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Abstract—Industrial assembly lines are the heartbeat of
modern manufacturing, where precision and efficiency are
paramount. This paper introduces a novel hybrid Explainable
artificial intelligence (XAI) approach to enhance monitoring and
analysis in industrial assembly. By fusing the power of vision
anomaly detection models with the clarity of the gradient tree
boosting algorithm, this framework not only boosts defect detec-
tion accuracy but also provides transparent, actionable insights.
This synergy transforms how operators and engineers interact
with AI, fostering trust and enhancing operational excellence.

Index Terms—Vision Anomaly Detection, Gradient Tree Boost-
ing, Explainable Artificial Intelligence.

I. INTRODUCTION

In the Fourth Industrial Revolution, there is a change
in the understanding of quality and Quality Management
(QM), emphasizing individualized service reliability, design
and safety [1]. As entering the Industry 5.0, characterized by
even greater automation and interconnected systems, human-
machine collaboration takes center stage. While AI excels at
data analysis and pattern recognition, achieving true process
optimization requires explainable AI. By understanding the
rationale behind model’s recommendations, human experts can
maintain oversight, ensure alignment with quality objectives,
and continuously improve the AI models for robust anomaly
detection in complex manufacturing environments [2].

A. The Pulse Of Modern Manufacturing

Consumers’ relentless demand for exceptional product qual-
ity and reliability is driving a clear and steady trend to-
wards smart industry. The electronics sector exemplifies this
perfectly. The manufacturing process begins with receiving
printed circuit boards (PCBs) and necessitates rigorous quality
control procedures throughout. These PCBs then undergo in-
tricate processes like punching and assembly, often facilitated
by sophisticated surface mount technology.

Ensuring consistent quality in smart manufacturing envi-
ronments necessitates a robust and scalable solution for defect
detection. Visual inspection machines are crucial for assess-
ing optical attributes and ensuring product quality in many
industrial assembly lines. However traditional visual quality
inspection faces limitations in high-volume manufacturing due

This work is supported by the project EXPLAIN, the Netherlands Enterprise
Agency RVO under grant AI212001.

to human limitations, component characteristics, production
volume, and potential flaw variety [3]. Automatic Optical
Inspection (AOI) emerges as a non-destructive solution to
these limitations, particularly for anomaly detection in high-
volume manufacturing. However, as AOI systems become
more complex with Deep Learning (DL) algorithms, ensuring
interpretability through explainable AI becomes critical [4].

B. Current Monitoring Paradigms And Their Pitfalls

The improvements in AI and DL algorithms have led to
a noticeable change in focus towards AOI. The advent of
AOI as a non-destructive quality assessment method is cru-
cial in surmounting the constraints presented by conventional
inspection methods. This robust technique proves particularity
advantageous by alleviating the complexities associated with
manually examining products, which often depend on human
operators relying solely on their unaided vision, that are
prone to errors and time consuming. A fully automated op-
tical inspection system comprises both hardware and software
parts. The hardware configuration, encompassing image sensor
and illumination settings, is responsible for capturing digital
images. Simultaneously, the software component executes an
inspection algorithm to extract image features and categorize
them according to user-defined criteria. Nevertheless, with
advances in manufacturing technologies and increasing com-
plexity, utilizing user-defined criteria leads to an increase in
false alarms [5]. In response to the evolving demands of
quality assessment, the utilization of AI has become instru-
mental in automating inspection and evaluation processes.
These technological strides not only address current challenges
but also align with the dynamic nature of production capabil-
ities, reflecting a growing imperative for enhanced efficiency.
The integration of these cutting-edge capabilities seamlessly
complements the established AOI methodologies, marking a
paradigm shift in the landscape of quality control across
various industries [6].

C. The Promise Of Explainable AI

While advancements in DL models yield significant
progress in anomaly detection for various industrial applica-
tions, a critical challenge remains: ensuring interpretability
of the results. Traditional anomaly detection methods often
function as black boxes, providing anomaly scores without
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offering clear distinctions between normal and abnormal sam-
ples, the reason behind the particular decision, or further
information. This lack of transparency hinders user trust and
limits the ability to refine the models for optimal performance.
Explainable AI emerges as a transformative approach, combin-
ing high performance with interpretability [7]. By leveraging
XAI techniques, we can gain a richer understanding of the
data used in anomaly detection, as it is implemented in
real-world applications for healthcare [8], [9] and finance
[10]. This multifaceted approach empowers human experts
to not only identify anomalies but also grasp the underlying
rationale behind the model’s decisions, faster issue resolution,
and ultimately leading to more informed decision-making and
continuous improvement of the industrial anomaly detection
system [11], [12].

D. Hybrid Solution For The Future
The field of anomaly detection is rapidly evolving. Cutting-

edge vision models excel at capturing anomalies in 2D images
with high precision, even in zero/few-shot scenarios where
training data for specific defects might be limited. However,
these models can sometimes miss anomalies not readily visible
on the surface, or explain the true/complete reason behind
the decision. Here’s where the power of more interpretable
models, like decision trees, comes in. By combining the
precision of vision models with the rich insights gleaned from
well-structured data, we can create a more comprehensive ap-
proach. The hybrid model leverages the strengths of both – the
exceptional accuracy of vision for surface-level anomalies and
the explanatory power of tabular data for deeper understanding
of potential root causes. This synergy not only pinpoints
anomalies but also helps us understand “why” and “where”
they occur, leading to more effective preventive measures and
targeted interventions.

II. METHODOLOGY

Cutting-edge deep learning models excel at capturing
anomalies in 2D images used in vision inspection. While tradi-
tionally supervised learning approaches dominated the filed, by
leveraging the large dataset of labelled anomalies. Supervised
models can be trained to effectively identify specific types of
defects with high precision [6], [13], [14]. However, the chal-
lenge lies in acquiring sufficient labeled data, especially for
rare anomalies. Techniques like data augmentation and transfer
learning can be employed to mitigate this challenge to some
extent. However, their reliance on vast amounts of labeled data
and potential for missing subtle defects necessitates a more
comprehensive approach.

Recent advancements in unsupervised deep learning offer
promising alternatives [15], [16]. Most of these techniques let
to learn the underlying distribution of normal data. Deviations
from this learned distribution can then be flagged as potential
anomalies.

A. Building A Rich Dataset
In the SMT-PCB sector, data acquisition and labeling

present a significant challenge for deploying DL models.

This is due to 2 major factors: firstly, the low frequency
of faults, and secondly, the vast variety of potential defect
types. Consequently, DL models for SMT-PCB fault detection
should be adept at handling limited data, particularly rare or
anomalous examples, while still delivering comprehensive and
informative outputs. Due to the inherent challenges of data
acquisition in the SMT-PCB sector, a dummy board have been
manufactured that includes the most common defect types
in surface mounted electronics. Additionally, we adopted a
training strategy utilizing a limited dataset of normal images.
This approach leverages a technique that enables feature
augmentation solely on normal data.

B. Deep Learning With Vision Transformer

In computer vision, convolutional neural networks (CNNs)
have long been the dominant architecture due to their ef-
fectiveness in tasks like image classification. However, the
recent success of vision transformers (ViTs) in natural lan-
guage processing (NLP), achieving state-of-the-art results, has
motivated their exploration in computer vision. Building upon
the successes of computer vision, industrial vision tailors these
algorithms for real-time anomaly detection and process control
within industrial environments. Representation-based methods
have emerged the leading approach for industrial anomaly
detection and localization. These methods compress normal
image features into embedding space, where anomalous fea-
tures deviate from the normal data. Typically these method
utilize CNN-baed networks that are pre-trained on ImageNet.
Nevertheless images in industrial domain are significantly
different from the images found in ImageNet. This mismatch
prevents the direct use of extracted features [17].

CNNs are heavily influenced by notion of locality, where
features are extracted based on the spatial relationships be-
tween neighbouring pixels. This prioritize local information
processing. Additionally CNNs exhibit translation equivalence,
meaning the network response remains consistent under image
shift. This is advantageous where localization is irrelevant.
However ViTs rely on self-attention mechanisms that enable
global information processing, which is useful for object lo-
calization tasks that are crucial in industrial anomaly detection
[18].

C. Harnessing Decision Tree For Clarity

Decision trees are a class of machine learning models
renowned for their high degree of explainability. This inter-
pretability stems from their structure [19], where a series of
simple if questions (based on features) guide the classifica-
tion process. Additionally, decision trees offer the advantage
of being computationally efficient, requiring fewer resources
compared to more complex models to reach a prediction
specially on certain data types such as tabular data [20].

While decision trees offer the benefit of interpretability
and efficiency, their susceptibility to instability can be a
concern. This is where Gradient Boosting Decision Trees
(GBDTs) appear to deliver a more stable model while still
retaining some level of interpretability. XGBoost is a powerful
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implementation of GBDT that addresses the instability issue of
decision trees. It combines the boosting method with decision
trees. In essence, XGBoost builds an ensemble of weak de-
cision trees sequentially. Each new tree focuses on correcting
the residuals of the previous ones, leading to a more robust
and accurate final model. To further enhance performance and
avoid overfitting, XGBoost incorporates several key features
such as Regularization, a penalty term added to the loss
function, discouraging overly complex trees that might overfit
the data and Second-Order Taylor Expansion which allows
more precise adjustments during the boosting process, leading
to improved accuracy and robustness [21].

III. EXPERIMENT

A. Comprehensive Experiment Description

The data for this study was collected using an industrial
AOI inspection machine (MEK ISO-Spector M2) commonly
employed in the final stage of the manufacturing process
line for electronics inspection. This machine is equipped with
top camera positioned to capture images from top-bottom
perspective. Additionally, the system offers the flexibility to
utilize diverse lighting conditions and positions to provide
extra information for the inspected boards. A crucial chal-
lenge in industrial anomaly detection is lighting variations
that can obscure defects. To address this, we leverage the
machine’s capability to capture images under different lighting
conditions. This approach aims to mitigate the impact of
lighting inconsistencies and improve the overall robustness of
the anomaly detection system.

Since real-world datasets with a significant number of de-
fective samples are often scarce, a data augmentation strategy
is employed. A dedicated dummy board was intentionally
fabricated to include a variety of representative defects. This
approach helped us enrich the dataset with a broader range of
anomaly examples, enhancing the model’s ability to generalize
and detect anomalies effectively.

1) Definition of Hybrid framework: In this work we used
the SA-Patchcore [22] with the pre-trained ViT [18], instead
of original model that uses ResNet-based models as backbone,
trained through a self-distillation method called DINO [23], on
ImageNet dataset, for the better feature extraction capability.
As stated earlier in III-A1 Unlike CNNs that primarily focus
on local features, transformers excel at capturing global de-
pendencies within the image. This is achieved through their
self-attention mechanism, which allows the model to analyze
relationships between distant pixels. This focus on global
features makes transformers well-suited for tasks like object
localization, where understanding the overall context of the
image is crucial [24]. The mentioned model consist of 11
transformer blocks. In essence, the depth of the hierarchy
directly influences the extent of global feature map com-
prehension, catering to specialized learning tasks. However,
directly using features learned on generic objects might not be
optimal for industrial anomaly detection. To address this, the
model leverages features from an intermediate blocks as input
to the self-attention module. This intermediate blocks capture

Feature 1 Feature 2 … Label

Point 1 Value 11 Value12 … 1

Point 2 Value 21 Value22 … 0

Point 3 Value 31 Value32 … 1

F1<T1

F2<T2 Leaf=l1

F3<T3

Leaf-=l2

F4>T4 Leaf=l3

yes no

no

no

yes

yes

Self-Attention module

Backbone: ViT

Normal Images

Test Images

SHAP feature importance

RGB

Side

Fig. 1. Introduced framework integrates the high accuracy of industrial
anomaly detection models with the explainability power of XGBoost. The
industrial model identifies potential defects, while XGBoost provides insights
into the features contributing to those detected.

TABLE I
DATASETS PARTITIONING AND NUMBER OF DATA POINTS

Component Dataset Normal Defected Lighting

R0805
Train 180 - 2

Test 58 18 2

balance between local and global features, providing a foun-
dation for identifying co-occurrence relationships indicative of
anomalies.

For the vision model, we utilize Region Of Interest (ROI)
images extracted from the captured data under various lighting
conditions. These ROIs focus on specific components of
the board. Two distinct lighting conditions are employed: a
primary light source from top normal to the surface captur-
ing colored real-world images, and a secondary light source
from the side perpendicular to the board with a red filter.
This multifaceted illumination approach aims to enhance the
model’s generalizability to real-world scenarios where lighting
conditions may vary significantly [25]. The datasets used for
training, feature bank construction, and testing are detailed in
Table I. This comprehensive evaluation allows us to assess
both the model’s accuracy and its ability to provide informa-
tive explanations. In conjunction with the vision model, an
XGBoost model is employed. This model leverages a separate
data set containing the measured features of the ROI, and extra
information (detailed in Table II) of the boards Fig 3. This
table includes features derived from the 3D data, such as depth
measurements or surface variations, which can complement
the visual information for anomaly detection. Utilizing such
approach the inspection machine is able to construct over 200
features from constructed images but only 40 most informative
features are chosen to have deeper understanding of the defect
types the model identifies and significantly enhance the model
explainability.
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Defect 1 Defect 2 Defect 3 Defect 4 Defect 5 Defect 7Defect 6 Defect 8 Defect 9

RGB Image

Anomaly map RGB

Superimposed mix map

Anomaly map mix

Fig. 2. Visualization of various defect types in SMD-PCBs using a vision model. Each image shows the original ROI with a corresponding attention map
highlighting the detected defect. In Defect 1 the component is entirely absent from the designated placement area, in Defect 2 exhibits Pseudo solder, in
Defect 3 an incorrect component is present, in Defect 4, 6 and 7 the components are misaligned, deviating from their intended placement positions, in Defect
5 the component lacks the expected identification label, in Defect 8 the component stands upright, resembling a tombstone and in Defect 9 the component is
rolled.

Tombstone defect Pseudo Solder defect

a) b)

Fig. 3. Combination of surface texture information from the original image
with a height indication to create 3D representations of the components.
These initial 3D images are typically noisy and require further processing
before being directly fed into vision models. However, they provide valuable
insights into potential anomaly types and assure higher explainability. Features
utilized by the XGBoost model are then extracted from these pre-processed
3D representations. a) shows the Defect 8 that has the Tombstone defect while
b) shows the Defect 2 that is Pseudo Solder defect. As shown both top views
look very similar.

IV. METRICS OF EVALUATION

To comprehensively evaluate the performance of the vision
model we employed Area Under the Curve (AUC) metric
which is robust particularly when dealing with imbalanced
datasets. The Fig 4 shows the performance of the vision
model. The AUC value is the area under the receiver operating
characteristic (ROC) curve, which shows the true positive (tp)
and false positive (fp) rate at various thresholds. A perfect
classifier would have an ROC curve that result in an AUC of
1. Conversely, a random classifier would have an AUC of 0.5,
which indicates no better performance than chance.

As demonstrated in Fig 4, the trained model achieves a high
AUC, signifying its effectiveness in distinguishing between
normal and abnormal images. This suggests that the model
can accurately identify defects while minimizing false alarms.

V. RESULTS

As highlighted earlier, XAI empowers humans to understand
the reasoning behind a model’s decisions. This interpretability
is crucial for building trust and ensuring responsible AI
deployment, particularly in critical domains such as industrial

TABLE II
DESCRIPTION OF DIFFERENT FEATURES EXTRACTED FROM GENERATED

3D IMAGES.

Feature number Description

0,1 Solder height and length

2,3 Solder angle(close to surface and close to Pad)

4,6,7 Solder volume in different sections

5,8 Lead height

9,10,16-19 Area of different solder slices

11-14 Solder height in different slices

15,20,35 Solder shape (Convexity)

21-29 Center of gravity for different slice of solder

30-39 Length and width of different slices of solder

Fig. 4. Evaluation metrics for the vision model. Right figure, shows the
ROC and corresponding AUC score as 1. The final performance is checked
on main lighting scenario. On the left figure, confusion matrix provides
a detailed breakdown of the model’s classification results. It shows the
number of correctly classified normal and defective ROIs, along with any
misclassifications.
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Wetting Length [µm]Lead Height [µm]

Defect 2

Defect 8

Shift Solder Volume

Fig. 5. SHAP feature attributions for defect detection in SMD-PCBs. Both Defect 2 and 8 share similar feature contributions, primarily focusing on right
pad connection absence and slight component lift. However, Defect 2 exhibits additional features contributing (highlighted with dashed box), suggesting a
potential component shift and excessive solder that makes it different from Tombstone defect type which is not possible to capture from solely top-bottom
anomaly maps.

anomaly detection. The following will detail the the effective-
ness of our framework in explaining the model’s decisions for
anomaly detection.

To further analyze the anomalies, we extract explanations
and utilize attention maps to pinpoint the specific areas of de-
viation. Our approach to generating anomaly maps involves a
two-step process. First, we extract anomaly scores at the pixel
level by interpolating scores obtained from analyzing smaller
image patches. This allows for a more granular localization of
anomalies.

Second, we leverage the model’s ability to handle different
lighting conditions. We predict separate anomaly maps for
each lighting configuration (e.g., real-world lighting and red
filter lighting) used during training. These individual maps are
then combined to create a comprehensive, lighting-agnostic
anomaly map. This combined map incorporates insights from
various lighting conditions, potentially leading to a more
robust and generalizable representation of anomalies. Fig 2
illustrates the generated anomaly maps. The figure compares
the results obtained using a single lighting condition (real-
world lighting) with those achieved by combining anomaly
maps from both lighting configurations. Notably, the figure
reveals subtle variations in the anomaly map for certain defect
types. These variations highlight the influence of lighting
conditions on the model’s ability to detect deviations from nor-
mal images. This underscores the importance of considering
multiple lighting scenarios during model training to enhance
its generalizability in real-world applications.

While the visual anomaly maps generated by vision model
effectively indicated certain defects clearly specially in cases
that there exist an isolated defect such as missing label on
the component or incorrect component types, limitations arise
when dealing with more complex scenarios. For instance:

• When multiple defects are present simultaneously, the
combined anomaly score might not clearly reveal the

presence and type of each individual defect.
• If distinct anomalies occur in the same or close locations,

such as insufficient of excessive solder amount, the cur-
rent visual map might not effectively distinguish between
them.

• Defects that are not fully visible from the top-down image
perspective might be missed or misinterpreted. Additional
information are necessary to capture true anomalies, for
instance the defects such as pseudo solder or tombstone
might not be fully captured in anomaly maps.

By combining complementary features with the visual in-
formation captured in the anomaly maps, we create a more
comprehensive representation of the defect. We employ SHAP
(SHapley Additive exPlanations). SHAP provides valuable
insights into the relative importance of different features in the
model’s decision-making process. This allows us to understand
how different features contribute to the final anomaly detection
and classification results. Presented in Fig 5, Defect 8 and De-
fect 2 are two extreme scenarios that the components are lifted
from the soldering pads. As shown in the Fig 2 the anomaly
map is correctly capturing the shift in both components, but
it is failing to represent other roots of the anomaly since both
anomaly representations look very similar. While using the
XGBoost and SHAP we have shown that the components
are lifted. Further by analyzing the feature importance scores
provided by SHAP, we can potentially differentiate that the lift
in Defect in 2 is not as severe in Defect 8. This enrichment
process leads to a more robust and interpretable model that can
effectively differentiate between various defect types, even in
complex situations.

VI. DISCUSSION AND CONCLUSION

Empowering the industrial anomaly detection with advanced
AI models, have shown promises in achieving high accu-
racy. While recently advancements in explainability techniques
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make them more interpretable and transparent and closer
for real-world applications in industrial domain. Nevertheless
significant challenge lies in the lack of rich datasets. Not
all scenarios will have readily available, high-quality tabular
data alongside the visual data. This highlights the need for
a hybrid framework that can leverage the strengths of both
approaches while acknowledging the limitations in data avail-
ability and potential misclassification by the vision model.
Such a framework holds immense potential for the future of
anomaly detection.

In this work, we presented a novel framework for explain-
able anomaly detection within the context of Industry 4.0 and
5.0 applications. Our framework leverages the strengths of a
vision model for capturing visual anomalies and integrates
them with complementary features from tabular data. This
hybrid approach overcomes the limitations of relying solely
on visual anomaly maps, particularly in cases with combined,
overlapping, or partially hidden defects. By incorporating
additional information from historical records, sensor readings,
or component specifications, we create a more comprehensive
representation of the anomaly, leading to a more robust and
interpretable model.

Furthermore, the utilization of SHAP provides valuable in-
sights into the relative importance of different features used by
the model. This allows us to understand the reasoning behind
the model’s decisions and facilitates the communication of
these explanations to human inspectors. This enhanced ex-
plainability is crucial for building trust in AI-powered anomaly
detection systems and ensuring their responsible deployment
in real-world industrial settings.

As an important future step, this framework will be im-
plemented in a real-world production line. Operator feedback
will be collected to evaluate the model’s effectiveness and
understand its decision-making process. As a crucial aspect of
application, operators will receive proper training on how to
utilize these technologies effectively. This training will cover
the framework’s functionalities, interpreting its outputs, and
providing valuable feedback for further model refinement. This
real-world deployment will also capture a wider range of
data, allowing us to further enhance the mode’s robustness,
especially against new defect samples.
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