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Summary

External beam radiotherapy (EBRT) is a method for treating cancer in which the tumor
is targeted by beams of radiation originating from the patient’s exterior. The two main
particles employed for EBRT are photons and protons, with electrons and carbon ions
also being in use. Both photons and protons are capable of achieving adequate tumor
coverage, but protons can theoretically achieve lower doses in the surrounding tissues
(at the expense of increased economical costs). Regardless of the chosen modality, the
radiotherapy (RT) workflow is similar. It consists of determining the patient anatomy
via imaging, usually via computed tomography (CT) scans, contouring (delineating) the
organs at risk (OARs) and the target, creating a treatment plan, performing quality
assurance (QA) and delivering the plan safely. In classical (also called non-adaptive)
RT this workflow is performed once and the treatment is delivered over several (around
30) daily sessions (also called fractions).

Theoretically, the best radiotherapy treatment is the one in which the tumor is
completely eradicated, while the surrounding tissue is not irradiated at all. Given that
this is physically impossible, due to the nature of photon and proton propagation and
interaction with matter, the next best result is maximal tumor coverage and minimal
radiation damage to OARs. As the patient anatomy changes on different time scales
ranging from weeks (e.g., weight loss, tumor shrinkage) to days (e.g., day to day varia-
tions of cavity fillings or neck pose changes) to seconds (due to for example breathing
and slight movements) it becomes apparent that the offline approach to RT is subopti-
mal. To improve on this, the radiotherapy workflow must be adjusted such that imaging,
delineation and treatment planning are performed several times over the course of the
treatment, resulting in adaptive radiotherapy (ART). ART results in better targeting
of the tumor and lower OAR doses. If adaptation is performed without the patient
on the treatment table, the process is called offline adaptation. The next time-scale is
online, which refers to a daily adaptation regime where the patient remains online (on
the treatment table) after imaging. In such a workflow, on a given day the patient is
imaged and within a short time (from tens of seconds to several minutes) the complete
offline workflow (contouring, treatment planning, quality assurance, safe delivery) is
performed. The time between imaging and delivery should be as short as possible, in
order to minimize inter-fractional and patient set-up errors and to maximize clinical
output. The ideal scenario would be real-time adaptation, in which all the steps of the
radiotherapy workflow (including imaging and irradiation adaptations) are performed
in real-time.

The online adaptive RT workflow is challenging due to the short time available. For
example, despite the progress achieved by deep learning based algorithms, OAR con-
touring still requires human intervention. Treatment planning is also challenging due to
its high computational burden, traditionally requiring several hours to create. Another
example is quality assurance, which usually refers to both plan QA and patient-specific
QA. In plan QA, a physicist checks that the beams are correctly arranged, that they
have the correct parameters and that the treatment planning system (TPS) correctly
communicates with the beam delivery system (also called gantry). In patient-specific
QA, the treatment plan is delivered to a water equivalent phantom and the delivered
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dose is compared to the one from the TPS. Such a procedure is necessary despite the
frequent (daily, weekly, monthly and yearly) checks of machine function (machine QA).
Machine QA is a limited procedure, with only a select number of energies, spot positions
and safety systems being checked. It is impossible for the machine QA programme to
measure the patient-specific irradiation fields, therefore making the PSQA procedure
critical. Clearly, neither manual plan QA nor the measurement-based PSQA are possi-
ble in a time-frame of tens of seconds to minutes in which the patient is seated on the
treatment table.

To automate PSQA, independent dose calculations (IDCs) have been proposed. In-
dependent dose computations should be performed not only with a different implemen-
tation of the TPS algorithm but, for maximal independence, with a methodologically
different algorithm. IDCs can be employed at different points in the data pipeline that
starts at the TPS and ends at the beam delivery system. The first point is employing
IDCs as a software redundancy of the TPS computed dose. This would be similar to
the hardware redundancy systems employed in gantries. Another point is the one where
the TPS outputted treatment plan is converted into machine readable files (also called
steering files). These are lower level files, that could be accessed pre-treatment and used
for a-priori dose computations. Performing dose computations at this level would also
indicate errors in the data transfer between the TPS and the delivery system, thereby
performing part of the plan QA procedure. Lastly, the delivery system contains de-
tectors that record for each treatment plan spot, the actually delivered position, the
number of monitor units (which can be related to the number of protons) and the spot
size. These records are stored in a logfile, that can be used a-posteriori to reconstruct
the actually delivered dose to the patient. Performing such computations would be
valuable not only for patient-specific QA purposes but also for machine QA purposes,
as significant deviations would likely point to hardware failures. Ideally, logfiles would
be available in real-time and used for real-time dose computations.

The current lack of computational resources and methods prohibit achieving full
plan reoptimization in the online adaptive workflow. However, for plan QA automation
we can reasonably assume that limited plan adaptation will soon be possible and a new
- though not fully optimal - plan will be available in the online adaptive RT setting.
Such a plan could be based, for example, on the previously generated plan. To assess
the daily generated plan, one method could be to model the patient anatomy over the
course of the treatment and construct a-priori optimal plans. Following this, a fast
comparison in terms of dosimetric characteristics could be performed on the given day.
Alternatively, a plan library approach could be used. In this approach, a suite of plans
is generated based on the planning CT image and potentially on artificially generated
ones.

This work aims to provide solutions for automating both PSQA and plan QA. For
PSQA, a novel, truly TPS independent dose and dose change algorithm was developed.
The algorithm, referred to as Yet anOther Dose Algorithm (YODA), is deterministic and
adjoint based. Chapter 2, starts with the Linear Boltzmann Equation, that describes the
proton transport in tissue. Thereafter it details the physics-based approximations that
are applied to it to obtain a system of two partial differential equations (PDEs). One of
the PDEs is the Fokker-Planck one-dimensional equation, and the other is the Fermi-
Eyges equation. This approach has two main advantages. First, the Fokker-Planck
equation is cheap to solve numerically and the Fermi-Eyges equation is analytically
solvable. This combination makes YODA fast when compared to the golden standard
Monte Carlo (MC) simulations and accurate when compared to empirical approximation
based pencil beam algorithms (PBAs). Details about the solution methodology are
provided in the Sections 2.4 and 2.5. The second main advantage of this approach, and a
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unique feature when compared to other dose algorithms, is that the presence of the PDEs
allows the adjoint mathematical framework to be applied. Adjoint theory is useful when
approximations in a metric (e.g., the dose in a region in the patient, the tumor control
probability or the normal tissue complication probability for an organ) are needed as
a function of system parameters (e.g., the HU value of a voxel, or the number of MU
values delivered to a spot). Adjoint theory enables YODA to avoid re-computations,
making it applicable in a number of PSQA relevant scenarios. For example, in the
online ART workflow, once the patient has been imaged and the organs are contoured,
a decision must be made on whether or not the plan must be adapted. Plan evaluations
can take up to several minutes due to having to re-compute the dose from the plan on the
new anatomy. In this scenario, YODA can use the adjoint framework to approximate
the dose to the new patient anatomy from yesterday’s plan. Additional scenarios are
possible and are explained in both Chapter 2 and 3. The chapter develops in Section 2.7
the mathematical formalism for the case in which the metric is the dose in the patient
and the variable that changes is the patient anatomy (the HU values of the CT image
voxels). The chapter ends in Section 2.8 by describing the data sources used for the
algorithm.

Chapter 3 details the application of YODA to clinically realistic cases. The chapter
starts by describing the development of a Gaussian beam splitting scheme, which is
necessary as the YODA formalism is valid for in-depth heterogeneous and laterally
homogeneous anatomies. Next, YODA is compared to TOPAS (the golden standard
MC dose engine) in a variety of cases and for energies spanning the clinical energy
spectrum (70MeV to 230MeV). Initial comparisons are done in a water tank, in which
slabs of either bone or air are gradually slid into the beam path. This part consists
of over 120 comparisons, the overview of which can be seen in Appendix C. Overall,
YODA performs very well when compared to TOPAS in these synthetic tests. The
lowest gamma pass rate (with 1mm, 1%, 10 percent cut-off criteria) was ≈95% for a
160MeV beam encountering an air slab that was offset by −2mm off the beam axis.
The average gamma pass rate was 96% and the best pass rate was 100%. YODA was
also compared to TOPAS in realistic CT scans, where it again performed well. In a
head and neck CT scan it achieved a pass rate of 99.85%, in a prostate CT scan it
achieved a pass rate of 99.58% and in a lung CT scan it achieved a pass rate of 94.55%.
Given these results, and that a single spot takes hours to compute in TOPAS and 2 s
to compute in YODA, it can be concluded that the dose engine of YODA achieves MC
like accuracy in a fraction of the time. By further developing YODA, for example via
a GPU implementation, this speed can be further improved, resulting in millisecond
computation times that are competitive with other available commercial solutions.

The following suite of tests were designed to test the adjoint component by simulat-
ing an adaptation trigger system. In this system, the patient is online, having had an
image acquired and the organs and target contoured. Following this, a quick assessment
of the dose from yesterday’s plan to today’s anatomy is desired. The comparison was
done between the dose based on re-computing yesterday’s plan on today’s CT image
and the dose to today’s CT image given by the adjoint computation. Two patients
were tested and each patient had one robustly and one non-robustly optimized plans.
For the case of the robustly optimized plans, the maximal error in the average dose to
the tumor between re-computing and the adjoint computation was 4.8% (i.e., 1.16Gy
versus 2.21Gy), while for non-robustly optimized plans it was 5.7% (i.e., 2.22Gy versus
2.31Gy). Given these results, it can be concluded that YODA’s adjoint component is
capable of being incorporated into an adaptation trigger system. The chapter ends with
the commissioning procedure for YODA’s dose engine and dose comparisons against the
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MC dose engine within the TPS RayStation. YODA was commissioned based on a com-
bination of physical measurements performed at the Holland Proton Therapy Center
(HPTC) and on the RayStation MC dose engine itself (which was itself commissioned
on experimental Bragg curves). Through this procedure, the boundary conditions that
YODA should use to match RayStation doses are obtained. The commissioning pro-
cedure is general and can be applied for any other TPS and also for modelling beams
with range shifters inserted. Comparisons were performed in simple water tanks (using
simple Bragg peaks and spread out Bragg peaks) and for 4 patient plans generated in
RayStation (3 of them with tumors in the head and neck region and 1 in the brain).
In the single spot tests in the water tank, it was found that due to the lack of nuclear
interactions in YODA, there is a consistent underdosing in the entrance region that
increases with increasing beam energy. This underdosing results in greater discrepancy
between YODA and RayStation when several spots are overlaid to create a spread out
Bragg peak. For the patient plans, the gamma index pass rate with criteria of 2mm,
2%, 10% cut-off did not drop below 90%. Depending on the exact clinical scenario, for
some situations this could be sufficient. By modelling nuclear interactions the gamma
pass rate is expected to increase, therefore allowing YODA to act as a versatile IDC
tool with a wide variety of applications in the online ART workflow.

Chapter 4 presents a probabilistic deep learning algorithm for predicting head and
neck patient’s anatomies throughout the treatment course. The probabilistic model ap-
proximates a joint probability distribution of the repeat CT image (rCT) and associated
contours (rM) conditioned on the planning CT image (pCT) and its associated contours
(pM). It takes as input a pair of pCT and pM and can be sampled to generate defor-
mation vector fields (DVFs), which are in turn used to warp the inputs into rCTs and
rMs. The performance of the model was assessed based on its capability to reconstruct
the test set and to generate realistic CT images. In terms of test set reconstruction
accuracy, the model achieved an overlap between generated and ground truth contours
(DICE score) of 0.83 (the DICE score has values between 0 and 1) and an image simi-
larity score (with values between 0 and 1) between generated and ground truth images
of 0.60. In terms of generative performance, the volume loss in the left and right parotid
glands, the spinal cord and the constrictor muscle and their center of mass shifts were
assessed. By comparing the anatomical change distributions on the training, test and
generated sets, it was concluded that the model produces volume change and COM shift
ranges that are broad enough to encompass the training and test set ones, with means
and medians in reasonable agreement. Moreover, the model is capable of generating
realistic CT images, showing neck pose shifts and the expected flattening and medial
shifts of the parotid glands. Given these findings, the model could be incorporated into
a plan QA tool by having for each of the generated CT images a truly optimal plan
stored in a database. This could be used on the given day, when the patient is online,
to quickly compare and assure the quality of the adapted and refined plan.

Chapter 5 summarizes the main developments of this work, its findings and sugges-
tions for future research.
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Sammenvatting

Bestraling met externe straling (EBRT) is een methode voor kanker behandeling waar-
bij de tumor wordt bestraald met stralenbundels afkomstig van de buitenkant van de
patiënt. De twee belangrijkste deeltjes die voor EBRT worden gebruikt zijn fotonen
en protonen, maar er worden ook elektronen en koolstofionen gebruikt. Zowel foto-
nen als protonen kunnen een adequate tumorbedekking bereiken, maar protonen kun-
nen theoretisch lagere doses in de omliggende weefsels bereiken (ten koste van hogere
economische kosten). Ongeacht de gekozen modaliteit is de workflow voor radiotherapie
(RT) vergelijkbaar. Deze bestaat uit het bepalen van de anatomie van de patiënt via
beeldvorming, meestal via computertomografie (CT), het contouren (afbakenen) van de
risicoorganen (OAR’s) en het doelwit, het maken van een behandelplan, het uitvoeren
van kwaliteitsborging (QA) en het veilig afleveren van het plan. Bij klassieke (ook wel
niet-adaptieve) RT wordt deze workflow eenmalig uitgevoerd en wordt de behandeling
verdeeld over meerdere (ongeveer 30) dagelijkse sessies (ook wel fracties genoemd).

Theoretisch is de beste radiotherapiebehandeling de behandeling waarbij de tumor
volledig wordt uitgeroeid, terwijl het omringende weefsel helemaal niet wordt bestraald.
Aangezien dit fysiek onmogelijk is door de aard van de voortplanting van fotonen en
protonen en de interactie met materie, is het volgende beste resultaat een maximale tu-
morbedekking en minimale stralingsschade aan de OARs. Aangezien de anatomie van de
patiënt verandert op verschillende tijdschalen, variërend van weken (bijv. gewichtsver-
lies, krimpen van de tumor) tot dagen (bijv. dagelijkse variaties van vullingen in de holte
of veranderingen in de houding van de nek) tot seconden (door bijvoorbeeld ademhaling
en lichte bewegingen), wordt het duidelijk dat de offline benadering van RT subopti-
maal is. Om dit te verbeteren moet de radiotherapieworkflow zodanig worden aangepast
dat beeldvorming, afbakening en behandelplanning meerdere keren worden uitgevoerd
in de loop van de behandeling, wat resulteert in adaptieve radiotherapie (ART). ART
resulteert in een betere targeting van de tumor en lagere OAR-doses. Als de adap-
tatie wordt uitgevoerd zonder de patiënt op de behandeltafel, wordt het proces offline
adaptatie genoemd. De volgende tijdschaal is online, wat verwijst naar een dagelijks
adaptatieregime waarbij de patiënt online blijft (op de behandeltafel) na beeldvorming.
In een dergelijke workflow wordt de patiënt op een bepaalde dag in beeld gebracht en
wordt binnen een korte tijd (van tientallen seconden tot enkele minuten) de volledige
offline workflow (contourvorming, behandelplanning, kwaliteitsborging, veilige aflever-
ing) uitgevoerd. De tijd tussen beeldvorming en bestraling moet zo kort mogelijk zijn
om interfractionele fouten en fouten bij de opstelling van de patiënt te minimaliseren
en de klinische output te maximaliseren. Het ideale scenario is realtime aanpassing,
waarbij alle stappen van de radiotherapieworkflow (inclusief beeldvorming en bestral-
ingsaanpassingen) in realtime worden uitgevoerd.

De online adaptieve RT-workflow is een uitdaging vanwege de korte beschikbare tijd.
Ondanks de vooruitgang die is geboekt met algoritmen op basis van deep learning, is er
bijvoorbeeld nog steeds menselijke tussenkomst nodig om OAR-contouren te maken. De
planning van de behandeling is ook een uitdaging vanwege de hoge computerbelasting,
die traditioneel enkele uren in beslag neemt. Een ander voorbeeld is de kwaliteits-
borging, die meestal verwijst naar zowel plan QA als patiënt-specifieke QA. Bij plan
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QA controleert een fysicus of de bundels correct zijn opgesteld, of ze de juiste parame-
ters hebben en of het behandelplanningssysteem (TPS) correct communiceert met het
bundelafgiftesysteem (ook wel gantry genoemd). Bij patiëntspecifieke QA wordt het
behandelplan afgegeven aan een waterequivalent fantoom en wordt de afgegeven dosis
vergeleken met die van het TPS. Een dergelijke procedure is noodzakelijk ondanks de
frequente (dagelijkse, wekelijkse, maandelijkse en jaarlijkse) controles van de machine-
functie (machine QA). Machine QA is een beperkte procedure, waarbij slechts een select
aantal energieën, spotposities en veiligheidssystemen worden gecontroleerd. Het is on-
mogelijk voor het machine QA programma om de patiëntspecifieke bestralingsvelden te
meten, waardoor de PSQA procedure cruciaal is. Het is duidelijk dat noch handmatige
plan QA noch de op metingen gebaseerde PSQA mogelijk zijn in een tijdsbestek van
tientallen seconden tot minuten waarin de patiënt op de behandeltafel zit.

PSQA kan worden geautomatiseerd met onafhankelijke dosisberekeningen (IDC’s).
Onafhankelijke dosisberekeningen moeten niet alleen worden uitgevoerd met een an-
dere implementatie van het TPS-algoritme, maar voor maximale onafhankelijkheid ook
met een methodologisch verschillend algoritme. IDC’s kunnen worden gebruikt op
verschillende punten in de gegevenspijplijn die begint bij de TPS en eindigt bij het
bundeltoedieningssysteem. Het eerste punt is het toepassen van IDC’s als softwarere-
dundantie van de door de TPS berekende dosis. Dit zou vergelijkbaar zijn met de
hardwareredundantiesystemen die in portalen worden gebruikt. Een ander punt is het
punt waarbij het door TPS uitgevoerde behandelplan wordt omgezet in machineleesbare
bestanden (ook wel stuurbestanden genoemd). Dit zijn bestanden van een lager niveau,
die vóór de behandeling kunnen worden geopend en gebruikt voor dosisberekeningen
a-priori. Het uitvoeren van dosisberekeningen op dit niveau zou ook fouten aangeven
in de gegevensoverdracht tussen het TPS en het toedieningssysteem, waardoor een deel
van de QA procedure van het plan wordt uitgevoerd. Tot slot bevat het afgiftesysteem
detectoren die voor elke spot van het behandelplan de daadwerkelijk afgeleverde posi-
tie, het aantal monitoreenheden (dat kan worden gerelateerd aan het aantal protonen)
en de spotgrootte registreren. Deze gegevens worden opgeslagen in een logbestand dat
achteraf kan worden gebruikt om de werkelijk toegediende dosis aan de patiënt te recon-
strueren. Het uitvoeren van dergelijke berekeningen zou niet alleen waardevol zijn voor
patiënt-specifieke QA-doeleinden, maar ook voor machine QA-doeleinden, aangezien sig-
nificante afwijkingen waarschijnlijk zouden wijzen op hardwarefouten. Idealiter zouden
logbestanden in real-time beschikbaar zijn en gebruikt worden voor real-time dosis-
berekeningen.

Door het huidige gebrek aan computermiddelen en methoden is volledige heropti-
malisatie van het plan in de online adaptieve workflow niet mogelijk. Voor plan QA
automatisering kunnen we echter redelijkerwijs aannemen dat beperkte planaanpassing
binnenkort mogelijk zal zijn en dat een nieuw - hoewel niet volledig optimaal - plan
beschikbaar zal zijn in de online adaptieve RT setting. Zo’n plan zou bijvoorbeeld
gebaseerd kunnen zijn op het eerder gegenereerde plan. Om het dagelijks gegenereerde
plan te beoordelen, zou een methode kunnen zijn om de anatomie van de patiënt in
de loop van de behandeling te modelleren en a-priori optimale plannen te construeren.
Vervolgens kan op de gegeven dag een snelle vergelijking worden uitgevoerd in termen
van dosimetrische kenmerken. Als alternatief kan een planbibliotheek worden gebruikt.
In deze aanpak wordt een reeks plannen gegenereerd op basis van het CT-beeld van de
planning en mogelijk op kunstmatig gegenereerde plannen.

Dit werk is gericht op het bieden van oplossingen voor het automatiseren van zowel
PSQA als plan QA. Voor PSQA werd een nieuw, werkelijk TPS-onafhankelijk algo-
ritme voor dosering en dosisverandering ontwikkeld. Het algoritme, dat Yet anOther
Dose Algorithm (YODA) wordt genoemd, is deterministisch en gebaseerd op adjoint
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theorie. Hoofdstuk 2 begint met de lineaire vergelijking van Boltzmann, die het proto-
nentransport in weefsel beschrijft. Daarna worden de op fysica gebaseerde benaderingen
beschreven die worden toegepast om een stelsel van twee partiële differentiaalvergeli-
jkingen (PDEs) te verkrijgen. Een van de PDEs is de eendimensionale vergelijking van
Fokker-Planck en de andere is de vergelijking van Fermi-Eyges. Deze benadering heeft
twee belangrijke voordelen. Ten eerste is de Fokker-Planck vergelijking goedkoop om
numeriek op te lossen en de Fermi-Eyges vergelijking is analytisch op te lossen. Deze
combinatie maakt YODA snel in vergelijking met de gouden standaard Monte Carlo
(MC) simulaties en nauwkeurig in vergelijking met empirische benaderingen op basis
van pencil beam algoritmen (PBAs). Details over de oplossingsmethodologie worden
gegeven in de paragrafen 2.4 en 2.5. Het tweede grote voordeel van deze aanpak, en een
uniek kenmerk in vergelijking met andere doseringsalgoritmen, is dat de aanwezigheid
van de PDEs het mogelijk maakt om het adjunct-wiskundige kader toe te passen. De
adjoint-theorie is nuttig wanneer benaderingen in een metriek (bijv. de dosis in een
gebied in de patiënt, de waarschijnlijkheid van tumorcontrole of de waarschijnlijkheid
van complicaties in normaal weefsel voor een orgaan) nodig zijn als functie van systeem-
parameters (bijv. de HU-waarde van een voxel of het aantal MU-waarden dat aan een
plek is toegediend). Dankzij de adjoint-theorie kan YODA herberekeningen vermijden,
waardoor het toepasbaar is in een aantal PSQA-relevante scenario’s. In de online ART-
workflow bijvoorbeeld moet, zodra de patiënt in beeld is gebracht en de organen zijn
gecontourd, worden besloten of het plan al dan niet moet worden aangepast. Planeval-
uaties kunnen enkele minuten duren omdat de dosis van het plan opnieuw moet worden
berekend op de nieuwe anatomie. In dit scenario kan YODA het adjunct-kader gebruiken
om de dosis voor de nieuwe anatomie van de patiënt te benaderen op basis van het plan
van gisteren. Andere scenario’s zijn mogelijk en worden uitgelegd in zowel hoofdstuk 2
als hoofdstuk 3. Het hoofdstuk ontwikkelt in paragraaf 2.7 het wiskundige formalisme
voor het geval waarin de metriek de dosis in de patiënt is en de variabele die verandert
de anatomie van de patiënt is (de HU-waarden van de voxels van het CT-beeld). Het
hoofdstuk eindigt in paragraaf 2.8 met een beschrijving van de gegevensbronnen die
voor het algoritme worden gebruikt.

Hoofdstuk 3 beschrijft de toepassing van YODA op klinisch realistische gevallen.
Het hoofdstuk begint met het beschrijven van de ontwikkeling van een Gaussisch bun-
delsplitsingsschema, dat nodig is omdat het YODA-formalisme geldig is voor diep het-
erogene en lateraal homogene anatomieën. Vervolgens wordt YODA vergeleken met
TOPAS (de gouden standaard voor MC-doseringen) in verschillende gevallen en voor
energieën uit het klinische energiespectrum (70MeV to 230MeV). Initiële vergelijkingen
worden gedaan in een watertank, waarin platen bot of lucht geleidelijk in het bundel-
pad worden geschoven. Dit deel bestaat uit meer dan 120 vergelijkingen, waarvan een
overzicht te zien is in Appendix C. Over het algemeen presteert YODA zeer goed in
vergelijking met TOPAS in deze synthetische tests. Het laagste gammapassagepercent-
age (met afkapcriteria van 1mm, 1% en 10%) was ongeveer 95% voor een bundel van
160MeV die in aanraking kwam met een luchtplaat die een afwijking van −2mm had
ten opzichte van de bundelas. Het gemiddelde gammapassagetarief was ≥ 96% en het
beste passagetarief was 100%. YODA werd ook vergeleken met TOPAS in realistische
CT-scans, waarbij het opnieuw goed presteerde. Bij een CT-scan van hoofd en nek
werd een slagingspercentage van 99.85% gehaald, bij een CT-scan van de prostaat een
slagingspercentage van 99.58% en bij een CT-scan van de longen een slagingspercentage
van 94.55%. Gezien deze resultaten en het feit dat het uren duurt om een enkele spot te
berekenen in TOPAS en 2 s om te berekenen in YODA, kan worden geconcludeerd dat
de doseringsengine van YODA een MC-achtige nauwkeurigheid bereikt in een fractie van
de tijd. Door YODA verder te ontwikkelen, bijvoorbeeld via een GPU-implementatie,
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kan deze snelheid verder worden verbeterd, wat resulteert in rekentijden in milliseconden
die concurrerend zijn met andere beschikbare commerciële oplossingen.

De volgende reeks tests is ontworpen om de adjoint component te testen door een
adaptatietriggersysteem te simuleren. In dit systeem is de patiënt online, is er een beeld
gemaakt en zijn de organen en het doel omlijnd. Hierna is een snelle beoordeling van
de dosis van het plan van gisteren naar de anatomie van vandaag gewenst. Er werd een
vergelijking gemaakt tussen de dosis op basis van het opnieuw berekenen van het plan
van gisteren op het CT-beeld van vandaag en de dosis op het CT-beeld van vandaag op
basis van de adjunctberekening. Twee patiënten werden getest en elke patiënt had een
robuust en een niet-robuust geoptimaliseerd plan. Voor de robuust geoptimaliseerde
plannen was de maximale fout in de gemiddelde dosis voor de tumor tussen opnieuw
berekenen en de adjoint berekening 4.8% (d.w.z. 1.16Gy versus 2.21Gy), terwijl dit
voor niet-robuust geoptimaliseerde plannen 5.7% was (d.w.z. 2.2Gy versus 2.31Gy).
Gezien deze resultaten kan worden geconcludeerd dat de adjoint component van YODA
kan worden opgenomen in een adaptatietriggersysteem. Het hoofdstuk eindigt met de
inbedrijfstellingsprocedure van de YODA-doseringsmotor en dosisvergelijkingen met de
MC-doseringsmotor binnen het TPS RayStation. De inbedrijfstelling van YODA is
gebaseerd op een combinatie van fysische metingen die zijn uitgevoerd in het Holland
Proton Therapy Center (HPTC) en op de MC-doseringsmotor van het RayStation zelf
(die zelf in bedrijf is gesteld op basis van experimentele Bragg-curven). Door deze
procedure worden de randvoorwaarden verkregen die YODA moet gebruiken om de
RayStation-doses te evenaren. De inbedrijfstellingsprocedure is algemeen en kan wor-
den toegepast op elke andere TPS en ook voor het modelleren van bundels met range
shifters. Er werden vergelijkingen uitgevoerd in eenvoudige watertanks (met eenvoudige
Bragg-pieken en uitgespreide Bragg-pieken) en voor 4 patiëntplannen gegenereerd in
RayStation (waarvan 3 met tumoren in het hoofd-halsgebied en 1 in de hersenen).
Bij de single spot tests in de watertank bleek dat door het ontbreken van nucleaire
interacties in YODA er een consistente onderdosering is in het ingangsgebied die toe-
neemt met toenemende stralingsenergie. Deze onderdosering resulteert in een grotere
discrepantie tussen YODA en RayStation wanneer meerdere spots over elkaar worden
gelegd om een gespreide Bragg-piek te creëren. Voor de patiëntplannen daalde het slag-
ingspercentage van de gamma-index met criteria van 2mm, 2%, 10% cut-off niet onder
90%. Afhankelijk van het precieze klinische scenario kan dit voor sommige situaties
voldoende zijn. Door de modellering van nucleaire interacties wordt verwacht dat de
gammapassmentsnelheid zal toenemen, waardoor YODA kan fungeren als een veelzijdig
IDC-hulpmiddel met een breed scala aan toepassingen in de online ART-workflow.

Hoofdstuk 4 presenteert een probabilistisch deep learning-algoritme voor het voor-
spellen van de anatomie van hoofd- en halspatiënten gedurende de behandelingskuur.
Het probabilistische model benadert een gezamenlijke waarschijnlijkheidsverdeling van
de herhaalde CT-afbeelding (rCT) en bijbehorende contouren (rM) geconditioneerd op
de plannings-CT-afbeelding (pCT) en de bijbehorende contouren (pM). Het neemt als
invoer een paar pCT en pM en kan worden bemonsterd om vervormingsvectorvelden
(DVF’s) te genereren, die op hun beurt worden gebruikt om de invoer te vervormen
tot rCT’s en rM’s. De prestaties van het model werden beoordeeld op basis van het
vermogen om de testset te reconstrueren en realistische CT-afbeeldingen te genereren.
In termen van nauwkeurigheid van de reconstructie van de testset bereikte het model
een overlap tussen gegenereerde en grondwaarheidscontouren (DICE-score) van 0.83
(de DICE-score heeft waarden tussen 0 en 1) en een beeldgelijkenisscore (met waarden
tussen 0 en 1) tussen gegenereerde en grondwaarheidsbeelden van 0.60. In termen van
generatieve prestaties werden het volumeverlies in de linker- en rechterparotisklieren,
het ruggenmerg en de constrictorspier en hun zwaartepuntverschuivingen beoordeeld.
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Door de anatomische veranderingsverdelingen op de trainings-, test- en gegenereerde
sets te vergelijken, werd geconcludeerd dat het model volumeverandering en COM-
verschuivingsbereiken produceert die breed genoeg zijn om de trainings- en testsets te
omvatten, met gemiddelden en medianen in redelijke overeenstemming. Bovendien is
het model in staat om realistische CT-beelden te genereren, die nekhoudingverschuivin-
gen en de verwachte afvlakking en mediale verschuivingen van de parotisklieren laten
zien. Gezien deze bevindingen zou het model kunnen worden opgenomen in een plan
QA-tool door voor elk van de gegenereerde CT-beelden een echt optimaal plan op te
slaan in een database. Dit zou op de gegeven dag, wanneer de patiënt online is, kunnen
worden gebruikt om snel de kwaliteit van het aangepaste en verfijnde plan te vergelijken
en te verzekeren.

Hoofdstuk 5 vat de belangrijkste ontwikkelingen van dit werk, de bevindingen en
suggesties voor toekomstig onderzoek samen.
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Chapter 1

Introduction

1.1 A brief overview of radiotherapy history & techniques

Cancer is an umbrella term for a collection of diseases and can be characterized by self-
sufficiency in growth signals, insensitivity to growth-inhibitory (antigrowth) signals,
evasion of programmed cell death (apoptosis), limitless replicative potential, sustained
angiogenesis, as well as tissue invasion and metastasis (Hanahan and Weinberg, 2000).
Cancer is a significant public health concern, which accounted for over 1.1 million deaths,
or 21.6% of all deaths, in the European Union (EU) in 2021 (Cancer Statistics 2024).
The number of cancer diagnoses has increased in 14 of the 24 reporting EU countries in
the period between 2010 and 2022 and is foreseen to continue increasing over the next
decade (Praagman et al., 2022). The increase in diagnoses is caused by multiple factors,
the main two being the growth and the double aging of populations (there will be more
elderly people that are, on average, getting older). Additional factors are changes in
lifestyle and improved diagnostics and early detection (Praagman et al., 2022). For
example, cancer types related to obesity, such as liver, bile duct and kidney cancer, are
foreseen to notably increase over the next decade in The Netherlands (Praagman et al.,
2022). Despite the number of cancer diagnoses increasing during the period between
2010 and 2022, in the same period the mortality has declined by over 10% in all 27 EU
countries. The trend of cancer mortality falling is a recent one, having only started as
late as the 1990s (Hajdu, Vadmal, and Tang, 2015). While it is difficult to pinpoint the
cause of this recent trend, improvements in awareness, screening programmes, diagnostic
and treatment methodologies are likely explanations (Cancer Statistics 2024; Praagman
et al., 2022).

Much effort has been dedicated towards the understanding of the causes of cancer
and the (further) development of treatment modalities. The main treatment modalities
for cancer are surgery, chemotherapy and radiation therapy. Surgery is one of the oldest
treatment modalities, being employed by the Egyptians as early as 1500 BC (Hajdu,
2011a). Throughout time, alternative treatments such as different salts, boiled cabbage,
solutions or pastes containing arsenic, iron or copper and bacterial toxin treatments
(Hajdu, 2011b; Hajdu, 2012) have also been prescribed to cancer patients, with varying
degrees of effectiveness. Despite this broad range of alternatives, the continuous progress
in surgical techniques has established surgery as the main modality of treating cancer
up until the second half of the 19th century.

Wilhelm Röntgen’s accidental discovery of x-rays in 1895 (Röntgen, 1898) and their
immediate application in treating inoperable breast cancer marked the beginning of radi-
ation therapy (Hajdu, 2012, p. 4). Two other important developments for radiotherapy
followed shortly after this. One is Becquerel’s discovery of the natural radioactivity of a
uranium sample. The other is Curies’ chemical isolation of the radioactive elements of
polonium and radium (Becquerel and Curie, 1901; Gianfaldoni et al., 2017). The discov-
eries of Röntgen, Becquerel and the Curies paved the way for the production of devices
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meant to generate energetic beams for diagnostic and therapeutic purposes (Elaimy
et al., 2021). At the turn of the century, such devices were capable of only treating
skin cancer due to the low energy of the beams (Gianfaldoni et al., 2017). Next to the
diagnostic and therapeutic purposes of radiation, an additional use of radiation was
recognized by Marie Curie, namely the palliative one. She personally trained women to
operate mobile x-ray vehicles and radiographed and assisted wounded soldiers on the
frontlines in World War I (Curie, 1921; Reed, 2011; Loap, Huynh, and Kirova, 2021).

The 1920s brought several improvements to radiotherapy (Gianfaldoni et al., 2017),
with one of the most important being the relationship between dose and cell survival.
Coutard’s "protracted-fractional method" showed that the administration of doses in
fractions as opposed to singular treatment sessions is beneficial for tumor control and
fewer side effects, a method that is still in use to this day (Coutard, 1934). The period
between the 1930s and 1950s saw improvements focused on the treatment of deeper
tumors via the use of brachytherapy and the supervoltage x-ray tubes (Gianfaldoni et
al., 2017).

The significant advances during the 1950s, such as the introduction of megavoltage
therapy, Co-60 therapy machines (Huh and Kim, 2020) and Wilson’s proposal to use
the proton beam (Wilson, 1946) mark the start of modern external beam radiotherapy
(Hajdu and Vadmal, 2013). Wilson proposed the therapeutic use of proton beams due
to the advantages their dose distribution has over conventional photon beams (Wilson,
1946). An overview of the characteristics of proton and photon beams can be seen
in Figure 1.1. When compared to a photon dose-depth curve, the proton one shows
simultaneously lower doses achievable in organs at risk (OARs) and an increased target
dose conformality due to the presence of the Bragg peak (BP) (Paganetti, 2018).

Figure 1.1: Overview of the dosimetric characteristics of photons and
protons. The figure displays dose-depth curves for a photon beam, a
native proton beam and a modified proton beam for different zones in
the patient (organ and tumor). The figure was taken from (Tian et al.,

2018).

By the 1960s, both conventional photon-based radiation therapy (RT) and proton
therapy (PT) are established as capable of sparing the skin and tissues around the
tumor and RT, in particular, as an useful adjuvant after surgery or chemotherapy for
many cancers (Hajdu and Vadmal, 2013; Elaimy et al., 2021). Despite the theoretical
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dosimetric advantages of protons, technical difficulties and large costs kept PT mainly
as the subject of research laboratories (Elaimy et al., 2021) while photon based radiation
therapy was the main modality in hospitals. This situation only changed in the 1990s,
when the first PT center based in a hospital is established at the Loma Linda University
Medical Center (Elaimy et al., 2021).

During the 1960s and the 1970s, RT was revolutionized by the inclusion of radiation
images in the mostly two-dimensional treatment planning of the time (Webb and Evans,
2006). Specifically, single photon emission computed tomography and positron emission
tomography were introduced in the 1960s and computed tomography (CT), which is
currently the standard in treatment planning, was introduced during the 1970s (Huh and
Kim, 2020). CT images use multiple projection images from different angles to construct
a voxelized three-dimensional patient anatomy, with units of Hounsfield units (HU), that
can be used for cross-sectional views (Taubmann et al., 2018). The introduction of CT
images dramatically improved the accuracy of radiotherapy, by allowing physicians to
define both tumor and organs at risk on the cross-sectional slices (Taylor and Powell,
2004).

During the 1980s, personal computers became fast enough to perform simple or
heavily simplified treatment planning calculations in almost real time (Webb and Evans,
2006). An exception to this are Monte-Carlo (MC) calculations, which are currently
considered the golden standard in dose computations and in their most accurate form
(e.g. TOPAS (Perl et al., 2012)) are computationally expensive. Photon treatments
were performed using either square block apertures (called standard therapy) or multi
leaf collimators (MLCs) shaped to the target (called conformal therapy). In conformal
therapy, treatment planning relied on the skills of the planner to decide the number,
shape and orientation of the beams (Taylor and Powell, 2004), a process called for-
ward planning. At the same time, during the 1980s Brahme (Brahme, Roos, and Lax,
1982) proposed intensity-modulated radiation therapy (IMRT), which rapidly devel-
oped in the 1990s and became widely available in the 2000s (Huh and Kim, 2020; Webb
and Evans, 2006). IMRT, as opposed to conformal therapy, has radiation beams with
non-uniform intensities and employs computerised inverse planning (Taylor and Powell,
2004). By dividing each beam into several beamlets, with each beamlet being allowed
to have a different intensity from the others, complex dose patterns can be created.
In inverse planning, as opposed to forward planning, the plan outcome is specified (in
terms of tumor dose and organs at risk limits) (Taylor and Powell, 2004) together with
the beam angles and an automated optimization procedure determines the appropriate
beam intensities. Since its proposal, IMRT has established itself as the accepted stan-
dard for clinical practice in several sites such as prostate, liver, breast, lung and head
and neck (Huh, Park, and Choi, 2019), due to improved target conformity, increased
normal tissue sparing and the enablement of dose escalation (Taylor and Powell, 2004).

1.2 Intensity modulated proton therapy

The ideas developed in IMRT have also been translated to PT, in the form intensity
modulated proton therapy (IMPT) (Moreno et al., 2019), which is expected to be-
come the standard mode of proton therapy (Kooy and Grassberger, 2015; Mohan and
Grosshans, 2017). Due to the differences in dose deposition and scattering character-
istics of photons and protons, the techniques and algorithms used for IMRT planning,
optimization and delivery are not directly applicable to IMPT. This section provides an
overview of the technology and treatment planning techniques implemented in IMPT,
and their respective challenges.
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1.2.1 Technology

Prior to the development of IMPT, the lateral and depth extents of proton radiation
fields around the three-dimensional volumes identified on the CT scan were mechanically
controlled using scatterers, apertures and range compensators (Kooy and Grassberger,
2015). Once electronic controls were implemented, the well-collimated "pencil" beam
that comes from the accelerator could be magnetically deflected laterally to the central
beam axis. This delivery process is called pencil beam scanning (PBS). The treatment
delivery system (TDS) that facilitates pencil beam scanning, can be subdivided into
three components: the beam production system (BPS), the beam delivery system (BDS)
and the patient monitoring system (PMS).

The BPS consists of the proton accelerator and the beam transport system and
it produces a proton beam of certain requested properties (energy, intensity and spot
size) at the entrance of the BDS. There are multiple choices possible in terms of proton
accelerators, but the most common are the cyclotron and the synchrotron. A thorough
overview of the differences between these two technologies can be found in the work
of (Xiao et al., 2024). One important difference with regards to treatment delivery is
that a cyclotron produces a beam of a fixed energy (varied downstream in the BPS
via a degrader and an energy selection system) while a synchrotron produces beams of
variable energies. Regardless of the chosen technology, both cyclotrons and synchrotrons
have limitations in terms of the time required to switch energies (in the order of 1 s
to 2 s) (Kang, Wilkens, and Oelfke, 2008). In the case of the cyclotron mechanical
intervention is necessary, while in the case of the synchrotron a new proton bunch must
be accelerated. The time for switching energies can add up to a significant fraction
of the total treatment time for plans with many energy layers (as can be the case for
IMPT) (Van de Water et al., 2015; Kang, Wilkens, and Oelfke, 2008), resulting in
increased uncertainties and higher costs.

The BDS receives the treatment instructions (i.e., the plan) generated by the treat-
ment planning system (TPS), converts it into settings for the different delivery compo-
nents and monitors the safe delivery of the plan. An example of the hardware present
in a BDS can be seen in Figure 1.2. When the pencil beam enters the BDS, the profile
monitor records the center of the incident beam and the beam profile (spot size in the x
and y directions) (Li et al., 2013). Next, the beam is deflected by two scanning magnets
(x and y) using the settings (current values) derived from the desired lateral position of
the spot in the treatment plan. Following this, the center location of the delivered spot
is recorded by the spot position monitor and the number of protons (or equivalently
the number of Monitor Units (MU)) is recorded by two dose monitors. In between the
scanning magnets and the spot position monitor, a helium chamber is placed to reduce
the lateral dispersion of the proton beam (Mohan and Grosshans, 2017).
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Figure 1.2: Example of hardware present in a beam delivery system.
The figure displays a gantry, that contains, from top to bottom, a beam
profile monitor, scanning magnets, a spot position monitor and two dose
monitors before exiting towards the isocenter. Figure taken from (Pa-

ganetti, 2018)

1.2.2 Quality assurance

Quality assurance (QA) is a vital part of the safe operation of the BDS. Usually, QA can
be divided into machine QA and patient-specific QA (PSQA). Machine QA is meant to
ensure the correct function of the BDS for all treated patients. Patient-specific QA is
meant to ensure that the planned and delivered dose for a specific treatment plan are
within the accepted tolerances.

Machine QA consists of procedures that are performed daily, weekly, monthly and
yearly (Poenisch et al., 2021). Daily QA verifies the dosimetric characteristic of the
proton pencil beam, the proper functioning of the dose monitor chambers, the proper
functioning of the spot position monitor, the proper functioning of the imaging system
used for patient set-up and the correct functioning of the safety components of the
treatment machine before treatment. The dosimetric checks consist of range and spot
positioning checks. For example, at the Proton Therapy Center University of Texas
MD Anderson Cancer Center both checks have an allowed tolerance of 1mm. Due to
the large number of energies that the BPS can produce, only a select number of them
are tested. Similarly, only select spot positions (on the central axis and at symmetric
offsets from it in both x and y directions) are tested. Additional dosimetric checks are
volumetric dose constancy, with an allowed tolerance of 3% and spot size constancy,
with an allowed tolerance of 1mm or 10%. Safety interlock checks performed daily
are the in-room beam stops, the facility beam stop, the beam delivery indicator light,
the radiation monitors (inside and outside), audiovisual monitoring, the room clearance
button and the room motion sensor. During weekly QA, the measurements taken during
daily QA are reviewed by a certified medical physicist and the isocentricity of the couch
rotation is verified. Monthly QA has the same goals as daily QA, namely the verification
of the dosimetric accuracy, of the alignment of the the x-ray imaging system and of the
safety systems, with a main difference being that it is performed by a certified medical
physicist using different detector systems.
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Patient-specific QA can be divided into two components. The first stage of PSQA
involves a physicist that checks the plan to ensure that the beam arrangements and
parameters are appropriate. The physicist also tests the correct transmission of infor-
mation from the treatment planning system to the gantry (the structure that contains
the BDS) (Poenisch et al., 2021). The flow of information is prone to error due to the
conversion steps it entails. The fluence map that results from the plan optimization in
the TPS is converted into machine readable files, which thereafter must be correctly in-
terpreted and delivered by the machine (Meier et al., 2015). The second stage of PSQA
involves the delivery of the treatment plan to a water-equivalent phantom. Here the
differences between the measured and planned doses are compared against the allowed
clinical limits. For example, the allowed clinical limits at the Proton Therapy Center
University of Texas MD Anderson Cancer Center are the gamma pass rate being higher
than 90% using criteria of 3mm and 3% (Poenisch et al., 2021; Gottschalk, 2012). Such
measurements are necessary, as the machine QA process is limited in scope. As already
mentioned, only select energies and spot positions are tested, with the main goal being
to verify the correct operation of the safety interlocks of the system (Poenisch et al.,
2021). PSQA also acts as a form of machine QA, as failure to meet the necessary tol-
erances most likely indicate an issue in the BDS (Poenisch et al., 2021; Frank and Zhu,
2020). Given this, and the patient-specific nature of the treatment fields, measurements
form an integral part of the safe operation of the delivery system.

1.2.3 Treatment planning

Both IMPT and IMRT make use of inverse planning, a process in which the prescription
of the physician is converted into a treatment plan. The treatment plan is in turn
converted into machine settings meant to produce a delivered dose distribution that is
equivalent to the planned one.

The first step in treatment planning is the imaging of the patient and the delineation
(also called contouring) of the relevant volumes of interest (VOIs). The most common
imaging procedure is CT imaging which, as explained in Section 1.1, produces a vox-
elized three-dimensional patient anatomy on which the voxels are assigned to VOIs.
The visible part of the tumor is identified as the gross tumor volume (GTV), while the
microscopic visible and non-visible parts of it are identified as the clinical target volume
(CTV), a region that surrounds the GTV. Organs to which dose should be limited are
identified as organs at risk (OARs). In IMPT, the dose is delivered by pencil beams
that are magnetically directed towards a location (spot). The dose from an individual
pencil beam with index j to a voxel with index i is written as

di =
∑
j

xjDij ,

where Dij is the dose influence matrix and xj is the weight (i.e., the number of protons)
of the pencil beam with index j.

The prescription of the physician consists of a set of constraints (e.g., minimum
dose to the target of 70Gy) and intents or objectives (e.g., minimize dose to the parotid
glands). Mathematically, the objectives and their priorities are expressed in objective
functions with corresponding weights. For example, an objective function that aims
at minimizing the volume within a given OAR with index n that exceeds a maximum
allowed dose Dmax can be written as

On(d) =
∑

i∈OARn

H(di −Dmax) (di −Dmax)2 ,
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where H(d) is the Heaviside step function. Constraints for a given VOI are mathemat-
ically specified as bounds, namely

Dmin ≤ di ≤ Dmax, ∀i ∈ VOI.

Thus, IMPT optimization seeks to find the weights of the individual pencil beams
xj (also called intensity or fluence maps) that minimize the sum of the weighted objec-
tive functions subject to the desired constraints (or bounds). Oftentimes, the clinician
will have to consider several trade-offs due to the contradictory nature of the desired
constraints and objectives. The field of multicriteria decision analysis (or multicriteria
optimization) (MCO) formalizes the decision making in the presence of conflict stem-
ming from multiple criteria (Kooy and Grassberger, 2015). The two main approaches
to MCO are multilevel optimization and Pareto optimization.

Multilevel optimization (Long et al., 2012) (also called prioritized optimization or
lexicographic ordering) proceeds in different stages by imposing an ordering in terms
of importance of the different objectives and constraints. Therefore, each stage takes
the optimized plan from the previous stage and attempts to optimize given additional
criteria (e.g., the current stage attempts to minimize the dose to the parotids after the
previous stage maximized the dose to the target).

In contrast, Pareto optimization treats all objectives equally and computes a set
of Pareto optimal plans. Given a set of objectives and constraints, a plan is Pareto
optimal if it is achievable and if there is no other achievable plan that is better with
respect to one or more objectives and that is at least as good for the rest (Paganetti,
2018). The set of all Pareto optimal plans creates a Pareto surface, with intermediate
plans being obtained by interpolation (Kooy and Grassberger, 2015). The clinician can
traverse this space to assess the effect of different trade-offs (e.g., minimum dose to the
target of 70Gy versus 65Gy).

Regardless of the chosen multicriteria optimization method, the doses that result in
IMPT have a high degree of conformality (i.e., they have steep dose gradients) that is
obtained by exploiting the finite range, sharp distal fall-off and scattering characteristics
of protons over photons. The steep dose gradients are usually obtained by summing
up doses from radiation fields that are highly inhomogeneous and composed of several
energy layers. Due to this, small errors can cause hot or cold spots in the final dose
distribution or shift part of the dose into tumor adjacent critical organs at risk. Some of
the sources of uncertainties are the patient immobilization and setup in the treatment
room, the tumor delineation strategy, the intrafraction patient motion, the anatomical
changes that occur over the duration of the treatment, the conversion of HU values into
proton stopping powers, CT artifacts and treatment delivery uncertainties. In general,
the more conformal the total IMPT dose is, the more heterogeneous the fluence maps
are and the more susceptible it is to uncertainties (Paganetti, 2018). Thus, the beneficial
physical characteristics of protons over photons make IMPT doses more susceptible to
errors (or less robust) when compared to IMRT doses (Mohan and Grosshans, 2017).

A plan that does not degrade in quality when uncertainties occur is called a robust
plan (Paganetti, 2018). To achieve robustness in IMRT, margins are applied around
the CTV, to create a new structure called the planning target volume (PTV). However,
this concept is not applicable to IMPT, as it does not ensure coverage when hot or cold
spots occur. To incorporate uncertainties in IMPT optimization, robust optimization
and probabilistic approaches have been proposed. In these methods, the doses d are
assumed to depend on an additional set λ = {λ1, . . . , λN} of N uncertain parameters,
namely d = d(x, λ), with x being as before the set of beam spot weights that are
to be optimized. For robust optimization the values of the uncertain parameters are



8 Chapter 1. Introduction

assumed to be within some interval. This approach usually leads to an optimization
problem in which the constraints have to be satisfied for every realization of the uncer-
tain parameters (Paganetti, 2018). In the case of objectives, the robust optimization is
a worst-case optimization problem. Thus, if the original objective was to minimize the
maximum dose to the parotid glands, the robust optimization would seek to minimize
the maximum dose to the parotid glands for any possible range or setup error, resulting
therefore in a plan which is as good as possible for the worst case that was modelled to
occur. In the probabilistic approach, a probability distribution P (λ) that reflects the
probability of the error scenarios occurring is included into the planning itself.

One limitation of robust optimization is that it creates an enlarged dose region
that surrounds the target, just as margins do in IMRT, therefore delivering dose to
surrounding healthy tissue. Another is that some uncertainties, such as weight loss over
the duration of the treatment, are too complex to be included in robust optimization.
Anatomical robust optimization, in which the possible anatomies of the patient are
included in the optimization process has been proposed and found to be beneficial in
increasing the robustness of plans (Van de Water et al., 2018) for a head and neck
cohort. An additional approach to limit the enlarged dose region that surrounds the
target and to increase conformality is adaptive therapy and is the subject of the next
section.

1.3 Adaptive therapy

Adaptive radio therapy (ART) for photons, was initially proposed by Yan (Yan et
al., 1997) in the 1990s. ART can be defined as a form of radiotherapy where "the
delivered dose is monitored for clinical acceptability during the course of the treatment
and modified as needed with the goal of improving clinical outcomes" (Green, Henke,
and Hugo, 2019). Adapting the treatment plan to the daily anatomy, theoretically
achieves simultaneously better tumor control and lower toxicity in OARs through the
reduction of the necessary robustness settings to the minimum intra-fractional ones
(Paganetti et al., 2021). Adaptation of the treatment plan is particularly important for
PT, since IMPT doses are more susceptible to uncertainties than IMRT ones (Lomax,
2008a; Lomax, 2008b). There are three different time scales, namely offline, online and
real-time, on which treatment plan adaptation could in principle be applied on (Green,
Henke, and Hugo, 2019). An overview of the workflow in conventional, non-adaptive
settings and of the workflow in generic adaptive settings can be seen in Figure 1.3.
There are several differences between the different adaptive worfklows, many of them
stemming from the available human, computational and clinical resources and hardware,
but in general, the adaptive workflow consists, in one form or another, of re-imaging
the patient and re-delineating the VOIs, assessing the need for adaptation, adapting
the plan, ensuring the quality of the plan and thereafter safely delivering the plan. This
section briefly discusses the different time-scales on which adaptation can occur and the
challenges involved in achieving online adaptive proton therapy (APT).
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Figure 1.3: Overview of different RT and PT workflows. On the top
row, the convetional one-plan workflow is illustrated while on the bot-
tom row the generic adaptive workflow (offline, online and real-time) is

illustrated.

Offline adaptation can happen at fixed time intervals or as a result of trigger signals
(Paganetti et al., 2021). Offline ART is currently in clinical use in multiple variants
and organ sites (Sonke and Belderbos, 2010; Chen et al., 2014; Feng et al., 2018; Green,
Henke, and Hugo, 2019). In contrast, offline APT is less widely available, but is a reality
in a couple of select clinics which monitor the anatomy of the patient throughout the
treatment course (van de Schoot et al., 2016; Maeda et al., 2018; Placidi et al., 2017;
Albertini et al., 2020; Visser et al., 2022). In the case of offline APT, the process usually
takes several days between the acquisition of the new CT image and the delivery of the
clinically approved new or adapted plan (Albertini et al., 2020). This is effective against
slow inter-fractional anatomical changes, but is inadequate for fast ones. Ideally, the
process would be performed on the time scale on which anatomical changes occur. Real-
time adaptation is the most desired form of adaptation, as it would allow the smallest
margins for photons and the lowest uncertainty incorporated in robust optimization for
protons and therefore create the least toxicity.

In the online adaptation regime, a new CT image is acquired on the given day. Re-
search is being undertaken to reduce the integral dose to the patient, by using low dose
alternatives such as cone beam CT (CBCT), magnetic resonance (MR) imaging or low-
dose CT protocols (Albertini et al., 2020). Following acquisition of a new anatomy, the
contours from the previously obtained image are transferred onto it, usually via rigid or
deformable registration or auto-segmenting software. The current methodology creates
a bottleneck in the adaptive workflow, especially in the online and real-time regimes, as
physicians need to manually correct the new contours. Deep learning algorithms based
on prior information are expected to surpass the limitations of current methodologies
and provide a workable solution (Albertini et al., 2020). Once a new anatomy is ob-
tained and contoured, the need for adaptation is assessed. There is no broad consensus
established for adaptation triggering (Albertini et al., 2020), and many clinics perform
adaptation ad-hoc (Barragán-Montero et al., 2023). The work of Reiners (Reiners et al.,
2023) used daily CBCTs, obtained during patient set-up, to create synthetic CTs that
were thereafter used to establish protocols for adaptation triggers. This was found to
improve the clinical workflow and allow for more frequent inter-fraction dose evalua-
tions. Alternative systems, such as the traffic light system for photons (Kwint et al.,
2014) have been described. In the traffic light system, the CBCT images obtained
during set-up are categorized according to the severity of anatomical changes and adap-
tation is triggered if the system results in a "red" signal. Assuming that the need for
adaptation has been established, a plan adaptation process follows. Here too, different
approaches have been proposed. One is to optimize the initial plan (using the original
constraints and objectives) on the new anatomy. This approach requires re-running the
traditional planning pipeline and requires very fast dose computations, optimization as
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well as full QA and is currently infeasible for online APT. The other approach is to
change the original plan to restore the original plan quality or the original dose distri-
bution. Several works reported plan adaptations within a couple of minutes, each with
its own set of drawbacks (Paganetti et al., 2021). Depending on the chosen method,
this approach may or may not require full QA.

One important limitation in the implementation of online APT is the manual nature
of the patient-specific QA procedure. As explained before, patient-specific QA implies
the delivery of the treatment plan to a water phantom in order to assess the differences
between the planned and delivered dose. This procedure is infeasible, given that in
online APT the patient must remain on the treatment table. Independent dose calcula-
tions (IDCs), in different forms, have been proposed as a form of software redundancy
to the doses computed by the TPS and also as capable of replacing measurement based
PSQA (Meier et al., 2015; Johnson et al., 2019). There are different degrees of inde-
pendence in dose algorithms, ranging from low independence in the form of different
implementations of the same algorithm that the TPS uses to full independence in the
form of methodologically different dosimetric algorithms. Different sources of inputs
are also possible, resulting in different types of QA. One solution is to tap into the
data stream between the TPS and the gantry and extract the steering files. These files
contain beam line settings required to provide the desired energy, the currents in the
magnets for the required lateral deflection, the position of the patient couch and the
number of monitor units (Meier et al., 2015). Combining steering files with the IDC
results in an a-priori form of PSQA, where the patient can remain on the table.

Another alternative is to use the built-in measurements (specifically, the beam pro-
file on the central axis, the spot position after lateral deflection and the monitor unit
values) that the gantry detectors perform during the plan delivery. The measurements
performed by the gantry, are compiled into a file called log file, which when combined
with an IDC can be used a-posteriori to verify for each fraction the delivered dose to
the patient (Meier et al., 2015; Scandurra et al., 2016). Ideally, for real-time ART,
log-files would be extracted in real-time and the IDC would be fast enough (e.g., on
the time-scale of energy layer switching) to provide real-time feedback of the actually
delivered dose. This could be further used to modify the remaining spots or eventually
halt highly erroneous deliveries.

1.4 Contents of the dissertation

This thesis investigated and developed software based methods for the automation of
quality assurance processes in online APT. As discussed, a clinical implementation
of the online or real-time adaptive workflows is impossible without this automation.
Additionally, automation of QA processes will improve the clinical workflow in several
ways. First, less time will be spent on time-consuming, repetitive processes, thereby
allowing radiation technicians to focus their efforts on other relevant areas. Second,
less time spent on QA measurements, implies more beam time would be available for
patient treatment and therefore an increase in the needed patient throughput.

Chapter 2 presents the methodological framework of a TPS independent dose and
dose change calculation algorithm, referred from here on as Yet anOther Dose Algo-
rithm (YODA). The chapter starts with the Linear Boltzmann Equation (LBE) for the
proton phase-space density, which is the same equation that MC methods solve. It
thereafter details the physics-based approximations that are applied to it to reduce it
to a system of two partial differential equations (PDEs). By employing physics-based
approximations, the algorithm remains accurate with respect to the golden standard
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MC methods. One of the PDEs obtained in this process is analytically solvable which
makes the algorithm fast (the dose from a spot takes roughly 1 s to compute). Details
about the solution methodology for both equations are provided and for how to convert
the proton phase-space density into the dose in a region of interest (ROI) in the patient.
The algorithm is truly independent from TPS based dose calculations, as it employs
neither MC or pencil beam algorithm (PBA) methods. Next to the advantageous mid-
dle ground between speed and accuracy the algorithm achieves, another advantage is
the presence of the PDEs that allows the application of adjoint theory. Adjoint theory
is a mathematical formalism that approximates the change in a metric (e.g., the dose in
a region of interest) as a function of a change in system variables (e.g., the HU values
of the CT scan). This process is desirable when the number of system variables is large,
as is the case in a CT scan with millions of voxels, as expensive re-computations of the
chosen metric (e.g., the dose in a region) are avoided. Such a formalism is powerful,
as it is applicable to a variety of metrics (e.g., tumor control probability, normal tissue
complication probability, minimum or maximum dose in a region of interest) for a va-
riety of changing parameters (e.g., the patient anatomy, a spot MU value, the energy
spread of a spot). By avoiding re-computations, YODA can be employed in numerous
time-constrained situations. One example of this is the triggering of daily adaptations,
where the adjoint component could be used to quickly assess yesterday’s dosimetric
characteristics on today’s anatomy. Thus, the chapter ends with an exposition of the
adjoint formalism for the case when the metric of interest is the dose in the patient and
the independent variables that change are the HU values of the CT scan.

In Chapter 3 the methodology developed in Chapter 2 is comprehensively tested
first in water box with different slab inserts and thereafter in different patient (head and
neck, prostate and lung) scans. To this end, Chapter 3 starts by developing a Gaussian
beam splitting scheme. This is a necessary component of YODA, as the mathematical
framework is valid for in-depth heterogeneous and laterally homogeneous geometries.
Therefore, each treatment plan spot, taken as a symmetric two-dimensional Gaussian,
is approximated by a summation of symmetric two-dimensional Gaussian sub-spots.
The sub-spots are placed on concentric rings, with their amplitude, spreads and ring
radii obtained in an optimization procedure. Using this, the dose algorithm of YODA
is tested against the established golden standard MC algorithm TOPAS (Perl et al.,
2012) in a variety of situations, ranging from challenging synthetic tests to real CT
scans. Following this, the adjoint component’s capability of computing yesterday’s plan
on today’s anatomy is assessed for different patients and plans (both robustly and non-
robustly optimized ones). This allows YODA to work in an adaptation trigger system.
Lastly, a commissioning procedure is described, that when performed matches YODA’s
dose engine to any other dose engine (e.g., RayStation (Bodensteiner, 2018)). This
is necessary as different dose engines use different stopping power data, which leads to
range disagreements between the algorithms. Following this procedure, YODA could be
used as an independent dose calculation tool. The commissioning procedure details the
extraction of the beam optical parameters (either from actual measurements or from
simulations in the desired dose engine), the mean energy, the energy spread and the
MU to number of protons conversion that YODA should use to match the given dose
engine. Following this, a comparison between the dose engine of RayStation and YODA
is done.

Chapter 4 details a deep learning algorithm for predicting anatomical changes that
occur over the course of treatment in head and neck patients. Such an algorithm can be
used in an automatic plan QA pipeline. Specifically, a given patient can have a multitude
of realistic future anatomies predicted and for each future anatomy an optimal plan is
created a-priori to the treatment and stored in a database. On the given day, when
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only a quickly adapted plan is available for the anatomy of the day, a plan comparison
can be performed between the adapted plan and the corresponding truly optimal plan.
Another use for such an algorithm is in anatomical robust optimization, to enhance
the robustness of plans in the face of the predicted anatomical changes. The chapter
starts by describing the probabilistic framework of the algorithm that can be sampled
to predict deformation vector fields (DVFs), based on the planning CT (pCT) image
and corresponding RT structures. The DVFs are in turn used to warp the pCTs and
masks into repeat CT (rCT) images and masks. Next, details about the variational
autoencoder architecture of the model and training details are provided. To assess the
performance of the algorithm, a literature study of the observed anatomical changes
in head and neck patients is presented. Lastly, the performance of the algorithm is
assessed, both in terms of the changes expected from literature studies but also in
terms of a comparable deep learning based model.

Chapter 5 concludes the thesis, summarizing the main findings and the possible
applications of the presented models and provides recommendations for future research.
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Chapter 2

A deterministic adjoint-based
formalism for fast response changes

2.1 Novelty and own contributions

This chapter details the physical and mathematical formalism behind a novel dose and
dose change computation engine, which entailed a number of own contributions. First,
the idea to numerically solve the Fokker-Planck equation as opposed to approximating
it, as is done in the work of (Gebäck and Asadzadeh, 2012), leads to a more accurate
dose engine that remains fast enough for practical purposes. Second, a new density de-
pendent adaptive stepping scheme was developed to speed up the tracking of the proton
flux through tissue in the algorithmic implementation of the numerical solution to the
Fokker-Planck equation. Third, the analytical solution to the Fermi-Eyges equation was
fully derived in Appendix B, which resulted in a general solution capable of handling
asymmetric pencil beams, as opposed to the symmetric ones from the work of (Gebäck
and Asadzadeh, 2012). Last, the adjoint formalism was mathematically derived for this
particular system of PDEs and the chosen metric (the average dose). The algorithmic
solution to the adjoint equations was implemented and tested, showing that the adjoint
method is capable of avoiding expensive re-computations thereby speeding up the as-
sessments of dose changes caused by anatomical changes during patient-specific quality
assurance.

2.2 Introduction

To perform fast, TPS independent and log-file based dose computations the interactions
between the proton beam and the patient must be modelled, ideally not only using a
different implementation of the TPS dose engine but also using a different methodology
altogether. The two methods that are likely to be employed by a TPS are the Monte
Carlo (MC) method and the analytical PB method. The MC method (e.g., TOPAS
(Perl et al., 2012)) trades fast computation times for high computational precision
(Zheng-Ming and Brahme, 1993) by solving the in-tissue proton balance equation (i.e.
the Linear Boltzmann Equation) using statistical sampling methods. The analytical PB
method (e.g., Bortfeld’s model (Bortfeld, 1997)) trades high precision for fast compu-
tation times by employing a series of approximations and fits to obtain the dose in the
tissue of interest. PB methods are still routinely used in TPS (Trnková et al., 2016)
despite their limitations being well documented (Soukup, Fippel, and Alber, 2005).

This chapter is based on the publication of Tiberiu Burlacu, Danny Lathouwers, and Zoltán Perkó
(Jan. 2023b). “A Deterministic Adjoint-Based Semi-Analytical Algorithm for Fast Response Change
Computations in Proton Therapy”. In: Journal of Computational and Theoretical Transport 52.1,
pp. 1–41. issn: 2332-4309. doi: 10.1080/23324309.2023.2166077. (Visited on 08/30/2023)

https://doi.org/10.1080/23324309.2023.2166077
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A methodologically different approach is based on a deterministic solution of the
Linear Boltzmann Equation (Burlacu, Lathouwers, and Perkó, 2023b). This approach,
which will henceforth be referred to as Yet anOther Dose Algorithm (YODA), is a
hybrid numerical and analytical solution to a physics motivated approximation of the
same equation that MC methods solve. The method strikes a balance in terms of
accuracy versus speed. It is accurate with respect to MC methods due to the physical
modelling of the interactions between the proton beam and the patient and it is fast due
to the partly analytical solution. An additional advantage of this approach is the ease
of applying the adjoint method. Given planning and repeat CT images with delineated
structures and a treatment plan, the adjoint method computes an approximation of the
change in dose caused by delivering the treatment plan to the repeat CT image, thereby
avoiding expensive re-computations.

This chapter details the mathematical formalism behind YODA. In Section 2.3 the
approximations employed to reduce the Linear Boltzmann Equation to two simpler to
solve partial differential equations are detailed. Sections 2.4 and 2.5 show the methods
through which the Fokker-Planck and Fermi-Eyges equations are solved while Section
2.6 shows how to compute the dose in the patient using the solution to the previously
mentioned partial differential equations. Thereafter, Section 2.7 develops the adjoint
formalism for dose changes as a function of anatomical changes. Lastly, the data sources
used for the coefficients that appear in the previously mentioned equations are discussed
in Section 2.8.

2.3 Approximating the LBE

The physical system under consideration is given by a proton beam irradiating the
patient. This system can be characterized through the (steady-state) LBE, the validity
of which for PT has been discussed by Börgers (Börgers, 1999). The LBE describes
the proton balance in an arbitrary volume. Its derivation is obtained by equating all
the gain and loss mechanisms for protons at position r ∈ R3 with a certain energy E
in dE and direction given by the unit vector Ω̂ = v/|v| (with v the velocity vector
of the protons) in dΩ̂ in an arbitrary volume V with a boundary denoted by ∂V as
outlined by Duderstadt & Hamilton (Duderstadt and Hamilton, 1991). The equation
is an integro-differential equation for the proton flux (φ = vn) with v the proton speed
and n(r, E, Ω̂) the angular proton density,

Ω̂ ·∇φ+Σt(r, E)φ(r, E, Ω̂) =

∫
4π

dΩ̂
′

∞∫
0

dE′Σs(E
′ → E, Ω̂

′ → Ω̂)φ(r, E′, Ω̂
′
) (2.1)

BC: φ(rs, E, Ω̂) = 0 if Ω̂ · ês < 0 with rs ∈ ∂V, (2.2)

where BC is a boundary condition of the non-reentrant type, rs denotes a vector on the
boundary surface ∂V of the volume V , ês is the unit outward pointing normal vector to
the boundary ∂V at rs, Σt is the total macroscopic cross section, Σs is the macroscopic
double differential scattering cross section.

Currently, the LBE in its form is computationally expensive to solve. A first step is to
divide the total Σt and scatter Σs cross sections according to the main interactions that
a proton undergoes as it propagates through the medium, namely Σt = Σa +Σe +Σin

where Σa is the catastrophic (absorption) scatter cross section, Σe is the elastic scatter
cross section between the incident protons and the nuclei of tissue, Σin is the inelastic
scatter cross section between the incident protons and atomic electrons. By doing so,
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Equation 2.1 can be written as

Ω̂ ·∇φ =

∫
4π

dΩ̂
′

∞∫
E

dE′Σa(E
′ → E, Ω̂

′ → Ω̂)φ(r, E′, Ω̂
′
)− Σa(r, E)φ(r, E, Ω̂)

+

∫
4π

dΩ̂
′
Σe(r, E, Ω̂

′ → Ω̂)φ(r, E, Ω̂
′
)− Σe(r, E)φ(r, E, Ω̂) (2.3)

+

∞∫
0

dQΣin(r, E +Q → E, Ω̂)φ(r, E +Q, Ω̂)− Σin(r, E)φ(r, E, Ω̂),

with Q defined as the amount of energy transferred during an interaction. In this
splitting it is assumed that the energy transfer in Coulomb elastic scatter interactions
is negligible and that the angular deflection in Coulomb inelastic scatter interactions is
negligible (Zheng-Ming and Brahme, 1993). The next step is to apply approximations
to each of the collision integrals in Equation 2.3.

The inelastic scatter integral is approximated using the Continuous Slowing Down
Approximation (CSDA) and the Energy-loss Straggling (ELS) approximation (Zheng-
Ming and Brahme, 1993). Given the difference between the proton and electron mass,
the energy loss of a proton beam in each such individual collision is small. Thus, the
stopping process can effectively be approximated by a continuous energy loss process
with a mean (called the stopping power) and a deviation around the mean (called the
straggling coefficient).

Therafter, we orient the beam along the z-direction and apply the small angle (i.e.,
Ωz = 1 in Cartesian angular coodinates) Fokker-Planck approximation to the elastic
scatter angular integral. In doing so, Ω̂ is redefined as Ω̂ = (Ωx,Ωy) ∈ R2. Similarly
to the CSDA process, due to the small angular deflection that the proton beam suffers
through its Coulomb interactions with the atom the scattering process is approximated
as a continuous diffusion term in the lateral angular plane. Moreover, in the elastic
scattering cross section Σe(E, Ω̂ · Ω̂′

) the energy is replaced by the depth-dependent
mean energy Ea(z) (Gebäck and Asadzadeh, 2012; Zheng-Ming and Brahme, 1993).

The catastrophic inscatter integral is neglected completely with only the absorption
catastrophic scatter cross section term remaining. Applying these approximations to
the LBE reduces the integro-differential equation to the following PDE

∂φ

∂z
+Ωx

∂φ

∂x
+Ωy

∂φ

∂y
− ∂S(r, E)φ

∂E
− 1

2

∂2T (r, E)φ

∂E2

+Σa(r, E)φ− Σtr(z)

2

(
∂2φ

∂Ω2
x

+
∂2φ

∂Ω2
y

)
= 0, (2.4)

where S(r, E) is the stopping power (the mean energy loss per unit path of the proton),
T (r, E) is the straggling coefficient (the deviation of the energy loss around its mean
value), Σa is the absorption cross section (the removal of protons from the beam due to
nuclear interactions) and Σtr is the transport cross section (the rate at which protons
diffuse in the lateral angular plane). The resulting PDE is linear in the dependent
variable φ which in turn depends on the six independent system variables r, Ω̂, E.

We generalize the work of Gebäck and Asadzadeh (Gebäck and Asadzadeh, 2012)
by considering a laterally homogeneous, in-depth heterogeneous geometry and write the
flux as

φ = φFE(r, Ω̂) · φFP (z, E). (2.5)
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To simplify notation, the dependence of the fluxes φFE(r, Ω̂) and φFP (z, E) on their
respective independent variables (r, Ω̂) and (z, E) will be suppressed in the rest of this
text. Substitution in Equation 2.4 results in

Υ(φFE) · φFP + φFE · 1DFP(φFP ) = 0, (2.6)

where Υ(φFE) is the Fermi-Eyges equation and 1DFP(φFP ) is the one-dimensional
Fokker-Planck equation. In order to avoid the trivial solution both of these equations
are set to zero (for a proof of separability see Appendix A), yielding

Υ(φFE) =
∂φFE

∂z
+Ωx

∂φFE

∂x
+Ωy

∂φFE

∂y
− Σtr(z)

2

(
∂2φFE

∂Ω2
x

+
∂2φFE

∂Ω2
y

)
= 0 (2.7)

and

1DFP(φFP ) =
∂φFP

∂z
− ∂S(z, E)φFP

∂E
− 1

2

∂2T (z, E)φFP

∂E2
+Σa(z, E)φFP = 0. (2.8)

Searching for the solution in the split form defined by Equation 2.5 is a usual math-
ematical trick for the separation of variables, ensuring that the solutions of Equations
2.7 and 2.8 yield the exact solution of Equation 2.4. However, such a split of the proton
flux also has strong physics foundations, even in the more general setting. Since catas-
trophic inscatter interactions are rare, the process mostly responsible for energy change
is the Coulomb inelastic scatter. The energy loss of protons is therefore primarily de-
termined by the stopping power and range straggling properties of the materials they
traverse through. Due to the laterally homogeneous (or at least not too inhomogeneous)
geometry on the scale of a highly focused beam (typically only 2-3 mm in clinical proton
beams) and the strong forward scattering, the materials along the traversed through
path till any given depth z are very similar for protons travelling under slightly different
angles Ω̂, resulting in strong coupling between the energy spectrum of the beam and the
depth. Moreover, since the elastic Coulomb scatter mostly responsible for the angular
spread of the beam causes negligible energy change, the energy spectrum of protons
having slight deviations Ω̂ from the main beam direction Ωz = 1 and that of protons
with the original un-collided direction Ω̂ = (0, 0, 1)T is similar. These observations pro-
vide strong reasoning for searching for the solution in the form of Equation 2.5 – with
a depth dependent energy spectrum φFP (z, E) that is independent from the spatially
dependent angle distribution φFE(r, Ω̂) – even in more general cases.

2.4 Solving the Fokker-Planck equation

The one-dimensional Fokker-Planck equation is a convection-diffusion equation in en-
ergy whose character is well suited for Discontinuous Galerkin (DG) methods. Con-
sequently, its semi-discrete form was obtained using the Symmetric Interior Penalty
Galerkin (SIPG). The main advantages of the SIPG method over other finite element
methods (FEM) are the relative ease with which the approximating polynomial can be
changed on different mesh elements, the fact that the method allows unstructured or
adaptive meshes, and that the method satisfies a local energy balance (as opposed to
the global energy balance satisfied by continuous Galerkin methods) (Rivière, 2008).
The semi-discrete form was solved using the SDIRK3 method, which is a third order
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accurate implicit finite difference method1.
The one-dimensional Fokker-Planck equation can be written in a more standard

convection-diffusion form

∂φFP

∂z
− ∂S∗(z, E)φFP

∂E
− ∂

∂E

(
T ∗(z, E)

∂φFP

∂E

)
+Σa(z, E)φFP = 0, (2.9)

where the modified stopping power S∗(z, E) = S(z, E) + 1
2
∂T (z,E)

∂E and the modified
straggling coefficient T ∗(z, E) = T (z, E)/2 are introduced. To simplify notation, from
here on the stars will be dropped and the explicit (z, E) dependence of the stopping
power, the straggling coefficient and the absorption cross section on the depths z and
energy E will only be shown if necessary. Moreover, it is Equation 2.9 that will from
now on be referred to as the one-dimensional Fokker-Planck equation. The Fokker-
Planck equation can also be written in a simpler form as LφFP = r, where L is the
differential operator acting on the Fokker-Planck flux φFP and r is the source of the
equation, which in this case is equation to 0.

2.4.1 Domain definition and discretization

The computational domain of the equation is given as D = (0, zmax)× (Emin, Emax),
D ⊂ R2. The solution of the one-dimensional Fokker-Planck equation is the Fokker-
Planck flux φFP (z, E) ∈ H where H = L2(R2) is a real Hilbert space of square
integrable functions with an associated inner product defined as

⟨f, g⟩ =
∞∫
0

dz

∞∫
0

dEfg.

To ensure a unique solution to Equation 2.9 boundary conditions must be imposed,
namely

BCE: φFP (z, E)

∣∣∣∣
E=Emax

= 0,
∂φFP (z, E)

∂E

∣∣∣∣
E=Emax

= 0. (2.10)

BCS: φFP (0, E) = Ae
−
(

E−E0
σE

)2

. (2.11)

The boundary conditions in energy (BCE) are homogeneous Dirichlet and Neumann
conditions while the boundary condition in space (BCS) is given by a Gaussian function
in energy. Gerbershagen (Gerbershagen et al., 2017) showed that this is a realistic
energy spectrum for a proton beam that has suffered energy degradation. The amplitude
of the Gaussian is given by A, the mean by E0 and the energy spread is given by σE . In
line with usual practice, a rigorous proof of the existence and uniqueness of the solution
to Equation 2.9 and its associated boundary conditions is not given and these properties
are assumed to be true.

The energy component of the domain D is discretized into a number NG of groups
with each group having the same width. The minimum and maximum energy of the
domain are chosen to encompass the standard clinical proton energies range of 1MeV
to 201MeV. In a given group g the high energy boundary is denoted by Eg−1/2, the
low energy one by Eg+1/2 and the center value by Eg. Thus, Emax = E1/2 and Emin =
ENG+1/2. An illustration of this discretization can be seen in Figure 2.1.

1When compared to the Crank-Nicholson method in our earlier work (Burlacu, Lathouwers, and
Perkó, 2023b), this method increased the accuracy of the Fokker-Planck fluxes without degrading the
speed of the algorithm.
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Figure 2.1: Energy domain discretization

The spatial part of the domain D is discretized into a number of steps Ns with the
interval length ∆z allowed to vary on a per step basis and the start and end points of
the spatial domain are given by z0 = 0 and zNs = zmax.

Equation 2.9 can also be written in a short-hand form as

L(α)φFP = 0

where the vector of system parameters α and the differential operator L(α) acting on
the flux are introduced as

L(α)(·) = ∂

∂z
(·)− ∂S∗(·)

∂E
− ∂

∂E

[
T ∗∂(·)

∂E

]
+Σa(·),

and α = (S∗(z, E), T ∗(z, E),Σa(z, E)).

The stopping power, energy straggling and absorption cross sections are all approxi-
mated as continuous, piece-wise linear functions in the NG energy groups. Since these
properties are unique for each nuclide, we typically need as many material datasets
as many different HU voxels (defined as a cubic element in the CT scan) the beam
traverses, as the CT HU units are mapped to different material compositions. Denot-
ing the space of univariate polynomials with real coefficients and degree at most k as
Pk, and the mesh in the energy variable as T = {EIi}i∈1,...,NG, with EIi = [Ei+1, Ei]

being the continuous energy interval in the ith group, all our material data can repre-
sented by the vector space of continuous, piecewise linear functions defined as P 1

T ={
vT ∈ C0(R+) |∀i ∈ {1, . . . , NG} , vT |Ii ∈ P1

}
. Thus, the space in which α resides is

the tensor product constructed from the individual spaces P 1
T to which the stopping

powers, straggling coefficients and absorption cross sections of all material domains
belong.

2.4.2 Semi-discrete variational formulation

The first step to obtain an approximation to the solution of Equation 2.9 and its asso-
ciated boundary conditions 2.10, 2.11 is to obtain the semi-discrete variational formu-
lation. To do so, several quantities must be defined. First, the jump and the average of
the flux at the edges of an energy group are defined as (Rivière, 2008)

[φ] = φ(E−
j )− φ(E+

j ),

and {φ} =
1

2

(
φ(E−

j ) + φ(E+
j )
)
,



2.4. Solving the Fokker-Planck equation 19

where j = 1
2 , . . . , NG + 1

2 and with E−
j = lim

ϵ↓0
(Ej − ϵ) and E+

j = lim
ϵ↓0

(Ej + ϵ). Special

cases are defined at the boundary of the energy domain where

[v(ENG+1/2)] = −v(E+
NG+1/2),

{
v(ENG+1/2)

}
= v(E+

NG+1/2), and

[v(E1/2)] = v(E−
1/2),

{
v(E1/2)

}
= v(E−

1/2).

Second, the penalty term is defined as (Rivière, 2008)

J0(v, w) =

NG+1/2∑
j=1/2

σ0

hj−1,j
[v(Ej)][w(Ej)]

where hj−1,j = max(∆Ej−1,∆Ej) and σ0 is a real and nonnegative number bounded
from below. The role of this term is to penalize the jumps in the solution.

By multiplying Equation 2.9 with a test function v, integrating over one group,
thereafter summing over all energy groups and making use of the definitions of the
jump and the average, the semi-discrete variational formulation is found to be

Emax∫
Emin

dE
∂φFP

∂z
v + aSIPG(φFP , v) +

Emax∫
Emin

dE

[
−∂S∗φFP

∂E
v +ΣaφFP v

]
= 0, (2.12)

where the SIPG bilinear aSIPG is (Rivière, 2008)

aSIPG(φFP , v) =

Emax∫
Emin

T
∂φFP

∂E

dv

dE
dE

+
∑
Γi

−
{
T
∂φFP

∂E

}
· [v]− [φFP ] ·

{
T
dv

dE

}
+

σ0

hi−1,i
[φFP ][v], (2.13)

where Γi denotes the interior boundary faces of the energy domain. Following Hille-
waert’s work (Hillewaert, 2013), the penalty parameter was set as a function of the
maximum polynomial degree max(deg(pig)) of the basis functions, namely

σ0 =
(max(deg(pig)) + 1)2

2
. (2.14)

Both a coercivity analysis and the proof of equivalence between the semi-discrete
variational formulation from Equation 2.12 and the model problem 2.9 with its asso-
ciated boundary conditions 2.10 and 2.11 are beyond the scope of this work and can
be found in the work of Hillewaert and Riviere respectively (Hillewaert, 2013; Rivière,
2008).

2.4.3 Basis functions

The first three group-centered Legendre polynomials1

pig(E) ≡ Pi

(
2

∆Eg
(E − Eg)

)
, i = 0, 1, 2 (2.15)

1Initially, the algorithm used first order basis functions. However, the resulting fluxes for coarse
energy and spatial grids resulted in unphysical negative values. The addition of the third quadratic
basis function reduced the behaviour to negligible values.
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were used as the basis functions for the expansion of the flux in the computational
domain as

φFP (z, E) =
NG∑
g=1

2∑
i=0

φi
g(z)p

i
g(E). (2.16)

Introducing the expansion from Equation 2.16 into the semi-discrete variational formu-
lation from Equation 2.12 and sequentially replacing the function v with the chosen
basis functions pig(E) yields a system of linear equations. This system can be written
as

M
dΦ

dz
+GΦ = 0, (2.17)

where Φ is a vector with dimension (1+max(deg(pig)))×NG and its elements are given
by the unknown coefficients φi

g(z) from Equation 2.16, the mass matrix M is a diagonal
matrix that in a given group g has elements

∫
dEpig(E)pig(E) with i = 0, 1, 2 along the

diagonal and G is the system matrix which receives contributions from the continuous
slowing down (CSD), straggling and absorption discretization.

This resulting system is discretized in space using either the Crank-Nicholson method
or the three-stage, third-order accurate Singly Diagonally Implicit Runge-Kutta (SDIRK)
method (Kennedy and Carpenter, 2016). Depending on the chosen number of groups
the size of the resulting system is on the order of 103. This relatively small size of the
system of equations implies that direct solution methods are comparable in computa-
tional time to iterative ones. To this end, the banded system solver DGBSV from the
LAPACK library (Anderson et al., 1999) was used.

2.5 Solving the Fermi-Eyges equation

This section provides the main results of the analytical solution to the Fermi-Eyges
equation and the steps taken to implement it. A full derivation of this solution can be
found in Appendix B. This solution is based on refinements brought to Fermi’s original
theory on the distribution of charged particles undergoing multiple elastic scattering in
their passing through matter. Authors such as Eyges, Brahme and Asadzadeh (Eyges,
1948; Brahme, 1975; Gebäck and Asadzadeh, 2012) have brought the theory into its
form presented here. As shown in Section 2.3 the Fermi-Eyges equation takes the form

Υ(φFE) =
∂φFE

∂z
+Ωx

∂φFE

∂x
+Ωy

∂φFE

∂y
− Σtr(z)

2

(
∂2φFE

∂Ω2
x

+
∂2φFE

∂Ω2
y

)
= 0, (2.18)

and can be solved by separating the x and y directions, namely φFE(r,Ωx,Ωy) =
H(z, x,Ωx) ·H(z, y,Ωy). This results in two separate PDEs for each direction

∂H(z, ξ, ω)

∂z
+ ω

∂H(z, ξ, ω)

∂ξ
− Σtr(z)

2

∂2H(z, ξ, ω)

∂ω2
= 0, (2.19)

where ξ stands for one of x, y and ω stands for one of Ωx,Ωy. For simplicity, the resulting
PDEs have the same boundary condition imposed, namely

H(0, ξ, ω) = C exp
(
−
(
a1ξ

2 + a2ξω + a3ω
2
))
, (2.20)

with ai ∈ R, ∀i = 1, 2, 3 and C > 0.
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The solution of Equation 2.19 is found by artificially extending the usual domain of
Ωx and Ωy from {(Ωx,Ωy) : |Ω̂| = 1} to (Ωx,Ωy) ∈ [−∞,∞]2, applying two-dimensional
Fourier transforms in ξ and ω and accounting for the Gaussian initial condition. In doing
so the solution to Equation 2.19 is found to be

H(z, ξ, ω) =
C√
D

1√
B

exp−
(
A0ξ

2 − 2A1ξω +A2ω
2
)

2B
(2.21)

where B = A0A2 − A2
1, D = 4a1a3 − a22 and the FE coefficients A0, A1 and A2 are the

moments of the Σtr transport cross section and are given by

A0(z) =
2a1
D

+

z∫
0

Σtr(η)dη (2.22a)

2A1(z) =
4a1z − 2a2

D
+ 2

z∫
0

(z − η)Σtr(η)dη (2.22b)

A2(z) =
2a1z

2 − 2a2z + 2a3
D

+

z∫
0

(z − η)2Σtr(η)dη. (2.22c)

Gottschalk (Gottschalk, 2012) showed that the FE coefficients A0(z), A1(z), A2(z) can
be intepreted as the variances of the angular direction, the lateral position and the
covariance of the lateral position and the angular direction respectively.

The quantity Σtr is the depth-dependent energy spectrum (i.e., φFP ) averaged1

macroscopic transport cross section Σtr, namely

Σtr(z) =

∫
dEφFP (z, E)Σtr(z, E)

/∫
dEφFP (z, E), (2.23)

with the macroscopic transport cross Σtr computed using the macroscopic elastic scatter
cross section Σs via

Σtr(z, E) =

1∫
−1

dµ0Σs(z, E, µ0)(1− µ0), with µ0 = cos
(
Ω̂ · Ω̂′)

.

Multiplying the x and y directions gives the general FE flux as

φFE(z,ρ, Ω̂) =
C2

DB(z)
exp− 1

2B(z)

(
A0|ρ|2 − 2A1ρ · Ω̂+A2|Ω̂|2

)
(2.24)

where ρ = (x, y), Ω̂ = (Ωx,Ωy).
Next to its analytical nature an important feature of the Fermi-Eyges solution from

Equation 2.24 is that it is a Gaussian function in both the spatial and angular directions
with coefficients that are determined by the depth-dependent beam energy spectrum
φFP (z, E) and the elastic scatter cross section from Equation 2.23 corresponding to
that energy.

1In the original formalism, Σtr depends on the average depth-dependent beam energy Ea(z). It
was found that weighing Σtr with the depth-dependent energy spectrum yields more accurate lateral
profiles that better match MC results.
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2.5.1 Solution method

The boundary condition H(0, ξ, ω) from Equation 2.20 is chosen to be a two-dimensional
normal distribution, namely

H(0, ξ, ω) =
1

2πσξσω
√

1− ρ2ξ

exp
−1

2(1− ρ2ξ)

(
ξ2

σ2
ξ

− 2ρξ
ξ

σξ

ω

σω
+

ω2

σ2
ω

)
.

Using this, the coefficients C, a1, a2, and a3 are identified as

C =
1

2πσξσω
√

1− ρ2ξ

,

a1 =
1

2(1− ρ2ξ)σ
2
ξ

, a2 =
−ρξ

(1− ρ2ξ)σξσω
, a3 =

1

2(1− ρ2ξ)σ
2
ω

,

D =
1

(1− ρ2ξ)σ
2
ξσ

2
ω

,

where ϱ is the correlation coefficient between the spatial dimension ξ and the angular
dimension ω, σξ standard deviation in ξ and σω standard deviation in ω. The ai coeffi-
cients are thereafter used to initialize the values of the FE coefficients from Equations
2.22

To compute the FE coefficients at a given depth zi the beam energy spectrum at
that depth must be known together with Σtr(z, E) at zi. The µ0 integral from Σtr(z, E)
is computed using the QAGE routine from the QUADPACK library (Piessens et al.,
1983). As z increases in the integrals from Equations 2.22 so do the integrands and the
computational expense of these integrals. We chose to approximate Σtr in a given step
as the average of its values at the start and endpoint of the step thereby employing the
trapezoidal integration rule. In doing so, the integrals could be re-written to depend
only on the previous value as shown in Appendix B. Given the fact that the segments
over which Σtr is integrated are small (≤ 0.01 cm) the trapezoidal integration scheme
is sufficiently accurate for our purposes.

2.5.2 The angular integral

In the metric computation the angle integrated FE flux is needed, namely

ΨFE(r) =

∫
4π

dΩ̂φFE =

∞∫
−∞

dΩxH(z, x,Ωx)

∞∫
−∞

dΩyH(z, y,Ωy).

where the integration domain was extended to (−∞,∞) as was done in the Fermi-Eyges
solution. As shown in Appendix B, by using the solution from Equation 2.21 the angular
integral takes the following simple form

ΨFE(r) =
1

2πA2
exp− |r|2

2A2
. (2.25)

2.6 Metric definition

The 6-dimensional phase-space density resulting from the individual solutions to the
FP and FE equations can be used to obtain all clinically relevant metrics. For example,
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let ΨFE be the angular integral of φFE , namely

ΨFE(r) =

∫
4π

dΩ̂φFE(Ω̂, r), (2.26)

and let ΨFP be

ΨFP (z) =

∞∫
0

dE E

[
−∂S(z, E)φFP

∂E
− 1

2

∂2T (z, E)φFP

∂E2
+Σa(z, E)φFP

]
. (2.27)

Then, if the CT image volume is given by the union of all of its Nv voxels (i.e., V =⋃
Vk, k = 1, . . . , Nv where Vk is the volume of one voxel), the energy Ek deposited by

the proton beam in a voxel Vk is given by

Ek =

∫
Vk

dVΨFE(r)ΨFP (z).

The dose Dk in the same voxel k is given as

Dk =
Ek

mk
=

1

∆V

∫
Vk

dV
ΨFE(r)ΨFP (z)

ρk
, (2.28)

where ∆V = ∆x∆y∆z is the volume of voxel k (constant for all voxels in the CT image)
and ρk is the mass density of voxel k. Thus, the total dose in a certain region of interest
(ROI) of the CT image, identified by the union of its corresponding voxels, is the sum
of Dk over all k in the ROI.

2.6.1 Lateral density scaling

A scaling to better account for lateral heterogeneities is introduced in the dose in a
voxel Vk from Equation 2.28. Specifically, the energy density in a voxel k is scaled by
the ratio of the density ρck on the central beam axis at a depth that corresponds to the
voxel k and the density ρk of the voxel itself, namely

Ek =

∫
Vk

dV
ρk
ρck

ΨFE(r)ΨFP (z). (2.29)

Using this scaling, the dose in voxel k becomes

Dk =
1

∆V

∫
Vk

dV
ΨFE(r)ΨFP (z)

ρck
. (2.30)

Thus, a pencil beam distributes laterally a dose proportional to the density along the
central beam axis. It is Equation 2.30 that defines Dk and the one that will be used for
both dose computations and the development of the adjoint formalism.

2.7 Dose changes via the adjoint method

Next to its dose computation capabilities, an advantage of YODA is the ease of applying
the adjoint method. This general mathematical framework approximates to first order
the change in a metric as a function of the change in all independent variables. Examples
of possible independent variables are HU values in the CT image or treatment plan spot
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characteristics such as mean energy, energy spread, position, MU value (or equivalently
the number of protons), angular spread and the spot size. Examples of metrics are the
mean dose to an OAR or NTCP values. The adjoint method is useful when the number
of independent variables is large (so that re-computing the metric for each new variable
becomes prohibitively expensive) and their change is relatively small (so that the first
order adjoint approximation is accurate). Examples of applications are computing dose
or NTCP differences caused by differences between planned and delivered spot MU
values or isocenter positions or by delivering yesterday’s treatment plan on today’s CT
image. Since CTs typically have millions of voxels this is likely always the case in
radiotherapy. This section illustrates the main details of the adjoint method for the
case when the independent variables that change are the HU values of the CT image
and the metric considered is the dose in a voxel Vk. Larger regions of clinical interest
are trivial generalizations of this case.

A given change in the HU values of the CT image implies two distinct changes in
the deposited dose Dk in the voxel k. One is a direct change, since a HU change in the
voxel k implies, among others, a stopping power change which can be directly inputted
in the Dk change via Equation 2.27. The other is an indirect change, as a stopping
power change somwhere along the proton beam path implies a proton flux change in
the considered voxel k. This change can only be known by re-solving for φ from the FP
and FE equations with the new HU values. Thus, the change in Dk is written as,

δDk = δDk,dir + δDk,indir , (2.31)

where δ denotes a variation, δDk,dir denotes the part of δDk that can be directly com-
puted and δDk,indir denotes the part that would have to be re-computed.

2.7.1 Adjoint source derivation

Formally, taking the Gateaux-differential of Dk gives δDk as

δDk(e
0,h) =

1

∆V

∫
Vk

dV
−hρck
ρ2ck

ΨFE(r, e
0)ΨFP (z, e

0) (direct effect)

+
1

∆V

∫
Vk

dV
1

ρck
δΨFE(r, e

0,h)ΨFP (z, e
0) (direct and indirect effect)

+
1

∆V

∫
Vk

dV
1

ρck
ΨFE(r, e

0) δΨFP (z, e
0,h) . (direct and indirect effect)

= δDk1(e
0,h) + δDk2(e

0,h) + δDk3(e
0,h) ,

where the explicit dependence on a vector e0 of nominal or base parameters has been
indicated and h denotes the change in a quantity. In the case of this work, the nominal
parameters are S, T,Σa,Σs on the planning CT together with the spot optical and
energy parameters in the original plan.

The first contribution to the direct effect is found to be

δDk,dir =
1

∆V

∫
Vk

dV
−hρck
ρ2ck

ΨFE(r, e
0)ΨFP (z, e

0). (2.32)

The remaining terms have to be separated into their respective direct and indirect
components. The δΨFE term can be computed by making use of the previously found
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ΨFE definition,

ΨFE(r) =
1

2πA2
exp− |r|2

2A2
. (2.33)

Taking the Gateaux-differential of ΨFE gives

δΨFE = ΨFE δA2

[
−1

A2
+

|r|2

2

1

A2
2

]
which contains both direct and indirect effect components. Continuing the process of
taking Gateaux-differentials gives for A2

δA2 =

z∫
0

(z − z′)2 δΣtr (z
′)dz′,

where, for simplicity, variations in the Fermi-Eyges initial condition were ignored. By
including these variations, which lead to straightforward direct effects, perturbations in
initial spot spatial spread, angular spread and divergence can be computed.

The energy-flux averaged transport cross section is given by

Σtr(z, e
0) =

1

Np(z)

∫
dEφFP (z, E)Σtr(z, E)

where
Np(z, φFP ) =

∫
dEφFP (z, E).

The Gateaux-differential of Σtr(z, e
0) is found to be

δΣtr (z, e
0,h) =

∫
dEhφ(z, E)

Np(z)Σtr(z, E)− Σφ(z)

Np(z)2
(indirect effect)

+

∫
dEφFP (z, E)

hΣtr(z, E)

Np(z)
(direct effect)

where
Σφ(z, e

0) =

∫
dEφFP (z, E)Σtr(z, E).

Introducing this back into δA2 gives

δA2 =

z∫
0

dz′(z − z′)2
∫

dEhφ(z
′, E)

Np(z
′)Σtr(z

′, E)− Σφ(z
′)

Np(z′)2
(indirect effect)

+

z∫
0

dz′(z − z′)2
∫

dEφFP (z
′, E)

hΣtr(z
′, E)

Np(z′)
(direct effect)

= δA2,indir + δA2,dir

At this point, the direct effect contribution from δDk2 can be written as

δDk,dir +=
1

∆V

∫
Vk

dV
1

ρck
ΨFE(r)ΨFP (z)

[
−1

A2
+

|r|2

2

1

A2
2

]
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·
z∫

0

dz′(z − z′)2
∫

dEφFP (z
′, E)

hΣtr(z
′, E)

Np(z′)
. (2.34)

The indirect part δA2,indir is re-written such that the integral over z′ covers the
semi-infinite region of (0,∞), namely

δA2,indir =

∞∫
0

dz′
∫

dEhφ(z
′, E)H(z − z′)(z − z′)2

Np(z
′)Σtr(z

′, E)− Σφ(z
′)

Np(z′)2
.

Using this, the indirect part from δDk2 is given as

δDk,indir =
1

∆V

∫
Vk

dV
1

ρck
ΨFE(r)ΨFP (z)

[
−1

A2
+

|r|2

2

1

A2
2

]

·
∞∫
0

dz′
∫

dEhφ(z
′, E)H(z − z′)(z − z′)2

Np(z
′)Σtr(z

′, E)− Σφ(z
′)

Np(z′)2
.

This can be re-arranged as

δDk,indir =

∞∫
0

dz′
∫

dE hφ(z
′, E)

Np(z
′)Σtr(z

′, E)− Σφ(z
′)

Np(z′)2

· 1

∆V

∫
Vk

dV
1

ρck
ΨFE(r)ΨFP (z)

[
−1

A2
+

|r|2

2

1

A2
2

]
H(z − z′)(z − z′)2

= ⟨hφ(z′, E), r†2(z
′, E)⟩. (2.35)

The last term to be separated into direct and indirect contributions is the δΨFP one.
By employing the SIPG formalism and using E as a basis function, ΨFP is written as

ΨFP (z) = ESφFP

∣∣∣∣
Emin

+

Emax∫
Emin

dE

(
SφFP + T

∂φFP

∂E
+ EΣaφFP

)
+
∑
Γi

−[φ]T.

This can be re-written under one E integral by using the property of the Dirac-delta
function, namely

ΨFP (z) =

E+∫
E−

dE φFP

[
ESδ(E − E−) + S − Tδ(E − E−)−

dT

dE

+

∑
Γi

(
−δ(E − E−

i ) + δ(E − E+
i )
)
T (Ei)

+ EΣa

]
.

where Emin was be replaced by E− and Emax by E+ to reduce the footprint of equations.
The Gateaux-differential of this is given as

δΨFP =

E+∫
E−

dEhφFP

[
ESδ(E − E−) + S − Tδ(E − E−)−

dT

dE
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+

∑
Γi

(
−δ(E − E−

i ) + δ(E − E+
i )
)
T (Ei)

+ EΣa

]
(indirect effect)

+

E+∫
E−

dEφFP

[
EhSδ(E − E−) + hS − hT δ(E − E−)−

dhT
dE

+

∑
Γi

(
−δ(E − E−

i ) + δ(E − E+
i )
)
hT (Ei)

+ EhΣa

]
.

(direct effect)

Thus, the last contribution to the direct effect is found to be

δDk,dir + =
1

∆V

∫
Vk

dV
1

ρck
ΨFE(r)

·
E+∫

E−

dE φFP

[
EhSδ(E − E−) + hS − hT δ(E − E−)−

dhT
dE

(2.36)

+

∑
Γi

(
−δ(E − E−

i ) + δ(E − E+
i )
)
hT (Ei)

+ EhΣa

]
.

The indirect part δΨFP,indir is written into an inner product between hφFP and a
quantity denoted by r†1 by splitting the voxel volume integral into a depth and lateral
part, namely ∫

Vk

dV =

z+∫
z−

dz

∫∫
Vk,xy(z)

dxdy.

Using this, δDk,indir is incremented by

E+∫
E−

dE

z+∫
z−

dz hφFP

[
ESδ(E − E−) + S − Tδ(E − E−)−

dT

dE

+

∑
Γi

(
−δ(E − E−

i ) + δ(E − E+
i )
)
T (Ei)

+ EΣa

]

· 1

∆V

∫
Vk,xy(z)

dV
1

ρck
ΨFE(r) = ⟨hφ(z, E), r†1(z, E)⟩. (2.37)

Thus, the variation in Dk from Equation 2.31 has been expressed into two parts. One
is the directly computable part δDk,dir which is the summation of Equations 2.32, 2.34
and 2.36. The other is the indirectly computable part δDk,indir which is the summation
of Equations 2.35 and 2.37.
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2.7.2 Adjoint system derivation

The adjoint method removes from δDk the part δDk,indir that would have to be re-
computed and in this process computes a first order approximation to δDk. This is
done by expressing δDk,indir as an inner product between two quantities as was done in
Equations 2.35 and 2.37. One is the change in the proton flux hφ caused by the change
in the HU values and the other is a vector denoted by r†, namely δDk,indir = ⟨hφ, r†⟩.
The vector r† is identified as the right-hand side of a new system called the adjoint
system. This system is written as L†φ† = r† and its solution is called the adjoint flux
φ†. Using this, together with the properties of the adjoint operator gives

δDk,indir = ⟨hφ, r†⟩ = ⟨hφ, L†φ†⟩. (2.38)

The last inner product can be found by starting with

⟨φ†, Lhφ⟩ =
∞∫
0

dz

∞∫
0

dEφ†
[
∂hφ
∂z

− ∂Shφ
∂E

− ∂

∂E

(
T
∂hφ
∂E

)
+Σahφ

]
. (2.39)

At this point we extend φFP and consequently hφ to the whole R2 plane with the
condition that these quantities are zero everywhere outside of the computational domain
D . Through partial integration along the z-direction for the first term, and along the E-
direction for the stopping power, range straggling terms and absorption terms, Equation
2.39 is found to be equal to

⟨φ†, L(α)hφ⟩ =
∞∫
0

dEφ†(0, E)hφ(0, E) +

〈
−∂φ†

∂z
+ S

∂φ†

∂E
− ∂

∂E
T
∂φ†

∂E
+Σaφ

†, hφ

〉

=

∞∫
0

dEφ†(0, E)hφ(0, E) +
〈
L†φ†, hφ

〉
. (2.40)

In the process of deriving Equation 2.40 the adjoint operator L† together with its
associated boundary conditions were found to be

L†φ† = −∂φ†

∂z
+ S

∂φ†

∂E
− ∂

∂E

(
T
∂φ†

∂E

)
+Σaφ

† (2.41)

BCE: φ†(z, Emin) = 0,
∂φ†

∂E

∣∣∣∣
E=Emin

= 0, (2.42)

BCS: φ†(zmax, E) = 0. (2.43)

Making use of Equation 2.40 in Equation 2.38 gives

δDk,indir = ⟨φ†, Lhφ⟩ −
∞∫
0

dEφ†(0, E)hφ(0, E) (2.44)

The effect of the operator L acting on the perturbation in the FP flux can be found by
taking the Gateaux-differential of the Fokker-Planck equation, namely

δ(Lφ) = 0 ⇐⇒ δLφ = −Lhφ
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Using this, gives the final form of the indirect part of Dk as

δDk,indir = −⟨φ†, δLφ⟩ −
∞∫
0

dEφ†(0, E)hφ(0, E)

=

∞∫
0

dE

∞∫
0

dz φ†
[

∂

∂E
(hSφFP ) +

∂

∂E

(
hT

∂φFP

∂E

)
− hΣaφFP

]

−
∞∫
0

dEφ†(0, E)hφ(0, E) (2.45)

Thus, the goal of the adjoint method has been reached. The indirect change in Dk has
been replaced by the inner product shown in Equation 2.45. For the purpose of this
work, the perturbation in the initial condition of the FP flux hφ has been ignored. In
future work, this can easily be included, to model perturbations in the mean energy,
energy spread or the number of protons of a treatment plan spot.

2.8 Data sources

In order to obtain the solution to the two PDEs and the response, the stopping power,
straggling coefficient, absorption cross section and elastic scatter cross section must
be known as a function of energy and tissue composition. The CT scan HU values
were converted to density and fractional compositions according to Schneider’s method
(Schneider, Bortfeld, and Schlegel, 2000). The density and fractional composition were
used to interpolate nuclide specific tables of the stopping power versus energy. The
tables were extracted from TOPAS (Perl et al., 2012) using an adapted extension dis-
tributed on the TOPAS forum. The stopping power for protons in water versus energy
can be seen in Figure 2.2.

The straggling coefficient represents the statistical variation around the mean of
the energy loss of a proton in a material. The consequence of energy straggling is the
spreading of the energy spectrum of an initially mono-energetic beam (Noshad and
Bahador, 2012). The equation that was used for the straggling coefficient is (Williams
and Bragg, 1932)

T (E,NA(z)) =
∑
i∈A

1

(4πϵ0)2
Ni(z)4πe

4Zi(z)

(
1 +

4Ii(z)

3mev2p
ln

2mev
2
p

Ii(z)

)
, (2.46)

where NA is the set of atomic densities corresponding to the set of atoms atoms A that
were considered to constitute human tissue, namely A = {H, C, N, O, Na, Mg, P, S,
Cl, Ar, K, Ca}. Moreover, Zi is the atomic number of the target atom i with i ∈ A,
ϵ0 is the vacuum permitivity constant, e is the elementary charge, me is the electron
mass, vp is the proton speed, Ii is the mean atomic excitation energy of atom i. The
straggling coefficient for protons versus energy in water can be seen in Figure 2.3.

The elastic scatter cross section can be found by considering the deflection that a
proton suffers due to the Coulomb field of the nucleus. A derivation of this can be found
in the work of Goldstein (Goldstein, Poole, and Safko, 2002) who gives the microscopic
elastic scatter cross section for protons incident on a target nucles t, t ∈ A with atomic
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Figure 2.2: Water stopping power versus proton energy.

number Zt and atomic mass numbers At as

σs,t(E,µ, z) =

(
1 + 2µ

At(z)
+ 1

At(z)2

)3/2
1 + µ

At(z)

(
Zt(z)e

2

4πϵ0m0v2p

)2
1

(1− µ+ 2η(z))2
, (2.47)

where m0 is the reduced mass which is defined by

1

m0
=

1

mp
+

1

mt(z)

with mp the mass of the proton and mt the mass of the target nucleus, vp is the incident
speed of the proton, ϵ0 is the vacuum permittivity, e is the elementary charge and

η(z) = Θ2
min(z) =

(
Z

1/3
t (z)αmec

p

)2

with me the electron mass, α the fine structure constant, c the speed of light and p
the momentum of the incident proton. Equation 2.47 is used to define the macroscopic
scatter cross section as

Σs(µ,E,NA(z)) =
∑
i∈A

Ni(z)σs,i(E,µ, z) (2.48)

with Ni, i ∈ A the individual atomic density in the material under consideration. This
cross section can be seen in Figure 2.4 for a range of energies.
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Figure 2.3: Water straggling coefficient versus proton energy.
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Chapter 3

Dose and dose change computations
using YODA

3.1 Novelty and own contributions

This chapter details the extensive validation of the dose and dose change computation
engine developed in Chapter 2 in realistic scenarios using patient CT scans, which
required a number of own contributions. First, by generalizing the work of (Yang
et al., 2020) a novel beam-splitting scheme was developed. This enabled YODA to
handle lateral heterogeneities, overcoming a key limitation of the original Fermi-Eyges
formalism requiring homogeneous lateral heterogeneities. Second, the conversion from
spots in clinical DICOM treatment plans into inputs for YODA (or any other dose
engine that requires a proton flux boundary condition) was implemented into a novel
data processing pipeline, which allows YODA to be directly used in any proton therapy
clinic in the world. Third, by changing the objective function and the specific constraints
in the commissioning procedure of MCSquare (MCsquare - Commissioning Procedure
2024), better agreement and an improved speed of convergence in the optimization was
achieved. Last, a comprehensive assessment of both YODA’s dose and dose change
computation capabilities was performed, thereby demonstrating YODA is capable of
performing patient-specific quality assurance tasks.

3.2 Introduction

This chapter details the application of the mathematical formalism developed in Chapter
2 to the computation of doses and dose changes caused by changing HU values. In
order to compute doses in laterally heterogeneous geometries, a Gaussian beam splitting
scheme is developed in Section 3.3. Next, Section 3.4 presents and discusses the accuracy
of YODA in computing doses and dose changes. Dose computation accuracy is assessed
by taking TOPAS as a reference and the three-dimensional gamma index passing rate
as the accuracy metric. First, water boxes with varying slab inserts are irradiated
with energies spanning the whole clinical energy spectrum. Next, realistic CT scans are
irradiated with either one or two spots, also with different energies. For the dose change
computation accuracy, a treatment plan is created for a certain VOI and thereafter
delivered to two different anatomies. The accuracy is defined as the error between re-
computing the average dose (to the VOI) on the new anatomy, as opposed to computing
it using the adjoint method. The test starts with a simple water tank in which slabs of

This chapter is based on the publication of Tiberiu Burlacu, Danny Lathouwers, and Zoltán Perkó
(July 2024). “Yet anOther Dose Algorithm (YODA) for Independent Computations of Dose and Dose
Changes Due to Anatomical Changes”. In: Physics in Medicine & Biology 69.16, p. 165003. issn:
0031-9155. doi: 10.1088/1361-6560/ad6373. (Visited on 08/16/2024)

https://doi.org/10.1088/1361-6560/ad6373
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different compositions are inserted in the beam path. Next, two patients had two plans
(one robustly optimized and one non-robustly optimized) generated in RayStation. The
chapter continues in Section 3.5 with an exposition of the procedures needed to read
clinical TPS outputted treatment plans in YODA. Specifically, Subsection 3.5.1 details
how two-dimensional treatment plan spots defined on the isocenter plane are converted
into three-dimensional points on the surface of the CT cube, taking into account the
physical measurements of the BDS. Next, Subsection 3.5.2 describes a "commisioning"
procedure for YODA. This procedure ensures that a spot in YODA of a given energy
produces a similar dose distribution to a spot in the desired TPS dose engine. Thus,
Subsection 3.5.2 describes how to match the optical parameters of a pencil beam in
YODA to the ones of the chosen gantry (HPTC gantry in this case), how to match the
energy and energy spread of a spot so that the range between the two dose engines is
in agreement and lastly how to calibrate the number of protons to MU conversion (a
quantity that is clinic specific). Following the "commissioning" procedure, Subsection
3.5.3 contains comparisons between plans, for different sites and patients, computed in
RayStation and YODA. The chapter ends with a conclusion presented in Section 3.6

3.3 Optimized Gaussian beam splitting

On the boundary of the computational domain, the lateral dependence of the six-
dimensional phase-space density is described by

Ψz=0
FE (x, y) =

∫
4π

φFE(x, y, z = 0,Ωx,Ωy)dΩ̂ =
1

2πσ2
s

exp

(
−(x2 + y2)

2σ2
s

)
, (3.1)

where σs is the spatial standard deviation or spread of the x and y symmetric Gaussian.
For the purpose of lateral beam splitting the original spot’s central axis is placed at
the origin of a 2D lateral grid. Given the radial symmetry of the Gaussian, placing
sub-spots or beamlets on Nr + 1 concentric rings with radii ri around the original spot
location was chosen, in a similar manner to Yang’s method (Yang et al., 2020). On a
given ring i the beamlets share the same weight wi and spread σi. The zeroth ring has
a radius equal to zero and a single beamlet that is placed at the origin of the 2D lateral
grid. Thus, the approximated fluence Ψa

FE is written as

Ψa
FE(x, y) =

Nr∑
i=0

ni∑
k=1

wi

2πσ2
i

exp

(
−(x− xik)

2 + (y − yik)
2

2σ2
i

)
, (3.2)

xik = ri cos

(
2πk

ni
+ αi

)
, yik = ri sin

(
2πk

ni
+ αi

)
,

with ni being the number of sub-spots placed on ring i, (xik, yik) are the coordinates
of a sub-spot with index k on ring i and αi is a ring-dependent angular offset (meant
to improve coverage for consecutive rings with the same number of beamlets). Prior to
the optimization the number of rings Nr, the number of points on each ring ni and the
ring offsets αi are specified. As opposed to Yang’s (Yang et al., 2020) approach this
formalism and implementation is not restricted to a number of pre-defined schemes.
In principle any number of beamlets per ring and number of rings can be optimized.
The optimization parameters (weights, spreads and ring radii) are collected in a vector
denoted by θ ∈ R3(Nr+1) with a structure of θ = (. . . , wi, ri, σi, . . .). The objective
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function of the optimization problem is defined as

J(θ) =

10σs∫∫
−10σs

dxdy (Ψa
FE −Ψz=0

FE )2
/10σs∫∫
−10σs

dxdy(Ψz=0
FE )2,

and is input into a SciPy implementation of a trust-region constrained algorithm (Vir-
tanen et al., 2020; Lalee, Nocedal, and Plantenga, 1998). The weights wi are bound
constrained to be in the unit interval, namely 0 ≤ wi ≤ 1, ∀i = 0, . . . , Nr and are
constrained such that

Nr∑
i=0

wini = 1,

in order to ensure particle number conservation. To further guide the highly degenerate
solution space towards useful splitting schemes, the ring radii are bound according to
the initial spatial spread of the 2D Gaussian σs such that 0 ≤ ri ≤ ri+1 ≤ 2σs. This
evenly distributes the rings in [0, 2σs] and avoids optimal but less useful configurations
where all the rings are placed close to one another and the origin. Similarly, the spreads
of the rings σi are bound such that 0.3σs ≤ σi ≤ σi+1 ≤ 0.8σs. The first ring should
have the smallest spread so that errors coming from the central axis are limited. In
the case of a spot with an initial spread of σs = 0.3 cm Figure 3.1 shows for three
different splitting schemes the absolute difference between Ψz=0

FE (x, y) and Ψa
FE(x, y) in

the left column and the actual positions of the beamlets on the concentric rings together
with the optimized spreads (indicated by the circle radii) around each spot in the right
column.

3.4 Dose computations and discussion

3.4.1 Dose engine performance

The dose engine in YODA was benchmarked against TOPAS in several irradiation test-
cases such as homogeneous and hetereogeneous water tanks, head and neck (H&N),
prostate and lung CTs. TOPAS simulations were performed using the em-opt4 physics
list which is the most accurate modelling of electromagnetic interactions available within
TOPAS. Nuclear interactions were excluded from this comparison as YODA does not
currently account for nuclear interactions. In all TOPAS simulations the number of
protons per spot was set to 108 and the maximum number of available cores (48) was
used. Using this physics list and number of cores, the run-times of TOPAS were in
the order of hours. In all test cases, a YODA spot was split according to a 1 + 6 +
6 + 12 + 12 + 24 Gaussian beam splitting scheme as this was found to yield accurate
results when compared to TOPAS. For this splitting scheme on average one spot takes
2 s to compute. Additional speed-ups could be achieved in two ways. One is to address
the main speed limitation (memory access bandwidth) by implementing the algorithm
on a graphics processing unit card. The second is to implement an adaptive energy
grid on a per sub-spot level. Currently the energy grid is divided into a fixed number of
groups which results in the majority of the groups and thereby the system solved at each
step being empty. By adapting the energy grid to be finely discretized in the locations
in energy where the flux has significant values and coarse everywhere else significant
speed-ups can be expected.
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(a) Configuration 1+6+6+12 (b) Configuration 1+6+6+12

(c) Configuration 1+6+6+12+12 (d) Configuration 1+6+6+12+12

(e) Configuration 1+6+6+12+12+24 (f) Configuration 1+6+6+12+12+24

Figure 3.1: Left column: absolute normalized difference between Ψ0
FE

and Ψa
FE using the optimized parameters. Right column: corresponding

physical optimized positions of the individual beamlets in the lateral
plane. Points with the same color are on the same ring, circle radii are

σi on ring i.
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Simplified tank geometries

First, three tank-based tests, that are typical for benchmarking pencil beam algorithms,
were performed. In all three cases, a tank (of dimensions of 10 × 10 × 10 cm3) was
irradiated with a spot with nominal energy 100MeV, an energy spread of 1MeV, a
spot size of 0.3 cm, an angular spread of 1 × 10−8 rad and a correlation of 0. The first
case, denoted by (a), is the one in which the tank is composed homogeneously of water
(0HU). In the other two cases, a half-plane slab is introduced in the tank between 2
and 3 cm in depth in the upper-half of the x-y plane (with z being the depth). This is
usually one of the most challenging geometries for pencil beam algorithms. In one case,
denoted by (b), the slab was composed of bone-like tissue of 1000HU and in the other,
denoted by (c), it was composed of air-like tissue of −1000HU. The tank was created
using an in-house DICOM CT scan writer and was composed of 100× 100× 100 voxels
with a voxel size of 0.1×0.1×0.1 cm3. Two-dimensional slices of the dose distributions
of YODA and TOPAS can be seen in Figure 3.2. Integrated depth doses (IDDs) and
lateral profiles at different depths along the original spot axis can be seen in Figure 3.3.

For these simple test cases, the visual agreement is excellent, as illustrated by both
Figure 3.2 and Figure 3.3. This is also reflected in the 3D gamma index pass rates
shown in Table 3.1 under the columns denoted by −1000HU, 0HU and 1000HU. The
worst passing rate using the strict 1mm, 1%, 10% dose cutoff is 98.22%. All passing
rates presented can be further improved by fine tuning the splitting scheme. One way
of doing so is to increase the number of rings. Another, is to take advantage of the
underlying CT grid in the case of this perpendicular propagating spot. If in the lateral
beam eye view grid, one beamlet is placed per voxel and the spread is contained to
the voxel lateral dimensions, the error is bound to decrease without much increase in
computational cost.

Table 3.1: Gamma index passing rates for different criteria and test
cases.

Gamma index
Criteria Passing rates (%) for

mm % % - cutoff -1000 HU 0 HU +1000 HU H&N Prostate Lung 1 Lung 2
1 1 0 99.96 100 99.99 100 100 100 99.99
1 1 10 98.22 99.93 99.45 99.85 99.58 95.62 94.55
2 2 0 100 100 100 100 100 100 100
2 2 10 99.61 99.95 99.78 99.99 99.99 99.72 98.09
3 3 0 100 100 100 100 100 100 100
3 3 10 99.73 100 99.85 99.99 100 99.86 99.12

Next to the simple geometries, a more challenging sliding slab experiment was also
performed. In this experiment, the slab is moved with respect to the central axis of
the beam from −4mm to 4mm in increments of 2mm. As in the previous tests, the
composition of the slab is set to either -1000 HU or 1000 HU and its depth is kept
between 2 cm and 3 cm. To assess the accuracy of the dose algorithm across the clinical
energy spectrum, beam energies of 70MeV, 160MeV, 190MeV and 230MeV are tested.
The beam spread is set to 1.0 in TOPAS, which implies spreads of 0.7MeV, 1.6MeV,
1.9MeV and 2.3MeV. The remaining beam characteristics are kept identical to the
previous test cases, i.e., a spread of 0.3 cm, an angular spread of 1.0 × 10−8 rad and a
correlation of 0. Figures 3.4, 3.5 and 3.6 show the best, average and the worst cases of
these tests.
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(a) Comparison in a homogeneous 0 HU tank

(b) Comparison when a slab of +1000 HU is introduced between 2 and 3 cm

(c) Comparison when a slab of -1000 HU is introduced between 2 and 3 cm

Figure 3.2: Dose comparison between YODA and TOPAS in the three
tank-based tests. The figures illustrate 2D dose slices along the central
beam axis for YODA in the left column and for TOPAS in the right

column.
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(a) Comparison in a homogeneous 0 HU tank

(b) Comparison when a slab of +1000 HU is introduced between 2 and 3 cm

(c) Comparison when a slab of -1000 HU is introduced between 2 and 3 cm

Figure 3.3: Dose comparison between YODA and TOPAS in the three
tank-based tests. The figures illustrate IDDs and lateral profiles along

the central beam axis for both codes.
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Figure 3.4: Best performing case for the sliding slab experiment. The
slab, composed of 1000 HU, was positioned at 4mm off the central beam
axis and the beam energy was 70MeV. The figure displays in the left
column, for both YODA and TOPAS, two dimensional dose cuts along
the central beam axis and IDDs and in the right column lateral profiles

at the entrance, in the slab and in the Bragg peak.
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Figure 3.5: Average performing case for the sliding slab experiment.
The slab, composed of 1000 HU, was positioned at 0mm off the central
beam axis and the beam energy was 190MeV. The figure displays in
the left column, for both YODA and TOPAS, two dimensional dose cuts
along the central beam axis and IDDs and in the right column lateral

profiles at the entrance, in the slab and in the Bragg peak.
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Figure 3.6: Worst performing case for the sliding slab experiment. The
slab, composed of -1000 HU, was positioned at −4mm off the central
beam axis and the beam energy was 230MeV. The figure displays in
the left column, for both YODA and TOPAS, two dimensional dose cuts
along the central beam axis and IDDs and in the right column lateral

profiles at the entrance, in the slab and in the Bragg peak.
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A full overview of the 120 test cases is presented in the tables from Appendix C.
Despite the broad range of energies and challenging lateral heterogeneities encountered,
the experiment shows that YODA computes doses with high passing rates using the
strictest gamma index criteria. In addition to the conclusions drawn from Table 3.1,
the tables presented in Appendix C provide three main findings. One, more beams do
not necessarily imply a more accurate result. This is supported by Table C.8, where
a simpler beam splitting scheme of 1+6+6+12 often performs better than the more
complex 1+6+6+12+12+24 one. This is likely due to the interplay of several factors.
The chosen beam size, the underlying CT grid size (and the projection of this in the
beam-eye view coordinate system), the specific location on the rings of the optimized
sub-spots and the location of the heterogeneity itself all play a role in the accuracy
of a given scheme. Given this, and the fact that in a realistic treatment plan spots
are placed in close proximity one to another, it is likely that YODA will result in
accurate and quickly computed doses using simpler beam splitting schemes. Second,
as already illustrated in Table 3.1 and further illustrated in Tables C.3 and C.4 the
accuracy of YODA with respect to TOPAS is slightly worse when air gaps are placed
in the beam path. Such small differences can arise due to the inherent limitations of
the Fermi-Eyges modelling and the different modelling of Coulomb elastic scattering in
air between the two codes. Third, there is a slight degradation of accuracy occuring
towards the high part of the energy spectrum (effect that was not observed towards the
low part of the energy spectrum). This could be explained by a number of factors. The
first one comes from differences in the underlying data that the two codes use. The
stopping powers were extracted from TOPAS using increasingly coarse steps in energy
towards the high side of the energy domain. This can cause slight range differences,
especially as the stopping power is linearly interpolated in the energy groups, which
in turn can result in range differences. Differences in stopping power imply differences
in lateral scattering which contribute to further differences. Moreover, the straggling
coefficient is computed using an analytical equation that could prove inaccurate for the
high energy part of the domain. Despite these differences, the gamma index pass rate
using the strictest criteria and a splitting scheme of 1+6+6+12 does not fall below ≈
95% for energies above 190MeV for all the tested geometries.

CT based anatomies

In addition to the tank-based tests, three real CT images were also tested. The H&N
scan was taken from the CORT dataset (Craft et al., 2014), the prostate scan was
taken from the cancer imaging archive (Yorke et al., 2019) and the lung scan was taken
from the Holland Proton Therapy Center (Pastor Serrano, 2023). The used isocenter
locations and gantry angles are not meant to be clinical and were chosen only due to
their simplicity of set-up in TOPAS.

In the H&N case, one spot was irradiated with the beam impinging along the y
axis (i.e., at a gantry angle of 0◦) with a nominal beam energy of 125MeV with the
isocenter being the center of the CT scan volume. The two dimensional dose profile can
be seen on the top row of Figure 3.7 and the IDD and lateral profiles at three depths
can be seen in at the bottom of Figure 3.7. Good agreement is observed, as the 99.85%
gamma index pass rate from the H&N column of Table 3.1 also shows. Figure 3.7 shows
a discrepancy in the air region between −440mm and −340mm. This is also the case
for the lung and prostate cases. Two possible reasons are differences in the modelling
of air between the two algorithms or a slight mismatch in the positioning of the beams
with respect to the CT grid caused by the placement of the beam at the interface of



44 Chapter 3. Dose and dose change computations using YODA

voxels. Given that the agreement is good in the clinically relevant region of the scan,
this discrepancy is deemed acceptable.

(a) 2D dose slices along the central beam axis for YODA, in the left column, and TOPAS, in the right
column.

(b) IDDs and lateral profiles at three different depths for both YODA and TOPAS.

Figure 3.7: H&N test case dose comparisons. The scan is irradiated
by one spot of 125MeV.

The lung scan was irradiated with two spots where one beam goes from −x to +x
and the other in the opposite direction (i.e., at 90◦ and 270◦ gantry angles respectively).
Both spots had a mean energy of 125MeV, energy spread of 1MeV, a spot size of 0.3 cm,
an angular spread of 1.0 × 10−8 rad and a correlation of 0. This cases is denoted by
Lung 1. Given the challenging anatomy, the results from Figure 3.8 together with the
passing rate of 95.62% from the Lung 1 column of Table 3.1 are very good.

To further test YODA’s dose engine performance, a second test for the lung was
performed where the Bragg peak was moved towards a more heterogeneous area by
changing the beam energies. In this case, one beam had an energy of 105MeV with a
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(a) 2D dose slices along the central beam axis for YODA, in the left column, and TOPAS, in the right
column.

(b) IDDs and lateral profiles at three different depths for both YODA and TOPAS.

Figure 3.8: Lung case 1 dose comparisons. The scan is irradiated by
2 opposing spots with mean energies of 125MeV.

spread of 0.84MeV and the other an energy of 135MeV with a spread of 1.08MeV. This
case was denoted by Lung 2. Here too, despite the challenging heterogeneous anatomy,
YODA performs well given that the worst gamma index passing rate is 94.55% (as
seen in column Lung 2 in Table 3.1). Two dimensional profiles, IDD comparisons and
lateral profiles can be seen in Figure 3.9. The lateral profiles from Figures 3.8 show a
consistent lateral shift between YODA and TOPAS at the 14mm, −1mm and −38mm
depths. A reason for this could be the initial location of the Gaussian split sub-spots
on the CT scan surface. The spots are generally not aligned with the CT grid (as
such alignment is only possible in cases of perfectly perpendicular beams) and therefore
slight asymmetries could arise if spots are placed exactly at the interface of voxels. The
accuracy can be improved by fine-tuning the Gaussian beam splitting scheme in several
ways. One is to include the number of rings and the number of beamlets per ring into
the optimization procedure itself. Another is to consider alternative, non-concentric
sub-spot arrangements. A metric for lateral heterogeneity could help in guiding the
optimization towards sparsely placing beamlets in areas of low heterogeneity and more
densely covering areas with high heterogeneity. Lastly, a progressive splitting scheme
could also be employed, whereby once a threshold of lateral heterogeneity has been
reached, the beamlets encountering it are re-consolidated and a new (finer) split occurs.
Given that the parameters of such schemes can be pre-optimized and tabulated the
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computational increase of such an approach could be kept minimal.

(a) 2D dose slices along the central beam axis for YODA, in the left column, and TOPAS, in the right
column.

(b) IDDs and lateral profiles at three different depths for both YODA and TOPAS.

Figure 3.9: Lung case 2 dose comparisons. The scan is irradiated by
2 opposing spots with mean energies of 105MeV and 135MeV.

The prostate case set-up was identical to that of the lung with the only difference
being the spot mean energy of 165MeV and the spot energy spread of 0.825MeV. Here
again the agreement is very good as seen in Figure 3.10 and by the high passing rate of
99.58% from the prostate column of Table 3.1.

3.4.2 Dose change computations

In addition to the dose engine performance, the performance of the average dose change
computation was also benchmarked. Given a specific volume within the CT scan de-
noted as ROI, the adjoint component is able to cheaply and accurately compute the
change in the dose deposited in the ROI (for small enough anatomical perturbations).
The speed of such an operation far exceeds that of plain re-computation as effectively,
the only computation necessary comes in the form of vector inner products. This could
be employed in an online re-adaptation trigger system where YODA assesses the effect
of delivering yesterday’s plan on today’s anatomy. For all the test cases, the metric
computed was the average dose to the ROI as a function of the HU values of CT scan.
The benchmark starts with the same simplified tank test-cases and thereafter moves
toward more realistic cases using RT plans for clinical RT structures on CT images.
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(a) 2D dose slices along the central beam axis for YODA, in the left column, and TOPAS, in the right
column.

(b) IDDs and lateral profiles at three different depths for both YODA and TOPAS.

Figure 3.10: Prostate case dose comparisons. The scan is irradiated
by 2 opposing spots with mean energies of 165MeV.

Simplified tank geometries

In the case of the simple tank geometries, the adjoint component used a ROI defined
as everything past the depth of 60mm in the tank. The composition of the half-slab
was varied from −1000HU to 1000HU. The mean dose deposited in the ROI was
computed for each new geometry using two methods: re-computations and adjoint
computations. Figure 3.11 shows the mean dose deposited in the ROI as a function
of the HU composition of the slab. The two lines are close one to another around the
value of 0 HU which was considered the base case and they start to diverge towards the
edges of the HU domain. The maximal relative error of 2.2% occurs at the −1000HU
end of the HU domain. Based on these results, it can be concluded that the adjoint
component is capable of cheaply and accurately computing the change in the deposited
dose in the ROI for this test case.

Treatment plan tests

Four treatment plans for the gross tumor volume (GTV) were generated for two H&N
patients (patients 1 and 2) in RayStation (Bodensteiner, 2018). For both patients, one
robustly and one nonrobustly optimized plans were created. The plans are not clinical
and are only used for the purpose of creating conformal doses around the target. Patient
1 had plans that contained roughly 1000 spots and patient 2 had plans with roughly
300 spots. Both plans were split according to a 1 + 6+ 6+ 12 Gaussian beam splitting
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Figure 3.11: On the left the re-computed versus adjoint computed
doses for the simplified tank geometries are displayed. On the right, the

error, in percentages, between these two quantities is displayed.

scheme. Each patient had multiple repeat CTs (rCTs) which were registered to the
planning CT (pCT) using the simple-itk library (Beare, Lowekamp, and Yaniv, 2018).
The adjoint component computed the change in the GTV dose caused by the new CT
image. This is meant to simulate the situation of a daily re-adaptation trigger system
where the effect of yesterday’s plan is assessed on today’s anatomy. As long as the
anatomical changes between the planning and repeat CT images are not too large, the
adjoint component is accurate and fast as it does not require re-computing the original
plan on the new image.

Figures 3.12 and 3.13 show each of the CT images for patient 1 (image number 0 is
the planning image), a 2D dose slice of the re-computed average dose distribution on the
CT image, the GTV dose computed via re-computation and via the adjoint component
and the relative error between these two results. In the case of a non-robustly optimized
plan, the adjoint component attains a maximal error of 5.5% as presented in Figure
3.12. In the case of the robustly optimized plan, the adjoint component attains a
maximal error of 4.8%. Thus, whether the plan is robustly or non-robustly optimized,
the adjoint component is capable of avoiding an expensive re-computation attaining an
acceptable error.

Figures 3.14 and 3.15 shows each of the CT images for patient 2 (image number 0
is the planning image), a 2D dose slice of the re-computed dose distribution on the CT
image, the GTV dose computed via re-computation and via the adjoint component and
the relative error between these two results. In the case of the non-robustly optimized
plan, the adjoint component attains a maximal error of 5.7% and in the case of the
robustly optimized plan the adjoint component attains a maximal error of 1.3%. Here
too the adjoint component computes the dose to the GTV with acceptable errors and
is thus capable of avoiding expensive re-computations.
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Figure 3.12: Color-coded are the re-computed dose distributions from
a non-robustly optimized plan, overlaid on the CT images of Patient 1.
Above each image, the mean dose to the GTV is stated based on the
recomputation and on the adjoint method. The relative difference is also

given.
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Figure 3.13: Color-coded are the re-computed dose distributions from
a robustly optimized plan, overlaid on the CT images of Patient 1. Above
each image, the mean dose to the GTV is stated based on the recompu-
tation and on the adjoint method. The relative difference is also given.
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Figure 3.14: Color-coded are the re-computed dose distributions from
a non-robustly optimized plan, overlaid on the CT images of Patient 2.
Above each image, the mean dose to the GTV is stated based on the
recomputation and on the adjoint method. The relative difference is also

given.
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Figure 3.15: Color-coded are the re-computed dose distributions from
a robustly optimized plan, overlaid on the CT images of Patient 2. Above
each image, the mean dose to the GTV is stated based on the recompu-
tation and on the adjoint method. The relative difference is also given.



3.5. Dose engine commissioning 53

3.5 Dose engine commissioning

This section details the procedures necessary to compute clinical treatment plans, given
by a TPS in the DICOM RT plan format, with YODA. First, a brief overview of the
inputs that YODA requires to define beams and the data contained within a DICOM RT
plan file is given. Thereafter, two procedures, that allow the desired plan evaluation to
be performed, are defined and further explained in Subsections 3.5.1 and 3.5.2. Lastly,
Subsection 3.5.3 presents and discusses several dosimetric comparisons between YODA
and the RayStation TPS.

A pencil beam in YODA, on the boundary of the computational domain, is charac-
terized by the product of two two-dimensional Gaussians (one in the x direction and one
in the y direction) and by a Gaussian in energy. Thus, a pencil beam is characterized by
its mean energy E0 and the energy spread sE , the number of protons np (i.e., the ampli-
tude of the energy distribution), the spatial spread sx, the angular spread sωx and the
correlation ρx between the spatial and angular directions (assumed identical for both
x and y directions). Moreover, the spot has associated two three-dimensional points,
referred to as start S ∈ R3 and end E ∈ R3, between which a pencil beam propagates.
Thus, the intersection between the line parametrized by the unit vector l̂ = SE/|SE|
(or the pencil beam central axis) and the CT cube results in the voxels (and therefore
the materials) and the length of the segments that the pencil beam encounters as it
passes through the CT cube. In contrast, a DICOM RT plan file, produced by a TPS,
defines a structure called beam, with each beam having multiple energy layers and each
energy layer having multiple spots. A beam is characterized by its gantry and patient
support angles, the virtual source to isocenter axis distances between the scanning mag-
net x and the scanning magnet y (the two magnets are located at different positions
along the beam line), denoted by smx and smy respectively, the isocenter position ris,
the snout position (or rather distance from the isocenter) dsn and, if needed, additional
information on the type of range shifter in use. An energy layer is characterized by its
nominal energy, the corresponding spot size in air at the isocenter and if used, by the
range shifter type. The spot size in air at isocenter is a function of energy alone, and is
usually extracted from fluence measurements during beam line commissioning. Lastly,
a treatment plan spot is characterized by its two-dimensional (xis, yis) position on the
isocenter plane, and the number of MUs delivered to that spot.

Thus, two procedures are necessary to convert a DICOM RT plan into inputs
for YODA. The first is a geometrical conversion of the two-dimensional spot position
(xis, yis) on the isocenter plane into the S and E points. This procedure is not TPS
dependent, depends only on the specific snout and scanning magnet distances of a given
gantry and the gantry and patient support angle and is detailed in Subsection 3.5.1. The
second procedure is an optimization procedure for determining the necessary inputs for
YODA to best match the TPS dose calculation. This is necessary because the DICOM
RT plan file does not specify, for example, the spread and correlation of a spot in the
plan. It is also necessary because, due to the proprietary nature of most TPS systems,
the used material properties (stopping power, straggling coefficient formulation, etc.)
cannot be readily extracted. A mismatch in material data results in a mismatch in
ranges, despite the two algorithms having the same inputs. This procedure is detailed
in Subsection 3.5.2.
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3.5.1 Geometrical conversions

The first step in converting the two-dimensional isocenter spot position into the S and
E points is to define the necessary coordinate systems. On the left of Figure 3.16 the
IEC61217 gantry coordinate system can be seen.

Figure 3.16: On the left is an overview of the gantry fixated coordinate
system with its isocenter Io, If and the three axes Xf, Y f and Zf . The
figure also shows the point S, which is the virtual source of protons. On
the right is an overview divergent grid created by the scanning magnet
x (at position 1) and y (at position 2). The left figure was taken from
the RayStation manual (RayStation, 2019) and the figure on the right

was taken from the Eclipse ProBeam manual (Way, 2015).

This coordinate system is fixed to the gantry (hence the f identifier for its axes)
and is identified by its origin or isocenter at Io, If , and the three axes Xf, Y f and
Zf . The Zf axis increases towards the source of protons, denoted by S in this figure.
The figure also displays the patient support table and the gantry with the source of
protons S. Within the gantry system, in the case of pencil beam scanning two scanning
magnets are present. The scanning magnets are used to steer the pencil beam in the
x and y directions, are at different locations along the beam line and therefore create
two virtual sources with distances to the isocenter denoted by smx and smy. This is
illustrated on the right side of Figure 3.16. The figure shows the scanning x magnet at
location 1 with the multiple deflections it creates for the x coordinate of a spot and the
scanning magnet y position at location 2 with the multiple deflections it creates for the
y coordinate. At the end of the gantry (on the side closest to the isocenter) is the snout
plane. Thus, a pencil beam ray (or central axis) starts at the first scanning magnet at
the virtual source position, traverses the snout plane and subsequently the CT cube, as
illustrated for the x direction in Figure 3.17. The figure also shows the points S and E,
identified as the first and last intersection of the ray with the CT cube.

The independence of steering in the x and y dimensions allows treating them sepa-
rately and similarly. Thus, given the isocenter spot coordinates (xis, yis) in the gantry
coordinate system, the corresponding spot coordinates in the gantry coordinate system
on the snout plane are written as

xsn = xis ·
smx − dsn

smx
,

ysn = yis ·
smy − dsn

smy
,

and the three-dimensional points in the gantry coordinate system are given by

rg,sn = (xsn, ysn, dsn),
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Figure 3.17: Diagram of the relevant components necessary for deter-
mining the start and end point of a treatment plan spot in the CT cube.
The figure illustrates, for the x component, the virtual source position x,
the snout plane with the point xsn at which the spot crosses the plane,
the patient surface, with the point Sx at which the spot crosses it, the
isocenter plane, with the point xis at which the spot crosses it and the
end of the patient cube, with the point Ex at which the spot crosses it.
The figure also displays the distance smx from the virtual source to the
isocenter plane, the distance dsn from the snout plane to the isocenter
plane and the fixed gantry coordinate system with axes Xf, Y f and Zf .

rg,is = (xis, yis, 0).

In general, both the gantry and patient support table can be rotated. Rotating a
vector v around a unit vector k̂ by an angle of θ can be achieved using the Rodrigues
formula (Dai, 2015), namely

vrot = v cos θ + (k̂× v) sin θ + k̂(k̂ · v)(1− cos θ).

Figure 3.18 illustrates on the left that gantry rotations are identified as rotations
around the Y g axis of the gantry coordinate system (identified by the g letter). Thus,
to account for gantry rotations, the two vectors rg,sn and rg,is are rotated around k̂ =
(0, 1, 0). In the middle of Figure 3.18, rotations of the patient support are illustrated as
rotations around the Zs axis of the patient support coordinate system (identified by the
s letter). Thus, to account for rotations in the patient support, the previously obtained
vector is translated to the location where the axis of rotation is located (Ie in Figure
3.18, not necessarily identical to the point Io, Is) and thereafter a rotation is performed
around the vector k̂ = (0, 0, 1). The last transformation necessary is to convert from
the gantry coordinate system shown in Figure 3.16 into the head first supine (HFS)
DICOM patient coordinate system, shown on the right of Figure 3.18. These systems
are related to each other by a 90◦ rotation around the Xp axis, i.e. k̂ = (1, 0, 0), and
by incrementing the result with the location of the isocenter in the patient coordinate
system.
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Figure 3.18: Overview of the different necessary rotations. On the
left, the gantry coordinate system with axes Xg, Y g and Zg and the
source S of protons is illustrated. Rotations of the gantry are illustrated
as rotations around the Y g axis. In the middle, the patient support
coordinate system with axes Xs, Y s and Zs with its origin at Io, Is
is illustrated. Rotations of the patient support table are illustrated as
rotations around the Zs axis around the point Ie. On the right, the
HFS DICOM patient coordinate system with axes Xp, Y p and Zp is

illustrated. Figures taken from (RayStation, 2019).

3.5.2 YODA input optimization

The input optimization procedure broadly follows the commissioning procedure used by
MCSquare for a given gantry (MCsquare - Commissioning Procedure 2024) and results
in a file called the Beam Data Library (BDL). The procedure can be divided into three
parts which are performed sequentially.

First, the optical beam parameters in air at the isocenter are extracted, either from
commissioning fluence measurements or from simulations. The optical parameters are
the spatial spread, the angular spread and the correlation between the two at the isocen-
ter. They are extracted as a function of beam energy, for every 10MeV of the available
energy spectrum of the delivery system. The procedure is similar for the x and y direc-
tions, but as YODA assumes symmetry in these directions, the procedure is described
only for the x direction. The mathematical formalism for separation in the x and y direc-
tions was presented in Appendix B and its implementation should improve YODA’s dose
accuracy due to the inherent asymmetry observed in clinical practice. Once YODA’s al-
gorithm is generalized to include asymmetry, generalizing the commissioning procedure
for the y direction is trivial. Given a set beam energy, several fluence measurements
(at least 3) are performed at several distances (before, after and including) from the
isocenter in air. From these measurements, the spatial spread (standard deviation) as a
function of the distance from the isocenter σx(zi) is extracted. The isocenter is identified
as the 0 point and the z axis runs positive towards the snout. Next, a one-dimensional
fit to the Courant-Snyder formula (Courant and Snyder, 2000),

σ2
x(z) = σ2

x(0)− 2ρxωx(0)σx(0)σωx(0)z + σ2
ωx
(0)z2,

results in the spatial spread at the isocenter σx(0), the angular spread at the isocenter
σωx(0) and the correlation between the x and ωx direction at the isocenter ρxωx(0). This
process is repeated for each new set beam energy. The isocenter optical parameters are
used to find the optical parameters at other surfaces (such as the snout plane or the
patient surface). The Courant-Snyder formula already gives the spatial spread at an
arbitrary distance z from the isocenter. The remaining optical parameters, namely the
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angular spread and correlation at any distance z from the isocenter, are found using

ρxωx(z) =
ρxωx(0)σx(0)− σωxz

σx(z)
,

σωx(z) = σωx(0).

Second, the mean energy E0 and spread sE that a YODA spot should use to match
the IDDs of a TPS dose engine are computed. To this end, single spots are sequentially
placed at the position of (0, 0) in a water tank, in steps of 10MeV. For each energy,
the IDD of both YODA and the TPS dose engine is computed and normalized by their
respective area. Next, an objective function is calculated based on the square difference
between the IDDs, computed only at the points zi, i = 1, . . . ,K in the middle of the
voxels situated between the proximal R50 and the end of the Bragg peak, namely

J(θ) =

K∑
i=1

( IDDY ODA(zi,θ)− IDDTPS(zi))
2 ,∀zi ∈ (R50, R0),

where θ = (E0, sE) are the mean energy and energy spread that YODA should use
to match the RayStation IDDs. This objective function was found to yield faster and
improved agreements compared to the weighted objective function suggested by MC-
Square (MCsquare - Commissioning Procedure 2024). To help the optimization quickly
converge, the mean energy is guessed (denoted by E0,g) from the RayStation IDD by
using Bortfeld’s relationship between energy and range (Bortfeld, 1997), namely

E0,g =

(
R80

α

) 1
p

where p = 1.77 and α = 0.0022. Furthermore, the energy spread is initialized to 1MeV
and the optimization is bounded in such a way that the mean energy is bound between
0.9 · E0,g and 1.2 · E0,g and the spread is bound between 0.1MeV and 4.0MeV.

Third, the number of protons per delivered MU is calibrated. This is done by
re-using the single spot targeted towards the isocenter simulations performed for the
second calibration procedure. These simulations were all done by setting the MU value
to 100 in the TPS. The objective function used is the square difference between the
maximums of the IDDs, and the guess for the optimization is obtained by converting
the TPS IDD into energy and dividing the total deposited energy by the initial energy
guess E0,g. Here too the optimization is bounded between 0.5 and 1.5 times the initial
number of protons per MU guess.

3.5.3 RayStation comparisons

To test the commissioning procedure, several dose comparisons between YODA and
RayStation were performed. First, a comparison was performed across the energy spec-
trum for the situation in which a single spot is placed at (0, 0) on the isocenter plane
in a water tank. These simulations can be seen in Figure 3.19. The 3D gamma pass
rate, with criteria of 1mm, 1%, 10% cut-off, progressively degrades as the planned
energy in RayStation is increased, with the lowest passing rate achieved being 97%.
Moreover, it can be seen that the agreement in the proximal region of the dose-depth
curve progressively degrades as the energy is increased. This effect is likely due to the
lack of nuclear interactions modelling in YODA.

Next, a plan containing a SOBP was generated and computed using the Monte Carlo
engine of RayStation (with accuracy of 0.1%) and independently computed with YODA.
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Figure 3.19: Dose comparisons between YODA and RayStation from
single spots in a water tank. The left column displays IDDs for different
planned energies in RayStation (given in the individual plot title), while

the right column displays Bragg peak profiles.

The results can be seen in Figure 3.20. The SOBP consisted of 7 pencil beams, with
energies ranging from 143MeV to 158MeV in steps of roughly 2.5MeV. This yielded a
gamma passing rate of ∼ 97% with criteria of 1mm, 1% and 10% cut-off, which is below
the gamma passing rate for individual spots in a water tank. Additionally, systematic
differences in the entrance region can be observed between YODA and RayStation (that
are likely attributed to nuclear interactions) which add up when the SOBP is composed.
This results in a systematic slanting of the flat SOBP that RayStation computes, as
can be seen in Figure 3.20.

To understand the cause of this result, several tests were performed. First, the
correct positioning of the two-dimensional spots from the treatment plan into the three-
dimensional CT cube volume was confirmed by generating plans in which spots were
placed off the central beam axis with symmetric offsets and for different gantry angles.
Next, it was confirmed that the energy resolution in the BDL file of 10MeV does not
impact results for treatment plans that contain non-integer energy values, by generating
a BDL file every 5MeV. Next, the effect of nuclear interactions was investigated. For
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Figure 3.20: Dose comparison between YODA and RayStation when
a 7 pencil beam SOBP is created in a water tank.

this purpose, the head and neck CT scan from Figure 3.7 was re-irradiated, this time
computing doses with and without nuclear interactions in both TOPAS and YODA. To
better account for nuclear interactions in YODA, Equation 2.27 for ΨFP was adapted
by including a beam-energy dependent term γ, namely

ΨFP (z) =

∞∫
0

dE E

[
−∂S(z, E)φFP

∂E
− 1

2

∂2T (z, E)φFP

∂E2
+ γΣa(z, E)φFP

]
. (3.3)

The effect of this term is to locally deposit only a fraction γ of the energy released
in nuclear interactions that occur between the proton beam and the patient tissue. As
opposed to Bortfeld’s constant γ value of 0.6 (Bortfeld, 1997), this work set γ to be
beam average energy dependent, with the energy dependence of γ obtained from the
publication of (National Institute of Standards and Technology, 1993). Figure 3.21
displays the IDD comparison between YODA and TOPAS with and without nuclear
interactions, using the same computational set-up as the one in Figure 3.7. When
nuclear interactions are accounted for, the agreement between YODA and TOPAS is
95.63% using gamma index criteria of 1mm, 1% and 10% cut-off. This result illustrates
the need for YODA to model nuclear interactions.
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Figure 3.21: Comparison between YODA and TOPAS with and with-
out nuclear interactions in the head and neck CT scan from Figure 3.7.

To assess the current capabilities of YODA to act as an independent dose calculation
method, 4 patient plans were generated in RayStation, output to DICOM RT plans
and re-computed with YODA. The results from the three-dimensional gamma index
comparison using criteria of 2mm, 2% and 10% cut-off can be seen in Figures 3.22,
3.23, 3.24 and 3.25

Figure 3.22: Dosimetric comparison between RayStation and YODA
for the Patient 1. The figure displays RayStation (on the left) and YODA
(on the right) two-dimensional dose cuts, overlaid on the corresponding
CT slice. The figure displays in the top right corner of the YODA plot,
the three-dimensional gamma index passing rate using 2mm, 2% and

10% cut-off.
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Figure 3.23: Dosimetric comparison between RayStation and YODA
for the Patient 2. The figure displays RayStation (on the left) and YODA
(on the right) two-dimensional dose cuts, overlaid on the corresponding
CT slice. The figure displays in the top right corner of the YODA plot,
the three-dimensional gamma index passing rate using 2mm, 2% and

10% cut-off.

Figure 3.24: Dosimetric comparison between RayStation and YODA
for the Patient 3. The figure displays RayStation (on the left) and YODA
(on the right) two-dimensional dose cuts, overlaid on the corresponding
CT slice. The figure displays in the top right corner of the YODA plot,
the three-dimensional gamma index passing rate using 2mm, 2% and

10% cut-off.
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Figure 3.25: Dosimetric comparison between RayStation and YODA
for the Patient 4. The figure displays RayStation (on the left) and YODA
(on the right) two-dimensional dose cuts, overlaid on the corresponding
CT slice. The figure displays in the top right corner of the YODA plot,
the three-dimensional gamma index passing rate using 2mm, 2% and

10% cut-off.

All figures show that the doses that YODA re-computes, based on the RayStation
generated plans, display similar characteristics (range, shape and conformality) as the
RayStation doses. Some general observations are that YODA sometimes overestimates
the doses in certain regions (likely due to lack of nuclear interactions modelling) and
that YODA doses are somewhat more smeared (due to the Gaussian beam splitting and
the specific chosen scheme). The lowest passing rate observed is 90% which, depending
on the clinic, may or may not be acceptable. These figures further illustrate that while
the features of the dose distribution (thus the placement of the beams and the ranges
accounted for by commissioning are correct), the current modelling must be adapted
to account for nuclear interactions. Given these results it can be concluded that the
commissioning procedure for YODA has been successful with the observed differences
being likely attributable to the lack of nuclear interactions modelling.

3.6 Conclusion

This chapter presented the performance of YODA in dose and dose change compu-
tations and a commissioning procedure for YODA. YODA uses a hybrid approach to
solve a physics-based approximation to the same equations that MC methods solve.
This approach enables YODA to achieve TOPAS like performance with a significant
speed-up. The lowest three dimensional gamma index passing rates achieved using the
strict criteria of 1mm, 1%, 10% cut-off is 94.55% in the Lung 2 case. YODA com-
putes a treatment plan spot in 2 s while the same spot takes hours in TOPAS. An
adjoint computation depends on the size of the structure but is generally in the order
of milliseconds to tens of milliseconds on a single CPU. A typical commercial TPS plan
re-evaluation is in the order of minutes to tens of minutes on multicore CPUs or GPUs
(Nystrom, Jensen, and Nystrom, 2020). If YODA’s speed would be further improved
(e.g., via a GPU implementation), YODA could be used as a patient-specific quality
assurance tool by tapping into the data stream between the TPS and the delivery ma-
chine to quickly re-construct the dose to be delivered. Alternatively, the logfiles could
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be used after treatment to re-construct the actually delivered dose to the patient. A
multi-treatment site patient cohort study is necessary to validate the accuracy of YODA
versus commercial TPS calculations in a wide variety of settings. Additionally, nuclear
interactions must be accounted for, as illustrated in the comparison to RayStation doses,
where despite the commissioning procedure, the lowest passing rate is 90%. However,
given that the dose engine contained in Eclipse (AcurosPT) is accurate with criteria of
2mm, 2% in hetereogeneous cases (De Martino et al., 2021) and the various speed and
accuracy improvements still achievable in YODA it can be concluded that this engine
could compete with/replace other commercial dose algorithms and is certainly capable
of TPS independent dose calculations.

Next to performing TPS independent dose calculations, YODA can leverage the
adjoint component to accurately compute dose changes caused by appropriately small
anatomical changes. Such a feature, to the best of the authors’ knowledge, has not
been integrated into a dose algorithm before. This component could be used in a
time constrained re-adaptation trigger system where on the given day YODA avoids
re-computing the old treatment plan on the new CT image if the CT image is deemed
anatomically close enough to the original one. This performance was illustrated via
four treatment plans where a maximal error of 5.7% was achieved for a non-robustly
optimized plan and 4.8% for a robustly optimized plan. Alternatively, if log-files were
available during treatment delivery YODA would be capable of halting erroneous de-
liveries in near real-time (i.e., below energy layer switching times) by converting spot
position differences into anatomical changes and ultimately into dosimetric changes via
the adjoint component.
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Chapter 4

A deep learning model for
inter-fraction head and neck
changes

4.1 Novelty and own contributions

This chapter details a deep learning algorithm for modelling anatomical changes that
occur in head and neck proton therapy patients. While much of the algorithmic imple-
mentation is based on the original work of (Dalca et al., 2019) with slight modifications
brought by (Pastor-Serrano et al., 2023), a number of own contributions were required
to complete this study. First, a novel GPU based data processing (image registration,
visualization, cropping, interpolation) pipeline was created to speed up the training set
creation and result evaluation phases. Second, the architecture of the model was mod-
ified to allow for a variable number of organs at risk, as opposed to the fixed one used
in (Pastor-Serrano et al., 2023). Third, the performance of the model was improved
by implementing a grid search hyperparameter optimization technique. Fourth, a liter-
ature study was performed in order to conglomerate the reported anatomical changes
that occur in head and neck RT patients and to characterize the degree to which the
training set is representative of the broader population. Last, the results were statis-
tically analyzed and interpreted and the performance was compared with the state of
the art deep learning model of (Smolders et al., 2024), thereby demonstrating that this
model achieves similar performance to other state of the art deep learning models.

4.2 Synthetic CT uses in Proton Therapy

Proton Therapy (PT) has desirable dose characteristics, such as similar target coverage
and lower organs at risk (OAR) doses, when compared to traditional photon based ra-
diotherapy (RT) (Chen et al., 2023). However, the increased dose conformality implies
an increased susceptibility to dose degradation by uncertainties such as setup errors,
range errors and anatomical changes over the course of the typically month long treat-
ment duration (van Kranen et al., 2009). To diminish the dose degradation, robust
optimization and evaluation (Unkelbach and Paganetti, 2018) with isotropic setup and
range settings (Liu et al., 2013) and offline adaptive replanning (Deiter et al., 2020) is
performed in clinical practice. This results in a high dose region that surrounds the
target, which in the case of the head and neck (H&N) region where OARs are in close

This chapter is based on the publication of Tiberiu Burlacu et al. (Mar. 2025). “A Deep Learning
Model for Inter-Fraction Head and Neck Anatomical Changes in Proton Therapy”. In: Physics in
Medicine & Biology 70.6, p. 065011. issn: 0031-9155. doi: 10.1088/1361-6560/adba39. (Visited on
05/07/2025)
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proximity to the target, could result in high chances of side effects. Moreover, there are
certain anatomical changes (e.g., tumor shrinkage (Cubillos-Mesías et al., 2019)) that
are not effectively accounted for by robust optimization only taking setup and range
errors into account. One proposed option (Van de Water et al., 2018) is the inclusion of
additional (synthetic) computed tomography (CT) images in the (anatomical) robust
optimization process. While this provided increased target coverage and lower OAR
doses for the specific H&N patients in the cohort, compared to conventional robust
optimization, it still created a high dose region surrounding the target.

To reduce this region to its minimum and counter long and short-term inter-fraction
occurring anatomical variations, online adaptive proton therapy (OAPT) has been pro-
posed. In this workflow, a new CT is acquired for each fraction and within a short time
a new fully re-optimized plan is generated. The resulting plan would only need minimal
robustness settings to counter the effects of range uncertainties, machine related setup
uncertainties and remaining intra-fraction uncertainties. The short time available and
the limited computational resources imply that fully robust reoptimization in the online
setting still requires research (Oud et al., 2024) and is not feasible clinically. The plan
library (PL) approach was proposed as an intermediate solution (Oud et al., 2022; van
de Schoot et al., 2016). This approach used the planning CT image to generate multiple
plans with varying robustness settings. On the given day, it administers an appropri-
ately chosen plan, therefore resulting in NTCP reductions or sometimes in increased
robustness that ensures adequate target coverage. In this approach, synthetic CT im-
ages could be used to expand the pre-compiled library of plans, by generating optimal
plans for the future patient anatomies predicted by the model. An additional use case
for synthetic CT images could be for plan QA, in the scenario in which an adapted or
refined (e.g., by using yesterday’s optimal plan) is generated with the patient on the
table. Specifically, several CT images with associated truly optimal plans, could be
generated a priori. On the given day, a fast dosimetric check can be performed between
the adapted and refined plan and the truly optimal pre-generated plan.

Thus, models of inter-fractional anatomical changes have applications in several
PT related workflows such as anatomical robust optimization, plan quality assurance
in OAPT or expanding the plan library approach. Multiple approaches to synthetic
CT generation have been employed, such as principal component analysis (PCA) or
deep learning. An overview of the different possible approaches is given by the work
of (Smolders et al., 2024). Deep learning models have been shown to outperform PCA
based ones in the case of prostate anatomies (Pastor-Serrano et al., 2023) and denoising
diffusion probabilistic models (Smolders et al., 2024) were successfully applied for arti-
ficial CT generation for the H&N site where they were additionally shown to increase
robustness to anatomical changes. This work builds upon the previous publication of
(Pastor-Serrano et al., 2023) on a generative deep learning daily anatomy model (DAM)
for prostate inter-fractional anatomical changes. The model architecture and the data
processing pipeline are changed and thereafter applied to a H&N radiotherapy cohort.
The model is referred to from here on as DAMHN. Section 4.3 details the probabilistic
framework of the model. Section 4.4 provides details on the dataset generation and the
specific architecture configuration used for training. Section 4.5 contains the results
and their discussion. The performance of the model was assessed via several tests. The
results of a reconstruction accuracy test are shown in Subsection 4.5.1. The genera-
tive performance was assessed in terms of the model’s capability to predict realistic
anatomical changes. To this end, an overview of the typical changes in head and neck
patients reported by literature studies is given in Subsection 4.5.2. The anatomical
changes present on the training set are discussed in Subsection 4.5.3. Subsection 4.5.4
presents and discusses the anatomical changes predicted by the model. Subsection 4.5.5
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compares these anatomical changes with the ones presented in the recently published
denoising diffusion probabilistic models DiffuseRT model (Smolders et al., 2024). Lastly,
a latent space analysis is presented in Subsection 4.5.6. Section 4.6 concludes this work
and discusses some improvement points.

4.3 Model architecture

This section provides only the main details of this model’s architecture. An in-depth
exposition can be found in (Pastor-Serrano et al., 2023). The patient anatomy at a
certain point in time is described by the CT image and the associated RT structures
(masks), which are both taken as random variables. On the planning CT image (pCT),
an image with N voxels is denoted by x ∈ RN (defined as floats due to the need to
normalize the data prior to further processing) and the corresponding structures (pM)
are denoted by sx ∈ RN . On the repeat CT images (rCTs), the image is denoted by
y ∈ RN and the corresponding masks (rM) by sy ∈ RN . Generally, pCTs and rCTs do
not have the same dimensionality and to achieve this, the images are resampled and
cropped.

The presence of anatomical deformations over the course of treatment, e.g., the
systematic medial translation of the lateral regions of the parotid glands, the shrinkage of
the parotid and submandibular glands (Fiorentino et al., 2012), the change in the parotid
shape from convex to flat or concave (Santos et al., 2020) and the center of mass (COM)
shifts towards the medial side (Vásquez Osorio et al., 2008) motivates the existence
of an unknown generative joint conditional probability distribution P ∗(y, sy|x, sx) of
the voxel CT HU values y and the structure masks sy conditioned on the planning
CT x and structures sx. If such a distribution was known, given a new pCT and
pM, it could be sampled to generate future possible anatomies, denoted by y and
sy. In general it is impossible to find such a distribution, and a good approximation
Pθ(y, sy|x, sx) ≈ P ∗(y, sy|x, sx) is sought instead. The distribution Pθ(y, sy|x, sx) is
parametrized by a vector of parameters θ that is learned during training.

The dataset D consists of elements si ∈ R4N , which are the concatenation of a given
pCT and rCT and their associated structures, i.e., D = {τ i = (xi, sxi ,yi, syi) | i =
1, . . . , ND} with ND the number of elements in the dataset. Moreover, the dataset D
is assumed to be independent and identically distributed (i.i.d.). As the dataset D is
i.i.d., the log-probability assigned to the data is

logPθ(D) =
∑
τ∈D

logPθ(τ ). (4.1)

The framework of Maximum Likelihood (ML) searches for the parameters θ that max-
imize the sum, or equivalently the average, of the log-probabilities assigned to the data
by the model in Equation 4.1 (Kingma and Welling, 2019).

As most explicitly parametrized generative distributions are too simplistic to model
inter-fractional anatomical variations, implicitly parametrized distributions are con-
sidered instead. Therefore, a joint conditional probability distribution, denoted by
Pθ(y, sy, z|x, sx), that also depends on latent variables z is constructed. Latent vari-
ables are variables that are not observed, and therefore they are not part of the dataset
of images and associated structures. They are meant to encode (represent in a lower
dimensional space) the information between the pCT and the rCT. The marginal dis-
tribution Pθ(y, sy|x, sx) over the observed variables y, sy is recovered by marginalizing,
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namely

Pθ(y, sy|x, sx) =
∫

dzPθ(y, sy, z|x, sx) (4.2)

=

∫
dzPθ(y, sy|z,x, sx)Pθ(z|x, sx).

This is also referred to as the (single datapoint) marginal likelihood, or model evidence,
when taken as a function of θ (Ghojogh et al., 2022). The distribution Pθ(z|x, sx) is
called the prior distribution, which in the case of this work is taken as a multivariate
Normal distribution with mean and variance that depend on the pCT and pM and on
the vector of learned parameters θ, namely

Pθ(z|x, sx) = N (z;µθ(x, sx),Σθ(x, sx)). (4.3)

The dependence of the parameters of the prior distribution on the pCT and pM results
in a different distribution for each patient (insofar as a patient is identified with a single
image). The mean µθ(x, sx) and the covariance matrix Σθ(x, sx) are computed in the
down-sampling part of a U-net neural network and the parameters θ of the prior are
the weights of the encoder, as illustrated in Figure 4.1.

Figure 4.1: The proposed variational autoencoder model. The En-
coder represents the down-sampling part of a U-net that computes the
parameters of P (z|x, sx). The up-sampling part of the U-net, denoted by
Generator, takes samples from P (z|x, sx) together with a reduced rep-
resentation of the inputs x, sx and computes artificial CT images y, sy.
Figure reproduced with permission from (Pastor-Serrano et al., 2023).

The up-sampling part of the U-net, denoted by Generator in Figure 4.1, outputs a
deformation vector field (DVF) Φ : RN×3 → RN×3 used to map coordinates p ∈ R3

between images. The DVF Φ is used to obtain the prediction of the model y = Φ ◦
x (Jaderberg et al., 2016). Based on work by (Krebs et al., 2019), the distribution
Pθ(y, sy|z,x, sx) (referred to as the likelihood) is taken as a function of the normalized
cross-correlation (NCC) between the ground truth image ŷ and the predicted image y
with an additional scaling factor wNCC ∈ R+, namely

Pθ(y, sy|z,x, sx) = exp (−wNCCCC(y, ŷ)) , (4.4)
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where the CC term is defined as

CC(y, ŷ) =
∑
p∈Ω

 n3∑
i=1

(ŷ(pi)− ŵ(p)) (y(pi)− w(p))

2

 n3∑
i=1

(ŷ(pi)− ŵ(p))

 n3∑
i=1

(y(pi)− w(p))

 , (4.5)

and w(p) and ŵ(p) are the local mean over a small cube Ω with side length n voxels of
the generated and true images, namely

w(p) =
1

n3

n3∑
j=1

y(pj), and ŵ(p) =
1

n3

n3∑
j=1

ŷ(pj).

The vector of parameters θ of the likelihood distribution Pθ(y, sy|z,x, sx), that stores
in part of it the weights of the Encoder network, also stores the weights of the Generator
network.

The main difficulty of this proposed framework is that the marginal probability of
the data, or the model evidence, given in Equation 4.2 is intractable due to not having
an analytic solution or an efficient estimator. In turn, this makes optimization of such
a model computationally expensive.

4.3.1 Learning the optimal parameters

To overcome the previously mentioned intractability of the framework, the posterior
distribution Pθ(z|y, sy,x, sx) is approximated by a multivariate Normal distribution
Qψ(z|y, sy,x, sx) parametrized by a vector of parameters ψ with mean and variance
that depend on both the planning and repeat images and masks, namely

Qψ(z|y, sy,x, sx) = N (z;µψ(x, sx,y, sy),Σψ(x, sx,y, sy)). (4.6)

The parameters ψ are the weights of the down-sampling part of a U-net, referred
to as Inference network at the top of Figure 4.2.

Regardless of the choice of the approximating posterior distribution Qψ, the log-
likelihood of the data can be written as

logPθ(y, sy|x, sx) = E z∼Qψ [logPθ(y, sy|x, sx)]

= E z∼Qψ

[
log

Pθ(y, sy, z|x, sx)
Pθ(z|y, sy,x, sx)

]
= E z∼Qψ

[
log

Pθ(y, sy, z|x, sx)
Qψ(z|y, sy,x, sx)

Qψ(z|y, sy,x, sx)
Pθ(z|y, sy,x, sx)

]
= E z∼Qψ

[
log

Pθ(y, sy, z|x, sx)
Qψ(z|y, sy,x, sx)

]
(4.7)

+DKL (Qψ(z|y, sy,x, sx)||Pθ(z|y, sy,x, sx)) . (4.8)

The DKL term in Equation 4.8 defines the Kullback-Leibler divergence between the
approximated posterior distribution and the true posterior distribution. The term is
non-negative, measures the distance between the shapes of the two distributions, and
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Figure 4.2: Architecture for finding the optimal parameters θ, ψ of
the network. Figure reproduced with permission from (Pastor-Serrano

et al., 2023).

is zero if, and only if, the approximated posterior equals the true posterior. The expec-
tation term in Equation 4.7, defines the evidence lower bound (ELBO) as

Lθ,ψ = E z∼Qψ [logPθ(y, sy, z|x, sx)− logQψ(z|y, sy,x, sx)] ,

which can also be re-written as

Lθ,ψ = E z∼Qψ [logPθ(y, sy|z,x, sx)]−DKL(Qψ(z|y, sy,x, sx)||Pθ(z|x, sx)). (4.9)

As the DKL term is non-negative, it is clear that the ELBO is a lower bound on the
log-likelihood of the data, i.e.,

Lθ,ψ = logPθ(y, sy|x, sx)−DKL (Qψ(z|y, sy,x, sx)||Pθ(z|y, sy,x, sx))
≤ logPθ(y, sy|x, sx).

Thus, by maximizing the ELBO Lθ,ψ from Equation 4.9 with respect to the parameters
of the model θ,ψ, the marginal likelihood Pθ is approximately maximized resulting in
a better generative model and the KL divergence between the approximated posterior
and the true posterior is lowered.

To improve model performance, the ELBO is expanded with two additional terms
which are included via multiplication to the likelihood from Equation 4.9 (Pastor-
Serrano et al., 2023). The first is a spatial regularization term,

R(Φ) = −wREG

∑
p∈Ω

∥∇Φ(p)∥2, (4.10)

where wREG is a multiplication constant. This term penalizes large and unrealistic
gradients in the deformation and encourages neighboring voxels to deform somewhat
similarly.

The second is a segmentation regularization term using the DICE score is added,
which is also multiplied by a constant wDICE . This aims to improve the overlap between
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the propagated and ground truth structures, and is written as

DICE(sky , ŝ
k
y) = 2wDICE

∣∣sky ∩ ŝky
∣∣∣∣sky∣∣+ ∣∣ŝky∣∣ , (4.11)

where k denotes the index of the structure present in the CT image, k = 1, . . . ,K, with
K the total number of structures present, and sky and ŝky are the k-th generated and
ground truth structures respectively.

Including these two additional terms, and minimizing the negative ELBO instead,
results in the following optimization problem

min
θ,ψ

E z∼Qψ

−wNCCNCC(y, ŷ)− wDICE
1

K

k∑
k=1

DICE(sky , ŝ
k
y) + wREG

∑
p∈Ω

∥∇Φ(p)∥2


+ wKLDKL(Qψ(z|y, sy,x, sx)||Pθ(z|x, sx)).

4.4 Dataset generation and training details

The dataset was acquired from the Holland Proton Therapy Center and came from
93 H&N patients with planning, repeat CT images and associated RT structures for
each image. This resulted in 342 pCT - rCT pairs from which 10%, corresponding to
9 patients, were set aside for final testing. The remaining part was divided into 5%
for validation and 95% for training. The training dataset consisted of patients with a
number of rCTs ranging from 1 to 6, with most patients having 3 (24 patients) and 4
(25 patients) rCTs taken. This creates a bias in the dataset for the anatomical changes
present in patients that are more likely to be re-imaged. All the rCTs were rigidly
registered to the pCTs using the Simple ITK library (Beare, Lowekamp, and Yaniv,
2018) with the resulting deformation vector fields used to register the RT masks. After
this, all scans were interpolated to a 2× 2× 2 mm grid and cropped around the center
of mass of the present RT masks (the left and right parotid glands, the spinal cord and
the constrictor muscle) into a shape of 96× 96× 64 voxels. This resulted in volumes of
192 × 192 × 128 mm3 which were found to adequately cover the anatomical regions of
interest.

The model was implemented in PyTorch (Paszke et al., 2017). The down-sampling
path of the U-net (Encoder) and the Inference network were identical, and consisted of 4
blocks, where each block is composed of a 3D convolution layer, a Group Normalization
layer, a rectified linear (ReLu) activation and a max pooling down-sampling operation.
All convolution layers had a kernel of dimensions 3×3×3. The convolution layer in the
first block had 16 channels while the remaining blocks had 32. At the lowest level, a last
convolution with 4 channels results in the encoded volume r ∈ R4×4×4×3. This volume
is mapped to the means and variances via two different fully-connected layers. The
up-sampling part of the U-net (Generator) concatenates the sampled latent variables to
the volume r after a linear layer. Next, 7 blocks (with up-sampling as opposed to down-
sampling max pooling operations) are applied, where for the first 5 the convolutional
layer has 32 channels and for the last 2, the convolutional layer has 16 channels. This
is followed by a last convolution with 3 channels. The model was trained using a batch
size of 32, on a A40 NVIDIA GPU, for 1500 epochs with an early stopping patience of
300 epochs and the Adam optimizer with a learning rate of 1.0× 10−4.

The constants wNCC, wDICE, wREG together with the constant wKL that multiplied
the DKL loss term were considered as hyparparameters to be optimized. These hy-
perparameters were optimized on the validation set using a grid search method with
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the validation loss defined as the sum of the NCC from equation 4.4 and DICE from
Equation 4.11 with unity weights. Thus, for a given latent space dimension, ranges of
allowed values were defined for each hyperparameter (wNCC and wDICE from 1000 to
5000 in steps of 1000, wREG from 1.0× 10−5 to 1.0× 10−1 in multiples of 10 and wKL

from 1.0 × 10−3 to 1.0 × 101 in multiples of 10). After each combination was tested,
the model with the lowest validation loss was chosen. This resulted in the model with
wNCC = 5000, wDICE = 3000, wREG = 1.0× 10−4 and wKL = 1.

4.5 Results and discussion

This section presents and discusses the performance of the model in a series of tests.
The section starts by presenting and discussing in Subsection 4.5.1 the performance
of the model on the test set (a reconstruction accuracy test). Next, a baseline is set
through a literature study for the expected anatomical changes in H&N patients in
Subsection 4.5.2. The anatomical changes displayed by the training set are compared to
the expectations set out by literature, in Subsection 4.5.3, in order to assess the degree to
which the dataset used by this model is representative of the broader population. Given
this framework, the generative performance of the model is presented and discussed in
Subsection 4.5.4. To gain insight into the model, a latent space analysis is presented
and discussed in Subsection 4.5.6. Lastly, a comparison to the recent diffusion model
proposed by (Smolders et al., 2024) is given in Subsection 4.5.5.

4.5.1 Test set accuracy

The reconstruction accuracy of the model on the test set (composed only of the left
and right parotids) was assessed. The accuracy was defined by two metrics, namely
the normalized cross correlation (NCC) loss from Equation 4.4 and the DICE loss from
Equation 4.11. Thus, each record in the test set (i.e., pair of pCT and rCT with
associated masks) was used to generate through the inference network latent variables,
which ultimately result in generated CTs and associated structures. The results were
averaged over all records in the test set and the dimension of the latent space was varied
between 2 and 256 in multiples of 2. The results of the two scores can be seen in Figure
4.3, which shows the mean of the individual scores and a band of one standard deviation
around the mean. Both figures show considerable improvement in both metrics as the
latent space is increased from 2 to 32, and thereafter a plateau occurring between 64 and
256. The same behavior is observed in both metrics (a rise in accuracy up to ≈ 32 latent
variables and thereafter a plateau). It should be noted that the metrics are sensitive to
different features (as the NCC metric is computed based on the HU values of the voxels
while the DICE score is computed based on the overlap of the binary masks). Thus, the
similar behavior that is observed is likely due to the chosen loss functions that include
both the NCC and the DICE score. The model performs particularly well with regard
to the DICE score, where it achieves a score of 0.82 with just 2 latent variables. The
reconstruction accuracy values obtained were not directly comparable with the ones
previously published in the work of (Pastor-Serrano et al., 2023), but exhibit the same
behavior. The increased input size of this model (96 × 96 × 64 versus 64 × 64 × 48),
the more complex anatomical site (H&N versus prostate) and a different configuration
of the layers in the Inference, Encoder and Generator networks likely explain the need
for additional latent variables to achieve good performance.
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Figure 4.3: Reconstruction accuracy versus latent space dimension-
ality. The figure displays on the first row the DICE score and on the
second row the NCC evaluated on the test set for models with the same

hyperparameters and varying latent space dimensions.

4.5.2 Expected anatomical changes

This subsection details the anatomical changes in head and neck patients that literature
studies report on. An overview of these changes can be seen in Table 4.1. This overview
is used in Subsection 4.5.3 to assess the degree to which the changes observed in the
training set, and therefore the changes that the DAMHN learns to predict, correspond
to the ones in the broader population.

The work of (Bhide et al., 2010) used repeat CT scans at weeks 2, 3, 4, and 5 during
radiotherapy and compared the parotids and the target at succesive time points, i.e.,
pretreatment with week 2, week 2 with week 3, and so on. The greatest absolute and
percent reduction in the volume of the parotid glands was 4200mm3 or 14.7%, and
occurred between week 0 and week 2. The absolute and percent reduction in the next
two-week period was 4000mm3 or 16%. The study found a significant medial shift of
the parotid glands through the course of treatment, starting at week 2, with the highest
mean movement of the COM being 2.3mm at week 4. No significant movements of the
COM in the anteroposterior and the inferosuperior directions were found.

In the work of (Vásquez Osorio et al., 2008) the impact of 46Gy delivered to the
tumor was assessed based on the planning and repeat CT images. They report that
the parotids shrunk on average by 14% and that the shrinkage occurred by keeping
the regions nearby to bony anatomy as an anchor. Moreover, the parotids exhibited a
tendency to move inward (right parotid leftward and left parotid rightward) with the
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largest displacements being in the lateral and inferior regions. The region that moved
the least was the medial region (partially adjacent to the bony structure). The study
of (Barker et al., 2004) found a median medial shift of 3.1mm for the center of mass
of the parotid glands. They observed asymmetric shifts in parotid gland surfaces, with
average displacements of 1 ± 3 mm and 3 ± 3 mm for the medial and lateral regions of
the irradiated glands, respectively.

Table 4.1: Overview of documented quantitative and qualitative
anatomical changes in the parotid glands. The table displays the study,
the number of CTs used, the reported volumetric change (absolute, rel-
ative or both), the absolute shifts in the COM and its direction and

qualitative notes on the reported changes.

Study CT number Volumetric
loss

COM
shift

Morphological
alterations and notes

(Barker et al., 2004) ≥ 2 Median 190mm3 per day
Range of 40 to 840 mm3 per day

Median 3.1mm
Range 0 to 9.9 mm
in medial direction

Shrinkage correlated with
patient weight loss

(Vásquez Osorio et al., 2008) 2 Average 14% 1 or 3 mm
Bony anatomy kept as anchor
during shrinkage

(Bhide et al., 2010) ≥ 2

14% or 4200mm3

between week 0 and 2
16% or 4000mm3

between week 2 and 4
35% over the course of
chemoradiotherapy

2.3mm by week 4
in the medial
direction

COM shift insignificant
in the anteroposterior
and inferosuperior directions

(Santos et al., 2020) 2 Average 20.5%
or 6560mm3 between CTs N.A.

Shape shift from convex
to concave
COM shift towards the
medial and cranial directions

4.5.3 Training set anatomical changes

The generative performance of the model is tied to the data provided during training
in the training set. Therefore, the anatomical changes in the training set and the lit-
erature reported changes from Table 4.1 were compared to assess the degree to which
the training set is representative of the broader proton therapy head and neck patients
population. The anatomical changes presented in Subsection 4.5.2 come from studies in
which uni or bilateral photon-based radiotherapy (RT) or a combination of chemother-
apy and RT was delivered. In contrast, the dataset of this work comes exclusively from
proton therapy patients treated with mostly bilateral fields. The training set contained
anonymized data and was composed of pairs of pCTs and consecutive rCTs (pCT-rCT1,
pCT-rCT2, and so on). For each such pair and patient, the volume loss and COM shift
in each parotid was computed and averaged over both parotid glands. Figure 4.4 dis-
plays, for each patient in the training set, boxplots of the distributions of percentage
parotid glands volume changes and parotids center of mass shifts. Figure 4.4 shows
that the median of the volumetric loss in the parotids is ≈ 11% and the median of the
COM shift is ≈ 3mm. While the many patients have relatively unskewed volumetric
change and COM shifts distributions, there are also patients (e.g., 3, 10, 60 and 72)
that display skewed distributions with outliers. To facilitate comparison to previous
publications, the data presented in Figure 4.4 is summarized in Table 4.2 where statis-
tics on an individual parotid level are displayed. Specifically, the absolute volumes on
the planning and repeat CT images, their difference (absolute and relative) and the
COM shifts are characterized through their mean, standard deviation (SD), minimum,
median and maximum.

The absolute volumes of the parotids on the pCT images are a mean of 35 878mm3

with a range of 16 984 to 83 520 mm3 for the left parotid and a mean of 35 447mm3

with a range of 11 344 to 87 352 mm3 for the right parotid. Both mean parotid volumes
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(a) Patient specific box plot of the relative volume change distribution in both parotid glands.

(b) Patient specific box plot of the COM shift distribution in both parotid glands.

Figure 4.4: Training set characterization. The figures display median
sorted boxplots (with the whiskers extending up to 1.5 · IQR, IQR =
Q3 −Q1) with the x axis giving the patient identifying number and the
y axis giving either the relative volumetric changes or the COM shifts

distributions in both the parotid glands.

are roughly 23% larger than the volumes reported by (Santos et al., 2020), namely
28 477mm3 for the left parotid and 29 274mm3 for the right parotid.

The differences between the parotid volumes in the training set are, a mean of
−4307mm3 with a range of −30 456mm3 to 4256mm3 corresponding to a mean of
−12% with a range of −41% to 10% for the left parotid and a mean of −3941mm3

with a range of −29 112mm3 to 4584mm3 corresponding to a mean of −12% with a
range of −41% to 10% for the right parotid. This is slightly smaller but in line with
previous studies, considering the averaging effect caused by the pCT-rCT pairings from
the training set.

The COM shifts observed in the dataset are a median of 2mm with a range of
0.2mm to 13mm for the left parotid and a median of 3mm with a range of 0.4mm to
12mm for the right parotid. These values are in agreement with the median of 3.1mm
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Table 4.2: Training set statistics. The table displays for both parotid
glands the mean, standard deviation, minimum, median and maximum
of the volume on the planning and repeat CT images, the difference
between these volumes (absolute and relative) and the center of mass

shifts.

Statistic
Organ Metric Mean SD Min. Median Max.

Parotid L

Planning volume (mm3) 35878 11290 16984 33280 83520
Repeat volume (mm3) 31571 10161 12976 29816 76632
Difference (mm3) -4307 3880 -30456 -3548 4256
Relative difference (%) -12 9 -41 -11 10
COM shift (mm) 3 2 0.2 2 13

Parotid R

Planning volume (mm3) 35447 12568 11344 33024 87352
Repeat volume (mm3) 31507 11160 7496 29896 79136
Difference (mm3) -3941 3955 -29112 -3320 4584
Relative difference (%) -11 8 -41 -10 10
COM shift (mm) 3 2 0.4 3 12

in a range of 0mm to 9.9mm reported by (Barker et al., 2004).
To conclude, the distributions from the training set are deemed in line with the

expectations set out by previous studies. Differences between the data presented here
and the one from previous studies, such as (Medbery et al., 2000) and (Santos et al.,
2020) can be attributed to several factors. First, the pCT-rCT composition of the
training set is bound to underestimate the changes when compared to studies based on
only pCT-final CT pairs. Second, differences are expected due to the anonymization
of the training set and the differences between the compared cohorts. Previous studies
such as the ones of (Ericson, 1970; Santos et al., 2020; Vásquez Osorio et al., 2008)
showed differences in parotid volumes depending on age, sex, weight, smoker status,
planned doses, degree of parotid sparing and treatment modality, which are impossible
to study in our current case. Third, a small effect could be expected due to inter-observer
variability and systematic errors introduced by interpolating the original images on a
new, coarser grid could also influence the observed absolute volumes.

4.5.4 Generative performance

To assess the generative performance of the model, the test set, that contained 9 pa-
tients, was input into the final trained model and 100 samples were drawn for each
record (pair of pCT-rCT) in the test set. Figure 4.5a displays for all present organs
(left and right parotids, the spinal cord and the constrictor muscle) boxplots of the
volume changes on the training, test and generated sets. Figure 4.5b displays for all
present organs boxplots of the COM shifts on the training, test and generated sets.

In terms of volumetric change distributions, shown in Figure 4.5a, the figure shows
that the parotid distributions on the training and test set are different. For example, the
mean (indicated by the dotted green line) of the left parotid volume change distribution
is below its median (indicated by the continuous orange line), while it is above it on
the test set. A similar situation occurs for the right parotid. The same figure shows
that the model generates volume change ranges that are broad enough to encompass
the training and test sets, with means and medians in close agreement to the training
and test set ones. The COM shift distributions, shown in Figure 4.5b, also display
differences between the training and test sets. For example, the distribution of the
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(a) Organ specific box plots of the absolute volume change distributions.

(b) Organ specific box plots of COM shift distributions.

Figure 4.5: Organ specific generative performance. The figures display
boxplots (with the whiskers extending up to 1.5·IQR, IQR = Q3−Q1) for
the training, test and generated sets with the x axis showing the organ
and the y axis giving either the absolute volume change or the COM
shift distribution for the given organ. The median of the distributions
is displayed with the continuous orange line while the mean is displayed

with the dotted green line.

constrictor muscle COM shifts on the test set has a considerably smaller range of values,
with smaller mean and median values. As was the case for Figure 4.5a, Figure 4.5b also
shows that the model predicts distributions of COM shifts that are broad enough to
encompass the test set ones, with means and medians in reasonable agreement. Some
discrepancies can also be observed, for example in the difference between the median
of the distribution of COM shifts of the constrictor muscle on the test and generated
sets. Given the overall good agreement presented by both Figures 4.5b and 4.5b, it can
be concluded that DAMHN is capable of modelling volume and COM shift distributions
present in the training and test set.

An illustration of the generative capabilities of the model is shown in Figure 4.6.
The figure displays for 5 patients in the test set, in the first column the pCT, in the
second column one of the rCTs and in the following 3 columns three patient specific
generated CT images with corresponding contours (the left parotid colored in red and
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the right parotid colored in orange, the spinal cord in green and the constrictor muscle
in blue).

Figure 4.6: Example of generated images. The figure displays, for 5
randomly selected patients from the test set, in the first column the true
pCT, in the second column one of the true rCTs and in the remain-
ing columns generated CT images. Overlaid on all images are the left
parotid (red), the right parotid (orange), the spinal cord (green) and the
constrictor muscle (blue). Noteworthy anatomical changes are indicated

with yellow arrows.

As already mentioned in Table 4.1, the flattening and medial movement of the
parotids is expected. This feature is illustrated for the patient 4 through the yellow
arrows in the planning and generated images shown in columns 3 to 5. Patient 2
displays shrinking in the right parotid (in orange) and flattening of the left parotid (in
red) as illustrated by the yellow arrows. The model also appears to predict neck pose
shifts, as illustrated by the changing air gap in the oral cavity of patient 1 in the second
generated image or by the change in the shown dentition of patient 5 in the generated
image 1. Weight loss, which is usually observed in radiotherapy patients, is prominent
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in the comparison between the pCT and the generated images for patient 4. Minimal
overlap between the parotid glands and the mandible bone is visible for patient 1 on
the pCT and the rCT. The generated images also display this feature, which illustrates
the anatomical coherence of the generated anatomies. While it is difficult to definitively
assert the feasibility of the generated image, the figure supports the conclusion that the
model is capable of generating realistic anatomies that are coherent and involve posture
shifts, shifting air gaps, weight loss and the typical expected anatomical changes in the
parotid glands.

To further test the population based model, Figure 4.7 shows patient-specific box-
plots of the anatomical changes in the parotid glands. Figure 4.7a displays for each
patient in the test set, the true volumetric change (denoted by the patient number and
-T) and the generated volumetric changes by drawing 100 samples (denoted by the pa-
tient number and -G). In terms of the volume change distributions illustrated in Figure
4.7a, the model largely predicts broad enough distributions that encompass the true
ones. This is the case for patients 1, 3, 4, 6, 7, 8 and 9. Moreover, the means and
medians are in close agreement for patients 1, 6, 7 and 8. Discrepancies in the means
and medians can be observed for patients 2, 4 and 9. In terms of COM shift distri-
butions, the model produces distributions with large enough ranges to encompass the
test set ones, except for patient 5. The means and medians are in agreement for most
patients, with the exception of 5, 6 and 9. The discepancies on a per-patient level could
be explained by an insufficient number of recorded repeat CT images for those patients
but also by the non-patient specific nature of the model. While the model attempts to
provide patient specificity by allowing the parameters of the prior distribution to depend
on the planning CT image and associated masks, the model optimizes the log likelihood
of the full dataset, therefore resulting in a sample (or population) based model.

4.5.5 Comparison to DiffuseRT

The generative performance of DAM with respect to principal component analysis
(PCA) based models has already been documented in the previous work of (Pastor-
Serrano et al., 2023), where it was shown to outperform them. Thus, the generative
performance of this model was compared with the recently published denoising diffusion
probabilistic model (DDPM) of (Smolders et al., 2024). DDPM is also a generative deep
learning model that approximates a data distribution, by inverting a gradual multi-step
noise addition process. Similarly to the results shown by DDPM, Figure 4.8 displays for
all organs, the true (training set) and generated volume change distributions (in Fig-
ures 4.8a, 4.8b, 4.8e and 4.8f) and COM shift distribution (in Figure 4.8c, 4.8d, 4.8g,
4.8h) together with a kernel density estimate for each. The kernel density estimate
was computed using the Scikit library (Pedregosa et al., 2011) and a kernel bandwidth
defined as one tenth of the range of values in the distribution. Both volume change and
COM shift distributions that the DAMHN training set exhibits are qualitatively different
than the ones reported by DDPM, displaying less bimodality. This difference is likely
attributable to the differences in the patient cohort and the specifics of treatment deliv-
ery (e.g., the chosen number and direction of beams). The kernel density estimates for
the training and generated sets are generally in agreement, with disagreement occurring
at the ends of the distributions, as is visible in Figures 4.8g and 4.8h.

DAMHN and DDPM were also compared in terms of the Wasserstein distance (WD)
between the true (training set) and generated anatomical changes distributions. The
Wasserstein distance is a metric for probability distribution similarity, with a value of
zero occurring when the distributions are the same and larger values indicating more
different distributions. To compute it, the volume changes and COM shifts in the
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(a) Patient specific box plot of absolute volume change distributions in both parotid glands.

(b) Patient specific box plot of COM shift distributions in both parotid glands.

Figure 4.7: Patient specific generative performance. The figures dis-
play boxplots (with the whiskers extending up to 1.5 · IQR, IQR =
Q3 −Q1) with the x axis showing the organ and the y axis giving either
the absolute volumetric changes or the COM shifts for the given organ.
The median of the distributions is plotted using the continuous orange

line while the mean is plotted using the dotted green line.

organs for both training and generated sets were normalized by the mean and standard
deviation of the true (training set) values (to counter the scaling effect of the WD based
on the range of the data) and thereafter input into the SciPy implementation (Virtanen
et al., 2020). Table 4.3 shows the comparison between DDPM and DAMHN. The
qualitative agreement observed in Figure 4.8 is also illustrated by the low Wasserstein
distances achieved by DAMHN, which is comparable to the ones obtained by DDPM for
all metrics.
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(a) Left parotid volume change distributions. (b) Right parotid volume change distributions.

(c) Left parotid COM shift distributions. (d) Right parotid COM shift distributions.

(e) Spinal cord volume change distributions.
(f) Constrictor muscle volume change distribu-

tions.

(g) Spinal cord COM shift distributions. (h) Constrictor muscle COM shift distributions

Figure 4.8: Comparison of true and generated anatomical change dis-
tributions. The figures display for all organs (left and right parotid,
constrictor muscle and spinal cord) the true and generated anatomical
change (volume change and COM shift) distributions, their correspond-
ing kernel density estimates and the WD between the true and generated

distributions in the title.
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Table 4.3: Wasserstein distance comparison between the best perform-
ing DDPM model of (Smolders et al., 2024) and DAMHN. The table
displays the Wasserstein distance between the true (training set) and
generated volume loss and COM shift distributions in the left and right

parotids.

Metric Structure Model
DDPM DAMHN

∆ Volume Left parotid 0.60 0.12
Right parotid 0.28 0.38

COM shift Left parotid 0.31 0.37
Right parotid 0.22 0.19

4.5.6 Latent space analysis

Given that DAMHN encodes the information between the planning and repeat CT im-
ages into the latent space, the effect of varying individual latent variables while keeping
the others fixed of the model on organ volume changes and COM shifts was inves-
tigated. Figure 4.9 illustrates the volume changes for each organ (left parotid, right
parotid, spinal cord and the constrictor muscle) that occur when an individual latent
variable is varied from −5σ to 5σ, while the others are kept fixed to 0. Similarly, Figure
4.10 displays the effect of varying individual latent variables on the COM shift.

Figure 4.9 shows consistently larger volumetric lossess in the parotid glands in com-
parison to spinal cord and constrictor muscle. This is expected, given that the spinal
cord is smaller in volume than the parotid glands and is usually avoided during irradi-
ation. Figure 4.9 also shows the relatively smooth latent space that the model learns
and that the parotid glands volume changes are comparable, indicated the largely bi-
lateral nature of the patient cohort. Variables that induce larger volumetric losses in
one of the two parotids, could point to the presence of patients with unilateral fields,
as non-irradiated parotids were shown to shrink less during treatment than radiated
ones (Vásquez Osorio et al., 2008). Figure 4.10 shows that for both parotids, the COM
deformations are roughly similar in absolute value. This is in line with the expectation,
set by the work of (Vásquez Osorio et al., 2008), that both parotids move in the medial
direction with similar amplitudes. Moreover, Figure 4.10 also shows that the learned
latent space is smooth.

Volume and COM shifts are just one measure of latent space variations. Figure 4.11
shows, for a patient in the test set, a cut of the images produced when latent variables
with numbers 1, 7, 20, 21 and 32 are varied. The particular latent variables were chosen
due to the large changes they induce, as visible in Figures 4.9 and 4.10. The first column
of Figure 4.11 displays the pCT, while the remaining columns display the image, the
associated contours (as before the left parotid in red, the right parotid in orange, the
spinal cord in green and the constrictor muscle in blue) and the overlaid deformation
vector field that is created by the individual latent variables (with the value it was
set to given in the title of the figure). As was already visible in Figures 4.9 and 4.10,
latent variable 7 induces large changes in the right parotid for extreme values of the
latent variable. This effect is also observed through the deformation vector field around
this structure. Latent variable 21 displays a similar behavior, for both the left and
right parotids. Figures 4.9 and 4.10 also show that latent variable 1 and 32 generate
deformation fields in the oral cavity, perhaps pointing to shifting patient poses. A
limitation of the framework, is that the latent variables are not encouraged to generate
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non-correlated deformations and therefore, it is difficult to relate specific latent variables
to specific induced anatomical changes.

Figure 4.9: Latent space variations. The figure displays the organ
(left parotid in red, right parotid in orange, spinal cord in green and
constrictor muscle in blue) volume change that individual latent vari-
ables cause. The latent variables were varied from −5σ to 5σ while the

remaining variables were set to 0.
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Figure 4.10: Latent space variations. The figure displays the organ
(left parotid in red, right parotid in orange, spinal cord in green and
constrictor muscle in blue) COM shift that individual latent variables
cause. The latent variables were varied from −5σ to 5σ while the re-

maining variables were set to 0.
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Figure 4.11: Latent space visualization. The figures display in the first
column for a given patient, the pCT and associated organs (left parotid
in red, right parotid in orange, spinal cord in green and constrictor mus-
cle in blue). In the following columns the figure displays in the title the
chosen latent variable number (and the value it was set to), the gener-
ated image and its organs. Overlaid is plotted the deformation vector
field that the model learns, where the color represents the magnitude of

the field.
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4.6 Conclusion

This work presented a probabilistic deep learning model for generating future anatomical
changes in H&N radiotherapy patients. The model was trained on a training set coming
from 83 proton therapy head and neck patients and was assessed on test set coming
from 9 patients. On the test set the model achieved a DICE score of 0.83 and an
NCC score of 0.60 using 32 latent variables. The model produces volumetric changes
and COM shift distributions that are broad enough to capture the real, observed ones,
with the predicted means being close to the real ones. DAMHN was compared to the
state of the art denoising diffusion probabilistic model (DDPM) for H&N anatomical
changes presented by (Smolders et al., 2024). For both parotid glands, DAMHN achieved
similar Wasserstein distances to the ones obtained by the DDPM model between the
true and generated volume loss distributions (0.12 versus 0.60 and 0.38 versus 0.28)
and between the COM shift distributions (0.37 versus 0.31 and 0.19 versus 0.22). The
latent space analysis showed that the model learns a smooth latent space, that displays
some correlation between the latent variables (which was not discouraged in the model
framework). Although this work focused on data coming from a proton therapy patient
cohort, the methodology is valid for a wider range of problems in adaptive radiotherapy,
including adaptive photon radiotherapy.

There are several limitations of the current methodology and model framework and
points for future improvement and studies. First, the dataset contained a different
number of repeat CT images for each patient and is therefore biased towards patients
with larger anatomical changes (as those patients are more likely to be re-imaged). This
bias was not accounted for in this model and likely leads to the model predicting larger
than observed anatomical changes for patients with small ones. However, given that a
dataset with larger anatomical changes is more difficult to encode in the latent space,
a dataset that contains repeat CT images from patients with small anatomical changes
should not significantly decrease the overall population accuracy of DAMHN. Second, a
limitation of the model is that, despite allowing the parameters of the prior distribution
to vary on an individual patient level, the model is intrinsically a population based
one, as it optimizes the log likelihood of observing the full dataset. This, coupled to
a limited number of repeat CTs in the dataset leads to degraded accuracy for some
patients. Third, if the large number of structures present in the head and neck area
would be included in the dataset, it is expected that the model would require a change
in architecture (specifically an increase in the number and size of layers and latent
space dimensionality) to correctly model those datasets. More generally, the necessary
minimal architecture and the optimal weights of the different loss terms should be
further investigated. Moreover, the inclusion of the regularization term that penalizes
large gradients in the deformation could be detrimental for anatomical regions where
such changes do occur (e.g., tongue position). Fourth, the comparison between DAMHN
and the model of (Smolders et al., 2024), is ultimately difficult due to the different
datasets that the models were trained and evaluated on. Thus, both models should
be trained and evaluated on the same sets that contain more structures than they
presently do (e.g., additional useful structures could be the submandibular glands and
the oral cavity). Fifth, the structure of the dataset could be changed from pCT-rCT1,
pCT-rCT2, and so on to pCT-rCT1, rCT1-rCT2 and so on. In doing so, a model that
predicts changes on the time scales on which patients are re-imaged (weekly or daily
depending on the workflow) could be obtained. Such a model would be applicable to an
adaptive plan library approach or for plan quality assurance. Moreover, a time variable
could be included in the architecture to encode information in addition to the repeat
CT images. Sixth, as anatomy change predictions has applications in dose change
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predictions, an analysis of the effect on dose characteristics (including a robustness
analysis) of delivering treatment plans to the generated images is a natural next step
for this model. Next to such a study, work on additional standards (beyond volume
changes and COM shifts) for assessing the degree to which generated CT images are
realistic should be established.

Overall, DAMHN was capable of quickly generating hundreds of realistic images
of inter-fractional anatomies. As already mentioned, such a model has a number of
applications in the radiotherapy workflow, such as improving robust optimization, as a
component in plan quality assurance in online adaptive proton therapy or in expanding
the plan library approach.
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Chapter 5

Conclusion

Adaptive proton therapy (APT) is proposed as a desirable solution to the over-reliance
in intensity modulated proton therapy (IMPT) on the one robustly optimized irradi-
ation plan generated prior to the start of treatment. One of the bottlenecks in the
clinical implementation of online APT comes from the manual quality assurance (QA)
procedures that are necessary for safe treatment delivery. Specifically, plan QA is the
manual check by a medical physicist of the correct beam arrangement and parameters
for each treatment plan. Patient-specific QA (PSQA) is the per-patient comparison
between the dose generated by the treatment planning system (TPS) and the physical
dose measurements performed in a water box.

This work presented two algorithms, namely Yet anOther Dose Algorithm (YODA)
and Daily Anatomy Model for head and neck patients (DAMHN), that can aid with the
automation of PSQA and plan QA processes.

5.1 Outcomes

YODA is a fast, physics-based and adjoint-capable proton radiation transport algo-
rithm. The physics-based approximations, as explained in Section 2.3, applied to the
integro-differential Linear Boltzmann Equation, are the continuous slowing down ap-
proximation, energy loss straggling, the small angle Fokker-Planck approximation and
the neglection of catastrophic inscatter integral. These approximations simplify the
Linear Boltzman Equation into a partial differential equation (PDE). This PDE is
separated into two PDEs by separating out the energy from the 6-dimensional proton
phase-space density. One benefit of this approach is that one of the resulting PDEs (the
one-dimensional Fokker-Planck equation) is efficiently solvable via numerical methods,
as explained in Section 2.4, while the other (the Fermi-Eyges equation) has an analyt-
ical solution, as shown in Section 2.5 and Appendix B. This combination makes the
algorithm fast. Another benefit is that the adjoint mathematical formalism can be
applied to this system of PDEs. The adjoint formalism provides an estimate to the
change in a metric (e.g., dose in a region of interest) as a function of a change in input
parameters (e.g., the voxel HU value or the number of protons delivered to a spot).
This approximation is advantageous when the number of input parameters that change
is much larger than the number of metrics of interest, which is typically the case in
proton therapy. The adjoint mathematical framework was developed in Section 2.7 for
the case when the metric is the dose in a region of interest and the input parameters
are the voxel HU values.

As a result of the physics-based approximations employed and the Gaussian beam
splitting scheme developed in Section 3.3 to account for lateral heterogeneities, YODA
computes doses with accuracy close to the golden standard Monte Carlo (MC) algorithm
TOPAS in a fraction of the time. The dose computation capability was illustrated in
Section 3.4 in a variety of set-ups such as different water boxes with varying slab inserts,
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a head and neck CT scan, a prostate CT scan and a lung CT scan using beams with
energies that encompass the clinical energy spectrum. To facilitate YODA’s use in the
clinic, a DICOM interface has been written. The interface takes clinical DICOM CT
scans, RT structures and RT plans and uses them as inputs in YODA and thereafter
compares the results with the RT doses predicted by the TPS. Moreover, a "commision-
ing" procedure was developed in Section 3.5 to match the doses produced by YODA
to any clinically commissioned treatment planning system. This step is necessary for
YODA to reproduce the actual optical characteristics of the in-room beams but also to
account for raw data differences between the TPS dose engine and YODA. After "com-
misioning" YODA, the doses computed by the RayStation TPS were independently
re-computed with YODA, thus illustrating YODA’s independent dose calculation capa-
bilities. YODA was also tested as a component in an adaptive workflow, namely as an
adaptation trigger system, in Section 3.4. This scenario simulated an online workflow,
where every day a decision must be made of whether or not to adapt the plan based on
the dosimetric effect of delivering yesterday’s plan to today’s anatomy. To this end, two
patients had robustly and non-robustly optimized plans generated in RayStation and
exported alongside planning and repeat CT images to YODA. Next, the dose from the
original plan to the target on the repeat CT image was computed in two ways: a simple
and time-consuming re-computation of the treatment plan and the adjoint time-saving
computation. The adjoint component was found to be accurate and fast (tens of seconds
versus tens of minutes), thereby proving YODA’s use in adaptation trigger systems.

DAMHN, is a probabilistic deep learning algorithm capable of predicting, based on
the patient planning CT image and associated contours, future possible anatomies ob-
served throughout treatment. The probabilistic framework was embedded into a U-net
generative framework that once trained, using the evidence lower bound, allowed to
sample the latent space and generate deformation vector fields (DVFs), as explained in
Section 4.3. In turn, the DVFs were used to generate possible patient CT images and as-
sociated RT structures. The performance of the algorithm was benchmarked in Section
4.5 in multiple tests such as its reconstruction accuracy, its generative capabilities and
its latent space behavior and was found to perform well in all tests. DAMHN has several
possible applications within radiotherapy. First, the algorithm could be incorporated
in the process of robust anatomical optimization in order to increase tumor coverage
and decrease doses to surrounding organs at risk (Van de Water et al., 2018). Second,
the algorithm could be included in the plan library approach (Oud et al., 2022). By
predicting the future anatomy of the patient, and generating plans with varying degree
of robustness, further NTCP reductions could be achieved. Lastly, the algorithm has
applications in online adaptive proton therapy where it could aid in plan QA. Specifi-
cally, the algorithm can be used to generate future anatomies with truly optimal plans
for each anatomy. Following this, on the given day when the patient is imaged and
the adapted and refined plan is available, a quick plan check could be performed (in
terms of coverage and dosimetric metrics and beam directions) between the adapted
and refined plan and the truly optimal plan.

5.2 Recommendations and broader uses

YODA’s improvement points are the accuracy (achieved through nuclear interactions
modelling and improved splitting schemes), the speed (via a better multi-core imple-
mentation or a GPU one), the number of available metrics and input parameters that
can be varied for the adjoint component and the lack of comprehensive multi-site studies
on patient cohorts. Having these improvements in YODA would result in an accurate
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physics-based TPS dose engine with accuracy close to MC, with the significant advan-
tage of the adjoint component.

The simplest to tackle is the number of implemented metrics. Clinically relevant
metrics such as minimum and maximum dose in a region, the tumor control probability
or the normal tissue complication probability (NTCP) could easily be included. The
effect of perturbations in additional input parameters should also be included. The
easiest to compute (mathematically and computationally) in the adjoint mathematical
formalism (as they result only in direct contributions) are variations in the spot MU
values (which are related to the number of protons) and variations in the initial spot size.
These quantities are easily extracted from log-files recorded during treatment delivery.
Also recorded in the log-files are differences between the planned and actually delivered
spot positions. To use these in the adjoint formalism it should be investigated how to
convert the spot position changes into changes in the HU values along the beam path.
This will allow YODA, once it is fast enough, to be used as a real-time dosimetric tool
through the adjoint engine. Alternatively, log-files could be used in YODA’s current
implementation, by performing a-posteriori reconstructions of the actually delivered
doses. By performing this type of QA, implicit machine QA would also be performed
as failures to reach certain tolerances could imply failures in the beam delivery system.

YODA should model nuclear interactions, as they have a significant effect on the
predicted doses, especially towards the high-side of the energy domain. This modelling
should balance the speed and accuracy that YODA strives for. Simplistic implementa-
tions, such as the usual additional contribution to lateral scatter that classical pencil
beam algorithms use (Soukup, Fippel, and Alber, 2005), could be sufficient for YODA’s
main purpose as a QA tool. Moreover, the effect of this additional parametrized scatter
on the adjoint computations is bound to be minimal. If gamma index comparisons show
that such a simplistic yet (likely) fast model is insufficient, more complex algorithms
could be developed. One example would be to use a convolution based approach, similar
to the collapsed cone method used in photon therapy (Ahnesjö, 1989). Another is to
include the nuclear in-scattering integral in the Linear Boltzmann Equation but only
from secondary protons (as they are the most significant particles that contribute to
dose from nuclear interactions and are reasonably forward oriented (Paganetti, 2002)).
Such an approach would likely increase the bandwidth of the system of linear equations
solved in the Fokker-Planck equation and therefore would come with an increased com-
putational burden. Another approach is given by the bipartition model, as explained
by the work of (Luo, 1998). In this approach, the proton flux is split into a forward
scattered component (the solution of which YODA already computes) and a large angle
scattered component. Approximations could be employed for the large angle component
to keep the computational expense to a minimum, as shown by the work of (Asadzadeh,
Brahme, and Kempe, 2010).

YODA should also improve its accounting for lateral heterogeneities. As already
discussed in Chapter 3, this is not trivial due to the complex interplay between the
beam size, the CT grid size and the size and location of the lateral heterogeneities, and
is a limitation that most pencil beam algorithms encounter. More lateral beamlets do
not necessarily imply a more accurate result. A solution would be an adaptive beam
splitting algorithm to balance speed and accuracy. Such an algorithm could start with
a base level of splitting (e.g., 1+12) and upon detecting lateral heterogeneities, place
lateral beamlets only in the relevant areas. As heterogeneities usually only last several
voxels, upon reaching the end, the beamlets in that area could be re-consolidated into
one beamlet (with potentially a non-Gaussian shape). The success of such an algorithm
depends on the detection of lateral heterogeneities, on the re-consolidation method once
the lateral heterogeneity has "ceased to exist" from a beam-eye point of view and on
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the actual implementation of the algorithm. The detection of lateral heterogeneities
could be a small cost as once the start and end positions of a spot in a treatment plan
are computed, multiple ray traces would be started (again using a dense ring structure)
in parallel. An alternative to the adaptive approach would be a fixed lateral grid in the
beam-eye view, covering −3 to +3 of the initial spot size with a pre-defined (if needed
non-constant) lateral resolution.

Despite YODA being aimed at proton therapy, its physics-based, PDE solving na-
ture allows it to be applicable to more than proton therapy for humans. One application,
that has already been tested, is YODA’s use for small animal proton therapy treatment
planning in the work of (Malimban et al., 2024), which found YODA to be a useful
tool for the purpose. YODA uses physics-motivated approximations to the LBE to ob-
tain the six-dimensional proton phase space density. Thus, YODA could be applied to
the transport of other charged particles for radiotherapy purposes, as long as they are
subject to the LBE equation and their scatter characteristics can be approximated by
the same approximations that are applicable to protons. One example of this could be
electron therapy. Broader in scope, are radiation transport problem in different envi-
ronments from the radiotherapy one. One example of this could be space exploration,
where the effect of cosmic and solar radiation on spacecraft materials is desired, or in
battery applications, where the range of ions in different media is desired. Past radi-
ation transport application, to which YODA could relatively easily be applied to, the
solution to the Fokker-Planck equation (and the corresponding adjoint formalism) could
make that component of YODA of use to different fields. Some example are the use of
the Fokker-Planck equation in Biophysics to model the transport of molecules in cells,
in population dynamic to study the growth and spread of populations, in statistical
mechanics to model the time evolution of a probability density function in stochastic
processes or in finance and economics where the Fokker-Planck equation is related to
the price of financial options over time.

DAMHN could also be improved in several ways. First, the algorithm should use
more of the available masks in the dataset. Masks that identify the patient’s skin, the
submandibular glands, the oral cavity, the irradiation target and additional relevant
organs could improve the algorithm’s capability of generating realistic images, but also
provide additional metrics (e.g., weight loss via the skin mask, tumor center of mass
shifts) for further generative performance quantification. Second, the inclusion of ad-
ditional masks would likely require a change in the number and size of layers in the
network and in the required latent space dimensionality for appropriate modelling of a
dataset with increased complexity. More generally, the necessary minimal architecture
for a given dataset and the optimal weights of the different loss terms should be investi-
gated. Moreover, the inclusion of the regularization term that penalizes large gradients
in the DVFs could be detrimental for anatomical regions where such changes do occur
(e.g., tongue position). Third, the input structure could be changed from the currently
used pCT to multiple rCTs into a sequential pCT to rCT1, rCT1 to rCT2 and so on.
This would allow the algorithm to predict possible anatomies that occur over shorter
time-frames, which would be useful in a week-to-week adaptive workflow (for example
in anatomical robust optimization). Moreover, a time variable could be included in
the architecture to encode information in addition to the repeat CT image. Fourth, as
anatomy change predictions has applications in dose change predictions, an analysis of
the effect on dose characteristics (including a robustness analysis) of delivering treat-
ment plans to the generated images is a natural next step for this model. Next to such
a study, work on additional standards (beyond volume changes and COM shifts) for
assessing the feasibility of the generated anatomies should be investigated. Last, the
dataset and test methodology should be opened to the broader scientific community, in
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order to facilitate comparisons with other deep learning based algorithms that aim to
model anatomical changes in head and neck patients.

Despite DAMHN being applied to anatomical changes in head and neck proton ther-
apy patients, the model is applicable to broader adaptive radiotherapy tasks. One
example would be for predicting anatomical changes in patients that undergo photon
based radiotherapy. This task would likely require minimal changes to the architecture
and is an interesting avenue to explore. Another interesting study would be to use a
combination of CT images and cone beam CT (CBCT) images. The frequent avail-
ability of CBCT images, could also be used for training an algorithm that creates CT
images from CBCT ones. Additionally, image conversions such as magnetic resonance
(MR) to CT could be investigated. Moreover, dose images could be included in the
architecture, next to the CT images and structures, to generate possible future doses.
Generic generative variational autoencoder tasks such as image generation, text gen-
eration and audio synthesis are also possible. The autoencoder architecture also has
uses in dimensionality reduction, which can be used for visualization and clustering and
anomaly detection, which can be done via detection in the latent space of outliers.

The presented models are solutions for the automation of patient-specific QA and
anatomical change modelling in head and neck patients. Therefore, with sufficient
improvements and testing in the clinical environment they could prove to be useful
steps towards the clinical realization of automated QA in online adaptation in proton
therapy. Through the automation of the QA processes, these algorithms will improve
clinic efficiency, make proton therapy available to a wider group of patients and reduce
toxicities associated with radiation therapy.
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Appendix A

Proof of separability

Unlike in the homogeneous geometry considered by (Gebäck and Asadzadeh, 2012), in
our more general, in-depth heterogeneous case it is not immediately straightforward
that introducing the split from Equation 2.5 into Equation 2.4 yields the Fermi-Eyges
Equation 2.7 and the 1D Fokker-Planck Equation 2.8. The difficulty is that the trans-
port cross section Σtr(z, Ea(z)) depends on the depth-dependent mean energy Ea(z).
In the work of Gebäck and Asadzadeh (Gebäck and Asadzadeh, 2012), when also ac-
counting for energy straggling this relation is defined implicitly via a line integral of the
stopping power as Ea(z) = E0 −

∫ z
0 S(Ea(z

′))dz′. We define the average energy via

Ea(z) =

Emax∫
Emin

dE EφFP

/ Emax∫
Emin

dE φFP ,

which means that Ea(z) depends on the Fokker-Planck flux φFP (z, E). Thus, the latter
is present in the Υ term, namely

1

φFE(r, Ω̂)
Υ
(
φFE(r, Ω̂), φFP (z, E)

)
︸ ︷︷ ︸

λ

+
1

φFP (z, E)
1DFP (φFP (z, E))︸ ︷︷ ︸

−λ

= 0. (A.1)

However, since the average energy Ea(z) is defined as only depending on the energy
integrated Fokker-Planck flux, the only independent variable Ea(z) depends on is z.
Consequently, even though φFP (z, E) is present in the definition of Ea(z), Υ does
not have E dependence. The general solution of Equation A.1 is therefore to equate
each component to a constant ±λ ∈ R, as shown in Equation A.1. Thus, the 1DFP
component is written out as

∂φFP

∂z
− ∂S(z, E)φFP

∂E
− 1

2

∂2T (z, E)φFP

∂E2
+ (Σa(z, E) + λ)φFP = 0, (A.2)

while the Υ
(
φFE(r, Ω̂), φFP (z, E)

)
part reads

∂φFE

∂z
+Ωx

∂φFE

∂x
+Ωy

∂φFE

∂y
− Σtr(z, Ea(z))

(
∂2φFE

∂Ω2
x

+
∂2φFE

∂Ω2
y

)
− λφFE = 0.

(A.3)

The solution of Equation A.3 is found by Gebäck and Asadzadeh (Gebäck and Asadzadeh,
2012) to be the usual FE solution φFE(r, Ω̂) given in Equation 2.24 with a multiplicative
factor, namely

φFE(r, Ω̂, λ ̸= 0) = φFE(r, Ω̂)eλz. (A.4)



96 Appendix A. Proof of separability

This solution also clearly follows from the structure of Equation A.3, containing the
∂φFP
∂z partial derivative and −λφFE terms, in addition to only other linear partial non-

z derivatives. Due to the same structure, the solution of Equation A.2 can similarly be
written as

φFP (z, E, λ ̸= 0) = φFP (z, E)e−λz, (A.5)

where φFP (z, E) is the solution to usual FP Equation 2.9 without the additional λ
term.

When multiplying φFE(r, Ω̂, λ ̸= 0) and φFP (z, E, λ ̸= 0) it becomes clear that the
value of λ does not affect the solution to Equation 2.4 and thus simply setting λ = 0
is a valid choice, yielding the usual FE Equation 2.7 and FP Equation 2.8, even in
the in-depth heterogeneous setting with exact average energy calculation. Since the
boundary conditions imply the existence of a unique solution, it is also guaranteed that
the splitting proposed by Gebäck and Asadzadeh (Gebäck and Asadzadeh, 2012) in
Equation 2.5 is exact in our more general, in-depth heterogeneous case too.
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Appendix B

Solving the Fermi-Eyges equation

B.1 Preliminaries

The Fermi-Eyges equation is

Υ(ϕFE) =
∂φFE

∂z
+Ωx

∂φFE

∂x
+Ωy

∂φFE

∂y
− Σtr(z)

(
∂2φFE

∂Ω2
x

+
∂2φFE

∂Ω2
y

)
= 0. (B.1)

The x and y directions are separated by writing φFE as

φFE(r, Ω̂) = H(z, x,Ωx)H(z, y,Ωy),

which results in two separate PDE’s for each direction, namely

∂H(z, ξ, ω)

∂z
+ ω

∂H(z, ξ, ω)

∂ξ
− Σtr(z)

∂2H(z, ξ, ω)

∂ω2
= 0, (B.2)

where ξ stands for either x or y and ω for either Ωx or Ωy. The associated boundary
condition is a Gaussian at z = 0,

H(0, ξ, ω) = C exp
(
−(a1ξ

2 + a2ξω + a3ω
2)
)
. (B.3)

B.1.1 Fourier transform definitions

The transformed function H is given by

H̃(z, α, β) =
1

2π

∞∫∫
−∞

dξdωH(z, ξ, ω)e−i(αξ+βω), (B.4)

and the original by

H(z, ξ, ω) =
1

2π

∞∫∫
−∞

dαdβ H̃(z, α, β)ei(ξα+ωβ). (B.5)

B.2 The transformed PDE

The PDE from Equation B.2 is multiplied by 1
2π e

−i(αξ+βω) and thereafter integrated
over the whole domain. The first term results in

1

2π

∫∫
dξdω

∂H

∂z
e−i(αξ+βω) =

∂

∂z

1

2π

∫∫
dξdωHe−i(αξ+βω) =

∂H̃

∂z
.
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The second term results in

1

2π

∫∫
dξdω ω

∂H

∂ξ
e−i(αξ+βω) =

1

2π

∫
dω

[
Hωe−i(αξ+βω)

∣∣∣∣ξ=∞

ξ=−∞

−
∫

dξ Hω(−iα)e−i(αξ+βω)

]
= −α

∂H̃

∂β
.

The last term results in

1

2π

∫∫
dξdωΣtr(z)

∂2H

∂ω2
e−i(αξ+βω) = −Σtr(z)β

2H̃.

Thus the Fourier-transformed equation is

∂H̃

∂z
− α

∂H̃

∂β
+Σtr(z)β

2H̃ = 0,

which is the same as the one Eyges originally obtained. At this point Eyges introduces
a change of variables

z′(z) = z

ϵ(z, α, β) = z +
β

α

Using this H̃(z, α, β) is transformed into H̃(z′, ϵ). Via the chain rule,

∂H̃

∂z
=

∂H̃

∂z′
dz′

dz
+

∂H̃

∂ϵ

dϵ

dz
=

∂H̃

∂z′
+

∂H̃

∂ϵ
,

α
∂H̃

∂β
= α

[
∂H̃

∂z′
dz′

dβ
+

∂H̃

∂ϵ

∂ϵ

∂β

]
=

∂H̃

∂ϵ
,

the equation becomes
∂H̃

∂z′
= −α2(ϵ− z′)2Σtr(z

′)H̃.

B.3 The solution

The solution to the Fourier transformed PDE is

H̃(z′, ϵ) = G̃(ϵ) exp

[
−α2

∫ z′

κ
(ϵ− η)2Σtr(η)dη

]
. (B.6)

where G(ϵ) is the integration constant. To determine this constant, the initial condition
is also Fourier transformed. To do that, the following relationship will be useful

∞∫
−∞

dx e−(c1x2+c2x) =

√
π

c1
e

c22
4c1 . (B.7)
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The Fourier transformed initial condition is written as

H̃(0, α, β) =
C

2π

∫∫
dξdω e−(a1ξ2+a2ξω+a3ω2)e−i(αξ+βω)

=
C

2π

∫
dω e−(a3ω2+iβω)

∫
dξ e−(a1ξ2+ξ(a2ω+iα)).

The ξ integral is computed by making use of Equation B.7 to√
π

a1
e

(a2ω+iα)2

4a1 =

√
π

a1
exp

(
a22ω

2 − α2 + 2a2ωiα

4a1

)
=

√
π

a1
exp

(
− α2

4a1

)
exp

(
a22ω

2

4a1
+

a2ωiα

2a1

)
,

which when introduced into H̃(0, α, β) gives

H̃(0, α, β) =
C

2π

√
π

a1
e
− α2

4a1

∫
dω e

−
(
ω2 4a1a3−a22

4a1
+ωi

2a1β−a2α
2a1

)
.

The ω integral is also evaluated using Equation B.7 to√
4a1π

4a1a3 − a22
exp

[
−
(
2a1β − a2α

2a1

)2 a1
4a1a3 − a22

]
.

Introducing this back into H̃(0, α, β) results in

H̃(0, α, β) =
C

2π

√
4π2

4a1a3 − a22
exp−

[
4a21β

2 + a22α
2 − 4a1a2αβ

4a1(4a1a3 − a22)
+

α2

4a1

]
=

C√
4a1a3 − a22

exp−
(
a1β

2 − a2αβ + a3α
2

4a1a3 − a22

)
,

which can also be expressed into (z′, ϵ) as

H̃(0, α, β) = H̃

(
0,

β

α

)
=

C√
4a1a3 − a22

exp

[
−α2

4a1a3 − a22

(
a1

β2

α2
− a2

β

α
+ a3

)]
.

Making use of this into the solution allows finding G̃
(
β
α

)

G̃

(
β

α

)
= H̃

(
0,

β

α

)
exp

α2

0∫
κ

(
β

α
− η

)2

Σtr(η)dη

,
which can also be written as

G̃

(
β

α

)
= H̃

(
0,

β

α

)
exp

−α2

κ∫
0

(
β

α
− η

)2

Σtr(η)dη

.
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Thus, G̃(ϵ) is equal to

G̃(ϵ) = G̃

(
z +

β

α

)
= H̃

(
0, z +

β

α

)
exp

−α2

κ∫
0

(
β

α
+ z − η

)2

Σtr(η)dη

.
Introducing this into the solution from Equation B.6 gives

H̃(z, α, β) =
C√

4a1a3 − a22
exp−a1(β + αz)2 − a2α(β + αz) + a3α

2

4a1a3 − a22

exp

−α2

z∫
0

(
β

α
+ z − η

)2

Σtr(η)dη

.

This can be rewritten as

H̃(z, α, β) =
C√

4a1a3 − a22
exp−a1β

2 + αβ(2a1z − a2) + α2(a1z
2 − a2z + a3)

4a1a3 − a22

exp

−β2

z∫
0

Σtr(η)dη − α2

z∫
0

(z − η)2Σtr(η)dη − 2αβ

z∫
0

(z − η)Σtr(η)dη

.
Let

D = 4a1a3 − a22,

A0(z) =
a1
D

+

z∫
0

Σtr(η)dη,

2A1(z) =
2a1z − a2

D
+

z∫
0

2(z − η)Σtr(η)dη,

A2(z) =
a1z

2 − a2z + a3
D

+

z∫
0

(z − η)2Σtr(η)dη.

Note that this is different from the coefficients given by (Gebäck and Asadzadeh, 2012),
despite the same equation with the same boundary condition being solved. This solution
has factors of 2 missing in the A0 and A2 coefficients, additional factors of 2 appearing
in the A1 coefficient, the roles a1 and a3 are swapped and a2 appears with a - sign.
Using the coefficients just defined, the solution becomes

H̃(z, α, β) =
C√
D

exp
(
−(A0β

2 + 2A1αβ +A2α
2)
)
. (B.8)

Transforming this back into the (ξ, ω) domain results in

H(z, ξ, ω) =
1

2π

∞∫∫
−∞

dαdβ
C√
D
e−(A0β2+2A1αβ+A2α2)ei(αξ+βω)

=
1

2π

C√
D

∫
dα e−(A2α2−iαξ)

∫
dβ e−(A0β2+β(2A1α−iω)). (B.9)
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The β integral is evaluated using Equation B.7 to√
π

A0
exp

[
(4A2

1α
2 − ω2 − 4A1αiω)

4A0

]
=

√
π

A0
exp− ω2

4A0
exp

A2
1α

2 −A1αiω

A0
.

Using this results in

1

2π

C√
D

√
π

A0
e
− ω2

4A0

∫
dα e

−
[
α2

(
A2−

A2
1

A0

)
+αi

(
A1ω
A0

−ξ
)]
.

The α integral is evaluated using Equation B.7 to√
πA0

A0A2 −A2
1

exp
−A0

4(A0A2 −A2
1)

(
A2

1ω
2

A2
0

+ ξ2 − 2ξ
A1ω

A0

)
.

Introducing this back into the final solution results in

H(z, ξ, ω) =
C

2
√
D

1√
A0A2 −A2

1

exp−
(
A0ξ

2 − 2A1ξω +A2ω
2
)

4(A0A2 −A2
1)

.

Introducing (in line with the work of (Gottschalk, 2012; Brahme, 1975))

B(z) = A0A2 −A2
1,

the solution is written as

H(z, ξ, ω) =
C√
D

1√
4B(z)

exp

(
−A0ξ

2 − 2A1ξω +A2ω
2

4B(z)

)
. (B.10)

As a check, this solution should reduce to the initial condition when z = 0. In that
case, the FE coefficients are equal to

A0(0) =
a1
D

, 2A1(0) =
−a2
D

, A2(0) =
a3
D

, 4B(0) =
1

D
,

which gives for the coefficients of the general solution

A0(0)

4B(0)
= a1,

−2A1(0)

4B(0)
= a2,

A2(0)

4B(0)
= a3.

Thus, the general solution from Equation B.10 does indeed reduce to the imposed
initial condition from Equation B.3. This is contrast to the solution obtained using the
coefficients given by (Gebäck and Asadzadeh, 2012), which when evaluated at z = 0
does not in fact reduce to the boundary condition.

B.4 Alternative with factor of 1/2

If Σtr from the FE Equation B.1 is in fact Σtr
2 (which is the correct formulation according

to the work of (Pomraning and Prinja, 1999; Pomraning, 1996)) the equations change
from

H̃(z, α, β) =
C√
D

exp−a1β
2 + αβ(2a1z − a2) + α2(a1z

2 − a2z + a3)

D
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exp

−β2

z∫
0

Σtr(η)dη − α2

z∫
0

(z − η)2Σtr(η)dη − 2αβ

z∫
0

(z − η)Σtr(η)dη

,
to

H̃(z, α, β) =
C√
D

exp− 1

2D

[
2a1β

2 + αβ(4a1z − 2a2) + α2(2a1z
2 − 2a2z + 2a3)

]
exp−1

2

β2

z∫
0

Σtr(η)dη + α2

z∫
0

(z − η)2Σtr(η)dη + 2αβ

z∫
0

(z − η)Σtr(η)dη

 .

Now let,

A0(z) =
2a1
D

+

z∫
0

Σtr(η)dη,

2A1(z) =
4a1z − 2a2

D
+ 2

z∫
0

(z − η)Σtr(η)dη,

A2(z) =
2a1z

2 − 2a2z + 2a3
D

+

z∫
0

(z − η)2Σtr(η)dη.

In comparison to the work of (Gebäck and Asadzadeh, 2012), the factors of 2 that were
missing in the previous section, now appear in the coefficients. The roles of a1 and a3
are still swapped and the sign of a2 is still reversed. From this, it can be concluded that
a typographical mistake was made, and that in the correct equation the Σtr term has
a factor of 1/2 in front of it. When implemented, it is these coefficients that provide
good agreement with MC simulations done in TOPAS. Then, the solution becomes

H̃(z, α, β) =
C√
D

exp−1

2

[
A0β

2 + 2A1αβ +A2α
2
]
.

Fourier transforming this back gives,

H(z, ξ, ω) =
C√
D

1√
A0A2 −A2

1

exp−
(
A0ξ

2 − 2A1ξω +A2ω
2
)

2(A0A2 −A2
1)

=
C√
D

1√
B

exp−
(
A0ξ

2 − 2A1ξω +A2ω
2
)

2B
.

Integrating over ω gives

C√
D

√
2π

A2
exp− ξ2

2A2
.

Which gives the angular integral as

2πC2

D

1

A2
exp− r2

2A2
.

In the case of a normalized initial condition

2πC2

D
=

1

2π
.
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And the angular integral is

ΨFE =
1

2πA2
exp− r2

2A2
.

B.5 Normalized initial condition

If the boundary condition is a normalized two-dimensional Gaussian with zero means
in ξ and ω, namely

H(0, ξ, ω) =
1

2πσξσω
√
1− ρ2ξ

exp
−1

2(1− ρ2ξ)

(
ξ2

σ2
ξ

− 2ρξ
ξ

σξ

ω

σω
+

ω2

σ2
ω

)
.

the coefficients C, a1, a2, and a3 can be identified as

C =
1

2πσξσω
√

1− ρ2ξ

,

a1 =
1

2(1− ρ2ξ)σ
2
ξ

, a2 =
−ρξ

(1− ρ2ξ)σξσω
, a3 =

1

2(1− ρ2ξ)σ
2
ω

D =
1

(1− ρ2ξ)σ
2
ξσ

2
ω

.

Thus, the solution can also be written as

H(z, ξ, ω) =
1

2π

1√
4B(z)

exp

(
−A0ξ

2 − 2A1ξω +A2ω
2

4B(z)

)
.

B.6 Symmetric solution

If the same boundary condition is imposed for both x and y directions, the general FE
flux is given by

φFE(r, Ω̂) = H(z, x,Ωx)H(z, y,Ωy)

=
C2

4B(z)D
exp

(
−
A0(x

2 + y2)− 2A1(xΩx + yΩy) +A2(Ω
2
x +Ω2

y)

4B(z)

)
.

B.7 Angular integral

To compute the dose in a certain region the angular integral of the FE flux must be
computed. This is defined as ΨFE and is found to be

ΨFE(r) =

∫∫
dΩ̂φFE

=

∫
dΩxH(z, x,Ωx)

∫
dΩyH(z, y,Ωy).

In ξ, ω notation, one of the integrals is equated to∫
dωH(z, ξ, ω) =

C√
D

1√
4B(z)

exp
−A0ξ

2

4B

∫
dω exp−

(
A2

4B
ω2 + ω

−2A1ξ

4B

)
.
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Making use of Equation B.7 the ω integral is found to be√
4πB

A2
exp

A2
1ξ

2

4A2B
.

Introducing this back∫
dωH(z, ξ, ω) =

C√
D

1√
4B(z)

√
4πB

A2
exp− ξ2

4B

(
A0 −

A2
1

A2

)
=

C√
D

√
π

A2
exp− ξ2

4A2
.

Thus,

ΨFE(r) =
πC2

DA2
exp−(x2 + y2)

4A2
,

which becomes in the case of a normalized initial condition

ΨFE(r) =
1

4πA2
exp−(x2 + y2)

4A2
.

B.8 Iterative FE coefficients computation

In order to avoid expensive re-computations of the depth integrals, the coefficients at
a position zi can be written in terms of the coefficients at positions zi−1. The first
coefficient is written as

A0(zi) =
a1
D

+

zi∫
0

Σtr(η)dη =
a1
D

+

zi−1∫
0

Σtr(η)dη +

zi∫
zi−1

Σtr(η)dη

= A0(zi−1) +
Σtr(zi) + Σtr(zi−1)

2
∆z,

where the last integral was evaluated using the trapezoidal rule and ∆z = zi − zi−1.
The second coefficient is written as

2A1(zi) =
2a1zi − a2

D
+

zi∫
0

2(zi − η)Σtr(η)dη

=
2a1
D

(zi − zi−1 + zi−1)−
a2
D

+

zi−1∫
0

2(zi − η)Σtr(η)dη +

zi∫
zi−1

2(zi − η)Σtr(η)dη

=
2a1
D

∆z +
2a1zi−1 − a2

D
+

zi−1∫
0

2(zi − η)Σtr(η)dη +∆z2Σtr(zi−1),

where the last integral was evaluated with the trapezoidal rule. The remaining integral
can be written as

zi−1∫
0

2(zi − zi−1 + zi−1 − η)Σtr(η)dη.
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Introducing this back gives

2A1(zi) =
2a1
D

∆z +
2a1zi−1 − a2

D
+

zi−1∫
0

2∆zΣtr(η)dη +

zi−1∫
0

2(zi−1 − η)Σtr(η)dη +∆z2Σtr(zi−1)

= 2A1(zi−1) + 2∆z

a1
D

+

zi−1∫
0

Σtr(η)dη

+∆z2Σtr(zi−1)

= 2A1(zi−1) + 2∆zA0(zi−1) + ∆z2Σtr(zi−1).

The third FE coefficient at a point zi is equal to

A2(zi) =
a1z

2
i − a2zi + a3

D
+

zi∫
0

(zi − η)2Σtr(η)dη.

The a1, a2, a3 part in front of the integral is written as

a1
D

∆z2 +
a1
D

z2i−1 +
a1
D

2∆zzi−1 −
a2
D

∆z − a2
D

zi−1 +
a3
D

.

The integral is split as before into

zi−1∫
0

(zi − η)2Σtr(η)dη +

zi∫
zi−1

(zi − η)2Σtr(η)dη.

The last integral is again evaluated using the trapezoidal rule to

zi∫
zi−1

(zi − η)2Σtr(η)dη =
∆z3

2
Σtr(zi−1),

while the first integral is written as

zi−1∫
0

(zi − η)2Σtr(η)dη =

zi−1∫
0

(
∆z2 + (zi−1 − η)2 + 2∆z(zi−1 − η)

)
Σtr(η)dη.

Introducing these results into the original A2(zi) equation gives

A2(zi) =
a1
D

z2i−1 −
a2
D

zi−1 +
a3
D

+

zi−1∫
0

(zi−1 − η)2Σtr(η)dη

+∆z2

a1
D

+

zi−1∫
0

Σtr(η)dη


+∆z

2a1
D

zi−1 −
a2
D

+

zi−1∫
0

2(zi−1 − η)Σtr(η)dη


+

∆z3

2
Σtr(zi−1)

= A2(zi−1) + ∆z2A0(zi−1) + ∆z2A1(zi−1) +
∆z3

2
Σtr(zi−1).
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Thus, the coefficients can be efficiently computed via

A0(zi) = A0(zi−1) +
Σtr(zi) + Σtr(zi−1)

2
∆z,

2A1(zi) = 2A1(zi−1) + 2∆zA0(zi−1) + ∆z2Σtr(zi−1),

A2(zi) = A2(zi−1) + ∆z2A0(zi−1) + ∆z2A1(zi−1) +
∆z3

2
Σtr(zi−1).

Alternatively, in the case where an asymmetrical beam is implemented, only the z
integrals should be expressed in terms of the previously computed ones. Let,

I0(zi) =

zi∫
0

Σtr(η)dη,

I1(zi) =

zi∫
0

2(zi − η)Σtr(η)dη,

I2(zi) =

zi∫
0

(zi − η)2Σtr(η)dη.

Then,

I0(zi) = I0(zi−1) +

zi∫
zi−1

Σtr(η)dη = I0(zi−1) +
Σtr(zi) + Σtr(zi−1)

2
∆z,

I1(zi) =

zi−1∫
0

2(zi − η)Σtr(η)dη +

zi∫
zi−1

2(zi − η)Σtr(η)dη

= 2∆z

zi−1∫
0

Σtr(η)dη +

zi−1∫
0

2(zi−1 − η)Σtr(η)dη +∆z2Σtr(zi−1)

= 2∆zI0(zi−1) + I1(zi−1) + ∆z2Σtr(zi−1),

I2(zi) =

zi−1∫
0

(zi − η)2Σtr(η)dη +

zi∫
zi−1

(zi − η)2Σtr(η)dη

= ∆z2
zi−1∫
0

Σtr(η)dη +

zi−1∫
0

(zi−1 − η)2Σtr(η)dη +∆z

zi−1∫
0

2(zi−1 − η)Σtr(η)dη

+

zi∫
zi−1

(zi − η)2Σtr(η)dη

= ∆z2I0(zi−1) + ∆zI1(zi−1) + I2(zi−1) +
∆z3

2
Σtr(zi−1).
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Appendix C

Sliding slab experiment results

This appendix presents the results of the sliding slab experiment, discussed in Chapter
3.

Table C.1: Overview of the sliding slab experiment results. The table
presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes,

the gamma index settings and the gamma index pass rates.

Energy
(MeV)

Slab value
(HU)

Slab
shift
(mm)

Split
scheme

Gamma
settings

(mm, %, %)

Gamma
pass rate

(%)
70 -1000 -4 1, 6, 6, 12 1, 1, 0 99.99
70 -1000 -4 1, 6, 6, 12 1, 1, 10 98.11
70 -1000 -4 1, 6, 6, 12, 12 1, 1, 0 99.99
70 -1000 -4 1, 6, 6, 12, 12 1, 1, 10 96.86
70 -1000 -4 1, 6, 6, 12, 12, 24 1, 1, 0 99.99
70 -1000 -4 1, 6, 6, 12, 12, 24 1, 1, 10 97.19
70 -1000 -2 1, 6, 6, 12 1, 1, 0 99.99
70 -1000 -2 1, 6, 6, 12 1, 1, 10 93.80
70 -1000 -2 1, 6, 6, 12, 12 1, 1, 0 99.99
70 -1000 -2 1, 6, 6, 12, 12 1, 1, 10 93.97
70 -1000 -2 1, 6, 6, 12, 12, 24 1, 1, 0 99.99
70 -1000 -2 1, 6, 6, 12, 12, 24 1, 1, 10 95.10
70 -1000 0 1, 6, 6, 12 1, 1, 0 99.99
70 -1000 0 1, 6, 6, 12 1, 1, 10 96.42
70 -1000 0 1, 6, 6, 12, 12 1, 1, 0 99.99
70 -1000 0 1, 6, 6, 12, 12 1, 1, 10 96.48
70 -1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.99
70 -1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 96.33
70 -1000 +2 1, 6, 6, 12 1, 1, 0 99.99
70 -1000 +2 1, 6, 6, 12 1, 1, 10 96.94
70 -1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.99
70 -1000 +2 1, 6, 6, 12, 12 1, 1, 10 96.65
70 -1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.99
70 -1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 97.78
70 -1000 +4 1, 6, 6, 12 1, 1, 0 100.00
70 -1000 +4 1, 6, 6, 12 1, 1, 10 99.69
70 -1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.99
70 -1000 +4 1, 6, 6, 12, 12 1, 1, 10 98.18
70 -1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 100.00
70 -1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 99.72
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Table C.2: Overview of the sliding slab experiment results. The table
presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes,

the gamma index settings and the gamma index pass rates.

Energy
(MeV)

Slab value
(HU)

Slab
shift
(mm)

Split
scheme

Gamma
settings

(mm, %, %)

Gamma
pass rate

(%)
70 1000 -4 1, 6, 6, 12 1, 1, 0 100
70 1000 -4 1, 6, 6, 12 1, 1, 10 99.86
70 1000 -4 1, 6, 6, 12, 12 1, 1, 0 100
70 1000 -4 1, 6, 6, 12, 12 1, 1, 10 99.31
70 1000 -4 1, 6, 6, 12, 12, 24 1, 1, 0 100
70 1000 -4 1, 6, 6, 12, 12, 24 1, 1, 10 99.86
70 1000 -2 1, 6, 6, 12 1, 1, 0 99.99
70 1000 -2 1, 6, 6, 12 1, 1, 10 99.30
70 1000 -2 1, 6, 6, 12, 12 1, 1, 0 100
70 1000 -2 1, 6, 6, 12, 12 1, 1, 10 98.67
70 1000 -2 1, 6, 6, 12, 12, 24 1, 1, 0 100
70 1000 -2 1, 6, 6, 12, 12, 24 1, 1, 10 99.37
70 1000 0 1, 6, 6, 12 1, 1, 0 100
70 1000 0 1, 6, 6, 12 1, 1, 10 99.19
70 1000 0 1, 6, 6, 12, 12 1, 1, 0 100
70 1000 0 1, 6, 6, 12, 12 1, 1, 10 99.12
70 1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 100
70 1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 99.16
70 1000 +2 1, 6, 6, 12 1, 1, 0 99.99
70 1000 +2 1, 6, 6, 12 1, 1, 10 96.51
70 1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.99
70 1000 +2 1, 6, 6, 12, 12 1, 1, 10 97.09
70 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 100
70 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 97.28
70 1000 +4 1, 6, 6, 12 1, 1, 0 99.99
70 1000 +4 1, 6, 6, 12 1, 1, 10 98.79
70 1000 +4 1, 6, 6, 12, 12 1, 1, 0 100
70 1000 +4 1, 6, 6, 12, 12 1, 1, 10 97.51
70 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 100
70 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 97.87
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Table C.3: Overview of the sliding slab experiment results. The table
presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes,

the gamma index settings and the gamma index pass rates.

Energy
(MeV)

Slab value
(HU)

Slab
shift
(mm)

Split
scheme

Gamma
settings

(mm, %, %)

Gamma
pass rate

(%)
160 -1000 -4 1, 6, 6, 12 1, 1, 0 99.98
160 -1000 -4 1, 6, 6, 12 1, 1, 10 97.86
160 -1000 -4 1, 6, 6, 12, 12 1, 1, 0 99.95
160 -1000 -4 1, 6, 6, 12, 12 1, 1, 10 97.29
160 -1000 -4 1, 6, 6, 12, 12, 24 1, 1, 0 99.97
160 -1000 -4 1, 6, 6, 12, 12, 24 1, 1, 10 97.33
160 -1000 -2 1, 6, 6, 12 1, 1, 0 99.98
160 -1000 -2 1, 6, 6, 12 1, 1, 10 97.06
160 -1000 -2 1, 6, 6, 12, 12 1, 1, 0 99.97
160 -1000 -2 1, 6, 6, 12, 12 1, 1, 10 96.53
160 -1000 -2 1, 6, 6, 12, 12, 24 1, 1, 0 99.98
160 -1000 -2 1, 6, 6, 12, 12, 24 1, 1, 10 96.97
160 -1000 0 1, 6, 6, 12 1, 1, 0 99.98
160 -1000 0 1, 6, 6, 12 1, 1, 10 97.24
160 -1000 0 1, 6, 6, 12, 12 1, 1, 0 99.97
160 -1000 0 1, 6, 6, 12, 12 1, 1, 10 96.96
160 -1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.97
160 -1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 96.97
160 -1000 +2 1, 6, 6, 12 1, 1, 0 99.98
160 -1000 +2 1, 6, 6, 12 1, 1, 10 97.48
160 -1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.98
160 -1000 +2 1, 6, 6, 12, 12 1, 1, 10 97.45
160 -1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.98
160 -1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 97.36
160 -1000 +4 1, 6, 6, 12 1, 1, 0 99.98
160 -1000 +4 1, 6, 6, 12 1, 1, 10 97.96
160 -1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.98
160 -1000 +4 1, 6, 6, 12, 12 1, 1, 10 97.60
160 -1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 99.98
160 -1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 97.60
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Table C.4: Overview of the sliding slab experiment results. The table
presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes,

the gamma index settings and the gamma index pass rates.

Energy
(MeV)

Slab value
(HU)

Slab
shift
(mm)

Split
scheme

Gamma
settings

(mm, %, %)

Gamma
pass rate

(%)
160 1000 -4 1, 6, 6, 12 1, 1, 0 99.99
160 1000 -4 1, 6, 6, 12 1, 1, 10 98.26
160 1000 -4 1, 6, 6, 12, 12 1, 1, 0 99.98
160 1000 -4 1, 6, 6, 12, 12 1, 1, 10 97.77
160 1000 -4 1, 6, 6, 12, 12, 24 1, 1, 0 99.98
160 1000 -4 1, 6, 6, 12, 12, 24 1, 1, 10 97.75
160 1000 -2 1, 6, 6, 12 1, 1, 0 99.98
160 1000 -2 1, 6, 6, 12 1, 1, 10 97.75
160 1000 -2 1, 6, 6, 12, 12 1, 1, 0 99.98
160 1000 -2 1, 6, 6, 12, 12 1, 1, 10 97.66
160 1000 -2 1, 6, 6, 12, 12, 24 1, 1, 0 99.98
160 1000 -2 1, 6, 6, 12, 12, 24 1, 1, 10 97.59
160 1000 0 1, 6, 6, 12 1, 1, 0 99.99
160 1000 0 1, 6, 6, 12 1, 1, 10 98.17
160 1000 0 1, 6, 6, 12, 12 1, 1, 0 99.98
160 1000 0 1, 6, 6, 12, 12 1, 1, 10 97.91
160 1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.98
160 1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 97.88
160 1000 +2 1, 6, 6, 12 1, 1, 0 99.99
160 1000 +2 1, 6, 6, 12 1, 1, 10 99.20
160 1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.99
160 1000 +2 1, 6, 6, 12, 12 1, 1, 10 98.99
160 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.99
160 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 99
160 1000 +4 1, 6, 6, 12 1, 1, 0 99.99
160 1000 +4 1, 6, 6, 12 1, 1, 10 98.88
160 1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.99
160 1000 +4 1, 6, 6, 12, 12 1, 1, 10 98.75
160 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 99.99
160 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 98.78
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Table C.5: Overview of the sliding slab experiment results. The table
presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes,

the gamma index settings and the gamma index pass rates.

Energy
(MeV)

Slab value
(HU)

Slab
shift
(mm)

Split
scheme

Gamma
settings

(mm, %, %)

Gamma
pass rate

(%)
190 -1000 -4 1, 6, 6, 12 1, 1, 0 99.92
190 -1000 -4 1, 6, 6, 12 1, 1, 10 95.76
190 -1000 -4 1, 6, 6, 12, 12 1, 1, 0 99.86
190 -1000 -4 1, 6, 6, 12, 12 1, 1, 10 95.38
190 -1000 -4 1, 6, 6, 12, 12, 24 1, 1, 0 99.90
190 -1000 -4 1, 6, 6, 12, 12, 24 1, 1, 10 95.52
190 -1000 -2 1, 6, 6, 12 1, 1, 0 99.92
190 -1000 -2 1, 6, 6, 12 1, 1, 10 94.50
190 -1000 -2 1, 6, 6, 12, 12 1, 1, 0 99.91
190 -1000 -2 1, 6, 6, 12, 12 1, 1, 10 93.96
190 -1000 -2 1, 6, 6, 12, 12, 24 1, 1, 0 99.92
190 -1000 -2 1, 6, 6, 12, 12, 24 1, 1, 10 94.36
190 -1000 0 1, 6, 6, 12 1, 1, 0 99.93
190 -1000 0 1, 6, 6, 12 1, 1, 10 95.27
190 -1000 0 1, 6, 6, 12, 12 1, 1, 0 99.93
190 -1000 0 1, 6, 6, 12, 12 1, 1, 10 95.29
190 -1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.93
190 -1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 95.31
190 -1000 +2 1, 6, 6, 12 1, 1, 0 99.93
190 -1000 +2 1, 6, 6, 12 1, 1, 10 95.62
190 -1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.93
190 -1000 +2 1, 6, 6, 12, 12 1, 1, 10 95.65
190 -1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.93
190 -1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 95.64
190 -1000 +4 1, 6, 6, 12 1, 1, 0 99.94
190 -1000 +4 1, 6, 6, 12 1, 1, 10 95.77
190 -1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.94
190 -1000 +4 1, 6, 6, 12, 12 1, 1, 10 95.72
190 -1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 99.94
190 -1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 95.77
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Table C.6: Overview of the sliding slab experiment results. The table
presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes,

the gamma index settings and the gamma index pass rates.

Energy
(MeV)

Slab value
(HU)

Slab
shift
(mm)

Split
scheme

Gamma
settings

(mm, %, %)

Gamma
pass rate

(%)
190 1000 -4 1, 6, 6, 12 1, 1, 0 99.95
190 1000 -4 1, 6, 6, 12 1, 1, 10 95.92
190 1000 -4 1, 6, 6, 12, 12 1, 1, 0 99.94
190 1000 -4 1, 6, 6, 12, 12 1, 1, 10 95.89
190 1000 -4 1, 6, 6, 12, 12, 24 1, 1, 0 99.94
190 1000 -4 1, 6, 6, 12, 12, 24 1, 1, 10 95.90
190 1000 -2 1, 6, 6, 12 1, 1, 0 99.94
190 1000 -2 1, 6, 6, 12 1, 1, 10 95.76
190 1000 -2 1, 6, 6, 12, 12 1, 1, 0 99.94
190 1000 -2 1, 6, 6, 12, 12 1, 1, 10 95.87
190 1000 -2 1, 6, 6, 12, 12, 24 1, 1, 0 99.94
190 1000 -2 1, 6, 6, 12, 12, 24 1, 1, 10 95.81
190 1000 0 1, 6, 6, 12 1, 1, 0 99.95
190 1000 0 1, 6, 6, 12 1, 1, 10 96.15
190 1000 0 1, 6, 6, 12, 12 1, 1, 0 99.95
190 1000 0 1, 6, 6, 12, 12 1, 1, 10 96.12
190 1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.95
190 1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 96.10
190 1000 +2 1, 6, 6, 12 1, 1, 0 99.96
190 1000 +2 1, 6, 6, 12 1, 1, 10 97.30
190 1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.96
190 1000 +2 1, 6, 6, 12, 12 1, 1, 10 96.97
190 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.96
190 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 97.19
190 1000 +4 1, 6, 6, 12 1, 1, 0 99.96
190 1000 +4 1, 6, 6, 12 1, 1, 10 97.19
190 1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.95
190 1000 +4 1, 6, 6, 12, 12 1, 1, 10 97.04
190 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 99.96
190 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 97.18



Appendix C. Sliding slab experiment results 113

Table C.7: Overview of the sliding slab experiment results. The table
presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes,

the gamma index settings and the gamma index pass rates.

Energy
(MeV)

Slab value
(HU)

Slab
shift
(mm)

Split
scheme

Gamma
settings

(mm, %, %)

Gamma
pass rate

(%)
230 -1000 -4 1, 6, 6, 12 1, 1, 0 99.42
230 -1000 -4 1, 6, 6, 12 1, 1, 10 96.88
230 -1000 -4 1, 6, 6, 12, 12 1, 1, 0 99.13
230 -1000 -4 1, 6, 6, 12, 12 1, 1, 10 92.42
230 -1000 -4 1, 6, 6, 12, 12, 24 1, 1, 0 99.09
230 -1000 -4 1, 6, 6, 12, 12, 24 1, 1, 10 91.72
230 -1000 -2 1, 6, 6, 12 1, 1, 0 99.60
230 -1000 -2 1, 6, 6, 12 1, 1, 10 95.56
230 -1000 -2 1, 6, 6, 12, 12 1, 1, 0 99.32
230 -1000 -2 1, 6, 6, 12, 12 1, 1, 10 94.40
230 -1000 -2 1, 6, 6, 12, 12, 24 1, 1, 0 99.09
230 -1000 -2 1, 6, 6, 12, 12, 24 1, 1, 10 90.98
230 -1000 0 1, 6, 6, 12 1, 1, 0 99.65
230 -1000 0 1, 6, 6, 12 1, 1, 10 96.62
230 -1000 0 1, 6, 6, 12, 12 1, 1, 0 99.39
230 -1000 0 1, 6, 6, 12, 12 1, 1, 10 96.35
230 -1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.15
230 -1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 92.85
230 -1000 +2 1, 6, 6, 12 1, 1, 0 99.65
230 -1000 +2 1, 6, 6, 12 1, 1, 10 96.89
230 -1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.40
230 -1000 +2 1, 6, 6, 12, 12 1, 1, 10 96.67
230 -1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.15
230 -1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 92.98
230 -1000 +4 1, 6, 6, 12 1, 1, 0 99.65
230 -1000 +4 1, 6, 6, 12 1, 1, 10 97.18
230 -1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.41
230 -1000 +4 1, 6, 6, 12, 12 1, 1, 10 96.73
230 -1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 99.16
230 -1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 93.05
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Table C.8: Overview of the sliding slab experiment results. The table
presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes,

the gamma index settings and the gamma index pass rates.

Energy
(MeV)

Slab value
(HU)

Slab
shift
(mm)

Split
scheme

Gamma
settings

(mm, %, %)

Gamma
pass rate

(%)
230 1000 -4 1, 6, 6, 12 1, 1, 0 99.65
230 1000 -4 1, 6, 6, 12 1, 1, 10 97.38
230 1000 -4 1, 6, 6, 12, 12 1, 1, 0 99.43
230 1000 -4 1, 6, 6, 12, 12 1, 1, 10 96.74
230 1000 -4 1, 6, 6, 12, 12, 24 1, 1, 0 99.19
230 1000 -4 1, 6, 6, 12, 12, 24 1, 1, 10 92.98
230 1000 -2 1, 6, 6, 12 1, 1, 0 99.64
230 1000 -2 1, 6, 6, 12 1, 1, 10 97.18
230 1000 -2 1, 6, 6, 12, 12 1, 1, 0 99.41
230 1000 -2 1, 6, 6, 12, 12 1, 1, 10 96.65
230 1000 -2 1, 6, 6, 12, 12, 24 1, 1, 0 99.17
230 1000 -2 1, 6, 6, 12, 12, 24 1, 1, 10 92.75
230 1000 0 1, 6, 6, 12 1, 1, 0 99.64
230 1000 0 1, 6, 6, 12 1, 1, 10 97.39
230 1000 0 1, 6, 6, 12, 12 1, 1, 0 99.40
230 1000 0 1, 6, 6, 12, 12 1, 1, 10 96.80
230 1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.16
230 1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 92.79
230 1000 +2 1, 6, 6, 12 1, 1, 0 99.61
230 1000 +2 1, 6, 6, 12 1, 1, 10 97.36
230 1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.34
230 1000 +2 1, 6, 6, 12, 12 1, 1, 10 95.75
230 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.10
230 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 91.95
230 1000 +4 1, 6, 6, 12 1, 1, 0 99.61
230 1000 +4 1, 6, 6, 12 1, 1, 10 97.56
230 1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.32
230 1000 +4 1, 6, 6, 12, 12 1, 1, 10 95.65
230 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 99.08
230 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 91.76
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