
T H E S TAT E S PA C E
F O R M U L AT I O N O F A C T I V E

I N F E R E N C E
towards brain-inspired robot control

sherin grimbergen

colophon

Online version typeset with LATEX classicthesis template, developed by
André Miede. Available at:

https://bitbucket.org/amiede/classicthesis/

https://bitbucket.org/amiede/classicthesis/

The State Space Formulation of
Active Inference

Towards Brain-Inspired Robot Control

Master of Science Thesis

For the (double) degree of Master of Science in

Systems and Control
&

Mechanical Engineering

at Delft University of Technology

Sherin Grimbergen

October 2017 - January 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University
of Technology

Copyright © Delft Center for Systems and Control (DCSC) & Cognitive Robotics (CoR)
All rights reserved.

Delft University of Technology

Departments
Delft Center for Systems and Control

and
Biomechanical Engineering

The undersigned hereby certify that they have read and recommend to the
Faculty of Mechanical, Maritime and Materials Engineering (3mE) to accept a

thesis entitled

The State Space Formulation of Active Inference

by
Sherin Grimbergen

in partial fulfillment of the requirements for the degrees of

Master of Science Systems and Control

Master of Science Mechanical Engineering

Dated: January 29, 2019

Supervisor(s):
Prof. M. Wisse

Dr. P. Mohajerin Esfahani

Reader(s):
Dr. S. Baldi

Dr. F.A. Oliehoek

“The improvement of understanding is for two ends: first,
our own increase of knowledge; secondly, to enable us to
deliver that knowledge to others.”

— John Locke —

I dedicate this work to the world,
secretly envisioning it as the start of a revolution.

A B S T R A C T

This thesis provides an exposition of the theory of Active Inference in
a control theoretic context. Active Inference is a remarkably powerful
neuroscientific theory that unifies many characteristics of the biolog-
ical brain. As such, Active Inference provides a valid inspiration in
search of improvements in bio-inspired robot control algorithms. The
literature on Active Inference however is narrow and complex. The
goal of this thesis is to open the door research of Active Inference
in robotics, by applying the theory to linear state space systems and
exposing the relations and differences with established engineering
paradigms.

We provide a detailed account of several critical details, mainly the
concept of generalized motions, that are commonly not understood
from the scientific literature. A start in the performance analysis of
the algorithm is made, by studying the effect of changes in several
tuning parameters. Additionally, with Active Inference reformulated
as a state space control system, it is shown that standard behavior
such as stabilization and tracking can be achieved.

IX

A C K N O W L E D G E M E N T S

First of all, I would like to praise my supervisors for pushing me to
get the most out of this work. I had never expected to understand this
matter in so much detail when I started. Besides, through this project
I have attained skills of great personal value.

I’m grateful to my family for being proud of the work that I do, this
gives me the motivation and courage that I need in life to pursue my
dreams.

Thanks Anoek, Gokul, Stephan and all my climbing friends, who kept
reminding me that this work needed to be finished at some point and
who provided me an outlet for my daily celebrations as well as frus-
trations.

And thank you Rianne, for inspiring me with your discipline and per-
severance. You enormously helped me get through the home stretch
of this endeavour.

XI

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 1

1.3 Report Overview . 3

1.4 Terminology and Notations 3

I background 5

2 the free energy principle 7

2.1 What Is Life? . 7

2.2 The Free Energy . 10

2.3 Free Energy Minimization 12

3 generalized motions 17

3.1 Differentiable Noise . 17

3.2 Generalized Motions . 18

3.3 The Use of Generalized Motions 21

4 active inference 25

4.1 Two Sides of the Markov Blanket 25

4.2 The Laplace Encoded Free Energy 27

4.3 Active Inference: Prediction Error Minimization 29

4.4 A Conceptual Overview 32

II lti state space formulation 35

5 generative model 37

5.1 The Generative Process 37

5.2 The Generative Model 37

5.3 The Control Prior . 39

6 forward model 41

6.1 Derivation from Standard Process 41

6.2 Derivation from Generalized Process 42

7 filter and controller dynamics 43

7.1 The Reformulated Free Energy 43

7.2 The Filtering Dynamics 43

7.3 The Control Dynamics 44

7.4 Closed Loop Model . 45

7.5 Summary . 47

8 an example 49

8.1 The Generative Process 49

8.2 Control System Setup . 49

8.3 Simulation . 51

III performance analysis 53

9 parameter tuning 55

XIII

9.1 Learning Rates . 55

9.2 Embedding Order . 57

9.3 Precision Matrices . 58

10 equivalence with optimal control 61

10.1 Simulation: LQR vs. Active Inference 61

10.2 Theoretical Proof: A Primer 62

11 stability and tracking 65

11.1 Stabilization: An LMI Approach 65

11.2 Tracking . 69

IV conclusions 71

12 summary and conclusions 73

12.1 Summary . 73

12.2 Conclusions . 74

13 recommendations 77

V appendix 79

a selected proofs and derivations 81

a.1 Free Energy Upper Bound Proof 81

a.2 The Temporal Variance Matrix 81

a.3 The Generalized Measurement 83

a.4 Free Energy Expectation 85

a.5 Active Inference with Markovian Noise 85

b matlab examples 87

b.1 Generating Smooth Noise 87

b.2 Comparing Primes and Dots 88

b.3 Mass Spring Damper Simulation 89

bibliography 93

XIV

L I S T O F F I G U R E S

Figure 1 Graphical representation of a Markov blanket. 8

Figure 2 Flowchart: From VBI to Active Inference. 15

Figure 3 Generalized motions versus derivatives 23

Figure 4 Block scheme of Active Inference 31

Figure 5 Closed loop block scheme of Active Inference. 45

Figure 6 Mass-spring-damper control by Active Inference 52

Figure 7 Effects of changes in learning rates 56

Figure 8 Instability by wrong learning rates 57

Figure 9 Higher order motions behavior 58

Figure 10 Effects of embedding order with rough noise. . 59

Figure 11 Effects of embedding order with smooth noise. 59

Figure 12 Effects of precision beliefs Πω̃. 60

Figure 13 Effects of precision beliefs Πz. 60

Figure 14 Active Inference compared to LQR 63

Figure 15 Active Inference stabilizing an unstable system. 68

Figure 16 Pure generative model filtering 70

Figure 17 Closed loop tracking performance 70

Figure 18 Influence of γ on smoothness of noise. 88

L I S T O F TA B L E S

Table 1 Tuning parameters of Active Inference 48

Table 2 Parameters and hyperparameters of mass-spring-
damper example. 49

Table 3 Parameters and hyperparameters of the simu-
lation in Figure 9. 57

Table 4 Parameters and hyperparameters of the simu-
lation in Figure 14. 62

Table 5 Parameters and hyperparameters of the simu-
lation in Figure 15. 67

Table 6 Parameters and hyperparameters of the simu-
lations in Section 11.2. 69

L I S T I N G S

Listing 1 MATLAB code: smoothing Gaussian noise. . . 87

Listing 2 MATLAB code: comparing dots and primes . . 88

Listing 3 MATLAB code: mass spring damper simulation. 89

XV

L I S T O F S Y M B O L S

The list below describes symbols that are frequently used within the
body of this document. Subscripts will be used to indicate specific
cases of each symbol. As scientific literature on the Free Energy Prin-
ciple and Active Inference is inconsistent, this list is also intended to
set a standard for future work:

Agent Components:

κ, ρ Learning rates

D Motion shift matrix

F Free energy

µ Mean of Gaussian; expectation of x̃

Π Precision matrix, i. e., Σ−1

Σ Covariance matrix

σ2 Noise variance

K̃ Pole-placement term in ξ

ε Prediction error

ξ Prior variable in generative model

ζ Set of sufficient statistics of recognition density q(ϑ)

G Forward dynamic model

m Model that an agent employs (of its world)

p Embedding order of generative model

p(x̃, ỹ) Generative model

q(ϑ; ζ) Recognition density with sufficient statistics ζ

V(γ) Temporal variance matrix

Generative Process:

γ Roughness parameter of noise

λ The set of hyperparameters, {γ,Σ}

ω (non-Markovian) noise on states x

ρ(t) Noise correlation function

XVI

θ Set of parameters of generative process

x̃ Generalized state

ϑ Union of x̃, θ and λ; the causes

A State matrix

B Input matrix

C Output matrix

f(·) Mapping from states x to their derivatives ẋ

g(·) Mapping from true states x to sensory data s

h(·) Mapping from states v to their derivatives v̇

t Time

u Action of agent; control signal

v Autonomously evolving states; disturbances

x State of world; hidden state

y Observation received by agent

z (non-Markovian) noise on observation y

XVII

A C R O N Y M S

DEM Dynamic Expectation Maximization

EM Expectation Maximization

FEM Free Energy Minimization

FEP Free Energy Principle

GF Generalized Filtering

KL Kullback-Leilber

LMI Linear Matrix Inequality

LTI Linear-Time-Invariant

LQR Linear Quadratic Regulator

MFA Mean-Field Approximation

LQG Linear Quadratic Gaussian control

POMDP Partially Observable Markov Decision Process

SDP Semi-Definite Programming

SPM Statistical Parametric Mapping

VBI Variational (Bayesian) Inference

VF Variational Filtering

XVIII

1
I N T R O D U C T I O N

1.1 motivation

Research on intelligent robotic is becoming increasingly important in
recent decades, and it seems likely for this trend to continue until
robotic intelligence exceeds that of humans.

However, state of the art robot intelligence is still nowhere near
human-level [59]. Human intelligence still prevails in terms of com-
plex inference, data-efficient learning, motor capabilities (in terms
of robustness and generality) and many more aspects. In search of
improvements, it is useful to study how intelligence in biological
systems is created. This biologically inspired approach has yielded
great improvements before, such as artificial neural networks [51], re-
inforcement learning [72], and most recently deep learning [68].

A very powerful theory about biological behavior is emerging in
neuroscience recently: Active Inference. Active Inference is a result
of the Free Energy Principle (FEP). The FEP provides a very principled
account of biological life, or even bolder, the behavior of any self-
organizing system. The theory, which is relatively new – the first pa-
pers appeared around 2003 [31–33]) – has proven to be the most uni-
fying theory about the brain currently known. Its explanatory power
exceeds any previous account of the brain’s (of the neocortex’ to be
precise) information processing mechanism.

Essentially, the main premise of Active Inference is that the main
mechanism behind biological behavior (action, perception and learn-
ing) is prediction error minimization. It could be possible to mimic
biological intelligence in robots through this mechanism. For this rea-
son it is very interesting to study applications of Active Inference in
robotics. This thesis provides a starting point for that endeavour.

1.2 problem statement

To date, real world robotic applications of Active Inference do not ex-
ist ([63] is a first attempt in a simulated environment). This could be
due to the fact that the scientific literature on the free energy principle
and related concepts is relatively narrow and very complex. Nonethe-
less, the framework is mathematically well defined, which greatly fa-
cilitates the transfer to engineering context.

This thesis is meant to increase understanding of Active Inference
from an engineering perspective and through this discover its interest-
ing aspects. This is achieved by providing a detailed and comprehen-

1

2 introduction

sible exposition of the theory, with application on linear state space
systems, since these are the simplest dynamic systems (i. e. “robots”)
that can be considered. An exposition with such detailed and compre-
hensible derivations as presented in this thesis has not been published
before in the scientific literature. As such, this thesis and resulting pa-
per [50] provide a starting point for more engineers to study Active
Inference. It will open the door for future and more elaborate research
on robotic applications. The research goal of this thesis is as follows:

Provide a detailed exposition of Active Inference in engineering context,
to open the door for research of Active Inference in robotics.

To achieve this goal, three research questions have been composed,
which are answered in the three main parts of this thesis:

1.2.1 To which existing paradigms is Active Inference related?

This question is answered to discover what the interesting aspects
of Active Inference in an engineering context are. Throughout the
derivations in Part I of this thesis, several differences between Ac-
tive Inference and conventional control and filtering algorithms will
come to light. These differences provide inspiration to develop novel
algorithms that possibly improve current methods.

In Part I we also mention the paradigms and models to which Ac-
tive Inference is related. Understanding these relations at a mathe-
matical level first requires a deep understanding of Active Inference
itself, which is what this thesis provides. Future studies could elabo-
rate more on the exact technicalities of the relation that Active Infer-
ence bears to other paradigms.

1.2.2 What is the state space formulation of Active Inference?

To understand Active Inference in detail, this thesis will formulate the
theory in the context of Linear-Time-Invariant (LTI) state space models,
in Part II of this thesis. Namely, these are the simplest systems that
Active Inference can be applied to. Moreover, a lot of control theoretic
tools for in-depth analysis are available for linear state space systems:
Bode plots, eigenvalue analysis, Lyapunov theory, robustness analysis
etc. This thesis will allow future studies to make use of these tools.

The application to LTI state space systems will (a) increase under-
standing of several esoteric concepts inherent in the Free Energy Prin-
ciple and (b) expose differences with existing control methods, fur-
ther answering the first research question.

1.3 report overview 3

1.2.3 How does Active Inference perform?

In Part III of this thesis, we make a start in analyzing the perfor-
mance of Active Inference. This thesis studies the influence of tuning
parameters and provides a primer on the relation of Active Inference
with Linear Quadratic Gaussian control (LQG) (thus partially answering
the first research question). We also provide an approach to design a
stabilizing controller using a Linear Matrix Inequality (LMI) and verify
that Active Inference can perform tracking tasks.

Naturally, this performance question is a very broad one. This the-
sis only makes a start and provides recommendations for further anal-
yses. With the state space Active Inference algorithm it is possible to
perform experiments that analyze performance in any way possible
as with standard state space controllers: Robustness, sensitivity, sta-
bility (or stabilization), optimality etc. can all be analyzed.

1.3 report overview

This thesis is comprised of five parts. For readers that are unfamiliar
with the free energy principle and Active Inference, Part I provides
a contextual and theoretical background. This part also mentions the
existing paradigms to which Active Inference is related, to answer the
first research question.

In Part II, the state space formulation of Active Inference is derived
and explained, answering the second research question. Also, a de-
tailed example is provided to clarify any remaining ambiguities.

After the theoretical second part, a start with the performance anal-
ysis of the resulting algorithm will be presented in Part III, to partially
answer the third research question. This part also provides several
hints on interesting but unsolved questions and problems. Finally,
Part IV summarizes and concludes the thesis. In addition, several rec-
ommendations for future research directions are provided.

The appendices in Part V contain a few detailed mathematical
derivations and examples of MATLAB code corresponding to sim-
ulations presented in this thesis.

1.4 terminology and notations

In this thesis a control system is designed through Active Inference.
This control system consists, as conventional, of a filter and a con-
troller. We will refer to these to components together as “the agent”.
Anything that is not part of the agent (i. e., filter or controller) is part
of the environment. The ability of an agent to autonomously act on
its environment is referred to as agency.

Furthermore, several notations specific to this thesis are employed
to keep equations cleaner and more readable:

4 introduction

∂xf(x, . . .) Partial derivative of f(x, . . .) with respect to x

∗(n) vs ∗n n-th derivative vs. exponent (rarely used).

∗̃ Indicates generalized form (see Chapter 3).

q(x; ζ) Semicolon indicates q(x) is parameterized by ζ.

N(µ,Σ) Gaussian with mean µ and covariance matrix Σ.

E[·] Expectation operator.

In Identity matrix of size Rn×n

⊗ Kronecker tensor product.

Rn The space of all real n-dimensional vectors.

R+ The set of all positive real numbers.

Z+ The set of all positive integers.

Part I

B A C K G R O U N D

This part answers the first research question: To which exist-
ing paradigms is Active Inference related? To this end, we will
first briefly review the theoretical aspects of the free en-
ergy principle that are crucial for understanding of deriva-
tions later on. Chapter 2 provides the high level context
behind this work. Next, Chapter 3 is dedicated to a dis-
cussion of generalized motions, since that is a crucial but
convoluted concept. Finally, this part culminates in the in-
troduction of Active Inference in Chapter 4.

2
T H E F R E E E N E R G Y P R I N C I P L E

The holy grail of neuroscience is a single theory that explains all about the
brain. Although it is questionable whether such a theory exists, the Free
Energy Principle (FEP) is as of today closest to achieving a unified account
of the brain, with explanations covering fundamental accounts of life [40] –
as explained below – to extremely detailed explanations of neural activity [4].
This chapter explains the FEP – the overarching theory of Active Inference –
as developed by Karl Friston et al.

Section 2.1 will provide the fundamental arguments that define the FEP.
Subsequently Section 2.2 will provide a mathematical formulation of percep-
tion by defining the free energy. The three proposed filtering algorithms to
minimize the free energy are briefly discussed in Section 2.3.

Remark: The FEP is defined using a generalized form for
dynamic variables (i.e. x̃, ỹ). This is an esoteric concept
to which Chapter 3 is dedicated. The current chapter
uses standard notation for the sake of clarity, but it
should be noted that this is a simplification.

2.1 what is life?

2.1.1 Resisting the Tendency to Disorder

The FEP applies to self-organizing systems (i. e., agents) defined by a
state x subject to dynamics: ẋ = f(x, θ)+ω, where f(x, θ) is some func-
tion parameterized by θ. ω is a random fluctuation parameterized by
λ. The union ϑ = {x, θ, λ} is the causes, as it contains all variables caus-
ing a system’s existence. Furthermore, an agent’s existence is defined
by the fact that some set of states x is within a certain range. This
implies that a small set of (internal) states is more likely than most
others [41]. Hence, a probability density p(x) on an agent’s states can
be defined. For example, an animal’s body temperature fluctuates
around some mean value in a narrow range.

The state of an agent is defined as the collection of all dynamic vari-
ables of interest that are external as viewed from “the brain”. Thus,
in a biological sense, the state includes measures of both the internal
milieu (e.g. body temperature, muscle tension) and measures of the
external milieu. This partitioning seems to distinguish biological life
from other self-organizing systems [36].

The states of passive systems will eventually undergo some phase
transition that implies the end of their existence, due to external in-
fluences [43]. This argument follows from the second law of thermo-

7

8 the free energy principle

Figure 1: A Markov blanket consists of four sets of states, denoted here by
x,y,µ and u. The internal states µ cannot directly interact with the
hidden states x. Interaction between the world and brain is medi-
ated through sensory states y (to receive data) and active states u
(to act on the world). The equations are covered in Chapter 4.

dynamics, stating that entropy can naturally only increase over time.
Self-organizing systems can counteract this natural tendency to dis-
order. This was first observed by Schrödinger [75].

Summarizing, the main premise of the FEP is that biological (living)
systems maintain their existence by counteracting entropy increase of
their states. In fact, the principle applies to any ergodic system with
a Markov blanket [40] (see Figure 1 for an example of the Markov
blanket). Note that it is required that the system has agency. Agency
is the ability of an agent to autonomously act on its environment.

2.1.2 Minimizing Sensory Surprisal

As mentioned before, an agent has a small set of likely states. Thus
p(x) is a narrow distribution, which means that it has a low (differen-
tial) entropy, which is defined as [70]:

H(X) = −

∫∞
−∞ p(x) lnp(x)dx (1)

The capital X is used because H(X) defines the entropy of p(x) i.e. the
entropy over all x ∈ X. We could also have written H(p(x)), but the
notation above is used in literature. Technically, p(x) is a conditional
density, with respect to the model m that an agent employs; p(x|m).
This is omitted to keep notation cleaner, however one should real-
ize that p(x) is not a physically defined quantity, but rather a belief
following from an agent’s model of the world.

The fundamental notion of the FEP is that biological systems should
minimize H(X). Namely, due to disturbances entropy naturally in-

2.1 what is life? 9

creases over time, as previously discussed. An agent must counteract
this dispersion at all times to survive. This relates to the first of two
crucial assumptions underlying the FEP:

Assumption 1. Biological systems are (locally) ergodic:
As p(x) is fixed1, it is natural to assume that the prob-
ability of a state x equals the amount of time the agent
will spend in that state (as time of existence goes to
infinity), also known as ergodicity. Instead of finding
H(X) by averaging over all x ∈ X as in Equation 1, we
can also find H(X) by integrating over one lifetime tra-
jectory x(t):

H(X) = lim
T→∞ 1

T

∫T
0

− lnp(x(t))dt (2)

where x(t) is the lifetime trajectory.

The quantity − lnp(x(t)) is named surprisal or self-information in in-
formation theory [70].

From Equation 2 we can conclude that minimizing H(x) can be
achieved by p(x) minimizing the surprisal − lnp(x(t)) at all times.
This is the important corollary of the ergodic assumption: Biological
agents avoid high surprisal (i.e. surprising states) at all times. Note
that since p(x(t)) ∈ [0, 1] we have that − lnp(x(t)) ∈ [0,∞]; surprisal
ranges from “not surprised at all” to “infinitely surprised”.

The problem is that the state x is never observed directly. For ex-
ample, visual information (light) is transformed to electrical signals
in nerves. This introduces noise and also leaves some information
unobserved (e.g. human eyes only see a very small portion of the EM-
spectrum). Hence, an agent cannot minimize the surprisal directly, as
defined in the second crucial assumption of the FEP:

Assumption 2. All biological systems posses a Markov
blanket: The FEP assumes that a Markov blanket sepa-
rates an agent from the environment. A subset of x is
measured through sensory channels:

y = g(x, θ) + z

where y is the sensory data, i. e., observation the agent
receives, g(x, θ) is some function (also parameterized
by θ) and z is noise (also parameterized by λ). x is
referred to as the hidden state, as it is hidden from di-
rect interaction with the agent’s internal state. Figure 1

clarifies the structure of the Markov blanket. Due to
the noise z, we have that

H(Y) > H(X)

1 It would change if the agents model m changes.

10 the free energy principle

by definition [70]. Thus, by minimizing H(Y) we ap-
proximately minimize H(X) since H(Y), the sensory
entropy, is an upper bound on H(X). Finally, from Equa-
tion 2 it can be concluded that an agent should mini-
mize − lnp(y(t)) (the sensory surprisal) at all times.

At this point we conclude that an agent can minimize − lnp(y(t))
since it provides an upper bound on H(X), which was the original
measure to be minimized. Nevertheless, there is still a problem with
that conclusion. Namely, to evaluate the sensory surprisal, the agent
requires a model p(y). Constructing this model would entail integrat-
ing p(y, ϑ) over ϑ, which is generally intractable [10, 25]. This is where
the free energy provides a solution, as explained next.

2.2 the free energy

To recapitulate the previous section: An agent can minimize its sen-
sory surprisal in order to approximately minimize the entropy of its
states, but an agent cannot evaluate the sensory surprisal due to com-
putational problems.

A solution to this problem is to create a (variational) upper bound,
a concept derived from statistical physics [21] and machine learning
[60]. The free energy is such an upper bound on the sensory surprisal
and it can be evaluated by an ergodic agent with a Markov blanket.
This section will explain how the free energy is defined. Time depen-
dency will be omitted in this section to keep notation clean.

A straightforward derivation of the free energy as upper bound on
the sensory surprisal does not exist. It is more an “accidental” conse-
quence of an explanation for the concept of perception, i. e., the idea
that an agent wants to understand the state of the world through ob-
servations. Mathematically, an agent tries to find p(ϑ|y), the posterior
(which ϑ is most likely given observation y). Also, we assume that an
agent models the world using a generative model p(ϑ,y) which can be
factorized into a prior p(ϑ) (belief of the causes) and a likelihood p(y|ϑ)
(belief of world structure, how ϑ causes y and vice versa):

p(ϑ,y) = p(y|ϑ)p(ϑ) (3)

More about generative models is explained in Section 4.1.2. We could
invert Equation 3 (using p(ϑ,y) = p(ϑ|y)p(y)) to find the posterior:

p(ϑ|y) =
p(y|ϑ)p(ϑ)

p(y)
=
p(y|ϑ)p(ϑ)∫
p(ϑ,y)dϑ

However, the integral is generally intractable (again, this is equiva-
lent to modeling p(y)) and hence this approach fails in many cases.
The solution is to invoke an auxiliary density q(ϑ; ζ) to approximate

2.2 the free energy 11

p(ϑ|y), as proposed by Hinton et al. [15]. ζ is the set of sufficient statis-
tics of q(ϑ). For a Gaussian these would be the mean and covariance
matrix: ζ = {µ,Σ}.
q(ϑ; ζ) is often called the ensemble density or recognition density. The

former name is derived from statistical physics, indicating that we
consider a distribution over all states a system could be in (the en-
semble). The latter name is used because q(ϑ; ζ) “recognizes” which
ϑ most likely caused observation y – remember that q(ϑ; ζ) ≈ p(ϑ|y).
Thus, perception is to determine ζ such that q(ϑ; ζ) and p(ϑ|y) are
most similar. The similarity can be measured through the (reverse)
Kullback-Leilber (KL) divergence:

DKL(q(ϑ; ζ) || p(ϑ|y)) =
∫
q(ϑ; ζ) ln

q(ϑ; ζ)
p(ϑ|y)

dϑ (4)

which is a measure for the similarity between two distributions [56].
The process of approximating a posterior over hidden states with

another distribution, is known as Variational (Bayesian) Inference (VBI),
an approach that originates from machine learning [6, 52]. In a neu-
roscientific sense, we derived a mathematical formulation for percep-
tion. The problem is that a brain cannot evaluate Equation 4 since
p(ϑ|y) is unknown. We can however use the generative model p(ϑ,y)
to define:

F(ζ,y) =
∫
q(ϑ; ζ) ln

(
q(ϑ; ζ)
p(ϑ,y)

)
dϑ (5)

which can be evaluated for any given ζ and y, because both q(ϑ; ζ)
and p(ϑ,y) are models in the brain. The functional above is called
the free energy. Note that F(ζ,y) is not a KL-divergence, because it a
function of not only ϑ but also y. Namely, after the integration over ϑ,
F(ζ,y) is still a function of y. Comparing to Equation 4, p(ϑ|y) is “one
dimensional” and p(ϑ,y) is “two dimensional” (it is a joint density).

Let us see how Equation 5 helps to solve Equation 4. As shown in
Section A.1, the free energy can be rewritten as

F(ζ,y) = − lnp(y) +DKL (q(ϑ; ζ) || p(ϑ|y))

Observe that perception i.e. minimizing F(ζ,y) with respect to ζmini-
mizes DKL (q(ϑ; ζ) || p(ϑ|y)), as desired. So, perception i.e. estimating
the posterior p(ϑ|y) is Free Energy Minimization (FEM):

min
ζ

F(ζ,y) (6)

A nice “accidental” consequence is that this also corresponds to mak-
ing the function F(ζ,y) approximate − lnp(y). Namely, since KL di-
vergence is non-negative, we have that

F(ζ,y) > − lnp(y)

12 the free energy principle

and when we have minimized F(ζ,y) with respect to ζ

F(ζ∗,y) ≈ − lnp(y)

where ζ∗ is the optimal ζ. So, perception provides an upper bound
estimate on the sensory surprisal. However, it does not minimize the
sensory surprisal. Minimizing F(ζ∗,y) with respect to y will actu-
ally minimize the sensory surprisal (and as such approximately min-
imizes H(X)). Unfortunately, an agent cannot control y directly. The
answer is Active Inference, as explained in Chapter 4.

2.2.1 Interim Summary

To summarize what has been achieved at this point. There is a free
energy functional F(ζ,y) – defined by two probability densities that
are modeled in the brain – that upper bounds the sensory surprisal
− lnp(y). Thus, minimizing the free energy approximately minimizes
the sensory surprisal and so the sensory entropy H(Y) at all times.
And, because the sensory entropy upper bounds the state entropy
H(X), we also approximately minimize H(X) at all times, as was the
definition of life.

The free energy solved two main problems. Firstly, state x is hidden
and hence we are obligated to work with observations y. Secondly, we
changed an intractable integration into a tractable optimization.

2.3 free energy minimization

It has not yet been discussed how the optimization problem posed in
Equation 6 can actually be solved. In fact, there are three methods pro-
posed within the FEP to solve the optimization. All of these methods
rely on the definition of generalized motions. This is a rather intricate
concept which is elaborated in Chapter 3. The main point is that by
estimating the motions of the hidden state x, we obtain a version of
VBI that can be applied to dynamical systems. In this sense, FEM is an
extension of standard VBI.

2.3.1 Generalized Filtering

The most general algorithm to minimize the free energy is Generalized
Filtering (GF) [46]. This algorithm treats all variables in the hidden
state x equally and estimates a posterior over the complete state space
of the environment, employing only the Laplace approximation:

The Laplace approximation: Given a unimodal sharply
peaked distribution p(x) with x∗ = arg maxp(x). Then
also x∗ = arg max lnp(x). Now to approximate p(x)

2.3 free energy minimization 13

let q(x) = lnp(x). A second order Taylor expansion is
used to capture p(x), because it is sharply peaked:

q(x) ≈ q(x∗) + ∂xq(x∗)(x− x∗)
+ 1
2∂
2
xq(x

∗)(x− x∗)2

∂xq(x
∗) = 0 because it is at the maximum x∗ and thus

q(x) ≈ q(x∗) + 1
2∂
2
xq(x

∗)(x− x∗)2

Remember that q(x) = lnp(x) i.e. p(x) = exp(q(x)).
Thus:

p(x) = exp(q(x∗) + 1
2∂
2
xq(x

∗)(x− x∗)2)

= exp(q(x∗)) exp(12∂
2
xq(x

∗)(x− x∗)2)

= exp(q(x∗)) exp
(

−(x− x∗)2

2[−∂2xq(x
∗)−1]

)
which is a Gaussian density with mean x∗ and variance
−∂2xq(x

∗)−1. For further details see [11, 45, 60].

Observe that due to the Laplace approximation the variance is a func-
tion of the mean. This means that

q(ϑ; ζ)→ q(ϑ;µ) ∼ N(µ,Σ(µ))

The solution to minimize the free energy is then a generalized gradi-
ent descent:

µ̇ = Dµ− ∂µF(µ,y)

The use of the extra term Dµ is clarified in Chapter 3.

2.3.2 Variational Filtering

Secondly, there is Variational Filtering (VF) [24]. In contrast to GF, VF

does not use the Laplace approximation but uses the Mean-Field Ap-
proximation (MFA), which is the standard approximation used in VBI:

The mean-field approximation: It is assumed that several
sets of variables in the causes ϑ are conditionally inde-
pendent so that q(ϑ; ζ) can be partitioned [22, 53]:

q(ϑ; ζ) =
N∏
i=1

qi(ϑi; ζi) = q1(ϑ1; ζ1)q2(ϑ2; ζ2) . . .

In the FEP this partitioning is based on a temporal dis-
tinction between states in the world [43]. For example
dynamic states x change fast independently of physical
parameters θ that change very slowly or are constant,

14 the free energy principle

like the hyperparameters λ. So in the context of VF, the
partitioning consists of three distributions, assuming
that the sets of variables in the causes ϑ = {x, θ, λ} are
independent:

q(ϑ; ζ) = qx(x; ζx)qθ(θ; ζθ)qλ(λ; ζλ) (7)

The MFA is not the only possibility through which VBI

can be achieved. Other approximations such as the
Bethe approximation are studied recently as well [69]
and seem to outperform the MFA.

In VF, each of the partitions is tracked by a set of particles – i. e., by
a free-form distribution – bearing a lot of resemblance with particle
filtering [18].

2.3.3 Dynamic Expectation Maximization

Finally, the most simplified form of FEM is Dynamic Expectation Max-
imization (DEM) [28], which employs both the MFA and Laplace ap-
proximation. In other words, each of the partitions in Equation 7 is
a Gaussian. The result is an algorithm much faster than GF or VF, be
it a more specific approximation that might not perform well in com-
plex non-Gaussian environments. The naming is chosen specifically
because DEM is an extension of Expectation Maximization (EM) [17] that
can be applied on dynamic systems. A comparison between VBI and
EM can be found in [5]. The main difference is that EM only provides a
most likely estimate of parameters whereas VBI estimates a complete
distribution over the parameters (the same as the states).

Due to the Laplace approximation, only the mean of all partitions
has to be estimated in DEM and as such it is a form of EM extended
with an extra step to make it compatible with dynamic systems. This
is the D-step and hence the name DEM. So, similar to GF, the sufficient
statistics ζi of all partitions in the recognition density are only the
mean µi in DEM. Hence for DEM we have that

F(ζ,y) = F(µ,y)

Additionally, the set of causes ϑ and thus µ is partitioned through the
MFA in three parts:

µ = {µx, µθ, µλ}

where µx refers to the dynamic states, µθ refers to system parameters
and µλ refers to hyperparameters, i. e., noise characteristics [28].

2.3.4 The Active States

Up to this point we have only discussed minimization of the free en-
ergy with respect to ζ, i. e., through perceptual inference. Referring

2.3 free energy minimization 15

back to Figure 1, one can see that there is a set of states, the active
states, which have not been discussed nor used yet. In fact, extending
DEM with the active states i.e. action is what yields Active Inference.
Namely, acting on the environment is another way to possibly mini-
mize free energy, as it will change incoming observations y. Chapter 4

will discuss this extension.
To summarize this section, Figure 2 provides an overview of the

approximations, assumptions and extensions that bring us from stan-
dard VBI to Active Inference. The first step, generalized motions, is
the topic of the upcoming chapter. The last step, to arrive at Active
Inference, is the topic of Chapter 4.

Variational (Bayesian) Inference

Free Energy Principle

GF DEM VF

Active Inference

generalized
motions

Laplace
approximation

mean-�eld
approximation

action & linearization

Markov
blanketErgodicity

Figure 2: Schematic view of the steps from VBI to Active Inference. This is
not technically exact but provides a comprehensible overview of
the theory discussed so far. The addition of action and lineariza-
tion is the topic of Chapter 4 and generalized motions are dis-
cussed in Chapter 3.

3
G E N E R A L I Z E D M O T I O N S

Before we can proceed to discuss Active Inference, an intricate though crucial
subject has to be covered: generalized motions. As briefly mentioned in the
previous chapter, the FEP differs from standard VBI methods in that it is
designed for inference on dynamic systems. This feature is enabled by the
use of generalized motions, as explained in this chapter.

First, Section 3.1 provides the argumentation as to why the use of general-
ized motions is appropriate. Following that, Section 3.2 explains the concept
of generalized motions and Section 3.3 provides some more detailed explana-
tion to provide a more intuitive insight in the concept.

3.1 differentiable noise

As mentioned the previous chapter, the variational algorithms within
the FEP are an extension to standard VBI methods. Namely, the FEP

incorporates the use of generalized motions, making the FEP suitable
for inference on dynamic systems. This section explains in which case
one is allowed to define these generalized motions. For reference, a
simple autonomous state space system will be used:

ẋ = f(x) +ω

y = g(x) + z
(8)

where ω and z are noises.

3.1.1 Markovian Noise

The most conventional noise used for ω and z in engineering context
is uncorrelated noise, or noise generated from a Wiener process [20]
(also called white noise). In mathematical terms: ω(t) is a real-valued
random variable with

ρω(dt) =
E[ω(t+ dt)ω(t)]

σ2ω
=

1 if dt = 0

0 otherwise

where ρω is the autocorrelation function and σ2ω is the variance of the
noise. In addition, often µω = E[ω(t)] = 0 (zero mean white noise).

The exact technicalities of autocorrelation functions are quite in-
volved. The important argument here is that such noises possess the
Markov property,i. e., are Markov processes [47]: Each sample of the
noise is independent of all others, as ρω(dt 6= 0) = 0. Hence, these
noises can be classified as “Markovian noises”.

17

18 generalized motions

Due to this property, Markovian noises cannot be differentiated.
Namely, the noise ω(t) is independent of the noise at each other time
ω(t∗). For the sake of explanation, suppose we would be allowed to
differentiate ω(t). The system state equation would become

ẍ = ∂xf(x)ẋ+ ω̇

Now, ω̇ will have infinite variance and consequently so will ẍ. In
other words, the equation contains no information. This is why stan-
dard techniques like a Kalman Filter only use the state equation it-
self. However, if we were able to retrieve information from the higher
order derivatives of x, this could improve the filtering performance.
This is why the FEP makes a different assumption on the noises.

3.1.2 Non-Markovian Noise

In fact, the Markov property is a very specific assumption which
is only true in theory. In real world (especially biological) systems,
noises are generated by dynamic processes as well [34]. Thus, there
will be a correlation between the noise at different times. Intuitively,
this will create noises which have a certain amount of smoothness,
depending on the width of the correlation function. We can also refer
to these noises as differentiable noises, because they have an analytic
correlation function due to which they can be differentiated.

Any differentiable (auto)correlation function ρ(t) is allowed, but a
normalized1 zero mean Gaussian is usually proposed [28]:

ρ(t) = e−
γ
4 t
2

. (9)

The variance has been substituted as σ2 = 2
γ . γ is the roughness param-

eter, which is inversely proportional to the smoothness of the noise.
Appendix B contains a detailed explanation regarding the generation
of smooth noises for simulation purposes.

Due to the smoothness in the noise, there is now information con-
tained in the higher order derivatives of x. This is exploited in the FEP

as explained in the next section.

3.2 generalized motions

If the noisesω, z are analytic, we are allowed to extend the description
of the system Equation 8 to:

ẋ = f(x) +ω y = g(x) + z

ẍ = ∂xf(x)ẋ+ ω̇ ẏ = ∂xg(x)ẋ+ ż
...
x = ∂xf(x)ẍ+ ω̈ ÿ = ∂xg(x)ẍ+ z̈

...
...

1 The Gaussian has to be normalized so that ρ(0) = 1.

3.2 generalized motions 19

where nonlinear terms were omitted i.e. a linearization is made [34].
The crucial observation is that if the state x and the noises ω, z are

known, all information is in the first equations. However, an agent in
an uncertain dynamic system does not know the noises ánd neither x.
Thus, the estimation of x can be improved by taking into account be-
liefs about higher order derivatives. To indicate the change to beliefs,
the notation is changed to:

x ′ = f(x) +ω y = g(x) + z

x ′′ = ∂xf(x)x
′ +ω ′ y ′ = ∂xg(x)x

′ + z ′

x ′′′ = ∂xf(x)x
′′ +ω ′′ y ′′ = ∂xg(x)x

′′ + z ′′

...
...

(10)

At this point, there is not yet an obvious difference between the dots
and primes. The difference appears when we move to (posterior) be-
liefs and write down a filtering algorithm. Another way to see it: A
dot represents a temporal relation between x and ẋ. A prime indicates
that x ′ is a variable calculated from x, representing the belief about
ẋ, but it is not actually ẋ. To distinguish between the two notations,
dots are referred to as “derivatives” and primes as “motions”.

Equation 10 can be written more compactly by introducing a gen-
eralized form of the state, the generalized state:

x̃ =
(
x x ′ x ′′ . . .

)>
and similar for ỹ, ω̃ and z̃. This representation is up to infinite order
and thus represents the complete current motion of a variable. In
addition we define

f̃(x̃) =
(
f(x) ∂xf(x)x

′ ∂xf(x)x
′′ . . .

)
and similar for g̃(x̃). Finally we introduce a motion-shift operator:

D =

0 1

0
. . .
. . . 1

0

⊗ In

where n is the state dimension, such that Dx̃ = x̃ ′. In other words, all
motions are shifted up one element by multiplication with D.

Now Equation 10 can be reformulated as

Dx̃ = f̃(x̃) + ω̃ ỹ = g̃(x̃) + z̃ (11)

Observe that the state equation is not a differential equation anymore;
there are no dots! The dynamics are now captured by relating the
motions at different orders. Equation 11 represents an instantaneous

20 generalized motions

probabilistic belief about the motions of the state x. This can be seen
when rewriting the equations as

Dx̃− f̃(x̃) = ω̃ ỹ− g̃(x̃) = z̃

Since ω̃ and z̃ are processes defined by a distribution p(ω̃) or p(z̃), so
are the left hand sides of the equations i.e.:

Dx̃− f̃(x̃) ∼ p(ω̃) ỹ− g̃(x̃) ∼ p(z̃)

The dynamics to update x̃ (or actually its expectation µx̃) will be put
back later when we define a filtering scheme through FEM.

Finally, assuming zero mean Gaussian noises2, the noise densities
are p(ω̃) ∼ N(0,Σω̃) and p(z̃) ∼ N(0,Σz̃). The covariance matrix of the
generalized noise ω̃ is defined as:

Σω̃ = V(γ)⊗ Σω

where Σω is the covariance matrix for ω. Similarly for Σz̃. The matrix
V(γ) is a temporal variance matrix defining the correlations between
noises at different orders of motion. It is defined as:

V(γ) =

1 0 ρ̈(0) . . .

0 −ρ̈(0) 0

ρ̈(0) 0 ρ(4)(0)
...

. . .

 .

For the Gaussian correlation function (Equation 9) we get

V(γ) =

1 0 −12γ . . .

0 1
2γ 0

−12γ 0 3
4γ
2

...
. . .

A more detailed explanation is provided in Section A.2 or [14].

Since the FEP works with precision (the inverse of variance) we will
from now on use

Πω̃ = V−1(γ)⊗Πω (12)

where Πω = Σ−1
ω is the precision matrix forω. V−1(γ) is often denoted

by S(γ) in literature and referred to as the temporal precision.

2 Confusion might arise here. This assumption is different from the assumption that
the correlation function of the noise is a Gaussian! Namely, a realization of Gaussian
noise has samples that are distributed as a Gaussian. This does not specify the cor-
relation between samples. The correlation is specified in ρ(t), which in this case also
happens to be a Gaussian, but Gaussian noise is not Markovian by definition. It can
be either Markovian or non-Markovian depending on ρ(t).

3.3 the use of generalized motions 21

3.3 the use of generalized motions

3.3.1 Stationarity

In the previous sections the use of generalized motions has been jus-
tified through the assumption of non-Markovian noise. However, this
assumption is not the reason why one would want would to use gen-
eralized motions, it is a necessary assumption. The reason why to be
interested in using generalized motions is clarified in this section.

First and foremost, the use of generalized motions allows for esti-
mation of the posterior p(x̃|ỹ) that is stationary. Namely, the distri-
bution is defined in a frame of reference that moves with the current
motion of the state [28]. In contrast, assume we would only estimate
p(x|y). Since x is a (stochastic) dynamic variable, the distribution
p(x|y) will change over time. However, we can capture this change
by also including the motions of x in the distribution.

3.3.2 Dynamic Equilibria

Secondly, the use of generalized motions allows for tracking a dy-
namic equilibrium. Remember the filtering equation of GF:

µ̇ = Dµ− ∂µF(µ,y)

where µ is the expectation of x̃: E[x̃] = µ. Note that this is where the
dynamics for x̃ are put back: The filtering equation describes how to
update the expectation of the generalized state. By definition – since
Dµ = µ ′ – the filtering equation can be written as

µ̇ = µ ′ − ∂µF(µ,y)

which shows that when the free energy is not minimal, there is a
difference between µ̇ and µ ′. As soon as we move to beliefs it makes
sense to distinguish motions and derivatives.

Now, using the generative model it is possible to shape the free
energy such that it’s minimum is at any desired µ∗. When the free
energy is minimal the filtering equation becomes

µ̇∗ = µ∗′

Which means that the current expectation of the motion µ∗′ is used
to update thee motion. For example, the first element of µ̇∗ is the
change in the belief of x, which will be equal to the first element of
µ∗′ which is the current belief of ẋ. In other words, the motion of x̃
will be constant; a dynamic equilibrium is attained, i. e., ṗ(x̃|y) = 0.

22 generalized motions

3.3.3 State Estimation

There is a second way in which the difference between derivatives
and motions becomes apparent. Consider the following autonomous
second order system of the form ẋ = Ax:(

ẋ1

ẋ2

)
=

(
0 1

a b

)(
x1

x2

)

Observe that ẋ1 = x2. Now, when extending this system to general-
ized form. The first generalization x ′ will be x ′ =

(
x ′1 x ′2

)
. Adding

this to the state yields
ẋ1

ẋ2

ẋ ′1

ẋ ′2

 =

0 1 0 0

a b 0 0

0 0 0 1

0 0 a b

x1

x2

x ′1

x ′2

 (13)

However, since x ′1 represents the velocity and so does x2, there is a
redundant state in this system. But, if we change the original system
to a stochastic setting:(

ẋ1

ẋ2

)
=

(
0 1

a b

)(
x1

x2

)
+

(
ω1

ω2

)

The redundancy this appears because now ẋ1 6= x2 and so x ′1 6= x2,
due to the noises. Figure 3 shows the difference.

This difference is the reason why adding generalized motions im-
proves the estimate. Namely, x1 is only updated using the belief (from
the A-matrix) that x2 = ẋ1 in e. g. a Kalman filter. In the FEP, the ac-
tual current motion of x1 is also accounted for when updating the
estimate. There is information that a Kalman filter does not use when
smooth noises act on the system.

3.3 the use of generalized motions 23

Figure 3: Simulation of Equation 13, without and with noise. Redundancy
of generalized motions shows in the deterministic case, because
here x ′1 = x2. In the stochastic case however (with independent
noises on the position and velocity), x ′1 6= x2 and thus the gener-
alized motion x ′1 is not redundant. x ′1 represents the motion of x1,
ẋ1, which need not to be the velocity x2! Code of the simulation
present in Appendix B.

4
A C T I V E I N F E R E N C E

This chapter will present the extension of DEM with the active states of the
Markov blanket: Active Inference. Whereas FEM was only performed through
perception in Chapter 2, Active Inference adds another mechanism to ac-
tively minimize the free energy: action. The integration of perception and
action is very unique to Active Inference.

Section 4.1 will explain the two main components beside the free energy
that are required to set up Active Inference, namely the world in which Ac-
tive Inference is performed and the model of this world that is used by the
agent. Due to the MFA and Laplace approximation, a simplified formulation
of the free energy can be derived, as presented in Section 4.2. Finally, Sec-
tion 4.3 presents how FEM is achieved using the simplified form of the free
energy. This section also connects Active Inference with existing paradigms.

4.1 two sides of the markov blanket

4.1.1 Outside the Blanket: Generative Process

Active Inference is designed to explain behavior of biological systems.
Referring back to Figure 1, this means that the hidden state x is the
state of a dynamic and uncertain system: the generative process. The
naming refers to the fact that this process is the one generating the
observations received by the agent. The generative process represents
everything dynamic that is not internal to the agent. More precisely,
everything external to the agent’s brain is in x. The dynamics of x are
described by a state space system:

ẋ = f(x,u, v, θ) +ω

y = g(x, v, θ) + z

v̇ = h(v, θ) + η

(14)

where x is the hidden state, y is the observation and v are distur-
bances. Furthermore, u is the control state i.e. the active states of the
Markov blanket, θ is the set of parameters defining the mappings
f(·),g(·) and h(·), and ω, z,η are non-Markovian noises.

In a biological sense, only neural activity in the brain is within the
Markov blanket. Thus, states like joint angles, body temperature and
external object motions are all in x or v. Some of these states can be
controlled by the agent (e.g. joint angles and body temperature) and
are thus in x. Uncontrollable/autonomous states are in v. Thesis will
not yet consider disturbances so v is omitted from this point1.

1 They have been included in Equation 14 for completeness

25

26 active inference

4.1.2 Inside the Blanket: Generative Model

As required by both the free energy principle and the good regulator
theorem [13], the agent is required to model the world it inhabits
i.e. the generative process. This model is referred to as the generative
model, representing the agent’s belief about the generative process.

There is actually quite some theory involved in the naming, which
is outside the scope of this thesis. In short, generative models are
able to explain how data is generated [62]. Generative models are
becoming more prominent in machine learning in recent years. Many
different generative models exist [48, 49], but to start understanding
Active Inference it is best to start simple. Therefore, the generative
model can be thought of as a state space model:

ẋ = fm(x, θ) +ω

y = gm(x, θ) + z
(15)

where the subscript m denotes that this is the model m of the agent.
Referring back to Chapter 2, the state space model is what represents
p(x,y). In fact writing the model as in Equation 15 is only showing
the formal homology between the process and model. The true gen-
erative model is a probabilistic mapping – it is p(x,y) – due to the
presence of the noises.

Observe that the model is agency free (no modeling of the control
u). The reason for this is as follows: Equation 15 and Equation 14

need not to be the same. In fact, a difference is crucial. Namely, con-
trol tries to cancel this discrepancy [29] and is thus a signal acting
on the generative process such that its behavior conforms to the gen-
erative model. This concept is a fundamental difference with respect
to conventional approaches in control. Usually, system identification
attempts to replicate the world with some model. Afterwards a con-
troller employs that model to determine the control signal that will
achieve some goal (defined by a reference signal or cost function). In
Active Inference, the desired dynamics or goal is embedded in the
generative model. Action merely enforces those desires on the world.

Due to the differentiable nature of the noises, generative model can
be formulated in generalized form. The generalized form of Equa-
tion 15 is

Dx̃ = f̃m(x̃, θ) + ω̃

ỹ = g̃m(x̃, θ) + z̃
(16)

Remember that these equations are not differential equations, but
probabilistic mappings, which is more obvious if we rewrite the equa-
tions as follows:

Dx̃− f̃m(x̃, θ) = ω̃

ỹ− g̃m(x̃, θ) = z̃

4.2 the laplace encoded free energy 27

It appears that the motions obey certain probabilistic behavior de-
fined by the generalized noises. Active Inference assumes that the
noises are zero mean Gaussian processes [29, 34] and thus

Dx̃− f̃m(x̃, θ) ∼ N(0,Σω̃)

ỹ− g̃m(x̃, θ) ∼ N(0,Σz̃)
(17)

This result will be used in the next section, as these probabilistic map-
pings allow us to rewrite the free energy.

4.2 the laplace encoded free energy

Remember that the free energy is defined as

F(ζ, ỹ) =
∫
q(ϑ; ζ) ln

(
q(ϑ; ζ)
p(ϑ, ỹ)

)
dx

where ϑ represents all variables outside the Markov blanket: ϑ =

{x̃, θ, λ}. Employing the Laplace approximation and the MFA we get

q(ϑ; ζ)→ q(ϑ;µ)→ q(x̃, θ, λ;µ) = q(x̃;µx̃)q(θ;µθ)q(λ;µλ)

where all partitions and thus also the complete density are Gaussian
in which the variance is a function of the mean. In this thesis param-
eters and hyperparameters are considered as given and hence

q(ϑ;µ) = q(x̃;µx̃|θ, λ) ∼ N(µx̃,Σ(µx̃)) (18)

This choice is made to keep derivations further on comprehensible.
Substituting the above form of q(ϑ;µ) in the free energy and making
some further assumptions allows to simplify the equation (lengthy
derivation, elaborated in [10]):

F(µx̃, ỹ) = − lnp(µx̃, ỹ) − 1
2 ln (2πΣ(µx̃))

= − ln (p(ỹ|µx̃)p(µx̃)) −
1
2 ln (2πΣ(µx̃))

= − lnp(ỹ|µx̃) − lnp(µx̃) − 1
2 ln (2πΣ(µx̃))

(19)

Note that, as the mean µx̃ is yet to be optimized, it makes sense to
write p(µx̃). The covariance term does not change the optimum and
can be omitted [10]. Only the mean of the recognition density, the
generative model and the observation are now required to evaluate
the free energy, which is important to realize. The generative model
Equation 17 defines p(µx̃, ỹ) as follows:

p(µx̃) ∼ N(Dµx̃ − f̃m(µx̃, θ),Σω̃)

p(ỹ|µx̃) ∼ N(ỹ− g̃m(µx̃, θ),Σz̃)

Substitution in Equation 19 (omitting the variance term) yields the
Laplace encoded free energy [10]:

F(µx̃, ỹ) =
ε>x̃ εx̃
2Σω̃

+
ε>ỹ εỹ

2Σz̃
− 1
2 ln

(
Σ−1
ω̃ Σ−1

z̃

)

28 active inference

where εx̃ = Dµx̃ − f̃m(µx̃, θ) and εỹ = ỹ− g̃m(µx̃, θ).
In a more compact form:

F(µx̃, ỹ) =
1

2
ε>Πε−

1

2
ln |Π| (20)

where

ε =

(
εx̃

εỹ

)
=

(
Dµx̃ − f̃m(µx̃, θ)

ỹ− g̃m(µx̃, θ)

)
(21)

and Π is the inverse covariance matrix (precision matrix) of the noises:

Π =

(
Σω̃ 0

0 Σz̃

)−1

assuming ω and z are independent. |Π| denotes the determinant of Π.
Again, the precision term can be omitted for minimization of the free
energy because it does not change the optimum; Π is not a function
of µx̃ nor ỹ. Π is a function of the hyperparameters Σω, Σz and, as
shown in Chapter 3, γ.

4.2.1 The Prediction Errors

We will inspect ε in more detail here. Remember that ε contains two
vectors: εx̃ and εỹ. The latter represents the sensory prediction er-
ror. Namely ỹ is the true (generalized) observation and g̃m(µx̃, θ) is
the observation expected under the generative model (16) given the
current belief µx̃.
εx̃ also contains an error, which is more intricate. To understand

this, remember that µx̃ = E[x̃] because it was the mean of the Gaus-
sian (see Equation 18). Defining µx(i) = E[x(i)], µx̃ can be written as

µx̃ =
(
µx µx ′ µx ′′ ...

)>
.

Using this notation we can see that

D

µx

µx ′

µx ′′
...

 =

µx ′

µx ′′

µx ′′′
...

Let us now inspect εx̃ in more detail. We can expand the equation to
see the underlying structure:

εx̃ = Dµx̃ − f̃m(µx̃, θ) =

µx ′

µx ′′

µx ′′′
...

−

fm(µx, θ)

∂xfm(µx, θ)µx ′

∂xfm(µx, θ)µx ′′
...

4.3 active inference : prediction error minimization 29

Now it has become visible what εx̃ represents. Taking the first row
as an example: µx is the expectation of x, so µx ′ is the current ex-
pectation of the (first order) motion of x; µx ′ = E[x ′]. The other term
fm(µx, θ) is the motion of the expectation µx = E[x] expected under
the generative model. The difference represents how the motion of
the current expectation of the generalized state Dµx̃ differs from the
current expectation of the motion of the generalized state as expected
under the generative model f̃m(µx̃, θ).

Naturally it can be that E[x ′] = fm(E[x], θ). This happens when the
current belief µx̃ is consistent with the generative model; the motion
of the belief is equal to the motion predicted by the generative model.

4.2.2 Convexity

A final note on the structure of the free energy: Referring to (20), the
free energy is nothing more than a squared sum of prediction errors,
weighted by the precision of the noises. An important observation
is the following: Since Π is the inverse of a covariance matrix, it is
positive semi-definite [2]. So, the free energy – without the constant
term −12 ln |Π| – is quadratic product around a positive semi-definite
matrix. Hence, F(µx̃, ỹ) > 0 and it is convex. This allows for the use
of very efficient optimization algorithms [7].

It should be note that the convexity only applies to the optimization
over x̃. If one is also interested in optimizing θ and γ the convexity
does not apply.

4.3 active inference : prediction error minimization

This section will explain the equations that an Active Inference agent
uses to actively optimize the free energy. This solves the last problem
open question posed in Chapter 2: How to minimize F(µ, ỹ) with
respect to ỹ?

Before going into this, take note of the following: Active Inference
is an extension of DEM and is thus able to estimate a Gaussian den-
sity (with mean and variance) over the (generalized) hidden state x̃,
parameters (θ) and hyperparameters (γ). In this thesis we will only
consider state estimation, as explained in Equation 18. Moreover, the
variance matrix is a function of the mean (due to the Laplace ap-
proximation, see Section 2.3.1) and thus only the mean µx̃ has to be
estimated. So, Active Inference in this case reduces to

min
u,µx̃

F(µx̃, ỹ)

subject to Equation 14 and a forward model. Namely, to perform the
minimization with respect to u, the agent requires knowledge of how
the observations relate to the control. This information is not in the

30 active inference

generative model since that is agency free. Rather, it is defined by a
forward model, which is the topic of Section 4.3.1.

The minimization with respect to µx̃ represents perceptual infer-
ence (i. e.perception) and the minimization with respect to u repre-
sents action (i. e.the active part of Active Inference). The control signal
u does not appear in generalized form as it is a deterministic signal
over which the agent has control. Moreover, u does not appear in
the generative model (which is the place where generalized motions
are used). Finally, since the free energy is a sum of prediction errors,
Active Inference is a form of prediction error minimization.

As Active Inference is designed to be biologically plausible, the
minimization of F(µx̃, ỹ) is performed through a (generalized) gradi-
ent descent. It is believed that this is biologically plausible [33]. The
gradient descent equations for (state restricted) Active Inference are:

µ̇x̃ = Dµx̃ − ∂µx̃F(µx̃, ỹ) (22)

u̇ = −∂uF(µx̃, ỹ) (23)

where again the gradient descent for the control u is ill-defined as
F(µx̃, ỹ) is not a function of u. More detail is provided in the next
section. Observe that Active Inference has an integrating action em-
bedded by default, due to the differential equation that determines
the control signal. Equations for unrestricted Active Inference can be
found in [28, 29].

To intuitively interpret the gradient descents, remember that µx̃
represents neural activity in the brain, the current belief about hid-
den states. As such, perception corresponds to changing the current
predictions – through gradient descent – about hidden states µx̃ such
that it better explains the observations. Action on the other hand cor-
responds to changing the observation such that it better explains the
predictions. This tight integration of perception and action is some-
thing unique in Active Inference [37].

Figure 4 provides a high level overview of Active Inference. In con-
ventional approaches the careful design of a cost function is crucial
for good performance. This cost function is the free energy in Ac-
tive Inference, but the “design part” is actually in the priors. The
mathematical form of these prior has not been discussed yet. How-
ever, when introducing the generative model the state mappings were
given an additional subscript (fm and gm) to indicate that these mod-
els might differ from the generative process. In fact, this difference is
exactly determined by the priors. As such, the careful design part of
Active Inference is to find suitable priors. An example of this will be
provided in the upcoming part of this thesis.

4.3 active inference : prediction error minimization 31

WORLD

Sensors

Actuators

internalexternal

Perception

Action

Active Inference

(a) Closed loop block diagram of Active Inference.

Perception

Action

 Motor commands

Sensory
Input

Prediction

Prediction Error
Priors

Sensors

Actuators

(b) Blow-up view of the internal structure.

Figure 4: Block diagrams for Active Inference. (a) The closed loop diagram
of Active Inference contains two loops. The internal loop optimizes
predictions through perception and the loop including the world
minimizes prediction errors by changing the world state (hidden
state). (b) Blow-up of the internal structure of Active Inference,
highlighting how prediction (error) signals flow.

4.3.1 Forward Model

As mentioned before, Equation 23 is technically incorrect as F(µx̃, ỹ)
is not a function of u, while it is differentiated with respect to it. How-
ever, realize that ỹ is indirectly a function of u through the generative
process dynamics. By the chain rule, Equation 23 can be rewritten as

u̇ = −∂uỹ ∂ỹF(µx̃, ỹ).

The problem with this result is that the first partial derivative is a very
complex object. Physically, it represents the derivative of a forward
dynamic model ỹ(u) that relates control action to output. In a biological
sense, this mapping is represented by simple reflex arcs [1, 37, 39].

32 active inference

For state space systems however, ỹ(u) is not a simple one-to-one
mapping. Namely, both u and ỹ are a function (of time) and ∂uỹ is
thus a functional derivative. It is impossible to determine ∂u(t)ỹ(t)
only considering both signals at time t. One has to take into account
the complete history of u(t). Namely, remember that the generative
process is – without disturbances and noises

ẋ = f(x,u, θ)

y = g(x, θ)

Assuming that a closed-form solution for x(t) given initial condition
x(0) = x0 and signal u(t) for t ∈ [0, t] exists, then we obtain

x(t) =

∫t
0

f(x(0),u(t), θ))dt

y(t) = g(x(t), θ)

Hence y(t) depends on the whole trajectory of the control up to t
(and the initial conditions of x). The problem becomes even more
complicated once introducing time varying models (i. e., θ→ θ(t)). A
solution will be proposed in Chapter 6. The advantage of the forward
model is that there is no need for an inverse model. Inverse models
are often harder to derive than forward models, for example because
they are anti-causal and can be non-injective and/or bijective. This is
a common problem in robotics: the inverse kinematics problem [71].

4.4 a conceptual overview

All theory constituting Active Inference has been discussed now, with
the exception of some details that are not relevant for this thesis. One
main construct that has not passed the revue in the exposition pre-
sented in this thesis is hierarchical models [4, 34]. This concept uses
the fact that, much like in a deep neural network, the cortex consists
of several layers. It is proposed that each layer is involved in predic-
tion error minimization. Applications of this concept in engineering
would be most interesting in the context of neural networks, where
it could provide complex inference capabilities. However, to under-
stand the hierarchical version it is first required to understand what
happens in one layer, which is what this thesis focuses on.

The upcoming two sections expose the interesting aspects of Active
Inference and briefly sum up the existing paradigms in engineering
to which Active Inference is related.

4.4.1 Interesting Aspects

This section will provide a brief overview of the interesting aspects
of Active Inference for engineering purposes. Thus far, Active Infer-
ence has not had significant impact yet in engineering. It is however

4.4 a conceptual overview 33

becoming increasingly influential in brain sciences, for having great
explanatory power and unifying strength of the brain’s functioning
[1, 26, 33, 35, 44]. If Active Inference indeed captures some crucial as-
pect of human intelligence, this might well be transferable to machine
learning and robotics to create smarter systems.

There are several interesting aspects of Active Inference for engi-
neering sciences. First, at the highest level, Active Inference is mini-
mization of prediction errors in the brain by adjusting internal belief
(neural activity) and by executing actions. Using the prediction er-
rors as basis of neural activity is the field of predictive coding [12,
42], which Active Inference is thus closely related to. Using predic-
tion error minimization as basis for neural networks or other control
systems might provide interesting developments.

Secondly, note that the Active Inference algorithm is unsupervised,
as all unknown parameters are learned through gradient descent. The
only supervisory part is that the form of the generative model must
be pre-defined. This could be problematic in complex systems, where
a proper model is not known. However, in this case Active Inference
provides a way to develop unsupervised free-form-model learning
algorithms using e.g. neural networks or variational auto-encoders.

Thirdly, in Active Inference there is a deep functional integration of
perception and action, which is something missing in previous neuro-
logical theories and also engineering models. Many robotics systems
have separate systems for these two tasks, whereas Active Inference
proposes a way to merge the two systems. Robots often have very
separate vision and motion planning systems. Or in control science
there is often a separate filter and controller. Moreover, from a control
theoretic perspective it is very interesting that the reference (prior) is
supplied directly to the filter. Due to this it seems that the separation
principle [57] does not hold when applying Active Inference on linear
state space models.

Several more detailed concepts are also interesting. Firstly, an inter-
esting phenomenon is the replacement of a cost function with priors.
This is claimed to solve the problem of redundant degrees of freedom
[37]. Secondly, Active Inference changed a difficult inference problem
into an easier optimization. This obviated the need for an inverse
model [25, 37], and made the problem computationally tractable. Fi-
nally, the use of generalized motions could provide more accurate
filtering algorithms [28].

4.4.2 Relation to Existing Paradigms

Beside the inspiration that Active Inference provides to develop im-
proved or novel algorithms, Active Inference is remarkably well able
to connect many different existing paradigms in engineering. As clear
from Chapter 2, Active Inference is a form of variational inference (i. e.

34 active inference

VBI), which is becoming common in machine learning [67]. Recent
work also started to combine Active Inference with advancements in
variational inference such as variational auto-encoders [73].

Active Inference is claimed to be a form of optimal control [27].
Moreover, it is argued that DEM is more accurate than (extended)
Kalman filtering or equivalent for Gaussian noises [28]. A theoreti-
cal proof of this has not yet been published, but it could mean that
Active Inference is equivalent to LQG. A second interesting proof – if
it exists – is the proof that the free energy is a Lyapunov function
for the closed loop system. The reason to believe such a proof might
exist is because the dynamics of the agent are gradient descents on
the free energy, thus always lowering the free energy (except for ran-
dom fluctuations). Finally, note that the free energy is a function of
time since µx̃ is a function of time. This implies that minimizing the
free energy at all times equates to minimizing its integral over time.
As the time-integral of the free energy is action, FEM adheres to the
principle of least action [38, 65].

More on the machine learning side of engineering, the relation be-
tween Active Inference and reinforcement learning has been exam-
ined [25] and implementations of the perceptual inference part of
Active Inference in neural networks have been presented [16, 66].

Of course there is no free lunch, and there have also been critics on
Active Inference, mostly regarding the computational complexity [12,
58] and the fact that replacing the cost function with priors does not
solve any problem, but merely moves it. The difficulty with Active In-
ference identified in this thesis is twofold. Firstly, it was unclear how
to incorporate the concept of generalized motions into control theo-
retic models (such as state space models). As literature on this con-
cept is scarce, it is hard to gain insight in this concept. Consequently
it cannot yet be determined if there is use for generalized motions
in engineering, this thesis provides a means to start answering this
question. Secondly, it is unclear how to remove the concept of gener-
alized motions from Active Inference, which complicates the process
of connecting the theory to existing paradigms. It is claimed that DEM

without generalized motions is equal to a Kalman-Bucy filter [28], but
the theoretical proof is hard to find due to aforementioned reasons. A
primer is provided in Chapter 10.

Finally, there is only one toolbox2 (for MATLAB) available which
implements Active Inference. The code in this toolbox is unfortu-
nately very complex and it is thus hard to extract the essence.

2 https://www.fil.ion.ucl.ac.uk/spm/

https://www.fil.ion.ucl.ac.uk/spm/

Part II

LT I S TAT E S PA C E F O R M U L AT I O N

To analyze Active Inference with proper methodologies
as used in control science, it is required to formulate the
equations of Active Inference in an appropriate manner. In
this part the application of Active Inference on Linear-Time-
Invariant (LTI) state space systems will be elaborated, an-
swering the second research question: What is the LTI state
space formulation of Active Inference? Besides enabling de-
tailed performance analysis and rigorous qualitative com-
parisons, this will increase our understanding of Active
Inference. Chapter 5 explains the model used in the filter-
ing part of the algorithm. The controller requires a second
model which is derived in Chapter 6. Equipped with these
two models, the control system representing Active Infer-
ence is set up in Chapter 7. Finally, Chapter 8 presents an
example in which all details are clarified.

5
G E N E R AT I V E M O D E L

This chapter will set up the first of the two models required for an agent
to perform Active Inference on an LTI state space system. First, Section 5.1
will define the exact equations describing the environment/system that is to
be controlled. In order to control the system, an agent requires a generative
model, which is set up in Section 5.2. Finally, Section 5.3 elaborates in more
detail on a particular element of the model which defines the agent’s behavior.

5.1 the generative process

The generative process in all further discussions is of the form:

ẋ(t) = Ax(t) +Bu(t) +ω(t)

y(t) = Cx(t) + z(t)
(24)

with x,ω ∈ Rn, u ∈ Rm and y, z ∈ Rq. x is the process state, subject
to noise ω. u is the control input. y is the measurement received by
the agent, subject to noise z. Time is omitted for a cleaner notation.

The agent’s goal is to control x to some desired reference xeq. Note
that not all choices for xeq are necessarily valid. Namely, there must
exist an input u that is able to keep x in equilibrium at xeq:

ẋ = 0 = Ax+Bu → ∃u : Bu = −Ax

This corresponds to verifying that xeq is in the row space spanned by
the controllability matrix [74] of the generative process. Additionally,
the equilibrium must be uniquely determined by the output:

∃!y : y = Cxeq

These two requirements guarantee that (a) there is a control signal u
that can steer the system towards xeq plus keep it there and (b) this
can be achieved through observing y.

5.2 the generative model

In contrast to e.g. a Kalman filter, Active Inference does not use an ex-
act copy of Equation 24 as model. The model used in Active Inference
is different from the process in two ways:

1. The state equation is modeled in generalized form. As such, the
model is not a dynamic model but an instantaneous probabilis-
tic mapping (see Chapter 3).

37

38 generative model

2. The term Bu is replaced by a prior variable, denoted with ξ. This
difference is crucial, it drives an agent’s behavior.

These two differences will be clarified in this section. There will also
be a difference between the original theory of Active Inference and
the model presented here. Namely, in the original theory of Active
Inference the output equation is also modeled in generalized form
[29], implying that the agent requires not only the measurement y
but also its higher order motions. We choose not to do this as to keep
the resulting controller coherent with control engineering standards
(where only the measurement y is available to the agent). Besides, in
discrete time – where the algorithm will eventually work in robotic
applications – this means that the agent has a certain delay depending
on the embedding order. Appendix A clarifies this and shows how
one could generate ỹ from a discrete sequence of data-points.

As mentioned before, we will assume that the parameters and hy-
perparameters are known, such that only the state partition of the
posterior approximation q(x;µ) needs to be inferred. In other words,
the model matrices (A,B,C) are known by the agent. Extrapolating
from Chapter 3, we can write Equation 24 as

x ′ = f(x,u) +ω y = g(x) + z

x ′′ = ∂xf(x,u)x ′ + ∂uf(x,u)u ′ +ω ′

x ′′′ = ∂xf(x,u)x ′′ + ∂uf(x,u)u ′′ +ω ′′

...

where generalized output equations have been omitted, as argued
above. For the LTI state space system we have that f(x,u) = Ax+ Bu

and g(x) = Cx. The above then becomes

x ′ = Ax+Bu+ω y = Cx+ z

x ′′ = Ax ′ +Bu ′ +ω ′

x ′′′ = Ax ′′ +Bu ′′ +ω ′′

...

(25)

Theoretically, this goes up to infinite order. For practical reasons how-
ever, an agent only models p orders of state equations. The embedding
order p ∈ Z+ is the number of state equations used in the generative
model. A proper choice for p proposed by Friston [24] is 6.

The special case that p = 1: Choosing p = 1 (required
when the noise is Markovian) requires a slightly differ-
ent approach, as explained in Section A.5.

Using embedding order p, Equation 25 can be written compactly as

Dx̃ = Ãx̃+ B̃ũ+ ω̃ y = C̃x̃+ z (26)

5.3 the control prior 39

with

D =

0 1

0
. . .
. . . 1

0

⊗ In

where the first matrix is of size p× p and In ∈ Rn×n. ⊗ is the kro-
necker tensor product. Hence, D ∈ Rnp×np. Also,

Ã = Ip ⊗A, B̃ = Ip ⊗B, C̃ =
(
C 0 . . . 0

)
.

So Ã ∈ Rnp×np, B̃ ∈ Rnp×nm and C̃ ∈ Rq×np.
Let us rearrange Equation 26 to arrive at:

Dx̃− Ãx̃− B̃ũ = ω̃ y− C̃x̃ = z (27)

Under the assumption that the noises are Gaussian, p(ω̃) ∼ N(0,Σω̃),
p(z) ∼ N(0,Σz). Also, p(x̃) = p(ω̃) and p(y|x̃) = p(z) as from Equa-
tion 27. The mean of both densities is zero, but naturally it is also
the expectation of Equation 27. So, the generative model is found by
taking the expectation over Equation 27:

Dµ− Ãµ+ ξ = 0 y− C̃µ = 0 (28)

where the first equation has a covariance Σω̃ and the second a covari-
ance Σz. We have replaced E[B̃ũ] by ξ, which introduces the second
of two differences with conventional filtering as mentioned before.
ξ ∈ Rnp represents a prior expectation over the control signal, or a
prior expectation over the generalized state. The next section elabo-
rates on this.

5.3 the control prior

In this section we will present a standard form for the prior ξ and
show that it is able to drive the state estimation towards the desired
value. One is free to define anything for ξ, but in this setting it makes
most sense to use

ξ = Dµeq − (Ã+ K̃)µeq +Kµ (29)

where µeq =
(
xeq ẋeq . . .

)>
. This prior allows for both loop

shaping – through K̃ – and reference tracking – through µeq. Namely,
consider the state equation of the generative model: Dµ− Ãµ− ξ = 0.
Substituting Equation 29 for ξ and rearranging yields:

D(µ− µeq) − (Ã+ K̃)(µ− µeq) = 0

40 generative model

which is simply a mapping for the expectation of the generalized
tracking error (x̃ − x̃eq). This equation is only true when µ = µeq
(unless D = (Ã + K̃)) and thus the generative model will drive the
belief µ towards µeq as long as the filter Equation 35 is stable. At this
point we have not introduced the filter yet, so for now assume the
filter using Equation 29 for ξ can be written as

µ̇ = Eµ+ Fy+Hµeq

where

E = D− κC̃>ΠzC̃− κ(D− Ã− K̃)Πω̃(D− Ã− K̃)

The filter converges to µeq when E is stable. The controller will then
make sure that y = Cµeq, resulting in a closed loop that tracks the
reference.

A final remark on the prior variable: Remember from Chapter 2

that the generative model is

p(x̃,y) = p(y|x̃)p(x̃)

The output equation in Equation 28 corresponds to p(y|x̃), as it ex-
plains how data y depends on the current generalized state x̃. The
state equation corresponds to p(x̃) as it models the belief about the
behavior of x̃. Crucially, this belief does not need to be an exact copy
of the world and that is why we allow for an extra variable ξ which
allows us to reshape the prior p(x̃) in any way possible. Essentially
this is also what a control signal does to the true state x and hence it
is not a coincidence that ξ can also be seen as the expectation of the
control signal. It is however just as valid to think of it as a prior over
the states as is evident from Equation 29.

Conventionally, a reference signal is supplied to the controller, but
in Active Inference the reference is embedded in the internal model
using ξ. This difference is also evident from Figure 5.

6
F O RWA R D M O D E L

This chapter will discuss the second of two models required by an Active
Inference agent: the forward model. Namely, besides a model of how the
hidden states and observations interact, the agent must also model how its
actions affect the observations. This is captured in a forward model, as will
be explained in this chapter. Two different derivations are provided, one from
a standard control theoretic perspective and one using generalized motions.
As both result in the same forward model, the result is more credible.

6.1 derivation from standard process

We can derive a forward model y(u) from the (deterministic) gener-
ative process equations, omitting the noise since we are only looking
for a relation between u and y:

ẋ = Ax+Bu

y = Cx

The solution for x(t) given some input signal u(τ), τ ∈ [0, t] is

x(t) = eAtx(0) +

∫t
0

eA(t−τ)Bu(τ)dτ

The solution for y(t) is then rather simple to determine:

y(t) = CeAtx(0) +C

∫t
0

eA(t−τ)Bu(τ)dτ .

Since u(τ) is some arbitrary signal we cannot further simplify the
integral and the partial derivative ∂uy has to be evaluated using vari-
ational calculus. This does however require that the function u(τ) is
known and differentiable, which need not to be the case.

To avoid this problem, consider steady-state behavior i.e assume
that u(τ) = u is constant, A is Hurwitz and t is sufficiently large so
that the transient response has vanished (eAt ≈ 0). In this case u(τ)
can be pulled out of the integral so that the partial derivative becomes

∂uy(t) = ∂u

[
CeAtx(0) +C

∫t
0

eA(t−τ)Bdτ u

]
= C

∫t
0

eA(t−τ)Bdτ

= CA−1eAtB−CA−1B

≈ −CA−1B

41

42 forward model

Note this will be the only place where B appears inside the agent,
which represents the agent’s belief about how its control affects the
process state. The result above is simply the steady state gain matrix.
We will define the forward model as

G = −CA−1B (30)

Observe that ∂uy = C∂ux. The problem stated above rests in the
latter partial derivative. The reason why this partial derivative is prob-
lematic is because even if x(t) is known, this does not provide enough
information about how x(t) will change with respect to u(t). Namely,
it does not provide information about the continuity of x(t), which
needs to be ensured. To solve this, the current trajectory of x(t) needs
to be known. This trajectory can be found either by evaluating the
integral given the history of u, or by assuming it is known. The lat-
ter implies knowledge of generalized motions, which should sound
familiar. The next section will show how this comes in handy.

6.2 derivation from generalized process

A second way to find the forward model is to start by writing the
deterministic generative process in generalized form:

Dx̃ = Ãx̃+ B̃ũ

ỹ = C̃x̃

From this it is easy to find that

ỹ = C̃(D− Ã)B̃ũ

Remember that the output was chosen not to be modeled in general-
ized form, so that the above becomes

y = C̃(D− Ã)−1B̃ũ where C̃ =
(
C 0 0 . . . 0

)
(31)

(and Ã = Ip ⊗A and B̃ = Ip ⊗B). Observe that

(D− Ã) =

−A In

−A
. . .
. . . In

−A

which is upper triangular. The inverse is hence easy to evaluate. In
fact, due to the structure of C̃ only the first diagonal element is re-
quired, which is −A−1. Then, expanding the multiplications from
Equation 31 yields

y = −CA−1Bu

and thus

∂uy = −CA−1B

which is the same result as obtained before.

7
F I LT E R A N D C O N T R O L L E R D Y N A M I C S

The previous two chapters have introduced the two models involved in per-
forming Active Inference on an LTI state space system. This chapter will
introduce the exact form of the free energy to be minimized in Section 7.1.
The resulting formula is subsequently used to define the filtering and control
dynamics in Section 7.2 and Section 7.3 respectively.

7.1 the reformulated free energy

This section will introduce the final form of the free energy that will
be used to perform Active Inference on LTI state space systems. All
simplifications to arrive at this formulation will also be recapitulated.

To arrive at the free energy formula, we will simply substitute the
generative model Equation 28 in the prediction errors Equation 21:

ε =

(
εx

εy

)
=

(
Dµ− Ãµ− ξ

y− C̃µ

)

with the corresponding minimizable free energy (omitting constant
terms irrelevant for the optimization):

F(µ,y) = 1
2ε
>Πε

where Π is block diagonal, so the two prediction errors are indepen-
dent. Then, for completeness, the free energy can be written as:

F(µ,y) = 1
2(y− C̃µ)

>Πz(y− C̃µ) (32)

+ 1
2(Dµ− Ãµ− ξ)

>Πω̃(Dµ− Ãµ− ξ).

In fact Equation 32 is not close to the original free energy anymore,
only a small part of it is left. We will still refer to it as simply the free
energy to avoid confusion. Now, the free energy is all that is required
to set up Active Inference as explained in the next two sections. These
sections will derive Equation 22 and Equation 23 using the free energy
as defined above.

7.2 the filtering dynamics

The first gradient descent is for the state estimation i.e. filtering:

µ̇ = Dµ− κ∂µF(µ,y) (33)

43

44 filter and controller dynamics

where, with respect to Equation 22, a learning rate κ ∈ R+ was added,
as is standard use in gradient descents. It allows to tune the behav-
ior of the filter. The partial derivative of the free energy is easy to
evaluate, it is

∂µF(µ,y) = −C̃>Πzεy + (D− Ã− ∂µξ)
>Πω̃εµ. (34)

Since one is free to define the prior, the partial derivative ∂µξ cannot
be specified analytically.

Now, substituting Equation 34 in Equation 33, the dynamics for µ
become

µ̇ = Dµ− κ
(
−C̃>Πzεy + (D− Ã− ∂µξ)

>Πω̃εµ

)
= Dµ+ κ

[
C̃>Πz(y− C̃µ) − (D− Ã− ∂µξ)

>Πω̃(Dµ− Ãµ− ξ)
]

(35)

As mentioned before gradient descent might not be the most efficient
optimization available, but it is chosen due to the biological plausibil-
ity [29]. It should also be noted that due to the structure of V(γ),
prediction errors in higher order motions of µ quickly contribute
less. This is because the precision of noises in ω̃ quickly decreases
at higher order. For this reason it has been proposed that p = 6 is
sufficient in most cases [28].

As also mentioned earlier, the generative model is only a probabilis-
tic mapping, which is not dynamic. The filtering equation provided
here is where the dynamics are put back into the state estimation
µ. The filtering equation is a form of state estimation much like a
Kalman-Bucy filter does [9, 54]. This will be elaborated some more in
Chapter 10.

7.3 the control dynamics

As explained in Section 4.3, the second gradient descent determines
the control dynamics:

u̇ = −ρ∂uy
>∂yF(µ,y)

where ρ ∈ R+ is a learning rate, added to tune the behavior of the
controller. The transpose is required since we are working in the ma-
trix domain [3]. From Equation 32 it is easily determined that

∂yF(µ,y) = Πzεy

The other partial derivative is the forward model G = −CA−1B. Com-
bining the two yields that

u̇ = −ρGTΠz(y− C̃µ) (36)

7.4 closed loop model 45

Process

State: x

ω

Controller

State: u

z

u

Filter

State: µ

ξ
y

µ

Figure 5: Closed loop scheme of Active Inference. An agent (filter + con-
troller) controls some process with state x which is subject to dy-
namics, and noise ω. The observation is also subject to noise z.
Internally, the agent keeps track of a state estimate µ and of the
control signal u, used to control the process. ξ is the prior belief
defining desired process behavior.

7.4 closed loop model

By connecting the agent’s gradient descent equations with the gener-
ative process, a closed loop system description can be obtained. This
is useful for simulation purposes1. Figure 5 shows a block scheme of
all signals in the closed loop. From the closed loop perspective, ω, z
and ξ are inputs and x,µ,u are the state space states.

The first step in describing the closed loop equation is to write a
state space model of the agent. From Equation 35 and Equation 36 we
know that

µ̇ = Dµ+ κ
(
C̃>Πz(y− C̃µ) − (D− Ã)>Πω̃(Dµ− Ãµ− ξ)

)
(37)

u̇ = −ρG>Πz(y− C̃µ) (38)

where it was used that ∂µξ = 0, i. e., assuming no pole placement.
These two equations can be written as a state space model. As can
be seen from Figure 5, y and ξ are inputs to the agent and u is the
output. The two variables subject to dynamics (µ and u) are the state
xa of the agent state space model. Therefore the model is:

ẋa = Aaxa +Ba

(
y

ξ

)
u = Caxa

1 We will use MATLAB’s lsim function.

46 filter and controller dynamics

where xa =
(
µ u

)>
and from Equation 37 and Equation 38:

Aa =

(
M 0

ρG>ΠzC̃ 0

)
,

Ba =

(
κC̃>Πz κ(D−A)>Πω̃

−ρG>Πz 0

)
,

Ca =
(
0 Im

)
where we have defined

M = D− κ(D− Ã)>Πω̃(D− Ã) − κC̃>ΠzC̃

to avoid cluttering.
At this point there are two state space models, described by the

following four equations:

ẋ = Ax+Bu+ω

y = Cx+ z

ẋa = Aaxa +Ba

(
y

ξ

)
u = Caxa

The output equations can be eliminated by substituting them in the
state equations:

ẋ = Ax+BCaxa +ω

ẋa = Aaxa +Ba

(
Cx+ z

ξ

)
This is equivalent to closing the loop, since we have now connected
the in- and outputs of the two systems. We can write the closed loop
as an augmented state space model

ẋcl = Aclxcl +Bclucl

where xcl =
(
x xa

)>
=
(
x µ u

)>
. The signals ω, z and ξ are

inputs: ucl =
(
ξ ω z

)>
. Note that only ξ is controllable. ω and z

are disturbances. With some bookkeeping it is easy to derive that

Acl =

 A 0 B

κC̃>ΠzC M 0

−ρG>ΠzC ρG>ΠzC̃ 0

 ,

Bcl =

 0 In 0

κ(D− Ã)>Πω̃ 0 κC̃>Πz

0 0 −ρG>Πz

 .

7.5 summary 47

7.5 summary

This section will compactly summarize all essential equations for Ac-
tive Inference on stochastic LTI state space systems, as derived in
Chapter 5, Chapter 6 and the current chapter.

All of this thesis so far essentially culminated in four equations, to-
gether constituting the generative process and Active Inference agent:

ẋ = Ax+Bu+ω

y = Cx

µ̇ = Dµ+ κ[C̃>Πz(y− C̃µ) − (D− Ã− ∂µξ)
>Πω̃(Dµ− Ãµ− ξ)]

u̇ = −ρGTΠz(y− C̃µ)

which are the generative process (first two equations), the filter and
the controller. In these equations we have

Ã = Ip ⊗A

C̃ =
(
C 0 0 . . . 0

)
G = −CA−1B

D =

0 1

0
. . .
. . . 1

0

⊗ In
Πz = Σ

−1
z

Πω̃ = V(γ)−1 ⊗Πω = V(γ)−1 ⊗ Σ−1
ω

where for D, the first matrix is of size p× p. Also, V(γ) ∈ Rp×p with
the following internal structure:

V(γ) =

1 0 ρ̈(0) . . .

0 −ρ̈(0) 0

ρ̈(0) 0 ρ(4)(0)
...

. . .

 .

in which ρ(t) is the autocorrelation function of the noise, parameter-
ized by the roughness parameter γ.

The (Laplace encoded) free energy itself is superfluous, but for com-
pleteness, it is defined as:

F(µ,y) = 1
2(y− C̃µ)

>Πz(y− C̃µ)

+ 1
2(Dµ− Ãµ− ξ)

>Πω̃(Dµ− Ãµ− ξ).

Parameters that have to be chosen manually (tuning parameters) are
summarized in Table 1.

48 filter and controller dynamics

Table 1: Tuning parameters in Active Inference.

parameter name symbol

Embedding order p ∈ R+

Learning rates ρ, κ ∈ R+

Control/state prior ξ ∈ Rnp

Roughness parameter γ ∈ R+

Noise covariances Σω ∈ Rn×n,Σz ∈ Rq×q

Several assumptions and approximations have been employed to
arrive at the formulation of Active Inference presented above:

1. Parameters and hyperparameters (θ and γ,Σω,Σz) are known.

2. Mean-field approximation: q(ϑ;µ) = q(x̃;µx̃)q(θ;µθ)q(γ;µγ)

3. Laplace approximation q(x̃;µx̃) ∼ N(0,Σω̃)

4. Noises are non-Markovian and Gaussian

5. Noises have a Gaussian autocorrelation

6. Application to LTI state space systems

7. No generalized observation ỹ

Having arrived at the formulation of Active Inference that is applica-
ble to LTI state space models, the next step is of course to study the
performance and analyze the algorithm mathematically. This is the
subject of the next part of this thesis. Before going into this, the next
chapter provides a toy example to solve any remaining ambiguities
on how to implement the state space Active Inference algorithm.

8
A N E X A M P L E

8.1 the generative process

The generative process we consider is a simple mass-spring-damper
system with mass m [kg] , spring constant k [N/m] and damping
constant c [Ns].(

ẋ

ẍ

)
=

(
0 1

− k
m − c

m

)(
x

ẋ

)
+

(
0
1
m

)
u+

(
ωx

ωẋ

)

y =
(
1 0

)(x
ẋ

)
+ z

We set a constant equilibrium position of α, so xeq =
(
α 0

)>
. Be-

sides this, several (hyper)parameters have to be chosen. All parameter
values are listed in 2. To keep the example compact, p = 2 has been
chosen. The learning rates κ and ρ have been manually optimized,
which is the main difficulty in achieving satisfying performance. The
other parameters are arbitrary with the exception that m,k and c are
chosen such that the resulting system is stable.

8.2 control system setup

This section provides an explicit example of all the components con-
stituting the agent i. e.control system.

Since p = 2 we have that

Ã =

0 1 0 0

− k
m − c

m 0 0

0 0 0 1

0 0 − k
m − c

m

C̃ =

(
1 0 0 0

)
Remember that we do not consider generalized measurements and
hence the output y is still simply the position. B̃ is not required for

Table 2: Parameters and hyperparameters of mass-spring-damper example.

m k c α σ2ω σ2z γ p κ ρ

10 100 40 40 10 1 16 2 10 104

49

50 an example

the filter nor controller, so we need not to define it. B will appear in
the forward model.

For the precision matrices, firstly we have that (since p = 2)

V(γ) =

(
1 0

0 1
2γ

)
.

Assuming that the noises in ω are independent:

Πω = Σ−1
ω =

(
σ2ωx 0

0 σ2ωẋ

)−1

In this example we give both noises in ω the same variance σ2ω, so
Σω = σ2ωI2. Then, from Equation 12:

Πω̃ =

[
1 0

0 1
2γ

]−1
⊗ 1

σ2ω
I2

Because generalized motions are not used in the measurement noise,

Πz = Σ
−1
z =

1

σ2z
.

Since p = 2 and n = 2 (the state dimension) we have that

D =

[
0 1

0 0

]
⊗ I2 =

[
0 I2

0 0

]

For the control prior, remember that xeq is constant (and again
p = 2) so that

µeq =
[
xeq ẋeq

]>
=
[
α 0 0 0

]>
In addition, we do not consider a pole placement term K̃, so from
Equation 29 then

ξ = −Ãµeq =
[
0 α km 0 0

]>
Observe that the same can be obtained by setting the input ueq = αk,
since then Bueq = α km . This shows that it does not make much of a
difference whether we see xi as a prior on the states ξ = E[Ãx̃] or on
the control ξ = E[Bu].

Finally, for the forward model we get

G = −CA−1B =
1

k

which is the inverse spring constant. This represents the relation be-
tween u (the force) and y (the position) in steady state: y = u/k.

8.3 simulation 51

8.3 simulation

To simulate the system the MATLAB function lsim will be used. This
function takes input of the following form:

ycl = lsim(system,t,ucl,x0).

To be compatible with this function, a closed loop system was de-
fined in Section 7.4. The idea was to connect the control signal of the
agent to the generative process and to connect the output of the gen-
erative process to the agent. In short, the result is a new state space

system with state xcl =
(
x µ u

)>
and input ucl =

(
ξ ω z

)>
:

ẋcl = Aclxcl +Bclucl (39)

where

Acl =

 A 0 B

κC̃>ΠzC M 0

−ρĜ>ΠzC ρĜ>ΠzC̃ 0

 ,

Bcl =

 0 I 0

κ(D− Ã)>Πw 0 κC̃>Πz

0 0 −ρĜ>Πz

 ,

in which for cleanliness we defined

M = D− κ(D− Ã)>Πω̃(D− Ã) − κC̃>ΠzC̃

For inspection purposes an output equation is added which measures
the complete state:

ycl = Cclxcl

where Ccl = I(n+np+m). This is stored in a state space structure as:

system = ss(Acl,Bcl,Ccl,0);

After defining the input signals in ucl, time vector t and initial
state xcl(0), the function lsim can be called with the state space model
from Equation 39. The code for this simulation is listed in Section B.3.

The results of the simulation are shown in Figure 6. Active Infer-
ence achieves control as desired. The initial strange behavior in µx
is due to the trade-off between minimizing εy and εµ in the filter.
Namely, the minimizing εy drives µx towards x whereas minimizing
εµ drives µx towards the equilibrium value defined in ξ.

The mean of the free energy settles at approximately 1, an expla-
nation is provided in Section A.4. Note that the settling time cannot

52 an example

Figure 6: Top row: The state responses and noises of the mass-spring-
damper simulation. The system settles in around 10 seconds to
the desired equilibrium x = [40, 0]. Bottom row: The control sig-
nal (i.e. force exerted on the mass) and free energy of the mass-
spring-damper simulation. Initial state xcl(0) = 0. Time-step used:
dt=0.01. Parameters listed in Table 2. (To allow for exact repli-
cation: The MATLAB (R2017a) random generator has been set to
rng(1))

be improved much by tuning the learning rates κ or ρ, as these have
been optimized (manually) already. Improvement could be possible
by changing several other parameters (p, ξ and in principle also Πω̃,
Πz). Then, it is of course interesting to study the effects of the tuning
parameters and compare the performance with conventional setups.
This is the subject of the upcoming part, where the performance of the
algorithm will be further analyzed and several primers for theoretical
studies are provided.

Part III

P E R F O R M A N C E A N A LY S I S

This part consists of several chapters that make a start in
analyzing the performance of Active Inference in the LTI

state space setting, to partially answer the third research
question: How does Active Inference perform? First, the ef-
fects of changes in different (hyper)parameters is studied
in Chapter 9. This is followed by Chapter 10, which is
a primer in the study of the comparison between Active
Inference and optimal control. A primer on possible stabi-
lization and tracking methods is presented in Chapter 11.

9
PA R A M E T E R T U N I N G

Several parameters in the Active Inference agent can still be tuned to obtain
satisfactory performance. This chapter studies the effect of the free parame-
ters on performance and stability. The first section, Section 9.1, studies how
changes in the learning rates of the gradient descents influence the responses.
The section afterwards, Section 9.2, shows how the embedding order changes
the behavior of the closed loop system. Finally, Section 9.3 considers what
happens when the agent’s belief about the noise does not match the true
noises, i. e., changes in the precision matrices.

9.1 learning rates

The first an most obvious tuning freedom in the state space Active
Inference algorithm is in the learning rates ρ and κ of the gradient
descents. Naturally, changing these parameters affects the rate of de-
scent and as such we can predict that the influence will show mostly
in how fast the agent achieves the desired equilibrium.

In all of this chapter we will consider a simple first order system,
which can be thought of as a damped mass excited by an external
force that is the control of the agent1:

ẋ = − d
mx+

1
mu+ω

y = x+ z
(40)

where d = 800, m = 103. The variances of the noises are σ2ω = σ2z =

10 and the desired equilibrium will be xeq = 40. For this section
specifically, the smoothness parameter is γ = 200.

There are a lot of experiments that can be conducted to study the
effects of the learning rates. We provide one interesting feature that
has been discovered, regarding the ratio between the learning rates:

c =
κ

ρ

Figure 7 shows the effect of changes in c for constant ρ. Clearly, de-
creasing the ratio (decreasing κ for constant ρ) makes the control
faster, but also sensitive to the noise. Due to that, when decreasing
the ratio too much, the closed loop becomes unstable as shown in
Figure 8. This is confirmed by a right-half-plane eigenvalue in Acl.
It is unusual that a smaller step-size in a gradient descent makes a
system unstable. Only decreasing κ makes the controller “stronger”

1 We will not consider units as it carries no actual meaning for the results

55

56 parameter tuning

Increasing

Figure 7: Effect of changes in the ratio between the learning rates on the
state response. ρ = 3 · 108 and c ranges from 10−7 to 10−1 with
steps of 102.

with respect to the filter, which would explain an increased sensitivity
to the noise ω or z.

Similar experiments have been conducted by first finding an opti-
mal set of learning rates, which – for the system considered here –
were ρ = 3 · 108 and κ = 103, the optimal ratio is thus c ≈ 3 · 10−6.
With this ratio different sets of learning rates have been tested, where
ρ ranged from 1 to 1016. Listing all the results would take too much
space and since the results are as one would expect, we simply men-
tion the conclusion here: Decreasing the learning rate ρ will never
make the system unstable as long as c is kept constant. The closed
loop performance merely deteriorates. Increasing ρ – with constant c
– will make the system unstable at some point.

A final note on the learning rates with respect to the state dimen-
sion of µ: In this thesis we have considered scalar learning rates and
one might argue that this could be extended to a matrix form because
the state dimension of the gradient descent is mostly larger than one.
However, the effect of different learning rates at different orders of
motion is already captured in the precision matrices, which contain
information about the amount of confidence in each order of motion.

A final important observation is that the learning rates – and so c
as well – have to be re-tuned for every system, optimal values depend
on the system matrices. Also for changes in the variances of the noises
other optimal values arise. This is not convenient, because it means
that it is hard to find a standardized approach that works in a wide
range of settings.

9.2 embedding order 57

Figure 8: By decreasing the ratio c too much, the filter becomes so weak that
the controller is trying to control the noise, making the closed loop
unstable. ρ = 3 · 108 in all cases.

Table 3: Parameters and hyperparameters of the simulation in Figure 9.

σ2ω σ2z γ p κ ρ xeq m d

100 10 32 4 103 8 · 108 40 103 800

9.2 embedding order

The second degree of freedom in the algorithm is in the embedding
order p, which is the order of the generative model. We should expect
that above p = 6 not much changes, as argued in [28].

The first experiment that has been conducted inspects the behavior
of the higher order motions in the agent. Parameters as used for this
experiment are listed in table Table 3. Figure 9 shows the resulting
motions up to 4th order.

As expected, all motions except for the first converge to zero. A
second observation is that the amount of noise in the motions seems
to decrease at higher orders as well as the amount of “movement”
per se. These phenomena are due to the structure of the precision
matrix Πω̃. The precision at higher order motions quickly falls to zero
and thus these motions are updated with much smaller steps in the
filtering scheme. A final observation lies in the physical interpretation
of the motions. Note that the derivative of µx is not equal to the
motion µx ′ . As explained in Chapter 3, this is to be expected.

The effect of changes in the embedding order on the system re-
sponse has also been studied. A first observation is that the effect of
changes also depends on other parameters, such as the smoothness
of the noise. This shows in the difference between Figure 10 and Fig-
ure 11, between which the only difference is the roughness parameter,

58 parameter tuning

Figure 9: Behavior of higher order motions in the agent applied to Equa-
tion 40 with parameters from Table 3. Higher order motions are
less excited and contain less noise than lower order motions.

γ = 32 and γ = 0.89 respectively. It is remarkable that adding higher
order motions creates a smoother response when the noise is smooth.
An explanation for this has not yet been discovered. Changes in the
variances of the noises and the learning rates have similar effects on
the difference between different embedding orders. In general, the
difference between p = 2 and higher orders is large but above p = 2

the difference in responses is much smaller. Also, p can be increased
indefinitely and will never make the closed loop unstable.

9.3 precision matrices

A final, less obvious parameter set that can be tuned is the set of
precision matrices Πω̃ and Πz. Of course, the belief of the agent about
the noises does not necessarily need to be equal to the true noises and
hence one could argue we are free to change Πω̃ and Πz.

The effect on the state response for scalar changes in Πω̃ and Πz is
shown in Figure 12 and Figure 13 respectively. The parameters used
for the simulations are listed in Table 3. The effect of changes in either
of the matrices is similar, but not equal.

Increasing Πω̃ makes the response faster but with more oscillations.
An explanation for this is that the belief of very precise noises puts
more emphasis on the generative model, which contains the tracking
error Ãµ−ξ = Ãµ− Ãµeq. The exact cause for the increase in oscilla-
tions is unclear at this point, but it is likely due to the fact that noises
propagate into the estimation through the observations. Because the
gain Πω̃ is large, these noises are amplified.

Most remarkable is that increasing Πz only has effect up to a certain
point. It is to be expected that decreasing Πz makes the response

9.3 precision matrices 59

Figure 10: The system response for different embedding orders with param-
eters from Table 3, except σ2ω = 10. Not much difference exists
for rough noises, because higher order precisions quickly fall to
zero and do not influence the response a lot.

Figure 11: The system response for different embedding orders with param-
eters from Table 3 except σ2ω = 10 and γ = 0.88 (very smooth
noise). Higher orders do contribute significantly due to the low
roughness and this causes a lot of difference between embedding
orders.

60 parameter tuning

Figure 12: The effect of scalar changes in the belief about the state noise
variance, expressed as scaling Πω̃, on the state response. With
belief of higher precision the system responds faster, with belief
of lower precision the system responds slower.

Figure 13: The effect of scalar changes in the belief about the observation
noise variance, expressed as scaling Πz, on the state response.
With belief of lower precision the system responds slower. Increas-
ing the belief however has no significant effect.

slower, because Πz is basically the gain of the controller. However,
when increasing Πz enough the response does not change much. This
is most likely due to the slower filter dynamics becoming dominant.
The rate at which µx converges to xeq is determined by Πω̃. The
controller can only be as fast as the filter.

There seems to be an equivalence here with the Q and R matrix
in optimal control, which can also be used to tune the response of
the system in a similar way. Higher Πz or allows for more control
action to be used, yielding faster response. For Πω̃ an increase puts
more emphasis on the tracking error and thus also makes the system
converge faster. This relation is the subject of the upcoming chapter.

10
E Q U I VA L E N C E W I T H O P T I M A L C O N T R O L

The free energy looks a lot like the quadratic cost functions used in optimal
control. Also, in the previous chapter we have seen that there is an apparent
similarity between the precision matrices and the Q and R matrices used
in optimal control. This chapter makes a start in the analysis of the exact
relation between Active Inference and LQG control.

10.1 simulation : lqr vs . active inference

It has been argued in [28] that DEM is equivalent to extended Kalman
filtering for linear systems and Gaussian (Markovian) noises. Hence,
it is natural to wonder whether Active Inference is equivalent to Lin-
ear Quadratic Gaussian control (LQG), which is a Kalman filter sup-
plemented with an Linear Quadratic Regulator (LQR) controller. This
section will show that it is possible to design an Active Inference
controller (and estimator) that gives the same response as an LQR
controller. We will use the same system as before,

ẋ = − d
mx+

1
mu+ω

y = x+ z

but with parameters as listed in Table 4.
The first important remark is that optimal control theory makes use

of (Gaussian) Markovian noises and thus we need to consider Active
Inference for p = 1 to make a proper mathematical comparison. As
this is a special case of which the details are yet unclear, we will
use p = 2 for simulations. Section A.5 explains the Active Inference
filter for this setting and for p = 1. Note that in Active Inference the
filter cannot be removed since the state estimation is required in the
controller:

u̇ = −ρG>Πz(y−Cx̂)

where we replaced µ with x̂ to denote the standard state estimate. Re-
moving the filter also removes the prediction error that the controller
minimizes (because it removes the variable x̂). Therefore, it seems that
the separation principle does not apply to Active Inference.

We assume full state information (C = I) so that the Kalman filter
is superfluous – as one usually does to transfer from LQG to LQR –
which results in

u̇ = −ρG>Πz(x− x̂)

61

62 equivalence with optimal control

Table 4: Parameters and hyperparameters of the simulation in Figure 14.

σ2ω σ2z γ p κ ρ xeq m d Q R

10 0 200 2 0.1 8 · 103 40 103 80 9 · 103 8 · 10−3

This controller is Active Inference applied to a system where z ≈ 0,
which corresponds to having full state information since C = I.

Next, we consider an LQR controller. More details about LQR control
can be found in [76]. In short, the (infinite-horizon) LQR controller to
track xeq is

u = −Lx+ uffw

where L = R−1B>P and P the solution of the algebraic ricatti equation

A>P+ PA− PBR−1B>P+Q = 0

and uffw is the feedforward control corresponding to xeq:

uffw = (d+K)xeq

for this case specifically. Using Q and R as specified in Table 4, the
learning rates of Active Inference have been tuned to get the response
of Active Inference as close as possible to that of the LQR controller.
The result is shown in Figure 14. It is important to take note of the
initial values. Namely, the initial control of the LQR system is nonzero:
u(0) = −Kx(0) + uffw. However, the controller for Active Inference
is an integrator which would usually start at initial zero state. The
initial state of the Active Inference controller has been set to the same
value as the LQR controller to obtain the responses shown. In this
case, clearly the two are equivalent, which is very remarkable. The
upcoming section provides a first look into the theoretical comparison
of Active Inference and optimal control, i. e., LQG.

10.2 theoretical proof : a primer

A very interesting topic for further studies on Active Inference is the
proof of equivalence between Active Inference and LQG, of which the
existence has been hinted at by Friston [27, 28]. This section does
not complete the proof, but provides a compact overview of the equa-
tions which must be proven to be equivalent. Also some other general
observations are mentioned.

To properly compare the two paradigms we must assume Marko-
vian noise, which is explained in Section A.5 for Active Inference.
To improve the comparison, we will replace µ with the conventional
estimate x̂ and replace ξ = Bu again. Since we are not working in
generalized form anymore, this yields no other notational problems.

10.2 theoretical proof : a primer 63

Figure 14: Active Inference tuned to show a response equivalent to that of
the LQG controller. Parameters listed in Table 4.

A first observation is the different form of the cost function for LQR

control and the free energy:

J =

∫∞
0

(x>Qx+ u>Ru)dt

versus

F(x̂, x̂ ′, x,u) = 1
2ε
>
yΠzεy +

1
2ε
>
x Πωεx

where

εy = x− x̂

εx = x̂ ′ −Ax̂−Bu

The free energy does not contain an integral and considers errors in-
stead of states and control. Moveover, LQG has a separate cost function
for the Kalman filter and the LQR controller, whereas Active Inference
only uses a single cost function. This is a fundamental difference that
seemingly contradicts the equivalence.

64 equivalence with optimal control

Next, let us consider the filtering part. The Kalman-Bucy filter (con-
tinuous time Kalman filter) is [54]:

˙̂x = Ax̂+Bu+Kεy

where optimal kalman gain K = PC>R−1 is the solution of

AP+ PA> − PC>R−1CP+Q = 0

Observe the equivalence with the solution for the LQR gain, which is
explained by the duality of the two problems [57]. For better compar-
ison we substitute the optimal kalman gain:

˙̂x = Ax̂+Bu+ PC>R−1εy (41)

The filter of Active Inference for p = 1 (with κ = 1) is:

˙̂x = x̂ ′ +A>Πωεx +C>Πzεy
˙̂x ′ = −Πωεx

Again, it does not seem that the two are equivalent, although it can
be observed that the term in both filters multiplied with εy is similar.
It looks like R−1 = Πz (and then correspondingly Q−1 = Πω).

One possibility to bring us closer to the equivalence is to set ˙̂x ′ = 0,
which implies that εx = 0 i. e. x̂ ′ = Ax̂+ Bu, which of course looks
very familiar. Substituting this in the Active Inference filter yields

˙̂x = Ax̂+Bu+C>Πzεy

which starts to look very similar to the Kalman filter Equation 41,
except that the covariance matrix P does not appear. The equivalence
has not been proven yet further than this point.

Considering the controllers, the LQR controller is

u = −R−1B>Px̂+ uffw

and the Active Inference controller is

u̇ = −ρG>Πz(x− x̂)

The two do not look similar. The most critical difference is the inte-
gral present in the Active Inference controller. Also, Active Inference
controls an error whereas LQR is a state feedback.

Concluding this chapter, the equivalence is not clear form a math-
ematical point of view although simulations suggest it exists, at least
for the scalar case. This chapter should not be considered as a con-
crete proof, but it provides a lead for further studies.

11
S TA B I L I T Y A N D T R A C K I N G

In this chapter we study two of the most basic problems in control theory
regarding state space systems: Stability and tracking. Like any other conven-
tional state space controller it would be required for Active Inference to be
able to perform these tasks if it is to be considered useful. This chapter does
not provide complete solutions to all of the problems posed, but states the
answers for as far as these have been worked out at this point.

11.1 stabilization : an lmi approach

Again, let us consider the generative process:

ẋ = Ax+Bu+ω

y = Cx+ z

and let us assume that the A matrix of the generative process is un-
stable, i. e., has eigenvalue(s) in the right half of the complex plane.
A conventional approach would be to design a state space controller
using state feedback (pole placement or LQR for example [23]) and
a filter when the state is not observed directly. The two can be com-
bined based on the separation principle [57].

In Active Inference however, this problem is different. Namely, the
controller is predefined, except for the learning rate ρ:

u̇ = −ρG>C̃>Πz(y− C̃µ)

All the design possibilities are in the filtering part of the agent, more
specifically in the prior variable ξ:

µ̇ = Dµ− κ[−C̃>Πz(y− C̃µ)

+ (D− Ã− ∂µξ)
>Πω̃(Dµ− Ãµ− ξ)]

This variable provides the flexibility to change the generative model
in any way desirable. The question is, how to choose the prior ξ such
that we obtain desirable behavior, or, in this case, stabilization? Re-
member that the full prior was defined as

ξ = Dµeq − (Ã+ K̃)µeq + K̃µ

In this section we will consider the loop shaping part of the prior. So,
much like standard state feedback controllers, we choose

ξ = K̃µ

65

66 stability and tracking

where similar to Ã, K̃ = Ip ⊗ K, such that the state equation of the
generative model becomes

Dµ = (Ã+ K̃)µ

We provide more freedom by omitting the tensor product require-
ment for K̃. Namely, the approach presented below is not guaranteed
to provide an existing solution for the tensor product form, thus the
free form for K̃ will be assumed. The above equation looks a lot like a
pole placement controller, but then in a generalized form due to the
use of generalized motions.

The following sections provide a possibility to design a stabilizing
filter, based on Linear Matrix Inequality (LMI) optimization. We start by
defining the optimization problem and subsequently solve the feed-
back matrix K̃ from the optimization result.

11.1.1 The optimization problem

Remember the closed loop matrix

Acl =

 A 0 B

κC̃>ΠzC M 0

−ρĜ>ΠzC ρĜ>ΠzC̃ 0

where M contains the generative model, which we are free to shape.
In other words: we are free to define M. Hence, stabilization is equiv-
alent to finding a matrix M and P such that

Acl(M)>P+ PAcl(M) ≺ 0

where P is some positive definite matrix. This is the Lyapunov in-
equality [8]. If there exists a positive definite P such that the inequal-
ity holds, Acl is stable. However, the problem now is that both Acl
and P can be optimized such that the inequality holds. To solve this
problem we can turn to a sequential optimization approach. First, we
relax the Lyapunov inequality:

Acl(M)>P+ PAcl(M) � δI

where δ ∈ R and I is an identity matrix of appropriate size (n+np+

q). Now, assuming as initial condition the standard form of M where
K̃ = 0, we can check if the closed loop is stable by solving:

min
δ,P

Acl(M)>P+ PAcl(M) � δI

This optimization can be performed with software like YALMIP1 and
an Semi-Definite Programming (SDP) solver. If there exists a solution for

1 https://yalmip.github.io/

https://yalmip.github.io/

11.1 stabilization : an lmi approach 67

Table 5: Parameters and hyperparameters of the simulation in Figure 15.

σ2ω σ2z γ p κ ρ xeq m d

10 10 50 2 1 · 102 2 · 108 40 1 · 103 800

P where δ < 0, the problem is solved since then the actual Lyapunov
inequality also holds. If this is not the case – the optimal δ is positive
– we proceed to solve

min
δ,M

Acl(M)>P+ PAcl(M) � δI

using the value of P found in the previous step. Now, if the solution is
some M and δ < 0, the problem is solved. If this is not the case, δ will
at least be smaller than before, since we took the same value for P but
optimized M together with δ now. With the current value for M we
can repeat the first optimization, and then the second, until we find
negative value for δ. The corresponding value for M is a stabilizing
solution for the closed loop. The final problem is to re-extract the
feedback matrix K̃ from M. This is the topic of the next section.

Note that it is in fact possible for Active Inference to stabilize sys-
tems. An example is provided in Figure 15, where the system was

ẋ = d
mx+

1
mu+ω

y = x+ z

and the prior state feedback matrix was K = −2 dm and K̃ = Ip ⊗ K.
Other variables for the simulation are summarized in Table 5. For this
system the approach presented above should be guaranteed to pro-
vide a stabilizing solution. It could be interesting for future research
to prove whether or not Active Inference is able to stabilize any stabi-
lizable system, like pole placement control.

11.1.2 Solving the state matrix

When using the state feedback form for ξ we have that

M = D− κ(D− Ã− K̃)>Πω̃(D− Ã− K̃) − κC̃>ΠzC̃

where M is known to stabilize the closed loop, as explained in the
previous section. Observe that the only unknown is K̃. First, by rear-
ranging some terms, the equation can be written as

κ−1(D−M) + C̃>ΠzC̃ = (D− Ã− K̃)>Πω̃(D− Ã− K̃) (42)

Next, since Πω̃ is an inverse covariance matrix, it is positive (semi)-
definite [2]. Let us assume it is positive definite because all noises

68 stability and tracking

Figure 15: The state response, control, free energy and noises for Active In-
ference on an unstable system with a stabilizing generative model.
The system settles in around 2 seconds to the desired equilibrium.
Simulation parameters listed in Table 5.

have at least an infinitely small variance. This implies that the preci-
sion matrix can be decomposed as

Πω̃ = Q>Q

where the simplest option is to take Q = Π
1
2
ω̃ such that

Πω̃ = Π
1
2>
ω̃ Π

1
2
ω̃

Now since Π
1
2
ω̃ is the root of a positive definite matrix, it is also posi-

tive definite and thus invertible and symmetric [55].
Substituting this form makes the left hand side of Equation 42

quadratic. Thus by taking the root on both sides:

(
κ−1(D−M) + C̃>ΠzC̃

)1
2
= Π

1
2
ω̃(D− Ã− K̃)

Then √
Π−1
ω̃

(
D−M+ κC̃>ΠzC̃

)
= (D− Ã− K̃)

11.2 tracking 69

from which it follows that

K̃ = D− Ã−
√
Π−1
ω̃

(
D−M+ κC̃>ΠzC̃

)
(43)

Note that it is not an option in this framework to define K̃ as opti-
mization variable, or K when K̃ = Ip ⊗ K. Namely, M is quadratic in
K̃ and thus LMI techniques are not sufficient to solve the problem. By
the approach proposed here it is not guaranteed that the terms on the
left hand side of Equation 43 can be written as Ip ⊗K.

11.2 tracking

In this section we will consider the performance of Active Inference
in a tracking scenario, the second part of the prior beside the loop
shaping. The algorithm will be applied to the same system as before,
but a stable version. So:

ẋ = − d
mx+

1
mu+ω

y = x+ z
(44)

with parameters and hyperparameters as from Table 6.
For completeness, the full formulation of the prior was

ξ = Dµeq − κ(Ã+ K̃)µeq + K̃µ

which was said to be able to perform loop shaping (through K̃) and
tracking (through µeq). Loop shaping, or actually stabilization, has
been considered in the previous section. Here we will consider only
tracking and thus reformulate the prior as:

ξ = (D− Ã)µeq

To verify that this prior makes the filter converge to the desired refer-
ence, a pure generative model filter has been simulated. This means
that we update µ as

µ̇ = Dµ− (D− Ã)>Πω̃(Dµ− Ãµ− ξ)

where it is assumed that ξ is not a function of µ. The result for a
sinusoid reference r(t) = 40 sin(3t/2) switched on at a random time
is shown in Figure 16. Clearly, the filter works as expected.

The next step is to apply this approach in closed loop. The resulting
response is shown in Figure 17. Concluding from this, the tracking ap-
proach presented above works as desired. Future work could rewrite
this scenario to disturbance rejection. Also convergence properties of
the filter are interesting, as it is not always stable in closed loop.

Table 6: Parameters and hyperparameters of the simulations in Section 11.2.

σ2ω σ2z γ p κ ρ m d

10 10 32 2 103 8 · 108 103 800

70 stability and tracking

Figure 16: State estimation µx for a pure generative model scenario. As re-
quired, the filter tracks the reference. Note that there is a small
error/lag. This is error is controlled by the learning rate κ of the
gradient descent. Parameters used as from Table 6 except κ = 10.

Figure 17: Closed loop tracking performance of Active Inference. The refer-
ence is tracked quite well, with a small lag and of course some
fluctuating error due to noises. Parameters used as from Table 6.

Part IV

C O N C L U S I O N S

12
S U M M A RY A N D C O N C L U S I O N S

In this chapter we will first review the contents of this thesis from a high
level perspective. Subsequently, the research questions as posed in the intro-
duction will be answered, in which we consider a separate view for control
theoretic research and robotics research.

12.1 summary

This thesis started with a part exposing the Free Energy Principle and
its considerations, culminating in the formulation of Active Inference.
Several esoteric concepts that receive little attention in the scientific
literature have been explicitly elaborated: Generalized motions, the
temporal variance matrix and the forward dynamic model. Some at-
tention has been spent on mentioning the existing paradigms in engi-
neering to which Active Inference is related. Active Inference relates
to many theories; from the principle of least action to reinforcement
learning, variational inference and Kalman filtering.

Afterwards, in the second part, Active Inference has been applied
on a stochastic LTI state space system, to expose several remarkable
differences with conventional control algorithms and to increase our
understanding of the algorithm. The scope has been limited to state
estimation, but in principle Active Inference provides a means to per-
form (unsupervised) estimation of states, parameters and hyperpa-
rameters. The resulting Active Inference algorithm comprises of two
equations, comparable to a filter and controller as usual in control
science. Both are a gradient descent on the free energy.

In the third part a start has been made in the analysis of the two
equations constituting state restricted LTI Active Inference (to indicate
the scope limit to state estimation and application to LTI state space
systems). Beside studies of the effects that tuning parameters have
on the response, a start in examining the relation with LQG has been
made. It appears Active Inference can achieve equivalent response,
which lead to the question if there is a theoretical proof of this equiv-
alence as well. There should be according to Friston [27, 28]. Also,
a possible approach to design a stabilizing controller has been pre-
sented and it has been verified that Active Inference is indeed able to
stabilize at least one unstable system. Additionally, it has been shown
that the tracking performance is as desired.

73

74 summary and conclusions

12.2 conclusions

The research goal of this thesis was to provide a detailed exposi-
tion of Active Inference in an engineering context, which would be
achieved by answering three research questions. This section revis-
its the research questions and presents the conclusions that we can
draw regarding the research questions. Since this thesis is more con-
trol theoretic, but the long term goal is an application to robotics, the
conclusions are provided from two different perspectives: a control
theoretic perspective and a robotics perspective.

To conclude on the research goal: In this thesis, specific attention
has been spent on elaborating several intricate concepts in Active In-
ference that are overlooked in literature. Additionally, these concepts
have been clarified through application on simple LTI state space sys-
tems. Therefore, this thesis is to date the most detailed and compre-
hensible elaboration of Active Inference. Thus, we can conclude that
the research goal has been achieved.

12.2.1 Control Theoretic perspective

The first research question was: To which existing paradigms is Active
related? It became apparent that Active Inference has relations with
many engineering principles (variational inference, filtering, princi-
ple of least action, and many more) and several differences with con-
ventional approaches have been identified.

The first main difference between Active Inference and common
methods, in the generative process, is that noises are non-Markovian,
i. e., do not have the Markov property. This means we can make use
of generalized motions to improve the state estimation. A second im-
portant contrast is that in Active Inference the reference appears in
the filter. The controller is only a simple integrator that minimizes an
error. The key in Active Inference is to design the filter such that the
agent performs the required task, which can be tracking, regulation
or stabilization.

Also interesting is the fact that due to the use of generalized mo-
tions, the generative model is a probabilistic instantaneous mapping
instead of a dynamic model. The gradient descent on the free en-
ergy then yields an unconventional way to perform state estimation.
Moreover, the same cost function – the free energy – is used for the
controller. It seems that the separation principle does not apply for
Active Inference, as the same cost function is used in both the filter
and controller.

The second research question was: What is the LTI state space formula-
tion of Active Inference? This is essentially answered by two equations:
the filtering and controller equation, which are summarized in Sec-
tion 7.5. In essence, both are a (generalized) gradient descent on the

12.2 conclusions 75

free energy, which in turn is a squared sum of prediction errors. This
implies that the Active Inference algorithm is a form of prediction
error minimization.

The last question was to study how the algorithm performs. A start
to answer this broad question has been made by examining the effect
of tuning parameters. Tuning the learning rates of the gradient de-
scents is the bottleneck in achieving a satisfactory performance. Also,
the equivalence with LQG has been hinted at. It seems that Active In-
ference can achieve similar performance as LQG, if not equivalent. Fur-
thermore, we have proposed a method to stabilize unstable systems
using Active Inference and we have shown that Active Inference is
able to stabilize at least one unstable system. Finally, we have shown
that Active Inference can track a dynamic reference.

12.2.2 Robotics perspective

In this thesis, the focus has been on the control theoretic analysis of
Active Inference, to increase understanding of the framework from
an engineering perspective. This is required before the theory can be
applied on more complex systems such as robots. The relevance of
Active Inference for robotics can at this point be found in more high
level observations. This mainly concludes the first research question:
To which existing paradigms is Active Inference related? The answer to
this question in a robotics context will tell us what Active Inference
adds to the current methods that are used to control robots. At this
point, two interesting areas can be identified:

Firstly, the integration of action and perception might provide in-
spiration for robotic systems which use a simpler architecture to close
the loop. Whereas now robots use very separated vision and motion
planning systems for example, Active Inference could provide a way
to integrate these modules in a more efficient scheme.

Secondly, the inference part of Active Inference is an extension on
standard variational inference by using generalized motions. Combin-
ing this with recent advancements in variational inference research, it
could be possible to use Active Inference for designing systems that
can perform inference on very complex dynamical systems, i. e., pro-
vide robots a “better” understanding of their environment.

13
R E C O M M E N D AT I O N S

This chapter provides several recommendations and proposals for further
studies of Active Inference in engineering context. In short, it is important
to first understand the technical details of Active Inference in order to judge
whether or not there are aspects that could yield improvements. Two areas
for improvement are most probable: (a) Control systems with more accurate
filtering (by using generalized motions) and better performance on complex
systems, or (b) advances in (variational) inference systems.

The first step for further studies is to relate the state space for-
mulation of Active Inference to existing paradigms – like LQG, the
principle of least action, Lyapunov theory – in detail. The bottleneck
in here is to understand how to remove generalized coordinates from
the framework. Karl Friston’s view on this has been presented in Sec-
tion A.5. This increases control theoretic understanding, so that it can
be judged whether or not Active Inference provides improvement
over existing methods. The major remaining question is whether the
use of generalized motions yields better performance (more accurate
filtering, faster settling times etc.) than conventional controllers. Also
the design of the prior variable is an interesting topic.

When the understanding of Active Inference as presented in this
thesis is at a sufficient level, several extensions can be made. First
is to include the learning of parameters and hyperparameters. Sec-
ondly, the algorithm can be applied on nonlinear systems. This will
pave the way to proceed to more complex robotic applications, as
most robots are nonlinear. Finally, the extension to hierarchical mod-
els can be made [34]. This might allow to control even more complex
systems. The main difficulty will be to find sensible representations
of the generative models at each layer. This is where the structure
of neural networks might be useful, as these present an easy way to
model complex functions without having to define a model structure
beforehand.

From a robotics perspective, the main interest is the inference part
of Active Inference. Using the hierarchical models it might be possi-
ble to construct inference machines that can “understand” the com-
plex scenes encountered in robotics. There are recent developments in
generative models (adversarial networks [64] and variational autoen-
coders [19, 61]) that could be combined with the framework of Active
Inference to produce systems with very advanced inference capabili-
ties. The controller will, as in humans, only contains reflex arcs. All of

77

78 recommendations

the interesting computation takes place in the generative model. The
main problem is to design a generative model (mainly the prior part)
such that the robot outputs desired behavior.

More on the machine learning side of robotics, deep learning algo-
rithms might improve by applying local prediction error minimiza-
tion. Active Inference provides a way to develop unsupervised net-
works using local optimization, which is computationally efficient.
Additionally, Active Inference can extend neural networks with the
ability to output control signals. To date, neural networks mostly per-
form inference and miss agency (i. e., open loop). Extra systems are
required to add the agency to the system, i. e., close the loop. Active
Inference could provide a means to close the loop using only one
single simpler structure.

Finally, the application of Active Inference on POMDP’s – a discrete
process often used in robotics – are also being studied recently (in
a neuroscientific setting) [25–27, 30]. This framework relates Active
Inference more closely to reinforcement learning algorithms and per-
haps provides inspiration for improvements there. This thesis has not
considered this version of Active Inference to limit the scope.

Part V

A P P E N D I X

A
S E L E C T E D P R O O F S A N D D E R I VAT I O N S

a.1 free energy upper bound proof

The free energy is defined as

F(ζ, ỹ) =
∫
q(ϑ; ζ) ln

(
q(ϑ; ζ)
p(ϑ, ỹ)

)
dϑ.

Let us now substitute in the equation above that

p(ϑ, ỹ) = p(ϑ|ỹ)p(ỹ)

to arrive at

F(ζ, ỹ) =
∫
q(ϑ; ζ) ln

(
q(ϑ; ζ)

p(ϑ|ỹ)p(ỹ)

)
dϑ

Using the logarithm product and quotient rules the integral can be
divided in two terms:

F(ζ, ỹ) =
∫
q(ϑ; ζ) ln

(
q(ϑ; ζ)
p(ϑ|y)

)
dϑ−

∫
q(ϑ; ζ) lnp(ỹ)dϑ

=

∫
q(ϑ; ζ) ln

(
q(ϑ; ζ)
p(ϑ|ỹ)

)
dϑ− lnp(ỹ)

∫
q(ϑ; ζ)dϑ

=

∫
q(ϑ; ζ) ln

(
q(ϑ; ζ)
p(ϑ|ỹ)

)
dϑ− lnp(ỹ) (45)

where for the last step we used the property that the integral over a
probability density function equals one. The first term in Equation 45

is the Kullback-Leibler divergence between q(ϑ) and p(ϑ|ỹ). Hence
we have that

F(ζ, ỹ) = − lnp(ỹ) +DKL (q(ϑ; ζ) || p(ϑ|ỹ))

and since the Kullback-Leibler divergence is non-negative

F(ζ, ỹ) > − lnp(ỹ)

a.2 the temporal variance matrix

The temporal variance matrix V(γ) is a matrix describing the correla-
tions of random variables at different orders of motion. This section
will derive the covariance matrix of a (continuous) random variable
in generalized form, in which V(γ) will appear.

Consider continuous stochastic process x(t) with

E[x(t)] = 0, Var[x(t)] = σ2, Cov[x(t+ dt), x(t)] = σ2ρ(dt)

81

82 selected proofs and derivations

where ρ(t) is the autocorrelation function (for example Equation 9).
The first assumption we need to make is that x(t) is continuous.

This is equivalent to requiring that ρ(0) is continuous [14], i. e., we
are dealing with non-Markovian noise. Next, let the derivatives of
x(t) be defined using the limit approximation:

ẋ(t) = lim
dt→0

x(t+ dt) − x(t)

dt

ẍ(t) = lim
dt→0

x(t+ dt) − 2x(t) + x(t− dt)

dt2

...

We can now set up the covariance matrix Σx̃, which has the following
internal structure up to the first two derivatives:

Σx̃ =

Cov[x(t), x(t)] Cov[x(t), ẋ(t)] Cov[x(t), ẍ(t)]

Cov[ẋ(t), x(t)] Cov[ẋ(t), ẋ(t)] Cov[ẋ(t), ẍ(t)]

Cov[ẍ(t), x(t)] Cov[ẍ(t), ẋ(t)] Cov[ẍ(t), ẍ(t)]

Which is straightforward to extend to higher orders. Since x(t) has
expectation zero,

Cov[x(t), x(t)] = E[x(t)2] = Var[x(t)] = σ2

From the limit definitions, observe that the expectations of the deriva-
tives are zero. So, for ẋ(t) we have that

Cov[ẋ(t), ẋ(t)] = E

[
lim
dt→0

(
x(t+ dt) − x(t)

dt

)2]

= lim
dt→0

E
[
x(t+ dt)2 − 2x(t+ dt)x(t) + x(t)2

]
dt2

= lim
dt→0

σ2 − 2σ2ρ(dt) + σ2

dt2

= lim
dt→0

σ2
2− 2ρ(dt)

dt2

= lim
dt→0

σ2
2ρ(0) − ρ(dt) − ρ(−dt)

dt2

where for the last step it was used that ρ(0) = 1 and ρ(dt) = ρ(−dt),
both true by definition. Observe that the last equation contains exactly
the (negated) limit approximation for ρ̈(0) and thus

Cov[ẋ(t), ẋ(t)] = −σ2ρ̈(0).

Using a similar approach for ẍ(t) yields:

Cov[ẍ(t), ẍ(t)] = −σ2ρ(4)(0)

A.3 the generalized measurement 83

Then for the off-diagonal elements:

Cov[x(t), ẋ(t)] = E
[

lim
dt→0

x(t)
x(t+ dt) − x(t)

dt

]
= lim
dt→0

E [x(t) (x(t+ dt) − x(t))]

dt

= lim
dt→0

E
[
x(t)x(t+ dt) − x(t)2

]
dt

= lim
dt→0

E
[
σ2ρ(dt) − σ2

]
dt

= 0

Similar derivations show that for Cov[x(t), ẍ(t)] the limit approxima-
tion appears again and

Cov[x(t), ẍ(t)] = σ2ρ̈(0)

Finally,

Cov[ẋ(t), ẍ(t)] = 0

Note that by definition, the covariance is commutative and thus using
all of the above the covariance matrix can be completed:

Σx̃ =

 σ2 0 σ2ρ̈(0)

0 −σ2ρ̈(0) 0

σ2ρ̈(0) 0 σ2ρ(4)(0)

This can be rewritten as

Σx̃ = V(γ)⊗ σ2 where V(γ) =

 1 0 ρ̈(0)

0 −ρ̈(0) 0

ρ̈(0) 0 ρ(4)(0)

Here, γ parameterizes ρ(t) – thus technically we should have writ-
ten ρ(t,γ) everywhere. It might not seem that V is a function of γ,
however γ will appear in the derivatives of the correlation function.

It is relatively straightforward to extend the derivations above up to
higher orders. In fact, the SPM software has some very efficient code
(see spm_DEM_R.m).

a.3 the generalized measurement

If Active Inference is to be applied in practical robotic settings, the
data sent and received will be in the discrete domain, whereas this
thesis has considered the continuous domain only. This was conve-
nient for analyzing the algorithm, but has to be changed for prac-
tical applications. Friston has proposed a method through which a
sequence of discrete observations can be converted to a generalized

84 selected proofs and derivations

form [28]. This section will shortly present this method and show a
critical deficiency in this method.

Assume that a sequence of N data-points is available:

y(1 : N) =
[
y(1) y(2) . . . y(N)

]
which we would like to convert to a generalized measurement ỹ. This
will be done using a Taylor expansion around the center of the data
sequence. As such it is required that p 6 N. (The order of the expan-
sion cannot be higher than the number of samples available.)

We can write the transformation as

ỹ = Ẽy(1 : N) (46)

where dt is the sampling time and

Ẽ = E⊗ Iq

(remember y ∈ Rq). E is a Taylor expansion matrix:

E−1ij =
((i− x)dt)(j−1)

(j− 1)!

where x = round(N/2), rounded up to the nearest integer.
The intuitive interpretation of this transformation is easier to show

with the inverse problem:

y(1 : N) = E−1ỹ

For example, assume that we have three one-dimensional samples
(N = 3, y ∈ R) and want an embedding order of three (p = 3) as well.
The matrix E will be

E−1 =

1 −dt dt2

2

1 0 0

1 dt dt2

2

Expanding Equation 46:

y(1) = y− y ′dt+ y ′′
dt2

2

y(2) = y

y(3) = y+ y ′dt+ y ′′
dt2

2

Now it should be obvious that y(2) (the center sample) is y, and the
sample before and after y(2) are calculated using a Taylor expansion
with the coefficients from the generalized measurement ỹ.

Naturally, the disadvantage is that there will always be a delay (of
round(N/2)) between the time of the newest data and the time at
which ỹ is known. This is especially problematic when p is large.

A.4 free energy expectation 85

a.4 free energy expectation

The reason that the free energy will settle around unity in steady state
is as follows. When taking the expectation of the free energy:

E[F(µ,y)] = E
[
1
2ε
>
x Πω̃εx +

1
2ε
>
yΠzεy

]
remember that the prediction errors are probabilistically equivalent
to the noises (see Equation 17). Then the above can be written as:

E[F(µ,y)] = 1
2

(
E[ω̃>Πω̃ω̃] + E[z>Πzz]

)
Next, since Π = Σ−1, the above can be written as

E[F(µ,y)] = 1
2

(
E
[
ω̃>ω̃

Σω̃

]
+ E

[
z>z

Σz

])
with slight abuse of notation.

Now, the covariance matrices are deterministic and do thus not af-
fect the expectation. In addition, note that E[ω̃>ω̃] = Σω̃ by definition.
Thus:

E[F(µ,y)] = 1
2

(
E[ω̃>ω̃]

Σω̃
+

E[z>z]
Σz

)
= 1
2

(
Σω̃

Σω̃
+
Σz

Σz

)
= 1
2
(1+ 1)

= 1

In reality – in simulations actually – the average value is most of the
time somewhat lower. A reason for this has not been identified yet.

a.5 active inference with markovian noise

This section considers the limit case that p = 1. In other words, the
only equation considered in the generative model for an LTI state
space system is:

x ′ = Ãx+Bu+ω

Any higher order equation has infinite variance, because the noise is
Markovian or very rough. The only two variables containing informa-
tion are x and x ′.

Assuming that p is some value larger than one, the p equations in
the generative model Dµ = Ãµ+ ξ are:

µx ′ = Aµx + ξx

µx ′′ = Aµx ′ + ξx ′

...

0 = Aµx(p) + ξx(p) (= µx(p+1))

86 selected proofs and derivations

for which µ =
(
µx µx ′ . . . µx(p)

)>
. Observe that the highest or-

der motion µx(p+1) is not in the generalized state and it is zero. This
is equivalent to assuming that the precision of the noise at the high-
est order is so low that there is no information in µ(p+1). We can
keep removing equations such that p approaches 1. When p = 2 the
generative model is:

µx ′ = Aµx + ξx

0 = Aµx ′ + ξx ′
(47)

But when p = 1 we do not have that

0 = Aµx + ξx

Because in this case there is information in x ′ (as long as σ2ω 6= ∞)
and we do thus not need to assume that µx ′ = 0. In this case the
generative model is

µx ′ = Aµx + ξx (48)

Note that this model cannot be written in the standard form using D.
The problem now is, we have two formulations by which we can

update the first two orders of motion, i. e., for which µ =
(
µx µx ′

)>
.

The reason to choose either of the two is as follows: When it is as-
sumed that the noise is Markovian, we are not allowed to model
higher order equations and thus the model from (48) should be used.
If we were to assume that the noise is non-Markovian and choose
p = 1, we should also use this model, because we know that there are
two motions that contain information. The model from Equation 47

is used when choosing p = 2 with non-Markovian noise.
For both models, the update equation for µx is (omitting ξ):

µ̇x = µx ′ −C
>Πz(y−Cµx) +A

>Πω(µx ′ −Aµx)

When p = 1 the update for µx ′ is

µ̇x ′ = −Πω(µx ′ −Aµx) (49)

as can be derived by formulating the free energy for both cases and
performing the gradient descent. But when p = 2 the update contains
an extra term:

µ̇x ′ = −Πω(µx ′ −Aµx) −A
>ΠωAµx ′

The extra term originates from the second equation in the generative
model. The effects of this difference are yet to be studied. We conclude
that when the noise is non-Markovian there are two ways to update
the mean µ =

(
µx µx ′

)
. When the noise is Markovian one must use

Equation 49 for µx ′ .

B
M AT L A B E X A M P L E S

b.1 generating smooth noise

To generate smooth Gaussian noiseω(t) (Gaussian noise with a Gaus-
sian autocorrelation), we can simply convolute Markovian Gaussian
noise w(t) with a Gaussian kernel. The kernel is defined as

ρ(t) = e−
γ
4 t
2

Note that the kernel is a normalized Gausian, so that ρ(0) = 1, which
is required if it is to be an autocorrelation function. When choosing
other kernels, keep in mind that beside this the kernel must be sym-
metric. Both requirements follow from the definition of autocorrela-
tion.

In a simulation environment, the convolution ω(t) = w(t) ∗ ρ(t)
can be performed by multiplying Gaussian noise vector w with a
convolution matrix K:

ω = wK

where K is a normalized toeplitz matrix. Listing 1 shows a MATLAB
code example of this process. Figure 18 gives an example of the influ-
ence of the kernel width γ (the roughness parameter) on the smooth-
ness of the noise.

Listing 1: MATLAB code: smoothing Gaussian noise.

1 % Time definition:

T = 10; dt = 0.1; t = 0:dt:T;

N = numel(t);

% Noise parameters:

6 gamma = 8; % roughness

varw = 10; % variance

% Parameter conversion:

s = sqrt(2/gamma); % kernel variance

11

% Temporal convolution matrix:

T = toeplitz(exp(-t.^2/(2*s^2))); % Gaussian convolution matrix

K = diag(1./sqrt(diag(T*T’)))*T; % normalization of T

16 % Smooth noise construction:

w = varw*randn(1,N)*K;

87

88 matlab examples

Figure 18: Influence of the roughness parameter γ on the smoothness of the
noise. Here, the same white noise sequence (not shown to avoid
cluttering) has been smoothed using Gaussian kernels of three
different widths. Clearly, the smoothness of the noises is inversely
proportional to γ.

b.2 comparing primes and dots

The code in the listing below produces a simulation that shows that
in a stochastic mass-spring damper system with independent noises
on the position and velocity ẋ1 6= x ′1 i. e. the motion of the position
is not equal to the velocity in the stochastic case. In the deterministic
case these are equal and generalized motions are redundant.

Listing 2: MATLAB code: comparing dots and primes

m = 10;k = 1e2; c = 10;

A = [0 1; -k/m -c/m];

3 B = eye(2);

C = eye(2);

process = ss(A,B,C,0);

%% Preprocessing:

8 % Time:

T_end = 10;

dt = 0.05;

t = 0:dt:T_end;

N = numel(t);

13

% Generate analytic state noise:

varw = 200*[1 1]; s = 0.15;

[w,~] = makeNoise(process,[],varw,s,t,dt);

18 % Differentiate the noise:

w1dot = [diff(w(1,:))/dt 0];

w2dot = [diff(w(2,:))/dt 0];

B.3 mass spring damper simulation 89

wdot = [w1dot ;w2dot];

23 % Initial conditions:

p0 = 40; % initial position

v0 = 0; % initial velocity

x0 = [p0 v0];

dx0 = [v0 -k/m*p0-c/m*v0]; % This is a consistent initial

condition dx(0) = Ax(0) (velocity and acceleration)

28

%% Simulate deterministic system:

xd = lsim(process,zeros(2,N),t,x0); % Standard process

pxd = lsim(process,zeros(2,N),t,dx0); % First generalization

33 %% Simulate the system with noise input:

x = lsim(process,w,t,x0); % Standard process

px = lsim(process,wdot,t,dx0); % First generalization

% Plot results:

38 figure(1);

subplot(221);

plot(t,xd(:,1)); title(’Deterministic’);

ylabel(’Position [m]’); grid on;

43 subplot(223)

plot(t,xd(:,2)); hold on; grid on;

plot(t,pxd(:,1),’--’);

xlabel(’Time [s]’); ylabel(’Velocity [m/s]’);

legend(’x_2’,’$x_1’’$’);

48

subplot(222);

plot(t,x(:,1)); title(’Stochastic’);

grid on;

subplot(224);

53 plot(t,x(:,2)); hold on; grid on;

plot(t,px(:,1),’--’);

xlabel(’Time [s]’);

legend(’x_2’,’$x_1’’$’);

b.3 mass spring damper simulation

Below is the MATLAB code to simulate the mass spring damper sys-
tem from Chapter 8. Running this code will reproduce Figure 6.

Listing 3: MATLAB code: mass spring damper simulation.

%% Generative process:

m = 10;k = 1e2; c = 40;

A = [0 1; -k/m -c/m];

4 B = [0; 1/m];

C = [1 0];

90 matlab examples

x_eq = [40;0]; % desired equilibrium (constant)

9 system = ss(A,B,C,0);

%% Set up agent components:

% Tuning parameters

rho = 1e4; % control learning rate (default: 1e4)

14 kappa = 1e1; % estimation learning rate (default: 10)

p = 2; % number of generalized states (default: 2)

varw = [10 10]; % uncertainty in states (variance)

varz = 1; % uncertainty in outputs (variance)

s = 0.25; % correlation kernel variance. (gamma = 1/s^2)

19

% Helper variables:

n = size(A,2); % state dim

m = size(B,2); % input dim

q = size(C,1); % output dim

24

Ip = eye(p);

In = eye(n);

% Matrices:

29 Atilde = kron(Ip,A);

Ctilde = [C zeros(q,n*(p-1))];

Ghat = -C*(A\B);

T = toeplitz(zeros(1,p),[0 1 zeros(1,p-2)]);

34 D = kron(T,In);

S = smoothnessMatrix(p,s); % function: see below!

Piw = diag(1./varw);

Piw_tilde = kron(S,Piw);

39 Piz = diag(1./varz);

% Prior (for constant x_eq!):

x_gen_eq = [x_eq ;zeros(n*(p-1),1)]; % generalized equilibrium

xi = -Atilde*x_gen_eq;

44

%% Define closed loop:

M = D - kappa*(D-Atilde).’*Piw_tilde*(D-Atilde) - kappa*Ctilde.’*
Piz*Ctilde;

% The state is [x mu u], hence the 3x3 partitioning:

49 Acl = [A zeros(n,n*p) B;...

kappa*Ctilde’*Piz*C M zeros(n*p,m);...

-rho*Ghat’*Piz*C rho*Ghat’*Piz*Ctilde zeros(m,m)];

% The inputs are [xi w z], hence the 3x3 partitioning:

54 Bcl = [zeros(n,n*p) eye(n) zeros(n,q);...

kappa*(D-Atilde)’*Piw_tilde zeros(n*p,n) kappa*Ctilde’*Piz;...

zeros(m,n*p) zeros(m,n) -rho*Ghat’*Piz];

B.3 mass spring damper simulation 91

% For inspection purposes, we measure all signals:

59 Ccl = eye(size(Acl));

% There is no direct feedthrough of any signal:

Dcl = 0;

64 % Put the four matrices in a state space sturcture (continuous):

AIcl = ss(Acl,Bcl,Ccl,Dcl);

%% Simulate:

% Time:

69 T_end = 30;

dt = 0.01;

t = 0:dt:T_end;

N = numel(t);

% Set random generator:

74 rng(1);

% Construct input signals:

xi = xi*ones(1,N); % prior sequence

[w,z] = makeNoise(system,varz,varw,s,t);

79 ucl = [xi;w;z];

% Simulation:

ycl = lsim(AIcl,ucl,t); % zero initial state implicit

84 % Extract states from the results:

x = ycl(:,1:n).’;

y = C*x;

mu = ycl(:,n+1:n*(p+1)).’;

u = ycl(:,n*(p+1)+1:end).’;

89

% Calculate the Free Energy:

for i = 1:N

e_mu =(D*mu(:,i) - Atilde*mu(:,i)-xi(:,i));

e_y =(y(:,i) - Ctilde*mu(:,i));

94

F(i) = 0.5*e_mu.’*Piw_tilde*e_mu + 0.5*e_y.’*Piz*e_y;

end

%% Plot results: States, estimates, action and free energy:

99 subplot(221)

plot(t,x(1,:)); hold on; grid on;

plot(t,mu(1,:),’--’);

plot(t,w(1,:));

plot(t,x_eq(1)*ones(size(t)));

104 xlabel(’Time $[s]$’);

ylabel(’Position $[m]$’);

subplot(222)

plot(t,x(2,:)); hold on; grid on;

109 plot(t,mu(2,:),’--’);

92 matlab examples

plot(t,w(2,:));

xlabel(’Time $[s]$’);

ylabel(’Velocity $[m/s]$’);

114 subplot(223)

plot(t,u); grid on;

xlabel(’Time $[s]$’);

ylabel(’Action / Force $[N]$’);

119 subplot(224);

semilogy(t,F); grid on;

xlabel(’Time $[s]$’);

ylabel(’Free Energy’);

124 % --

% Below are two functions used in the code above:

%% Smoothness matrix construction:

function [S] = smoothnessMatrix(p,s)

129 k = 0:(p - 1);

r(1 + 2*k) = cumprod(1 - 2*k)./(s.^(2*k));

% Covariance matrix:

V = [];

134 for i = 1:p

V = [V; r([1:p] + i - 1)];

r = -r;

end

139 % Smoothness matrix:

S = inv(V);

end

%% Generate smooth noises:

function [w,z] = makeNoise(system,varz,varw,s,t)

144 n = size(system.A,2);

q = size(system.C,1);

N = numel(t);

% Temporal convolution matrix:

149 T = toeplitz(exp(-t.^2/(2*s^2)));

K = diag(1./sqrt(diag(T*T’)))*T;

% Generate measurement noise:

P = diag(1./varz);

154 z = sqrtm(inv(P))*randn(q,N)*K;

% Generate state noise:

P = diag(1./varw);

w = sqrtm(inv(P))*randn(n,N)*K;

159 end

B I B L I O G R A P H Y

[1] Rick A Adams, Stewart Shipp, and Karl J Friston. “Predictions
not commands: active inference in the motor system.” In: Brain
Structure and Function 218.3 (2013), pp. 611–643.

[2] Theodore Wilbur Anderson and et al. An introduction to multi-
variate statistical analysis. Vol. 2. Wiley New York, 1958.

[3] Randal J Barnes. “Matrix differentiation.” In: Springs Journal
(2006), pp. 1–9.

[4] Andre M. Bastos, W. Martin Usrey, Rick A. Adams, George R.
Mangun, Pascal Fries, and Karl J. Friston. “Canonical Microcir-
cuits for Predictive Coding.” In: Neuron 76.4 (2012), pp. 695 –
711. issn: 0896-6273.

[5] Matthew James Beal et al. Variational algorithms for approximate
Bayesian inference. university of London London, 2003.

[6] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. “Varia-
tional inference: A review for statisticians.” In: Journal of the
American Statistical Association 112.518 (2017), pp. 859–877.

[7] Stephen Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[8] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkatara-
manan Balakrishnan. Linear matrix inequalities in system and con-
trol theory. Vol. 15. Siam, 1994.

[9] Robert Grover Brown, Patrick YC Hwang, et al. Introduction to
random signals and applied Kalman filtering. Vol. 3. Wiley New
York, 1992.

[10] Christopher L Buckley, Chang Sub Kim, Simon McGregor, and
Anil K Seth. “The free energy principle for action and percep-
tion: A mathematical review.” In: Journal of Mathematical Psy-
chology (2017).

[11] Ronald W. Butler. Saddlepoint approximations with applications.
Vol. 22. Cambridge University Press, 2007.

[12] Andy Clark. “Whatever next? Predictive brains, situated agents,
and the future of cognitive science.” In: Behavioral and brain sci-
ences 36.3 (2013), pp. 181–204.

[13] Roger C Conant and W Ross Ashby. “Every good regulator of a
system must be a model of that system.” In: International journal
of systems science 1.2 (1970), pp. 89–97.

93

94 Bibliography

[14] D.R. Cox and H.D. Miller. In: The theory of stochastic processes.
Routledge, 2017. Chap. 7 Stationary Processes: Time Domain,
pp. 293–295.

[15] Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard
S Zemel. “The helmholtz machine.” In: Neural computation 7.5
(1995), pp. 889–904.

[16] Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard
S Zemel. “The helmholtz machine.” In: Neural computation 7.5
(1995), pp. 889–904.

[17] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Max-
imum likelihood from incomplete data via the EM algorithm.”
In: Journal of the royal statistical society. Series B (methodological)
(1977), pp. 1–38.

[18] Petar M Djuric, Jayesh H Kotecha, Jianqui Zhang, Yufei Huang,
Tadesse Ghirmai, Mónica F Bugallo, and Joaquin Miguez. “Par-
ticle filtering.” In: IEEE signal processing magazine 20.5 (2003),
pp. 19–38.

[19] Carl Doersch. “Tutorial on variational autoencoders.” In: arXiv
preprint arXiv:1606.05908 (2016).

[20] Joseph L Doob and Joseph L Doob. Stochastic processes. Vol. 7. 2.
Wiley New York, 1953.

[21] Richard P Feynman. Statistical mechanics: a set of lectures. 2018.

[22] Charles W Fox and Stephen J Roberts. “A tutorial on variational
Bayesian inference.” In: Artificial intelligence review 38.2 (2012),
pp. 85–95.

[23] Bernard Friedland. Control system design: an introduction to state-
space methods. Courier Corporation, 2012.

[24] Karl J Friston. “Variational filtering.” In: NeuroImage 41.3 (2008),
pp. 747–766.

[25] Karl J Friston, Jean Daunizeau, and Stefan J Kiebel. “Reinforce-
ment learning or active inference?” In: PloS one 4.7 (2009), e6421.

[26] Karl J Friston, Thomas Parr, and Bert de Vries. “The graphi-
cal brain: belief propagation and active inference.” In: Network
Neuroscience 1.4 (2017), pp. 381–414.

[27] Karl J Friston, Spyridon Samothrakis, and Read Montague. “Ac-
tive inference and agency: optimal control without cost func-
tions.” In: Biological cybernetics 106.8-9 (2012), pp. 523–541.

[28] Karl J Friston, N Trujillo-Barreto, and Jean Daunizeau. “DEM: a
variational treatment of dynamic systems.” In: Neuroimage 41.3
(2008), pp. 849–885.

[29] Karl J Friston, Jean Daunizeau, James Kilner, and Stefan J Kiebel.
“Action and behavior: a free-energy formulation.” In: Biological
cybernetics 102.3 (2010), pp. 227–260.

Bibliography 95

[30] Karl J Friston, Richard Rosch, Thomas Parr, Cathy Price, and
Howard Bowman. “Deep temporal models and active inference.”
In: Neuroscience & Biobehavioral Reviews 90 (2018), pp. 486–501.

[31] Karl Friston. “Functional integration and inference in the brain.”
In: Progress in Neurobiology 68.2 (2002), pp. 113 –143. issn: 0301-
0082.

[32] Karl Friston. “Learning and inference in the brain.” In: Neural
Networks 16.9 (2003), pp. 1325–1352.

[33] Karl Friston. “A theory of cortical responses.” In: Philosophical
Transactions of the Royal Society of London B: Biological Sciences
360.1456 (2005), pp. 815–836.

[34] Karl Friston. “Hierarchical models in the brain.” In: PLoS com-
putational biology 4.11 (2008), e1000211.

[35] Karl Friston. “The free-energy principle: a rough guide to the
brain?” In: Trends in cognitive sciences 13.7 (2009), pp. 293–301.

[36] Karl Friston. “The free-energy principle: a unified brain the-
ory?” In: Nature Reviews Neuroscience 11.2 (2010), p. 127.

[37] Karl Friston. “What Is Optimal about Motor Control?” In: Neu-
ron 72.3 (2011), pp. 488 –498. issn: 0896-6273.

[38] Karl Friston. “A free energy principle for biological systems.”
In: Entropy 14.11 (2012), pp. 2100–2121.

[39] Karl Friston. “Prediction, perception and agency.” In: Interna-
tional Journal of Psychophysiology 83.2 (2012), pp. 248–252.

[40] Karl Friston. “Life as we know it.” In: Journal of the Royal Society
Interface 10.86 (2013), p. 20130475.

[41] Karl Friston and Stefan Kiebel. “Predictive coding under the
free-energy principle.” In: Philosophical Transactions of the Royal
Society of London B: Biological Sciences 364.1521 (2009), pp. 1211–
1221.

[42] Karl Friston and Stefan Kiebel. “Predictive coding under the
free-energy principle.” In: Philosophical Transactions of the Royal
Society of London B: Biological Sciences 364.1521 (2009), pp. 1211–
1221.

[43] Karl Friston, James Kilner, and Lee Harrison. “A free energy
principle for the brain.” In: Journal of Physiology-Paris 100.1-3
(2006), pp. 70–87.

[44] Karl Friston, Jérémie Mattout, and James Kilner. “Action under-
standing and active inference.” In: Biological cybernetics 104.1-2
(2011), pp. 137–160.

[45] Karl Friston, Jérémie Mattout, Nelson Trujillo-Barreto, John Ash-
burner, and Will Penny. “Variational free energy and the Laplace
approximation.” In: Neuroimage 34.1 (2007), pp. 220–234.

96 Bibliography

[46] Karl Friston, Klaas Stephan, Baojuan Li, and Jean Daunizeau.
“Generalised filtering.” In: Mathematical Problems in Engineering
2010 (2010).

[47] Crispin Gardiner. Stochastic methods. Vol. 4. springer Berlin, 2009.

[48] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. http://www.deeplearningbook.org. MIT Press, 2016.

[49] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. “Generative adversarial nets.” In: Advances in neural in-
formation processing systems. 2014, pp. 2672–2680.

[50] S.S. Grimbergen, C. van Hoof, and M. Wisse. “Active Inference
for State Space Models: A Tutorial.” unpublished. 2019.

[51] Simon Haykin. Neural networks: a comprehensive foundation. Pren-
tice Hall PTR, 1994.

[52] Matthew D Hoffman, David M Blei, Chong Wang, and John
Paisley. “Stochastic variational inference.” In: The Journal of Ma-
chine Learning Research 14.1 (2013), pp. 1303–1347.

[53] T Jaakkola. “Tutorial on variational approximation methods.”
In: Advanced mean field methods: theory and practice (2001), p. 129.

[54] Rudolph E Kalman and Richard S Bucy. “New results in linear
filtering and prediction theory.” In: Journal of basic engineering
83.1 (1961), pp. 95–108.

[55] Martin Koeber and Uwe Schäfer. “The unique square root of a
positive semidefinite matrix.” In: International Journal of Mathe-
matical Education in Science and Technology 37.8 (2006), pp. 990–
992.

[56] Solomon Kullback and Richard A Leibler. “On information and
sufficiency.” In: The annals of mathematical statistics 22.1 (1951),
pp. 79–86.

[57] Huibert Kwakernaak and Raphael Sivan. Linear optimal control
systems. Vol. 1. Wiley-Interscience New York, 1972.

[58] Johan Kwisthout. “Minimizing relative entropy in hierarchical
predictive coding.” In: European Workshop on Probabilistic Graph-
ical Models. Springer. 2014, pp. 254–270.

[59] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and
Samuel J Gershman. “Building machines that learn and think
like people.” In: Behavioral and Brain Sciences 40 (2017).

[60] David JC MacKay. “Free energy minimisation algorithm for
decoding and cryptanalysis.” In: Electronics Letters 31.6 (1995),
pp. 446–447.

http://www.deeplearningbook.org

Bibliography 97

[61] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. “Ad-
versarial variational bayes: Unifying variational autoencoders
and generative adversarial networks.” In: arXiv preprint arXiv:
1701.04722 (2017).

[62] Nasser M Nasrabadi. “Pattern recognition and machine learn-
ing.” In: Journal of electronic imaging 16.4 (2007), p. 049901.

[63] Léo Pio-Lopez, Ange Nizard, Karl Friston, and Giovanni Pez-
zulo. “Active inference and robot control: a case study.” In:
Journal of The Royal Society Interface 13.122 (2016), p. 20160616.

[64] Alec Radford, Luke Metz, and Soumith Chintala. “Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks.” In: arXiv preprint arXiv:1511.06434
(2015).

[65] Maxwell James Désormeau Ramstead, Paul Benjamin Badcock,
and Karl John Friston. “Answering Schrödinger’s question: a
free-energy formulation.” In: Physics of life reviews 24 (2018),
pp. 1–16.

[66] Rajesh PN Rao and Dana H Ballard. “Predictive coding in the
visual cortex: a functional interpretation of some extra-classical
receptive-field effects.” In: Nature neuroscience 2.1 (1999), p. 79.

[67] Christian Robert. Machine learning, a probabilistic perspective. 2014.

[68] Jürgen Schmidhuber. “Deep learning in neural networks: An
overview.” In: Neural networks 61 (2015), pp. 85–117.

[69] Sarah Schwöbel, Stefan Kiebel, and Dimitrije Marković. “Active
Inference, Belief Propagation, and the Bethe Approximation.”
In: Neural Computation 30.9 (2018), pp. 2530–2567.

[70] Claude Elwood Shannon. “A mathematical theory of communi-
cation.” In: ACM SIGMOBILE Mobile Computing and Communi-
cations Review 5.1 (2001), pp. 3–55.

[71] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics.
Springer, 2016.

[72] Richard S Sutton and Andrew G Barto. Introduction to reinforce-
ment learning. Vol. 135. MIT press Cambridge, 1998.

[73] Kai Ueltzhöffer. “Deep active inference.” In: Biological Cybernet-
ics 112.6 (2018), pp. 547–573.

[74] Frank Uhlig. “On the matrix equation AX = B with applications
to the generators of a controllability matrix.” In: Linear Algebra
and its Applications 85 (1987), pp. 203–209.

[75] J Woodhead-Galloway. “Schrödinger: what is life?” In: Physics
Bulletin 34.12 (1983), p. 490.

[76] Kemin Zhou, John Comstock Doyle, Keith Glover, et al. Robust
and optimal control. Vol. 40. Prentice hall New Jersey, 1996.

	Signatures
	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Report Overview
	1.4 Terminology and Notations

	Background
	2 The Free Energy Principle
	2.1 What Is Life?
	2.2 The Free Energy
	2.3 Free Energy Minimization

	3 Generalized Motions
	3.1 Differentiable Noise
	3.2 Generalized Motions
	3.3 The Use of Generalized Motions

	4 Active Inference
	4.1 Two Sides of the Markov Blanket
	4.2 The Laplace Encoded Free Energy
	4.3 Active Inference: Prediction Error Minimization
	4.4 A Conceptual Overview

	LTI State Space Formulation
	5 Generative Model
	5.1 The Generative Process
	5.2 The Generative Model
	5.3 The Control Prior

	6 Forward Model
	6.1 Derivation from Standard Process
	6.2 Derivation from Generalized Process

	7 Filter and Controller Dynamics
	7.1 The Reformulated Free Energy
	7.2 The Filtering Dynamics
	7.3 The Control Dynamics
	7.4 Closed Loop Model
	7.5 Summary

	8 An Example
	8.1 The Generative Process
	8.2 Control System Setup
	8.3 Simulation

	Performance Analysis
	9 Parameter Tuning
	9.1 Learning Rates
	9.2 Embedding Order
	9.3 Precision Matrices

	10 Equivalence with Optimal Control
	10.1 Simulation: LQR vs. Active Inference
	10.2 Theoretical Proof: A Primer

	11 Stability and Tracking
	11.1 Stabilization: An LMI Approach
	11.2 Tracking

	Conclusions
	12 Summary and Conclusions
	12.1 Summary
	12.2 Conclusions

	13 Recommendations

	Appendix
	A Selected Proofs and Derivations
	A.1 Free Energy Upper Bound Proof
	A.2 The Temporal Variance Matrix
	A.3 The Generalized Measurement
	A.4 Free Energy Expectation
	A.5 Active Inference with Markovian Noise

	B MATLAB examples
	B.1 Generating Smooth Noise
	B.2 Comparing Primes and Dots
	B.3 Mass Spring Damper Simulation

	Bibliography

