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Abstract

Effective LLM-based automated program repair (APR) methods can lead to massive
cost reductions and have improved significantly in recent times. However, the validity
of many APR evaluations as they are conducted at this point is at risk due to data
leakage: Prior research has shown that LLMs can memorize solutions to problems if
the evaluation benchmark overlaps with the training set, leading to overinflated results.

In this study, we examine the potential of using metamorphic transformations to
mitigate the effects of data leakage. For this, we create a variant benchmark for two
popular, well-established benchmarks Defects4] and GitBug-Java, and evaluate the
APR performance of several LLMs on these benchmarks and their transformed coun-
terparts. In addition, we investigate to what extent our results align with data leakage
metrics from other studies.

Our results show that state-of-the-art LLMs for code repair exhibit significant
performance degradation (Up to 4.1% for Claude-3.7-Sonnet) on a metamorphically
transformed Defecsts4) benchmark. Moreover, we find a significant correlation be-
tween our results and the negative log-likelihood as a metric of data leakage. Our
results demonstrate the potential of using metamorphic transformations to mitigate the
overinflation of evaluation results due to data leakage. We recommend that researchers
report results on both original and metamorphically transformed benchmarks in future
evaluations.
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Chapter 1

Introduction

Debugging is a widespread and time-consuming activity when building software systems.
Software engineers report that they spend about 20-60% of their active work time debugging
[1]. Even with the massive amount of time spent debugging, operational failures cost an es-
timated $1.56 trillion in the US in 2020 alone [2]. Saving even a small fraction of time and
costs with automated debugging could result in massive cost reductions overall. For this
reason, many studies proposing Automated Program Repair (APR) methods have been
conducted before [3|]. Several approaches for APR exist, but recently, Large Language
Model (LLM)-based tools have shown remarkable performance on many coding tasks, in-
cluding APR [4]-[8]].

Extensive research effort focused on LLM-based program repair tools has aimed to im-
prove accuracy on well-established benchmarks [5], [[6], [9], [[10], such as Defects4J [11]].
Although it is clear that the accuracy of these tools is improving [5]—[7]], several other
model qualities are not reported, such as fairness [[12]], security [[13]], and in particular, ro-
bustness [14], [15]. Moreover, the validity of evaluations of LLMs on these well-established
benchmarks is also questionable due to the phenomenon of data leakage. Data leakage oc-
curs when an evaluation dataset overlaps with the pre-training dataset of a model and can
cause optimistically biased results [16]], introducing a threat to the validity of the study [[17].
Ramos et al. [18]] show that common benchmarks for APR, Defects4J [11]] and GitBug-java
[19], have most likely occurred in the pre-training datasets for several open-source LLMs.
This means that the results of many APR tools tested on these benchmarks are optimistically
biased and do not meaningfully reflect the true performance of such a system in a real-world
scenario. This can lead to a false sense of progress and compromise the improvement of
APR techniques.

To address data leakage, several new datasets have been collected with data published
after the knowledge cutoff of these models [20]—[22]]. However, LLMs are frequently up-
dated with later knowledge cutoffs, and new LLMs are also introduced at a rapid pace. The
new datasets collected by these papers could be in the next iteration of any popular model
and suffer from the same issues that well-established evaluation benchmarks do. Even if a
benchmark is not directly included in the pre-training set, evaluations may still suffer from
data leakage because LLLMs are trained on multiple corpora. For example, bugs, fixes, and
test cases from the benchmarks may also appear in blog posts and research papers, which
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1. INTRODUCTION

public int sum(int[] arr) { public int sum(int[] arr) {

int total = 0; int result = 0;

for (int i = 0; 1 < arr.length; for (int 1 = 0; 1 < arr.length;

i+4) | i+4) |
total += arr[i] result += arr[i]

} }

return total; return result;
} }

(a) Code snippet (b) Transformed code snippet

Figure 1.1: An example of a metamorphic transformation for a code snippet. The identifier
total is changed to result, which does not change program semantics.

may also be part of the pre-training dataset. This makes addressing data leakage problems
particularly difficult. Moreover, the creation of a new dataset requires intensive manual
effort. Therefore, repeatedly and frequently creating new evaluation benchmarks is not sus-
tainable.

Sallou et al. [17] suggest that applying metamorphic transformations to existing
datasets could effectively mitigate the effects of data leakage. In the context of coding
tasks for LLMs, metamorphic transformations are changes to source code that change the
syntactic appearance of the source code without changing the behavior [[14]]. An example
of a metamorphic transformation is shown in fig. .1, Applying a variety of metamorphic
transformations could lead to an evaluation being less affected by data leakage because it
cannot remember the solution to the transformed code bug. Despite this potential, the ef-
fectiveness of metamorphic testing as a method for uncovering and mitigating data leakage
has remained unexplored until now. We hypothesize that metamorphic testing can reveal
and mitigate the effects of data leakage. To the best of our knowledge, we are the first to
systematically investigate this.

We aim to fill this research gap by comparing the performance of LLMs on original
benchmarks and metamorphically transformed benchmarks. Our method can be summa-
rized as follows:

1. We apply metamorphic testing to alter the syntax of code bugs without altering se-
mantics, i.e., changing a for loop to a while loop or renaming identifiers with mean-
ingful synonyms. All of our transformations were carefully selected to preserve the
naturalness of the code snippets.

2. With these natural transformations, we transform all single-function bugs in the De-
fects4J and GitBug-java datasets.

3. We assess the performance of ChatGPT-4o [23]], ChatGPT-40-mini [24], Claude-3.7-
Sonnet [25]], Llama 3.1 8B [26], Gemma 2 27B [27]], Mistral 7B v0.3 [28]], and Star-
Coder 2 7B [29] under metamorphic testing.




We demonstrate that LLMs can perform significantly worse on the transformed bench-
marks (Up to 4.1% worse on average for Claude-3.7-Sonnet). This suggests that their per-
formance on the original benchmarks is inflated due to data leakage. We further reinforce
our hypothesis by showing a correlation between a drop in performance with metamorphic
testing and another estimate of data leakage: negative log-likelihood [18]]. This metric in-
dicates how ’natural’ a piece of code appears to the model, providing insights into possible
memorization. Our main contributions can be summarized as follows:

* We propose CodeCocoon, an extensively verified and tested tool for applying meta-
morphic transformations to source code snippets.

* We create an experimental pipeline to automatically compare the APR performance
for any LLM under metamorphic testing.

* We perform an extensive empirical study, metamorphically transforming 2 bench-
marks and assessing performance over these benchmarks with 7 models.

* We demonstrate the potential of using metamorphic testing for revealing and mitigat-
ing the effects of data leakage.

Chapter [2] summarizes the most relevant related works and highlights the main gaps in
the research field. We provide a detailed description of our metamorphic transformation
tool CodeCocoon in chapter 3] Chapter @] explains the methods we used for our evaluations
and chapter [5| describes our findings. We investigate the effects of metamorphic testing on
LLM behavior for one bug in a thorough case study in chapter [6l We put our findings in
a broader context and discuss threats to validity in chapter |/, Finally, we explain the main
conclusions in chapter (8]






Chapter 2

Background

2.1 Automated Program Repair

Automated Program Repair is the process of automatically generating patches to software
bugs [30]. There are many techniques for APR, but Huang et al. [3|] define a three-step
framework that APR processes typically fit into:

1. Fault Localization

This step aims to find and narrow down the defects in the code so that the APR tool can
fix the appropriate piece of code. Many different Fault Localization (FL) tools have been
developed [31], and APR tools usually take an off-the-shelf FL technique to locate poten-
tially problematic pieces of code. Accurate FL is crucial for APR, as it helps APR tools
generate better patches. However, FL is usually considered a separate research field from
APR. Many papers introducing new APR tools assume perfect fault localization and focus
only on generating and validating patches [3]].

2. Patch Generation

Given the specific location of the defect, APR tools use several techniques to generate can-
didate patches, such as search-based [32]—[34], constraint-based [|35]—[37]], template-based
[38]-[40]], and learning-based [41[]-[43]] techniques. These are explained in detail in sec-
tion Usually, multiple candidate patches are generated per defect in this step. A
significant number of patches can be generated per bug. For example, SRepair [5]] gener-
ates 500 patches per bug.

3. Patch Validation

Given the candidate patches generated in the previous step, the patch validation step aims
to select the best candidates from a set of patches.

Patches can be generated and validated with different objectives, but the most popular
approach to APR is known as test-suite-based program repair. In test-suite-based program
repair, the test suite is used as a specification of the desired behavior. To validate a patch, it
is tested against the given test suite [S[], [[6], [30].

With test-suite-based program repair, patches can be divided into four categories:

5



2. BACKGROUND

* Uncompilable patches are invalid and cannot be compiled.

* Failing patches can be compiled but result in failing tests, indicating incorrect be-
havior.

* Plausible patches pass the tests.

* Correct patches pass the tests and are manually verified to be semantically identical
to the human fix. This check is done because test suites cannot always exhaustively
test for every possible problem and may pass incorrect patches. Correct patches are
always a subset of the plausible patches. However, it is not always feasible to manu-
ally check the correctness of all plausible patches.

2.1.1 APR techniques

APR techniques can be divided as follows [J3]]:

* Search-based: This approach was the first repair technique to be explored and has
shown many possibilities for program repair. It involves searching a predefined search
space with the help of a metaheuristic. For example, Genetic algorithms are com-
monly used. This involves using genetic operators such as mutation and crossover
to generate and evolve candidate patches. The fitness of candidate patches can be
calculated by counting the number of failing tests. This has proven relatively effec-
tive. However, this technique is limited by the massive search space and very high
computational costs [3], [32]—[34].

* Constraint-based: This approach is much more efficient than search-based APR
because the problem is formulated as a set of formal constraints and can be solved
with a state-of-the-art constraint solver. The downside of this technique is that it
relies heavily on correct constraints, making it less flexible and requiring a lot of
costly manual effort to formulate [3]], [35]—[37]].

* Template-based: To limit the search space, template-based APR methods define a
set of bug-fix templates that can be applied to a buggy piece of code to generate
candidate patches. This approach is very efficient for repairing specific types of bugs,
but is limited by the templates and cannot solve defects that are not summarized by
its templates [3]], [38[]-[40].

» Learning-based: These methods apply deep learning to gain high-level repair knowl-
edge. Learning-based APR tools have shown many promising results and the poten-
tial for deep learning for APR. [3]], [41]-[43] These models are sometimes referred
to as neural program repair(NPR). Within learning-based APR, LLM-based APR has
demonstrated significantly better performance than other learning-based APR tools
(4171



2.2. Large language models

2.2 Large language models

Large Language Models (LLMs) are neural networks designed for token prediction. Tokens
are smaller, discrete parts of a text, such as words, sub-words, characters, or symbols, de-
pending on the technique for breaking text into tokens. LLMs are tasked with predicting the
next token given a sequence of tokens. They produce a distribution over all possible tokens,
with tokens more likely to follow the input sequence having a higher probability of being
chosen as the next token. They are first trained on a massive text dataset in a self-supervised
manner. Then, they can be fine-tuned for specific tasks. For flexibility, many LLMs are
fine-tuned to follow instructions, so that they can be applied to a wide variety of tasks [44]—
[47]. These include coding tasks such as code generation [48]], code summarization [49],
vulnerability detection [50], and APR [4]]. Popular LLMs for coding tasks include ChatGPT
[51]], Claude [25], and DeepSeek [52] [53]].

2.2.1 LLM-based APR

Many studies proposing LLM-based APR tools have been published in recent years. These
methods have shown remarkable performance. The abilities of LLMs are leveraged in sev-
eral distinct ways [4]:

1. Fine-tuning an LLM on a small, task-specific dataset. This is an intuitive way to
make LL.Ms behave desirably. This technique was mainly employed to integrate early,
smaller LLMs such as CodeT5 [54]] and CodeBERT [55]] into APR tools. [4], [56]—
(60]

2. Few-shot Learning involves an LLM being asked to perform a task with a few ex-
amples. This is used for APR mainly in mid-sized LLMs, such as CodeX [61]]. [4],
(62]

3. Zero-shot Learning refers to the LLM being prompted to perform program repair
without explicit examples, instead using its pre-existing knowledge and understand-
ing of the task. This technique is popular when leveraging larger LLMs such as
ChatGPT [51]] in an APR tool. [4]], [63]], [64]]

However, even though these methods have shown great performance, there are some
issues. Firstly, LLMs can suffer from the effects of data leakage, where the LLM has seen
a test benchmark dataset during pre-training, leading to biased output results. We go into
more detail on the issue of data leakage in section [2.3] Secondly, the robustness of many of
these tools remains unknown. As shown in [14], [[15]], [65]]-[68], many deep code models
lack robustness to metamorphic transformations. We explain this further in section [2.4]

2.3 Data leakage

Data leakage occurs when there is an overlap between the benchmark used to evaluate an
LLM and the dataset used for training the model. It has been shown that this can lead

7



2. BACKGROUND

to optimistically biased evaluation results [[16[], [69], and does not reflect a system’s true
performance in a real-world scenario. This can lead to a false sense of progress, meaningless
comparative evaluations and a lack of generalizability. Many researchers have called for
action to mitigate the effects of data leakage during evaluations [[16]—[18]], [69]—[7 1]

Data leakage is especially problematic in APR, for several reasons: First, creating an
APR benchmark requires intensive manual effort, involving identifying, reproducing, and
isolating bugs from various open-source projects [|11]]. Because of this, there are only a few
well-established benchmarks that are widely used within the APR community. Since these
are so frequently mentioned and discussed in public sources, there is a high risk that these
datasets are included in pre-training datasets any number of times. Furthermore, in LLM-
based APR, ChatGPT [51] is the most popular family of models [4]. Both the parameters
and training set for these models are closed-source, making it difficult to determine whether
a benchmark overlaps with the training set.

Finally, the issue of data leakage is often overlooked in APR studies. For example,
[S]], [6] both achieve remarkable APR performance on the Defects4] using ChatGPT as
an underlying LLM. However, they do not mention or acknowledge the concept of data
leakage. Most likely, the results that they report are optimistically biased, and this means
we cannot confidently apply these tools in a real-world scenario. As also mentioned by
Zhang et al. [4] in their literature review on LLMs for code repair, we urgently require
techniques for mitigating data leakage.

Nevertheless, several methods exist for data leakage detection, and there have been
efforts to mitigate data leakage as well.

2.3.1 Data leakage detection

Several studies have demonstrated data leakage in LLMs, for both natural language samples
and code samples.

Al-Kaswan et al. [[72]] show that it is possible to extract a part of LLMs training samples,
because the models could memorize and reproduce the exact samples. Building on previous
research, they show that not only natural language samples but also code samples can be
memorized by LLMs. Furthermore, they show that models with a higher parameter count
are more prone to memorization and reproduction of training samples.

Furthermore, Xu et al. and Li [[73]], [74]] Use perplexity and n-gram accuracy to estimate
levels of data leakage in LLMs. Perplexity is a measure of the uncertainty of a model when
predicting the next token in a sequence. It is based on the negative log-likelihood (NLL) of
the model over a sequence. The NLL is defined as follows:

NLL(x;) = —log pe(xi|x<;)

Where pg is the probability distribution over possible next tokens produced by the model, x;
is the current token, and x < i is the sequence that came before token i. Perplexity is defined
as the exponentiated average NLL:

1X]
PPL(X) = exp(|Xl| ;)NLL(xi))
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This metric gives insight into the model’s confidence when predicting tokens in a sequence.
If the perplexity over a sequence is very low, it appears natural to the model and was most
likely memorized. Furthermore, n-gram accuracy measures how well a model can exactly
reproduce sequences. Xu et al. [[73]] define the n-gram accuracy over a dataset as follows:

S K

N-gram accuracy(X) = Z Z I(Xstartj;startj+nathartj;startfrn))
i=0 j=0

Where the size of the dataset is S, start; is the index of the j-th starting point, I is the exact
match indicator function, Xstartistart;+n is the n-gram of the actual sample, and }A(smr,j; start;+n
is the n-gram predicted by the model. An n-gram is a sequence of n tokens. Contrary to
the perplexity metric, a very high n-gram accuracy indicates that the model can (almost)
exactly reproduce a sequence. This is also a sign of data leakage. Together, perplexity and
n-gram accuracy can be used to compare a model’s output for suspected leaked snippets
and snippets that were not leaked. Using these metrics, Xu et al. and Li [73]], [74] show
evidence of significant memorization.

Finally, Ramos et al. apply a similar method, computing the NLL and 5-gram accu-
racy for popular coding models over popular Java benchmarks, such as Defects4]J [11] and
GitBug-Java [[19]. They compare the metrics over popular Java benchmarks to a manually
created set of Java repositories after the knowledge cutoff of these models. Their results
reveal that several models have a significantly lower NLL on the Defects4] dataset than
on newer Java repositories, indicating the presence of data leakage. The 5-gram accuracy
does not show as strong a pattern. Overall, their results highlight the risk of using older,
well-established benchmarks for evaluation, due to data leakage.

2.3.2 Data leakage mitigation

To mitigate the effects of data leakage, several studies have created new benchmarks to
evaluate APR model performance [[20]—[22]]. This is also the recommendation made in the
survey on LLMs for code repair by Zhang et al.[75]. However, this is not a long-term
solution, because these new benchmarks are published, and LLM pre-training datasets are
often scraped from public sources. Due to the rapid rate at which new LLM versions are
released, these new benchmarks can quickly become obsolete.

Bradbury and More [[76] suggest a technique for addressing data leakage, which in-
volves dynamically instantiating concrete benchmark samples from templates. With this
approach, they create several variants of the HumanEval benchmark [61]], a collection of
coding problem descriptions in natural language. This benchmark is commonly used to
evaluate the coding skills of LLMs. In their study, they show that popular LLMs such as
ChatGPT [51]], Claude [25]], and [26] perform worse on their variants of the HumanEval
dataset compared to the original dataset. They demonstrate the effectiveness of their ap-
proach in creating benchmark variants that are more robust to data leakage. However, their
technique also requires an extensive amount of manual effort to craft benchmark templates.

As also suggested in [[17]], benchmarks could be metamorphically transformed to combat
the effects of data leakage.
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2.4 Metamorphic testing

Metamorphic testing is a technique commonly used to evaluate the robustness of models
for code-related tasks. It involves transforming the syntax or Abstract Syntax Tree (AST)
of input code snippets without changing the semantic behavior of the code snippet. By
observing changes in output between the original and transformed snippets, we can evaluate
whether the model under test is robust to these transformations. [[14]], [[15]]

This also holds for the APR task. If an APR tool can generate a valid patch for a buggy
code snippet, the tool should also be able to generate a valid patch if this code snippet is
transformed in a way that does not alter the semantics of the code snippet. An example of
a metamorphic transformation to a code snippet is shown in The code snippet has a
different syntax, but will still behave the same. An APR tool should still be able to fix a bug
in the transformed snippet if it was able to fix a bug in the original code snippet.

As shown in [[14], [15]], [65]-[68]], many models for code-related tasks are vulnerable
to these kinds of transformations and can change their outputs based on irrelevantly trans-
formed input. Many of these transformations exist, including not only identifier renaming,
but also structural transformations, such as changing a for loop to a while loop, or revers-
ing the blocks of an if statement.

Several works argue that these transformations should result in code snippets that ap-
pear as natural as possible to evaluate the models under a realistic setting [65], [[77], [78]].
Applying unnatural transformations can lead to false alarms, where the model would not
fail in a real-world scenario. In this study, we apply several natural transformations, such
as identifier renaming with synonyms and several structural transformations. Chapter [3]
explains the transformations in detail.

2.5 Related work

Many studies have applied metamorphic testing to deep code models previously. We pro-
vide a condensed overview of the studies targeting APR in particular here.

Ge et al. [79] investigate the robustness of four SOTA-at-the-time APR models with
metamorphic testing. These models (Recoder [80], CoCoNut [81]], SequenceR [42]] and
Tufano [41]) are deep neural networks, but they are not LLMs. They find that even the
most robust model, SequenceR, cannot fix all transformed inputs in 20% of cases where it
was able to fix the original bug. Four different transformations are applied in their study.
They also analyze how perfect fault localization impacts robustness and find that better fault
localization leads to better robustness. If the fault localization is incorrect, the models suffer
even more from the transformations.

Le-cong et al. [78] also perform metamorphic testing for NPR models (SequenceR
[42]], Recoder [80], RewardRepair [82], SelfAPR [83]], and AlphaRepair [[64]]), but focus
more on the naturalness of transformations. They conduct studies with experts to quantify
the naturalness of code snippets and find that 25% of prediction changes are caused by
unnatural code snippets. They argue that we should not waste efforts trying to rectify these
false alarms, as these are unlikely to occur in a real-world scenario. Furthermore, they
make some first steps towards automatic naturalness assessments using early LLMs, such
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as GPTNeo [84], BLOOM [85], and CodeLlama [[86]]. They use the cross-entropy as a
measure of how “surprised” the LLM is by the code snippet to assess its naturalness.

Moreover, Li et al. [87] perform a small study with top-performing LLMs for code
generation and test how well they generalize when prompted to do code repair on Defects4]
and a transformed version of Defects4J. They show that there is a drop in performance,
but they attribute this to a lack of robustness only and do not consider the concept of data
leakage in their explanation.

Finally, Xue et al. [88] extend beyond previous works investigating traditional NPR
models and applying metamorphic testing to LLM-based APR. They apply it to several pop-
ular open-source LLMs such as LLama 3, Mistral, and CodeGemma. Even though these
models have shown better APR performance than previously investigated models, they are
still not comparable to the best-performing LLMs for APR [89]. Furthermore, they sub-
stantially lift the robustness of the LLLMs by training a model to revert the transformations
and then feeding this output into the LLM. However, the generalizability of this approach
remains questionable, as they do not test this approach under unseen transformations.

Due to recent LLM developments, the models under test in these papers have become
outdated. We aim to address this gap by evaluating the current SOTA LLMs for APR
[89]. We also aim to investigate whether prediction changes are due to data leakage. The
possibility of data leakage issues is not discussed in the aforementioned works, while it
could have significantly impacted the observed results.

Even though there are other methods of detecting data leakage, our proposed method
of evaluating data leakage through metamorphic testing comes with unique benefits. First
of all, our method can be applied to individual code snippets to gauge whether a snippet is
leaked. NLL and n-gram accuracy are greatly impacted by the naturalness of a code snippet,
and can only be compared to other code snippets. Furthermore, our method does not require
extra information beyond the model output tokens, such as negative log-likelihood, which
may not be available for closed-source models. Finally, our proposed method is not only
applicable for data leakage detection, but our findings suggest that it can be applied to
mitigate the effects of data leakage.
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Chapter 3

CodeCocoon

We have developed CodeCocoon to conduct metamorphic testing for code models. It can
transform Java code snippets with several different types of transformations, such as struc-
tural and renaming transformations, while making sure that the results remain natural to
a human judge. Although several alternatives exist, CodeCocoon is, to the best of our
knowledge, the only tool that applies natural transformations and is extensively tested and
verified to preserve code behavior. We focus on APR in this paper, but CodeCocoon can
be applied to do metamorphic testing for any code-related task. CodeCocoon is available at
https://github.com/milandekoning/CodeCocoon.

3.1 System Overview

CodeCocoon consists of several components, as shown in fig. 3.1} The user provides the
dataset and specifies the transformations and their order in a configuration to the main driver
class (1). This configuration is passed to the Transformer factory (2) to create a composite
transformer (3) that satisfies this configuration. Each code snippet in the dataset is passed
to the composite transformer, which applies the transformers (4) specified in the configu-
ration. A dedicated transformer is implemented for each transformation. To create natural
alternatives for identifier renaming transformations, we implemented a synonym generator
(5) that produces a natural synonym for an identifier given the code context. We prompt
an LLM (6) to generate alternative identifiers. The system keeps track of the number of
transformations that were applied and how the identifiers were renamed.

3.2 Transformations

We implement several different structural and renaming transformations. We only use nat-
ural transformations, as unnatural transformations evaluate the model under non-realistic
input and can lead to false alarms [[77]], [78]. The transformations we implemented are a
subset of the transformations in [78]], where a human evaluation was done to determine the
naturalness of several transformations. Due to time constraints, we opted to implement a
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Figure 3.1: System overview for CodeCocoon. A dataset and a transformation configura-
tion are supplied to the driver class (1). The transformer factory (2) creates a composite
transformer (3) that satisfies the configuration. Then, each snippet in the dataset is fed
through the transformers (4). In this example, the for-to-while transformer is applied first,
then variables are renamed with a synonym generator (5), which uses an LLM (6), and other
transformers are applied. Finally, the composite transformer returns the transformed snip-
pet. When all snippets are transformed, the full transformed dataset is returned.

subset of the transformations that were judged relatively simple to implement and apply to
prevalent code structures. The chosen transformations are shown and defined below.

3.2.1 Renaming transformations

We replace identifiers in code snippets with contextual synonyms to preserve naturalness.
The synonyms are generated by asking ChatGPT-4o-mini [24] to give a synonym for a
variable given the context (the rest of the code snippet). We have three such transformations:
Function renaming, Parameter renaming, and Local variable renaming. They are described
in detail below.

1. Rename function replaces the name of a function with a context synonym. We perform
a collision check to make sure that the new function name is not already used in the same
method. If the function is recursive, all of the recursive calls are also updated. Moreover,
we choose not to rename some functions. Even though we use synonyms, some names,
such as equals, toString, etc., carry inherent meaning that is not present in a synonym
such as isEqual, because these functions can be implicitly called without using the actual
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public int add(int a,
return a + b;

int b) {

}

public int sum(int a,
return a + Db;

int b) {

}

(a) Original Code snippet

(b) Transformed code snippet

Figure 3.2: An example of the function renaming transformation.

public int add (int a,
return a + b;

int b) {

}

public int add (int xI,
return x1 + x2;

int x2) {

}

(a) Original Code snippet

(b) Transformed code snippet

Figure 3.3: An example of the parameter renaming transformation.

public int sum(int[] arr) {
int total = 0;
for (int i = 0; i1 < arr.length;
1+4+) {
total += arr[i]

}

return total;

public int sum(int[] arr) {
int result = 0;
for (int 1 = 0; 1 < arr.length;
1+4+) |
result += arr[i]

}

return result;

(a) Code snippet

(b) Transformed code snippet

Figure 3.4: An example of the local variable renaming transformation.

name. Therefore, we do not change the name of the function if it is inherited from the base
Object Java class. An example of this transformation is shown in fig.[3.2]

2. Rename parameter replaces the name of a parameter with a context synonym. Similarly
to the function renaming transformation, we make sure that there are no collisions. An
example is shown in fig.[3.3]

3. Rename local variable replaces the name of a local variable with a context synonym.
Similarly to the previously mentioned transformations, we make sure that there are no col-
lisions. An example is shown in fig. [3.4]

3.2.2 Structural transformations

We implemented several structural transformations. These transformations result in a dif-
ferently structured AST, while preserving identical behavior. They are explained in more
detail below.

1. For to while replaces a for loop with a while loop. We prepend the initialization
(int 1 = 0) to the loop. Because this lifts the initialization of the loop variable to a higher
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public int sum(int[] arr) { public int sum(int[] arr) {
int total = 0; int total = 0;
for (int i = 0; i < arr.length; int 1 = 0;
it+) | while (i < arr.length) {
total += arr[i] total += arr[i]
} it+;
return total; }
return total;
} }

(a) Original Code snippet (b) Transformed code snippet

Figure 3.5: An example of the for loop to while loop transformation.

public int test (int a) { public int test (int[] arr) {
if (a == 0) { if (a == 0) {
return a; return a;
} else if (a == 1) { } else {
return 10; if (a == 1) {
} return 10;
return 0; }
}
return 0;
} }
(a) Code snippet (b) Transformed code snippet

Figure 3.6: An example of the nest else-if transformation.

scope, we only apply this transformation if the loop variable is not defined elsewhere in
the same scope. Furthermore, the update (i++) is appended at the end of the loop. Be-
cause a continue statement calls the update instruction in a for loop, but not in a while
loop, we must also add the update instruction before any continue. An example of this
transformation is shown in fig. [3.5]

2. Nest else if replaces an else-if block with an if condition nested inside an else block. An
example is shown in fig. 3.6

3. Reverse if negates the condition of an if-else statement and swaps the then and else

blocks. Example is shown in fig.

3.2.3 Expression transformations

We opted to add expression-level transformations, where expressions are rewritten to equiv-
alent forms. They are described below.

1. Swap equals operands swaps the operands of an == expression. This is only allowed if
the child expressions do not contain any assignments, because they are evaluated from left
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public boolean isPositive (int a)
{
if (a > 0) {
return true;
} else {

return false;

public boolean isPositive (int a)
{

if (a <=
return
} else {

return

0) {
false;

true;

(a) Code snippet

(b) Transformed code snippet

Figure 3.7: An example of the reverse if transformation.

public boolean isEqual (int a, int/public boolean isEqual (int a, int
b) A b) |
return a == b; return b == 3;
} }
(a) Original Code snippet (b) Transformed code snippet
Figure 3.8: An example of the swap equals operands transformation.
public boolean greater (int a, int/public boolean greater (int a, int

b) {
return a > b;

b) {
return b < a;

(a) Original Code snippet

(b) Transformed code snippet

Figure 3.9: An example of the swap equals operands transformation.

to right, and changing the execution order also changes the behavior. An example is shown

in fig.[3.§

2. Swap relation operands swaps the operands of a relational expression and updates the
expression accordingly. These relational expressions include (>, >=, <, <=). This is only
allowed if the child expressions do not contain any assignment operations, because they are
evaluated from left to right, and changing the execution order also changes the behavior. An
example is shown in fig.

3. Expand Unary Increment expands a unary increment or decrement operation into an
addition/subtraction by 1. An example is shown in fig.

All transformations are applied deterministically; If a transformation can be validly
applied, it is applied by the system.
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public int addOne (int a) { public int addOne (int a) {
att; a t=1;
return a; return 3;
} }
(a) Original Code snippet (b) Transformed code snippet

Figure 3.10: An example of the expand unary increment or decrement transformation.

3.3 Implementation

CodeCocoon is implemented in Java entirely. The transformers are implemented with
JavaParser [90]. We use JavaParser to parse the snippet into a model of the AST. Then,
CodeCocoon uses the visitor pattern [90] to apply the transformations. The visitor pat-
tern entails that every transformer is a child of the ModifierVisitor base class, which has
functionality for performing an AST traversal. The transformers override the traversal func-
tion for the AST element to transform and apply the required changes before continuing the
traversal. When the AST traversal is complete, we convert the AST model back to a string
and store it.

To ensure correctness, CodeCocoon was extensively unit-tested, with a branch coverage
of over 80%. Furthermore, 30 transformed snippets were taken and manually validated to
be semantically identical to the original snippets.

We access ChatGPT-40-mini for synonym generation via the JetBrains internal Al sys-
tem. To reduce costs, we store every request and response in a ’persistent cache’. The
system retrieves the response from the cache if an identical request has already been made
before.

3.4 Usage

The system is designed for use within an evaluation pipeline and is not designed for direct
user interaction. It can be used by providing a dataset of code snippets and a transformation
configuration. The dataset of code snippets is expected as a simple JSON file, where each
snippet is stored as a string. An example of this is shown in fig. 3.T1] The configuration
contains the input and output paths, the order in which transformations should be applied,
and the LLM configuration for synonym generation. Along with the transformed snippets,
the system also outputs the transformations applied per snippet and the mapping from old
to new identifier names for further analysis.

3.5 Related systems

Several systems that aim to achieve a similar goal already exist. Applis et al. [14], [[15]]
propose LAMPION to apply metamorphic transformations. However, there are a few draw-
backs to their tool. Firstly, it is not designed to create natural code transformations, which is
a requirement for our study. Secondly, it is based on spoon [91], a library for parsing code
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"Test-1": "public static void test() { ... }",
"Test-2": "public int stop() { ... }",
"Run-7": "public void run() { ... }"

Figure 3.11: Expected dataset format for CodeCocoon . Each code snippet has a key to
allow linking the original and the transformed code snippet after applying the transforma-
tions.

and editing the AST. However, it does not support every language construct that occurs in
our dataset. Because of this, we judged that JavaParser [90] would be more appropriate
to use. Ge et al. [79] and Rabin et al.[92]] propose RobustNPR and ProgramTransformer,
two other tools for applying metamorphic transformations. However, neither is designed for
natural transformations, but neither has been extensively tested and verified. As mentioned
in section [3.2] some transformations require extra checks or functionality to preserve se-
mantic behavior. We implement a new tool because the others do not produce natural code
snippets and lack extensive verification.
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Chapter 4

Methodology

To the best of our knowledge, we are the first to evaluate data leakage through metamorphic
testing. We ask the following research questions:

* RQ1: To what extent does metamorphic testing affect the performance of SOTA LLMs
for code repair?

e RQ2: To what extent do specific metamorphic transformations affect the performance
of SOTA LLMs for code repair?

* RQ3: To what extent can an APR performance decrease under metamorphic testing
be attributed to data leakage?

To answer these research questions, we evaluate APR model performance under metamor-
phic transformations using an experimental pipeline. We address RQ1 by comparing repair
success rates before and after applying the transformations. For RQ2, we analyze the corre-
lation between the transformations applied and the drop in APR performance. We address
RQ3 by testing a correlation between APR performance drops and other estimations of data
leakage by Ramos et al. [18].

4.1 APR setting

In our experiments, we apply APR by prompting the model under test similarly to the
method SRepair proposed by Xiang et al. [5]. We use Chain-of-Thought [93|] techniques
to prompt our APR model to analyze the root cause of the bug, suggest solutions, and im-
plement these solutions. In our prompt, we provide the buggy function, Javadoc, a random
trigger test case, and the stack trace of this trigger test. An example of this is shown in
fig. A.1 We extract the patches from the response and replace the buggy function with the
generated patches in the project before executing the tests.

The key difference between our implementation and the implementation of SRepair [3]]
is that we let the LLM simultaneously reason about the root cause and possible solutions and
implement these solutions to save time and costs. This setting for code repair is sufficient
to demonstrate the robustness and data leakage problems present in LLMs.
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Finally, we apply code repair under the assumption of function-level fault localization,
where the model is only given the function and no more information about where the bug
is located. This is in contrast to other studies [[78]], [79], where code repair is evaluated
under perfect, line-level fault localization. In real-world scenarios, function-level fault lo-
calization requires much less effort than line-level localization, making function-level fault
localization a more practical setting.

4.2 Experimental setup

Dataset

We use the Defects4]J [11] and GitBug-Java [19] datasets. As explained in chapter we use
the Defects4] [11]] dataset, because it is the most well-established bug benchmark and can
be used to demonstrate the effects of data leakage [[18]]. We opted to conduct our experiment
with the GitBug-Java benchmark as well, since it is a more recent, yet commonly used APR
benchmark. In addition, because this benchmark is much more recent, there is a lower risk
of data leakage on this benchmark, which leads to interesting insights when compared with
the older Defects4J benchmark.

Xiang et al. [5] already extracted all relevant information for all single-function bugs
in Defects4] into a convenient format. From this, we extracted the information that was
required for our experiment. We extracted the relevant information from the GitBug-Java
dataset ourselves.

Bug filtering
In our results, we removed the bugs that were too ’easy’ or too ’hard’, i.e., a success rate
of 0% or 100% for both original and transformed versions of a bug, for our three state-
of-the-art models. This results in a subset of *Balanced Complexity Bugs’: Bugs that are
appropriately difficult. The distribution of bugs over the projects in the datasets is shown in
table

In cases where results are only considered across a single model, bugs with a success
rate of 0% or 100% for only that model were filtered out. We perform this filtering to high-
light meaningful results. The point of this study is not to show the absolute performance of
these models, so removing the easiest and most difficult bugs is a valid way to highlight a
meaningful performance difference.

Models

We evaluate three state-of-the-art models for code repair: ChatGPT-40 [23]], ChatGPT-40-
mini [24]] and Claude-3.7-Sonnet [25]. Furthermore, to conduct a correlation analysis with
the results from [[18]], we must conduct a study of the behavior of several open-source mod-
els, as they were only able to include results over those models in their study. We conduct
our experiments on Llama 3.1 8B [26]], StarCoder 2 7B [29], Gemma 2 27B [27]], and Mis-
tral 7B v0.3 [28]]. Because our method uses an instruction prompt, we took the instruction
fine-tuned versions of these models from Hugging Face [94].
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You need to first analyse the buggy code, trigger test and error message.
Then analyse the root cause and finally try to provide a repair suggestion
to fix the bug. Note that the bug can be fixed by modifying only the given
buggy code; do not attempt to modify the class, add new functions, or
conduct further testing.
1. Buggy Function:
/**
* Returns a paint for the specified value.
*
* @param value the value (must be within the range specified by the
* lower and upper bounds for the scale).
*
* @return A paint for the specified value.
*/
public Paint getPaint (double value) {

double v = Math.max(value, this.lowerBound);

v = Math.min (v, this.upperBound);

int g = (int) ((value - this.lowerBound) / (this.upperBound

- this.lowerBound) * 255.0);

return new Color(g, g, 9);
}
2. Trigger Test:

public void testGetPaint () {

3. Error Message:
java.lang.IllegalArgumentException: Color parameter outside of expected range:
Red Green Blue
at org.jfree.chart.renderer.GrayPaintScale
.getPaint (GrayPaintScale.java:128) return new Color(g, g, 9);
at org.jfree.chart.renderer.junit.GrayPaintScaleTests
.testGetPaint (GrayPaintScaleTests. java:107)
c = (Color) gps.getPaint (-0.5);

First, analyze the trigger test and error message, and then analyze the root
cause of the buggy function in the format ’"Root Cause: {content}’. Provide a
detailed patch suggestion for resolving this bug. Your suggestion should be in
the format ’Suggestion 1: {suggestion title}\n{full patched function}’, etc.
The patched function suggestion should be surrounded with ‘‘‘java\n'‘'

Make sure to return the entire function, do not leave out parts.

Figure 4.1: Example of the APR prompt for the Chart-24 bug. We supply the Javadoc and
buggy function (1), A trigger test (2), and the stack trace (3). We emphasize that the model
should find the root cause before suggesting solutions to elicit reasoning behaviour.
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Table 4.1: Distribution of bugs over projects in Defects4] and GitBug-Java. Single-function
bugs are a subset of all bugs, and balanced complexity bugs are a subset of those bugs. The
Balanced Complexity bugs are the bugs that have a success rate that is not 0% or 100% for
at least one model. Note that the GitBug-Java dataset does include 199 bugs spread over 55
projects. However, 44 of these projects did not include any single-function bugs, which are

not shown in this table.

Dataset Project #Bugs #SF bugs #Balanced Complexity Bugs
Chart 25 16 11
Cli 30 28 21
Closure 140 105 79
Codec 13 11 9
Collections 2 1 0
Compress 40 36 31
Csv 13 12 10
Gson 12 9 8
JacksonCore 18 13 9

Defectsd] JacksonDatabind 85 67 55
JacksonXml 5 5 5
Jsoup 58 53 43
JxPath 14 10 4
Lang 56 40 33
Math 102 74 60
Mockito 30 24 13
Time 22 16 10
Overall 665 520 401
Simple-DSL 2 1 1
Ari-proxy 1 1 1
Crawler-commons 1 1 1
Jansi 1 1 1
Java-solutions 1 1 1

GitBug-Java Java-stellar-sdk 3 1 1
Jsoup 29 6 5
Openapi-to-plantuml 1 1 0
Semver4;j 3 1 1
Spring-retry 2 1 0
Traccar 81 37 23
Overall 125 52 35
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We ran these models locally with vLLM [95]]. We omitted the CodeGen 6B [96] model
from our experiments, as there is no instruction-tuned version available on Hugging Face,
and the CodeGen architecture is not supported by vLLM. Furthermore, we omitted the
Llama 70B [26] model because of limited computational resources. We access the OpenAl
models and Claude-3.7-Sonnet through the JetBrains internal Al system.

Technical specs
The experiments were run on a Linux 20.04 server with 512 GB RAM, 4 AMD EPYC 7H12
64-Core Processors, and an Nvidia A40 GPU.

Samples

We prompted the models 10 times for each original bug and 10 times for each transformed
bug to gain a statistically sound performance estimate, as suggested by [97]]. Each sample
is taken with a new chat session. Note that we asked the state-of-the-art models to produce
5 patches per prompt, and asked the open-source models to only produce 1 patch, due to
the context length and output limits of those models. We judge that it is fair to consider
the entire prompt a success if at least one of the patch suggestions passes the tests. This is
because we prompt it to generate unique solutions, even in cases where there may only be
one possible solution. Furthermore, we judged that five is a realistic number of patches to
test in a real-world scenario.

Metrics
We define the model performance on a given bug in terms of Success Rate (SR):

SR — #prompts that produce > 1 correct patch

#prompts

This is the percentage of prompts that result in at least one plausible patch. This means
that we consider a prompt successful if at least one of the suggested patches passes all
of the tests. We consider this to be a measure that is meaningful in real-world situations.
First of all, taking a large number of samples and considering the bug to be solved when
at least one patch is correct, like in [5]], may be sufficient for measuring research progress
but is not feasible in real-world scenarios. We define the success rates on the original and
transformed functions as SR,; and SR;,4n,s. We define the difference in success rate as
SRdiff = SRyrans — SRarig

Furthermore, because our APR models are nondeterministic, we must take multiple
samples per code snippet to obtain a statistically valid performance estimate. To determine
the presence of a statistically significant difference between patches for the original and
transformed functions, we use the Python implementation of Fisher’s exact test [98]], [99].
The effect size is measured in terms of the odds ratio (OR):

o SRorig/SRtrans

OR= ——————
FRorig/FRtmns

where
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‘ Success Failure

Original SRorig  FRorig
Transformed | SRiwans  FRirans

We report results as statistically significant if the p-value is smaller than 0.05, and as
very statistically significant when the p-value is below 0.01.

Finally, only the test results are used to calculate performance metrics due to the ex-
tensive manual effort required for correctness checking. The difference in test results suffi-
ciently demonstrates the effect of metamorphic testing.

Analysis of transformation impact

To analyze how different transformations and combinations of transformations impact the
success rate, we use the two-way ANOVA test [100]]. This test determines whether the
variance in the dependent variables (SRy;r) and be attributed to the independent variables,
which are the frequency of each transformation type (e.g., the number of variable names
being changed).

If the F-statistic (that is, the ratio between explained and unexplained variance) is sta-
tistically significant (p-value<0.05), it indicates that one or more transformation types (or
their combinations) significantly impact the LLM success rate. We limit our analysis to
the interaction between at most three factors. There are multiple reasons for this choice.
First, including too many interacting transformations makes the results difficult to interpret.
Second, the number of possible factor combinations grows exponentially with the number
of transformations, which drastically increases the complexity of the model. This leads
to a combinatorial explosion in both computational cost and multiple testing risk. Finally,
higher-order interaction terms require substantially more data to estimate reliably. As the
number of interacting factors increases, the number of observations needed to cover all pos-
sible combinations (cells in the design matrix) grows rapidly. In our dataset, higher-order
interactions would result in many underpopulated or empty combinations, leading to over-
fitting and unreliable estimates.

Correlation analysis

To perform correlation analysis for RQ3, we calculate the Spearman correlation [[101]] be-
tween the difference in success rate SRy; ¢y for each bug with other bug-specific metrics. For
RQ3, we test the correlation between SRy; ¢ and the NLL as provided by Ramos et al. [18]].
We should use the Spearman correlation because our results are not normally distributed.
We use the Python implementation of the Spearman correlation [[102]

The results provided by Ramos et al. represent the average NLL over the full original
Java file containing the bug. These values give insight into how familiar a model is with a
given piece of code. Their results only cover a subset of the Defects4J dataset, so we use
their replication package to collect results over the complete benchmark.
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Results for
original bugs

Original Bugs
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Generate stack N Generate N Evaluate
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Results for
transformed
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Transformed
bugs

Figure 4.2: Experimental pipeline. The original dataset is transformed (1), and stack traces
are generated (2) for the failing tests. Afterward, we generate patches (3) using the original
bugs and transformed bugs as input for our APR model. Finally, we evaluate the quality of
the patches (4) by running the tests.

4.3 Experimental pipeline

Having defined our experimental setup, this section describes the pipeline for transforming
the dataset, generating patches with LLMs, and evaluating the patches. Our code and re-
sults are available at https://doi.org/10.5281/zenodo.15719286 An overview of the
experimental pipeline is shown in fig. and consists of the following stages:

1. Transform

This stage uses CodeCocoon (explained in chapter [3) to transform all bugs in the dataset.
The Javadoc and trigger test cases are updated with regular expressions to reflect the pa-
rameter name and function name changes. To validate the regular expressions, we manually
checked all occurrences of the function name that did not match the regular expression for
a function call and found that the regular expression behaved as intended.

2. Generate stack traces

Because the stack trace is used as part of the input for the APR model, we must generate it
by running the tests. A transformed function can produce a different stack trace, so we must
generate the stack traces for the original and transformed functions separately. The process
of producing a stack trace for a given bug is as follows:

a) Check out the buggy version of the project.

b) (If transformed) Substitute the transformed function for the original function.

¢) Compile the project.

d) Run the tests.
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4. METHODOLOGY

Exception in thread "main" java.lang.NullPointerException

at com.example.Main.main (Main. java:10)

at sun.reflect.NativeMethodAccessorImpl.invoke( (Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke (
NativeMethodAccessorImpl. java:62)

at sun.reflect.DelegatingMethodAccessorImpl.invoke (
DelegatingMethodAccessorImpl. java:43)

at java.lang.reflect.Method.invoke (Method. java:498)

at com.intellij.rt.execution.application.AppMain.main (AppMain.
java:147)

(a) Original stack trace

Exception in thread "main" java.lang.NullPointerException
at com.example.Main.main (Main. java:10) if (a.equals (b)) return;

(b) Summarized stack trace

Figure 4.3: An example of stack trace summarization. The lines that do not belong to the
project under test are filtered out. After this, the actual line of code is appended to the
relevant stack trace line.

e) Capture the output of the failing tests.

f) Summarize this output.
To keep the prompt within context limits, the stack traces must be summarized, as they can
be very long. An example of such a summarization is shown in fig.

Note that the project will likely not compile when a function is substituted for a function
with a different name. Therefore, we substitute a version of the transformed function with
the original function name to run the tests. We then update the function name in the stack
trace to the new name with a regular expression.

3. Generate patches
We generate the patches by querying our APR model as described in section [f.1] We use
regular expressions to extract the patches from the responses.
4. Evaluate patches
We evaluate the quality of the patches with unit tests. For each of the patches, we do the
following:

a) Check out the buggy version of the project.

b) Substitute the patch for the buggy function.

¢) Compile the project.

d) Test the project.
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4.3. Experimental pipeline

Bug Transformed Bug
Function Transformed function
Change function
Trigger test case > Transform (1) » Transformed test case »  name to oniginal
name (2)
Javadoc Transformed Javadoc
k4
Generate stack
traces (3)
Transformed Bug
Patch Transformed function ¥
Change function
Bug * Generate patch (5] Transformed test case 1« name in stack trace to
transformed name (4)
Patched function Transformed Javadoc

Transformed stack trace

k4

Change patched
function name to
original name (&)

h 4

Evaluate Patch (7)

Figure 4.4: The process of transforming function names back and forth to ensure the
projects compile. After transforming the buggy function, test case and Javadoc in the Trans-
form stage (1), we change the function name in the transformed version back to the original
name (2) before substituting the patch into the project, to make sure that the project can
compile to generate stack traces for the trigger tests (3). However, to keep the prompt to the
LLM consistent, we change the function name in the stack trace back to the transformed
name (4), before prompting the LLM to generate a patch (5). Finally, we change the func-
tion name in the patched function back to the original name again (6), to evaluate whether
the patch passes the tests (7).

e) Check the result (Plausible, Failing, Uncompilable, Timeout)
f) Store the result of this patch.

To make sure that the project compiles, the function name of the patched function is changed
back to the original name if necessary. A full overview of the process of changing function
names back and forth is shown in fig.

Generating stack traces, generating patches, and evaluating patches for all of the bugs
is a time-consuming process. To speed this up, we make heavy use of parallelism. To avoid
conflicts, all operations are performed on separate project clones, and all results are written
synchronously. The Transform and Generate Stack traces steps have to be executed only
once to transform the dataset. The other stages have to be executed for each model under
test separately.
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Chapter 5

Results

5.1 RQ1: To what extent does metamorphic testing affect the
performance of SOTA LLMs for code repair?

Table [5.1] shows the success rate of state-of-the-art APR models on the original and trans-
formed versions of the Defects4) and GitBug-Java datasets. The results on Defects4] reveal
that all three of these models show statistically significant performance degradation on the
transformed Defects4J benchmark, supporting the hypothesis that the original results are in-
flated due to data leakage. ChatGPT-40, ChatGPT-40-mini and Claude-3.7-Sonnet perform
2.5%, 3.1% and 4.1% worse on average.

As shown in fig. [5.1] the median performance difference is -10% for each model, in-
dicating that the transformations decrease performance on more than half of the bugs.
For each model, the distribution is visibly skewed towards lower performance after trans-
forming. The maximum performance decrease is 80%, 70% and 100% for ChatGPT-4o,
ChatGPT-40-mini, and Claude-3.7-Sonnet, while the maximum performance increase is
50%, 70% and 80% for ChatGPT-40, ChatGPT-40-mini, and Claude-3.7-Sonnet respec-

Table 5.1: Success rate (SR) of SOTA models on the Defects4] and GitBug-Java datasets
and their transformed counterparts. Statistically significant bugs are marked in bold. On the
Defects4]J dataset, all three models perform significantly worse after applying metamorphic
transformations. There are also differences in performance on the GitBug-Java dataset, but
they are statistically insignificant.

Dataset #Bugs Model SRorig  SRirans  SRuify

ChatGPT-40 469% 44.4% -2.5%
Defects4] 401 ChatGPT-40-mini  29.8% 26.7% -3.1%
Claude-3.7-Sonnet 67.9% 63.8% -4.1%

ChatGPT-40 24.6% 260% +1.4%
GitBug-Java 35 ChatGPT-40-mini  23.7% 203% -3.4%
Claude-3.7-Sonnet  63.4% 64.0% +0.6%
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5. RESULTS
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Figure 5.1: Difference in success rate (SRy;ry) after transforming each bug of the Defects4]
benchmark. For each model, the median performance is 10% lower after transforming. To
highlight the differences, bugs with a 0% or 100% pass-rate for both original and trans-
formed variants were filtered out for each model. The boxplots for ChatGPT-40, ChatGPT-
40-mini and Claude-3.7-Sonnet include 281, 251 and 241 bugs respectively.

tively. Though these values are influenced by the non-deterministic nature of LLMs, this
highlights that metamorphic transformations can have a dramatic effect on the performance
of an LLM on specific bugs.

In contrast, the results are inconclusive on the GitBug-Java dataset, as also shown in
table[5.1] We do not observe significant differences between the performance on the original
benchmark and its transformed counterpart. This could be attributed to the smaller number
of samples (n=35), which limits the statistical power of the analysis. However, this could
also be because GitBug-Java contains more recent bugs and thus has a much lower risk of
data leakage.

However, we can also observe that the performance differences on the GitBug-Java
benchmark are not skewed towards higher or lower performance overall (as shown in fig.[5.2)),
with the distribution of Claude-3.7-Sonnet even being entirely symmetrical. Though some
variance is shown, no overall trend can be observed.

Bugs
Table shows the number of bugs with a significant performance difference after trans-
forming. There is only one bug that shows a statistically significant performance difference
on more than one model: Both ChatGPT-40 and Claude-3.7-Sonnet perform significantly
worse on Closure-78. Clearly, the models have a lower success rate after transformation
in most cases, as there are 18 bugs with a significantly lower success rate and only 5 bugs
with a significantly higher success rate.

We conduct a case study in chapter [6] investigating why one of these significant bugs
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5.1. RQI1: To what extent does metamorphic testing affect the performance of SOTA

LLMs for code repair?
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Figure 5.2: Difference in success rate (SRy;ry) after transforming each bug of the GitBug-
Java benchmark. To highlight the differences, bugs with a 0% or 100% pass-rate for
both original and transformed variants were filtered out for each model. The boxplots for
ChatGPT-40, ChatGPT-40-mini and Claude-3.7-Sonnet include 18, 15 and 26 bugs respec-
tively.

Table 5.2: Number of bugs with a significant performance difference under metamorphic
testing across SOTA models. In the majority of these cases, the performance is significantly
worse after transforming the bug.

Dataset Model Significantly better ~Significantly worse
ChatGPT-40 0 5
Defects4] ChatGPT-40-mini 1 3
Claude-3.7-Sonnet 3 10
ChatGPT-40 1 0
GitBug-Java ChatGPT-40-mini 0 1
Claude-3.7-Sonnet 0 0

Lang-43 is so much harder to solve for Claude-3.7-Sonnet after transformations. This pro-
vides deeper insights and understanding of the LLLM behavior and provides more explana-
tion of our results.

Interestingly, the model performs significantly betfer on several bugs after transforma-
tions as well. It could be that the transformations enhance the readability of the code in
some cases, but the number of bugs where the performance significantly increased is too
low to draw conclusions.
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5. RESULTS

Answer to RQ1: State-of-the-art LLMs perform significantly worse on the meta-
morphically transformed Defects4) benchmark. They do not suffer as much on the
GitBug-Java Benchmark. Several bugs are particularly vulnerable to metamorphic
transformations.

5.2 RQ2: To what extent do specific metamorphic
transformations affect the performance of SOTA LLMs for
code repair?

Table shows the results of the two-way ANOVA test for testing interactions between
factors. Different models appear to be vulnerable to different subsets of transformations.
We observe that Claude-3.7-Sonnet is affected by a wider variety of combinations of trans-
formations, with 15 different combinations having a significant effect on the performance
of this model, compared to 9 and 5 combinations for ChatGPT-40 and ChatGPT-40-mini
respectively. Moreover, we observe that Claude-3.7-Sonnet is particularly vulnerable to
identifier renaming transformations. Applying two or three kinds of renaming results in a
statistically very significant(p < 0.01) correlation for this model. Finally, 20 out of 29 of the
effective combinations of transformations involve both renaming and structural/expression-
level combinations. This highlights the importance of using various categories of transfor-
mations and their complementary nature.

Answer to RQ2: Different models are vulnerable to different combinations of trans-
formations. Claude-3.7-Sonnet is vulnerable to a wide variety of transformations, in
particular to identifier renaming transformations. The majority of effective combi-
nations of transformations across models involve both structural and renaming trans-
formations.

5.3 RQ3: To what extent can an APR performance decrease
under metamorphic testing be attributed to data leakage?

Figure [5.3] shows the mean cumulative performance drop over the NLL for the four open-
source models. We observe that the mean performance of Gemma 2 27B keeps decreasing
as the NLL increases, in particular for the lower percentiles. This indicates a connection
between the drop in APR performance and the model’s NLL on the file containing the
buggy code. Indeed, if we test for a correlation between the drop in performance and the
NLL for all datapoints which have a sub-median NLL, we find a Spearman correlation
coefficient of 0.307 (p=0.001): For lower NLL, the model is more familiar with the code
and more likely to have memorized the solution, and is therefore also more severely affected
under metamorphic testing. This implies that the performance decrease under metamorphic
testing we observe for this model can, to some extent, be attributed to data leakage.
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5.3. RQ3: To what extent can an APR performance decrease under metamorphic testing
be attributed to data leakage?

Table 5.3: Results of the two-way ANOVA test between SRy and various combinations of
transformations. Only statistically significant results(p<0.05) are shown. Very statistically

significant results (p<0.01) are marked with bold.

Model Transformation 1  Transformation 2 Transformation 3 F-statistic
ForToWhile RenameVariables 0.169
RenameFunction = SwapRelOperands 0.226

° ExpandIncrement ForToWhile NestElself 0.198
E ForToWhile NestElself RenameFunction 0.182
% ForToWhile NestElself RenameParameters 0.225
E ForToWhile RenameParameters Reverself 0.299
o NestElself Rename Variables SwapEqualsOperands 0.196

RenameVariables Reverself SwapEqualsOperands  0.200
Reverself SwapEqualsOperands SwapRelOperands 0.256
‘g NestElself RenameFunction 0.292
‘g ExpandIncrement NestElself RenameParameters 0.299
g'g ExpandIncrement RenameFunction RenameParameters 0.208
E‘: ForToWhile Reverself SwapEqualsOperands 0.254
O NestElself RenameParameters SwapRelOperands 0.225
ForToWhile Reverself 0.300
ExpandIncrement ForToWhile Reverself 0.273
ExpandIncrement ForToWhile SwapEqualsOperands  0.520
ForToWhile NestElself RenameParameters 0.271

= ForToWhile RenameFunction RenameParameters 0.333

= ForToWhile RenameFunction RenameVariables 0.259
m? ForToWhile RenameFunction SwapRelOperands 0.281
; ForToWhile Reverself SwapRelOperands 0.219
_g NestElself RenameParameters Reverself 0.303
§ NestElself Reverself SwapEqualsOperands  0.237
o RenameFunction = RenameParameters RenameVariables 0.452

RenameFunction  RenameParameters SwapRelOperands 0.415
RenameFunction = RenameVariables SwapEqualsOperands  0.470
RenameFunction = RenameVariables SwapRelOperands 0.462
RenameVariables SwapEqualsOperands SwapRelOperands 0.218
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Figure 5.3: The cumulative mean performance drop over NLL percentile. To increase the
interpretability of the plot, we used NLL Percentile to project our results onto a uniform
distribution instead of a logarithmic distribution. Furthermore, because there is a significant
amount of noise in our results due to the randomized nature of our results, we opted to
display the cumulative mean performance difference over all datapoints up to the specified
NLL percentile. As the plot shows, the Gemma 2 27B model shows a gradual decrease in
cumulative mean as the NLL increases, particularly in the lower percentiles. In comparison,
the LLama and Mistral models exhibit a relatively stable mean performance drop as the
NLL increases. Finally, the Starcoder model shows a steep drop in the lowest percentiles,
but quickly stabilizes after. Only bugs that could be solved by each model are shown in
this plot: 228, 177, 144 and 54 bugs for the Gemma, Llama, Mistral, and Starcoder models
respectively.

Many of these bugs that have a low NLL with the Gemma model are from the Lang
and Math projects. As shown in fig.[5.4] these projects have both a low median NLL and a
severe median success drop. In addition, the bugs from the Codec project also exhibit this
behaviour. Both of these features suggest that the Gemma model is very familiar with these
projects and that the APR performance of this model on these projects is not representative
of the performance in a real-world setting.

In addition, fig.[5.4]also shows that the projects from the older Defects4J version (Ver-
sion 1.2) tend to exhibit both a lower NLL and a more severe performance drop, suggesting
that projects added to the Defects4) benchmark earlier tend to suffer more from data leak-
age.

In contrast to the datapoints in the lower percentiles, no such correlation can be observed
for datapoints which have an above-median NLL, indicating that a performance drop under
metamorphic testing is connected to the NLL only above a certain threshold of familiarity,
i.e. if the NLL is very high, the model most likely does not remember the solution anyway
and the effect of metamorphic testing is limited.
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5.3. RQ3: To what extent can an APR performance decrease under metamorphic testing
be attributed to data leakage?
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Figure 5.4: Defects4] projects by median success rate difference, median NLL, and De-
fects4]J version. Only bugs that the Gemma 2 27B model can solve and have a sub-median
NLL are included. The number of bugs left in each project is displayed next to its name
in parentheses. The Lang, Codec, and Math projects exhibit both low median NLL and a
severe median success rate drop. In general, projects from Defects4] 1.2 tend to have a
lower NLL and more severe performance drop than those in Defects4]J 2.0.

There is no significant correlation between the performance drop we observe due to
metamorphic testing and the NLL for the other three models. As shown in fig. the
cumulative mean drop appears relatively stable over the increase in NLL for the Llama
3.1 8B and Mistral 7B v0.3 models. This does not point to any connection between data
leakage and the observed performance drop under metamorphic testing for these models.
For Starcoder 2 7B, we do observe a similar trend to Gemma 2 27B. However, due to the
limited number of bugs the model could solve (54) and the noisy nature of the data, no
significant correlation can be observed.

Answer to RQ3: Our results show a significant correlation between the negative log-
likelihood and the performance decrease under metamorphic testing for the Gemma
2 27B model. This indicates that the performance decrease can, to some extent, be
attributed to data leakage. We find that, in particular, the Lang, Math, and Codec
projects exhibit clear signs of memorization behaviour.
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Chapter 6

Case study: Lang-43 and Evidence of
Memorization

We observe behavior consistent with our hypothesis that metamorphic testing can reveal and
mitigate data leakage effects, for the bug Lang-43 specifically. Claude-3.7-Sonnet can pass
the tests with the original version of the bug 7 out of 10 times, but cannot solve the trans-
formed version of the bug at all. While interesting LLM behavior may be observable on
multiple bugs, we conduct a thorough case study on the LLM behavior for this bug to high-
light the issues and provide deeper insights into the working of LLMs under metamorphic
testing. To better understand how this behavior is demonstrated in practice, we conduct an
in-depth study, investigating the nature of this bug, how transformations impact the syntax
of the bug, and how the Claude-3.7-Sonnet behaves when solving this bug.

6.1 Bug description

Lang-43 is a bug in the commons-lang project by Apache [103]. The purpose of this
project is to provide utilities for many of the standard java.lang objects, such as String,
Object Number, etc. The project was first released in 2002, and has become a well-known
dependency for many projects. The source code is included in popular LLM pre-training
benchmarks, such as TheStack [29]], and is referenced very frequently on the web.

The bug Lang-43 is located in the appendQuotedString method in the Extended-
MessageFormat class. This class contains functionality for formatting strings and dy-
namically inserting variables into pre-defined template strings [[104]. The responsibility
of the appendQuotedString method is to consume a quoted string and append it to a
given StringBuffer. The implementation of this method is shown in fig. [6.1] In addition,
when there are two consecutive single quotes ('), this indicates that a single quote is es-
caped by another single quote, and that one of the two quotes should be appended to the
StringBuffer. The if statement in lines 8-10 is responsible for this.

The problem with this code is that the if-statement on lines 8-10 appends a quote and
returns without increasing the ParsePosition. This means that the current index of the
character being parsed is not updated. Consequently, the method applyPattern, which is
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6. CASE STUDY: LANG-43 AND EVIDENCE OF MEMORIZATION

private StringBuffer appendQuotedString (
String pattern,
ParsePosition pos,
StringBuffer appendTo,
boolean escapingOn) {
int start = pos.getIndex();
char[] ¢ = pattern.toCharArray () ;
if (escapingOn && c[start] == QUOTE) ({
return appendTo == null ? null : appendTo.append (QUOTE) ;
}
int lastHold = start;
for (int i = pos.getIndex(); 1 < pattern.length(); i++) {
if (escapingOn && pattern.substring(i).startsWith (
ESCAPED_QUOTE) ) {
appendTo.append (c, lastHold, pos.getIndex () - lastHold).
append (QUOTE) ;
pos.setIndex (i + ESCAPED_QUOTE.length ());
lastHold = pos.getIndex();
continue;
}
switch (c[pos.getIndex()]) {
case QUOTE:
next (pos) ;
return appendTo == null ? null : appendTo.append(c,
lastHold, pos.getIndex () - lastHold);
default:
next (pos) ;

}

throw new IllegalArgumentException ("Unterminated quoted string
at position " + start);

Figure 6.1: The function containing the Lang-43 bug.

calling appendQuotedString upon encountering a quote, will encounter the same quote
again and call appendQuotedString again. Because of this, an infinite amount of quotes
is appended to the StringBuffer and eventually leads to an OutOfMemoryError.

The human-written patch, as applied in the project, involves increasing the ParsePosition
by 1, by adding next (pos) ; atline 9, as shown in fig.[6.2] This is the only edit required to
fix the bug.

6.1.1 Transformed Bug

We applied metamorphic transformations to this method and created the version shown in
fig. We applied function renaming, parameter renaming, and local variable renaming.
This alone leads to a significantly different syntax, even though the semantic meaning of
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6.2. LLM behavior

private StringBuffer appendQuotedString (
String pattern,
ParsePosition pos,
StringBuffer appendTo,
boolean escapingOn) {
int start = pos.getIndex();

char[] ¢ = pattern.toCharArray();
if (escapingOn && c[start] == QUOTE) {
next (pos) ;
return appendTo == null ? null : appendTo.append (QUOTE);

}

/* Rest of method remains identical */

Figure 6.2: The fix for the Lang-43 bug.

all the identifiers remains the same. Furthermore, the for loop is transformed to a while
loop, the unary increments are expanded, and relational and equals operands are swapped
in several positions. The transformed method’s behavior and semantics remain identical to
those of the original method.

6.2 LLM behavior

When prompting Claude-3.7-Sonnet, it misjudges the root cause for all 10 samples with
the original method, and also in all 10 samples with the transformed method. It explains
that the root cause is that the variable i is not updated with the ParsePosition. However,
this is false, as the issue lies elsewhere: It lies in the if-statement in lines 8-10. In only
one of the samples with the original non-transformed method, Claude-3.7-Sonnet mentions
the particular issue of that if-statement in addition to the (wrong) root cause. It does not
identify this issue at all in the transformed code.

In each sample with the original method, Claude-3.7-Sonnet attempts to fix the bug by
updating the i variable with the ParsePosition in various ways. Interestingly, it also up-
dates the problematic if-statement in 6 out of 10 cases, without any explanation. It adds
either next (pos); or pos.setIndex (startIdx + 1); (which is identical to the imple-
mentation of next ()) at line 9, which solves the bug. This clearly indicates memorization.

We do not observe this behavior when we prompt Claude-3.7-Sonnet with the trans-
formed variant. It only updates the problematic if-statement in one sample, but also moves
the return statement to a newly created else branch. Other than this, it does not touch
lines 8-10 and only modifies the rest of the method.

6.3 Implications

These observations suggest the presence of data leakage; Claude-3.7-Sonnet has memorized
the solution to this bug to some extent. If we examine the reasoning for identifying the root
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6. CASE STUDY: LANG-43 AND EVIDENCE OF MEMORIZATION

private StringBuffer appendEscapedString (
String template,
ParsePosition position,
StringBuffer resultBuffer,
boolean isEscapingEnabled) {
int beginning = position.getIndex () ;
char[] ¢ = template.toCharArray();
if (isEscapingEnabled && QUOTE == c[beginning]) {
return null == resultBuffer ? null : resultBuffer.append (QUOTE
)i
}
int lastIndex = beginning;
int index = position.getIndex();
while (template.length () > index) {
if (isEscapingEnabled && template.substring(index).startsWith (
ESCAPED_QUOTE) ) {
resultBuffer.append(c, lastIndex, position.getIndex () -
lastIndex) .append (QUOTE) ;
position.setIndex (index + ESCAPED_QUOTE.length());
lastIndex = position.getIndex();
index += 1;
continue;
}
switch(c[position.getIndex ()]) {
case QUOTE:
next (position) ;

return null == resultBuffer ? null : resultBuffer.append(c
, lastIndex, position.getIndex () - lastIndex);
default:

next (position) ;

index += 1;
}
throw new IllegalArgumentException ("Unterminated quoted string
at position " + beginning);

Figure 6.3: The transformed version of the Lang-43 bug.
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6.3. Implications

cause of the bug, we observe that Claude-3.7-Sonnet can, in general, not find the root cause.
Therefore, we should conclude that Claude-3.7-Sonnet cannot solve this bug. However,
when writing the patches, adding a line of code that increases the ParsePosition at line
9 is a frequent occurrence, even though this line is not in the buggy code snippet, and the
model does not explicitly reason toward this.

When asking Claude-3.7-Sonnet to solve the transformed variant of the bug, adding
code to increase the ParsePosition is not as frequent. We hypothesize that the meta-
morphic transformations disturb the context representation in a way that the model is less
inclined to add this code.

Although each of these patches would be rejected by a human semantics review, this
example illustrates the data leakage problem and how this can inflate the results. Claude-
3.7-Sonnet cannot correctly identify the root cause and suggest solutions for this bug, and
can most likely only suggest patches that pass the tests because of memorization. Such
cases should not be classified as correct, and doing so will lead to invalid results.

This is a deep dive into one specific case, but as shown in chapter[5] there is a general
trend that the models perform worse after transformations. Most likely, a similar effect can
be observed in the other bugs.
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Chapter 7

Discussion

This chapter discusses the implications of our findings, placing them in a context with prior
works, and considering the robustness and limitations of our methodology. We reflect on the
effectiveness of metamorphic testing in revealing and potentially mitigating data leakage in
LLMs for APR, outline threats to the validity of our conclusions, and provide recommen-
dations and directions for future work.

7.1 Interpretation of findings

Our results reveal that even state-of-the-art LLLMs for code repair exhibit a lack of robust-
ness to natural, semantic-preserving, metamorphic transformations. We observe that all
three APR models under test (ChatGPT-40, ChatGPT-40-mini, and Claude-3.7-Sonnet) per-
form significantly worse on a metamorphically transformed Defects4] benchmark. These
findings emphasize that even the best-performing, state-of-the-art models are vulnerable to
simple semantic-preserving code changes and lack robustness.

In addition, the models do not just suffer from unnecessary prediction flips, where a
model changes its output due to metamorphic transformations, but we also observe that the
models tend to change from correct to wrong more frequently than vice versa. This implies
that the original bug is inherently easier for the model to solve than the transformed bug. A
plausible explanation for this is that the model remembers the solution to the original bug,
but can remember the solution to the transformed bug less reliably, and is forced to rely
more on reasoning.

The models do not show any statistically significant performance difference on the trans-
formed GitBug-Java Benchmark. This may be due to two things. First, the sample size
is much smaller, as there are only 35 bugs of appropriate complexity in the GitBug-Java
dataset, compared to the 401 in Defects4J. A smaller sample size naturally leads to less
statistical power. Second, the GitBug-Java dataset is a much more recent dataset, designed
specifically with data leakage mitigation in mind. Due to this, the models may not be as fa-
miliar with the original projects and thus not memorize as much, leading to less significant
differences.

We also find that Claude-3.7-Sonnet is particularly vulnerable to transformations that
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involve identifier renaming, even though we replace identifiers with semantically similar
alternatives. This is another observation that can be explained by data leakage. Identifier
names can be cues for the model to remember the solution to the bug. When these are
changed, the bug is much harder to memorize. The fact that we observe this mostly for
Claude-3.7-Sonnet can be explained by the fact that larger models tend to memorize more
[72].

Finally, we investigated whether a decrease in performance under metamorphic testing
is associated with other estimations of data leakage: NLL. We found a significant correlation
between these metrics for the Gemma 2 27B model, which is compelling evidence for our
hypothesis that metamorphic testing can reveal and mitigate data leakage: if a model is
very familiar with a piece of code, metamorphic testing leads to a greater performance
reduction. This implies that the performance is inflated due to memorization and that the
model struggles to remember the solution to the bugs when they are transformed.

To summarize, our results provide additional evidence for the prevalent problem of data
leakage in LLMs. Many reported results of LLM-based APR tools are inflated and do not
generalize to unseen problems. Although significant effort has been put into mitigating the
effects of data leakage, our findings suggest that these issues persist, even in models as
advanced as Claude-3.7-Sonnet and ChatGPT-40.

7.2 Comparison with prior work

Our findings align with prior works showing the vulnerability of deep code models. As
shown in [[14]], [[15], [77], [105]-[107], deep code models are not robust to metamorphic
transformations. This holds specifically for APR models as well, as shown in [[78], [[79],
[[88]]. We show that this holds for state-of-the-art LLMs for APR as well. In addition, our
results align with the findings in [87]]: APR results do not generalize well to Defects4]J
variant benchmarks.

Furthermore, our findings align with the ideas presented by Ramos et al. [[18]], suggest-
ing that LLMs suffer from data leakage on the Defects4] [[11] dataset. While we do not
provide direct evidence of data leakage, our results support the idea that the reported perfor-
mance on the original dataset is inflated. Although we only found a connection between the
NLL and performance drop for one model: Gemma 2 27B, this aligns with their findings
that Gemma 2 27B suffers the most from data leakage out of the models we tested. In addi-
tion, Gemma 2 27B is the largest out of the models we tested for a data leakage correlation,
and larger models tend to memorize more [72].

Finally, our work has explored suggestions made by Sallou et al. [[17] and shown the
potential of using metamorphic transformations to mitigate the effects of data leakage. It
appears that metamorphic testing can, to some extent, mitigate the effects of data leakage.
Our work provides new insights into a new technique for data leakage detection and mitiga-
tion. However, further research is required to understand the full potential of this technique
and how effective it can be.
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7.3 Threats to validity

We acknowledge that several threats could compromise the validity of our study. We cate-
gorize these threats into four groups:

* Internal threats are related to our implementations.

» External threats are related to artifacts that are not directly related to our implemen-
tations.

* Construct threats are related to the metrics and how reliably they capture the quality
we intend to measure.

7.3.1 Threats to internal validity

First of all, the implementation may contain bugs, resulting in unnatural or even seman-
tically different metamorphic variants. To combat this threat, we extensively tested our
implementation with both unit tests and manual samples. Second, the experimental pipeline
could contain implementation bugs. However, unless bugs are present in the transform
stage, these bugs affect both original and transformed variants equally. Nevertheless, every
stage of the pipeline was manually verified to be correct. Third, we update the function
names in the test and stack traces using regular expressions. These regular expressions may
not be perfect and may miss function references. We manually verified that every occur-
rence of the function name that was not matched by the regular expression did not actually
reference the function. Examples of this would be if the function name is a substring of
another variable name or a substring of the name of the test.

Finally, metamorphic transformations could result in unnatural code snippets, putting
the APR models at a disadvantage, as they were mostly trained on human-written code.
This would also be an explanation of the observed performance drop. However, we only
chose natural transformations [77], [[78]] and used an LLM to generate meaningful synonyms
for identifier names. Related to this, the NLL is an indication of how natural a piece of code
appears to the model [18]], and is therefore also strongly correlated with code naturalness
to a human. This could pose a risk to the validity of our conclusions. However, the NLL
value only reflects the perceived naturalness of the original code, and is not affected by any
possible kind of naturalness difference introduced by the transformations.

7.3.2 Threats to external validity

The main threat to external validity is the results provided by Ramos et al. [[18]]. Their
dataset only includes a subset of the Defects4J dataset, containing only the Closure, Lang,
Chart,Math, and Mockito projects. This is not completely representative of the full dataset,
so we reproduced their method on the remainder of the benchmark to collect more samples.
However, their implementation may also contain bugs, or their assumptions may be invalid.

Furthermore, all results are only measured in the context of automated program repair.
The concept of using metamorphic transformations to mitigate data leakage may not gener-
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alize to other settings. Despite this, we have no reason to believe that this concept does not
apply to other coding tasks, such as code or unit test generation.

7.3.3 Threats to construct validity

Our main threat to construct validity is our metric for APR model performance. We judge
the performance of an APR model based on how frequently it can generate a patch that
passes the test suites. However, fest overfitting is a well-known problem in the field of
APR. This occurs when a model generates a patch that passes the test suite, but does not fix
the original bug completely, overfitting on the test suite [75]]. Many papers use exact-match
metrics [3]], [42]], [108]]-[[110] or manual correctness checking [5], [6], [8]l, [64], [111]]. We
opted to only use the test suite pass rate as our metric, as exact-match metrics tend to suffer
when bugs have multiple repair solutions [3]] and manual correctness checking requires an
infeasible amount of manual effort. Even though the test suite metric is not optimal, it is
identical across both the original and transformed groups in our experiment. It is unlikely
that patch overfitting is more prevalent in the original group than in the transformed group.

Another threat to construct validity is the way we measure the effect of different trans-
formations. Transformations are applied at every opportunity where they can be applied.
Therefore, we do not only compute the correlation between the performance drop and the
transformations, but also the correlation between the performance drop and the size/com-
plexity of a bug. For example, if a variable name transformation was applied once to bug A
and three times to bug B, this also means that bug B has three times as many local variables.
This means that our tests may appear to indicate the effect of transformations, but show the
effectiveness of transformations in general on code snippets with specific ’transformable’
features.

7.4 Recommendations

We recommend that researchers report results on metamorphically transformed benchmarks
when evaluating the performance of LLM-based tools. This has two distinct functions.
Firstly, this gives insight into the robustness of an LLM-based tool. It has been shown that
many LL.M-based tools lack robustness [14], [15], [77], [105]-[107]. Showing the perfor-
mance on a transformed benchmark ensures that readers and users can more confidently
apply it to other scenarios.

Secondly, significant differences across the original and transformed benchmarks may
indicate data leakage issues. Especially in cases where it is not 100% certain that the training
set and benchmark do not overlap, showing that the results are not inflated due to data
leakage is essential to prove the validity of the results.

7.5 Future work

With the rise of LLM agents that can operate autonomously in a complete software project
[71, [T12]-[113], it is critical that these can be evaluated with metamorphic testing as well.
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At this point, CodeCocoon applies only to isolated Java functions and cannot use any of the
class context. In our case, we were able to test with a function renaming transformation
because we were able to transform the function names back before running the tests. How-
ever, such techniques are much more difficult to apply when testing an agentic system. A
future iteration of CodeCocoon should apply metamorphic transformations to projects as a
whole.

Furthermore, Python is currently the most prevalent programming language [116[]. Code-
Cocoon only applies to Java code snippets, but should be made to transform Python code
as well. This could require a significant amount of effort, as one could argue that Python
is a much less structured language than Java, and that this may introduce extra caveats and
issues. For example, dynamic typing may introduce ambiguities in the type of objects being
used, and may thus introduce issues when renaming a member of such an object. In some
cases, it may be undecidable whether to change code features. This requires careful and
intensive consideration when designing a Python version of CodeCocoon.

Moreover, to do a more reliable robustness evaluation, CodeCocoon should be extended
to apply transformations in a non-deterministic manner. With this, we can create a set of
variants instead of only one transformed version of the code. This set of variants can more
accurately represent the various coding styles employed by different software engineers and
give more reliable insight into the robustness of tools.

In addition, it appears that metamorphic transformations can significantly increase the
APR success rate for some of the bugs. It could be that the transformations enhance the
readability of the code in some cases, but the number of cases where the performance sig-
nificantly increased is too small to derive strong conclusions. Future works with more
extensive datasets should investigate these cases in more detail.

Even though our findings suggest that CodeCocoon can mitigate data leakage to some
extent, further research must be conducted into what code features lead to LLMs recogniz-
ing pieces of code and what transformations mask these features best. The transformations
in this study were chosen based on other criteria, and a future system with transformations
specifically designed for masking recognition-critical features could lead to more effective
data leakage mitigation.

As a concrete experiment, future research could systematically evaluate data leakage
under metamorphic testing by training two models, where the evaluation benchmark is in-
cluded in the pre-training dataset for one model, but not the other. Then, metamorphic
transformations can be tested specifically for data leakage mitigation potential. The de-
sired effect of these metamorphic transformations is that they only affect the model with
data leakage and do not affect the model without data leakage. This allows for a system-
atic evaluation of different metamorphic transformations and their data leakage mitigation
potential.

Finally, more research is required to understand data leakage and how it impacts evalu-
ation results. As explained in chapter[6] LLMs do not always reproduce the original patch
verbatim, but can remember the patch on a deeper level, sometimes reproducing a patch
with a different, yet equivalent piece of code. In addition to this, more research is required
to understand how metamorphic testing can affect memorization. Although the syntax of
the code is very different after transforming, the embedded representations may be more
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similar, which could lead to less effective data leakage mitigation. This should be explored
in future research to determine the true potential of applying metamorphic testing for data
leakage mitigation.
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Chapter 8

Conclusion

Effective automated program repair methods can lead to massive cost reductions and have
improved a lot in recent times. However, reliable and representative evaluations that reflect
the true performance of systems in real-world scenarios are critical for progress in this
field. The validity of evaluations as they are conducted at this point in time is at risk due
to the phenomenon of data leakage. This occurs when LLMs remember the solutions to
benchmark problems rather than solving them by reasoning alone, leading to inflated results
and a false sense of progress.

In this study, we examine the potential of using metamorphic transformations to mitigate
the effects of data leakage. For this, we create a variant benchmark for popular, well-
established benchmarks Defects4] and GitBug-Java, and evaluate the APR performance
of several LLMs on these benchmarks and their transformed counterparts. In addition,
we investigate the effect of different combinations of metamorphic transformations on the
performance of these models. Finally, we investigate to what extent our results align with
data leakage metrics from other studies.

Our results show that state-of-the-art LLMs for code repair exhibit significant perfor-
mance degradation on a metamorphically transformed Defecsts4] benchmark. The perfor-
mance drops by 2.5%, 3.1%, 4.1% for ChatGPT-40, ChatGPT-40-mini and Claude-3.7-
Sonnet respectively. This highlights the lack of robustness in these models and suggests
that the results on the original benchmark may be inflated due to data leakage.

Moreover, we have shown that renaming transformations significantly contribute to the
performance drop for Claude-3.7-Sonnet. The observation that renaming identifiers with
meaningful alternatives is so detrimental to the performance of one of the best-performing
LLMs for code repair also suggests that these variable names are cues for the model to
memorize the solution to a bug.

Furthermore, we find that there is a significant connection between the observed perfor-
mance drop and negative log-likelihood for the Gemma 2 27B model. This indicates that
metamorphic testing leads to a particularly severe performance drop on bugs that have a
high risk of memorization. The observed connection further demonstrates the potential of
metamorphic testing for data leakage detection and mitigation.

In addition to this, we provide further insights as to how metamorphic testing affects
LLM behavior in a case study. We show that the LLM can, in this case, apply the correct
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patch by memorization rather than reasoning. It is not able to apply the correct patch as
reliably on the transformed variant, supporting our hypothesis that metamorphic testing can
reveal and mitigate data leakage issues.

In summary, many results of LLM-based tools on the original benchmarks are inflated
and do not generalize to unseen data. This is a major threat to the validity of evaluations
and could become more severe as LLMs are trained on increasingly larger training sets.
Mitigation techniques for data leakage require urgent attention.

Collecting a new benchmark from more recent projects appears to reduce data leakage
issues to some extent, as shown by the fact that there is no significant performance difference
between the original and transformed versions of the GitBug-Java dataset. However, the
collection process requires intensive manual effort and is not sustainable with the rapid rate
of LLM updates.

Thus, we recommend that researchers report performance on both original and trans-
formed benchmarks when evaluating LLM-based tools. Our findings suggest that trans-
forming an existing benchmark could be a cheap and fast alternative for collecting a new
dataset. Reporting performance on both benchmarks gives insights into the robustness of the
tool and can also provide confidence that results are not overly inflated due to data leakage.

Finally, further research should investigate whether our findings generalize to other
models, tasks, and benchmarks. Although we have no reason to believe our results do
not generalize, there still should be a more thorough evaluation in different contexts. In ad-
dition, the extent to which data leakage can be mitigated by metamorphic transformations
should be explored. With transformations more targeted towards code features that elicit
memorization, data leakage mitigation via metamorphic transformations could be more ef-
fective.
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