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Abstract
Distributed systems, such as blockchains, can have bugs around
edge-cases that are hard to detect or trigger. Previous publications
have introduced guided-search testing approaches that are able to
find edge cases more efficiently than through conducting a system-
atic and exhaustive search. In this paper, we compare the effective-
ness of fitness functions in evolutionary testing frameworks. For
this we evaluate time and proposal fitness.While evolutionary test-
ing frameworks are not new to the domain of concurrency testing
consensus algorithms, the impact of the fitness functions that un-
derpin them remains poorly understood. We use the XRPL consen-
sus algorithm as a case study to evaluate the fitness functions us-
ing the Rocket testing framework. For this, we make use of seeded
versions of XRPL. All evaluated fitness functions have been able to
detect the bugs we seeded in the source code of the XRPL consen-
sus algorithm. We show the validity of various fitness functions in
trying to find the bug and analyze effects in the interplay between
the time and proposal fitness functions we examine.

1 Introduction
Since the introduction of Bitcoin in 2009, the importance of cryp-
tocurrencies has grown significantly.This gave rise to many promi-
nent cryptocurrency projects. One such example is Ripple, which
relies on the XRP Ledger and the corresponding XRPL consensus
protocol. This consensus protocol ensures all nodes in the network
agree on a certain state for the ledger. For the proper functioning
of this blockchain and more generally the entire financial ecosys-
tem built on top of it, the correctness of this consensus protocol is
of paramount importance. To illustrate this point, as of May 2025,
Ripple is one of the largest cryptocurrencies around bymarket cap-
italization and boasts daily traded volumes in excess of US$2B. Any
breaches to the integrity of the network, such as forks, where the
network fractures into multiple conflicting, smaller sub-networks,
would pose serious risks to the stability and integrity of these mar-
kets and the confidence investors and other market participants
have in them.

Aswas visible during the fallout of the Celsius and FTX scandals,
such black swan events have the potential to reverberate far be-
yond the affected project itself, into the wider cryptocurrency and
financial markets. These concerns are shared by institutions, such
as the Financial Stability Board, which claimed the possibility of ex-
posure to system-wide risks through cryptocurrencies and imple-
mentation errors in blockchain systems. To avoid such problems
from arising throughmundane implementation errors in these sys-
tems and to ensure that the XRPL consensus algorithm which we
use as a case study here delivers on the guarantees from the white-
paper by Schwartz et al. [27], it is imperative we have the methods

and tooling to test the correctness of implementations of these sys-
tems.

The non-deterministic nature of distributed systems means that
there are many valid orderings in which the messages can be sent
or arrive [18]. When real-world delays are introduced, this number
tends to grow quickly. When this happens, it rapidly becomes un-
manageable for systematic and exhaustive testing approaches.The
requirement of simulating the potentially large network also adds
to the cost of testing such systems. To manage testing these sys-
tems, van Meerten et al. [34] introduces an evolutionary testing al-
gorithm, which they show can effectively detect bugs in these sys-
tems, also using the XRPL consensus algorithm as a case study. Us-
ing this testing algorithm, they uncovered a previously unknown
live bug in the implementation of the XRPL consensus algorithm.
There are two main hyperparameters which are integral to evolu-
tionary testing algorithms: firstly the manner through which the
best cases are selected and secondly the strategy responsible for
generating offspring. Though van Meerten et al. [34] did investi-
gate the efficiency of two fitness functions as single-objective op-
timization functions, the precise impact that both of these param-
eters have on the efficacy of this evolutionary testing algorithm
for testing these kinds of systems remains poorly understood. Es-
pecially multi-objective fitness functions remain underexplored.

To allow researchers to implement algorithms to test the XRPL
consensus algorithm, Kanhai et al. [17] introduced the Rocket test-
ing framework. On top of this framework, we introduce an imple-
mentation of the evolutionary testing algorithm that was devised
by van Meerten et al. [34]. In doing so, we provide a number of
different fitness functions for the guided evolutionary search that
is central to the algorithm, which we then compare for their abil-
ity to find bugs as efficiently as possible and their ability to find as
many bugs as possible. As mentioned, while it is known to impact
the efficiency of the approach, exactly how the different fitness
functions impact the effectiveness of this approach is not yet fully
understood. This is the main contribution of our research. Fitness
functions are tested and compared against one another using the
same operators and systems under test. Their evaluation takes into
account the efficiency with which they have been able to find bugs,
as well as the number of bugs that the guided evolutionary search
has been able to find using these fitness functions.

Our results indicate that it can be difficult for the evolutionary
algorithm to operate on the surface it is optimizing over. This ex-
tends to all examined fitness functions and configurations. Multi-
objective fitness configurations are greatly affected by this, making
it hard to see any practical benefits of incorporating two fitness
objectives into the search. Our results also show a great correla-
tion between some of the fitness functions and the detection of
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violations. This correlation is significant in all considered setups
and shows that especially the time fitness we are optimizing for in
some configurations poses a good objective for finding bugs. Our
main contributions consist of the following:

(1) Replicate part of van Meerten et al. [34] and compare the
time and proposal fitness functions’ efficacy in evolution-
ary search.

(2) Examine the usage of multi-objective fitness functions to
time and proposal fitness in evolutionary search.

(3) Compare the impact of time and proposal fitness on the
detection of violations.

(4) Compare the relation of time and proposal fitness.

2 Background
2.1 XRP Ledger
TheXRPL consensus algorithm [2, 4, 27] forms the backbone of the
XRP Ledger. It ensures a common state of transactions between the
nodes in the network. The algorithm is a Byzantine fault tolerant
algorithm, which means that it can function even with malicious
nodes in the network [19]. In doing so it provides four guarantees
or consensus properties.

(1) Agreement, which states that all honest processes decide
on the same state.

(2) Integrity, which states that all honest processes decide at
most one time.

(3) Termination, which states that all honest processes will
eventually decide and not loop infinitely.

(4) Validity, which states that honest processes can only de-
cide on a state that was proposed by an honest process.

The routine of messages that are sent between the nodes in the
network is a cornerstone of the consensus algorithm. These mes-
sages are sent in three stages. To agree on the new set of transac-
tions that are going to be added to the ledger, first a set of transac-
tions is proposed. After initial agreement on a set of new transac-
tions is reached in order to discard poorly supported transactions,
the nodes will attempt to validate the agreement on the transac-
tions to ensure they are the same. After the set of new transactions
is validated, they are effectuated on the ledger and the new ledger
state with the new transactions embedded is validated once more.
After this, the cycle continues. The exact message types related to
reaching consensus are presented in Table 1.

In the way the XRPL network sends and receives messages lies
an inherent non-determinism. As the XRPL network is distributed,
there will often be delays in when messages are sent or received.
This can be due to any number of both internal and external pro-
cesses interfering. Think of delays in the internet connection, par-
tial outages, nodes dealing with performance problems, and so on.

2.2 Evolutionary Testing
Authors such as Jones et al. [16], Tracey et al. [32] introduced evo-
lutionary algorithms to software testing in the 1990s. This quickly
spawned efforts creating tools such as EvoSuite [12]. These algo-
rithms run cycles which create and evaluate test cases. They do
this in roughly four stages, which repeat as in Figure 1.

Table 1: XRPL message types related to reaching consensus.

Message Type Description

GetLedger
Fetches missing ledger data from
peer nodes.

HaveTransactionSet
Sent to signal that a transaction set
has been obtained.

LedgerData Fulfills a request for ledger data.

ProposeSet
Proposal of a set of transactions
from a node for the next ledger.

StatusChange
Sent to confirm that a node closes
its current ledger or accepts a new
one.

Transaction
Sent to submit a transaction to be
included.

Validation
Sent to confirm a node agrees on
the validity of the ledger.

Figure 1: Evolutionary testing cycle

(1) In the evaluation stage the test case is evaluated. It is as-
signed a score by a fitness function. This score will then be
used as the heuristic to guide the search for the best test
cases. One such fitness function is time fitness, where the
test cases are selected on the basis of how short or long it
took for them to execute.

(2) Then, during selection the results from the evaluation are
used to select the best test cases. Roughly speaking there
are two main ways to do this, deterministically and prob-
abilistically. Deterministic methods always select the test
cases which they consider most optimal, a basic example
of this is elitism, which always selects the test case with
the highest fitness value. Alternatively, probabilistic selec-
tion procedures exist. These pick the test cases with some
degree of randomness. An example of this is the roulette se-
lector, which proportionally selects between the test cases
based on their fitness value. A test case where 𝑓 = 5 will
be 5×more likely to be selected than a test case with 𝑓 = 1.

(3) After selecting the best test cases, we must generate new
test cases. This is done by combining them to create a new
generation, the offspring.

(4) After creating the next generation, we must ensure that we
are adequately equipped to explore the entire search space.
To do this a random effect, themutation, is used to distort
the test case.

The application to the testing of blockchains by van Meerten
[33] showed its potential in this domain.
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2.3 Alternative Testing Approaches
Next to the guided evolutionary search for test cases, other ap-
proaches exist. Some alternative tooling, such as dBug [28], Mo-
Dist [36], Concuerror [14], DeMeter [15], SAMC [20], and FlyMC
[23], makes use of systematic, exhaustive search. While they make
use of optimizations to reduce their search space, it still grows at
an incredible pace [11]. Because of this, they are impractical for
large systems such as blockchains.

A more practical alternative for large systems is random testing.
Tools such as CoFi [5] implement this method. Thomson et al. [29]
showed that this performs better than exhaustive approaches for
testing real-world applications. These experimental results have
been backed up by theoretical explanations since then [24]. Later,
van Meerten et al. [34] showed that guided evolutionary search
outperforms random testing approaches.

A more recent alternative is ByzzFuzz [35], which makes use
of a malicious node in the test network. By showing that it was
able to uncover critical bugs in the XRPL v1.7.2 source code,1 Byzz-
Fuzz became an example that randomized testing is able to trigger
edge cases. However, all in all it seems that system-level testing on
blockchain systems remains underexplored [30, 31].

3 Methodology
Like van Meerten et al. [34], we make use of a delay based repre-
sentation of events. This means that our test cases for the network
consist of a collection of delays for the messages that are sent be-
tween the nodes. Adding these delays can cause the ordering be-
tween messages to be drastically altered in a distributed system
such as the XRPL consensus algorithm, where only a partial or-
dering can be ensured [18]. Our testing approach seeks to exploit
this property, by injecting these delays to trigger buggy, edge case
behavior by the system. By using the evolutionary search, we aim
to avoid having to perform an exhaustive search for bugs, which
would be impractical for a system like this.

It is known that for certain optimization problems, smaller popu-
lation sizes can be preferred [6, 7]. Our problem is a great candidate
for this, as the evaluation of our test cases is fairly expensive. Due
to this, van Meerten et al. [34] used a population size of 8. In our
experiments we are using a population size of 10, this number is
somewhat arbitrary, but low enough given the cost of running our
evaluation.This means that compared to vanMeerten et al. [34] we
allow for slightly more exploration and diversity to be maintained
during the run. During the experiment, we evaluated the evolu-
tionary algorithm for 50 generations per run. This is to essentially
guarantee convergence on a detection of the violation if it exists.

We used the structure outlined in Figure 2, using the Rocket test-
ing framework [17] and Docker [25] to run the experiments. Every
iteration was run using a separate Rocket instance, which man-
aged spawning the test network. Our evolutionary test manager
performed the test case selection and mutations. The Docker dae-
mon was shared between all Rocket instances in the experiment
through a mounted socket.

1https://xrpl.org/blog/2021/rippled-1.7.2.

Figure 2: Experimental setup for evolutionary testing strate-
gies using Rocket

During the experiments, we run the algorithm over a bug seeded
version2 of the latest version of the XRPL consensus algorithm,
which is v2.4.0 at the time of writing.3 We do this to ensure that
there are valid violations to analyze and such that we know what
to look for during our analysis of the runs. The bug that we seeded
relates to the agreement process. Instead of the default threshold
of 80% on agreement, we lowered this to 40% in our version of the
algorithm. This seeks to trigger violations of the agreement prop-
erty, which we can easily detect through the logging functionality
in Rocket. In part, we are also almost reproducing part of the work
done by van Meerten et al. [34], who analyzed a similar seeded
bug.

Prior research has made use of transactions that are structured
from three accounts, where account one overspends by concur-
rently sending 2×2 identical transactions to two different accounts.
80 000 is sent from account one to account 2 twice at two differ-
ent validator nodes and 80 000 is sent from account one to account
three twice as well at two more validator nodes. This setup is heav-
ily inspired by van Meerten et al. [34].

To run our experiments, we are using a (𝜇 + 𝜆) evolutionary
algorithm, much like van Meerten et al. [34]. The outline of this
evolutionary algorithm is provided as pseudocode in Algorithm 1.

Algorithm 1 Pseudocode for a (𝜇 + 𝜆) evolutionary algorithm,
adapted from van Meerten et al. [34]
1: procedure EvolutionaRyAlgoRithm(𝜇, 𝜆)
2: parents, offspring ← Initialize(𝜇, 𝜆)
3: while 𝑡 < 100 do
4: Evaluate(offspring)
5: parents ← Select(parents + offspring)
6: offspring ← Recombine(parents)
7: end while
8: end procedure
9:

10: function Recombine(parents, 𝜆)
11: offspring ← CRossoveR(parents, 𝜆)
12: for individual ∈ offspring do
13: MutateGaussian(individual)
14: end for
15: return offspring
16: end function

2https://github.com/amousavigourabi/bug-seeded-rippled/tree/seeded-2.4.0-fully-
lowered-threshold.
3https://xrpl.org/blog/2025/rippled-2.4.0.

https://xrpl.org/blog/2021/rippled-1.7.2
https://github.com/amousavigourabi/bug-seeded-rippled/tree/seeded-2.4.0-fully-lowered-threshold
https://github.com/amousavigourabi/bug-seeded-rippled/tree/seeded-2.4.0-fully-lowered-threshold
https://xrpl.org/blog/2025/rippled-2.4.0
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We are examining the impact of the fitness and selection rou-
tines during a run of the evolutionary algorithm. For this, we use
time fitness and proposal fitness using elitist, roulette, and tourna-
ment-based selection methods in specific configurations which are
outlined in section 4.

(1) Time fitness will guide the search towards test cases that
take the longest to run. The idea behind this is that if we
keep selecting for test cases that take longer and longer to
execute, we might at some point reach an edge case that
will exhibit non-compliant behavior on properties, such as
termination.

(2) Proposal fitness will guide the search towards test cases
with higher proposal sequences. The idea behind this is
that if we keep selecting for test cases with higher and
higher proposal sequences, we might reach edge cases that
could break the consensus properties.

The selection methods we examine are more diverse. Like van
Meerten et al. [34], we examine elitist selection. In addition to
this, we expand our search by looking into the roulette [22] and
4-way tournament [13] selection procedures for single-objective
optimizations over both proposal and time fitness. We also add
two multi-objective selection procedures, namely the dominance
and crowding distance-based tournament [8] and NSGA-II [9].

(1) Elitist selection always ensures to pick only the ‘fittest’ in-
dividuals. It never selects individuals which score worse on
the fitness function. This is constrained to single-objective
optimization, meaning that we use two configurations, one
to test it with time fitness, and one to test it with proposal
fitness.

(2) Roulette selection picks the cases based on their fitness
functions in a proportional, probabilistic way. If a test case
is five times as good as another, the odds that it is selected
will be five times greater. This is constrained to single-ob-
jective optimization, meaning that we use two configura-
tions, one to test it with time fitness, and one to test it with
proposal fitness.

(3) 4-way tournament selection is based on a series of fully
randomhead-to-head comparisons.These comparisons are
performed in a tournament of size four. In these tourna-
ments, the test cases are compared on their fitness, where
the best prevails. Unlike its dominance-based counterpart,
the dominance and crowding distance of a test case have
no direct influence on the outcome of this selection pro-
cedure. For this selection procedure, we use two configu-
rations, one to test it with time fitness, and one to test it
with proposal fitness.

(4) Dominance-based tournament selection is based on a
series of fully random head-to-head comparisons. Here, a
fully randomized set of test cases are compared on their fit-
ness, where the best prevails. This comparison is based on
the dominance of the test case and if there is a tie there, the
crowding distance. This is done to ensure diversity when
neither dominates the other.

(5) NSGA-II selection is based on non-dominated sorting and
a crowding distance metric. Test cases are ranked by their

Pareto dominance. Within each level, the metric for crowd-
ing distance is used to ensure diversity. Selection favors
individuals from better fronts and less crowded regions.

For the mutation and recombination sections of the evolution-
ary algorithm, we make use of the simulated binary crossover and
a Gaussian mutation. We set the simulated binary crossover with
parameter 𝜂 = 3.0, just like van Meerten et al. [34]. The Gaussian
mutation [10] is set with parameters 𝜇 = 0 and 𝜎 = 40, and a
mutation probability of 0.1 per item.

To ensure reproducibility, our results and experimental setup
are provided in the reproduction package.4 This will allow oth-
ers to rerun our experiments. Reproduction is impacted by non-
determinism in our experiment, as we execute only one run of
the genetic algorithm and it is as such not fully robust to the non-
deterministic effects that are inherent to the method.

4 Study Design
The purpose of this study is chiefly experimental reproduction,
with additional benchmarking of unexplored strategies. The out-
comes of the experiment are evaluated quantitatively. To evaluate
the use of fitness functions and selection procedures in evolution-
ary testing on the XRPL consensus algorithm we answer the fol-
lowing research questions.

(1) How effectively does our testing approach discover bugs in
XRPL consensus algorithm implementations?

(2) How does the bug detection performance of the algorithm us-
ing delay based representations compare to a random base-
line algorithm?

(3) How does the selection procedure for test cases with delay
based representations affect the performance of the evolution-
ary algorithm?

(4) How good of an objective are the time and proposal fitness
functions for finding bugs?

The evaluation of these four research questions will allow us to
answer our main thesis, which states: “How efficient are different
fitness and selection procedures during the evolutionary algorithm
in testing the XRPL consensus algorithm using delay based represen-
tations?” This will create a holistic evaluation of the efficiency of
the different approaches to fitness and selection using evolution-
ary testing that were investigated.

As described in Table 2, we evaluated nine approaches within
the evolutionary testing framework from van Meerten [33] and an
independent random baseline.

To answer research question one, we run all the specified con-
figurations on the bug seeded version of XRPL. These runs are an-
alyzed and checked for any runs where one of the consensus prop-
erties fails, which potentially signals bugs. If these cannot be found
we stop here, if these can be found we try to uncover what causes
the error and report this using responsible disclosure.

To answer research question two, the configurations are then
compared with the baseline on the basis of whether they could
find the bug and how fast they managed to find it. If the configura-
tion found the bug faster than the baseline did and a contingency

4https://github.com/amousavigourabi/rocket/tree/reproduction-package-atour.

https://github.com/amousavigourabi/rocket/tree/reproduction-package-atour
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Table 2: Fitness function and selector configurations during
the experiments

Case Selection Fitness

Baseline Random None
Elitist time Best Time fitness
Elitist proposal Best Proposal fitness
Roulette time Roulette Time fitness
Roulette proposal Roulette Proposal fitness
Tournament time 4-way tournament Time fitness
Tournament pro-
posal 4-way tournament Proposal fitness

DCD Tournament Dominance-based
tournament

Time and proposal
fitness

NSGA-II NSGA-II Time and proposal
fitness

test signals a statistically significant 𝑝-value on the amount of vi-
olations that could be caught, we must conclude the bug detection
performance of the evolutionary algorithm using this configura-
tion is superior to the random baseline.

To answer research question three, we can build upon the exper-
iment for research question two. Here, we will compare the config-
urations against one another instead of the baseline. A configura-
tion will be superior when it finds a bug that the other configura-
tion fails to find, or when it is able to find it faster than the other
configuration.

To answer research question four, we build upon the results
from research questions one to three. Here, we analyze the efficacy
of the evolutionary approach in finding bugs. The overall results
of how often the bugs can be found is analyzed. Subsequently, this
analysis is supplemented by existing benchmarks, with which we
will compare the performance of our configurations that are under
test. This will allow us to assess whether our configurations pose
any practical benefits compared to other testing approaches.

The experiments are run on a server node from the Software En-
gineering Research Group at the Delft University of Technology.
The node was shared with four other research efforts during the
experiments and boasts 2× AMD EPYC 7H12 64-core (128-thread)
processors at 1.6–2.6Ghz, with a total of 256GB of RAM. To avoid
interference on our experiments by the other research efforts us-
ing the same computational resources, we deliberated and divided
the resources on the node beforehand. This guaranteed the node
would not suffer from out of memory errors during the experi-
ments and that the experiments would not be harmed or compro-
mised in other ways, such as through the test networks not booting
properly due to a lack of resources.

During our experiments we have observed test case runtimes of
around 290 seconds. In our 9 configurations of 50 generations with
1 iteration per test case and a population size of 10, this has resulted
in a sequential runtime of 9×290×10×1×50 = 1 305 000 seconds =
362 hours and 30 minutes.
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Figure 3: The cumulative amount of detected violations at
each generation by each configuration using time fitness on
the bug seeded version of XRPL v2.4.0
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Figure 4: The cumulative amount of detected violations at
each generation by each configuration using proposal fit-
ness on the bug seeded version of XRPL v2.4.0

5 Results
We present our results by showing the graphs of the cumulative
detected violations by configuration, looking at the convergence
of the fitness values in the runs, and examining the utility of the
fitness functions for finding test cases that show violations.

As shown by Figure 3–5, all test cases are able to find violations
from the seeded bug. It can also immediately be observed that they
do not perform much better than the random baseline. In Figure 6
we can see that the evolutionary algorithm has an incredibly hard
time converging to its objectives under all tested configurations.
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Figure 5: The cumulative amount of detected violations at
each generation by each multi-objective fitness configura-
tion on the bug seeded version of XRPL v2.4.0
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Figure 6: The mean time and proposal fitness of each gener-
ation by configuration on the bug seeded version of XRPL
v2.4.0

Over the 50 generations that we ran the algorithm for, it hasmainly
been white noise. As can be seen in Table 3, all but one of the time
series does not make the 𝑝 < 0.05 threshold and has statistical sup-
port against stationarity. Even the only configuration which does
not obviously seem stationary only has a resulting 𝑝-value of 0.08,
given the sample size of 2 × 9 configurations and fitness functions,
this signal seems spurious. We can infer that the algorithm does
not manage to converge for any of our configurations.

Table 3: Augmented Dickey–Fuller test results for stationar-
ity per fitness and configuration, 𝑝-values are provided up
to two decimals

Case Time Proposal

Baseline 8.73e-08 2.87e-08
Elitist proposal 1.86e-10 0.02
Elitist time 8.49e-10 0.01
Roulette proposal 7.21e-07 6.38e-06
Roulette time 5.73e-10 0.08
Tournament proposal 1.81e-08 5.8e-08
Tournament time 8.7e-16 2.92e-09
DCD tournament 0.034 1.29e-10
NSGA-II 1.8e-4 2.79e-09

2 4 6 8 10 12 14

Correct

Violation

Time fitness

Figure 7: The time fitness of all runs summarized per test
case outcome on the bug seeded version of XRPL v2.4.0

500 1,000 1,500 2,000

Correct

Violation
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Figure 8:Theproposal fitness of all runs summarized per test
case outcome on the bug seeded version of XRPL v2.4.0

In Figure 7 and Figure 8, we present the time and proposal fit-
ness values for all runs, grouped by whether they contained any
detected violations. The box plots show clearly a great difference
between the time fitness values between the correct runs and the
edge case runs where we manage to detect the bug. For the pro-
posal fitness a similar, but reversed effect also seems to exist, be it
less pronounced. To test the relationship between the time and pro-
posal fitness and the ability of the algorithm to detect bugs, we used
the point biserial correlation test [21]. Formally in our test, the trait
is the detection of a violation and our statistic is the time fitness or
proposal fitness. As can be seen in Table 4, the 𝑝-values indicating
a relationship are incredibly well supported for time fitness and
also receive support for proposal fitness on most configurations.
The overall 𝑝-values are well within the threshold for statistical
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Table 4: Correlation coefficients and 𝑝-values between time
and proposal fitness and the detected violations in each con-
figuration, rounded to two digits

Time Proposal

Case 𝑝-value 𝑟 𝑝-value 𝑟
Baseline 7.19e-25 0.44 5.46e-5 -0.18
Elitist proposal 5.77e-37 0.53 8.33e-8 -0.24
Elitist time 9.37e-34 0.51 4.4e-4 -0.16
Roulette proposal 2.09e-24 0.43 0.03 -0.1
Roulette time 2.98e-34 0.51 2.77e-3 -0.13
Tournament proposal 3.47e-16 0.35 0.08 -0.08
Tournament time 6.52e-33 0.50 0.05 -0.09
DCD tournament 5.22e-23 0.42 0.02 -0.11
NSGA-II 3.41e-29 0.47 1.71e-9 -0.27
Overall 3.14e-238 0.46 3e-24 -0.15

Table 5: Significance values of outperforming the random
baseline.

Case 𝑝-value
Elitist time 0.43
Elitist proposal 0.37
Roulette time 0.25
Roulette proposal 0.65
Tournament time 0.65
Tournament proposal 0.78
DCD tournament 0.43
NSGA-II 0.65

significance. These results suggest that especially time fitness is a
good heuristic for finding agreement violations.

6 Discussion
To answer our first research question: “How effectively does our test-
ing approach discover bugs in XRPL consensus algorithm implemen-
tations?” Wenowknow that the best of our configurations, roulette
time, can find 20 bug-related violations over 50 generations with
the seeded algorithm implementation.This means that we can find
the seeded bug and that we can find the seeded bug relatively fast.

Then, in order to answer our second research question: “How
does the bug detection performance of the algorithm using delay ba-
sed representations compare to a random baseline algorithm?” We
must perform single-tailed hypothesis testing. When considering
the resulting observationswithin amodel as independent Bernoulli
trials, we can calculate 𝑝-values for the hypothesis that one strat-
egy beats the baseline. This is done through the hypothesis that
𝑝strategy > 𝑝baseline, where 𝑝 is the probability for the underlying
Bernoulli trial. When this is tested for using Boschloo’s test [3],
we get the results in Table 5. Our Bernoulli trials are likely to be
autocorrelated through the usage of the evolutionary algorithm,
which can lead to overly optimistic 𝑝-values [1]. We can thus po-
tentially see the results of these tests as some sort of lower bound.

3 4 5 6 7

NSGA-II
DCD tournament

Tournament proposal
Tournament time
Roulette proposal

Roulette time
Elitist proposal

Elitist time
Baseline

Time fitness

Figure 9: The time fitness summarized per configuration on
the bug seeded version of XRPL v2.4.0

1,100 1,200 1,300 1,400 1,500

NSGA-II
DCD tournament

Tournament proposal
Tournament time
Roulette proposal

Roulette time
Elitist proposal

Elitist time
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Proposal fitness

Figure 10: The proposal fitness summarized per configura-
tion on the bug seeded version of XRPL v2.4.0

The tests clearly show that the 𝑝-values are never significant, mak-
ing it unlikely that our setup with the specific mutation procedure
in section 3 outperforms the random baseline.

Given the prior results that we have from vanMeerten et al. [34],
who did show a significant result on this front, this is interesting.
It is more than possible that this is due to our experimental setup.
Unlike van Meerten et al. [34], we only made use of one run of
50 generations. On the other hand, van Meerten et al. [34] used
30 different runs. Next to that, van Meerten et al. [34] also uses
different settings for the mutation operator. Our results can thus
not be mapped onto one another one-by-one. Our findings suggest
that the surface over which the evolutionary algorithm is trying
to optimize could be different from what our selected mutation
operator can handle properly. It might be either too explorative
or too exploitative in this regard. Another possibility is that our
use of only 1 iteration during testing makes our observed time or
proposal fitness too unreliable to be a good estimator that we can
optimize over. This would explain the stationarity on the fitness
functions we showed in Figure 6.
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To answer our third research question: “How does the selection
procedure for test cases with delay based representations affect the
performance of the evolutionary algorithm?” We can for now, given
the uniform stationarity in our results as in Figure 6, say that this
cannot be answered yet. We already know the runs in the exper-
iment are stationary with regards to the fitness functions and in
Figure 9 and Figure 10 we see that the ranges of values per config-
uration are also roughly consistent.

For themulti-objective functions, we can do somemeagre analy-
sis on the basis of the data presented in Figure 8 and Figure 7. Next
to these relationships between the time and proposal fitness on
the one hand and the detection of a violation on the other, there
is namely also a relationship between the time and proposal fit-
ness values in our sample. Their Pearson correlation [26] reveals
a 𝑝-value of under 1e-16 and a strong correlation coefficient of
≈ −0.63. What this means for our multi-objective fitness func-
tions is that they are essentially trying to optimize two inversely
correlated metrics in the same direction. While optimizers such
as NSGA-II are designed for use with potentially conflicting objec-
tives, this might hamper their usability.

For our fourth research question: “How good of an objective are
the time and proposal fitness functions for finding bugs?” we can see
that especially both fitness functions can be a good objective for
the type of seeded bug that we examined. As we can see in Table 4,
there is a very strong relationship between the time fitness of the
test cases in the analyzed runs and whether we detect a violation.
A larger time fitness indicates a higher chance of a violation. Sur-
prisingly, proposal fitness has an inverse relationship. Though the
relationship is less pronounced, we can safely say it is statistically
significant.

We can first try to explain the performance of proposal fitness
as a predictor through the observed inverse correlation with time
fitness. However, when controlling for the correlation between the
time and proposal fitness, the residual proposal fitness remains a
statistically significant factor under the point biserial correlation
test, with a 𝑝-value of 2.91e-32 and a coefficient of ≈ 0.17. This
means that the explanation of the impact of proposal fitness on
the detection of the bug is not solely through its observed relation
to time fitness.

7 Threats to Validity
We used the tiny configuration for XRPL nodes. These configura-
tions are not used in production, thismeans that our test network is
not an exact replicated version of the network as it is in production.
While these tiny nodes do behave like production nodes, they are
resource bound and keep track of less data. This choice was made
due to resource constraints, it will be functionally impossible for
the study to be reproduced if nodes are run with production set-
tings. We do not expect this decision to hurt our results, but we
cannot guarantee this to hold.

Only one iteration is used during the evaluation of our test cases.
Due to the non-deterministic nature of the system under test, this
means that our metrics for evaluating the test cases, used for the
fitness calculation and selection procedure, are not and simply can-
not be robust.This is well below the amount required for good con-
fidence that the results are able to capture edge behavior if it exists.

As this study focuses on the impact of the fitness function and se-
lection procedures, which are impacted significantly by this, it is
an important limitation to the results.

As we use the XRPL consensus algorithm as a case study, there
is a risk that the results of our experiment do not generalize to
other similar blockchains. There are no theoretical hindrances to
generalizing the core results to other Byzantine fault tolerant con-
sensus algorithms. Further research will be necessary to confirm
this.

The experiments we have run measure the impact of the fitness
function and selection procedure for one seeded bug. It is trivial
that the optimization surface for other, potentially live, bugs looks
different than our seeded one. This means that it is possible for
this surface to look drastically different to the one analyzed here.
It is likely that our analysis of properties such as the smoothness
of the surface do not generalize to all other bugs. This will impact
the validity of our results in a more generic setting, where certain
selection procedures might be a better fit for the concrete circum-
stances of the bug that is found. We encourage more research into
this to evaluate the generalizability of our results and the extent
of the potential heterogeneity that might be observed in these sur-
faces.

The non-determinism involved in the execution of our experi-
ments also poses a threat. It is possible that our executions may
have been outliers. In order to mitigate this, further research may
choose to usemethodswheremanymore runs are compared to one
another. One suchmethod is used by vanMeerten et al. [34], where
many runs over a few configurations are compared on the binary
measure whether or not they manage to find a specific bug. This
is a more robust measure, which we encourage further research to
examine.

8 Conclusion and Future Work
We found that the random baseline does not yield inferior per-
formance to the configurations we examined for the evolutionary
guided search using delay based representations. We showed that
both time and proposal fitness are attractive optimization objec-
tives. We explored some theoretical considerations around the us-
age of multi-objective optimization functions using these two ob-
jective functions.

Further research needs to be done in replicating our results in
a more robust setting, with larger iteration sizes. The influence of
the small iteration sizes could well have created a setting in which
the evolutionary algorithm did not have access to reliable enough
estimators for the fitness functions it is optimizing over. The in-
fluence of the fitness function in particular and the exploration of
other fitness functions can be explored in more depth. An interest-
ing question to ask could be whether our results for the efficacy
of the fitness functions generalize beyond the agreement bug we
examined, to become applicable in a broader context.

Through our exploration of the relationships between time and
proposal fitness and their impact on finding the seeded bug, the
results of van Meerten et al. [34] are provided with an explanatory
basis for part of the effect of runs that are optimized over proposal
fitness on finding the seeded agreement bug.



Survival of the Fittest

Responsible Research
During the experiment we made use of a test network that was
managed by the Rocket testing framework, we did not involve the
production network in our tests to ensure we would not harm sta-
bility. The goal of this experiment is to better understand the net-
work and ensure it functions securely, we do not intend to exploit
any bugs we find. All live bugs found will be submitted to the XRP
Ledger development team using responsible disclosure.5 Respon-
sible disclosure is incredibly important in our case as it concerns
a potentially live system that is being used as financial infrastruc-
ture. Any unpatched or unconfirmed public bug reports could have
a grave impact on the ecosystem built on top of this technology.
This would be able to cause irreparable damage.

To limit the ecological footprint of the experiment, we used tiny
configurations of the XRPL nodes to construct the test networks.
The experimentswere performed using private compute infrastruc-
ture from the Software Engineering Research Group at Delft Uni-
versity of Technology. A reproducibility kit is provided to ensure
others can reproduce and validate our results. No humans were
harmed in conducting the experiments. Furthermore, we declare
that we have no competing interests.

To allow for the reproduction of the experiments, a reproduc-
tion package is provided. As are the results and setup of the exper-
iments. Some of the inherent non-determinism in executing test
cases in the workings of the consensus protocol in the test net-
work remain. These cannot really be accounted for as of yet next
to large sample sizes and iterations, after which the law of large
numbers will regulate the behavior of the collective. These kinds
of experiments were outside of the scope of this research project.
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