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On the Combination of Random
Matrix Theory With
Measurements on a Single
Structure
An approach is proposed for the evaluation of the probability density functions (PDFs) of
the modal parameters for an ensemble of nominally identical structures when there is
only access to a single structure and the dispersion parameter is known. The approach
combines the Eigensystem realization algorithm on sets of dynamic data, with an explicit
nonparametric probabilistic method. A single structure, either a mathematical model or
a prototype, is used to obtain simulated data or measurements that are employed to build
a discrete time state-space model description. The dispersion parameter is used to
describe the uncertainty due to different sources such as the variability found in the popu-
lation and the identification errors found in the noisy measurements from the experi-
ments. With this approach, instead of propagating the uncertainties through the
governing equations of the system, the distribution of the modal parameters of the whole
ensemble is obtained by randomizing the matrices in the state-space model with an effi-
cient procedure. The applicability of the approach is shown through the analysis of a two
degrees-of-freedom mass-spring-damper system and a cantilever system. The results
show that if the source of uncertainty is unknown and it is possible to specify an overall
level of uncertainty, by having access to a single system’s measurements, it is possible to
evaluate the resulting PDFs on the modal parameters. It was also found that high values
of the dispersion parameter may lead to nonphysical results such as negative damping
ratios values. [DOI: 10.1115/1.4054172]

1 Introduction

The quantification of the uncertainties on the modal parameters
during the design process of structures is of great interest for the
assessment of their dynamic performance [1,2]. The measurement
of the dynamic response across nominally identical structures can
reveal largely different modal parameter estimates due to uncer-
tainties originated by the variability of the manufacturing proc-
esses of structural components, boundary conditions, and
assemblage [3,4]. Identifying the distribution of the modal param-
eters across the ensemble of nominally identical structures would
enable the selection of designs that are robust to these uncertain-
ties, avoiding extensive modifications of the manufactured prod-
uct [5]. This paper proposes an approach for the evaluation of the
probability density functions (PDFs) of the natural frequencies,
damping ratios, and modal shapes of an ensemble of nominally
identical linear time-invariant systems, for cases where there is
only access to a single structure and additional information is
known in the form of the so-called dispersion parameter. This sin-
gle structure, represented either as a mathematical model or a pro-
totype, is used to obtain simulated data or measurements,
respectively, which in turn are employed to build a discrete time
state-space model description. This model is then used to effi-
ciently assess the effects on the modal properties of different lev-
els of uncertainties, represented through suitably chosen
dispersion parameters. This method is also of interest within the
Bayesian Inference framework, as it can be used to build a prior
distribution consistent with the available information, for the
cases where there would be insufficient information in the data so
that resulting likelihood cannot overrule the prior assumptions [6].

At early design stages (before a prototype is being built), when
a physics-based model is developed, uncertainties on the model
parameters are usually described using probabilistic [7–9] or non-
probabilistic uncertainty descriptions [10]. These uncertainties are

then propagated through the equation of motions to yield the cor-
responding description of the response. This is the so-called para-
metric model of uncertainty. However, the choice of the uncertain
parameters and their description would directly affect the resulting
distribution of the resulting modal parameters [1,2,8]. An alterna-
tive approach is to employ a nonparametric model of uncertainty
by exploiting random matrix theory (RMT) results [1,11]. This is
useful as nonparametric methods [11] avoid the need to specify
the uncertainties’ sources and the description of the parameters
model’s uncertainty, which are often hard to determine. More-
over, using these methods, modeling errors may also be accounted
for [1]. A review of different random matrices and their properties
is given in Ref. [12]. The application of these matrices to engi-
neering problems, and in particular, for uncertainty quantification
has been the subject of much recent research [13–16]. Broadly
speaking, random matrices can be applied using an implicit
approach that is based on the derivation of analytical results given
a set of assumptions, e.g., by assuming that the physical properties
of a structural component are sufficiently random so that the sta-
tistical distribution of the natural frequencies and mode shapes
tends to a universal distribution associated with the Gaussian
orthogonal ensemble of random matrices [17,18], or also by using
an explicit approach that is based on the use of Monte Carlo simu-
lations to propagate uncertainty [1,11].

Vishwajeet et al. [19] have recently used results from RMT in
combination with the system identification (SI) method Eigensys-
tem realization algorithm (ERA) for the calculation of the analyti-
cal expression of the PDFs of the singular values of the Hankel
matrix. This was done by assuming that the elements of the Han-
kel matrix were Gaussian random variables, and therefore, the
Hankel matrix times its own conjugate transpose conforms with
the noncentral Wishart distribution. This assumption might not be
always valid for linear-time-invariant systems, as noise is non-
Gaussian in nature, and often only approximated as Gaussian.
Moreover, the prediction of the uncertainty of the properties of
the modal parameters associated with a priori knowledge of uncer-
tainties related to manufacturing variability, boundary conditions,
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and assemblage of other nominally identical structures, using
measurements taken from a single structure during the design
stage, has not been addressed with current methods. Quantifying
the effect of those uncertainties on the untested members of the
population becomes paramount if reliable performance assess-
ments of the structures must be produced. This is the focus of the
present paper, where no assumption is made on the type of the dis-
tribution followed by the elements in the Hankel Matrix, and a
nonparametric explicit implementation of RMT is used to build
the ensemble employed to evaluate the PDFs of the modal param-
eters, using the dispersion parameter to control the level of uncer-
tainty without specifying its sources. Relevant uncertainty
propagation approaches based on this type of explicit implementa-
tion of RMT are briefly reviewed in what follows.

Soize [1,11] pioneered an RMT explicit approach that models
the system’s matrices (mass, stiffness, and damping) as random
matrices. Using the maximum entropy method and the informa-
tion available (system’s matrices are symmetric positive-definite,
the second-order moment of their inverse, and their mean matrices
exist), an ensemble of random matrices can be used to model the
uncertainty of the system’s matrices in a nonparametric manner.
This explicit implementation of RMT has been successfully
applied for building stochastic models to quantify uncertainty in
nominally identical systems by defining a single parameter, the
so-called dispersion parameter [1,11]. The dispersion parameter is
used to control the overall level of uncertainty in the random
matrix without the need to specify its origin. This parameter can
be used at the design stage to build an ensemble of nominally
identical models/structures, and it can be updated once experi-
mental observations become available [1,11]. The dispersion
parameter is calculated by assuming that the nominal model/
structure is available (or approximated), and that the experimental
observations are different realizations of the ensemble of struc-
tures [1,20]. The dispersion parameter can be varied to create dif-
ferent ensembles and evaluate the effect on the produced results
[21]. An example, where the dispersion parameter that controls
the level of the uncertainty in the stiffness matrix, was identified
from experimentally obtained frequency response functions of six
nominally designed aircraft T-tails, used for the calculation of the
experimental modal parameters, is shown in paper [16]. Paper
[14] illustrates another recent application using experimental data
from booster pumps’ thermal units to identify the dispersion
parameter. This dispersion parameter is used to build a stochastic
computational model that considers mode crossing and veering
phenomena through the introduction of an adapted transformation
for the calculated modal quantities. Legault et al. [21] applied this
nonparametric approach to simple numerical examples and stud-
ied its meaning and consequences for the output space (e.g., aver-
age modal density, dispersion relation, etc.), especially for large
values of the dispersion parameters.

This current paper follows the explicit approach developed by
Soize and comprehensively reviewed in Refs. [1] and [11], where
the general applicability and proofs of the approach are given. In
particular, with the proposed approach, starting from a set of
measurements or simulated data obtained from either a mathemat-
ical model or a prototype, the Hankel Matrix is calculated. The
matrix resulting from the multiplication of the Hankel Matrix
times its own conjugate transpose is randomized using the

normalized positive definite ensemble defined in Refs. [1] and
[11]. For each realization of the ensemble, the ERA [22] is applied
to identify the modal parameters (natural frequencies, damping
ratios, and modal shapes). ERA has been chosen for its simplicity,
although its application is limited to the analysis of structures
under some assumptions [22], such as impulsive excitations or
free vibration. If the appropriate changes to the proposed method
are considered, other loading conditions may be investigated;
however, these changes are not explored in this paper. The results
of each realization are then used to build the PDFs of the modal
parameters of the ensemble. The proposed approach enables the
assessment of the effect on the modal parameters’ uncertainties of
different dispersion parameter values and size of Hankel matrices.

It is worth noting that the PDFs of the modal parameters of an
ensemble of nominally identical structures obtained with the pro-
posed approach correspond to those that would be obtained from
an ensemble of structures from a production line, such as cars, or
by considering manufactured structures, which are realizable in
principle, but for which only one sample may be built, such as a
bridge. This virtual ensemble accounts for a collection of linear
structures (not all of them are necessarily existent but are physi-
cally feasible) in which the geometric, mechanical properties, and
boundary conditions of all the elements of each structure are
uncertain and conform to unknown distributions. The applicability
of the proposed approach is shown using numerical applications
that represent situations where the system is under free vibration.

This paper is structured as follows: The ERA method is
reviewed in Sec. 2. The steps involved on how to combine RMT
and ERA for the quantification of the uncertainty of the modal
parameters are found in Sec. 3. The numerical results obtained are
found in Sec. 4. The physical consequences of the application of
RMT are then discussed in Sec. 5.

2 Proposed Approach

The proposed approach combines an SI technique with a non-
parametric uncertainty description to quantify the effect of differ-
ent levels of uncertainty on the modal properties of an ensemble
of nominally identical structures, using probability density func-
tions of these modal properties. In particular, by using measure-
ments or simulated data obtained from a single structure, an
ensemble able to encompass different sources of uncertainty is
built as a product of the Hermitian matrices, which is the Hankel
Matrix times its own conjugate transpose. The random matrix is
specifically constructed to reflect a given level of uncertainty
(expressed in terms of the so-called dispersion parameter) and to
retain some properties of the Hermitian matrix (i.e., positive defi-
niteness and the existence of the second-order moment and of its
inverse). In particular, the normalized positive-definite random
matrix (random matrix ensemble SGþ) is chosen [11].

A schematic representation of the approach is shown in Fig. 1.
Each of the blocks of the approach is discussed in more detail in
Secs. 2.1–2.4.

2.1 Measurements on a Single Structure to Construct a
Virtual Ensemble. When the physics-based model of a structure
is available, and the structure is not yet built, the model can be

Fig. 1 Schematic representation of the approach
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used for simulating its dynamic response, i.e., displacement,
velocity, or acceleration signals, using its nominal properties [11].
The outputs signals can then be contaminated with noise. There-
fore, a set of response signals, ideal measurements, can be
obtained by using the physics-based model. Alternatively, real
measurements can be carried out on a prototype of the real struc-
ture or on a structure that is a member of an ensemble of struc-
tures that would be produced. These simulated data or
measurements on a single structure can then be used to create the
nominal model, that in conjunction with the dispersion parameters
is used to construct the virtual ensemble. In this work, the virtual
ensemble consists of a set of linear structures, described by a set of
common geometric properties, mechanical properties, and bound-
ary conditions, and where each realization corresponds to a differ-
ent structure across the ensemble. Therefore, this ensemble is used
to account for structure-to-structure response variability caused by
different sources of uncertainty that may occur in the modeling and
manufacturing process. In addition, it has to be considered that the
variability that the virtual ensemble encompasses several sources
of uncertainty, such as the noise of the experimental measurements
and the uncertainties introduced by the modeling process.

Starting from the simulated or real set of measurements, a dis-
crete time state-space model description can then be readily built
or identified, respectively. The number of measurements (in terms
of sensors) needed depends on the model order, number of modes,
and the complexity of the structure. The measurements used are
those obtained from vibration-based experiments such as displace-
ment, velocity, and acceleration readings.

In this paper, the ensemble is constructed starting from the
physics-based model in order to ensure reproducibility of the
results shown.

2.2 Evaluation of Hankel Matrix. Modal identification
methods are used to obtain the modal properties (natural frequen-
cies, mode shapes, and damping ratios) of a system. The approach
proposed in this paper requires the evaluation of the Hankel
Matrix.

The Hankel Matrix Hrsðk � 1Þ of size r by s contains time
series data from measurement data [23] and it can be built as
shown in Eq. (1). The output vector sequences yfk;pg contain the
measurements read in p channels at different times tk. Assuming
free vibration conditions, y0; y1; y2; y3;…; yk are obtained

Hrsðk � 1Þ ¼

yk ykþ1 … ykþs�1

ykþ1 ykþ2 … ykþs

:
:

:
:

:
:

yrþk�1 yrþk … yrþkþs�2

2
66664

3
77775 (1)

In the present analysis, the ERA is chosen because of its simplic-
ity when dealing with systems excited using an impulse force
(e.g., hammer strike) or systems in free vibration [22].

However, other loading conditions may be considered if the
appropriate changes to the proposed approach are implemented.
For example, the combination of the natural excitation technique
with ERA [24] allows to deal with situations where ambient exci-
tation is observed. These methods are beyond the scope of the
present work, and the reader is referred to Ref. [25].

2.3 Defining uncertainty by Using a Dispersion Parameter
dS and Matrix Randomization. In parametric probabilistic
approaches for uncertainty quantification [7,8], the different types
of uncertainties (model noise, measurement noise, population
uncertainty, etc.) are described by using some assumed PDFs. The
uncertainties can then be propagated through the relevant equa-
tions describing the behavior of the system, and the effects of the
uncertainties on the parameters of interest are assessed.

In this paper, an alternative approach that accounts for the
effects of uncertainties without the need to make explicit

assumption on the PDF of specific model parameters is consid-
ered. In particular, a nonparametric technique based on RMT is
used by following the explicit approach proposed by Soize [1,11].
A dispersion parameter dS is used to build the random matrix ĜS

that will be used to create the virtual ensemble.
The dispersion parameter value encompasses the overall level

of uncertainty caused by different sources of uncertainty that may
be present, such as modeling errors, manufacturing variability,
identification errors, errors in the recorded signals, and variability
of the boundary conditions among the members of the ensemble.

The prior estimation of the dispersion parameter dS, can be
classified into three cases:

(i) The first case occurs when no prior data are available, and
two approaches can be considered. The nominal value and
the mean matrix of the stochastic model are the same. In
this case, the dispersion parameter dS is a variable that is
used for a sensitivity analysis that relates the level of
uncertainties to the stochastic solution [1]. The sensitivity
analysis is performed by varying the uncertainty levels
controlled by the dispersion parameter value dS in a prede-
fined range and observing how the PDFs of the modal
parameters (natural frequencies, mode shapes and damp-
ing ratios) change [1].
Alternatively, Legault et al. [21] define a dispersion parame-
ter dS that is set a priori based on an expected level of uncer-
tainty. For example, low, mid, and high values of the
dispersion parameter were assigned in Ref. [21] to evaluate
the effects on their chosen properties. When high uncertainty
is present, higher dispersion parameter values are used.

(ii) The second case occurs when prior data (either measure-
ments taken on the ensemble of structures or an existent
computational model with specified parametric uncertain-
ties) are available [1]. For this case, from the observed
data, it is possible to update the mean matrix, and using
the least-square method or the maximum likelihood
method to obtain the value of the dispersion parameter dS

that optimizes the employed objective function (e.g., mini-
mizing the difference on the resulting coefficient of varia-
tion on the first natural frequency). A detailed explanation
about both methods may be found in [1].

(iii) The third case occurs when in addition to the parametric
prior information (case (ii)), there is also a statistically
independent nonparametric prior information (case (i)).
For example, the uncertainty in the measurements noise
can be specified as a zero mean Gaussian with a given var-
iance, and the modeling error is specified with a dispersion
parameter dA. The goal is to obtain an overall dispersion
parameter ds ¼ dD þ da, where dD is calculated as shown
in case (ii) without accounting for the nonparametric
uncertainty.

The three cases above are investigated in the first numerical
application (Sec. 4.1). The dispersion parameter quantifies the
quadratic distance from the random matrix ĜS to the identity
matrix In as shown by Eq. (2) below [1,11]

dS ¼
1

n
E kĜS � Ink2

F

n o� �1=2

(2)

where kkF denotes the Frobenius norm and n is the number of
rows or columns of the matrix ĜS. The dispersion parameter takes
values within the inequality shown by the Eq. (3) below [11]:

0 < dS <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 5Þ�1

q
(3)

In general, as it is not possible to have multiple elements of the
virtual ensemble or prior measurements in the design stage, in this
paper, the strategy (i) described in Ref. [21] is followed, and dif-
ferent a priori values of the dispersion parameter dS are used to
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evaluate the effect of the dispersion value on the resulting PDFs
of the modal properties of the virtual ensemble. In particular, low
and high values of the dispersion parameters are considered.

For a given full row rank Hankel Matrix Hrsðk � 1Þ, a Hermi-
tian matrix Sðk � 1Þ is calculated [19] using

Sðk � 1Þ ¼ Hrsðk � 1ÞH�Trs ðk � 1Þ (4)

A Hermitian matrix Sðk � 1Þ that is symmetric positive-definite
may be Cholesky factorized [1,11] as shown in the following
equation:

Sðk � 1Þ ¼ L�TS LS (5)

where LS is an upper triangular matrix.
In order to generate the ensemble of matrices Ŝðk � 1Þ, the ran-

domization of the matrix Sðk � 1Þ is performed according to
[1,11]

Ŝðk � 1Þ ¼ L�TS ĜSLS (6)

where ĜS is a normalized positive-definite matrix [1,11]. The
expected value of the ĜS matrix is equal to the identity matrix In.
As shown in Eq. (2), the value of the dispersion parameter
depends on the size number n of the matrix ĜS.

The randomizing matrix ĜS is built using [1,11]

ĜS ¼ L̂
�T
GSL̂GS (7)

Where the elements ik (row, column) of the random upper trian-
gular matrix L̂GS are defined through the equations below [11]:

if i < k; L̂GS; ik ¼ rSUik (8)

if i ¼ k; L̂GS; ik ¼ rSð2ViÞ
1 2=

(9)

where

rS ¼
dS

nþ 1ð Þ
1 2=

(10)

Uik is a Gaussian random variable of unit variance and zero mean,
and Vi is a Gamma random variable with parameters a, b [1,11] as

a ¼ nþ 1

2d2
S

þ 1� i

2
(11)

b ¼ 1 (12)

The choice of the normalized positive-definite matrix ĜS is moti-
vated by the use of the maximum entropy principle given the
information available: there is a mean matrix Sðk � 1Þ, it is posi-
tive definite, and the second-order moment of its inverse exists
[1,11]. The theoretical statistical properties of the random matrix
ĜS can be found in Refs. [1] and [11].

2.4 Probability Density Functions of the Modal Parame-
ters for an Ensemble of Nominally Identical Structures. To
calculate a new matrix ĜS in each realization of the ensemble, a
Monte Carlo simulation in which independent random samples
are drawn for the Gaussian random variable Uik and the Gamma
random variable Vi, is performed. The number of samples needed
to generate the ensemble has to ensure that the PDFs of the uncer-
tain parameters obtained, converge to their true PDF. This is
achieved by checking the Kullback–Leibler (KL) divergence -
divergence value of the PDFs of each identified parameter with
respect to the PDFs for incrementally increasing number of

simulations. The modal parameters (natural frequencies, damping
ratios, and modal shapes) estimated using ERA from each random
realization of the system is used to approximate the PDFs of the
virtual ensemble using a kernel density estimate [26].

3 Advantages and Summary of the Steps for the

Proposed Method

The main advantages of the proposed approach when compared
to forward uncertainty quantification methods with physics-based
models are:

(i) The different sources of uncertainties are not required to
be specified explicitly.

(ii) The uncertainty in the parameters does not have to be
propagated through the equations of motion.

(iii) In some cases, it may be difficult or impractical to model a
structure/product based on physics. Consequently, the
results obtained would have been significantly affected by
the modeling errors. In these occasions, building the
ensemble from the measurements of a prototype structure,
i.e., a data-driven model, can be advantageous.

(iv) Compared to other SI methods that account for uncertain-
ties, this methodology does not require to make explicit
assumptions on the type of the PDFs of specific model
parameters. Additionally, the PDFs of the modal parame-
ters may be produced without specifying the origin of such
uncertainties, and therefore, no assumptions on the sources
of the uncertainties are required.

The results of this method may also be applied to anomaly
detection techniques, where the evaluated ensemble’s distribu-
tions of the modal parameters can be directly used.

The steps proposed in this methodology are:
Step 1: A Hankel Matrix Hrsðk � 1Þ of size r by s is built by

arranging the outputs yk (obtained from the measurement signals)
as shown on Eq. (1).

Step 2: For a given full row rank Hankel Matrix Hrsðk � 1Þ, a
Hermitian matrix Sðk � 1Þ is calculated using Eq. (4).

Step 3: The resulting matrix Sðk � 1Þ is symmetric positive-
definite and is Cholesky factorized using Eq. (5), where LS is an
upper triangular matrix.

Step 4: The dispersion parameter value is defined. A realization
ĜS of the random matrix GS is calculated using Eq. (7), the theo-
retical statistical properties of the random matrix GS can be found
in Refs. [1] and [11]. The randomization of the matrix Sðk � 1Þ is
performed according to Eq. (6).

Step 5: The eigenvalues and eigenvectors of the matrix Ŝðk � 1Þ
are calculated. The eigenvalues and the eigenvectors of the matrix
Ŝðk � 1Þ are, respectively, the squared singular values and the left
singular vectors of the Hankel Matrix Hrsðk � 1Þ [23]. The right
singular vectors of the Hankel Matrix Hrsðk � 1Þ are given by the
product matrix H�Trs ðk � 1ÞUR�1 [23].

Step 6: During step 5, the singular values of Hrsðk � 1Þ are cal-
culated. Physical singular values should be separated from spuri-
ous (mathematical) singular values related to the noise in this
process that defines the model order of the system [23]. From a
practical point of view, the elimination of spurious modes may be
performed using stabilization diagrams [27]. In the numerical sim-
ulations shown in Secs. 4 and 5, the number of singular values n
kept is known.

Step 7: The procedures defined from steps 1–4 are also applied
to the shifted Hankel Matrix HrsðkÞ. For every realization, the
Gaussian random variable Uik and Gamma random variable Vi are
independently resampled to produce different realizations of the
random matrices Ŝðk � 1Þ and ŜðkÞ.

The randomization of ŜðkÞ is carried out with the same disper-
sion parameter value dS but a different realization ĜS is used.
This is because although the measurements used to construct
Sðk � 1Þ and SðkÞ are the same, they are obtained using the Han-
kel and the shifted Hankel matrices, respectively.
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Step 8: Modal characteristics of the system (natural frequencies,
modal shapes, and damping defined in the Appendix where further
equations and explanations about the referred quantities are pro-
vided) are calculated using Eqs. (13)–(15), respectively [22]

xi ¼ jkcðiÞj (13)

/i ¼ ~Cvi (14)

fi ¼ �
Real kc ið Þ

� �
jkc ið Þj

(15)

Each realization of the modal characteristics is stored.
Steps from 4 to 8 are repeated for a prescribed number of times

for each realization of the random matrix Ŝðk � 1Þ and ŜðkÞ. The
modal parameters estimated from each random realization of the
system (via a Monte Carlo simulation) are used to approximate
the PDFs of the virtual ensemble using a kernel density estimate
[26].

It is worth mentioning that the nominal damping matrix of the
studied structure is proportional. For the calculation of the damp-
ing ratios in Eq. (15), only the real part is taken, this assumes that
Rayleigh or proportional damping is present. However, the pertur-
bations introduced by the randomization process introduced by
the RMT do not necessarily introduce proportional damping in the
system. Therefore, results obtained from Eq. (15) for high values
of the dispersion parameter may produce nonphysical values, as
shown in Sec. 4.

4 Numerical Results

This section shows the applicability of the proposed approach
by considering two different numerical simulations: the first a two
degrees-of-freedom (2DOF) mass-spring-damper (Sec. 4.1), and
the second a cantilever system (Sec. 4.2). For each simulation,

two different dispersion parameter values that translate to a low
and high level of uncertainty are considered. In the cantilever sys-
tem, the physical model, that generated the signal, and the identi-
fied model have a different state order. The dispersion parameter
is used to calculate the realizations of the random matrices Ŝðk �
1Þ and ŜðkÞ. The values of the modal parameters obtained in each
realization are used to calculate the probability distributions of the
modal parameters of the virtual ensemble of these systems. The
effects of the value of the dispersion parameter, the state order,
and their probability distributions in this approach are also shown.

4.1 Two Degrees-of-Freedom System. Let us consider the
2DOF mass-spring-damper system shown in Fig. 2. This is a toy
problem that shows the applicability of the algorithm, how it
works, and the general trends observed when uncertainty is intro-
duced in the form of a dispersion parameter value.

The 2DOF mass-spring-damper system has equal spring stiff-
nesses k1 ¼ k2 ¼ 1 N �m�1; equal masses m1 ¼ m2 ¼ 0:05 kg and
equal viscous dampers with coefficients of damping
c1 ¼ c2 ¼ 0:1 N � sm�1. The system is experiencing a free-
vibrations response with nonzero initial conditions:
x1ð0Þ ¼ x2ð0Þ ¼ 0; _x1ð0Þ ¼ 1 m=s; _x2ð0Þ ¼ 0, where (_) repre-
sents the derivative with respect to time.

The undamped natural frequencies and damping ratios that
correspond to the specified properties of the two-degree-of free-
dom system are given by: f1 ¼ 0:4399 Hz; f2 ¼ 1:1517 Hz;
f1 ¼ 0:1382, and f2 ¼ 0:3618.

For this example, no measurement noise is considered. Paramet-
ric uncertainties are assumed in Sec. 4.1.1. Nonparametric uncer-
tainties are assumed in Sec. 4.1.2. These uncertainties in the system
correspond to uncertain modal parameters which are investigated.

This simple example is used to: (i) directly compare the differ-
ence between a parametric and nonparametric uncertainty descrip-
tion and (ii) assess the effect of the dispersion parameter value on
the resulting PDFs of the modal parameters.

4.1.1 Probability Density Functions Using a Parametric
Probabilistic Approach. An example of model parametric uncer-
tainty is shown to illustrate how this affects the uncertainty in the
natural frequencies of the 2DOF mass-spring-damper system.

The parametric probabilistic approach requires the assumption
of the PDFs of the uncertain input parameters and the propagation
of these uncertainties through the equations of motion. Given the
unavailability of information, uniform priors were used for both
the stiffness, with k1 � Uð0:95; 1:05Þ (N/m) and the mass m2 �
Uð0:0475; 0:0525Þ (kg). A Monte Carlo simulation with 10,000
ðk1;m2Þ pairs of independent samples was used to obtain the

Fig. 2 2DoF mass-spring-damper system

Fig. 3 Probability density functions of modal parameters subject to parametric uncertainty: ������������ mean value;
———— 95th percentile; _______ deterministic value: (a) first natural frequency and (b) second natural frequency
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PDFs of the natural frequencies of the 2DOF mass-spring-damper
system, which are shown in Fig. 3. In this specific example, the
computational complexity of the model is low; however, if a more
complex model had been used, the computational cost required to
obtain estimates of the modal properties would have been substan-
tially higher.

It is well-known that if different parametric distributions would
have been used (e.g., Lognormal), the resulting PDFs of the natu-
ral frequencies would have been different. Therefore, this
approach would require the identification of the uncertainty
parameters, the knowledge of the correct parametric uncertainty
affecting the system, and the availability of the physics-based
model used to propagate the uncertainty in each run of the model
to obtain the modal parameters of the system.

4.1.2 Probability Density Functions Using the Proposed
Approach. With the proposed approach, no previous knowledge
on the uncertainty of specific parameters is needed as described in
case (i) of Sec. 2.3. The statistics of the modal parameters (natural
frequencies, damping ratios, and modal shapes) are investigated for
two cases: low (dS ¼ 0:001) and high dispersion parameter
(dS ¼ 0:3). These two values correspond to a low and a high level
of uncertainty, without explicitly identifying the source of this
uncertainty. For this numerical case, the state order of the identified
system is equal to four.

The free decay of the system is simulated for thirty seconds and
the values of _x1 and _x2 (that are the velocity of mass 1 and mass 2,
respectively) are recorded using a sampling frequency of 10 Hz. The
physics-based model is not needed in any of the following steps.
These velocity signals shown in Fig. 4 are used to construct the Han-
kel Matrix Hrs described in Eq. (1) for Hrsðk � 1Þ and HrsðkÞ. The
values of r and s in Eq. (1) have been set to be equal to 50.

The algorithm’s steps 3–7 in Sec. 3 are run 10,000 times to pro-
duce each time a realization of the random matrices Ŝðk � 1Þ and
ŜðkÞ. For the modal shapes, the mean value, the deterministic
value, and the 95th percentile bounds were calculated. To ensure

Fig. 4 Velocity of the first and second mass subject to speci-
fied initial conditions

Fig. 5 Probability density functions of modal parameters for a dispersion value: dS 5 0:001: ������������ mean value;
———— 95th percentile; _______ deterministic value: (a) first natural frequency, (b) second natural frequency,
(c) first damping ratio, and (d) second damping ratio
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that convergence was achieved after those 10,000 simulations, the
KL-divergence value of the PDFs of each identified parameter
with respect to the PDFs for incrementally increasing number of
simulations was calculated. It was found that when comparing the
distributions obtained from 5000 versus 10,000 simulations, the
KL-divergence value was approximately equal to zero for each
identified parameter.

The PDFs in Figs. 5 and 6 are obtained using a 200 points ker-
nel smoothing function with the ks density function in MATLAB

[28] on the samples (f ; f;/) produced by the combined ERA and
RMT method.

In this section, the general qualitative trends on these results are
stated. In Sec. 5, the physical significance and limitations of these

Fig. 6 Probability density functions of modal parameters for a dispersion value: dS 5 0:3: ������������ mean value;
———— 95th percentile; _______ deterministic value: (a) first natural frequency, (b) second natural frequency, (c)
first damping ratio, and (d) second damping ratio

Fig. 7 Modal shapes for a dispersion value dS 5 0:001: (a) first modal shape and (b) second modal shape
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results obtained are explained by using new simulations where the
dispersion parameter value and the Hankel Matrix size is varied.

The modal parameter f ; f PDFs shown in Fig. 5 and the modal
shapes / in Fig. 7 are calculated for a given dispersion parameter
value dS ¼ 0:001. The dispersion parameter determines the ran-
domization level of the matrices Ŝðk � 1Þ and ŜðkÞ, for this case a
low level of uncertainty is introduced. As it was expected, for this
level of randomization, the deterministic and mean values of the

uncertain modal parameters are found to be approximately equal.
The PDFs are also found to be fairly symmetrical.

For the case with higher dispersion value (dS ¼ 0:3), which cor-
responds to higher uncertainties for the identified parameters
(Figs. 6 and 8), the PDFs of the identified modal parameters
are found to be slightly asymmetrical. Negative values in the
support of the PDF are also found for the first damping
ratio. The mean and deterministic values for the modal shapes

Fig. 8 Modal shapes for a dispersion value: dS 5 0:3: (a) first modal shape and (b) second modal shape

Fig. 9 Contour plots of natural frequencies and damping ratios of their mean values: (a) first natural frequency, (b)
second natural frequency, (c) first damping ratio, and (d) second damping ratio
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are shown to be quite similar with a slightly higher
deviation between them for the second mode. The 95% percen-
tile bounds increase as the mode number increases. These effects
are also shown in Figs. 9 and 10 and are explained in detail in
Sec. 5.

As expected, higher levels of uncertainty are seen for the case
with higher dispersion value. In this case, there is a higher devia-
tion between the mean and deterministic values, and the range of
the 95th percentile bounds increases compared to the case with
low dispersion value.

Fig. 10 Contour plots of natural frequencies and damping ratios of their 95% confidence interval divided by their
mean values: (a) first natural frequency, (b) second natural frequency, (c) first damping ratio, and (d) second damp-
ing ratio

Fig. 11 Probability density functions of modal parameters given equivalent dispersion parameter value
dS 5 0:098: ������������ mean value; ———— 95th percentile; _______ deterministic value: (a) first natural frequency and (b)
second natural frequency
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It should be noted that slight discrepancies between the mean
identified values and the deterministic values of the system
appear. These discrepancies are observed in the form of a shift in
the mean identified values. This shift is shown in Fig. 9 where the
mean identified values are affected by the dispersion parameter
and the size of the Hankel Matrix. The shapes of PDFs of the
identified parameters change significantly, and it has to be noted
that although the mean is usually a good descriptor, it may not be
the best for cases with high dispersion values.

It has been found, that as expected, when a small dispersion
parameter dS is considered, results are close to the deterministic
values.

4.1.3 Comparison of Results. For the parametric uncertainty
example in Sec. 4.1.1, the resulting densities of the modal parame-
ters are obtained from the prior knowledge of the uncertain physi-
cal parameters k1 and m2, by propagation of uncertainties through
the physical model. Therefore, for this parametric approach,
access to the model is required, and the computational cost
involved in the propagation of that parametric uncertainty is
dependent on the complexity of that model.

For the nonparametric uncertainty method in Sec. 4.1.2, a phys-
ical model is not required for calculating the PDFs of the modal
parameters. Calculations are based on the knowledge of the dis-
persion parameter value, and measurements obtained from either
a prototype or numerical ‘measurements’ from the nominal
model.

The main difference between the parametric and nonparametric
method is how the source of uncertainty is defined [1]. In the para-
metric method, each source of uncertainty needs to be specified;
however, for the nonparametric approach, it is not specified. As
shown in Example 4.1.2, the overall uncertainty of the system is
encompassed in the dispersion parameter.

The dispersion parameter value that yields the same coefficient
of variation (2%) of the first natural frequency for the parametric
case, is calculated using the maximum likelihood method [1] as
described in case (ii) in Sec. 2.3.

This equivalent dispersion parameter is dS ¼ 0:098. By com-
paring Figs. 4 and 11, it is possible to observe that the PDF of the
first natural frequency is similar to the one obtained using the
parametric probabilistic approach. However, the second natural
frequency obtained from the proposed approach has a higher coef-
ficient of variation compared to that obtained from the parametric
probabilistic approach. This is expected, since the dispersion
parameter would inherently account for additional model-
parameter uncertainties. The parametric probabilistic approach is
not capable of considering those uncertainties. Even though the
above is only shown for the parametric case of model parameters
(stiffness and mass), the same methodology can be applied for
other cases such as the case of known measurement noise.

Fig. 12 Schematic representation of the cantilever system

Fig. 13 Probability density functions of natural frequencies for a dispersion value: dS 5 0:001:. ������������ mean
value; ———— 95th percentile; _______ deterministic value: (a) first natural frequency, (b) second natural fre-
quency, (c) third natural frequency, and (d) fourth natural frequency
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However, the user may believe that substantial modeling errors
are still present and would be dominating the overall uncertainty.
Therefore, the user may represent the additional level of uncer-
tainty with dA ¼ 0:202 to yield an overall dispersion parameter of
dS ¼ 0:3 as shown in the example in Sec. 4.1.2.

As a result, the sources of uncertainty for the parametric and the
nonparametric methods are different. Therefore, the overall results
obtained from these two methods are not directly comparable. It
should be noted that the method to be chosen is dependent on the
information available on the system and the sources of uncertainty.

4.2 Cantilever System. The cantilever system shown on
Fig. 12 is the continuous system under investigation in this second
example.

A force F (triangular pulse of length 4 ms and maximum ampli-
tude of 2000 N) is used to excite the tip of a cantilever beam mod-
eled as a rectangular Euler–Bernoulli beam with uniform density.
The following geometric and material properties were used: L
(length)¼ 1.5 m; b (base)¼ 0.05 m; h (height)¼ 0.03 m; q(densi-
ty)¼ 7850 kg/m3; E(Young’s modulus)¼ 70 GPa. The cantilever
has eight velocity sensors that are at equally spaced intervals
(Fig. 12). The velocity values are recorded over time with a sam-
pling frequency of 1000 Hz in order to capture the frequency con-
tent well-excited by the triangular pulse. As a rule of thumb, the
modes of the system that are below a maximum frequency given
by 1.5 times the inverse of the pulse duration are used in the simu-
lation. Therefore, for this system, the number of modes that are
used are those with frequencies below 375 Hz.

The response of the continuous system to the force F is numeri-
cally simulated using only the first five modes. These free vibra-
tion responses are the signals used to construct the Hankel
Matrices Hrs described in Eq. (1) for Hrs (k–1) and Hrs (k). The
values of r and s on the Hankel matrices have been set to be equal
to 100.

The natural frequencies and damping ratios that correspond to
the specified properties of the cantilever system are given by:
f1¼ 6.4 Hz, f2¼ 40.3 Hz, f3¼ 112.9 Hz, f4¼ 221.2 Hz,
f5¼ 365.6 Hz, f1¼ f2¼ f3¼ f4¼ f5¼ 0.1.

For this numerical case, the order of the identified system is
assumed to be equal to eight. This corresponds to the assumption
that the measured signals are given by the contribution of a model
that is described entirely by four modes. A lower order model,
than the one that generated the data, has been chosen to observe if
the identified modal parameters distributions are affected by this
choice.

The statistics of the modal parameters (natural frequencies,
damping ratios and modal shapes) are obtained for two cases:
low, dS ¼ 0:001, and high dispersion parameter, dS ¼ 0:075. The
same KL-divergence checks and PDF estimations performed in
Sec. 4.1 were also carried out for this system.

The PDFs of the modal parameters shown in Figs. 13–15 are
calculated using the method described in Sec. 3 for a dispersion
parameter value dS ¼ 0:001. With this small dispersion value, it is
shown that for the identified modal parameters the deterministic
value is approximately equal to the mean value and the PDFs are
also fairly symmetrical. The range of the 95% percentile bounds

Fig. 14 Probability density functions of damping ratios for a dispersion value: dS 5 0:001: ������������ mean value;
———— 95th percentile; _______ deterministic value: (a) first damping ratio, (b) second damping ratio, (c) third
damping ratio, and (d) fourth damping ratio
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also appears to be small but it is increased as the mode number
increases. It was found that these results follow the same general
trend described for the previous case in Sec. 4.1.

For the case with higher dispersion value (dS ¼ 0:075), which
corresponds to a case with higher uncertainties for the identified
parameters (Figs. 16–18), the natural frequencies PDFs are asym-
metrical. The first and second damping ratios show negative val-
ues in the support of the PDF. As explained in Sec. 3, this
phenomenon occurs as a consequence of the randomization pro-
cess of the method. The appearance of negative values may occur
because the realizations of the ensemble may produce damping
matrices that are nonproportional. The mean and deterministic
values of the natural frequencies show minor discrepancies. How-
ever, for the modal shapes, larger discrepancies are found between
the mean and deterministic values. Assuming that classical damp-
ing/proportional damping is observed, the modal shapes obtained
are normalized by defining a unit modal amplitude for the eighth
node of the system. In some rare occasions, damping may be
potentially nonproportional and therefore, considering real mode
shapes may not be optimal [29]. The 95% percentile bounds
increase as the mode number increases. The results of this case
are also found to follow the general trend found in Sec. 4.1, and
their significance is also discussed in Sec. 5.

Also, in this numerical application, higher deviation between
the mean and deterministic values is seen for the case with
higher dispersion value, and the range of the 95th percentile
bounds increases compared to the case with low dispersion
value. The PDF shapes of the identified parameters change
significantly with respect to the case with lower dispersion
values.

In this example, the physical model that generated the signal, and
the identified model have a different state order. The results show
that for the chosen assumption of the state order of the model identi-
fied, the obtained results are not affected by the truncation order.

5 Analysis of the Effect of the Dispersion Value and

the Hankel Matrix Size on the Modal Parameters

This section further investigates the two-degree-of-
freedom system (Sec. 4.1) and the cantilever system (Sec. 4.2)
models.

The examples were chosen in such a manner that the similar-
ities and common trends between them, when the method
described in Sec. 3 is applied, can be observed. For the 2DOF sys-
tem the state order chosen for identification purposes corresponds
to the same order of the system that generated the data. However,
for the cantilever system, the state order of the identified model
(eight) is lower than the order of the physical model that generated
the signal. The numerical results obtained when the state order is
different to the state order that generated the signal in Sec. 4.2
show that the identified modal parameters are still of significance
and have not been largely affected either by the truncation order
or the randomization process in this example. This is because the
loading was such that primarily the first four modes were excited.

For both simulations, it is observed that for low levels of disper-
sion parameter values, the variability introduced in the modal
parameters is low. The mean identified modal parameters, the
identified parameters from the unperturbed Hankel matrix and the
modal parameters used to simulate the velocity signal are

Fig. 15 Mode shape uncertainties for a dispersion value: dS 5 0:001: (a) mode 1, (b) mode 2, (c) mode 3, and (d) mode 4
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approximately equal. However, both examples demonstrate that
high levels of dispersion value may lead to a shift between the
mean of the occurring distribution of natural frequencies and
damping ratios and the underlying nominal values. The uncer-
tainty introduced on the modal parameters is higher than the one
introduced by lower levels of dispersion value.

Therefore, further simulations of the two-degree-of-freedom
system are used to investigate the physical significance and limita-
tions of the results obtained from the application of the method
described in Sec. 3. Contour plots for the two-degree-of-freedom
system have been created for varying values of dispersion parame-
ter dS and numbers of columns/rows used to construct the Hankel
Matrix and are presented in the Fig. 9. In Fig. 9, the same number
of rows and columns was used, and it corresponds to the number
value in the horizontal axis of the figure and the data used are
taken from the beginning of the signal. The mean contour plots
(Fig. 9) show that there are regions where the mean values of the
uncertain parameters identified are the same as the deterministic
value of the system. However, if the dispersion value is significant
and the number of columns/rows used in the Hankel is low, a bias
on the average value of the parameters identified can be observed.

For the particular case in Fig. 9, the mean values of the identi-
fied parameters decrease as the dispersion value increases and as
the number of columns/rows decreases. This is because the RMT
nonparametric method introduces a nonphysical coupling when
constructing the random matrices used in steps 3 and 6 of Sec. 3.
In this case, the nonphysical coupling may be due to the coupling
of the measured signals at the different observed positions. This

nonphysical coupling was observed before in Ref. [21] when a non-
parametric approach was used for the modeling of uncertainties of
mechanical systems. RMT was applied in Ref. [21] to the mass and
stiffness matrix, resulting in remote coupling of nonadjacent
degrees-of-freedom as a result of the randomization process.

Therefore, it is found that high values of dispersion parameter
affect the underlying physical system to be identified.

It can be noted that in principle, the dispersion parameter
should be specified as a function of the Hankel Matrix size and
cannot be defined independently. That is, the dispersion parameter
for a given Hankel matrix size should be defined. To explain the
shape of the 95% Confidence Interval/Mean contour plots shown
in Fig. 10, two different effects should be considered. First, as
the number of points used to construct the Hankel Matrix
increases (i.e., more time steps of the measured signals are
used), and for a fixed level of noise, the identified values will
tend toward the deterministic value up to a limit where the num-
ber of data points will not increase the accuracy of the identified
value. Second, the effect of keeping the dispersion parameter
fixed and increasing the number of columns/rows rs of the Han-
kel Matrix, is that the uncertainty of the system is reduced, as
shown in Fig. 10. This double effect is more significant for an
identified system with greater dispersion value and a smaller
number of columns/rows rs of the Hankel matrix than for a sys-
tem with higher number of columns/rows rs of the Hankel matrix
and the same level of dispersion value. This shows that the 95%
Confidence Interval/Mean values are less sensitive to changes in
the dispersion value when Hankel matrices of large size are

Fig. 16 Probability density functions of natural frequencies for a dispersion value: dS 5 0:075: ������������ mean
value; ———— 95th percentile; _______ deterministic value: (a) first natural frequency, (b) second natural fre-
quency, (c) third natural frequency, and (d) fourth natural frequency
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used. This is in fact the reason that the 95% confidence interval/
mean contour plots have this specific shape and both effects are
observed.

A complementary investigation is performed as shown in
Fig. 19, considering that the signal used to construct the Hankel
matrix is contaminated by white Gaussian noise. A Monte Carlo
simulation with 10,000 samples is used to build the contour plot
on Fig. 19, that has as its y-axis varying levels of standard devia-
tion of a white Gaussian noise contaminated signal and as the x-
axis the number of columns/rows used to construct the Hankel
matrix. For a small number of columns/rows the contour lines
have a positive gradient. It is also seen that in Fig. 19, after the
number of rows/columns increase to a specified value that
depends on the standard deviation of the white Gaussian noise,
the contour lines become horizontal. In Fig. 19, the first effect
described previously on the value of the 95% confidence interval/
mean in Fig. 10 is also clearly shown.

The uncertainty introduced by the dispersion parameter affects the
modal parameters’ uncertainty differently. As the dispersion value is
increased, the uncertainty for both the natural frequency and the
damping ratio estimation is shown to decrease if the mode number is
also increased, as shown in Fig. 5 in Sec. 4.1 and also in Sec. 4.2 for
both Figs. 16 and 17. Therefore, the highest levels of uncertainty are
found on the lower mode number natural frequencies and damping
ratios as shown in Figs. 5, 6, 13, 14, 16, and 17. For the cases studied,
the modal shape uncertainty is observed to increase as the mode
number is increased as shown in Figs. 8, 15, and 18.

6 Conclusions

This paper presents a procedure for the evaluation of the PDFs
of the modal parameters for an ensemble of nominally identical
structures when there is only access to a single member of the
ensemble, and additional knowledge on the statistical properties
of the population expressed through the value of a known disper-
sion parameter is also available. Given a set of measurements or
simulated data, acquired from either a prototype or mathematical
model, respectively, a discrete time state-space model description
is built. The normalized positive definite ensemble [1,11] is used
to randomize the matrix calculated by the multiplication of the
Hankel matrix by its own conjugate transpose. ERA is applied to
identify the modal parameters (natural frequencies, damping
ratios, and modal shapes), for each realization of the random
matrix. The results of each realization are used to build the PDFs
of the modal parameters of the ensemble.

This method is developed to evaluate the modal parameter dis-
tributions using the dispersion parameter to account for the uncer-
tain dynamic response across nominally identical structures
originated by uncertainties in the manufacturing processes of
structural components, modeling errors, boundary conditions, and
assemblage. Different a priori values of the dispersion parameter
are used to evaluate the effect of dispersion value on the resulting
PDFs. These distributions are important for the performance assess-
ment of the designed structures, as this would enable the selection
of designs that are robust to these uncertainties, avoiding extensive

Fig. 17 Probability density functions of damping ratio for a dispersion value dS 5 0:075: ������������ mean value;
———— 95th percentile; _______ deterministic value: (a) damping ratio of the first resonant peak, (b) damping
ratio of the second resonant peak, (c) damping ratio of third resonant peak, and (d) damping ratio of the fourth
resonant peak
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modifications of the manufactured product. The modal parameter
distributions may also be applied in anomaly detection cases.

The main advantage of this approach is that it does not require
to specify the different sources of uncertainties in advance. The
uncertainty of the parameters does not have to be propagated
through the equations of motion, becoming this of great advantage
when the model of the system is highly complex or unknown, a

circumstance that may introduce modeling errors that affect the
overall results. In these circumstances, it may be more convenient
to build the ensemble from the measurements of a prototype
structure.

Numerical studies were conducted on a two mass-spring-
damper and a cantilever system to evaluate the PDFs of the natu-
ral frequencies and the damping ratios. The mean and 95th per-
centile bounds of the modal shapes are also calculated. The study
illustrated the performance of the methodology for a wide range
of dispersion parameter values. The results obtained from this
method generalize well independently of the chosen system (dis-
crete versus continuous system). The physical consequences of
the introduction of high values of dispersion were highlighted. It
was found that the use of RMT introduces in the calculation a
nonphysical behavior, which affects the PDFs of the modal
parameters identified. An example of the nonphysical behavior
introduced by the method is the appearance of negative values in
the support of the PDF of the first damping ratio in the mass-
spring-damper system. It was also shown that the state order of
the identified system does not affect the identified modal parame-
ters in the cantilever system.

Contour plots were produced to show the effect in the identified
parameters’ uncertainties of the number of rows/columns used in
the Hankel Matrices and the dispersion parameter values. When
the dispersion value is significant, and the number of columns/
rows used in the Hankel is relatively low, the contour plots of the
identified mean values show a systematic shift. This systematic
bias increases when either the dispersion value is increased or the
number of columns/rows is decreased. Two different effects can

Fig. 18 Mode shape uncertainties for a dispersion value: dS 5 0:075: (a) mode 1, (b) mode 2, (c) mode 3, and (d)
mode 4

Fig. 19 Contour plot of the 95% confidence interval divided by
the mean value for the first natural frequency as a function of
the number of the number of columns or rows and the standard
deviation of the white Gaussian noise
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be observed on the 95% Confidence Interval/Mean contour plots.
The first one is that increasing number of points used in the Han-
kel Matrix, the identified values will tend toward the deterministic
value, and the second is that when fixing the dispersion parameter
value and using larger values of columns/rows, the uncertainty of
the system is being reduced. Therefore, the uncertainty introduced
in the modal parameters is both dependent on the size of the Han-
kel Matrix and on the dispersion parameter value.

It is also shown that the uncertainty associated with the natural
frequencies and damping ratios is decreased as the mode number
increases and/or the dispersion parameter value is increased.

For the case of parametric uncertainty in Sec. 4.1.1, the PDFs
of the modal parameters are calculated propagating the prior
knowledge of those modal parameters through a physical model.
For the nonparametric case in Sec. 4.1.2, only measurements
(numerically obtained) from the structure and the value of a dis-
persion parameter are available. The main difference between the
methods is that they depend on how the source of uncertainty is
defined.

The prior estimation of the dispersion parameter dS is illustrated
for three cases. The first case assumes that no prior data are avail-
able; then, the dispersion parameter dS is used as variable in a sen-
sitivity analysis to assess the stochastic response of the model.
The second and third cases assume that prior data are available.
Given the observed data, the value of the dispersion parameter
value can be calculated. However, for the third case, there is also
an additional level of uncertainty present that is represented by
and additional term that may be added to the dispersion parameter
value calculated from the observed data.

Future work will focus on the estimation of the dispersion
parameter value for cases when experimental measurements of
the ensemble are available. Another potential direction of interest
is the use of different SI methods to determine the compatibility
of different experimental conditions of the system tested with the
approach proposed in this paper.
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Appendix: Eigensystem Realization Algorithm

The time evolution of a linear, time invariant, dynamic system
can be described using a discrete-time state-space representation

xkþ1 ¼ Axk þ Buk (A1)

yk ¼ Cxk þ Duk (A2)

Where xk 2 Rn, yk 2 Rp, and uk 2 Rm are, respectively, the state
vector, collected output and the value of the control input which
remains constant between times tk and tkþ1. Matrices A 2 Rnxn,
B 2 Rnxm, C 2 Rpxn, and D 2 Rpxm are the system, input, output
and feedthrough matrices, respectively.

The ERA [22] is a system identification method that is used to
estimate the modal parameters of a system by evaluating the so-
called transformed matrices to the modal-space. To evaluate the
matrices A, B, and C, ERA uses an output vector yk that contains
the measurements read in p sensors at the different times tk for a
system excited by an impulse at time zero and assuming zero ini-
tial conditions. ERA obtains a transformation of Eqs. (A1) and
(A2) that has as its matrices ~A, ~B and ~C which correspond to the
state vector ~xk. The eigenvalues of the matrix ~A and the sensor-
based modal shapes in Eq (A9) are transformation invariant and
can therefore be used to obtain the eigenvalues and the sensor-

based modal shapes of the original system that generated the data.
Subsequently, the eigenvalue decomposition of the matrix ~A
(Eq. (A3)) is used to determine the discrete time eigenvalues ki

and the corresponding set of eigenvectors vi from [22]

~Avi ¼ kivi (A3)

And the following matrix K and vector V can then be obtained
[22]:

K 5 diagð k1; k2; … kn Þ (A4)

V ¼ ½ v1; v2; … vn � (A5)

The eigenvalues of the matrix ~A can then be used to calculate the
eigenvalues kcðiÞ, natural frequencies and damping factors of the
equivalent continuous in time system using Eqs. (A6), (13), and
(15), respectively, [22]

kc ið Þ ¼
ln kið Þ

Dt
(A6)

where Dt is the sampling period. The sensor-based modal shapes
are then obtained using Eq. (14) [22].

The steps required to obtain the ~A, ~B, and ~C matrices are:
Step 1: Build the Hankel matrix Hrsðk � 1Þ of size r by s is

built that contains time series data from measurement data using
Eq. (1) [23].

Step 2: Build the matrix HrsðkÞ, also called the shifted Hankel
matrix which is one-time-step into the future of the matrix
Hrsðk � 1Þ

HrsðkÞ ¼

ykþ1 ykþ2 … ykþs

ykþ2 ykþ3 … ykþsþ1

:
:

:
:

:
:

yrþk yrþkþ1 … yrþkþs�1

2
66664

3
77775 (A7)

Step 3: Obtain the approximate expression of the Hrsðk � 1Þ. By
using the singular value decomposition, the Hankel matrix
Hrsðk � 1Þ can be expressed as [23]

Hrsðk � 1Þ ¼ URV�T (A8)

In Eq. (A8), �T denotes complex conjugate transpose, matrices
U 2 C

rxr and V 2 C
sxs are unitary, have orthonormal columns,

and matrix R 2 Rrxs has at most s nonzero elements in its diago-
nal. The exact expression of Eq. (A8) can also be written as [23]

URV�T ¼ ½ ~U Ut �
~R 0

0 Rt

� �
~V
�T

V�Tt

" #
(A9)

Where ~U , ~R, and ~V
�T

denote truncated matrices containing the
dominant singular values and vectors, and where Ut, Rt and V�Tt
contain the nondominant singular values and vectors that are dis-
carded in the approximation [23]

Hrsðk � 1Þ � ~U ~R ~V
�T

(A10)

If the Hankel matrix Hrsðk � 1Þ does not have full rank, then ~R
may contain some zero singular values and the Eq. (A10) will be
exact. However, if ~R contains a number of nonzero singular val-
ues smaller than the rank of the Hankel Matrix, then the expres-
sion of Eq. (A10) is only approximate.

Step 4: In this step the realization matrices of the system are

estimated using the ~U , ~R, and ~V
�T

matrices as [23]
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~A � ~R
�1=2 ~U

�T
HrsðkÞ~V ~R

�1=2
(A11)

~B � ~R
1=2 ~V

�T Im 0m

0m 0m

" #
(A12)

~C � Ip 0p

0p 0p

� �
~U ~R

1=2
(A13)

where 0p and Ip are, respectively, matrices zero and identity of
size p	 p.

When the matrices ~A, ~B, and ~C are used in a system of equa-
tions similar to Eqs. (A1) and (A2) become the discrete time
modal-space representation of the dynamic system [23].

Using ERA, and the matrices ~A and ~C, deterministic values of
the modal parameters of a system are obtained for a given set of
measurements. However, these measurements might be affected
by different sources of uncertainties such as sensor noise. The
existence of those uncertainties is considered in ERA by averag-
ing out the noise of the signals using several measurements to
obtain the deterministic values of the modal parameters.
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