent the Sun’s azimuth and elevation at the time,
when the image was measured, and are usually very accurate, perhaps making it more
appropriate to introduce them as parameters instead of random variables.

The Sun’s light interacts with clouds and topography, which results in a distortion of
the signal, which is expressed by the variables Cs, Z;, which may indicate the amount of
light scattered and absorbed due to clouds and shadows.

The arrows between these variables represent conditional dependencies. For exam-
ple, the conditional probability representing the amount of light influenced by cloud
shadows can be defined as: P(Cs|Z, Sy, Sg, C). Here, the cloud shadow variable depends
on the topography because the actual illumination usually changes depending on the
cloud height, which in turn depends on the actual elevation at that location.

To reconstruct (infer) unknown variables, one can try to simulate the joint probabil-
ity for this PGM factored as:

P(L/h v---L/lNr C, CS,Z’ Zs,sdnsﬁ» Yclassl---YclassM) = P(Yclassl)---P(YclassM)
P(C)P(S)P(C5)P(Sp)P(Sp)P(Zs)P(2)
P(CS | CVSHYS¢)Z)P(ZS|ZVSGJ Sd))
(4.3)

with N bands A and M classes class defined as:

A={blue, green,red,nir,swirl,swir2, temp} “4)
class ={water,snow,sand,vegetation,urban,...} '

Note that in addition to the class and wavelength dimensions, most of the variables
also depend on space and time, which is indicated as indices of the corresponding plates.

While variables Y,;,ss can be simulated as discrete variables, with a corresponding
probability mass function representing the probability of a pixel belonging to a given
class, we can also think of it as a continuous variable, defined for every class separately
and indicating probability of a pixel fraction (varying from 0 to 1) belonging to a given
land-use class. Many of the variables in the above equation are known or partially known
as well as their respective errors, however, it may be difficult to simulate the whole joint
distribution using standard methods (MCMC), mainly because of the amount of data to
be processed.

For the water detection task, we are interested in the reconstruction of P(Cyqzer) dis-
tribution, or more generally - as a multivariate distribution P(C4rer, X, y), marginalized
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in time and representing the probability of water in every pixel of a given area for some
specific period. It is important to note that this can be done only under the assumption
that morphology of the waterbody does not change during the selected period. For more
complex configurations, this density function should be assumed as a time-dependent
function, for example, to represent seasonal surface water variability.

One of the methods to infer this water distribution, as well as other latent variables
in the above graphical model, is to estimate them in a discriminative way, directly from
the observed reflectance values measured by satellite sensors. With sufficient measure-
ments and under the assumption that morphology of the waterbody does not change
significantly, we should be able to condition our joint distribution 4.3 into subsets where
clouds are present and absent. Also, instead of integrating this joint distribution, marginal-
izing it to estimate P(Cygeer, X, y), it can be directly computed by making use of the
methods described in Chapter 3 and estimating the frequency of pixels to be covered
by water or land.

An alternative could be to fully simulate the above graphical model by introducing
some analytical models, like FMask or topographic correction formulas from Chapter
2 to simulate the CPDs representing cloud and hill shadows. After the reconstruction,
standard methods used for BNs can be applied to infer all other unknown land-use class
variables P(C,jss)-

4.5.1. SAMPLING SPECTRAL REFLECTANCE VALUES FROM MULTI-TEMPORAL LANDSAT IM-
AGES FOR WATER AND LAND PIXELS

In many cases, distributions of the marginal variables introduced in Figure 4.3 are un-

known and may represent very dynamic processes occurring at the same time. To demon-
strate this complexity, N=100 locations are sampled for the area outlined in Figure 4.4,

and then, using only an area covered by surface water, in the middle of the reservoir.

Because surface water of the reservoir changes in time, but also because image registra-

tion may be imperfect, it is hard to ensure that all sampled values correspond to water

and clouds only. However, it should be sufficient to demonstrate the variability of the

processes over a period of 30 years.
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Figure 4.4: Sampling area used for scatter plots, Prosser Creek Reservoir, CA, USA
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Figure 4.5: TOA reflectance values sampled over the study area but covering mainly water pixels. Scatter plot
points are colored as a false-color combination: [swirl, nir, green]. The scalebar indicates probability after
applying the Kernel Density Estimation (KDE) method.
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Figure 4.6: TOA reflectance values sampled over study area (water and soil pixels) from all Landsat images
available for that area (N=930).
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Figure 4.7: TOA reflectance values after conditioning on cloud and snow cover.

The resulting scatter matrix plots, colored as a false-color image using swirl, nir, and
green bands, are shown in figures 4.5 and 4.6, for water-only pixels and water plus soil
pixels. Additionally, the density of the pixels for every scatter plot in the lower triangle
is analyzed. The reason for this exercise is to try to see if different classes can be de-
termined from these distributions or at least to identify the most frequently occurring
values in the case of water, soil, clouds or snow. It is interesting to see that for this area,
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the distance between the most frequently occurring values, which can be used to sepa-
rate water and land, correspond to nir and green bands. However, also the temperature
band shows a lot of variability, where temperature values are formed by the presence of
snow, soil, and water in pixels (three peaks in the histogram of the temperature band) as
shown in the directed graph above. The Figure 4.5 represents a joint distribution, con-
ditioned on some of the variables, in this case, on P(Cy 4rer = 1). As can also be seen,
reflectance values for clouds and snow vary significantly in contrast to lower reflectance
values in the case of water or soil.

By sampling values in the center of the reservoir and the area covering water and the
nearby land, some of the parameters can be automatically reconstructed from these dis-
tributions to be used in combination with classical remote sensing methods for cloud
detection, such as ACCA or FMask. Adjusting the actual thresholds used in these meth-
ods with more objective parameters, it should be possible to automatically identify fully
cloud-free images, and then use them to simulate the marginal distribution representing
water occurrence.

Here, this approach is used to adjust threshold values used to estimate clouds and
snow scores, to identify the most cloud-free images over the reservoir area (in fact, con-
ditioning the joint distribution for L on a C = 0). These cloud-free images are used to
reconstruct the marginal distribution P(Cy4¢er, X, ¥)) for a given time interval, assuming
that the water dynamics under the clouds looks similar to when there are clouds.

4.6. PROBABILISTIC FILLING OF MISSING PIXELS IN SURFACE WATER DETECTION

One of the ways to solve the problem of filling missing pixels, or to remove the less prob-
able false-positive water pixels is to make use of the a priori information about surface
water dynamics. By adjusting cloud (or snow/ice) detection algorithms with local statis-
tics, we can identify images where the number of bad or missing pixels is small, resulting
in very accurate water masks. The figures 4.8 and 4.9 show edges for several of these
water masks and a 2D probability density image estimated from these water masks.

Figure 4.8: Surface water mask detected from cloud-free images (multiple sensors). The images were resam-
pled using bicubic interpolation before the actual mask was detected. This has resulted in a better final water
occurrence.
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Figure 4.9: Water occurrence (prior) estimated from cloud-free images measured by multiple satellites (ASTER,
Sentinel-2, and Landsat)

A

Compute surface area

Cloud, snow/ice and
dark vegetation masking
(NDVI, NDSI)

Topographic masking R Cloud-free, P(W)

(DEM)

Compute water mask

(NDWI, Canny, Otsu) extent?

4

Guess surface areaA
using partial water mask

Figure 4.10: A high-level workflow of the surface water detection method

The method to fill surface area for missing pixels is based on the use of this prob-
ability density image to infer water mask, employing Bayes’ rule. The actual algorithm
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involves a few more steps, where the reconstructed water PDF is also used during edge
detection (less probable water edges are removed). The resulting algorithm, outlined
in Figure 4.10 allows for the automated estimation of reservoir surface area using both
cloud-free and partially cloud-free images.

In fact, the inference step of the algorithm can be schematically visualized as in 4.11,
where on the left side, the original graph is shown, with all irrelevant variables removed.

n?

water

water

Figure 4.11: An example of a BN for a single scene, assuming marginal distribution on the left estimated during
the previous step.

During the first step, where the water probability density function was estimated, the
Landsat 7 and Sentinel-1 images were excluded, because of SLC-OFF errors and because
the SAR water detection algorithm may be less reliable, and because of effects like Bragg
scattering, resulting in false-negative pixels.

In many cases, slightly better results are achieved for noise-free pixels when com-
pared to probabilistic estimate (our initial prior estimate is never perfect). An additional
step was added to choose between a generative surface water estimate and the one per-
formed using discriminative methods. The choice between different water masks de-
tected using generative (density function) and discriminative (dynamic thresholding)
methods is made based on the quality of the pixels, which depends on cloud and snow
scores. For very hilly topographies, it may be necessary to make use of Z; as well, to
avoid misclassification of hill shadows as water pixels.

4.7. APPLICATION TO THE RESERVOIR SURFACE WATER AREA RECONSTRUCTION
A hybrid, stepwise method, combining image processing algorithms and remote sensing
methods would be more appropriate for the accurate estimation of the water mask.
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Figure 4.12: Canny/Otsu, probabilistic update
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Figure 4.13: Canny/Otsu, HAND < 15m, probabilistic update
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Figure 4.14: Canny/Otsu, probabilistic update, HAND < 15m, fill
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Figure 4.15: topographic, Canny/Otsu, probabilistic update, HAND < 15m, fill
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4.8. MEASURING PERFORMANCE OF SURFACE WATER DETECTION WITH FILLING APPLIED

To evaluate the overall multi-step algorithm performance, where a combination of the
dynamic thresholding and the generative estimation of surface water mask were in-
volved, the final surface water area values were compared with the surface water area
estimates computed using the statistical model introduced in Chapter 3.

Additionally, surface water masks not passing the quality criteria were excluded. The
quality score was defined as a combination of multiple parameters, such as the fraction
of false-positive, false-negative pixels, and the number of cloud and snow pixels.

The final surface water area time series, together with the original surface area, esti-
mated from only optical satellite images and NDWI=0, are shown in Figure 4.17.

To further explore the quality of the estimates, a residuals analysis is performed for
the final results, comparing them to the estimates based on the model constructed for
the reservoir. We can see from the figures, that the errors are mostly normally distributed,
RMSE = 0.059km?, indicating good performance of the algorithm.

In the case of cloud presence, the actual threshold variability of the spectral indices
makes them less applicable, resulting in much larger variation of the surface water mask
estimates. Use of the step-wise approach introduced in the last two chapters provides a
way to automatically detect surface water with a very high degree of accuracy.

A, m?
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J00000 6000000 0/28/199: 24/1998  4/19/200 2004 10/10/2006  7/6/2009 2012 12/27/2014  9/22/20

A’, m?

Figure 4.16: Comparison of estimated surface water area A vs. simulated surface water Ax, based on the linear
regression constructed previously. Scatter plots (a, b) show results of the surface water detection algorithm,
without (a) and with (c) probabilistic filling. Time series charts (b, d) correspond to estimated (dots) and mea-
sured surface water area values.
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Figure 4.17: Analysis of residuals (surface area estimated from satellite images vs. surface area estimated from
the linear model). The top chart (a) compares time series estimated from water level measurements and satel-
lite photos (dots), as well as outliers (¢ > g). Chart (b) shows residuals values, assuming surface water area
A* as the ground truth. Scatter plots (c, d) show a comparison of measured water level and estimated surface
water area (c) vs. water levels and A/A* plot (d). The chart (e) indicates histogram of residual values (<3%).

4.10. DIFFICULT SURFACE WATER DETECTION EXAMPLES

To demonstrate the method performance, figures 4.18, 4.19, 4.20 demonstrate a few ex-
amples where the surface water mask estimate is particularly difficult. Using the method
presented here, an almost perfect water mask can be reconstructed, when compared to
the observed water level values.

The first example in Figure 4.18 illustrates the algorithm performance for the case
in which the reservoir is almost fully covered by clouds, and only a small area in the
upper part of the reservoir can be seen. Because these pixels are located in a very flat
area, where water surface area changes correlate with changes in water levels, accurate
estimates of the actual surface area could be made by utilizing the density function con-
structed above. This case may result in larger errors in some reservoirs, where large mor-
phological changes may take place in the river. In this case, our prior distribution, used
to provide posterior estimates, is less informative. In this case, it would be more ap-
propriate to utilize the temporal variability of the surface area. This is relatively easy to
achieve by constructing the water occurrence distribution as three-dimensional, instead
of two-dimensional - P(Cy4rer) = f(x, y, t), where the probability of water at a given lo-
cation may change in time as well.

Figure 4.19 shows a case where the original surface water mask estimate is incorrect
with regards to the very dark cloud shadow pixels. The image was acquired at a rela-
tively low sun elevation, resulting in lower reflectance values, with a very evident cloud
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Figure 4.18: Surface water reconstructed from a small amount of visible water at the edge of the reservoir.
Visible water pixels are located in a dynamic part of the reservoir.

Figure 4.19: Surface water reconstructed from a Sentinel-2 image with a very dark cloud shadow present. False-
positive surface water detected during first pass (red) is corrected after the use of Bayesian update step.

Time: 2016

-120.181

Figure 4.20: Surface water mask reconstructed from Sentinel-1 SAR image. A very limited number of pixels are
visible in a steep part of the reservoir.



4.11. CONCLUSIONS AND DISCUSSION 69

shadow. In fact, looking at the values NDWI of the pixels, corresponding to water and
cloud shadow only, it was impossible to detect the surface water mask reliably. In this
situation, as well as in the case of SLC-OFF images, the surface water mask can be accu-
rately estimated. This claim holds true because a strong correspondence between water
occurrence and detected surface water edges is expected to occur.

A slightly more difficult case can be seen in Figure 4.20, where a small part of the
Sentinel-1 SAR backscatter intensity image is used to estimate surface water. The chal-
lenge here lies in the fact that this part of the reservoir is relatively steep, resulting in a
much higher chance of an incorrect surface water area estimate. Another challenge here
is related to the presence of a very dark edge present in the Sentinel-1 image, which was
excluded by eliminating low entropy areas along the image edges.

Density-based methods may be extremely useful when the waterbody is partially
covered by clouds, cloud shadows, or when only part of a waterbody is visible, due to
limited swath or due to sensor artifacts (SLC-OFF for Landsat 7).

4.11. CONCLUSIONS AND DISCUSSION

In Chapter 3, it was demonstrated that automated surface water detection from multiple
multispectral missions is feasible, however, the surface water detection from noisy satel-
lite images remained difficult. Where such noisy images are frequently occurring (e.g.
in predominantly clouded regions) or where high frequency observations are required,
the applicability of the method presented in Chapter 3 is limited and more advanced
methods are required.

In this chapter, it has been shown that even when a small part of a surface water
body is observed and the remainder obscured, the rest of the surface water body can be
inferred by analyzing historical imagery in which accurate estimates of the surface water
body were established. The accuracy of the final surface water mask depends on how
informative the observed surface water area is, which directly depends on how many
changes (inter- or intra-annual) occur to the surface water at a given location.

The historical imagery is introduced in the water classification algorithm through
Bayesian inference. However, this also assumes independence of the observations from
each other, resulting in overestimation or underestimation of surface water area in sev-
eral cases, such as very noisy images with multiple types of noise present: snow, clouds,
shadows or very noisy backscatter data. To overcome these problems, many other meth-
ods can also be applied such as Hidden Markov Models (HMM), where transition prob-
abilities can be estimated based on multiple historical observations.

Essentially, the method presented in this chapter allows enhancing the spatial reso-
lution of the final estimated water mask. This is done by combining surface water masks
from multiple sensors, with the spatial resolution varying between 10m (Sentinel-2) up
to 30m (for Landsat). The final density function was estimated at a resolution of 5m
combined with the bicubic resampling applied to the images to interpolate values. Even-
though the actual spectral signature gets damaged at the sub-pixel level, it was possible
to generate very accurate surface water mask estimates due to the use of local dynamic
thresholding methods introduced in Chapter 3.

The framework presented in this chapter can also be used in combination with more
general image segmentation methods instead of local thresholding. Alternatives may in-
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clude image segmentation algorithms such as local k-means (SLIC, Achanta et al. [2012]),
combined with methods such as Markov Random Fields (MRF) or Conditional Random
Fields (CRF) to infer the actual land use types based on the spatial neighborhood and
temporal variability of reflectance values.



LONG-TERM SURFACE WATER
CHANGE DETECTION

Methods to detect long-term surface water changes are discussed. A simple method based
on reflectance percentile composites and linear regression is presented. As an example,

Siling Lake in the Tibetan Plateau is used as a study area. The advantages and drawbacks
of the method are discussed.

Keywords: Ms, reflectance percentiles, NDWI, linear regression, long-term surface water
changes.
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5.1. INTRODUCTION

s we have seen in the previous three chapters, accurate surface water detection is
Aa complex task and may require many steps. However, different land use changes
may occur at different temporal scales. If we are interested only in long-term (inter-
annual) land-use changes, more generic statistical methods can be applied to detect
these changes. With sufficient observations available and under the assumption that
statistics of reflectance values for different years remain the same, we can use relatively
simple methods, when compared to those discussed in the Chapter 4.

The first step that should be done when analyzing optical passive sensor satellite im-
agery is the elimination of clouds and cloud shadow effects. Cleaning images from cloud,
cloud shadows, and snow can be a challenging and time-consuming process, especially
when images partially covered by clouds need to be considered. Many methods were
developed to do this properly, as has been discussed in chapters 2, 3, and 4. These meth-
ods can be used to construct completely cloud-free images, or to extract information
required to analyze temporal changes in different land cover classes.

As an alternative to this, we can generate inter-annual composites directly from the
top-of-atmosphere or surface reflectance values. In recent years, this approach was used
in Hansen et al. [2013] to study forest cover changes by employing a combination of
metrics, such as: (a) selected percentile values (b) mean reflectance values for selected
percentile ranges (c) slope of linear regression of band reflectance values versus image
date. Furthermore, they make use of supervised classification methods based on deci-
sion trees to relate these metrics to homogeneously varying subsets of data.

Here, a similar approach to estimate long-term surface water changes is introduced.
However, instead of developing multiple metrics like in Hansen et al. [2013], a single
combined metric employing percentiles is used to estimate average cloud-free reflectance
values and the slope of linear regression to identify pixels where long-term changes have
been occurring.

The resulting method is also more resource efficient because applying linear regres-
sion after averaging is cheaper to compute. The cost of applying linear regression di-
rectly to reflectance values is 0(n?), and the cost to calculate the average value for every
pixel is O(n), where n is the number of analyzed images. The O notation is frequently
used in computer science to indicate scalability of the algorithm with the growth of the
dataset. By employing a two-step approach, surface water changes can be estimated in
almost O(n) time, making it attractive to be applied across multiple sensors, assuming
similarity in reflectance values among different satellite sensors for some spectral bands.
For surface water change studies, the most used spectral index is NDWI. The index uses
near-infrared and green bands. These bands have similar spatial and spectral resolution
across multiple Landsat missions and seem to be in agreement with regards to spectral
response and spectral resolution, except for Landsat 8. For Landsat 8, the OLI sensor
covers the thinner spectral range for the near-infrared band when compared to TM and
ETM+ sensors used by Landsat 4, 5, and 7 Roy et al. [2016], Angal et al. [2014]. A detailed
comparison of spectral responses between Landsat 5 and 7 can be found in Teillet et al.
[2001] and between Landsat 7 and 8 in Flood [2014]. Additionally, the literature says that
data produced from Landsat was cross-calibrated to ensure consistency and continuity
of values between different missions Mishra et al. [2014]. This makes combining images
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across different Landsat sensors, and the use of statistical methods to process their val-
ues, very promising.

TOA reflectance
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Figure 5.1: Aral Sea, Uzbekistan. False-color reflectance percentile composite (swirl, nir, green, 20%). The red
circle indicates the location where reflectance and NDWI values shown on charts were plotted. The composite
images and the time series were computed from 4325 Landsat scenes between 1984 and 2017. Source: https:
//code.earthengine.google.com/clccc09cBb5e7d73bd3a3601f8edfaf3

Surface water is very dynamic and may change on a daily, monthly, and annual ba-
sis. To estimate long-term, inter-annual surface water changes from raw satellite images,
we have to exclude effects caused by both clouds and by intra-annual or seasonal varia-
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tions, assuming these changes remain the same across years. Examples of intra-annual
changes can be seasonal changes in surface water due to natural processes, a regular
water cycle, changes of surface water levels caused by tidal effects in coastal areas, and
variability in surface water levels due to man-made activities, such as the operation of
reservoirs, which may also cause surface water changes in the downstream rivers. Long-
term surface water changes may be due to natural changes of water boundaries, such as
erosion or accretion, natural changes caused by climate changes, or manmade changes
in rivers or coastal zones (embankments, land reclamation, construction of reservoirs).

In reality, a combination of these surface water changes may occur and interfere with
each other, making the task of surface water change detection extremely difficult.

To demonstrate the variability of reflectance values in different bands for an area
where both long and short-term changes took place, a long-term time series in the mid-
dle of the Aral Sea is obtained for pixels which have dried up during the past few decades,
as shown in Figure 5.1. This area has faced dramatic changes regarding surface water
and, as can be seen from the reflectance values, this has influenced both reflectance and
corresponding NDWI value changes. While it would be possible to detect the trend of
NDWI values from the raw reflectance value time series, doing this may be less efficient,
mainly because NDWI values for many pixels corresponding to clouds may look very
similar to the values corresponding to water. Additionally, it would require significantly
more computing resources.

5.2. LONG-TERM SURFACE WATER CHANGE DETECTION

To address long-term surface water changes, we can first try to exclude short-term vari-
ability of reflectance values by computing average images for a long time intervals, ex-
cluding effects of clouds and cloud shadows in this way. By estimating this type of com-
posite images for multiple time intervals, followed by the application of spectral water
indices, such as NDWI, we should be able to reconstruct long-term variability of the sur-
face water changes, which will be reflected in the variability of the NDWI values. One of
the important questions arising using this method is how to select the best percentile, al-
lowing to minimize the effect of clouds and cloud shadows, and at the same time, avoid-
ing the appearance of cloud shadows in the images.

The method will work only if a sufficient number of observations is available. A large
number of images is required to ensure that the distribution of values, used to compute
reflectance percentile composites, converges to the actual distribution representing dif-
ferent land or atmosphere values for a given location is based on similar distributions.
Ideally, the resulting percentile should look the same for two areas when no long-term
surface water changes take place.

Because surface water has a very distinctive spectral signature, with very low re-
flectance values in almost all bands, the presence or absence of water in a given pixel
will be reflected in the final distribution represented as a probability distribution func-
tion (PDF) or a cumulative distribution function (CDF) for a given location.

To demonstrate the main steps used in the methods, surface water changes which
have occurred around the Siling Lake are analyzed - one of the lakes of Tibetan Plateau,
China. In the last few decades, an enormous area of new surface water has been created
due to climate changes. Figure 5.2 shows the final estimate for the submerged land,
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Figure 5.2:

87d0057d8b3d28817b1da7cfc1bd6bbe

TOA reflectance

Siling Lake, Tibetan Plateau, China.
show how the lake looked like in 80’s (left) and how it looks like today (right).
dicates submerged land due to climate changes.

Two reflectance composite images at the top-left

The blue color in-

Source: https://code.earthengine.google.com/
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Figure 5.3: Estimating surface Siling Lake, Tibetan Plateau, China. The actual TOA reflectance values (left-
top), annually-averaged (20%) reflectance values (left-middle) and NDWI values, estimated from annually-
averaged reflectance values (left-bottom). The three charts on the left indicate values and distributions of the
sun parameters for the images used to compute these values.
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equal to 22.5km?.

A straightforward and efficient way to estimate long-term surface water changes may
be to use a two-step approach. First, the intensity percentile composites are computed
for all temporal intervals T used for the change detection analysis:

ol

F(p) =f P(p)dp (5.1

where F - cumulative distribution function, the superscript index i denotes the i'"
percentile, p - reflectance values for a given band.

Then, for every percentile reflectance value p’, the spectral index is computed as an
image:

= u 5.2)

Pgreen* Ppir
After that, the linear regression is performed on a set of all index values for all inter-
vals T:

I=ﬁ0+ﬁ1T+€ (5.3)

The resulting slope of the linear regression f; is then analyzed to identify pixels,
where significant surface water changes took place.

Usually, the percentile is determined empirically and corresponds to low reflectance
values, but not too low, to avoid confusing water with cloud shadows, which can also
be very dark for green and nir (or swir) bands used to estimate spectral indices. For
those pixels, where the slope (3, of the linear regression is significant. The spectral index
values I are also tested to exclude false positive changes, detected for images where most
images correspond to water or land:

I=min(I,Ir8e)
(5.4)
I= max(l, Il”%’f)
where %" and I!47¢ indicate minimum and maximum values of the spectral in-

dex to be considered as water and land correspondingly. The equation 5.4 is applied for
every interval used during temporal averaging.

The first equation of the 5.4 allows to filter pixels, where the slope of the regression is
significant, with all values still belonging to water. The second equation of the 5.4 does
the same to eliminate locations where all of the temporal intensity values belong to the
land.

Additionally, Normalized Difference Vegetation Index (NDVI) vegetation index is used
similarly to remove locations, where, for example, deforestation took place. In this case,
NDWI values may also change significantly in time, but the actual changes do not corre-
spond to surface water changes.

The actual number of images available need to be adjusted based on the cloud fre-
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Figure 5.4: Examples of false-color (swirl, nir, green) images from 1998 acquired by Landsat TM
sensor for Siling Lake, Tibetan Plateau, China. Source: https://code.earthengine.google.com/
882ab2929£536676d56bc79cbc895ded
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Figure 5.5: False-color (swirl, nir, green) reflectance percentile images estimated from 751 images acquired by
multiple NASA Landsat missions during 1984-2017, Siling Lake, Tibetan Plateau, China


https://code.earthengine.google.com/882ab2929f536676d56bc79cbc895ded
https://code.earthengine.google.com/882ab2929f536676d56bc79cbc895ded

78 5. LONG-TERM SURFACE WATER CHANGE DETECTION

quency present for a given area. For the area around this lake, the average cloud fre-
quency is 13%, with relatively low intra-annual variation, as estimated by Wilson and
Jetz [2016] from MODIS images. However, for some areas on Earth, mainly near the
equator, 95% of the images may be covered by clouds. This means, that to apply this
method, many more images need to be analyzed. In this case, only long-term surface
water changes may be estimated using passive optical sensors.

5.3. TOPOGRAPHIC NOISE FOR INCONSISTENT IMAGE COLLECTIONS

Even though the method described in Chapter 5 allows detection of surface water changes
at high accuracy, a substantial commission error may occur in mountain regions. These
errors are caused mainly by combined errors of elevation and azimuth, causing differ-
ences in hill shadows in composite images, used to detect surface water changes. For
global analysis, most of these errors were eliminated by masking-out the final surface
water changes images with the topographic index derived from HAND. The topographic
mask, constructed by HAND < 40m, was used to filter out these errors. The HAND
dataset used for the processing was generated from 30m SRTM and some auxiliary 90m
datasets to cover areas where it was not acquired (>60 degree north latitude) Donchyts
et al. [2016c]. However, for very accurate surface water change estimates this may also
result in omission errors in the areas when DEM values are incorrect. For the time be-
ing, no free high-resolution DEM exists to be used as a topographic index (via HAND).
Therefore, the Aqua Monitor website does not perform this correction during on-the-fly
estimation of surface water changes. This may change in future versions, when a more
appropriate method is introduced.

Examples of these errors are demonstrated in Figure 5.6.

The same errors were reported in the Hansen et al. [2013] dataset, which uses similar
methods to estimate surface water changes (interval mean percentile composites versus
percentile composites in Aqua Monitor).

A time consuming approach to eliminate these errors could be to perform topo-
graphic correction on every image before passing them to the change detection algo-
rithm. However, this may significantly increase the amount of resources needed, making
this type of analysis hardly achievable today.

5.4. CONCLUSIONS AND DISCUSSION

The method presented in this chapter showed surprisingly good performance for most
of the places on Earth and was used to analyze global surface water changes over the
last thirty years. Despite its simplicity, the method can very accurately detect long-term
surface changes. Additionally, it is easy to implement using the Google Earth Engine
parallel processing platform.

Another advantage of the method is that it is less resource intensive when compared
to a more streamlined approach to detecting surface water changes. Hence it can be
used for large planetary-scale studies and for a wide range of users, which is demon-
strated in Chapter 6. For example, all images are first classified e.g. using supervised
machine learning methods, and then the changes are computed from the resulting the-
matic maps.

However, it may be difficult to reliably detect surface water changes when:
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Figure 5.6: False-positive composites (swirl, nir, green) and surface water changes commission errors due
to inconsistent sun parameters in the samples used to compute changes in the hilly areas (2000-2015). Top:
upstream of the Lake Mead (36.10, -113.90); bottom: river near Yogongxiang, China (30.27, 94.90).

(a) the number of images used to compute percentiles is low
(b) surface water changes follow a more complex pattern than a one directional trend

(c) multiple land-use changes are present, represented by low reflectance values but
irrelevant to surface water changes

(d) complex topographic conditions combined with unequally distributed sun pa-
rameters in different time intervals

Some of these issues can be easily addressed, for example, by changing empirically
chosen percentiles to ensure one captures pixels free from cloud and snow effects.

Additionally, image samples used to compute percentiles can also be selected to only
represent certain seasons, where some of the effects are less present, filtering image col-
lections by day-of-year or by sun parameters, to avoid the most evident topographic ef-
fects.

The methods presented here work best when reflectance values, representing com-
plex land-use and atmospheric changes, are similarly distributed. While for surface wa-
ter this is frequently true, it may be less trivial under very complex land-use change
(c). To detect these kind of changes automatically, additional inference steps may be
required, for example, where different patterns can be recognized in the distributions
such as those presented in Chapter 4, Figure 4.5.



http://aqua-monitor.appspot.com/?from=2000&to=2013&view=36.103119715292486,-113.93795967102045,13z&max_doy=365
http://aqua-monitor.appspot.com/?mode=dynamic&from=2000&to=2013&view=30.269128374988604,94.89677429199217,12z&max_doy=365&averaging_months1=36&averaging_months2=36
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While linear regression may be a good choice to detect monotonic long-term changes,
surface water may follow much more complex trends, requiring the use of more complex
methods to capture them. For example, logistic regression can be used instead of linear
regression to detect abrupt changes such as construction or decommissioning of reser-
voirs, or to analyze autocorrelation to detect recurring surface water changes.

With the increasing number of satellite images available, the use of statistical meth-
ods may be a powerful instrument, providing an easy way for change or anomaly detec-
tion before the use of more complex methods.



EARTH’S SURFACE WATER CHANGE
FOR THE LAST 30 YEARS -
AQUA MONITOR

Has the world become wetter or drier? Can we see global trends in the changes of coast-
lines, and are these trends also apparent where we live? Is the total surface water storage
on land growing or shrinking at global and local scales? This chapter presents results
of the global surface water change study using data from all Landsat missions (2PB). All
calculations were performed using Google Earth Engine infrastructure and the algorithm
discussed in the previous chapter. The new tool, Aqua Monitor, illustrates how emerging
cloud platforms for large satellite data analysis, are rapidly removing the thresholds to the
use of planetary-scale data. The main finding of the Aqua Monitor show that the largest
contributors to the transition between water and land include Aral Sea (water to land)
and Tibetan Plateau (land to water).

Keywords: global surface water changes, climate changes, land reclamation, erosion, ac-
cretion.

This chapter is based on G. Donchyts, E Baart, H. Winsemius, N. Gorelick, J. Kwadijk, and
N. van de Giesen. Earth’s surface water change over the past 30 years. Nature Climate
Change, 6(9):810-813, 2016a.
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6.1. INTRODUCTION

HANGES from land to water and vice versa are extremely relevant as witnessed by

many recent news items. Rapid retreat of Tibetan Plateau glaciers observed during
thelast decades Chen et al. [2016]. The impoundment of the Three Gorges Dam in China
is causing massive inundations, forcing about 1.3 million people to resettle Jackson and
Sleigh [2000]. New islands along the coast of Dubai are created to provide new secluded
areas for leisure and residence for the wealthy. The Mississippi Delta is losing thousands
of hectares of land per year due to soil subsidence and lack of sediments Giosan et al.
[2014], further aggravated by sea-level rise. The president of Kiribati declared that his
people would need to move to new grounds to prevent them from dying from the effects
of sea-level rise on the atoll Weiss [2015];

The causality of appearing or disappearing water surfaces may strongly depend on
the case-specific context. Although atolls, such as Kiribati, are under severe threat, the
exact effects of sea-level rise on coastal erosion, globally, may strongly depend on bio-
physical interactions as well, particularly in coastal marshes Storlazzi et al. [2015], as
atolls may increase accretion rates as sea-level rise progresses Kirwan et al. [2016]. The
impoundment of the Three Gorges Dam has resulted in a reduction in sediment con-
centrations in the downstream Yangtze River of about 70%. Unexpectedly, this reduction
has not led to aretreat of the downstream submerged Yangtze River Delta so far Dai et al.
[2014], contrasting to what is happening in the Mississippi Delta.

These examples demonstrate that conversions - and the stories and reasons behind
them - can vary widely and are often the result of compounding causes. Therefore,
general conclusions cannot be drawn from a limited sample of case studies. Instead,
planetary-scale monitoring is needed to understand (and disentangle) the causes of de-
tected changes and their attribution to natural variability, climate change or man-made
change.

6.2. METHOD TO ESTIMATE EARTH’S LONG-TERM SURFACE WATER CHANGES

To obtain changes in water and land occurrence, the method described in the Chapter 5
is applied. The resulting algorithm was also implemented as an open-source website,
called Deltares Aqua Monitor. Aqua Monitor prepares cloud-free average reflectance
composite images for multiple years using all satellite images from all NASA Landsat
missions and estimates surface water changes on-the-fly. The Deltares Aqua Monitor
typically uses a 2-year period to obtain a sufficiently large number of images. However,
to quantify long-term surface changes which have occurred during the last 30 years, we
have extended this period to a longer baseline. The comparison was performed using
two intervals: 1985-2005 and 2013-2016. The much longer first interval was required to
ensure we have sufficiently large sample to compute statistics, as the number of images
before 1999 is significantly smaller than those of recent years.

The Aqua Monitor establishes water-land and land-water occurrence on-the-fly by
estimating the MNDWI spectral index values and performing trend analysis for these
MNDWI values over both user-selected periods. For the analysis in this chapter, these se-
lected periods were 1985-2005 and 2013-2016 as mentioned above. To decrease noise for
high latitudes, all Landsat images acquired during night time were excluded. Addition-
ally, we apply a topographic mask based on Height Above the Nearest Drainage (HAND)
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to decrease the noise in hilly areas, occurring due to mismatches between sun elevation
and azimuth parameters in both periods. All pixels representing mountain hills (HAND
> 150m) are excluded, as described in Donchyts et al. [2016b]. The final estimates of the
surface area (land to water and water to land) were obtained by including pixels where a
large slope of the linear regression was observed.

6.3. EARTH’S SURFACE WATER CHANGES AT 30M SPATIAL RESOLUTION

Because the spatial scale of many surface water changes is small, we have upscaled the
final results (30m to 300m) in a form of two global images: (a) surface water changes with
transition water to land (green) (b) surface water changes with transition land to water
(blue).

To produce the final global image and the Figure 6.1, both global images were mo-
saicked with an alpha channel, to ensure visibility of the pixels where both changes take
place.

The Deltares Aqua Monitor (http://aqua-monitor.deltares.nl)isthefirst global
scale tool that shows at 30-m resolution where water is converted to land and vice versa.
With assistance from Google Earth Engine, it analyses satellite imagery from multiple
Landsat missions, which observed Earth for more than three decades. The Aqua Mon-
itor provides a much needed, fully planetary-scale view on changes in land and water
occurrence (Garcia et al. [2016]). Documented and undocumented changes due to man-
made interventions, natural variability and climate change are revealed. It is possible to
look at any area of interest and use the outcomes for scientific advances at planetary-
scale, review large-scale statistics on land and water conversion, or open a discussion
with stakeholders in a given area on the basis of unbiased information on water and
land occurrence and change.

6.4. SURFACE WATER CHANGE EXAMPLES

This chapter demonstrates the planetary-scale ability of the Aqua Monitor by showing
some significant and contrasting water-land conversions. It provides a perspective of
what these abilities - which are now available to any researcher or stakeholder - mean
for climate research. First, the planetary-scale changes in the occurrence of water and
land are shown. It can be seen that globally, between 1985 and 2015, an area of about
173,000 km? — about the size of the state of Washington — has been converted to land,
and an area of 115,000 km? has been converted into water. An overview of the largest
changes found globally, aggregated per drainage basin, are shown in Figure 6.2. The
Tibetan Plateau and the Amazon River are the areas with the largest area conversion to
water. The Aral Sea stands out for conversion to land. As changes in surface water only
affect people at a regional and local scale, we show some contrasting cases for different
areas in Figure 6.3 and describe these below.



http://aqua-monitor.deltares.nl
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a, Myanmar Reservoirs b, Hwanggang Dam,North Korea

e, Ganges-Brahmaputra Delta

South Asia : f, Taiji Nai'er Lakes, China 70 7kn]

" g, Aral Sea h, Lake Mead, USA

Figure 6.3: Examples of surface water changes between 1987 and 2015, detected using Aqua Monitor. Blue:
conversion from land to water. Green: conversion from water to land
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6.4.1. KNOWN AND UNKNOWN (MYANMAR VS NORTH KOREA)

Although many countries report on their dam construction, information in more re-
mote or isolated areas is lacking. In Myanmar, the Global Reservoir and Dams database
Lehner et al. [2011] shows an increase in water surface between 1985 and 2010 of about
400 km?. Using the Aqua Monitor, we have counted the appearance of 1,180 km? of
new water surface in this region over the same period (Figure 6.3a). The previously un-
mapped damming of the Rimjin River in North Korea, close to the border with South
Korea, resulted in a storage surface of 12.4 km? (Figure 6.3b). This s, in fact, the Hwang-
gang Dam, mapped 35 km eastward. The dam was the topic of an international dispute
between South and North Korea after the 2009 flash flood that killed six fisherman Sang-
Hun [2009].

6.4.2. LUXURY VERSUS NEEDS (DUBAI VS SINAPORE)

The largest coastal water-land change is the construction of the Palm Island and adja-
cent islands along the coast of Dubai 80 km? (Figure 6.3c). Many countries have shaped
and extended their coastlines by land reclamation. The motives to reclaim land are
highly diverse. In Dubai, the main motivation was to increase the coast length, provid-
ing more room for recreation Davidson [2009]. In contrast, reclamations in Singapore
(76 km?; Figure 6.3d) are necessary to support its economic growth http://www.mnd.
gov.sg/landuseplan).

6.4.3. NATURE VERSUS MAN-MADE (GANGES-BRAHMAPUTRA DELTA VS TAJI NAJER LAKE)
Results of the Aqua Monitor only show compound impacts of natural and human change
or variability. It is often hard to tell what the causes are for a change without looking at
the details of the local water and sediment budget. Although changes in meanders in
the Brahmaputra River Delta are clearly natural (Figure 6.3e), the Mondrianlike shapes
formed near Taiji Nai’er lakes in China, are clearly man-made (Figure 6.3f).

6.4.4. DISRUPTIVE VERSUS GRADUAL (ARAL LAKE VS LAKE MEAD)

An example of disruptive change can be found at the Aral Sea, once the fourth-largest
lake in the world. Since the 1960s, Soviet engineers diverted the rivers away from this
endorheic lake to irrigate cotton and wheat agriculture Glantz [1999]. The lake has al-
most entirely dried up, losing about 27,650 km? of surface water (Figure 6.3g). The pos-
itive impacts of a recent restoration program Micklin [2016] in the northern part can be
observed as well. A slower drying lake can be found near Las Vegas at Lake Mead, the
largest freshwater supply in the United States. It lost 222 km? over the same period (Fig-
ure 6.3h). The 10% probability scenario that the lake would have already dried out by
2013 Barnett and Pierce [2008] did not come true, but the lack of inflow from the Col-
orado River will cause the lake to gradually disappear.

6.5. NEAR-SHORE COASTAL SURFACE WATER CHANGES

One of the questions which can be answered by remote sensing is how much surface wa-
ter changes took place along the global coastline. This can be important to detect effects
such as sea level raise and other changes caused by natural processes or anthropogenic
factors. Some examples of natural processes causing the largest coastline changes are
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migration of mudbanks along the East-North part of South America, causing erosion
and accretion of the coastline and mangrove areas up to 3km in width; changes along
the coastline surrounding the mouth of the Mississippi River, though here many of these
processes are also reported to be caused by man-made changes, such as construction of
levees, causing reduction of deposits of fresh water and silt from the river; erosion and
accretion of the Brahmaputra River Delta, causing appearance of 20m long islands and
erosion of large areas - this is probably the area where the largest natural changes take
place along the coastline.

At the same time, we can conclude from the results of our study, that many man-
made changes along the coast have resulted in a reclamation of large areas. When not
considering the Aral Sea, the major contributor to the man-made changes is China,
where about 6000 km? of new land has been claimed from the sea. Land reclamation
occurs practically along the whole Chinese coastline, resulting in areas up to 5km wide
claimed from the seas.

Even though this would be a very interesting study to perform on its own, we have
tried to roughly estimate these near-shore changes. One of the main challenges we have
faced when performing this analysis is to select a baseline coastline. In our experience,
the accuracy of all existing and freely available vector and raster datasets defining coast-
lines is insufficient for this kind of study, mainly because the coastline is dynamic in
many locations. Therefore, a multi-step approach is required to firstly estimate the base-
line coastline for a given period and to compute long-term surface water changes from
this baseline. To simplify the analysis, we have used a 40km buffer around OSM coast-
line, followed by aggregation of these changes for every country. The resulting surface
areas for both accretion and erosion are reported in the Figure 6.4.

6.6. CONSLUSIONS AND DISCUSSION
Big satellite data analytics at anyone’s fingertips may have strong implications on mon-
itoring capacities and associated actions. At a very local scale, a civilian can now as-
sess without any expert assistance, if coastal erosion threatens their house. At a regional
scale, a downstream riparian state can monitor from year to year, if upstream neigh-
bours are establishing new impoundments. Finally, at a global scale, agencies such as
the United Nations International Strategy for Disaster Reduction can monitor the ap-
pearance of new, possibly flood hazard reducing, reservoir storage capacity.
Implications for climate research follow from the fact that the available time series
are long enough to cover a climatologically relevant period. The period of 30 years al-
lows distinction between noise of (multi) annual variations, such as the lake surface area
of Lake Nasser, and long-term trends in land and water distribution, such as the van-
ishing of the Aral Sea. Feeding changes in land and water surfaces into regional climate
models will lead to better representation of circulation patterns, as well as local climate,
in particular in the vicinity of large wetlands Mohamed et al. [2005]. Another example
is the attribution to sea-level rise or other drivers of coastal erosion in soft sediment
coastal areas Barros et al. [2015]. Drivers such as sea-level rise, sediment delivery and
subsidence, and the biophysical properties of the coastline, can cause highly nonlin-
ear erosion and accretion. Quantifying the contribution of these drivers would benefit
tremendously from information on multiscale patterns of erosion and accretion from


http://aqua-monitor.appspot.com/?from=2000&to=2016&view=5.37464731850053,-52.96134948730469,11z
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Country Area, km2 Country Area, km2
India . | 2593 China 6019
China = | 2402 Kazakhstan _ 3635
USA | 1904 India 2757
Indonesia 1540 Russia | 2618
Mexico | 1506 Australia | 1803
Russia | 1119 Brazil 1664/
Myanmar 1118 USA 1571
Vietnam [ 907 Bangladesh 1356
Bangladesh | 876 Iran 1226
Brazil Ll 842 Indonesia 1109
Pakistan | 825 Pakistan | 1094
Australia L 815 Myanmar 878
Iran ] 644 Turkmenistan 817
Canada 617 Vietnam 1 783
Iraq 1 576 Egypt 620

Figure 6.4: Largest land-water changes within 40km distance around the coastline from 1985 until 2015. Light
colors indicate country-scale changes, while bright colours show the actual location of the changes. Left:
changes from land to water. Right: changes from water to land.

low (global) to very high (local) resolution. The climate community is presented with the
capacity to take into account these new planetary-scale observation abilities.
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This chapter studies derivation of a surface water map of the Murry-Darling River Basin,
Australia. Three surface maps are derived from three datasets: Landsat 8, 30m DEM
(SRTM), and OSM. Methods developed in Chapters 3 and 5 are applied to detect per-
manent surface water. Positional differences between datasets are analyzed and demon-
strated to be less than 60m for OSM and Landsat 8. The differences between the new water
mask and SRTM-based linear features and hilly areas are slightly larger (110m). The over-
all agreement between OSM and Landsat 8 water masks is about 30%. It is demonstrated
that all three datasets complement each other in terms of their quality and coverage.

Keywords: Murray-Darling River, permanent water, Landsat 8, MNDWI, SRTM, HAND,
OpensStreetMap, CART, positional accuracy
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N. van de Giesen. A 30 m resolution surface water mask including estimation of posi-
tional and thematic differences using landsat 8, srtm and openstreetmap: A case study
in the murray-darling basin, australia. Remote Sensing, 8(5):386, 2016b.
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CCURATE maps of surface water are essential for many environmental applications.

Surface water maps can be generated by combining measurements from multiple
sources. Precise estimation of surface water using satellite imagery remains a challeng-
ing task for remote sensing due to sensor limitations, complex land cover, topography
and atmospheric conditions. Alternatively, in case of hilly landscapes, a drainage net-
work can be extracted from high-resolution digital elevation models.

Additionally, VGI initiatives such as OSM can also be used to produce high-resolution
water body maps. They are frequently digitized and validated manually using the highest
resolution available data sources. In this study, a high-resolution water mask is gener-
ated using Landsat 8 imagery and OSM as well as the (potential) drainage network using
30m SRTM. The approach presented here focuses on the surface water detection from
Landsat 8 imagery and comprises the use of a 15% intensity percentile Landsat 8 im-
agery measured during 2013-2015.

To detect the surface water mask, a new non-parametric unsupervised method is
used, based on Canny edge filter and Otsu thresholding, as discussed in Chapter 3. For
hilly areas, the method is extended with an additional supervised classification step used
to refine the water mask. Furthermore, it was applied across the Murray-Darling Basin,
Australia. Differences were analyzed between the new Landsat 8 based water mask,
OSM, and potential water mask derived from the digital elevation models. The results
show that about 50% of the OSM linear water features can be confirmed using the water
mask extracted from Landsat 8 imagery and the drainage network derived from SRTM.

7.1. REMOTE SENISNG AND VOLUNTEERED GEOGRAPHIC INFORMATION (VGI)

The main reason why OSM was chosen in the current study over local, authoritative
datasets, is that it provides a global coverage, even though its local coverage and quality
may vary. Additional research would be required to perform a detailed comparison of
the datasets presented in this paper to the local Australian authoritative datasets, such
as Surface Hydrology Crossman, S. & Li [2015], Water Observations from Space Mueller
et al. [2015], or 5m Digital Elevation Model (DEM) of Australia Geoscience Australia
[2016].

We derive a high-resolution water mask using Landsat 8 imagery and OSM as well as
the (potential) drainage network using 30m SRTM. Extracting a water mask from OSM
data is relatively straightforward (Section 2.2), but the other data sources require a spe-
cialized workflow. Our approach to derive a surface water mask from Landsat 8 imagery
is described in Section 2.4, involving the steps to compute cloud-free average reflectance
composites in Section 2.4.1. Additionally, we introduce a new non-parametric unsuper-
vised method to detect water in flat areas (Section 2.4.2). We also propose a supervised
classification step to refine the water mask in hilly areas (Section 2.4.3).

We make use of several open geospatial and remote sensing datasets to construct
an open water map. Section 2 provides an overview of the main input datasets utilized
in the study, as well as methods applied or developed to detect water, and to compare
the resulting water masks. The main input datasets include (1) images acquired by the
NASA Landsat 8 mission Roy et al. [2014]s; (2) a new revision of a nearly-global 30m DEM,
measured by the SRTM mission NASA [2016]; and (3) OSM data for the Murray-Darling
basin in Australia.
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Additional research would be required to perform a detailed comparison of the datasets
presented in this paper to the local Australian authoritative datasets, such as Surface Hy-
drology Crossman, S. & Li [2015], Water Observations from Space Mueller et al. [2015],
or 5m Digital Elevation Model (DEM) of Australia Geoscience Australia [2016].

7.2. METHODS AND STUDY LOCATION

The Murray-Darling Basin', named after the two main rivers in the basin, is located in
semi-arid and arid climate zones, covering 1 059 000 square kilometers, an equivalent
of 14% of Australia’s total surface area. OSM water features include 10 106 linear and 6
708 aerial hydrographic features representing both natural and manmade water features
such as rivers, lakes, and canals (Figure 7.2). The features also include water bodies,
which are only partially covered by water during the year. Figure 7.2 shows both hydro-
graphic features extracted from OSM and the (potential) river network obtained from
HydroSHEDS Lehner et al. [2008].

Figure 7.1: Murray-Darling junction, Australia. Photo by: Michael Storer

The Murray-Darling Basin receives most of its rainfall from a very small percentage
of the Basin; mainly along the southern and eastern parts. The rest of the basin is flat
and low-lying, contributing very little or no run-off to the rivers. Relevant for this study,
many tributaries within the basin are intermittent streams, with highly variable flows
dependent on the wetness of the year.

http://www.mdba.gov.au/about-basin
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7.2.1. STUDY SITE: MURRAY-DARLING RIVER BASIN
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Figure 7.2: Overview of the study area, Murray-Darling River Basin, and vector water mask dataset extracted
from OSM. The inset map is based on Natural Earth 1 raster dataset (http://www.naturalearthdata.com/)

7.2.2. INPUT DATASETS USED TO EXTRACT WATER MASK

Even though HydroSHEDS provides a much better coverage, its resolution is limited to
15 arc seconds (450m), which is insufficient to resolve all small water features required
for detailed water-related applications. Furthermore, it was based on older, 90m revision
of SRTM, which is less detailed compared to a recently released 30m version. Therefore,
to develop a method to generate the water mask, we have used four input datasets (see
Table 7.1 and Figure 7.3). The first dataset, Landsat 8, combines 2743 scenes of opti-
cal multi-spectral satellite imagery acquired during 2013-2015 over the study area. The
Landsat 8 mission already operates for more than two years and, therefore, provides a


http://www.naturalearthdata.com/
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Table 7.1: Input datasets used for the analysis

Dataset | Type Resolution Notes
Landsat 8 TOA | Raster | 15m, 30m,60m | 2743 scenes were used acquired during 2013-2015,
top of atmosphere (TOA) reflectance.

SRTM | Raster 30m Effective resolution is lower due to the presenceof
high-frequency noise
OpenStreetMap | Vector 1m-100m Planet file from August 2015, the following tagsquery

was used to indicate water features:natural=water or
natural=spring or waterway=or landuse=basin or
landuse=reservoir orbarrier=ditch or
landuse=saltpond

HydroBASINS | Vector 450m Level 8 basins were used to delineate HAND using
30m version of SRTM

reasonably long period of information to estimate water dynamics on a global scale. The
second dataset is based on the new 30m revision of the SRTM digital elevation model.
The last data source consists of all water features, extracted from a recent version of OSM
Planet File OpenStreetMap [2016a]. Additionally, HydroBASINS Lehner and Grill [2013]
was used as a supplementary dataset to simplify extraction of a drainage network from
SRTM.

Extraction of water features from OSM is a relatively trivial task, mainly consisting of
a careful selection of proper filters and data conversion tools. We have used data con-
version tools provided by OSM and a set of programs based on GDAL (http://www.
gdal.org/) to select only relevant features representing surface water. To derive a high-
resolution drainage network from SRTM, we have used the D8 method O’Callaghan and
Mark [1984], implemented using PCRaster Karssenberg and Schmitz [2010]. The stream
delineation step was applied for every -catchment of the Murray-Darling basin. The Hy-
droBASINS level 8 catchment geometries were used for this purpose. This step was re-
quired due to the large size of the catchment making it difficult to perform processing in
a single step.

Extraction of the water mask using Landsat 8 imagery was the most challenging task
and required the development of a new method to derive a water mask from multi-
spectral imagery. The new method combines the use of the MNDWI spectral index (7.2)
extended with a non-parametric detection of a local threshold to improve the accuracy
of water detection. The MNDWI is very similar to the NDWI spectral index (7.1), but uses
a short wave infrared band instead of near-infrared. Additional steps include the use of
the NDVI Tucker [1979] (7.3) with a high threshold value (0.3) to exclude false water de-
tection in very dark vegetated areas.

NDWI= (pgreen_pnir)/(pgreen+Pnir) (7.1)
MNDWI= (Pgreen_Pswirl)/(Pgreen+pswir1) (7.2)

NDVI= (pnir_Pred)/(Pnir"’Pred) (7.3)
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Figure 7.3: The datasets and their corresponding water masks: OSM (A and D), Landsat 8 (B and E) and 30m
SRTM (C and F). Murrumbidgee River, north of Canberra.

where pgreens Pswirl, Pnir» and proq represent TOA reflectance for corresponding
Landsat 8 bands.

We have included an additional classification step to refine the water mask for hilly
areas, where the results of automated classification led to high commission errors. We
have used a supervised classification based on CART Breiman et al. [1984], which was
trained using a manually digitized training set to distinguish between water and land
pixels.

Our selection of the input datasets was based on the assumption that the accuracy
of all three datasets is similar. However, estimation of the actual errors of OSM would
be difficult, mainly because OSM features are usually based on different measurement
methods (GPS traces, manual digitizing using medium or high-resolution imagery of
bulk import from other databases of varying nature). For Landsat 8 and SRTM the main
limitations are well known Roy et al. [2014], Rodriguez et al. [2006]. Horizontal accuracy
of Landsat 8 is known to be better than 12m in 90% of the 30m resolution images of the
Operational Land Imager (OLI). For SRTM, vertical relative and absolute errors can be
explained by its radar nature and are in the order of 10 and 16 meters for 90% of the data,
with an absolute geolocation error below 13m.

7.2.3. DERIVATION OF HYDROLOGICAL VARIABLES: DRAINAGE NETWORK AND HAND

In addition to the drainage network, a number of other hydrological parameters were
derived during SRTM analysis, such as local drainage direction, flow accumulation, and
HAND (see Figure 7.4).
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Figure 7.4: Digital elevation model, SRTM 30m (left) and HAND (right).

A (potential) water mask was generated by thresholding HAND values using 1m el-
evation above the nearest drain. We found this approach to work better in estimating
water masks in flat areas compared to the methods based on flow accumulation.

All hydrological variables were derived using the following steps: 1) clip DEM using
a Google Earth Engine script and one of 1494 HydroBASIN polygons and download it
to Google Compute Engine (GCE); 2) Compute slopes, local drainage directions (LDD,
includes pit-removal step), flow accumulations, and HAND. 3) Upload results to Google
Earth Engine (http://earthengine.google.com) and Google Fusion Table (http://
tables.googlelabs.com/) so they can be used in parallel processing scripts for further
analysis. To compute HAND, a drainage network had to be estimated by thresholding
the flow accumulation. We have used a threshold equal to 100 upstream cells, which was
sufficient to detect most of the potential rivers.

The resulting HAND can be used for the estimation of potential flood areas, but also
to detect pixels where potential errors occur due to hill shadows. These areas were es-
timated by generating a binary mask based on a variation of HAND values. The mask
showing potential hilly areas was computed by marking pixels as hilly in a case where
HAND values larger or equal to 30m were found in the 300m radius neighborhood.

7.2.4. METHOD OF WATER DETECTION USING LANDSAT 8

Our method of water detection from multi-spectral multi-temporal imagery is based on
a step-wise approach combining unsupervised and supervised classification steps (Fig-
ure 7.9). The unsupervised step was applied first to detect the initial water mask using
percentile images of reflectance, resulting in minor omission errors in flat areas. How-
ever, we obtain very high commission errors in hilly areas due to terrain shadow. There-
fore, an additional step was required to refine the water mask using supervised classi-
fication. The unsupervised classification step is based on the local adaptive threshold
detection method presented in Chapter 3.
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Figure 7.6: False-color intensity percentile composite image (swirl, nir and green) (left), MNDWI index values
(middle) and its histogram (right)
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Figure 7.7: Water boundary classified using threshold = 0.0 (left) and threshold = 0.32 automatically detected
for this location using new method (right).

The proposed method was applied to the cloud-free percentile images. In a case of
two classes in the grid tile, we were able to get an almost perfect detection of water pixels
using the following parameters: s=0.7,th=0.99 for the Canny edge filter, and a structuring
element with the size 15m x 15m to dilate the edges in step 3 and create a surrounding
buffer region. The s and th parameters are used to define the standard deviation of the
Gaussian smoothing kernel and the threshold used to define sensitivity of the filter, re-
spectively.
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Figure 7.8: Histograms of MNDWI values within 15m of detected edges (A) and a histogram of detected thresh-
old values (B)

7.2.5. REFINING WATER DETECTION USING SUPERVISED CLASSIFICATION BASED ON CART
AND HAND

The method was applied over 1725 spatial boxes of 20km x 20km covering the Murray-

Darling basin. The 20x20 km area was chosen arbitrarily, and it is assumed that the

threshold values are the same within each spatial box area. The resulting MNDWI thresh-

old values have a range of -0.25 to 0.4 (Figure 7.8), which clearly highlights the need for

varying the MNDWI threshold spatially.

The supervised classification step, based on CART, was introduced to reduce com-
mission errors found in the case of shadows and snow/ice pixels. It was performed only
for hilly areas where misclassified pixels were observed. Hilly areas were detected using
a threshold of Hmax, representing the minimum HAND value (30m in our case). In this
way, we could keep omission errors low for flat areas and ensure low commission errors
for hilly areas. The final error of water detection was very low (less than 1%), mainly due
to a presence of mixed pixels or incomplete training data for hilly areas. An additional
step was required to exclude very dark vegetated areas, resulting in high MNDWI values
and, therefore, misclassified as water. These errors were removed by eliminating pixels
with NDVI values greater than 0.3.

In order to compute the final water mask, the study area was divided into regular
grid tiles 0of 0.2 x 0.2 degrees in size. This step was needed to make sure that the dynamic
MNDWI threshold is estimated for every tile, but also to parallelize the processing. Fi-
nally, the above workflow was applied for every tile.

7.2.6. CLOUD-FREE LANDSAT 8 PERCENTILE IMAGES

Our method to exclude clouds and shadows in the satellite imagery is based on the use of
percentile images extracted from an image collection, spanning a two year period (2013-
2015), instead of the original images. The percentile images were computed on a per-
pixel and per-band basis using 50-130 top of atmosphere (TOA) intensity values. The
larger number of images comes from a higher revisit frequency due to an overlap in the
satellite swath.
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Figure 7.9: Water detection processing pipeline
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Figure 7.10: Intensity percentile false-color image (swirl, nir, green) based on 2743 Landsat 8 images for 2013-
2015, 20% (left), 50% (middle), 80% (right)
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Figure 7.11: Intensity percentile false-color (swirl, nir, green) images. Left to right: 5%, 10%, 20% for areas with
average cloud cover 32% (top) and 4% (bottom).

The percentile images (Figure 7.10) appeared to describe the water dynamics in a
better way than the interval mean images used in other studies Potapov et al. [2012],
Hansen et al. [2013]. Evensthough we have confirmed this result only by visual inspec-
tion, the reasoning comes from the fact that the water surface area may change sharply
depending on local topographic conditions. This water area change results in sharp
changes between water masks present in different percentiles (see Figure 7.11).

Over the Murray-Darling basin, the percentile range of 15%-55% of all TOA intensities
was empirically found to be suitable for permanent water detection. However, for semi-
arid and flat areas, where cloud frequency is very low, a larger range of percentiles (up
to 90%) could be used as well. Average images generated for very low percentiles usually
result in too many artifacts present in the images due to cloud and hill shadows, making
them difficult to interpret automatically (Figure 7.11) top/left. At the same time, the use
of lower percentiles has a higher chance to represent a larger amount of surface water,
present during floods and wet seasons and a smaller amount of surface water observed
during dry seasons (bottom row with cloud frequency = 4%). For a more detailed analysis
the choice of the upper and lower percentiles can be estimated by taking cloud frequency
and topographic conditions into account.

The use of simple water spectral indices in hilly areas is usually not sufficient, as they
frequently result in very high commission errors due to false detection of water pixels.
This misclassification is especially true for MNDWI, which is more sensitive to hill shad-
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ows than NDWI. The reason is the spectral signature of hill shadows, which looks similar
to the one corresponding to water, resulting in large MNDWI values. To remove these er-
rors, we have trained a CART classifier using a manually created training set, all Landsat
8 bands, and HAND. The training set was created only to include those pixels that were
misclassified during the unsupervised step, which appeared to be true only in hilly areas.
The HAND values used to train the classifier were included only when they were greater
than 10m. This constraint was introduced to reduce the influence of SRTM errors that
get higher near water bodies.

The classification was performed using a Google Earth Engine implementation of
CART with a tree depth increased from 10 (default value) to 20. The larger tree depth
was required to avoid overfitting and because our study basin covers a relatively large
area, resulting in a large variation of water and land use types. Overfitting was detected
by observing the confusion matrix generated after training the classifier. In the final
training set, the confusion error was very close to zero.
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Figure 7.12: Steps performed during supervised classification post-processing step for hillslope areas. (tile
2847). False color 15% percentile composite image (A), MNDWI scaled from (B), water detected using adaptive
threshold method (C), results of application of CART classifier (D), 300m buffer areas around HAND > 30m
used to select final water mask (E) and the final water mask (F).

The final training set contains about 500 polygons created manually and iteratively
by training the classifier for one set of tiles and then validating it for all other tiles where
supervised classification was required. This step was required mainly for the grid tiles
located in the southern part of the catchment (hilly landscapes).

Since Landsat can reveal water features better than SRTM, we have also decided to
analyze the HAND values of all pixels used during the training stage (Figure 7.13). The
results reveal that HAND values can take values up to 40m even though visual inspection
shows that these pixels belong to water. A low SRTM accuracy can explain this mismatch



7.2. METHODS AND STUDY LOCATION 103

near water. Another confusing result comes from a comparison of NDWI and MNDWI.
Theoretically, they should be strongly correlated. However, substantial differences were
observed in multiple locations. These differences occur because many pixels requiring
manual classification are mixed pixels, partially covered by land. Further research would
be necessary to explain these results.

A hand/MNDWI B MNDWI/NDWI

Figure 7.13: Values of HAND vs. MNDWI (A) and MNDWI vs. NDWI (B) used during training of CART classifier.
Orange and blue dots represent land and water correspondingly

7.2.7. RIVER CENTERLINE ESTIMATION FROM LANDSAT 8 WATER MASK

An additional skeletonization step was required before computing positional differences
between OSM linear water features and water masks detected from Landsat imagery (or
HAND). We have used the method of mathematical morphology Serra [1982] by applying
an iterative thinning operator applying a hit-or-miss transform to a binary water mask
image. The actual steps include:

K
SW)=[) (WekB) (7.4)
k=0

where ® is a binary thinning operator defined as:

WeB=W-(WoB) (7.5)

where ® is a hit-or-miss transform operator defined as:

WoB=(WeB))[ )(W.eB,) (7.6)

The structuring elements B; and B, used for skeletonization (Figure 7.14) allow re-
construction of river skeletons even without the need to introduce pruning (the removal
of small branches), which is usually required during such processing. The actual imple-
mentation performs a hit-or-miss transform using four rotated versions of the structur-
ing elements applied sequentially during every thinning operation.

W, denotes a set complement of W, referring to elements not in W.
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Figure 7.14: Input water mask (left) and results (right) of medial axis detection algorithm using mathematical
morphology. Structuring elements (kernels) shown in the middle

Additionally, morphological smoothing was performed before the skeletonization
step, to make sure fewer branches were present in the final centerline.

To implement most algorithms, we have used the Google Earth Engine (GEE) paral-
lel computing platform Gorelick [2012]. Some of the computations, where GEE was less
suitable, were performed using Google Compute Engine (GCE) running Ubuntu 15.04
(Vivid Vervet). The use of a dedicated machine was more suitable for the computation of
hydrological parameters from the DEM, for which no algorithms are available yet in the
GEE environment. JavaScript and Python were used as programming languages, as well
as some open-source tools and libraries (GDAL GDAL [2017], Fiona Toblerity [2016a],
Shapely Toblerity [2016b], ee-runner Donchyts [2016] and PCRaster Karssenberg and
Schmitz [2010]). We aimed at automating most of the steps to make sure that they would
easily scale to a planetary scale, and that the results of the research can be reproduced
when updated versions of the underlying datasets will be released.

7.3. RESULTS
7.3.1. ESTIMATION OF POSITIONAL DIFFERENCES BETWEEN RIVERS
After the centerline is computed, positional differences can be easily computed using
the Goodchild’s method of increasing overlay polygons.

The above method works best when the lengths of the segments and the distance
between segments are significantly larger than the maximum buffer size Dy, used
during dilation.

7.4. POSITIONAL DIFFERENCES BETWEEN OPENSTREETMAP, LANDSAT, AND SRTM

The Goodchild’s method to estimate positional differences was applied for every line
segment of the OSM dataset and two water mask raster datasets: 1) drainage network es-
timated using HAND and 2) water centerline estimated using Landsat 8 water mask. The
final differences were estimated using Score = 0.85 as a threshold, which corresponds to
a distance where 85% of the pixels from the second dataset (black line in Figure 7.15) are
covered by a dilation via this distance. The frequency and cumulative histograms of the
resulting differences are presented in Figure 7.16.
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Figure 7.15: Method used to estimate positional differences between vector and raster datasets. Increasing
overlay buffer method (A), example of OSM water polyline and Landsat mask (B), results for two different
buffer sizes (C, D)
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Figure 7.16: Frequency histogram of distances between OSM river segments, Landsat 8 centerline, and SRTM
(30m) drainage network.
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Figure 7.17: Positional differences between linear water features extracted from OSM, water mask centerline
extracted from Landsat (left) and drainage network extracted from SRTM (right)

The second peak of the left histogram (distance > 100 m) occurs mainly due to wider
water bodies, where the centerline cannot be reached within 20 thinning steps, but also
for water bodies that start to overlap within the maximum size dilation, such as oxbows
or meandering rivers located close to each other. Positional differences between Land-
sat centerlines and OSM become larger when a river width becomes larger. These large
differences are observed because OSM polylines frequently represent the thalweg (the
line of lowest elevation within a river) instead of a medial axis.

It can be seen that the distance between OSM water polylines and the centerlines
computed using the Landsat 8 water mask falls in the range of 30-60 meters for 60% of the
water features. We were able to confirm this for about 17% (N=5687) of the linear OSM
water features. The length of the river segments was selected to be about 0.02 degree
(2.2 km).

In the case of SRTM, about 30% (N=9887) of the OSM segments could be compared,
mainly located in the southern, hilly part of the catchment (see Figure 7.17). The dis-
tances are slightly larger than those for LANDSAT, and also appear normally distributed
with a mean value of 110 meters. This may be explained by a systematic shift between
the OSM and SRTM datasets, combined with other factors, like the fact that smaller river
meanders were not resolved well by SRTM dataset.

Spatial representation of the distances between OSM river segments and centerlines
of the LANDSAT water mask, as well as the distances between OSM river segments and
drainage network cells, are shown in Figure 7.17. It can be clearly seen that, in the case of
Landsat, mainly large rivers could be compared due to the 30m resolution limitation of
the OLI sensor. At the same time, a much larger number of the OSM segments could be
confirmed using the drainage network derived from 30m SRTM, even though positional
differences are not as good as in the case of LANDSAT. On the other hand, the drainage
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network derived from SRTM seems to be very inaccurate for flatter landscapes. There-
fore, we have excluded drainage network pixels for the cases where HAND values are
smaller than 30m in the 300m radius neighborhood. These parameters were identified
empirically after careful visual inspection.

7.4.1. GOODNESS OF FIT BETWEEN OPENSTREETMAP AND LANDSAT WATER MASKS

To estimate the overall overlap between water masks extracted from both OSM and Land-
sat, we have aggregated the overlap using a regular grid for a better understanding of the
results. The analysis was performed using the actual water mask (polygonal and linear
features of the OSM). For every grid cell, a total surface area of water mask was com-
puted. For linear features, a dilation buffer of 15m was applied using a square kernel
to make sure it matches, at least, one Landsat grid cell. Then, the resulting thematic
differences were computed (Figure 7.18).

While the centerline analysis reveals a good fit between Landsat and OSM, the sur-
face area analysis demonstrates quite a large mismatch. There can be several explana-
tions for this mismatch. Firstly, OSM (as well as Google Maps) misses a large number
of small agricultural reservoirs in this area. Secondly, many of the large reservoirs are
intermittent and were mostly dry during 2013-2015. Thirdly, river bank information fre-
quently does not match between two datasets; in some cases it is missing in OSM, in
other instances, Landsat misses small rivers (W < 30m) or the water bodies are partially
covered by vegetation.

The surface water area of both OSM and Landsat constitutes about 0.85% of the total
catchment area. Only about one-third (32%) of the total surface water area can be ob-
served using both datasets. The rest of the surface water can be seen using only Landsat
or only OSM (Figure 7.19).

7.5. SUPPLEMENTARY MATERIALS

All scripts used in this chapter, including training set used for water mask refinement
in hilly areas, can be found on the following GitHub repository: http://github.com/
gena/paper-osm-2015. The repository contains all scripts which allow to: 1) extract
water features from OSM planet file; 2) download SRTM files clipped by HydroBASIN
catchments and perform calculation of HAND using Python version of PCRaster tools;
3) Google Earth Engine JavaScript scripts used to generate regular grid for processing,
detect water mask for a given grid tile as well as scripts required to skeletonize that wa-
ter mask and compute distance between OSM segments and another river raster dataset
(drainage network derived from HAND or Landsat water mask centerline). Additional
supplementary scripts are available in Jupyter Notebooks. These scripts were used to
clean-up HydroBASINS catchments, generate tiled version of HAND from basin-based
images, split OSM water geometries into smaller segments to perform local spatial anal-
ysis as well as scripts used to generate histograms from GeoJSON files produced by water
detection scripts.

7.5.1. GRIDS USED DURING ANALYSIS
The following two grids were used during analysis: 1) HydroBASINS level 8 catchment
polygons 2) regular 20x20km grid. The first one was used to parallelize generation of
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Figure 7.18: Thematic differences between water surface area provided by OSM and detected using Landsat 8
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Figure 7.19: Overlap between surface water detected using OSM and Landsat
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Figure 7.20: HydroBASINS Pfafstetter level 8 catchments (left) and regular 20x20km grid

Table 7.2: List of vector and raster datasets available online

150.00°E

Name

Type

Link

OpenStreetMap water features

Fusion Table

http://bit.ly/paper-osm-2016-fusion-tables

HydroBASIN catchments

Fusion Table

http://bit.ly/paper-osm-2016-fusion-tables

Landsat water mask

EE Asset

users/gena/AU_Murray_Darling/MNDWI_15_water_WGS

HAND

EE Asset

users/gena/AU_Murray_Darling/SRTM_30_Murray_Darling_hand

Local flow accumulation

EE Asset

users/gena/AU_Murray_Darling/SRTM_30_Murray_Darling flow_accy

(imulation

Distance to the nearest drainage

EE Assets

users/gena/AU_Murray_Darling/SRTM_30_Murray_Darling_dist

Google Earth Engine script

JavaScript

http://bit.ly/paper-osm-2016-gee-assets

hydrological parameters. The latter one was used to perform water detection and to
visualize the results in an aggregated form, and to parallelize the water detection analysis

using Landsat imagery.

7.5.2. RESULTS AS RASTER AND VECTOR DATASETS

Some of the datasets used during processing were uploaded and shared as Google Fusion
Tables and Google Earth Engine Raster Assets, including:

7.6. WEBSITE

Most of the datasets produced by this research can be accessed using a website (http:
//osmwater.appspot.com) dedicated to this study. The website is hosted in a Google
Cloud and uses Google App Engine infrastructure, providing integration with Google

Earth Engine where most of the datasets produced in this study can be found.
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7.7. CONCLUSIONS AND DISCUSSION

The research demonstrates clear benefits of the use of the new imagery acquired by
Landsat 8 to detect water bodies when combined with water masks derived from other
sources. We have also found the SRTM to be an excellent complimentary dataset en-
abling improvement of the water mask detection method for hilly areas, after its trans-
formation into HAND.

However, none of the three water masks was found to be perfect regarding positional
differences and completeness. The main issue of the water masks derived from Landsat
8 is its shortcomings in detecting small water features such as small rivers or man-made
canals and detecting water bodies (partially) covered by riparian or surface water vegeta-
tion. The main limitation with the drainage network derived from SRTM is its inability to
detect river features for flat terrain conditions. The latter constituted a major part of our
study area. An additional challenge is related to the presence of high-frequency noise
and a relatively poor quality of SRTM near water bodies. The noise can be explained by
the radar origin of the dataset.

One of the next logical steps of the present research could be the development of a
data fusion algorithm using the strengths of all three datasets. Such development would
require the introduction of objective criteria regarding confidence of every water mask
depending on topographic and other conditions. Another step might be to perform the
same analysis globally. However, performing global analysis would require significantly
larger computational efforts and includes both detection of the water mask and estima-
tion of HAND at 30m resolution. Additional validation of the OSM and its fusion with the
datasets produced by the local governmental agencies (Surface Hydrology, Water Obser-
vations from Space, local high-resolution elevation models) will help harmonizing exist-
ing vector and raster water mask datasets.

Possible improvements to the method of water detection might include utilization
of the panchromatic band and entropy-based methods in addition to the spectral meth-
ods. Additional significant improvements can be achieved through the use of the other
medium or high-resolution satellite missions such as Sentinel 2, PlanetLabs and SkyBox.
The use of higher resolution imagery would allow detection of much smaller (width <
30m) river features, resulting in improved coverage. The method of water detection can
be easily extended to use Landsat 7 or any other multi-spectral imagery, for example, to
generate an inter-annual water mask or to study water dynamics.

The proposed method of water detection might face difficulties in the areas where
an insufficient number of cloud-free observations is available, for example, in very wet
or cold climates. In this case, it might be difficult to determine a correct range of the
cloud-free percentiles to be used for water detection.



CONCLUSIONS, DISCUSSION AND
RECOMMENDATIONS

HIs concluding chapter explains the scientific and technical implications for the aca-
demic community and society of the research findings.

Automated surface water detection from satellite imagery remains a challenging task,
especially in situations, where only a limited number of satellite images is available. In
this cases, the use of multiple data sources, combining imagery from multiple satellite
sensors, is feasible. Eventhough this approach may require the use of algorithms that are
tuned for every satellite sensor. I'm convinced, that the first step in every study involv-
ing multitemporal satellite data should be to generate and visually inspect time lapse
videos based on all available satellite images for a given study area. This way, variability
of reflectance values can be visually inspected in order to develop an optimal strategy for
further algorithm selection and tuning. Mostly, these videos will be polluted with atmo-
spheric noise and all kinds of artifacts, caused by sensor limitations or data processing
inconsistencies. For many surface water studies, atmospheric effects can be easily elim-
inated by producing simple percentile composite images instead of the real ones, as dis-
cussed in chapters 5 and 7. Parameterizing algorithms to use typical cloud frequency for
a given area to tune this kind of averaging sounds a feasible technique. This way, long-
term trends can be easily explored, to help better understand how the algorithms, such
as discussed throughout this thesis, can be further tuned to focus on specific natural
or human-made processes. Understanding longer-term trends is useful for a more spe-
cific tuning of more expensive algorithms, focusing on processing of satellite images on
a per-scene basis. Such algorithms are discussed in chapters 3 and 4. However, scaling
this kind of algorithms to perform processing globally, at high spatial and temporal res-
olution, using both passive multispectral and active SAR sensors, can be a tremendous
task, facing many technical and methodological limitations.

In this thesis, a number of algorithms to overcome these limitations were discussed,
either by reviewing existing methods, as discussed in Chapter 2, or by introducing new
algorithms, useful for many surface water detection applications. Some of these algo-
rithms focus on the elimination of effects caused by clouds, cloud shadows, snow/ice or
hills, while others provide a way for a more accurate or more resource-efficient detection
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of surface water from noisy satellite imagery.

A new discriminative method was developed using two popular image processing
algorithms: Canny Edge filter and Otsu thresholding. The method allows very accurate
surface water detection. The method was further extended with a generative step, al-
lowing to infer surface water for non-observed parts of the images, either due to limited
swath or due to presence of noisy pixels, covered by clouds, snow, ice, very dark shadows,
and vegetation. The method has been applied to reconstruct surface water dynamics of a
reservoir, where all freely available multi-sensor imagery was used with a spatial resolu-
tion higher or equal to 30m. The validation shows excellent performance of the method.

We have discussed the potential of the use of Bayesian methods to infer a set of un-
observed or indirectly observed variables from multi-temporal satellite data. This kind
of technique is needed when applying the method at global scale. The Bayesian frame-
work introduced in the thesis can help detecting surface water for partially-observed wa-
ter bodies. The resulting reconstructed water masks perfectly match with the observed
water level data. Even more, the satellite-derived water surface water area values allow
detection of sensor artifacts, where measurements were not available.

For an automated long-term surface water change detection, we have developed a
simple method, based on trend analysis of wetness indices computed for reflectance
percentile composites. A very simple yet robust algorithm allows very accurate detec-
tion of surface water changes at global scale, provided that sufficient observations are
available to ensure continuity in statistical properties of the analyzed image collections.
The method was then applied to perform a global surface water change study and to
develop a software tool called Aqua Monitor.

To further investigate the applicability of the methods and to compare satellite-derived
surface water masks to existing global surface water datasets, surface water of the Murray-
Darling Basin in Australia was studied. Here, the local dynamic thresholding method was
applied to process Landsat 8 reflectance percentile composite images to detect perma-
nent surface water mask at 30m resolution. The resulting water mask, together with the
newly-generated 30m-resolution drainage network derived from SRTM, was compared
to the water mask extracted from OSM.

The results reveal that the best surface water mask should be generated by combining
all three data sets that were analyzed in the current study; water masks extracted from
OSM, optical satellite imagery and the drainage network derived from high-resolution
digital elevation models for hilly areas.

A good agreement was found, concerning positional accuracy, between river water
features from OSM and water masks derived from Landsat 8. However, only 32% of the
total OSM and Landsat 8 water mask matches when analyzing the actual intersecting
surface area.

The newly generated Landsat 8 water mask reveals many new water bodies previ-
ously not present in OSM or any other vector dataset we have explored. A large part
constitutes a large number of small agricultural reservoirs located in the northern and
southern parts of the catchment.
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8.1. OUTLOOK

The use of all available satellite imagery from multiple passive optical and active radar
sensors increases our chances to detect the actual variability of surface water. However,
in many cases the amount of information observed from satellites may be insufficient
to represent all dynamics. Passive multispectral images may be useless in case of thick
clouds, when no land surface can be observed. Therefore, combining information ex-
tracted from EO data with the actual local data, including alternative sources such as
social media, may be feasible to reconstruct the actual surface water dynamics. This be-
comes even more relevant for real-time applications, for example, when information on
flood extent is needed to better deal with emergency situations.

Furthermore, the number of free EO observations available increases exponentially,
challenging remote sensing researchers to develop more effective methods to extract
higher level variables from these datasets in an automated way. Effective infrastructures
allowing to store, but also to analyze these data will be crucial to process these datasets.

While doing this research, I've been faced with the challenges that the amount of the
new datasets and new data science methods to address remote sensing or more general
classification questions develop very rapidly. Therefore, a lot of focus was shifted to-
wards development of new methods and exploratory tools instead of derivation of new
higher-level datasets. With the introduction of tools such as Google Earth Engine, pro-
cessing of huge amounts of EO data have become a reality.

8.2. RECOMMENDATIONS
Further development of multi-sensor Bayesian methods is feasible, taking into account
changes in the waterbody configuration, either due to natural processes or human activ-
ities (meandering rivers, sedimentation of reservoirs, land reclamation and so on). This
kind of changes would be possible to incorporate into the Bayesian framework intro-
duced in the Chapter 4 by making density functions (prior) time-dependent. Adding
temporal variability may be useful to further increase accuracy and transferability of
the method even when no such changes occur to the waterbody, but due to seasonal
changes. Further extending of these methods to include temporal correlation between
measurements may be needed to eliminate the effect of outliers. This can, for example,
be done by incorporating sequence learning methods, such as for example Long short-
term memory (LSTM) Hochreiter and Schmidhuber [1997].

One important aspect to be taken into account when detecting surface water form
EO data at the planetary scale is that all of the steps need to be automated. This can
be achieved by the use of fully automated methods. Prospective directions include the
use of unsupervised machine learning methods, such as efficient image segmentation
methods like SLIC Achanta et al. [2012] combined with the use of automated inference
methods to perform further classification of these clustered images. The use of more
suitable computational hardware and software platforms to speed-up data processing
Donchyts [2017] is important to allow researchers to explore faster and measure perfor-
mance of these approaches.

The parallel processing platform Google Earth Engine has opened a new era of EO
data processing by allowing researchers around the world to freely process petabytes of
satellite data. Built on simple algorithms as components, which are easy to reproduce
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locally, the platform allows development of new EO algorithms that can be scaled easily
to perform global analysis at high spatio-temporal resolution. The platform solves many
technical problems, but also demands new way of working with the data and algorithms.

Surface water detection in hilly areas can be challenging, especially when no recent
DEM is available or when its vertical accuracy is low. In this case, the use of topo-
graphic indices such as HAND Nobre et al. [2011] may help to eliminate false-positive
surface water pixels or to identify areas where additional processing may be required.
For single-image processing in topographically complex areas the use of topographic
correction methods may be feasible, as discussed in the Chapter 2. However, applica-
bility of these methods to study long-term changes at large spatial extents may be too
resource-demanding.

For better applicability of statistical models, the incorporation of cloud frequency
as one of the variables used for classification methods can help in implementing auto-
mated methods of surface water detection. Knowing how cloud frequency varies will
allow to better adjust methods such as introduced in the Chapter 5. Temporal variabil-
ity of the cloud frequency can help to better parameterize the statistical algorithms to
generate the range of reflectance percentile composites to study variability of the land
surface processes.

In addition to auxiliary variables such as cloud frequency, the use of aggregated,
upscaled representations of EO datasets may be useful to help performing inference
faster. In classical geospatial applications, the use of coarser representations of raster
data (pyramids) is a common technique to reduce time required for data processing at
coarser scale. However, the same approach can be used to generate aggregated repre-
sentations for EO datasets. This should help to perform image classification much faster
when compared to existing methods. Eventhough this is more a technical question, it
can be frequently crucial to perform some data operations very fast, allowing researchers
to focus on more fundamental questions.

In the present thesis I have investigated applicability of the new methods to freely
available EO data. But nowadays, many commercial datasets, with much higher reso-
lution (spatial, temporal or spectral) can be acquired. Therefore, one of the future di-
rections can be to investigate the optimal type of dataset required for every time of the
study. In many cases, the use of free EO data may be sufficient to answer many ques-
tions. But for other studies, the resolution may be insufficient to represent variability of
the observed natural or human-made processes. In some cases, a hybrid approach may
be feasible, where a limited amount of high-resolution data can be used to improve pre-
dictive quality of the algorithms. Finding an optimal strategy depends strongly on the
goal of the study.

For some natural processes, mixing of EO-derived variables with the best physically-
based numerical models can be useful to restore the sequence of surface water changes.
One of the challenges in this case will be a compromise between computational and
storage resources required to use numerical models. In some cases, the use of modern
machine learning techniques may help to get better insights.
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A.1. LOCAL OTSU THRESHOLDING USING CANNY EDGE FILTER

YEEH

* Computes the threshold that maximizes interclass variance.
*/

var otsu = function otsu(histogram) {
histogram = ee.Dictionary (histogram);

var counts = ee.Array (histogram. get (’histogram’));

var means = ee.Array (histogram.get('bucketMeans’));

var size = means.length ().get([0]);

var total = counts.reduce(ee.Reducer.sum(), [0]).get([0]);

var sum = means. multiply (counts).reduce (ee.Reducer.sum(), [0]).get([0]);
var mean = sum.divide (total);

var indices = ee.List.sequence(l, size);

/1 Compute between sum of squares, where each mean partitions the data.
var bss = indices.map(function (i) {

var aCounts = counts.slice (0, 0, i);

var aCount = aCounts.reduce (ee.Reducer.sum(), [0]).get([0]);

var aMeans = means. slice (0, 0, i);

var aMean = aMeans. multiply (aCounts).reduce (ee.Reducer.sum(), [0]).get ([0]).divide (aCount);

var bCount = total.subtract(aCount);

var bMean = sum.subtract (aCount. multiply (aMean)). divide (bCount);

return aCount. multiply (aMean. subtract (mean).pow(2)).add (bCount. multiply (bMean. subtract (mean).pow(2)));
1

/1 Return the mean value corresponding to the maximum BSS.
return means. sort (bss).get([—1]);
b

YEEH

# Compute local threshold assuming bimodal distribution.
*/

function computeThresholdUsingOtsu(image, scale, bounds, th, g, skipShort, weightGradient, minValue) {
/1 clip image edges
var mask = image.mask (). gt (0).focal_min (ee.Number(scale). multiply (3), 'circle’, 'meters’);

/1 detect sharp changes
var edge = ee.Algorithms.CannyEdgeDetector (image, th, g);
edge = edge.multiply (mask);

/1 take the largest changes, estimate gradient around edge and use that as a weight
if (weightGradient) {
var gradient = image.gradient().abs();
var edgeGradient = gradient.select (0).max(gradient.select (1)).mask(edge.gt(th)).reproject(image.projection ().scale(2, 2));

/1 take the upper percentiles only

var mode = ee.Number(ee.Dictionary (edgeGradient.reduceRegion (ee.Reducer.mode(), bounds, scale)).values().get(0));
var _buckets = 50;

var significantEdgesMask = ee.Algorithms. If (
ee.Algorithms. IsEqual (mode, null),
edge.mask() ,
edgeGradient. gt (mode)

N

edge = ee.Image(ee.Algorithms. If (
ee.Algorithms. IsEqual (mode, null),
edge,
edge . updateMask (significantEdgesMask))
)3

if (debug) {
/1 gradient around edges
if (edgeGradient) {
print (ui.Chart.image. histogram (edgeGradient, bounds, scale, _buckets));
Map.addLayer (edgeGradient, {}, 'edge_gradient’, false);
Map. addLayer (significantEdgesMask .mask(significantEdgesMask), {}, ’significant_edges’, false);

print('Mode:_,", mode);

}

/1 advanced, detect edge lengths
var coonnectedVis = void 0;
if (skipShort) {
var connected = edge.mask(edge). 1t (0.8).connectedPixelCount (50, true);
var edgelong = connected. gte (50);
edge = edgeLong;
coonnectedVis = connected.updateMask (edgeLong) . visualize ({ palette: [’ffffff’, 'ff0000’], min: 0, max: 50 });
}

/! buffer around NDWI edges
var edgeBuffer = edge.focal_max(ee.Number(scale).multiply (1), ’square’, 'meters’);
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var imageEdge = image.mask(edgeBuffer);

/1 compute threshold using Otsu thresholding
var buckets = 100;

var hist = ee.Dictionary (ee.Dictionary (imageEdge.reduceRegion (ee.Reducer. histogram (buckets), bounds, scale)).values().get(0));

var threshold = ee.Algorithms. If (hist.contains(’bucketMeans’), otsu(hist), 0);
threshold = ee.Number(threshold); //.add(0.05)

if (debug) {
Map. addLayer (edge . mask (edge), { palette: ['ff0000’] }, ’'edges’, false);

if (skipShort) {
Map. addLayer (coonnectedVis, {}, 'edges_(connected)’, false);
}

print (’'Threshold: ", threshold);

print (ui.Chart.image. histogram (image, bounds, scale, buckets));

print (ui.Chart.image. histogram (imageEdge, bounds, scale, buckets));

Map.addLayer (mask.mask (mask) , { palette: [’000000'] }, 'image_mask’, false);
}

return {
threshold: minValue ? threshold.max(minValue) : threshold,
edge: edge

}
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A A.2. PERONA-MALIK FILTER: ANISOTROPIC DIFFUSION

YEEH

# Solves anisotropic diffusion equation using CFD:

B

# I(n+l, i, j) = I(n, i, j) + lambda + (cN * dN(I) + ¢S + dS(I) + cE = dE(I) + ¢W + dW(I))
*

*/

var peronaMalikFilter = function (I, iter, K, method) {
var &W = ee.Kernel. fixed (3, 3,

[ro, o, o],
[1, -1, 0],
(o, o, o0]h;

var dxE = ee.Kernel.fixed (3, 3,

[ro, o, o],
(o, -1, 11,
[o, 0, 0l);

var dyN = ee.Kernel. fixed (3, 3,

[ro, 1, o,

[o, -1 o],

[0, 0, 0]);
var dyS = ee.Kernel. fixed (3, 3,

[t o, o, o],

[0, =1, 0],

[o, 1, oll;

var lambda = 0.2;

if (method == 1) {
var k1l = ee.Image(—1.0/K);

for(var i = 0; i < iter; i++) {

var dI_W = I.convolve (dxW)
var dI_E = I.convolve (dxE)
var dI_N = I.convolve (dyN)
var dI_S = I.convolve (dyS)

var ¢W = dI_LW. multiply (d_LW). multiply (k1).exp ();
var cE = dI_E. multiply (dI_E). multiply (k1).exp ();
var ¢N = dI_N.multiply (dI_N). multiply (k1).exp ();
var ¢S = dI_S.multiply (dI_S). multiply (k1).exp ();

1 = 1.add(ee.Image(lambda). multiply (¢cN. multiply (dI_N).add(cS.multiply (dI_S))
.add (cE. multiply (dI_E)).add (cW. multiply (dLW))))
}
}
else if (method == 2) {
var k2 = ee.Image(K). multiply (ee.Image(K));

for(var i = 0; i < iter; i++) {

var d_W = I.convolve (dxW)
var dI_E = I.convolve (dxE)
var dI_N = I.convolve (dyN)
var dI_S = I.convolve (dyS)

var ¢W = ee.Image(1.0).divide (ee.Image(1.0).add(dl_W. multiply (dl W). divide (k2)));

var cE = ee.Image(1.0).divide (ee.Image(1.0).add(dI_E. multiply (dI_E). divide (k2)));
var cN = ee.Image(1.0).divide (ee.Image(1.0).add(dI_N. multiply (dI_N). divide (k2)));
var ¢S = ee.lmage(1.0).divide (ee.Image(1.0).add(dI_S. multiply (dI_S).divide (k2)));

1 = I.add(ee.Image(lambda). multiply (¢cN. multiply (dI_N).add(cS.multiply (dI_S))
.add (cE. multiply (dI_E)) . add (cW. multiply (dLW))))
}
}

return 1;
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