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Abstract. This work is devoted to the accurate simulation of incompressible two phase
flows. The core of our methodology is the use of interface resolving meshes and the
arbitrary Lagrangian-Eulerian (ALE) description of the fluid kinematics. Our numerical
scheme is based on second order finite elements, a fractional step θ time discretisation,
and a special approximation of the curvature to incorporate surface tension effects. We
demonstrate the potential of the proposed numerical method by the simulation of a rising
bubble and the Rayleigh-Taylor instability problem.

1 INTRODUCTION

This work is concerened with the robust and efficient numerical simulation of incom-
pressible two phase flows. In such flow problems, often, the evolution of the interface
is induced by the surface force which consists of surface tension and the local curvature
of the interface. Thus, an accurate representation of the interface is important in the
numerical simulations to calculate the local curvature and include the surface force. Fur-
thermore, two immiscible fluids will have different densities and viscosities, in general and
therefore these physical variables will be discontinuous across the interface. It turns out
that the development of robust and efficient numerical schemes for simulating fluid flows
with unsteady motion of moving interfaces is still a challenging problem in computational
fluid dynamics (CFD) field.

Several techniques have been proposed in the literature for simulating interface flows,
see for an overview ref1. Based on the computation of the flow variables, velocity and
pressure, all these techniques can be classified into two classes: fixed grid and moving grid
methods. Each method has its own advantages and disadvantages. In fixed grid methods
volume-of-fluid (VOF), level set (LS) and front-tracking (FT) are a few popular tech-
niques used in multiphase flow simulations. In all fixed grid techniques, interfaces are not

1



Sashikumaar Ganesan and Lutz Tobiska

resolved by the meshes used for the computation of the flow. This poses extra difficulty to
incorporate the surface force and the material properties, when computing the flow vari-
ables. Often, the continuum surface force (CSF)2 technique is used to handle the surface
force in fixed grid techniques. For including the discontinuous physical variables differ-
ent techniques such as defining the material property as a function of shortest distance
from the interface, using a steep gradient to translate the jumps and defining the mate-
rial parameters by a smoothed Heaviside function, have been proposed in the literature.
However, these additional techniques in the fixed grid methods induce numerical errors
in the solution, see for instance ref3. In the interface non-resolved meshes, spurious veloc-
ities may also be generated4 and very fine meshes are needed (at least near the moving
interface) to reduce spurious velocities. Furthermore, guarantying the mass conservation
in each phase separately is also a difficult problem in fixed grid methods. Therefore, we
prefer the alternative approach of moving grid technique in our computations.

In moving grid methods such as Lagrangian, arbitrary Lagrangian-Eulerian (ALE)
techniques, interfaces are resolved by the meshes. Therefore, the inclusion of the surface
force and the material paremeters are straight forward. In particular, we use the ALE
technique in which interfaces move with the flow velocity (Lagrangian manner) and the
inner points are displaced arbitrarily to reduce the distortion of meshes. Furthermore, by
using appropriate pressure and curvature approximations, the spurious velocities can be
avoided4 on interface resolved the meshes.

The plan of the paper is as follows. In Section 2, we present the governing equations
of two phase flow problem. Next, in Section 3, a reformulation of the model equations
in the ALE framework is given. Further we describe the discretisation by finite elements
and present the mesh moving technique. The numerical tests in Section 4 cover the rising
bubble and the Rayleigh-Taylor instability problems. They show the capability and the
accuracy of our numerical approach.

2 GOVERNING EQUATIONS

We consider an instationary two phase flow problem. Let Ω ⊂ R
d, d ∈ {2, 3}, be

a computational domain, which consists of two immiscible liquids, say, “Liquid A” and
“Liquid B”. Let Ω1 and Ω2 = Ω \ Ω1 be the two domains of the “Liquid A” and the
“Liquid B”, respectively. Furthermore, let us define ΓF = Ω1 ∩ Ω2 be the interface
between the two liquids “A” and “B”, see Figure 1 for a 2D setting of the problem.

In the time interval (0, T), the fluid flow in each liquid phase “A” and “B” is governed
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Figure 1: Two immiscible liquids are separated by the common interface ΓF .

by the instationary Navier-Stokes equations:

ρk

(

∂u

∂t
+ (u · ∇)u

)

−∇ · (Tk(u, p)) = ρkge in Ωk(t) × (0, T),

∇ · u = 0 in Ωk(t) × (0, T),

[|u|] = 0, τ · [|T(u, p)|] · ν = 0 on ΓF (t) × (0, T),

ν · [|T(u, p)|] · ν + σK = 0, u · ν = w · ν on ΓF (t) × (0, T),

u = 0 on ΓD,

u · νN = 0, νN · (T1(u, p)) · τ N = 0 on ΓN(t) × (0, T),

(1)

for k = 1, 2. Here, the stress tensor Tk(u, p) and the velocity deformation tensor D(u)
are defined by

Tk(u, p) = 2µkD(u) − pI, D(u) =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

, i, j = 1, ..., d,

Here, u denotes the velocity, p the pressure, t the time, σ the surface tension coefficient,
I the identity tensor, and K the sum of the principal curvature. The density and the
dynamic viscosity of the liquid phases are denoted by ρk and µk, respectively. Further
νN , τ N and ν, τ denote the unit outward normal, tangential vectors of the vertical
boundary ΓN and the interface ΓF , respectively. In the above equations, the interface
velocity is denoted by w. Furthermore, in the momentum equation, g and e denote
the gravity and an unit vector opposite to the gravitational force. The jump across the
interface ΓF is denoted by [| · |] and defined for functions having traces on ΓF by

[|v|] := (v|Ω1
)|ΓF

− (v|Ω2
)|ΓF

.

Dimensionless form

We use the material parameters of the domain Ω1 to transform the model equations (1)
into a dimensionless form. Let U∞ and L be a characteristic velocity and a length scale.
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We define the dimensionless variables as

ũ =
u

U∞

w̃ =
w

U∞

X̃ =
X

L
, t̃ =

tU∞

L
, p̃ =

p

ρ1U2
∞

.

Using these dimensionless variables in the stress tensor T1(u, p), we get

T1(u, p) = ρ1U
2
∞

(

2µ1

ρ1U∞L
D(ũ) − p̃I

)

= ρ1U
2
∞

(

2

R1

D(ũ) − p̃I

)

= ρ1U
2
∞S1(ũ, p̃).

Similarly, for the stress tensor T2(u, p), we get

T2(u, p) = ρ1U
2
∞

(

2µ2

ρ1U∞L
D(ũ) − p̃I

)

= ρ1U
2
∞

(

2

R2
D(ũ) − p̃I

)

= ρ1U
2
∞S2(ũ, p̃).

Here, Sk(u, p) are the dimensionless stress tensors in the respective phases Ωk, k = 1, 2.
Furthermore, the dimensionless numbers

R1 =
ρ1U∞L

µ1
, R2 =

µ1

µ2

ρ1U∞L

µ1
=

µ1

µ2
R1,

are used in the above derivations. Applying the dimensionless variable transformation to
the momentum equation (the first equation in (1)) and omitting the tilde afterwards, we
get

ρk

U2
∞

L

(

∂u

∂t
+ (u · ∇)u

)

− ρ1
U2
∞

L
∇ · (Sk(u, p)) = ρkge, for k = 1, 2.

Note that the above equation is derived in such a way that the coefficient in front of the
stress tensor term is equal in both phases. Thus, boundary conditions on the interface
can be easily incorporated in the weak formulation. Furthermore, the dimensionless form
the force balancing boundary condition on the interface ΓF becomes,

ν[|S(u, p)|] · ν = − σ

Lρ1U2
∞

K.
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By taking U∞ =
√

Lg in the above derivations and after dividing the momentum equation
by g ρ1, we get the dimensionless form of the coupled system as

ρk

ρ1

(

∂u

∂t
+ (u · ∇)u

)

−∇ · (Sk(u, p)) =
ρk

ρ1

e in Ωk(t) × (0, T),

∇ · u = 0 in Ωk(t) × (0, T),

[|u|] = 0, τ [|S(u, p)|] · ν = 0 on ΓF (t) × (0, T),

ν[|S(u, p)|] · ν = − 1

Eo
K, u · ν = w · ν on ΓF (t) × (0, T),

u = 0 on ΓD,

u · νN = 0, νN · (S1(u, p)) · τ N = 0 on ΓN(t) × (0, T),

(2)

for k = 1, 2. Here, the dimensionless Eötvös number (Eo) is defined as

Eo =
ρ1U

2
∞L

σ
=

ρ1gL2

σ
.

Sometimes, the Eötvös number is also called Bond number and a few authors define the
Eötvös number alternatively with the density difference (ρ1 − ρ2) between the two phases
instead of the outer phase density ρ1.

3 NUMERICAL SCHEME

The numerical scheme which we use to approximate the solution of (2) is based on an
ALE approach with interface resolving meshes. We use the Laplace-Beltrami operator
technique for the curvature, which avoids not only the explicit calculation of the local
curvature on the interface but also allows an semi-implicit treatment of the curvature.
The space and time are discretized by a second order “inf − sup” finite element pair and
the fractional-step-ϑ scheme, respectively. We advect the interface/boundary points by
the first order implicit Euler scheme, where the inner points are displaced by the elastic
solid technique.

Arbitrary Lagrangian-Eulerian (ALE) Formulation

Let Ω̂ be a fixed reference domain and At be a family of mappings, which map each
point Y ∈ Ω̂ onto the point X of the domain Ω(t) at time t. That is, for t ∈ [0, T ], we
have

At : Ω̂ → Ω(t), At(Y ) = X(Y, t).

We assume that each function in the family of mappings At is homeomorphic and differ-
entiable almost everywhere in [0, T]. By applying the chain rule with respect to time on
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the relation
u|Y = u|X ◦ At,

we get
∂u

∂t

∣

∣

∣

Y
=

∂u

∂t

∣

∣

∣

X
+

∂x

∂t

∣

∣

∣

Y
· ∇xu =

∂u

∂t

∣

∣

∣

X
+ w · ∇xu. (3)

For more details and different versions of ALE form we refer to the work of Nobile5. Using
the relation (3) in our two phase flow model (2), the time derivative in each phase Ωk(t)
can be replaced by

∂u

∂t

∣

∣

∣

X
=

∂u

∂t

∣

∣

∣

Y
− wk · ∇xu (4)

for k = 1, 2. Here, |X and |Y denote the time derivative with respect to the moving
domain Ω(t) and the fixed domain Ω̂, respectively. Furthermore, ∇x denotes the gradient
with respect to the moving domain Ω(t). In the above relation (4), the subscript k in the
domain velocity wk denotes that the domain velocity has to be calculated in each domain
separately. Using the relation (4) in (2), we get the ALE form of the model as

ρk

ρ1

(

∂u

∂t
+ ((u − wk) · ∇)u

)

−∇ · (Sk(u, p)) =
ρk

ρ1
e in Ωk(t) × (0, T), (5)

completed by the remaining equations of (2).

Weak formulation

To simplify the notation let us introduce the notations Ω1,t := Ω1(t), Ω2,t := Ω2(t), and
Ωt := Ω(t). Furthermore, we derive the weak form of (5) by defining Q = L2

0(Ωt) as the
pressure space, and including the Dirichlet type boundary conditions in both ansatz and
test spaces. The velocity space becomes

V := {v ∈ H1(Ωt) : v · νN = 0 on ΓN and v = 0 on ΓD}, (6)

where L2(Ωt) and H1(Ωt) are the usual Sobolev spaces. All other boundary conditions
are incorporated in the weak formulation. First, we multiply the momentum and mass
equations by test functions v ∈ V and q ∈ Q, respectively. After intergrating by parts
over the subdomains Ω1(t) and Ω2(t), separately, we incorporate the non-Dirichlet type
boundary conditions on the interface ΓF . The stress tensor term in the domain Ω1,t be-
comes

-

∫

Ω1,t

∇ · S1(u, p) · v dx

=

∫

Ω1,t

S1(u, p) : D(v) dx −
∫

ΓF

v · S1(u, p)ν dγ

=
2

R1

∫

Ω1,t

D(u) : D(v) dx −
∫

Ω1,t

p∇ · v dx −
∫

ΓF

v · S1(u, p)ν dγ.

(7)
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Similarly, the stress tensor term in the domain Ω2,t becomes

-

∫

Ω2,t

∇ · S2(u, p) · v dx

=
2

R2

∫

Ω2,t

D(u) : D(v) dx −
∫

Ω2,t

p ∇ · v dx +

∫

ΓF

v · S2(u, p) ν dγ (8)

Note that in the above derivations all boundary integrals except those over ΓF vanish
due to the definition of the velocity space (6) and the free slip boundary condition. After
summing up the two equations (7) and (8), the interface integral term becomes

∫

ΓF

v · [|S(u, p)|]ν dγ = − 1

Eo

∫

ΓF

v · Kν dγ. (9)

Laplace-Beltrami operator technique

We use the Laplace-Beltrami operator technique to include the interface force (9) into
the model without calculating the curvature K, explicitly. This technique was first intro-
duced into the finite element context by Dziuk6. The idea is to replace the curvature K
by the Laplace-Beltrami operator ∆ and then apply integration by parts to the Laplace-
Beltrami operator over the interface ΓF . Hence, the interface integral (9) becomes

− 1

Eo

∫

ΓF

v · KνdγF = − 1

Eo

∫

ΓF

∆idΓF,t
· v dγF

=
1

Eo

∫

ΓF

∇idΓF,t
: ∇v dγF ,

with the tangential gradient ∇, see e.g., (Matthies)7. Here, we used the assumption
that the interface ΓF is closed. In order to use a single set of equations for the whole
computational domain Ωt and to treat the two fluid phases as one fluid with variable
material properties, we define

(ρ(x), µ(x)) =

{

(ρ1, µ1) for x in Ω1,

(ρ2, µ2) for x in Ω2,
and Re(x) =

{

R1 for x in Ω1,

R2 for x in Ω2.

Hence, the weak form of the problem (5) in ALE form with Laplace Beltrami operator
technique reads:

Find (u, p) ∈ V × Q such that

(

ρ

ρ1

∂u

∂t
,v

)

+ a(u − w,u,v) − b(p,v) + b(q,u) = (f,v), ∀ (v, q) ∈ V × Q. (10)
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Here,

a(û,u,v) = 2

∫

Ωt

1

Re
D(u) : D(v)dx +

∫

Ωt

ρ

ρ1
(û · ∇)u · vdx,

b(q,v) =

∫

Ωt

q ∇ · vdx,

(f,v) =

∫

Ωt

ρ

ρ1
e · vdx − 1

Eo

∫

ΓF

∇idΓF,t
: ∇v dγF .

Here, w is the domain velocity in Ωt.

Discretisation

First, we discretize the equation (10) in time using the second order Fractional-Step-ϑ
scheme which is strongly A-stable, for more details see (Turek)8. The curvature term
is discretized in time by a semi-implicit form as in ref6. Furthermore, the non-linear
convective term is linearized by using an iteration of fixed point type. As we mentioned
earlier, domains in both phases are triangulated by using interface resolving triangular
meshes. The velocity is approximated by continuous, piecewise quadratics, enriched with
cell bubble functions (P bubble

2 ). The pressure is approximated by discontinuous, piecewise
linear functions (P disc

1 ). This finite element pair P bubble
2 /P disc

1 satisfies9 the Babuška-Brezzi
condition and leads to an excellent local mass conservation. Furthermore, by using the
discontinuous pressure approximation on interface resolving meshes, spurious velocities
can be avoided4. However, in order to suppress the spurious velocities genetated by the
curvature approximation error and to obtain the optimal order of convergence, we have
to combine the Laplace-Beltrami operator technique with isoparametric finite elements4.

Mesh movement

First, we move the interface/boundary points (X) according to an implicit discretisa-
tion of

dX

dt
= u(X, t),

resulting to
Xn+1 = Xn + (tn+1 − tn)un+1(Xn, tn+1),

Then, based on the displacement of boundary points (X), the inner points are displaced
in a prescribed way to preserve the mesh quality in each domain separately. Several tech-
niques such as harmonic extension and elastic solid have been proposed in the literature
to prescribe the inner points displacement, see for example, (Matthies)7. Among all, the
elastic solid technique is generally used in case of large deformations of the domain. We
move the inner mesh points in each phase Ωk,tn at each time step tn, by solving the linear
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elasticity equation for the displacement vector φ,

∇ · S(φ) = 0 in Ωk,tn

φ = Xn+1 − Xn on ∂Ωk,tn

(11)

where
S(φ) = λ1(∇ · φ)I + 2λ2D(φ).

Here, λ1 and λ2 denote the Lamè constants and we use λ1 = λ2 = 1, in our computations.
Continuous, piecewise linear P1 elements on the same triangular mesh as for solving the
flow equations are used for the solution of (11). Once the displacement vector φ is known
for each phase, we move all inner mesh points and calculate the domain velocity wn+1,
simply by dividing φ by the time step.

Even though the elastic update is used, it can happen that after some time the quality
of the mesh becomes poor due to the large deformation in each subdomain. At that
instance, we remesh the whole domain with old boundary/interface points, and interpolate
the velocity and pressure from the old domain. In our calculations, we remesh the domain
if the minimum angle of any mesh is less-than 10◦ or the maximum angle exceeds 160◦.
Furthermore, at some instance the interface points accumulate at one part of the interface
or the resolution at some parts of the interface become inadequate. In such an instance
we redistribute/add the interface points by using interpolated cubic splines.

4 NUMERICAL RESULTS

In this section, we present computational results for two different problems to show
the capability and the accuracy of the proposed numerical scheme in the previous section.
First, we perform computations of a rising bubble in a liquid medium. Next, we simulate
the flow dynamics in the Rayleigh-Taylor instability problem. We have implemented the
proposed numerical scheme in the finite element package MooNMD10.

4.1 Rising bubble

In the rising bubble computation, we use an one-meter wide, two-meter high rectangle
as the computational domain Ωt. At time t = 0, the bubble is represented by a circle of
radius r0 = 0.25 m with center at (0, 0.5), which is inside the rectangular domain Ωt. As
in the model (1), on the vertical boundary (ΓN) of Ωt we impose the free slip boundary
condition, and the no-slip boundary condition on the horizontal boundaries (ΓD) of Ωt.
Furthermore, the initial velocity is assumed to be zero, i.e., u0 = 0 in Ωt,0.

The following material parameters are used in the rising bubble computation: the
density ρ1 = 1000 kg/m3, ρ2 = 1 kg/m3, the dynamic viscosity µ1 = 10 kg/(m s),
µ2 = 0.1 kg/(m s) and the coefficient of surface tension σ = 1.96 N/m. This set of
parameters results in the dimensionless numbers Re = 99 and Eo = 500 by using a length
scale L = 1 m.
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Figure 2: Shape of the rising bubble at different instance for Re = 99 and Eo = 500: time 0.75, 1.5, 2.0
and 3.0 seconds (from left to right)

Figure 3: Flow direction in the rising bubble at different instance for Re = 99 and Eo = 500 (scale of
colours represent the absolute values of the velocity): time 0.75, 1.5, 2.0 and 3.0 seconds (from left to
right)

The shape of the bubble at different instances (at dimensional time t = 0.75, 1.5,
2.0, 3.0 seconds) for this parameter set is shown in the Figure 2. Since the Eötvös number
is large (Eo = 500) in the considered case, the deformation of the bubble is also large. If
time advances the bottom of the bubble becomes non-convex eventhough the initial shape
is convex. This is due to the small surface tension coefficient and the large density ratio
ρ1/ρ2 = 1000. After two seconds a tail like structure is developing on both the left and
the right bottom of the bubble, which can be clearly seen in Figure 2 (fourth snapshot).
Furthermore, at later stages the opposite sides of the interface along the tail become very
close and additional physical knowledge has to be added to our algorithm to allow splitting
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of the bubble. It should be noted that the rising bubble simulations are made in two-
dimensional planar geometrical configurations. Therefore, we cannot expect quantitative
agreement with the experimental results in that dimensional settings. Nevertheless, the
shape of the bubble for the given Reynolds and Eötvös numbers is in good agreement
with the experimental predictions (Ref. 11, Figure 2.5 on page number 27). The flow
direction in the fluid and the bubble for the considered case are shown in Figure 3, where
the scale of colours correspond to the absolute values of the velocity in the domain Ωt.

4.2 Rayleigh-Taylor instability

We consider a typical test case in the area of two-phase flow problems to illustrate the
capability of our numerical scheme. Using the same material parameters as in (Popinet
and Zaleski)12, we compare the shape of the interface at different instances. An one-meter
wide, four-meters high rectangle is used as the computational domain Ωt, where the upper
part of the domain is occupied by a high density and the lower part by a low density liquid,
respectively. We denote the upper subdomain by Ω1,t and the lower by Ω2,t = Ωt \ Ω1,t.
The material parameters are the density ρ1 = 1.225 kg/m3, ρ2 = 0.1694 kg/m3, the
dynamic viscosity µ1 = µ2 = 0.00313 kg/(m s) and the surface tension σ = 0 N/m.
These parameters result in the dimensionless number Re = 1225.2, by taking the length
scale L = 1 m. Furthermore, the initial position of the interface is given by the function
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Figure 4: Shape of the interface at different instance for Re = 1252 with zero surface tension for the
Rayleigh-Taylor instability problem: time 0, 0.7, 0.8 and 0.9 seconds (from left to right).
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y(x) = 2.0 + 0.05 cos(2πx), representing a perturbation of the flat interface. It should be
noted that the interface intersects the outer boundary (ΓN), and basically this is a moving
contact line problem. Since we used the free slip boundary condition on ΓN , the contact
line singularity has been avoided. In the computation a contact angle of 90◦ has been
used such that the general approach of handling given contact angles, see (Ganesan and
Tobiska)14, simplifies to (3). We discretize the initial domain by using approximately 2200
(increase at later stages up to 8600) triangular cells with hmin = 0.01 and hmax = 0.11.
Since we use fine meshes near the interface and the interface points are evenly distributed,
all the interface edges length is approximately hmin. The shape of the interface at different
instances is shown in Figure 4 and is in very good agreement with the shape obtained in
(Popinet and Zaleski)12. Furthermore, we calculated the mass fluctuation factor

MF =

∣

∣Ω2,0 − Ω2,t

∣

∣

Ω2,0
× 100 %.

In our numerical test, the mass fluctuation factor of is about MF = 0.009 %, which is
better than in the VOF based computation13 (about 0.03%) with a CFL-like constrain for
a similar problem. Note that there are no CFL-like constrains in our numerical scheme due
to the implicit advection of the interface and the semi-implicit treatment of the curvature.
In the FT based computation12, the mass fluctuation about 0.14% has been reported for
the same problem. This shows again the accuracy of the proposed numerical scheme.
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K. Mikula, and D. Ševčovič. Slovak Technical University, Bratislava, 1–11, (2005).

13


