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A law is more impressive the greater the simplicity of its premises,
the more different are the kinds of things it relates,

and the more extended its range of applicability.
Therefore the deep impression that classical thermodynamics made upon me.

It is the only physical theory of universal content, which I am convinced,
that within the framework of applicability of its basic concepts will never be overthrown.

Albert Einstein

That is what the Scriptures mean when they say,
“No eye has seen, no ear has heard, and no mind has imagined

what God has prepared for those who love him.”

1 Corinthians 2:9





SUMMARY

Thermodynamics is one of the main pillars of theoretical physics, and it has a special
appeal of having wide applicability to a large variety of different physical systems. How-
ever, many assumptions in thermodynamics apply only to systems which are bulk material,
i.e. consisting a large number of microscopic classical particles. Due to the advancement
of designing nanoscale engines, especially in the light of devices that are used today in the
processing of quantum information, is thermodynamics still applicable? Can we refine the
core principles of thermodynamics to suit such nanoscale quantum systems as well?

The central aim of this thesis is to construct a theory of thermodynamics that holds for
nanoscale quantum systems, even those as small and simple as a single qubit. We do this by
starting out from the core basics of quantum theory: unitary dynamics on closed quantum
systems. We adapt a resource theoretic approach inspired by quantum information theory,
which defines the quantum states and operations allowed to be used in a thermodynamic
evolution. With this framework that naturally adopts the first law as an energy preserving
condition, we show the refinement of both the zeroeth and second law of thermodynamics.
The zeroeth law explains the physical significance of the Gibbs thermal state. On the other
hand, we show that the second law sees refinement in the quantum nanoregime: instead
of having the free energy as the sole quantity dictating the possibility of a thermodynamic
state transition, we derive a family of generalized free energies that also constitute necessary
conditions for a transition to occur. Moreover, these conditions become sufficient for states
which are block-diagonal in the energy eigenbasis.

In this thesis, we also brought our approach of thermodynamics to the next step: we ap-
ply our findings on the second laws, in order to analyze the maximum achievable efficiency
for quantum heat engines. In classical thermodynamics, the Carnot efficiency has been long
known as the theoretical maximum which does not depend on the specific structure of the
thermal baths used, but only on its temperature. With the additional free energies we dis-
cover, we show that although quantum heat engines may achieve the Carnot efficiency, such
an achievability is no longer independent of the Hamiltonians of the thermal baths. In other
words, we find additional restrictions that surface in the study of quantum nanoscale heat
engines, which are a direct consequence of the generalized second laws. This has provided
us with a deeper understanding into the fundamental limitations of how efficient devices
can be made in the realm of microscopic quantum systems.
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SAMENVATTING

Thermodynamica is één van de grootste pijlers van de theoretische natuurkunde, en
heeft de aantrekkelijke eigenschap wijd toepasbaar te zijn op een grote verscheidenheid
aan systemen. Maar vele aannamen in de thermodynamica zijn alleen van toepassing op
systemen van bulk materiaal d.w.z. bestaande uit een groot aantal microscopische, klassieke
deeltjes. Door de vooruitgang in het ontwerpen van machines on de nanoschaal, en in het
speciaal de machines die vandaag de dag worden gebruikt in de kwantum informatica, is
de vraag is de thermodynamica nog toepasbaar? Kunnen we de centrale principes van de
thermodynamica zo verfijnen dat ze ook toepasbaar zijn op de nanoschaal?

Het hoofddoel van deze thesis is om een thermodynamica theorie op te stellen die toe-
pasbaar is voor alle kwantum systemen op de nanoschaal, zelfs zulke kleine systemen als
een enkele qubit. Om dit te bereiken starten we met de basis van de kwantum informa-
tica: unitaire dynamiek op afgezonderde kwantum systemen. We gebruiken een aangepaste
vorm van ?resource theoretic approach? geïnspireerd door kwantum informatie theorie, wat
de kwantum staten en operaties definieert die zijn toegestaan tijdens een thermodynamische
evolutie van een systeem. In dit framewerk wordt de eerste wet als de natuurlijke energie
preserverende conditie wordt aangenomen laten we de verfijning van de nulde en tweede
wet van de thermodynamica zien. De nulde wet laat de natuurkundige significantie van de
Gibbs thermale staat. Aan de andere kant laten we ook zien dat de tweede wet verfijnd
wordt in het kwantum nano regime: in plaats van alleen de vrije energie als enige variabele
die de mogelijkheid van een thermodynamische staat transitie bepaalt, lijden we een hele
familie van gegeneraliseerde vrije energieën af die ook noodzakelijke condities geven voor
het plaatsvinden van een transitie. En deze condities zijn voldoende voor staten die blok-
diagonaal zijn in de energie eigenbasis. In deze thesis brengen we ook onze verfijning van
de thermodynamica tot het volgende niveau: we passen onze bevindingen over de tweede
wet toe, om de maximaal behaalbare efficiency van een kwantum hitte motor te analyseren.

In de klassieke thermodynamica, is de Carnot efficiency voor lange tijd al bekend als
het theoretisch maximum, ongeacht de specifieke structuur van de hitte bronnen maar alleen
afhankelijk van hun temperatuur. Met de extra vrije energieën die wij hebben ontdekt, laten
we zien dat, alhoewel sommige kwantum hitte motoren nog steeds de Carnot efficiency
kunnen halen, dit vermogen niet langer onafhankelijk is van de Hamiltoniaan van de hitte
bron. In andere worden, we vinden extra restricties die verschijnen bij het bestuderen van
kwantum nanoschaal hitte motoren en die een direct gevolg zijn van de gegeneraliseerde
tweede wet. Dit geeft ons een beter begrip van de fundamentele limieten op hoe efficiënt
machines kunnen worden op de schaal van microscopische kwantum systemen.
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Nelly Huei Ying Ng, Laura Mančinska, Cristina Cirstoiu, Jens Eisert and Stephanie Wehner
New Journal of Physics, Volume 17
(Focus Edition on Quantum Thermodynamics)
August 2015

Chapters 6 and 7 are based on the following preprints:

The maximum efficiency of nano heat engines depends on more than temperature
Mischa Woods, Nelly Huei Ying Ng, Stephanie Wehner
arXiv:1506.02322
Submitted to Physical Review X for peer review

Surpassing the Carnot efficiency with extraction of imperfect work
Nelly Huei Ying Ng, Mischa Woods, Stephanie Wehner
arXiv:1606.05532
submitted to New Journal of Physics for peer review

During her graduate studies, the student also completed the following publications:

Maximization of Extractable Randomness in a Quantum Random-Number Generator
Jing Yan Haw, Syed M. Assad, Andrew M. Lance, Nelly Huei Ying Ng, Vikram Sharma,
Ping Koy Lam, Thomas Symul
Physical Review Applied 3 (5), 054004 May 2015

An experimental implementation of oblivious transfer in the noisy storage model
Chris Erven, Nelly Huei Ying Ng, Nikolay Gigov, Raymond Laflamme, Stephanie Wehner,

ix



x LIST OF PUBLICATIONS

Gregor Weihs
Nature Communications 5, 3418 March 2014

Experimental implementation of bit commitment in the noisy-storage model
Nelly Huei Ying Ng, Siddarth K Joshi, Chia Chen Ming, Christian Kurtsiefer, Stephanie
Wehner
Nature Communications 3, 1326 December 2012

Min-entropy uncertainty relation for finite-size cryptography
Nelly Huei Ying Ng, Mario Berta, Stephanie Wehner
Physical Review A 86 (4), 042315
October 2012



CONTENTS

Summary v

Samenvatting vii

List of Publications ix

1 Introduction 1
1.1 Classical thermodynamics: a fundamental pillar of theoretical physics . . . 2
1.2 Information theory and Thermodynamics . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries in Classical and Quantum Information 11
2.1 Classical Probability and Information Theory . . . . . . . . . . . . . . . . 12
2.2 Quantum Information Theory. . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Quantum States and Evolution . . . . . . . . . . . . . . . . . . . 14
2.2.2 Quantum Channels . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Distance Measures . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Entropic quantities . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Information-theoretic Single-shot Quantities . . . . . . . . . . . . . . . . 22
2.3.1 Rényi Divergences . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Rényi Entropies . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Majorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Resource Theories 27
3.1 What are Resource Theories? . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Thermodynamic Resource Theories (TRTs). . . . . . . . . . . . . . . . . 29

3.2.1 Noisy Operations (NO) . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Thermal Operations (TO). . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Catalytic thermal operations (CTOs) . . . . . . . . . . . . . . . . 32
3.2.4 Gibbs preserving Maps (GPs). . . . . . . . . . . . . . . . . . . . 33

3.3 Developments on resource theories . . . . . . . . . . . . . . . . . . . . . 34
3.4 Work Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 The second laws for quantum thermodynamics 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Results and Contributions . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Chapter outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xi



xii CONTENTS

4.2 Catalytic Thermal Operations. . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Zeroeth Law of Quantum Thermodynamics . . . . . . . . . . . . . . . . . 44
4.4 Second laws: Catalytic Noisy Operations . . . . . . . . . . . . . . . . . . 47

4.4.1 Trumping conditions . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2 Investing a small amount of extra work . . . . . . . . . . . . . . . 49

4.5 Second laws for Exact Catalysis on block-diagonal states . . . . . . . . . . 51
4.5.1 Block-diagonal catalysts are sufficient . . . . . . . . . . . . . . . 51
4.5.2 A generalization of majorization: D̄-majorization . . . . . . . . . . 53
4.5.3 Notations and technical tools . . . . . . . . . . . . . . . . . . . . 54
4.5.4 Catalytic D̄-majorization . . . . . . . . . . . . . . . . . . . . . . 59
4.5.5 The Second Laws for block-diagonal states . . . . . . . . . . . . . 62

4.6 Second laws for Exact Catalysis on arbitrary quantum states . . . . . . . . 65
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Inexact Catalysis 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Results and Contributions . . . . . . . . . . . . . . . . . . . . . 70
5.2 How to quantify inexact catalysis . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Thermal Embezzling: trivialization of all state transition conditions . 71
5.2.2 Diminishing trace distance: recovery of macroscopic second law . . 73
5.2.3 Work distance: An operational closeness measure between states . . 77

5.3 The power of thermal embezzling. . . . . . . . . . . . . . . . . . . . . . 79
5.3.1 A family of catalyst states . . . . . . . . . . . . . . . . . . . . . 81
5.3.2 Optimal catalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 The limitations of thermal embezzling . . . . . . . . . . . . . . . . . . . 88
5.4.1 Dimension constraints . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.2 Energy constraints . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Heat Engines: from classical to quantum 97
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Heat Engines: a classical background . . . . . . . . . . . . . . . . 98
6.1.2 Quantum Heat Engines (QHEs). . . . . . . . . . . . . . . . . . . 99
6.1.3 Results and Contributions . . . . . . . . . . . . . . . . . . . . . 100
6.1.4 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 A Generic Setup for Quantum Heat Engines . . . . . . . . . . . . . . . . 100
6.3 Perfect, Near Perfect and Imperfect Work . . . . . . . . . . . . . . . . . . 103
6.4 Conditions for work extraction . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.1 Second law for macroscopic systems . . . . . . . . . . . . . . . . 105
6.4.2 Second laws for nanoscopic systems . . . . . . . . . . . . . . . . 106

6.5 Efficiency of Heat Engines . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5.2 A simplified expression for efficiency. . . . . . . . . . . . . . . . 108



CONTENTS xiii

6.6 Maximum efficiency according to macroscopic thermodynamics . . . . . . 109
6.6.1 Maximum extractable work according to macroscopic law of ther-

modynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6.2 Maximum efficiency for perfect work is Carnot efficiency. . . . . . 110
6.6.3 Maximum efficiency for near perfect work is still Carnot efficiency . 117

7 The Efficiency of Quantum Heat Engines 123
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.1.1 Results and Contributions . . . . . . . . . . . . . . . . . . . . . 124
7.1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2 A QHE cannot extract perfect work . . . . . . . . . . . . . . . . . . . . . 127
7.3 The extraction of non-perfect work . . . . . . . . . . . . . . . . . . . . . 128

7.3.1 An explicit expression for Wext . . . . . . . . . . . . . . . . . . . 129
7.3.2 An upper bound for the efficiency. . . . . . . . . . . . . . . . . . 130
7.3.3 Evaluating non-perfect work for the quasi-static heat engine . . . . 130

7.4 Efficiency of a QHE when extracting near perfect Work. . . . . . . . . . . 136
7.4.1 The choice of ε determines infimum to evaluating Wext . . . . . . . 137
7.4.2 Solving the infimum for Wext . . . . . . . . . . . . . . . . . . . . 143
7.4.3 Evaluating the maximum efficiency for nanoscale QHEs . . . . . . 148
7.4.4 Multiple quasi-static cycles of a QHE. . . . . . . . . . . . . . . . 153

7.5 Extensions to the setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.5.1 Final correlations between battery, cold bath, and machine . . . . . 157
7.5.2 A more general final battery state . . . . . . . . . . . . . . . . . . 170

7.6 Efficiency of drawing imperfect work with entropy comparable with Wext . . 173
7.7 Surpassing ηC with Imperfect Work . . . . . . . . . . . . . . . . . . . . 175

7.7.1 Technical Lemmas used for the proof of Corollary 7.2 . . . . . . . 177
7.7.2 Examples of surpassing the Carnot efficiency . . . . . . . . . . . . 187

7.8 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8 Conclusions and Outlook 191
8.1 Summary of Thesis Contributions . . . . . . . . . . . . . . . . . . . . . 192
8.2 An outlook for future research: Experimental verification of theoretical pre-

dictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Acknowledgements 205

Curriculum Vitæ 207





1
INTRODUCTION

We give an overview of thermodynamics, starting from its earliest phenomenological form
involving only macroscopic observables of classical bulk systems, to how it has been ex-
tended to include devices in the microscopic regime. Even with all the remarkable recent
progress, a complete theory of thermodynamics that holds also for small quantum systems
is still much warranted. This provides the main motivation of the research presented in this
thesis. We explain how concepts from information theory, both classical and quantum, have
contributed to foundational understanding of thermodynamical interactions. This motivates
the use of approaches and concepts in quantum information theory, in order to build a the-
ory of thermodynamics that holds for nanoscale systems which obey the laws of quantum
mechanics. Lastly, an outline of the thesis is presented.
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2 1. INTRODUCTION

1.1. CLASSICAL THERMODYNAMICS: A FUNDAMENTAL PIL-
LAR OF THEORETICAL PHYSICS

“The second law of thermodynamics is, without a doubt,
one of the most perfect laws in physics. "

E.H.Lieb and J.Yngvason, [1]

If research in physics is likened to a hiking trail aimed at reaching undiscovered heights,
then at first glance, the field of thermodynamics is an odd place to begin the journey. Clas-
sical thermodynamics, being one of the main pinnacles of theoretical physics, was estab-
lished, further developed and applied for almost two centuries. Even to this day, it is still
adored by many modern-day physicists as being “perfect” and “universally applicable”.
Even Albert Einstein himself expressed an utmost confidence in it, amongst all the other
physical theories (see epigraph). However, the hiker must bear in mind that the higher the
pinnacle, the larger the whole mountain. Unexplored territory remains, where the scenery
of the pinnacle changes, making the journey all the more interesting.

Furthermore, it is worth recalling that the historical motivation for this branch of study
was a down-to-earth one, aiming to improve the performance of then existing engines.
Therefore, thermodynamics from the beginning was phenomenological, concerning itself
with macroscopic observables of large systems, such as the volume, pressure, energy and
their relation with each other in the steady-state limit. With the advancement of technol-
ogy, the workings of machines/devices have moved far beyond such a regime. It is thus
inevitable, that we re-examine the roots of thermodynamics in the light of these changes.

PHENOMENOLOGICAL THERMODYNAMICS
We begin our journey by first recalling what we know so far about the fundamental princi-
ples of equilibrium thermodynamics. A variety of formulations for these laws can be found
in any standard classical thermodynamic textbook [2–5].

Box 1.1.1: The laws of classical thermodynamics

Zeroeth law (Transitivity of thermal equilibrium):
Two systems are considered to be in thermal equilibrium if there is no net heat flow
between them, even when they are connected to each other so that heat may flow
freely. If system A is in thermal equilibrium with B, and system C is also in thermal
equilibrium with B, then A is in thermal equilibrium with C.

First law (Energy conservation):
In any process where energy flows in and out of a system, its internal energy changes
according to the law of energy conservation.

Second law (Asymmetry in time):
The disorderliness of an isolated system always increases in time.

Third law (Absolute zero temperature):
A system can never reach the absolute zero temperature within a finite number of
steps/processes and finite amount of time.
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These laws constitute the core of the thermodynamic framework, and within these laws,
the second law in particular has a unique role, being one of the very first principles observed
and applied in the discussion of heat engines. Not only was the second law originally stated
as an empirical observation of nature, it has been formulated in many different ways by the
founding fathers of thermodynamics/statistical physics. The earliest statements come from
Lord Kelvin and Rudolph Clausius, which can be shown to be equivalent to each other [2].

• Kelvin statement [6] (1851)
"It is impossible, by means of inanimate material agency, to derive mechanical effect
from any portion of matter by cooling it below the temperature of the coldest of the
surrounding objects."

• Clausius statement [7] (1854)
"Heat can never pass from a colder to a warmer body without some other change,
connected therewith, occurring at the same time."

At the heart of the second law is the distinction of energy into two parts: “work” as or-
dered/useful energy (the “mechanical effect” in Kelvin’s statement), versus “heat” which is
disordered/wasted energy. The statements made by Kelvin and Clausius have arisen from
keen observations on systems encountered in everyday life: bulk materials (usually fluids
such as water, steam or other gasses) comprising of many interacting classical particles.
Earlier in 1824, Sadi Carnot, who was often regarded as the “father of thermodynamics”,
developed the concept of reversibility and Carnot cycles for heat engines, in order to under-
stand the maximum possible efficiency/power output of heat engines. The works of Kelvin
and Planck of the second law have allowed for the derivation of the maximum efficiency
any heat engine could possibly achieve, now known as the Carnot efficiency.

Another one of the fundamental observations in thermodynamics, is the fact that most
bulk systems have the tendency to evolve towards a steady state where the macroscopic
variables do not change. Such a state is denoted as the thermodynamic equilibrium state,
and is characterized by a real-valued parameter called the temperature T (in this thesis, we
more often deal with the inverse temperature, β = 1

kBT , where kB is a constant parameter
known as the Boltzmann constant). Two systems at their respective thermal equilibrium can
be compared with each other by this temperature; and if they have the same temperature,
there will be no net heat exchange between the systems. Such a parametrization, where
its transitivity is stated as the zeroeth law, is used to define “coldness” and “warmness” of
systems (such as in the Clausius statement).

Today, the second law is widely used in areas such as chemistry, condensed matter,
and almost all braches of engineering/physics. Even outside of physics, the second law
can be used to provide insights into the dynamical processes of evolution theory or even
economics [8, 9], hinting at an underlying, more foundational mathematical structure in
which the second law is a consequence of. Due to the successful record of phenomenolog-
ical thermodynamics in describing the physical world, since its emergence there has been a
large amount of effort to ground its observations in a rock solid foundation of mathematical
structure and physical principles that describe the behaviour of microscopic particles.
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4 1. INTRODUCTION

STATISTICAL MECHANICS AND AXIOMATIC THERMODYNAMICS
In the later 20th century, a microscopic description of thermodynamical processes was for-
mulated in the field of statistical physics. These studies were pioneered by physicists such
as James Clerk Maxwell and Ludwig Boltzmann. The central thesis of statistical mechanics
is that macroscopic behaviour of fluids and gases observed in thermodynamics, is a result
of basic principles of kinematics, with a main additional assumption on the ensemble of
microscopic particles. This assumption is called the principle of equal a priori probabilities
(PEAPP), namely that for a system at equilibrium, all accessible microstates of the system
are equally likely.

From this perspective, the second law can be formulated in terms of the entropy of a
system P,

H(P) =∑
i

pi ln
1

pi
, (1.1.1)

where the summation runs across all possible microstates of the system. This quantity
measures the amount of “disorder” in the system, as we have encountered in Box 1.1.1. The
second law of thermodynamics is then re-formulated as follows: for any isolated system P
(also known as the microcanonical ensemble), the entropy of the system can only increase
in time. A system at equilibrium is therefore the state with the maximum amount of entropy.
This principle, when applied to studying a system that exchanges energy when interacting
with an environment of inverse temperature β , leads to another familiar formulation of the
second law:

• Consider a system P in heat contact with a thermal bath at fixed inverse temperature β .
The free energy of such a system,

F(ρ) = 〈E〉P − 1

β
H(P), (1.1.2)

can only ever decrease in time, where 〈E〉P is the average energy of the system. This free
energy quantity also gives the amount of work that can be extracted from the system.

It is certain that one always finds physical assumptions on the systems that lie outside
of classical mechanics, such as ergodicity, adiabaticity, short-range interactions etc, in or-
der to derive the entropy function and the second law. These assumptions hold, at least
approximately for most classical bulk systems. Even for the most exotic types of material
(real gases, non-Newtonian fluids etc), at the very least the number of particles involved are
truly huge, i.e. of the order of Avogadro’s constant (≈ 6×1023), where statistics becomes
an extremely powerful tool in singling out the average behaviour of the system as a whole.
On the other hand, there have been axiomatic approaches towards thermodynamics, which
attempt to separate out the physical arguments from the derivation of the second law, by in-
stead presenting a set of mathematical axioms for the derivation of entropy function [1, 10].

STOCHASTIC THERMODYNAMICS
Leaving the realm of equilibrium thermodynamics, one immediately realizes that obviously
equilibration is not a generic description of systems at all times. Systems are easily pushed
out of equilibrium by operations from an observer, for example performing compression on
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a mole of gas, or simply mixing two systems which were at different temperatures. To deal
with small deviations from equilibrium, linear response theory is a commonly used aproach
in approximately quantifying non-equilibrium behaviour.

The first quest to refining thermodynamics happened when attempting to move from
linear response theory to genuinely non-equilibrium dynamics [11]. The motivation for
developing such a theory, is due to the fact that classical engines have became intricate
enough, such that they are affected non-trivially by energy fluctuations. Such fluctuations
form a time-dependent driving potential for the system, where the potential changes over an
amount of time which is of the same magnitude with the equilibrium time scale of the sys-
tem. This implies that the system of interest is constantly pushed out of equilibrium. Also,
often in such cases, the system of interest might only consist of a handful of particles, and
the resolution of our analysis may go all the way down to the trajectories of an individual
particle through its phase space, such as the motion of a single Brownian particle driven by
random forces (collision with smaller molecules) from its surroundings. Examples of such
classical engines today are Brownian ratchets, biopolymers, molecular motors etc [12, 13].

Dyanmical models have largely been developed to describe non-equilibrium processes.
In particular, the evolution of systems which obey Markovian dynamics can usually be
described as differential equations such as Master equations. Our understanding of the
second law, upon scrutiny, has also seen refinement: fluctuation theorems say that for a large
class of models for classical systems, when analyzing the trajectories of the system through
its phase space, the second law (i.e. the increase of entropy w.r.t. time) is a statistical law
that is obeyed with high probability. Well known examples of fluctuation theorems include
the Jarzynski relation [14], and Crooks theorem [15]. These relations have been proven
for a large class of classical systems (in particular, all Markovian systems [16], and certain
non-Markovian systems with additional assumptions [17]).

These investigations have shown us that traditional thermodynamics has been radically
transformed for devices that operate in the nanoscale regime. However, the quest is unfin-
ished, and a larger revolution of thermodynamics is still on its way.

THE CHALLENGE AHEAD: REVAMPING THERMODYNAMICS FOR NANOSCALE QUAN-
TUM SYSTEMS
The first quantum revolution happened in the early 20th century, shocking physicists with
new rules that govern elementary particles. However, after recovering from that initial
shock, a new wave is rising: by engineering and controlling quantum systems, quantum
physics is changing the way we handle information. Novel advantages are being harnessed
in the context of computational speed and communication security. These advantages have
no precedence in the classical world. Quantum information, both theory and experimental,
therefore brings us to the second quantum revolution [18], where physicists are making use
of quantum mechanics to discover new ways of processing information.

In these endeavours, we deal with a large variety of microscopic quantum systems, such
as quantum dots, superconducting qubits, cold atoms and single-photons. Current efforts
are aimed at preserving the quantum information encoded in these systems, while increas-
ing the accuracy of manipulating the state at will. In the future, if we envision constructing
a scaled-up quantum architecture, we will inevitably need to construct small quantum ma-
chines which can execute control over different parts of the system. An example of such
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a machine is a theoretical proposal of quantum fridges [19–21], which aim to achieve re-
gional cooling on parts of the quantum system, or a nanoscale heat engine, which has been
recently realized experimentally in the setting of a single trapped ion [22]. However, it is
not clear if the principles of classical thermodynamics can find their ground in the quantum
nanoscale regime. These systems may consist of a mere handful of qubits. Fundamentally,
they are governed by reversible quantum dynamics. Some of the specific dissipative models
in stochastic thermodynamics might be extendable to the quantum regime, however most
of these systems still do not conform to the assumptions traditionally made when deriving
the second law. Even to the extreme, due to the fragility of quantum states (since they deco-
here rapidly while interacting with the environment), when handling quantum information
we often desire single-shot descriptions of the performance of tasks using these systems.
These collective challenges dim the usefulness of statistical methods.

Therefore, the question is: do the laws of thermodynamics emerge when dealing with
such quantum systems? Does the second law, in particular, still hold?

1.2. INFORMATION THEORY AND THERMODYNAMICS
As outlined in [23], any theory that seamlessly connects the microscopic mechanical laws
to descriptions of macroscopic phenomena should satisfy the following: 1) free of all math-
ematical objections, 2) involves no arbitrary, additional assumptions, and 3) provides expla-
nations for both equilibrium thermodynamics and non-equilibrium, irreversible processes.
Historically, 2) was almost impossible in classical statistical mechanics. However, infor-
mation theory is precisely a field of study which investigates the limits of processing in-
formation independent from the physical systems that encode such information. Therefore,
it has offered us new fundamental insights into building a fully general theory of thermo-
dynamics. For example, the maximum entropy principle developed by Jaynes [23, 24] is
one of the first contributions of information theory in thermodynamics. Jaynes showed that
the emergence of the Gibbs state can be understood as a statistical inference that assumes
full ignorance (therefore maximum entropy) about the state, under the constraints of known
macroscopic variables or conserved quantities such as average total energy. Quoting [23],
Jaynes concludes that “statistical mechanics need not be regarded as a physical theory de-
pendent on its validity on the truth of additional assumptions not contained in the laws of
mechanics (such as ergodicity, metric transitivity, equal a priori probabilities etc)”.

Another issue that triggered the information theoretic approach to thermodynamics was
the paradox of Maxwell’s demon, which provided a way to seemingly violate the second
law of thermodynamics using additional information [25]. In this paradox, a “demon” who
has the ability to measure and obtain information about microscopic properties of individ-
ual particles (for example the velocity or position of gas molecules), may violate Clausius’s
statement by creating a temperature difference between two initially equilibrated systems
(effective allowing heat flow from cold to hot bodies). Therefore, one observes from this
paradox that since the demon is given access to more information about the system, it can
make use of that information to violate the second law. Another similar, well known exam-
ple is that of a Szilárd engine [26], which illustrates the possibility of extracting work (from
a heat bath), given access to one bit of information. The answer to these paradigms have
revealed a connection between information and energy: information processing tasks which
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are irreversible1 cannot be carried out without some inevitable consumption of work (and
by conservation of energy, generation of heat). On the other hand, if one has access to an
amount of information (encoded in a physical system), this information may be exhausted
by allowing the system to interact with a bath, and work can be extracted. This is known as
the Landauer’s principle, originally studied for the case of information encoded in a particle
trapped in a double-well potential [27], and subsequently derived in more generality [28–
30]. Landauer’s principle has far-reaching implications: in thermodynamics, it introduces
a degree of subjectivity and the perspective of an observer which is potentially correlated
with the system of interest. On the other hand, in computer science, it implies that for irre-
versible computation processes, heat dissipation is fundamentally inevitable, and therefore
poses a practical problem of energy consumption in the design of computing devices.

QUANTUM INFORMATION THEORY
The community has seen a few important examples of advancements in quantum thermo-
dynamics, which were contributed by concepts and tools in quantum information theory:

1. Addressing assumptions in classical statistical mechanics
The principle of equal a priori probabilities (PEAPP), as we have seen, is one of the
central assumptions of statistical mechanics. Such a principle, though being extremely
useful in statistical physics, is inexplicable by itself, since it assumes a subjective ig-
norance about the state of the system. However, in the quantum information theoretic
approach to statistical mechanics, there has been a deepening in the understanding of
this principle, by linking the previously assumed subjective ignorance to the objective
existence of entanglement. In short, it has been shown that for any typical, pure quantum
state A of large dimension dA, the reduced state of a small subsystem B is likely to be
highly entangled with the rest of system A. Furthermore, entanglement is monogamous:
if B is highly entangled with A, then to any other system C without access to A, system
B by itself appears to be in a highly disordered state. This implies that system B (ap-
proximately) satisfies PEAPP. Furthermore, the smaller dB ¿ dA is, the closer system B
is to the state that satisfies PEAPP. The reader may refer to the following review papers
[31, 32] for a detailed survey on typical quantum states.

2. Conditions and time scales for equilibrium and thermalization of quantum systems
When attempting to derive the principles of thermodynamics from quantum mechanics,
an obvious problem is to why unitary, reversible evolutions in quantum theory give rise
to the observation of irreversible dynamics for macroscopic systems. Under what con-
ditions do quantum systems equilibrate? If equilibration occurs, what is the steady state,
and what are the time scales for equilibration? These questions in quantum thermody-
namics aim to rigorously explain the frequent emergence of Gibbs states as the equi-
librated state. Tools in quantum information theory such as decoupling theorems [33]
and Lieb-Robinson bounds [34, 35] have been applied in order to provide conditions
on the Hamiltonian and initial state for thermalization, where time scales of thermaliza-
tion depend on entropic measures of the state. In particular, relatively short time scales

1An example of such a process is erasure, which is the resetting of any memory state to a fixed, predetermined
state. Erased information cannot be recovered, and therefore the process is irreversible.
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for equilibration have also been proven for most randomly chosen Hamiltonians, initial
states, and also by considering the expectation values of generic observables [33, 36–40].

3. Resource theories
How would a quantum system out of equilibrium evolve from one state to another while
interacting with its thermal environment? The resource theory approach constitutes
generic models that are aimed at resolving this problem. Such an approach starts by
first defining a set of operation and states that can be performed/generated at no cost
(commonly referred to as free operations and free states), in order to derive transition
conditions between non-equilibrium states. With such state transition conditions, one
can then compare different states with each other, by saying that a state ρ is more “valu-
able” than σ if ρ →σ can be achieved by the predefined free operations and states. This
perspective has been extremely successful in several aspects of quantum information,
such as the study of entanglement, purity or coherence as different “resources” [41–43].
These frameworks are discussed in depth later in Chapter 3 of this thesis, and we shall
see that in thermodynamics, the main resource involved is work – ordered energy.

4. Thermodynamic protocols such as work extraction/cooling.
The study of quantum heat engines usually involves the explicit construction of a certain
quantum system that, by interacting with multiple thermal baths, undergoes a cycle in
which at the end, energy (in particular, work) is produced [44]. Building on Landauer’s
principle that having information allows for the extraction of work, protocols for work
extraction and their optimality can be analyzed by using known results in data compres-
sion [45]. Qubit heat engines/refridgerators have also been proposed and analyzed [19],
and it has been shown that the use of entanglement and quantum coherence may enhance
the performance of those systems [20].

1.3. THESIS OUTLINE

Research Motivation and Summary
The central aim of the research presented in this thesis, is to start out only from the
core principles of quantum theory, and derive laws that dictate the possibility of a
thermodynamic state transition for arbitrary quantum states.

We describe the evolution of composite quantum systems via energy preserving
unitary dynamics, further allowing for additional quantum ancillas to serve as ma-
chines/catalysts. We derive a set of conditions that tell us if a state transition ρ → ρ ′
may happen through a thermodynamical process. Subsequently, we apply these
laws to study the maximum achievable efficiency for a quantum heat engine in the
nanoscale regime.

In short, this thesis highlights the departure of quantum thermodynamics from the
standard second law as we know it, and explicitly derives the consequences of such
a departure, specifically on the maximum efficiency of heat engines.

In Chapter 1, an introduction to the problem of reconstructing thermodynamics for
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quantum systems is given. In view of the contributions of information theory in thermo-
dynamics, we see a newly rising approach to the task. With these motivations in mind,
we give a brief overview of both classical and quantum information theory in Chapter 2.
This chapter, however, is not aimed at providing an exhaustive overview of the achieve-
ments/essence in quantum information theory by itself. Instead, its aim is two-fold: 1) to
introduce the concepts of information theory which will be useful in the application towards
thermodynamics, and 2) to define all notations/conventions used throughout this thesis.

Chapter 3 introduces the framework of thermal operations, that starts out assuming
only the very basic principles of quantum mechanics by using an information-theoretic
approach, with the goal of describing how a quantum system interacts with its immediate,
thermal surroundings. The problem of how to define work in the quantum nanoregime is
also addressed, by giving a review of several ways to quantify work, especially focusing on
models of storage systems for work.

Chapters 4-7 contain the main scientific contributions of this thesis. Chapter 4 considers
the inclusion of ancillary catalysts in thermal operations, and derive state transition condi-
tions which can be phrased in terms of generalized free energies. It is shown that these
generalized free energies are monotonic under catalytic thermal operations, thus forming
a set of necessary conditions for state transition. Moreover, these conditions are sufficient
when considering states that are incoherent in the energy eigenbasis.

Chapter 5 turns to the case where catalysts are returned not exactly, but with some
small error from its original state. We investigate different measures of such errors, and
show that they lead to different subsets of the generalized second laws as state transition
conditions. We define the notion of thermal embezzling, which is the trivialization of all
state transition conditions by a small catalyst error, and proceed to investigate both the
power and limitations of thermal embezzling, especially under certain physical constraints.

In Chapter 6, we construct a generic model of a quantum heat engine, and show how
a heat engine cycle corresponds to the occurance of a state transition via catalytic thermal
operations. This provides a way for the second law(s) to be applied in the derivation of heat
engine efficiency. We provide a way of quantifying the quality of energy extracted, by cate-
gorizing different types of work according to the ratio ∆S

Wext
, where ∆S is the induced change

in entropy and Wext is the amount of extracted energy. Such a characterization allowed us
to define the following types of work: 1) perfect, 2) near perfect, and 3) imperfect work.
We then apply the second law for macroscopic thermodynamics, and recover the results of
Sadi Carnot, in the case of pearfect work and near perfect work extraction.

Chapter 7 then turns to apply the generalized second laws derived in Chapter 4 of this
thesis, for the setting of our quantum heat engine. We find significant departures from
Carnot’s results when these generalized second laws for the quantum nanoregime are in-
volved. We prove that Carnot efficiency remains as a theoretical maximum for all heat
engines, and it may still be achieved under additional conditions, that depend on the Hamil-
tonian of the baths.

The thesis concludes in Chapter 8 with a summary of its contributions, with an outlook
of open problems which are of potential future interest to the community.





2
PRELIMINARIES IN CLASSICAL
AND QUANTUM INFORMATION

This chapter serves as a reference that contains the basic mathematical preliminaries and
notation used throughout the thesis. From classical random variables to quantum density
matrices, we see how information (both classical and quantum) may be quantified. We also
see several entropic quantities and their properties.
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In this chapter, we introduce the basic tools and notation used throughout this thesis. We
start in Section 2.1 by introducing essential notions in classical information theory, such
as probability distributions and classical channels. In Section 2.2, we move to the basic
concepts of quantum information theory, which concerns properties of quantum states and
their evolution. In Section 2.3, we introduce a variety of single-shot entropic quantities. In
Section 2.4, we define majorization and see its relation to stochastic channels.

2.1. CLASSICAL PROBABILITY AND INFORMATION THE-
ORY

Classical information theory is based on the fundamentals of (discrete) probability theory,
which we briefly introduce here.

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Let X1 be a discrete random variable with some alphabet X . Each element x ∈ X , can be
associated a probability pX (x) = Pr{X = x,x ∈X }, which is a real number R between 0 and
1, i.e. pX (x) ∈ [0,1]. If the size of the alphabet |X | = n, then the probability distribution
{pX (x)}x∈X can be represented by a normalized vector pX = (p1, · · · , pn) ∈Rn

≥0, i.e. pi ≥ 0 ∀i,
and

∑n
i=1 pi = 1. We denote the set of n-dimensional probability vectors as

V (n) =
{

p ∈Rn
≥0

∣∣∣∣∣ n∑
i=1

pi = 1

}
. (2.1.1)

Classical information can be described as random variables: intuitively, since a random
variable X describes uncertainty over what an actual variable is (spread across an alphabet
X ), then by acquiring X , knowing what it is, we obtain some information.

How is information transmitted? Physically, it is encoded in a physical system, for ex-
ample a piece of paper, or an electronic signal. This physical system carries the information
from one place to another, and by observing this system, we readout the information. Given
some information described by X , the amount of signals required to safely transmit it de-
pends on pX . For example, if pX is spread out across all elements of X , many signals are
required for the receiver to accurately obtain X . On the other hand, if pX is concentrated
only on a small subset of values x ∈X , then the data can be compressed into a much smaller
number of signals. A central quantity in information theory is the Shannon entropy, which
carries a significant operational meaning in data compression, in the asymptotically infinite
limit of idependently and identically distributed (i.i.d.) variables [46].

Definition 2.1. Given any random variable X with a probability distribution pX ∈V (n),
the Shannon entropy is defined as a

H(X) =H(pX ) :=
n∑

i=1
pi ln

1

pi
. (2.1.2)

aConventionally in information theory, entropic quantities are defined with logarithm base 2, in order to

1We adapt the convention of using the symbols X ,Y,Z to denote classical random variables, and the symbols p,q,r
etc. to denote probability distributions.
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quantify the entropy according to the number of bits, since computational tasks deal usually with binary
operations. However, we have defined all entropic quantities in this thesis with the natural logarithm instead,
which is closer to the convention of statistical physics. Such a definition only differs from the conventional
definition of information theory by a multiplicative factor.

Note that for all n-dimensional distributions p ,

0 ≤H(p) ≤ lnn, (2.1.3)

where H(p) = 0 iff for a specific index i ∈ {1,n}, pi = 1 and otherwise ∀ j 6= i, p j = 0. On the
other hand, H(p) = lnn iff ∀i ∈ {1,n}, pi = 1

n is the uniform distribution.
A special case of Shannon entropy is when p= (p1, p2) ∈V (2). The Shannon entropy in

this case depends on a single variable, and is referred to as the binary entropy,

H(p) = h2(p1) :=−p1 ln p1 − (1− p1) ln(1− p1). (2.1.4)

The Shannon entropy is an example of a multi-variable function, i.e. it is a function
acting on p (consisting n distinct variables), and assigning a single real-value output. We
may denote such functions as f : Rn → R. Further on in this thesis, we frequently analyze
these multi-variable functions in a particular limit, for example in the limit where one of the
input variables go to zero. This prompts the usage of order functions denoted as Θ(x) [47],
which denotes the growth of a function in such a limit.

Definition 2.2. Consider two real-valued functions P(x),Q(x). We say that P(x) =
Θ(Q(x)) in the limit x→ a iff there exists c1,c2 > 0 and δ > 0 such that for all |x−a| ≤ δ ,
c1 ≤

∣∣∣ P(x)
Q(x)

∣∣∣≤ c2. When the limit of x→ a is unspecified, by default we take a= 0.

We also list a few useful properties of these functions here for x→ 0:
a) For any c 6= 0, Θ(c ·P(x)) =Θ(P(x)).
b) For any functions P1(x) and P2(x), Θ(P1(x))+Θ(P2(x)) =Θ(

max
{|P1(x)|, |P2(x)|}).

c) For any functions P1(x) and P2(x), Θ(P1(x)) ·Θ(P2(x)) =Θ(P1(x)P2(x)).
d) For any functions P1(x) and P2(x), Θ(P1(x))/Θ(P2(x)) =Θ(P1(x)/P2(x)).

Example 2.1. Consider the binary entropy as defined in Eq. (2.1.4). Then, for values of
x¿ 1, h2(x) is of order h2(x) =−x lnx+Θ(x), which can also be written as h2(x) =Θ(x lnx).

CLASSICAL CHANNELS
When information is encoded in a physical system and transferred from one place to an-
other, due to interactions with the environment, it is common that the physical system un-
dergoes some change. As a result, the initial information X might now be described by a
different random variable Y instead. Such a transmission process is often referred to as a
channel. In other words, channels are used in information theory to model how a piece of
information may be altered during transmission, due to the presence of noise.

Definition 2.3. A classical channel C : X → Y takes symbols x ∈ X and maps them
to symbols in y ∈ Y according to a conditional distribution pY |X (y|x). For |X | = n and
|Y | =m, the channel C can be represented by a linear operator Λ : V (n) →V (m), which
is an m×n matrixΛ whereΛpX = pY . Such a matrix A is also called a stochastic matrix,
and satisfies the following properties:
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1. Each element is postive, i.e. for all i ∈ {1,m} and j ∈ {1,n}, Λi j ≥ 0.

2. Each column sums up to 1, i.e.
∑m

i=1Λi j = 1,∀ j ∈ {1,n}.

X Y

0

1

0

1

1− f

1− f

f
X YBSC( f )

Figure 2.1: Example of a classical channel C that brings X to Y , where X =Y = {0,1} . This particular channel is
also called a binary symmetric channel (BSC) , where a symbol gets flipped with probability f .

Figure 2.1 gives an example of a classical channel, known as the binary symmetric
channel (BSC). The matrix representation of such a channel is

ΛBSC =
(

1− f f
f 1− f

)
. (2.1.5)

A special type of channel is a bistochastic channel, which is represented by a bistochastic
matrix as defined below:

Definition 2.4 (Bistochastic matrix). An n×n matrix A is bistochastic iff:

1. All matrix elements are non-negative Ai j ≥ 0, ∀1 ≤ i, j ≤ n.

2. The sum of each column is 1, i.e.
∑n

i=1 Ai j = 1, ∀1 ≤ j ≤ n.

3. The sum of each row is 1, i.e.
∑n

j=1 Ai j = 1, ∀1 ≤ i≤ n.

By definition, the matrix A is bistochastic iff it represents a classical channel that pre-
serves the maximally mixed distribution η = { 1

n , · · · , 1
n
}
, i.e. Aη =η .

2.2. QUANTUM INFORMATION THEORY
This section aims to give the reader a brief overview of the tools and framework from quan-
tum information theory, in which the results within this thesis is formulated. We assume
that the reader is familiar with basic concepts from linear algebra. For a detailed introduc-
tion to quantum information theory, the reader is referred to the classic textbook by Nielsen
and Chuang [48], and the lecture notes by Mark Wilde on quantum Shannon theory [49].

2.2.1. QUANTUM STATES AND EVOLUTION
We begin with one of the basic postulates in quantum theory, which concerns the Hilbert
space that represents any quantum system2.

2We adapt the convention of using symbols such as A,B,C to denote quantum systems.
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Box 2.2.1: State space/Hilbert space

Postulate 1. Associated to any physical system A is a complex vector space with
inner product, that is known as the state space, or Hilbert space of the system,
commonly denoted as HA. The system can be completely described by its state
vector, which is a unit vector in HA.

According to standard convention in quantum mechanics [48], we use the bra-ket no-
tations to denote vectors in H by a “ket”, for example |ψ〉 ∈ H . The “bra” vectors are
dual vectors denoted as 〈ψ | ∈ H ∗, where H ∗ is the dual space of H . If a quantum state
is represented by a state vector, it means that full information of the state is already known.
However, to further incorporate classical uncertainty into the notation for quantum states,
the density matrix formalism is often used.

Before defining the density matrix, we first recall that given any two Hilbert spaces
H and H ′, linear operators L are mappings L : H → H ′ such that addition and scalar
multiplication are preserved. Such linear operators are represented by a d′×d matrix, where
d,d′ are dimensions of H ,H ′ respectively. We now recall several types of common linear
operators L : H →H for a certain Hilbert space H .

Definition 2.5. Given any Hilbert space H , the set of Hermitian operators Herm(H )
is the set of linear operators that are self-adjoint, i.e.

Herm(H ) :=
{

L : H →H
∣∣∣ L† = L

}
. (2.2.1)

Any Hermitian operator H ∈Herm(H ) must have real-valued eigenvalues.

Definition 2.6. Given any Hilbert space H , the set of positive semi-definite operators
Pos(H ) is given by

Pos(H ) := { L ∈Herm(H ) | L≥ 0 } , (2.2.2)

where the notation L ≥ 0 indicates that L is a non-negative operator, i.e. each of its
eigenvalues are non-negative.

A valid quantum state can be represented by a density matrix ρ3, which is a special type of
positive demi-definite operator as defined below:

Definition 2.7. Given any Hilbert space H , the set of quantum states (or density ma-
trices) on H is given by

S(H ) := {
ρ ∈ Pos(H ) | tr(ρ) = 1

}
, (2.2.3)

where the trace tr(ρ) =∑
i ρii denotes the sum of diagonal elements.

A simple example of a density matrix is given by the maximally mixed state.

3Throughout this thesis we adapt the convention of using symbols such as ρ,σ ,ω to denote density matrices.
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Definition 2.8. Given any quantum system A corresponding to some Hilbert space HA
of dimension dA, the maximally mixed state is given by

πA = 1

dA

dA∑
i=1

|i〉〈i|A = 1

dA
1A, (2.2.4)

where {|i〉A}i is the standard basis, i.e.

|i〉A = (0 · · · 1︸︷︷︸
i-th position

· · · 0)T . (2.2.5)

The matrix 1A is simply the identity operator. Since 1A is invariant under all basis
transformations, the maximally mixed state has the same form when written in any basis,
i.e. for any orthonormal basis {|ei〉A}i, πA = 1

dA

∑dA
i=1 |ei〉〈ei|A.

COMPOSITE QUANTUM SYSTEMS
Given two quantum systems A,B with their respective Hilbert spaces HA,HB, the joint
system is commonly denoted as AB, and the joint Hilbert space is simply the tensor product
of individual Hilbert spaces HAB = HA ⊗HB. There is an easy way to construct a basis
for this joint system: for any complete, orthonormal bases {|ei〉A}dA

i=1 and
{| f j〉B

}dB
j=1 for the

individual systems A and B, { { |ei〉A ⊗| f j〉B
}dA

i=1

}dB

j=1
(2.2.6)

is a complete orthonormal basis for HAB.
Consider the case where the systems A and B were prepared independently from each

other in states ρA,ρB, then the joint state ρAB = ρA⊗ρB is simply given by the tensor product
of these states. If ρAB is of tensor product form, then it implies that there are no correlations
between system A and B.

HOW QUANTUM STATES EVOLVE WITH TIME
The second postulate concerns the natural evolution of an isolated quantum system (i.e. a
system that does not interact with anything else).

Box 2.2.2: Evolution of a quantum system

Postulate 2. The time evolution of a quantum state ρ ∈ H is described by the
Schrödinger equation. Suppose that at t = 0, the system is in the quantum state ρ0.
The quantum state after some time t is then given by

ρt =Utρ0U†
t , (2.2.7)

where Ut = e−iĤt , and Ĥ ∈ Herm(H ) is an operator called the Hamiltonian asso-
ciated with the system.

Remark 2.1. For any real-valued t ≥ 0, operator Ut is also Hermitian, and it is a unitary
operator, i.e. Ut has the property that UtU†

t =U†
t U=

t 1 is the identity operator.
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Since the Hamiltonian is a Hermitian operator, by the Spectral Decomposition Theorem
(Box 2.2, [48]) it can be diagonalized, i. e. one can always write Ĥ as

Ĥ =∑
i

EiΠEi , (2.2.8)

with eigenvalues Ei, and a complete set of orthogonal projectors ΠEi
4. Given the unique

physical meaning of the system’s Hamiltonian, by default we write a quantum state ρ in the
basis of its Hamiltonian Ĥ, and call the state ρ block-diagonal if ρ and Ĥ are simultaneously
diagonalizable, i.e. there exists an ordered eigenbasis of the Hamiltonian, such that ρ is
diagonal in this basis5. When necessary, we also use the notation (ρ,Ĥ) in order to refer to
the state together with its Hamiltonian as a state-Hamiltonian pair.

A block-diagonal density matrix ρ0 always commutes with its Hamiltonian, i.e. [ρ0,Ĥ] =
0. Therefore, according to Postulate 2, if ρ0 commutes with the Hamiltonian, then in fact
when left isolated from the rest of the world, it remains unchanged with respect to time.
This is seen by Eq. (2.2.7), since [ρ0,Ĥ] = 0, for any t ≥ 0, we have that [ρ0,Ut ] = 0 holds
as well, and therefore

ρ1 =Utρ0U†
t = ρ0UtU†

t = ρ0. (2.2.9)

A state ρ ∈H is pure if rank(ρ) = 1, and ρ can be written as ρ = |ψ〉〈ψ | where |ψ〉 is
a normalized vector in H . In general, since the density matrix is a positive semi-definite
operator, again by spectral decomposition it can always be diagonalized in some basis:

ρ =∑
i

µi|ei〉〈ei|. (2.2.10)

If we have a function f :R→R, then f (ρ) is used to denote

f (ρ) =∑
i

f (µi)|ei〉〈ei|. (2.2.11)

Throughout this thesis, we will encounter a particular quantum state called the thermal
state, or known also as the Gibbs state, which we denote as τ throughout the thesis.

Definition 2.9. Consider a quantum system described by the Hamiltonian Ĥ. Then
given any real-valued parameter β ≥ 0, the thermal/Gibbs state at inverse temperature
β is given by a block-diagonal state:

τ
β = e−β Ĥ

Zβ
, (2.2.12)

where Zβ = tr
(
e−β Ĥ

)
is known as the partition function of the system (one may also

view it as the normalization factor for the thermal state).

4A projector P is a linear operator such that P2 = P. A projector is orthogonal if its rows and columns consist of
linearly independent vectors.

5For the case where Ĥ is fully non-degenerate, it has a unique eigenbasis, therefore a state ρ0 that commutes with
Ĥ is automatically block-diagonal. However, if Ĥ has degenerate eigenvalues, then it does not have a unique
eigenbasis. Therefore, [ρ0,Ĥ] = 0 does not necessarily imply anymore that ρ0 is diagonal in any eigenbasis of
Ĥ; it only implies the existence of such a common eigenbasis.
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In classical equilibrium thermodynamics, the partition function is a central quantity of inter-
est, since it contains information about both the temperature and Hamiltonian of the system.
We shall discuss this Gibbs state in more detail later in Chapters 3 and 4. Many important
macroscopic variables of a thermodynamical system, such as the total energy, entropy etc
may be expressed in terms of Zβ (or with its derivative with respect to β ) [2].

2.2.2. QUANTUM CHANNELS
We have seen in Section 2.1 how a classical channel maps a probability distribution to
another. Analogous to the classical case, a generic evolution/process that a quantum state
undergoes can be viewed as an action of a quantum channel on the state. Mathematically,
a quantum channel NA→B : S(HA) → S(HB) is a linear map that takes a density matrix
ρA ∈ S(HA) to another density matrix in S(HB). If HA = HB, then we write the channel
simply as NA.

Let us consider what are the requirements for a linear map NA→B to be a valid quantum
channel. Since NA→B(ρA) is also a quantum state, this means that the linear map NA→B has
to satisfy the following property:

• Trace Preserving: tr(NA→B(ρA)) = tr(ρA).

On the other hand, one might imagine the channel acting only upon A, while A is part of
a larger composite system AE. Then for NA→B to produce a valid final quantum state, we
must have that for any additional quantum system E, and state ρAE ∈HAE :

• Complete Positivity: (NA→B ⊗ 1E )(ρAE ) ≥ 0.

Definition 2.10. Consider quantum systems A and B. Then a quantum channel from A
to B, NA→B : S(HA) → S(HB) is a linear map which is completely positive (CP) and
trace preserving (TP), also referred to as a completely positive trace preserving map
(CPTPM).

An example of a quantum channel is the partial trace, which acts on a quantum system
by effectively discarding a subsystem, ending up with what is called the reduced state.

Definition 2.11. Consider a quantum state ρAB ∈ S(HAB) of a composite system AB,
which for any orthonormal basis sets {|ei〉A}i and {| fk〉B}k, can be written as

ρAB = ∑
i jkl

λ
kl
i j |ei〉〈e j|A ⊗| fk〉〈 fl |B. (2.2.13)

The partial trace operation over B, denoted as trB : S(HAB) → S(HB) gives

ρA = trB(ρAB) := ∑
i jkl

λ
kl
i j |ei〉〈e j|A ⊗ tr(| fk〉〈 fl |B) =∑

i j
νi j|ei〉〈e j|A, (2.2.14)

where νi j =∑
k λ kk

i j , and ρA is called the reduced state of system A.
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2.2.3. DISTANCE MEASURES
Given two quantum states ρ,σ ∈ S(H ) in a particular Hilbert space, or two probability
vectors p,q ∈V (k) on a k-dimensional probability space, how hard is it to distinguish them?
There are a few well-known quantities which quantifies the distance between two (either
classical or quantum) states. We introduce two here: trace distance, and fidelity.

TRACE DISTANCE
One of the most commonly used distance quantity is the trace distance, as defined in
Def. 2.12. More commonly, the term “statistical distance" is used for quantifying the dis-
tance between two classical probability distributions. However, since in this thesis we fre-
quently consider quantum states ρ,σ that share a common eigenbasis, the trace distance
between ρ and σ reduces to the statistical distance between their eigenvalues. Therefore,
we combine both notations.

Definition 2.12. The trace distance d(p,q) between two probability distributions p,q ∈
V (n) is given by

d(p,q) := 1

2

n∑
i=1

|pi −qi| =
∑
j∈S

p j −q j, (2.2.15)

where S = {
j |p j ≥ q j

}
denotes the set of indices j where p j ≥ q j. Similarly, the trace

distance between two quantum states ρ,σ is

d(ρ,σ ) := 1

2
tr |ρ −σ |, (2.2.16)

where for any matrix A, |A| =
p

A†A.

Note that when ρ and σ commute, then if we denote p = eig(ρ) and q = eig(σ ) to be the
vector containing eigenvalues of states ρ,σ respectively (corresponding to the same ordered
basis), then d(ρ,σ ) = d(p,q). We say that two quantum states ρ and σ , or two distributions
p,q are ε-close to each other, if d(ρ,σ ) ≤ ε or d(p,q) ≤ ε .

The trace distance is a metric, which means that for any distributions p,q, and r, it
satisfies the following properties:

1. Symmetric: d(p,q) = d(q, p).

2. Non-negativity: d(p,q) ≥ 0 with equality iff p= q.

3. Triangle inequality: d(p,q)+d(q,r) ≥ d(p,r).

The trace distance also satisfies an important property known as the data processing
inequality, namely that for any CPTPM N , and any quantum states ρ,σ ,

d(N (ρ),N (σ )) ≤ d(ρ,σ ). (2.2.17)

Physically speaking, it means that the distinguishability of two quantum states can never
increase through a quantum channel.
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The trace distance between two states ρ and σ can also be written as

d(ρ,σ ) = max
0≤M≤1

tr
[
M

(
ρ −σ

)]
. (2.2.18)

This implies that the trace distance enjoys an appealing operational interpretation: being
ε-close in trace distance means that if we were given states ρ and σ (or random variables
according to distributions p,q) with probability 1/2 each, then our probability of correctly
distinguishing them by any physically allowed measurement is upper bounded by 1/2+ε/2
[48]. In other words, being close in the trace distance means that the two states cannot be
distinguished well by any conceivable physical process.

FIDELITY
Another common measure for closeness of states is known as the fidelity, which for pure
states is directly related to their inner product.

Definition 2.13. Given density matrices ρ and σ , the fidelity between ρ and σ is

F(ρ,σ ) = tr
[√√

ρσ
√

ρ

]
. (2.2.19)

For pure states ρ = |Ψ1〉〈Ψ1| and σ = |Ψ2〉〈Ψ2| the fidelity takes on a simplified form:

F(ρ,σ ) = |〈Ψ1|Ψ2〉| . (2.2.20)

For any two quantum states ρ,σ , the fidelity satisfies the following properties

1. Between 0 and 1: 0 ≤F(ρ,σ ) ≤ 1.

2. Symmetric: F(ρ,σ ) =F(σ ,ρ).

3. Multiplicative under tensor product: F(ρ1 ⊗ρ2,σ1 ⊗σ2) =F(ρ1,σ1) ·F(ρ2,σ2).

4. Invariant under unitary operations: F(ρ,σ ) =F(UρU†,UσU†).

5. Monotonically increasing under CPTPMs (data processing): for any CPTPM N ,
F(N (ρ),N (σ )) ≥F(ρ,σ ).

6. Relation to trace distance: for any quantum states ρ,σ , we have that 1−F(ρ,σ ) ≤
d(ρ,σ ) ≤ √

1−F2(ρ,σ ). Conversely, we also have that 1 − d(ρ,σ ) ≤ F(ρ,σ ) ≤√
1−d2(ρ,σ ). This is known as the Fuchs-van de Graaf inequality [50].

2.2.4. ENTROPIC QUANTITIES
Given any state (be it a classical random variable or a quantum state), entropic functions are
functions that map the state to a real-valued parameter, and these functions satisfy certain
properties that intuitively provide a quantification of how much information is contained in
the state. Two commonly used entropic quantities are introduced here: the von Neumann
entropy and the relative entropy.
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VON NEUMANN ENTROPY
A central quantity that measures the amount of disorderness in a quantum state is given
by the von Neumann entropy, which is a direct generalization of the Shannon entropy.

Definition 2.14. Given any quantum system A in some state ρA, the von Neumann
entropy of the state is defined as

S(A) = S(ρA) :=−tr(ρ lnρ). (2.2.21)

Let us consider the vector p = eig(ρA). Then we see from Eq. (2.2.11) that S(ρA) = H(p) is
precisely the Shannon entropy. Similarly as in the classical case of the Shannon entropy, if
dim(A) = n, then for any state ρA, the von Neumann entropy 0 ≤ S(ρA) ≤ lnn where equality
S(ρA) = 0 is achieved when ρA = |ψ〉〈ψ |A is pure. On the other hand, S(ρA) = lnn is achieved
only for the maximally mixed state of dimension n, ρA = πA.

The difference between von Neumann entropy of two states can also be upper bounded
by a function of the trace distance.

Theorem 2.1 (Fannes inequality [51]). For any two density matrices ρ,σ of dimension
n, let t = d(ρ,σ ) be the trace distance between the two quantum states. Then∣∣S(ρ)−S(σ )

∣∣≤ t · ln(n−1)+h2(t). (2.2.22)

The von Neumann entropy has been studied extensively in quantum information theory, and
we briefly list some useful properties here. For any quantum states ρ,σ ,

1. Non-negativity: S(ρ) ≥ 0.

2. Continuity: Fannes inequality, see Theorem 2.1.

3. Additivity under tensor product: S(ρ ⊗σ ) = S(ρ)+S(σ ).

4. Invariance under isometries: S(UρU†) = S(ρ).

5. Subadditivity: for any two quantum systems A,B described by a joint state ρAB,

S(A)+S(B) ≥ S(AB). (2.2.23)

In fact, the von Neumann entropy (up to a constant) is proven to be the unique function on
density matrices satisfying the above 5 properties [52]. It also satisfies a useful property:

6. Concavity: for any probability distribution p, and mixture of states ρ ′ =∑
i piρi,

S(ρ ′) ≥∑
i

piS(ρi).

RELATIVE ENTROPY
Another quantity, the quantum relative entropy, provides a non-symmetric measure of
closeness between two states. Like its classical counterpart, which we will see later, besides
being an important quantity by itself [53], it is also a parent quantity that generates other
entropic measures, such as both the unconditional and conditional von Neumann entropy,
mutual information (Chapter 11, [49]).
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Definition 2.15. For two quantum states ρ,σ , the relative entropy of ρ to σ is given by

D(ρ‖σ ) := tr(ρ lnρ)− tr(ρ lnσ ). (2.2.24)

In the case where ρ,σ are diagonal in the same (ordered) basis, with p,q denoting the
respective eigenvalue vectors of ρ,σ , then

D(ρ‖σ ) =D(p‖q) :=∑
i

pi ln
pi

qi
, (2.2.25)

which is the classical version of D(ρ‖σ ), known as the Kullback-Leibler divergence.
For any quantum states, the relative entropy satisfies the following properties:

1. Non-negativity: D(ρ‖σ ) ≥ 0, with equality iff ρ =σ .

2. Additivity under tensor product: D(ρ1 ⊗ρ2‖σ1 ⊗σ2) =D(ρ1‖σ1)+D(ρ2‖σ2).

3. Invariance under unitaries: D(ρ‖σ ) =D(UρU†‖UσU†).

4. Data processing: for any quantum channel N , D(ρ‖σ ) ≥D(N (ρ)‖N (σ )).

2.3. INFORMATION-THEORETIC SINGLE-SHOT QUANTITIES
We have earlier seen the Shannon entropy, and its quantum counterpart (von Neumann en-
tropy). These quantities have significant operational meaning when dealing with i.i.d. vari-
ables, especially in the limit of infinitely many such variables. However, in most real-world
information processing tasks, we deal with only a finite amount of data, and furthermore it
is not always possible to assume no inter-correlation at all between distinct pieces of data.
Nevertheless, in such cases it is still desirable to analyze tasks (for example the safe recov-
ery of compressed data), by understanding the single-shot probability of success, i.e. for a
single attempt at the task of interest.

For this reason, generalizations of the relative entropy and von Neumann entropy have
been developed. These quantities are called Rényi divergences and entropies, named after
the Hungarian mathematician Alfred Rényi, and are widely used in information theory, es-
pecially when one is concerned with tasks such as randomness extraction [54–56], source
coding [54, 57], or hypothesis testing [58, 59] for finite block lengths (instead of the asymp-
totically infinite limit).

2.3.1. RÉNYI DIVERGENCES
The Rényi divergences are a generalization of the relative entropy for two states/distributions.

Definition 2.16 (Classical Rényi divergences). Consider any two probability distribu-
tions p,q ∈V (n). The classical Rényi divergences are defined for α ∈ [−∞,∞]:

Dα (p‖q) := sgn(α)

α −1
· ln

n∑
i=1

pα

i q1−α

i , (2.3.1)

where sgn(α) is the signum function, i.e. sgn(α) = 1 if α ≥ 0, and sgn(α) = −1 other-
wise. The cases α = {0,1,∞,−∞} are defined via the suitable limit, namely
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D0(p‖q) := lim
α→0+

Dα (p‖q) =− ln
n∑

i:pi 6=0
qi, (2.3.2)

D1(p‖q) := lim
α→1

Dα (p‖q) =
n∑
i

pi(ln pi − lnqi) =D(p‖q), (2.3.3)

D∞(p‖q) := lim
α→∞Dα (p‖q) = ln max

i

pi

qi
, (2.3.4)

D−∞(p‖q) :=− lim
α→−∞Dα (p‖q) =D∞(q‖p), (2.3.5)

For two quantum states ρ,σ which are simultaneously diagonalizable, i.e. they commute
with each other, we write

Dα (ρ‖σ ) :=Dα (eig(ρ)‖eig(σ )). (2.3.6)

Since Eq. (2.3.3) holds, when α → 1 the Rényi divergence coincides with the relative en-
tropy as defined in Eq. (2.2.25), we always write D1 simply as D.

There exists a useful relation between two Rényi divergences for α 6∈ {0,1}:

α · sgn(1−α) ·D1−α (p||q) = (1−α) · sgn(α) ·Dα (q||p). (2.3.7)

For some important properties of Rényi divergences, the reader can refer to [60, 61]. In
most literature, the Rényi divergence is only defined for only non-negative α ≥ 0; however
for our purposes we will define them for all negative α as well. The divergences Dα in
Def. 2.16 satisfy data processing inequality for all α ∈ [−∞,∞]: for any stochastic map Λ,

Dα (Λ(p)‖Λ(q)) ≤Dα (p‖q). (2.3.8)

The range α ∈ [0,∞] is proven in [61], while the negative regime is an immediate conse-
quence of Eq. (2.3.7).

For any distributions p,q, the Rényi divergence is non-decreasing in α ∈ [0,∞]:

Dα (p‖q) ≤Dγ (p‖q) (2.3.9)

for α ≤ γ (see Theorem 3 of Ref. [60]).

QUANTUM RÉNYI DIVERGENCES
For general quantum states ρ,σ which do not commute with each other, several general-
ized versions of the Rényi divergences have also been defined in order to capture the non-
commutativity of quantum states. Due to this non-commutativity, the Rényi divergence
can be extended for quantum states in many different ways (see e.g. [62, 63]) such that it
reduces to the classical Rényi divergences when states commute.

The most straightforward generalization is the following candidate for α ∈ (0,1)∪(1,∞):

D̃α (ρ ||σ ) := sgn(α)

α −1
· ln

[
tr

(
ρ

α
σ

1−α
)]
, (2.3.10)

and D̃0,D̃1,D̃∞ are defined by limits. For α → 1, the quantum relative entropy is recovered:

lim
α→1+

D̃α (ρ ||σ ) = tr(ρ lnρ −ρ lnσ ) =D(ρ ||σ ). (2.3.11)
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As proven in Lemma B.4 of [64], a subset of these Rényi divergences are known to be
monotonic under CPTPMs:

D̃α (N (ρ)||N (σ )) ≤ D̃α (ρ ||σ ), α ∈ [0,2]. (2.3.12)

Another version of the quantum Rényi divergence was more recently established, some-
times referred to as the “sandwiched” Rényi divergences (due to its form in Eq. (2.3.13)).
The motivation for defining such a quantity is that it has the advantage of being compati-
ble with conditional entropic quantities, but we will omit the discussion here, and provide
directly its definition and properties.

Definition 2.17 (Quantum Rényi divergences [65, 66]). Given arbitrary quantum
states ρ,σ ∈ S(H ), then for α ∈ [0,∞], the Rényi divergence of ρ relative to σ is defined
as

D̂α (ρ‖σ ) := 1

α −1
ln

[
tr

(
ρ

1−α

2α σρ
1−α

2α

)α]
(2.3.13)

For ρ,σ diagonal in the same ordered basis, let p = eig(ρ) and q = eig(σ ) respectively.
Then the Rényi divergences reduce to the classical form D̂α (ρ‖σ ) =Dα (p‖q).

The cases α = {0,1,∞} are obtained by the respective limits, and D̂1(ρ ||σ ) reduces to
D(ρ‖σ ). Recently it was proven in [63] (see also [67]) that this entropy is monotonic under
quantum completely positive trace preserving maps for α ≥ 1/2, namely for any CPTP map
N and states ρ , σ , we have that:

D̂α (N (ρ)||N (σ )) ≤ D̂α (ρ ||σ ), α ≥ 1/2. (2.3.14)

Note again, that if ρ and σ are diagonal in the same basis, then both quantities D̃α (ρ‖σ )
and D̂α (ρ‖σ ) reduce to the classical version, involving only the eigenvalues p and q.

2.3.2. RÉNYI ENTROPIES

Definition 2.18. Given a probability distribution p ∈V (n), the Rényi entropies are de-
fined for α ∈R\ {0,1} as

Hα (p) := sgn(α)

1−α
· ln

n∑
i=1

pα

i , (2.3.15)

where sgn(α) is defined in Def. 2.16. Again, for the cases of α ∈ {−∞,0,1,∞}, Hα (p) is
defined by its corresponding limits:

H0(p) = ln rank(p), H1(p) =−
n∑

i=1
pi ln pi =H(p), (2.3.16)

H∞(p) =− ln

(
max

i
pi

)
, H−∞(p) = ln

(
min

i
pi

)
. (2.3.17)
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For any quantum state ρ , the quantum Rényi entropy is

Hα (ρ) :=Hα (eig(ρ)). (2.3.18)
The Rényi entropies can be derived from the Rényi divergences as follows: for any classical
probability distribution p= (p1, · · · , pn) ∈V (n),

Hα (p) = sgn(α) · lnn−Dα (p‖η) , (2.3.19)

with η = ( 1
n ,

1
n , ...,

1
n
)

is the uniform probability distribution.
Again, it is worth noting that the Rényi entropies have generally been defined only for

α ≥ 0, but we define it here for all real-valued α .

2.4. MAJORIZATION
For any real-component vector x = (x1, . . .xn) ∈ Rn

≥0, let x↓ be the vector obtained by re-
arranging the components of x in decreasing order: x↓ = (x↓1, . . . ,x

↓
n) where x↓1 ≥ . . . ≥ x↓n.

Majorization is a partial order, which is defined for vectors x,y ∈ Rn
≥0. We say that x ma-

jorizes y, or denoted as xÂ y, iff for all m= 1, . . .n,

m∑
i=1

x↓i ≥
m∑

i=1
y↓i , and

n∑
i=1

x↓i =
n∑

i=1
y↓i . (2.4.1)

Majorization is a common relation used in comparing normalized probability vectors to
quantify disorder. For example, if x Â y, one will see that the distribution described by y is
more “spread out” compared to x. The Shannon entropy, for example, H(y) would also be
greater than H(x).

MAJORIZATION AND UNITAL CHANNELS
We have, in the previous section, seen the case where two vectors are related to each other
by majorization: for example, consider two probability vectors p,q corresponding to two
random variables X and Y respectively. If pÂ q, then intuitively speaking, the distribution of
q is more spread out compared to p. Theorem 2.2 makes this notion precise, by establishing
that there exists a certain stochastic process that will bring X to Y .

Theorem 2.2 (Birkhoff-von Neumann theorem, [68, 69]). For all p,q ∈ Rn
≥0, the fol-

lowing are equivalent:

1. The vector p majorizes q, i.e. pÂ q.

2. There exists a bistochastic matrix A such that Ap= q.

Theorem 2.2, when applied to quantum states, implies that majorization dictates the possi-
bility of a state transition ρ →σ via unital maps6:

6A unital map is a CPTPM EA such that the maximally mixed state is preserved, i.e. E (πA) = πA.
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Theorem 2.3. Consider quantum states ρ,σ with p = eig(ρ) and q = eig(σ ) respec-
tively. Then there exists a unital map E such that E (ρ) =σ iff pÂ q.

SCHUR’S THEOREM
For any n×n Hermitian matrix B, the diagonal entries of B can be related to its eigenvalues
by majorization as well:

Theorem 2.4 ([70], Chapter 9, Theorem B.1.). Consider any n×n Hermitian matrix
B, and let diag(B) denote the vector containing the diagonal entries of B. Then

eig(B) Â diag(B). (2.4.2)

SCHUR CONVEX FUNCTIONS
A function f is called Schur convex if it always preserves the majorization order, i.e. if
xÂ y implies f (x) ≥ f (y). If the majorization order is always reversed, the function is called
Schur concave. A function is called strictly Schur convex if xÂ y implies f (x) > f (y) except
when x↓ = y↓, then f (x) = f (y).

A useful criterion for strict Schur convexity is stated in the following lemma:

Lemma 2.1. Consider a function f : Rk+ → R of the form f (x) = ∑
i g(xi). Then, f (x) is

(strictly) Schur convex/concave if and only if g(x) is (strictly) convex/concave.

Using Lemma 2.1, and the strict concavity of the logarithm, we see that the function∑
i ln pi is strictly Schur concave. On the other hand, the Rényi entropies are also Schur

concave functions:

Lemma 2.2. For α ∈ (−∞,∞), the Rényi entropies Hα are strictly Schur concave.



3
RESOURCE THEORIES

In this chapter, we introduce the resource theoretic framework, which is an approach used
to manage any “valuable resources”, such as entanglement, purity etc. Such frameworks
are characterized by two main elements: a set of predefined (free) operations and states,
that one assumes to be easily obtained at no cost. Given these ground rules, one can then
ask: what is achievable using such free operations and states? This usually results in a set
of state transition conditions, that tell us if a particular state ρ may evolve into another state
ρ ′ via the usage of free operations and states. Here, we see how thermodynamics may be
seen as a resource theory, by laying down the ground rules of free operations and states
corresponding to thermodynamical interactions. We then proceed with a review of how the
resource theory framework connects with other approaches in thermodynamics.

27
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3.1. WHAT ARE RESOURCE THEORIES?
Resource theories are conceptual, information-theoretic frameworks that allow one to quan-
tify and manage “valuables”, or else called resources. Conceptually, resources are valuable
because it is hard or costly to create them. Suppose an experimenter in his/her lab has a
constrained ability to perform certain types of operations, then any initial state that cannot
be created from such operations becomes valuable to him/her. A generic resource theory
therefore is determined by two key elements:

1. a class of free operations that are allowed to be implemented at no cost,

2. a class of free states that one can generate and use at no cost1.

Given the above operations and states that are assumed to be easily created, one can then
ask: if the experimenter possesses a quantum state ρ , what are the set of states he/she can
possibly reach by manipulating ρ , under the usage of these free operations and states? This
produces the third aspect of resource theories, namely

3. state conversion conditions that determine the possibility of inter-conversion between
states via the usage of free operations and free states. These conditions, either nec-
essary or sufficient (sometimes both), are sometimes phrased as monotones, i.e. the
transition is possible if a particular function decreases in the transition ρ → ρ ′.

A classic example of resource theory comes from identifying entangled states as a re-
source. Suppose that Alice and Bob are two distant parties that are capable of creating any
local quantum states in their own labs. Furthermore, since classical communication is well
established today, they may easily communicate with each other classically (meaning they
can send each other classical bits of information such as “001101...”). Such additional infor-
mation might allow them to create classical correlations between their quantum states. This
set of operations are known as Local Operations and Classical Communication (LOCC)
[41, 48], which defines a set of free operations and states. However, if Alice and Bob are
allowed only such operations, it is then impossible for them to create entanglement. There-
fore, any prior entangled state that they share becomes a valuable resource, that they would
aim to manage well. In Ref. [41], it was shown that if Alice and Bob have n copies of a
certain partially entangled state ρ⊗n

AB , they might be able to, via LOCC operations, concen-
trate the amount of entanglement by producing m copies of the maximally entangled state
(where m is smaller than n). Such an task is called entanglement distillation, and since its
theoretical introduction in [41], much experimental progress has also been done, in order to
distil entanglement for the use of long-distance quantum communication [71–73].

In the recent years, quantum resource theories have been studied not only in its general-
ity, for any restricted operations placed on quantum systems [75, 76], but also in particular
those related to entanglement theory [41, 77, 78], coherent operations [42, 43], or energet-
ically in thermodynamics [79, 80]. Table 3.1 provides a summary and comparison of the
main characteristics for several resource theories. Though entanglement theory is the most
extensively studied case out of these resource theories, due to the great similarity in mathe-
matical framework, results can often be extended to the other quantum resource theories as
well [81–83].
1Any state which is not a free state is then called a resource state.
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Resource theory Free operations Free states State conversion conditions

Entanglement
(LOCC

operations [48])

Local unitaries
and classical

communication

Any separable state
ρAB =∑

i
piρA,i ⊗ρB,i

|ψ〉〈ψ |AB →|φ 〉〈φ |AB
iff S(ψA) ≥ S(φA).

Asymmetry
w.r.t. a group

G [74]

Any CPTPM E such
that for any unitary

representation UG, g ∈G,
E

[
Ug(·)U†

g

]
=UgE (·)U†

g .

Any state ρ

such that ∀Ug,
UgρU†

g = ρ

For the symmetric group given by
SymG(ρ) =

{
g ∈G : UgρU†

g = ρ

}
,

then ρ → ρ ′ only if
SymG(ρ) ⊆ SymG(ρ ′).

Coherence w.r.t.
a basis {|i〉} [43]

Incoherent operations, i.e.
any CPTPM E such
that for any ρ ∈I ,
where I is the set

of states diagonal w.r.t.
basis {|i〉}, E (ρ) ∈I .

Any ρ ∈I diagonal
in the basis {|i〉}

For the relative entropy
of coherence given by

CRE (ρ) = minσ∈I D(ρ‖σ ),
ρ → ρ ′ only if CRE (ρ) ≥ CRE (ρ ′).

Purity
(Section 3.2.1)

Unitary operations Maximally mixed states Majorization: ρ → ρ ′ iff
eig(ρ) Â eig(ρ ′) (Eq. (2.4.1)).

Thermodynamics
(Section 3.2.2)

Energy-preserving
unitary operations

Gibbs states of the
form in Eq. (3.2.8)

Thermo-majorization
(see Section 3.2.2)

Table 3.1: A comparison between several examples of resource theories.

Returning back to the paradigm of entanglement theory: if one considers the set of
LOCC operations as free operations, and separable states as free states, then any state that
contains entanglement is a resource. The resource theoretic framework has been adapted in
the approach towards quantum thermodynamics, as we shall see in the next few sections.

3.2. THERMODYNAMIC RESOURCE THEORIES (TRTS)
3.2.1. NOISY OPERATIONS (NO)
The framework of noisy operations, which is perhaps the simplest known resource theory,
is characterized by the following:

1) free resources are maximally mixed states of arbitrary dimension,
2) all unitary transformations and the partial trace are allowed operations.

Since noisy operations are not concerned with energetic constraints, and focus only
on the information (or disorder) contained in systems, it has also been referred to as the
resource theory of informational nonequilibrium, or the resource theory of purity. This
toy model for thermodynamics was first described in [79] and has its roots in the problem
of exorcising Maxwell demon [27, 84], building on the resource theory of entanglement
manipulations [41, 85–88]. The reader is referred to [89] for an extensive, detailed review
of this framework.

It was shown in [79] that when considering state transitions ρS → ρ ′
S, where ρS,ρ

′
S ∈
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S(HS), then the class of noisy operations is equivalent to the set of mixtures of unitaries
acting on system S. To see this, note that a quantum channel ENoisy is a noisy operation if
and only if there exists an ancilla system R (with dimension dR) such that

ρ
′
S = ENoisy(ρS) = tr

[
USR

(
ρS ⊗

1R

dR

)
U†

SR

]
. (3.2.1)

Since arbitrary unitaries can be performed for free, in particular we may consider only the
case where ρS,ρ

′
S are diagonal in the same basis2, and therefore we need only to consider

ENoisy as the representation of a classical channel. Note that also since only unitaries are
allowed, ENoisy by definition preserves the maximally mixed state ρS = 1S

dS
, i.e. it is a unital

channel. Therefore, ENoisy may be represented by a bistochastic matrix. By the Birkhoff-
von Neumann theorem, any bistochastic matrix may be written in terms of a mixture of
permutation matrix (which are unitary operations). The converse is true: any mixture of
permutation matrices is bistochastic.

Earlier in Section 2.4, we have seen the relation between bistochastic matrices and ma-
jorization. Therefore the condition that ρS can be transformed into ρ ′

S via noisy operations,
is equivalent to eig(ρS) majorizing eig(ρ ′

S):

ρS −−→
NO

ρ
′
S ⇐⇒ eig(ρS) Â eig(ρ ′

S). (3.2.2)

3.2.2. THERMAL OPERATIONS (TO)
How are noisy operations related to thermodynamical interactions? Note that the maximally
mixed state (which we allow as free states in noisy operations) has a few unique properties:
firstly, it is the state with the maximum amount of von Neumann entropy. It is also the state
which is preserved by any noisy operation. According to the maximum entropy principle
that we have explained in Chapter 1, a state which has equilibrated will take on the form of
maximum entropy, under the constraint of conserved quantities (in particular, total energy).
In particular, if the Hamiltonian of the system is fully degenerate, i.e. all microstates have
the same amount of energy, then the Gibbs state is then the maximally mixed state, which
has maximum entropy. On the other hand, given some arbitrary Hamiltonian, under the
constraint that average energy is fixed, then the state with maximum entropy is given by
the Gibbs thermal state of the form in Def. 2.9. Since the Gibbs state commutes with the
Hamiltonian, it is also stationary under the evolution of the Hamiltonian.

In Chapter 1, we have seen that much work has been done to derive the emergence of
Gibbs states in equilibration processes from the basic principles of quantum theory. From
this, we have concluded that most quantum systems (i.e. generic Hamiltonians and initial
states) will eventually equilibrate and tend towards the Gibbs state. This motivates the usage
of Gibbs states as free states in the resource theory framework for thermodynamics.

With these in mind, thermal operations were first considered in [90] and further devel-
oped in [80, 91] in order to model the interaction of quantum systems with their larger
immediate steady-state environment. The first restriction considered is that of energy-
conserving unitary dynamics: since systems are described by quantum states, the evolu-
tion should be described by unitary evolutions USR across the closed system (S) and bath
2Otherwise, one may simply define a similar noisy operation which first transforms ρ to the basis of ρ ′, before
applying ENoisy.
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(R). Furthermore, the thermodynamical process described should preserve energy over the
global system. Note that the demand that energy is conserved, implies that USR commutes
with the total Hamiltonian3.

In Chapter 4, we will show that if the considered free operations are only those of
unitaries that commute with the Hamiltonian, then the thermal state as defined in Eq. (3.2.8)
has a unique physical significance: they are the only states which cannot be used to extract
work. This further justifies the usage of Gibbs states as free states.

Therefore, let us now see the definition of thermal operations. Consider a system S
which is governed by Hamiltonian ĤS. For any real positive value β ∈ R+, a quantum
channel ETO is a β -thermal operation if and only if there exists:

1. (free states) a Hamiltonian ĤR, with a corresponding Gibbs state

τ
β

R = 1

Z
e−β ĤR ,Z = tr

(
e−β ĤR

)
, (3.2.3)

2. (free operations) and a unitary U such that [U,ĤSR] = 0, such that

ETO(ρS) = tr
[
USR

(
ρS ⊗τ

β

R

)
U†

SR

]
. (3.2.4)

In the special case where ĤS = 1S and ĤR = 1R, thermal operations ETO reduce to noisy
quantum operations.

Now, consider a system described by ĤS, and quantum states ρS,ρ
′
S. What are then,

the state transition conditions for ρS −−→
TO

ρ ′
S? Ref. [80] first considered the question of

asymptotic conversion rates, i.e. the optimal rate of conversion R(ρS → ρ ′
S) = m

n such that
ρ⊗n

S → ρ ′⊗m
S , for the limit n →∞. Later, Ref. [91] derived a set of majorization-like condi-

tions which determine state transition conditions for a single copy of ρS and ρ ′
S which are

block-diagonal (with respect to ĤS).
3. (State conversion conditions) Conditions for state transitions to occur via thermal

operations are called thermo-majorization. To define these conditions, first let us explain
what is a thermo-majorization curve.

Definition 3.1 (Thermo-majorization curve). For any state-Hamiltonian pair (ρS,ĤS)
where ρS is block-diagonal w.r.t. ĤS, this means that ρS,ĤS share a common basis which
we denote as {|E,gE〉}E,gE , where E runs across the distinct energy eigenvalues, and gE
runs across degeneracies corresponding to the eigenvalue E. Let ρS be a state such that
rank(ρ) = d, and

ρS =
∑

E,gE

pE,gE |E,gE〉〈E,gE |S, (3.2.5)

so that pE,gE are the eigenvalues of ρS corresponding to energy eigenvalue E. The
β thermo-majorization curve Tβ (ρS,ĤS) is defined by first ordering the eigenvalues to
have p↓β = (p1, · · · , pd) with the corresponding energy eigenvalues E1, · · · ,Ed such that

p1eβE1 ≥ p2eβE2 ≥ ·· · pdeβEd . (3.2.6)

3The joint Hamiltonian is assumed to be the sum of individual free Hamiltonians, i.e. ĤSR = ĤS ⊗ 1R + 1S ⊗ ĤR.
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Such an ordering is called β -ordering. The thermo-majorization curve of (ρS,ĤS) is a
concave, piecewise linear curve, defined by joining all the points{

(0,0),
(
e−βE1 , p1

)
,

(
e−βE1 +e−βE2 , p1 + p2

)
, · · · ,

(
d∑

i=1
e−βEi ,

d∑
i=1

pi

)}
. (3.2.7)

e-βE 1 e-βE 1

2
Zβ

p1
↓

p1
↓+p2

↓

1

...

...

+ e-βE

Tβ(ρS,ĤS)

Figure 3.1: An example of a thermo-majorization curve of a state-Hamiltonian pair Tβ (ρS,ĤS).

Fig. 3.1 shows an example of a thermo-majorization diagram defined by the points in
Eq. (3.2.7). It is proven in [91] that the comparison of two curves dictate the possibility
of state transition from one state to another via thermal operations.

Theorem 3.1. Given state-Hamiltonian pairs (ρS,ĤS) and (ρ ′
S,Ĥ

′
S), the state transi-

tion ρS −−→
TO

ρ ′
S can happen if and only if Tβ (ρS,ĤS) ≥ Tβ (ρ ′

S,Ĥ
′
S), i.e. the β thermo-

majorization curve of (ρS,ĤS) lies above that of (ρ ′
S,Ĥ

′
S). In this case, we say that ρS

thermo-majorizes ρ ′
S.

Note that if we consider the state τ
β

S = 1

tr
(
e−β ĤS

)e−β ĤS , then the thermo-majorization

curve Tβ (τβ

S ,ĤS) simply forms a straight line with endpoints (0,0) and (Zβ ,1). Therefore,

for any other block-diagonal state ρS, Theorem 3.1 implies that ρS −−→
TO

τ
β

S is always possible

via a β -thermal operation.

3.2.3. CATALYTIC THERMAL OPERATIONS (CTOS)
Catalytic thermal operations are extensions of thermal operations, where in addition to the
same free resources and operations, catalysts that remain unchanged are allowed. In other
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words, ρS −−−→
CTO

ρ ′
S is possible via a β -catalytic thermal operation iff there exists

1. (free states) a Hamiltonian ĤR, with a corresponding Gibbs state

τ
β

R = 1

Z
e−β ĤR ,Z = tr

(
e−β ĤR

)
, (3.2.8)

2. (catalysts) any additional finite-dimensional quantum state ωC with Hamiltonian ĤC,

3. (free operations) and a unitary USRC such that [USRC,ĤSRC] = 0, such that

trR

[
USRC

(
ρS ⊗τ

β

R ⊗ωC

)
U†

SRC

]
= ρ

′
S ⊗ωC. (3.2.9)

Since the catalyst ωC is returned exactly, such a process is also referred to as exact catalysis.
CTOs are a non-trivial generalization of TOs, since there exists transitions that cannot

occur via TOs, but are made possible by the presence of a catalyst. The analysis of these
operations are one of the main scientific contributions of this thesis, and will be studied in
extensive detail in Chapters 4 and 5. In particular, in Chapter 4 we establish:

4. (state transition conditions) For ρS −−−→
CTO

ρ ′
S to occur, whenever ρS,ρ

′
S are block-

diagonal, then the transition is possible via CTOs iff for all α ≥ 0,

Fα (ρS,Ĥ) := β
−1

[
lnZ+Dα (ρS‖τ

β

S )
]

(3.2.10)

is non-increasing, i.e. Fα (ρS,Ĥ) ≥Fα (ρ ′
S,Ĥ)4.

In Chapter 5, we consider inexact catalysis, which corresponds to the case where ωC is
not returned exactly, but a small catalytic error is allowed. There, we show that depending
on how the catalytic error is quantified, different subsets of the second laws as expressed in
Eq. (3.2.10) hold.

3.2.4. GIBBS PRESERVING MAPS (GPS)
The most generic type of model for thermodynamical resource theories is called Gibbs
preserving maps. To be understood literally, this means that the set of free operations is
simply the set of all CPTPMs that preserve the Gibbs state of inverse temperature β , i.e.

EGP

(
τ

β

S

)
= τ

β

S . (3.2.11)

One can view GPs as highlighting the “bottomline” of any model for thermodynamical in-
teractions: it allows any map that preserves the Gibbs thermal state. It differs non-trivially
from the set of catalytic thermal operations: although any thermal operation corresponds
to a Gibbs preserving map, however in general Gibbs preserving maps may act on block-
diagonal initial states to create final states that are non block-diagonal. This cannot occur
under via thermal operations. GPs, however, are the least studied amongst all thermody-
namical models since there is no explicit physical process that describes the full set of GPs.

4This is proven in Theorem 4.5, and is also Proposition 1 of this thesis
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3.3. DEVELOPMENTS ON RESOURCE THEORIES
The simplicity of a resource theoretic approach towards quantum thermodynamics is its
main appeal and power, although it may at the same time be its weakness. Given the
large amount of past approaches in modelling thermodynamical interactions, such as Mas-
ter/Linblad equations governing open quantum systems [19, 20, 44, 92–94] (especially
those involving strong coupling Hamiltonians between systems and bath [95–97]), time
dependence in Hamiltonians (for example quenches [98, 99]) etc, the question arises as to
how TRTs relate to these different approaches. Therefore, since its most primitive version
of noisy/thermal operations, various works have endeavoured to extend and connect the
usage of TRTs with other approaches. In particular, we list some important results to date:

1. Inclusion of catalysts (contributed in Chapter 4 and 5 of this thesis)
Catalysts are additional quantum systems that can be used in a thermal operation, but
have to be returned to their exact initial state. With this extension, any experimental
apparatus used to implement TOs can be modelled as additional quantum systems, and
be included into the framework of thermal operations. The criteria and guidelines for
choosing appropriate catalyst states have been one of the main focuses of this thesis.
On the other hand, different usages of catalyst such as correlated catalysts [100], and
catalysts which have coherence in the energy eigenbasis [101] have been investigated to
date.

2. Autonomous thermal operations via clock models
A fully autonomous model of thermodynamical interactions would simply be described
by a time independent Hamiltonian. Such a scenario usually depicts a naturally arising
physical process, since the systems simply evolve spontaneously according to a fixed
Hamiltonian without any control from an observer. In contrast, the resource theoretic
framework allows the implementation of arbitrary unitaries, assuming that an external
experimenter has control over the system. However, it has been made precise in [102,
103] that by considering explicit quantum clocks, and a time-independent Hamiltonian
on the global system, one may effectively implement unitaries on the system. Such
a global Hamiltonian usually performs an operation on the system, controlled on the
clock’s state.

3. Relation to Gibbs preserving maps
In [104], it is shown that TOs are a strict subset of Gibbs preserving maps, i.e. the set of
all quantum channels which preserve the Gibbs thermal state. However, if one considers
only the set of all quantum states block-diagonal in the energy eigenbasis, then any
Gibbs preserving map can be written as a TO. Therefore, for investigations involving
only block-diagonal quantum states, the paradigm of TOs is fully general.

4. Equivalence to other operations
In order to study the fundamental limits to thermodynamics, TOs consider a large set
of operations: the experimenter is allowed to use an arbitrary thermal bath, and any
energy-preserving unitary. This allows for the derivation of statements holding for full
generality, however, one may question if there exists simple operations that would also
achieve the full power of TOs. Recently it has been shown that such any thermal opera-
tion corresponds to a coarse operation [105], where the latter involves qubit baths, level
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transformations (LTs, namely the lifting/lowering energy levels of the Hamiltonian) and
thermalization. This partially reconciles the TRT framework with various approaches in
quantum thermodynamics [28, 106–109]. Also, for NOs, it has been shown that the size
of the heat bath (i.e. the maximally mixed state used) needs only to be at most equal to
the size of the system [110]. These simplifications pave the way to designing protocols
that achieve the optimal state transitions as predicted by the TRT frameworks.

5. Relation with fluctuation theorems
A distinct approach to quantum thermodynamics, commonly known as fluctuation rela-
tions (FR) has been independently progressing in parallel to the development of TRTs
[11, 111–113]. A handful of experimental verifications for these relations have been
demonstrated, both in the classical [114] and quantum regime [115, 116]. However, the
stark conceptual differences between FRs and TRTs have prevented them, so far, to be
connected. Recently, the possibility of connecting both to form a harmonious picture of
thermodynamics has been explored [117, 118]. Should this be achieved, it would provide
us potential means to experimentally verify TRTs by making use of FR demonstrations.

6. Inclusion of other conserved quantities
A quantum system may in general obey several conservation laws other than total energy,
where the conserved quantities are represented by operators on the system which do not
generally commute. In such cases, it was not clear whether such systems thermalize
and what would free states look like. In [119, 120], such scenarios have been studied in
order to model not only energetic/information exchanges in thermodynamics, but also
including exchanges of other non-commuting observables.

3.4. WORK EXTRACTION
We have seen that thermodynamic resource theories provide us a framework that allows for
the derivation of conditions for a system to evolve from one state to another, while explicitly
considering processes that conserve energy. However, as we have also seen in Chapter 1,
a central concept in thermodynamics is the consumption/extraction of work, which is the
output/input of ordered energy to a system. Therefore, we must ask the question: in the
context of resource theories, what does it mean to extract work?

To gain some intuition for a rigorous formulation, let us first consider the classical pic-
ture of thermodynamics. There, work is often pictured as the effect of storing potential
energy on some specific system, for example designing a protocol involving a hanging
weight, such that in the end the weight is lifted by some height ∆x. How could one achieve
such a task then, given only immediate resources which are thermal? In classical thermo-
dynamics, it is a long-standing qualitative observation that one cannot extract work from
a thermal reservoir (this has been formulated in the Kelvin statement, given on page 3);
however given two reservoirs at different temperatures, one can then design protocols that
extract work. A common approach (found in any standard thermodynamics textbook such
as [2–5]) is to consider a heat engine, where a machine system interacts with two different
heat baths successively, and undergoes a cyclic process. An example of such a “machine”
could be a cylinder of ideal gas, where the volume is changeable via a piston. By allowing
the gas to go through a series of isothermal/adabatic expansions/contractions while interact-
ing with two reservoirs at different temperatures, one may analyze the net energy/heat flow
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in and out of this machine system. By energy conservation methods, one can then calculate
an estimate of the energy output on the weight attached to such a piston, while assuming
that energy lost/dissipated (for example, via friction) is negligible.

WORK IN THE QUANTUM NANOREGIME
With such a classical picture in mind, the question of interest is then as follows: given
a quantum state-Hamiltonian pair (ρS,ĤS), how should one quantify the amount of work
extractable from such a state?

Prior to the introduction of resource theoretic frameworks, earlier approaches [28, 106–
109] in quantum thermodynamics have considered different sets of operations such as LTs
and thermalization. These operations are non-energy preserving in general, for example LT
involves the changing of energy levels in the Hamiltonian. Therefore, for each operation,
one may attach an amount of “work” done to/by the system [121]. In particular, much
discussion has gone into how one should differentiate work from heat [108, 122–124] in the
quantum regime. Although both contribute to a change in energy of the system, work stored
is of an ordered form, and therefore can be extracted and used, while heat is irreversibly
dissipated/lost and cannot be converted into useful energy. Though a seemingly simple
problem, there is no concensus among the community as to how work should be defined.

Another approach which is commonly used in the resource theoretic framework [91,
125] (although not restricted to resource theories), is to explicitly consider an ancillary
system called the battery (denoted as W), and consider the possibility of the state transition

ρS ⊗ρW −−→
TO

ρ
′
S ⊗ρ

′
W , (3.4.1)

for any arbitrary final state ρ ′
S, and some specific battery states ρW ,ρ ′

W . Commonly used
models of battery Hamiltonians include a two-level qubit that has a tunable energy gap (wit)
[91, 125], a harmonic osciilator [126], or a system with quasi-continuous energy levels (as
used in Chapter 6). For an explicit example, if we use the two-level qubit battery such that
ĤW =Wext|1〉〈1|W , then a transition from the state ρW = |0〉〈0|W to ρ ′

W = |1〉〈1|W correspond
to extracting an amount of work equal to Wext.

Most often, the explicit battery model (i.e. its Hamiltonian ĤW ) does not affect the
amount of work stored/used. However, it does depend on the initial and final battery states
ρW ,ρ ′

W . The central question of defining work still remains: how should one then quantify
the amount of work stored in the battery, as a function of these initial and final states?

AVERAGE WORK
In [126–129], explicit protocols (defined by successive steps like LTs, thermalization, or
unitary operations) were analyzed and the amount of average energy change in the battery
can be quantified by

∆W = tr(ĤW ρ
′
W )− tr(ĤW ρW ). (3.4.2)

Since the amount of work extracted depends on the average energy change of the battery,
which is subjected to random processes (such as thermalization), work is therefore treated
as a random variable. Some of these works have shown that for example, an optimal amount
of average work (equal to the free energy of the system) can be drawn [126, 128], or that
Carnot efficiency can be achieved [126]. In such cases, the amount of entropy has to be
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separately analyzed, in order to show that heat contributions to the average energy increase
are either negligible, or accounted for in some way. This is because in [108], it is shown
that such protocols could produce work with fluctuations of the same order.

SINGLE-SHOT AND DETERMINISTIC WORK
In order to address the problem of large fluctuations in the random variable of work, con-
cepts in single-shot information theory have been brought into the realm of quantum ther-
modynamics, in order to more accurately describe how one should distinguish work from
heat. However, even when restricted to single-shot work extraction, different definitions
have been used, such as:
1. drawing at least an amount of work Wext except with probability ε [45],
2. (ε,δ )−deterministic work: finding the probability distribution of work variable in some
interval

[
Wext −δ ,Wext +δ

]
except with some probability ε [106, 108], or

3. fixing the initial battery state as some energy eigenstate |E j〉〈E j|W , while allowing the
final battery state ρ1

W ≈ε |E j +Wext〉〈E j +Wext|W ). This is a definition which is common to
resource theoretic approaches to quantifying work [91, 125, 130].

Before ending the discussion on defining work, it is worth noting that besides work ex-
traction, another frequently investigated thermodynamic protocol is cooling [20, 131, 132].
This is analogous to having both heat engines and refridgerators in classical thermodynam-
ics. For such protocols, the definition of cooling is much less debated, since the aim of
cooling is not to produce final battery states which can later be used, but simply to lower
the amount of average energy in a targeted system.





4
THE SECOND LAWS FOR

QUANTUM THERMODYNAMICS

The Clausius formulation of the classical macroscopic second law tells us which state trans-
formations are so statistically unlikely that they are effectively forbidden. This applies to
systems composed of many particles interacting. However, we are seeing that one can
comprehend thermodynamics even when only a small number of particles are interacting
with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find
that for processes which are cyclic, the second law for microscopic systems takes on a dif-
ferent form compared to the macroscopic scale, imposing not just one constraint on state
transformations, but an entire family of constraints. In particular, we find a family of free
energies which generalize the traditional one, and show that they can never increase. The
ordinary second law relates only to one of these free energies, with the remainder imposing
additional constraints on thermodynamic transitions. These second laws are relevant for
small systems, and also apply to individual macroscopic systems interacting via long-range
interactions, which only satisfy the ordinary second law on average. By making precise
the definition of thermal operations, the laws of thermodynamics are unified in this frame-
work, with the first law defining the class of operations, the zeroeth law emerging as an
equivalence relation between thermal states, and the remaining laws being a monotonicity
property of our generalized free energies.
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4.1. INTRODUCTION
The original formulation of the second law, due to Clausius [7], states that “Heat can never
pass from a colder to a warmer body without some other change, connected therewith,
occurring at the same time”. In attempting to apply Clausius’s statement of the second law
to the microscopic or quantum scale, we immediately run into a problem, because it refers
to cyclic processes in which there is no other change occurring at the same time, and at this
scale, it is impossible to design a process in which there is no change, however slight in
our devices and heat engines. Interpreted strictly, the Clausius statement of the second law,
applies to situations which never occur in nature. The same holds true for other versions
of the second law, such as the Kelvin-Planck statement, where one also talks about cyclic
processes, in which all other objects beside the system of interest are returned back to their
original state.

Here, we derive a quantum version of the Clausius statement, by looking at processes
where a microscopic or quantum system undergoes a transition from one state to another,
while the environment, and working body or heat engine is returned back to their original
state. While macroscopically, only a single second law restricts transitions, we find that
there are an entire family of more fundamental restrictions at the quantum level. At the
macroscopic scale, and for systems with short range correlations, this entire family of sec-
ond laws become equal to the ordinary second law, but outside of this regime, these other
second laws impose additional restrictions on thermodynamical transitions. What’s more,
one needs to specify “ how cyclic” the process is, in order to determine which subset of
these second laws hold. We also derive in this work, a zeroeth law of thermodynamics,
which is stronger than the ordinary zeroeth law.

For thermodynamics at the macroscopic scale, a system in state ρ can be transformed
into state ρ ′ provided that the free energy goes down, where the free energy for a state ρ is

F(ρ) = 〈E(ρ)〉−kT S(ρ), (4.1.1)

with T the temperature of the ambient heat bath that surrounds the system, k, the Boltzmann
constant, S(ρ) the entropy of the system, and 〈E〉 its average energy. This is a version of the
second law, where we also use the fact that the total energy of the system and heat bath must
be conserved. This criterion governing state transitions is valid if the system is composed
of many particles, and there are no long range correlations. In the case of microscopic,
quantum or highly correlated systems, a criterion for state transitions of a total system was
proven in [91] and named thermo-majorization (See Figure 4.2). This criterion serves as a
second law in some cases (see also the reformulation of [106]). However, here, we will
see that if elevated to such high status without sufficient care, it can be violated. Namely,
we will give examples where ρ → ρ ′ would violate the thermo-majorization criterion, but
nonetheless, the transition is possible via a cyclic process in which a working body σ - an
ancilla or catalyst - is returned back into its original state. The criteria of [91] is thus only
relevant for systems without the involvement of such ancillatory systems.

This phenomenon is related to entanglement catalysis [133], where it can be shown that
some forbidden transitions are possible, if we can use an additional system σ as a catalyst,
i.e. we may have ρ 6→ ρ ′ and yet ρ⊗σ → ρ ′⊗σ . In the case of thermodynamics, the catalyst
σ may be thought of as a working body or heat engine which undergoes a cyclic process
and is returned back into its original state. In deciding whether one can transform ρ into
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ρ ′, one therefore needs to ask whether there exists a working body or other ancillas σ for
which ρ ⊗σ → ρ ′⊗σ (see Figure 4.1). Thus, thermo-majorization should only be applied
to total resources including all possible catalysts and working bodies and not the system
of interest itself. In the case of entanglement theory, and when the catalyst is returned in
exactly the same state, the criteria for when one pure state may be transformed into another
has been found [134, 135] and they are called trumping conditions. We will generalise and
adapt the trumping conditions to enable their application to the case of thermodynamics.

4.1.1. RESULTS AND CONTRIBUTIONS
Motivated by the statements of Kelvin and Clausius presented in Chapter 1, we generalize
the framework of thermal operations detailed in Section 3.2.2 to consider catalysts, which
are ancillary systems that undergo a cyclic process, i.e. they interact with other systems
in a way such that at the end of the thermodynamic process, they are returned to their ini-
tial states. This allows for the crucial component of having an inanimate material agency
that undergoes no other change, that facilitates a process without providing net energetic
contributions. Examples of such systems include the machine component of a heat engine,
which interacts succesively with different heat baths, undergoing a series of thermal expan-
sion and adiabatic processes, finally outputs some amount of work before returning to its
original state.

• We derive necessary conditions for state transitions when the involvement of any such
cyclic component is allowed. These conditions can be phrased in terms of entropic
quantities, which we coin as generalized second laws. They form additional restric-
tions to the set of possible transitions, when compared to the macroscopic second law.
Moreover, we show that when investigating states which are block-diagonal in the en-
ergy eigenbasis, such conditions become necessary and sufficient. Our derivation of
the second laws is information theoretic in nature, requiring none of the assump-
tions usually required for the second law to hold. This includes ergodicity, mixing,
coarse-graining of degrees of freedom and lack of control over the system [1, 136].

4.1.2. CHAPTER OUTLINE
We begin in Section 4.2, by defining the notion of catalytic thermal operations (CTOs).
The first law finds its place here as a statement regarding conservation of energy. In Sec-
tion 4.3, we rigorously prove the importance of allowing only Gibbs states of a fixed tem-
perature as free states. This allows us to identify the uniqueness of Gibbs states as free
resources, and by defining an equivalence relation between different Gibbs states, we see
that the temperature emerges as a unique parameter. This is an analog of the zeroeth law of
thermodynamics.

We first consider fully degenerate Hamiltonians in Section 4.4 and derive the necessary
and sufficient conditions for state transitions via CTOs. We show that these conditions can
be phrased solely in terms of Rényi divergences. This is then generalized to the case of
arbitrary, discrete Hamiltonians in Section 4.5, leading to a set of generalized second laws
for block-diagonal states, which we summarize in Theorem 4.5.

Finally, Section 4.6 addresses the case of arbitrary quantum states (instead of only the
block-diagonal ones). By invoking data processing inequality, we show that the generalized
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second laws stated in Section 4.5 are also necessary conditions for arbitrary quantum states.
We end with some concluding remarks in Section 4.7.

4.2. CATALYTIC THERMAL OPERATIONS
Despite the mathematical simplicity of thermal operations as a resource theory towards
quantum thermodynamics, refinements to the framework are much warranted. One of the
main critiques of the theory is that though rooted in the very basics of quantum theory,
it does not sufficiently consider how thermodynamical interactions occur in reality. For
example, how does one perform an energy-preserving unitary? This is done in practice by
turning on/off an interaction Hamiltonian for some time ∆t. A way to incorporate such a
time-dependent Hamiltonian, is to therefore consider the addition of an ancillary quantum
state C, where the interaction can be turned on/off depending on the state of C. Such an
ancilla acts like a "clock", to govern the interaction time in order to implement unitary
operation. Therefore, in principle one should also consider the possibility of additional
quantum states participating in the process, as part of the experimental apparatus.

Furthermore, consider the picture of heat engine cycles, which has been at the very core
of classical thermodynamics since the field was established in the 1800s. Indeed, the per-
formance of a heat engine is often analyzed by how a machine interacts between multiple
thermal baths, undergoing a cyclic process while extracting work. Therefore, in essence,
a machine plays the role of an agent which does not function as an energy source/sink,
but facilitates the transfer of energy in a process such as work extraction. Such a compo-
nent should therefore be explicitly accounted for, in any framework that attempts to model
thermodynamical interactions.

Figure 4.1: When can a state ρS with Hamiltonian ĤS be transformed to a state ρ ′
S and Hamiltonian Ĥ ′

S? In order to

do so via catalytic thermal operations, one can couple the system to a heat bath τ
β

R = e−β ĤR /ZR with Hamiltonian
ĤR, use any additional devices in the process as long as they are returned back in their original state (thus we may
think of them as a catalyst - ωC), and perform any quantum-mechanical action as long as we preserve the overall
energy.

This motivates the formulation of catalytic thermal operations, which allow for the
usage of such ancilla states, as long as they are returned at the end of the process in their
initial states, so that we are prevented from using them as a resource state (see Figure 4.1).
More concretely, given an initial quantum state ρS governed by some Hamiltonian ĤS, a
β -catalytic thermal operation is defined by three components:
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1. a thermal bath decribed by any Hamiltonian ĤR, with its corresponding Gibbs state
τ

β

R at inverse temperature β , as seen in Eq. (3.2.8),

2. any catalyst ωC with its Hamiltonian ĤC,

3. a unitary USRC such that [USRC,ĤS + ĤR + ĤC] = 0,

such that
trR

[
USRC

(
ρS ⊗τ

β

R ⊗ωC

)
U†

SRC

]
= ρ

′
S ⊗ωC. (4.2.1)

Recall the demand that the unitary commutes with the total Hamiltonian implies that en-
ergy is conserved. Conversely, if a process conserves energy for any arbitrary state. then
it must commute with the Hamiltonian. The equivalence of this paradigm to others has
already been addressed in [80]. The first law of thermodynamics is therefore viewed not as
something derived as a consequence, but rather, a physical law that nature submits to in any
thermodynamical interaction.

In Section 3.2.2, it has been shown that thermo-majorization is the criterion that deter-
mines the possibility of a state transition. However, the relaxation from thermal operations
to catalytic thermal operations alter this criterion. We observe examples where ρS −−→

TO
ρ ′

S

violates the thermo-majorization criterion, but nonetheless there exists a catalyst ωC such
that ρS ⊗ωC −−→

TO
ρ ′

S ⊗ωC is possible. Similar examples of such transitions can be found

in the resource theory of entanglement [133]. In deciding whether one can transform ρS
into ρ ′

S, one therefore needs to ask whether there exists a working body or other ancillas
ωC for which ρS ⊗ωC −−→

TO
ρ ′

S ⊗ωC (see Figure 4.1). Since ωC is returned exactly, we call

this exact catalysis, as opposed to inexact catalysis which we shall see later in Chapter 5.
Thus, thermo-majorization should only be applied to total resources including all possible
catalysts, not only the system of interest itself.

ρ

ρ'

0

ρ

ρ'

0

1

Z

p +p +p +p =1
1 2 3 4

-βE1e

⊗ σ

⊗ σ

a) b)

p
1

p+p
1 2

-βE1

-βE2

e       
+e

Z

Figure 4.2: This figure shows an example of thermo-majorization diagrams for two states ρ,ρ ′. Figure a) shows
that because the diagrams cross each other, we cannot transform ρ −−→

TO
ρ ′ without investingwork (or visa-versa).

However, by using a catalyst ω which is returned in its initial state, we see in Figure (b) that ρ⊗ω thermo-majorizes
ρ ′⊗ω . Therefore, the transition from ρ −−−→

CTO
ρ ′ is possible without additional work.

In the case of entanglement theory, and when the catalyst is returned in exactly the
same state, the criteria for when one pure state may be transformed into another has been
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found [134, 135] and they are called trumping conditions. We will generalize and adapt the
trumping conditions to enable their application to the case of thermodynamics.

4.3. ZEROETH LAW OF QUANTUM THERMODYNAMICS
In this section, we first spell the proof for the zeroeth law in the framework of thermal
operations. This implies constructing a notion of thermal equilibrium between different
state-Hamiltonian pairs.

We accomplish this, firstly, by singling out Gibbs states as the unique set of free states
allowed. More precisely, if we allow arbitrary energy preserving unitaries, then the only free
states that do not give rise to trivial state conversion conditions is the set of Gibbs states
(with their corresponding Hamiltonians) of a fixed inverse temperature. This is directly
related to work extraction, since one should make sure that work cannot be extracted from a
free state. Otherwise, one could, by using indefinite amounts of free states, extract enough
work in order to facilitate any state transformation. Therefore, we want to show that given
a system Hamiltonian ĤA, and the corresponding thermal state τ

β

A with some fixed inverse

temperature β , then by allowing arbitrarily many copies of any state ρA 6= τ
β

A , one can
always extract work deterministically by using energy preserving unitaries.

Let us first begin by showing that this is true for block-diagonal states1. We invoke
the result of Pusz and Woronowicz [137] who introduced the notion of passive states, i.e.
the states whose energy cannot be decreased by an arbitrary cyclic Hamiltonian evolution.
Pusz and Woronowicz proved for general quantum systems described by a C∗ algebra that
the only completely passive states are either so called KMS states or ground states. Lenard
[138] has translated their results to the case of finite-dimensional systems. For such sys-
tems, they proved the following:

(Theorem 3, [138]) Consider a block-diagonal state ρ corresponding to a Hamiltonian Ĥ,
and let {pi} and {Ei} be the eigenvalues of ρ and Ĥ respectively. Then ρ is passive, iff
[ρ,H] = 0, and for any i, j, Ei >E j implies that pi ≤ p j

2.

They further introduced a notion of completely passive states:

Definition 4.1 (Completely passive states). A state ρ is completely passive iff for all
n ∈Z+, ρ⊗n is also passive.

In particular, [138] has shown that if ρ is completely passive, then it must be either the
ground state or the Gibbs state. We can also simply consider the Gibbs state, by noting
that the ground state is simply an example of a Gibbs state in the particular case where the
temperature T → 0 (or β →∞).

Now, consider any non-passive state ρnp. From the above characterization, one sees
that it is possible to extract, on average, a non-zero amount of work simply by performing a

1The case where coherences exist between energy eigenstates can be dealt with, as shown in [126], by first deco-
hering multiple copies of the state in its energy subspace. This will always lead to an athermal but block-diagonal
state, where we can then apply the results for block-diagonal states again.

2This is also denoted in [138] as a structurally stable state.



4.3. ZEROETH LAW OF QUANTUM THERMODYNAMICS

4

45

population inversion (a switch of energy levels) |Ei〉〈Ei|↔ |E j〉〈E j| for some particular pair
of indices i, j (for details, see proof of Theorem 4.1). By invoking typicality arguments, we
show that by using many identical copies of ρnp, then for small values of δ ,ε , an amount of
work δ−close to the average work can always be extracted, except with failure probability
ε . To conclude Theorem 4.2, one uses the mentioned result, that any state which is not a
Gibbs state or a ground state, becomes non-passive, once we take sufficiently many copies.
Therefore, the only states that do not allow (δ ,ε)−deterministic work extraction (recall
Section 3.4) when given multiple copies, are the set of Gibbs states.

Before beginning the proof, we state for completeness Lemma 4.1 which is the main
tool we use to invoke typicality.

Lemma 4.1 (Hoeffding inequality, [139]). Consider x=∑N
i=1 hi, where h1, · · · ,hN are inde-

pendent random variables such that for every i,hi ∈ [ai,bi]. Denote Ri = bi −ai. Then for
any α > 0, the probability

P [|x−E[x]| ≥αN] ≤ e
− 2α2N2∑

i R2
i . (4.3.1)

By using Lemma 4.1, we are ready to prove the main theorems in this section.

Theorem 4.1. Given any Hamiltonian Ĥ, consider a non-passive, block-diagonal
state ρ . Then for any probability ε > 0, there exists m ∈N such that given m copies of
ρ , it is possible to extract a positive amount of work, except with probability ε .

Proof. There are two main steps in this proof: first we construct the unitary that performs
work extraction from a single copy of ρ , while storing the work in a battery system B
similar to that of [126]. Subsequently, we form the joint unitary over the m systems and the
battery system, and use the Hoeffding inequality to bound the amount of extracted work,
albeit with some small failure probability.

Consider a non-passive, block-diagonal ρAk on system Ak, for each 1 ≤ k ≤ m. Then by
the definition of passivity, there exists some i, j where Ei > E j, pi > p j holds. To extract
work, let us use a battery with the Hamiltonian of a harmonic osciilator system, ĤB =∑N

n=1 nħω |n〉〈n|, where ħω = Ei −E j. Define the lowering operator âB =∑N
l=2 |l −1〉〈l| and

the joint energy-preserving unitary over a particular system Ak and B,

Uk = |i〉〈 j|Ak ⊗ âB +| j〉〈i|Ak ⊗ â†
B +|i〉〈i|Ak ⊗|N〉〈N|B +| j〉〈 j|Ak ⊗|1〉〈1|B + ∑

r 6=i, j
|r〉〈r|Ak ⊗ IB.

(4.3.2)
Clearly, this unitary acted upon the initial joint state ρAk ⊗|m〉〈m|B extracts ħω ≥ 0 amount
of work into the battery system with probability pi, and −ħω with probability p j, while the
expectation value of energy extracted is given by the difference in expected energy in the
battery system, 〈W 〉 = ħω(pi − p j) > 0.

Now, similarly, consider the initial state ρA1 ⊗·· ·⊗ρAm ⊗|m〉〈m|B, and the unitary trans-
formation Um · · ·U1. In the k-th step, the unitary Uk raises (denoted by a random variable
xk taking on the value xk = 1), lowers (xk = −1) or leave unchanged (xk = 0) the battery
state with certain probabilities. This operation can be represented with a string x = x1 · · ·xm
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numbers, where for all k = 1, · · · ,m,

p(xk = c) =


pi (c= 1);

p j (c=−1);

1− pi − p j (c= 0).

(4.3.3)

The total amount of work extracted in this process is equal to WT = xTħω , where xT =∑m
i=1 xi, while the expectation value of xT is 〈xT 〉 =m(pi − p j) > 0. Since x1, · · · ,xm are i.i.d.

random variables with bounded values between -1 and 1, we can invoke Lemma 4.1 for
some small number α > 0, obtaining

P[xT ≤ 〈xT 〉−αm] ≤P[|xT −〈xT 〉| ≥αm] ≤ exp

(−2α2m2∑m
i=1 22

)
= exp

(−α2m
2

)
= ε, (4.3.4)

Therefore, we conclude that WT ≥ (〈xT 〉−αm)ħω > 0 except with probability ε . For any
ε > 0 that we want to achieve, picking some small parameter α > 0 and m = d 2

α2 ln 1
ε
e

suffices.

Theorem 4.2. Given a fixed Hamiltonian Ĥ, if ρ ′ is not the Gibbs state corresponding
to a certain inverse temperature β , then for any ε > 0, there exists n ∈N such that given
n copies of ρ ′, it is possible to extract a non-zero amount of work, except with failure
probability ε .

Proof. The proof comes from a straightforward realization that any such ρ ′ is not com-
pletely passive, hence there exists some positive integer a such that ρ ′⊗a is non-passive.
One can then invoke Theorem 4.1 with ρ = ρ ′⊗a. For any ε > 0, pick some small α and
n= a ·m= a · 2

α2 · ln 1
ε

suffices.

Theorem 4.2 provides ample justification of using the set of Gibbs states of a fixed
inverse temperature β as free states. We summarize this as the zeroeth law of thermody-
namics:

• Zeroeth law: Let Sβ = {(τβ

R ,ĤR) | τβ

R = e−β ĤR /ZR}. If any (ρ,ĤR) ∉Sβ is allowed as
a free state, then under the full set of energy-preserving unitaries, all state transitions
are possible, and the resource theory of thermal operations becomes trivial.

We thus see that the ordinary zeroeth law is replaced by the following fact: if our class of
operations includes energy conserving operations and the ability to add an arbitrary number
of copies of some state ρ corresponding to any Hamiltonian ĤR, then the only type of state-
Hamiltonian pairs (ρR, ĤR) which does not make for a trivial theory (in the sense that all
state transformations become possible), is if ρR = τ

β

R , where τ
β

R is the thermal state [91]
with respect to ĤR.

From this perspective, we now see that one can define an equivalence relation on Sβ

which gives for us the notion of temperature. To see this, note that given any two systems
R1,R2 without any interaction terms between their Hamiltonians, the thermal state of the
joint system (for some β ) is simply the tensor product of thermal states (for the same β ) for
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the individual systems. Since the thermal state is uniquely defined, one may conclude that
a state-Hamiltonian pair (ρR1 ⊗ρR2 ,ĤR1 ⊗ĤR2 ) ∈Sβ for some value of β , if and only if both
(ρR1 ,ĤR1 ), (ρR2 ,ĤR2 ) ∈Sβ as well.

We say that (ρR1 ,ĤR1 ) ∼ (ρR2 ,ĤR2 ) are equivalent free states iff the joint state is also a
free state. From the above, we see that these state-Hamiltonian pairs are equivalent iff they
have the same temperature with each other, and are in thermal equilibrium. We also see
that such an equivalence relation is transitive, i.e. if (ρR1 ,ĤR1 ) ∼ (ρR2 ,ĤR2 ), and similarly
(ρR2 ,ĤR2 ) ∼ (ρR3 ,ĤR3 ), then (ρR1 ,ĤR1 ) ∼ (ρR3 ,ĤR3 ).

4.4. SECOND LAWS: CATALYTIC NOISY OPERATIONS
It is instructive to first consider the case of noisy operations, where the Hamiltonian is trivial
(ĤS = 1S), and thermodynamics is reduced to the scenario of information non-equilibrium.

4.4.1. TRUMPING CONDITIONS
As we mentioned in Section 3.2.1, the condition that governs state-to-state transitions via
NOs is majorization. However, we now want to analyze how the condition changes if we
allow catalytic transitions. Such transitions are called catalytic noisy operations, and state
transition conditions are governed by trumping [134], i.e. we say that a probability vector
x can be trumped into y (we denote this as x ÂT y) if there exists some finite-dimensional z
such that

x⊗ zÂ y⊗ z. (4.4.1)

The condition that z be finite-dimensional is physically reasonable, since the experimenter
is working within a finite volume and below some maximum energy.

In [133] it was for the first time shown that majorization conditions are a strict subset
of trumping conditions. This implies that there exists examples where originally forbidden
transitions can be made possible by using a catalyst.

Example 4.1. Consider the following example of states ρ,ρ ′ with ordered eigenvalues:

p= eig(ρ) =
(

1

2
,

1

4
,

1

4
,0

)
, (4.4.2)

p′ = eig(ρ ′) =
(

4

10
,

4

10
,

1

10
,

1

10

)
. (4.4.3)

Note that p1 > p′
1 but p1 + p2 < p′

1 + p′
2, therefore p � p′. However, consider using the

catalyst ω such that r = eig(ω) = ( 6
10 ,

4
10

)
. Then we see that p⊗ r Â p′⊗ r, so pÂT p′.

What do the trumping conditions look like? Firstly, let us note the following: consider
any Schur concave function f that is additive under tensor product, i.e. f (x⊗z) = f (x)+ f (z).
Then if x ÂT y, even if x � y, f (x) ≤ f (y) must still hold. Refs. [134, 135] independently
provided necessary and sufficient conditions for x to be trumped into y, in terms of explicit
subsets of all possible Schur concave functions. These functions are closely related to the
Rényi entropies. We present here a set of conditions, equivalent to the Klimesh-Turgut
ones, written in terms of Rényi divergences w.r.t. the uniform distribution η . Let us first
state the result of Klimesh’s work in the following lemma.
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Lemma 4.2 (Theorem 2, [134]). Let x,y ∈V (k) be k-dimensional probability vectors where
x↓ 6= y↓, and at least one of the vectors have full rank, i.e. max(rank(x),rank(y)) = k. Then
x can be trumped into y if, and only if, for all α ∈ (−∞,∞):

fα (x) > fα (y), (4.4.4)

where

fα (x) =



ln
∑k

i=1 xα

i (α > 1);∑k
i=1 xi lnxi (α = 1);

− ln
∑k

i=1 xα

i (0 <α < 1);

−∑k
i=1 lnxi (α = 0);

ln
∑k

i=1 xα

i (α < 0).

(4.4.5)

Subsequently, we use Lemma 4.2 to prove that when x is only required to trump y up to
some arbitrarily high precision3, then the conditions originally stated in Lemma 4.2 can be
equivalently written in terms of non-strict inequalities.

Proposition 4.1. Let x,y ∈V (k) be probability vectors. Then the following conditions
are equivalent:

1. For any ε > 0, there exists another vector yε such that d(y,yε ) ≤ ε and x can be
trumped into yε .

2. The following inequality holds for all α ∈ (−∞,∞):

Dα (x||η) ≥Dα (y||η), (4.4.6)

with η = (1/k, . . . ,1/k) being the uniform distribution.

Proof. Let us first consider the trivial case where x↓ = y↓. Then Condition 1 holds, since for
any ε > 0, we can define yε = y itself, and we know that x Â y is true if x↓ = y↓. Condition 2
also holds by definition.

Next, we divide the proof into two parts:
“Condition 1 implies 2": Let us first note that without loss of generality we can assume that
yε is of full rank, thus relaxing the requirement in Lemma 4.2. If it is not, we can perturb
the state to add a small amount of noise , obtaining ỹε ′ which has full rank, i.e. no zeros, and
satisfies d(ỹε ′ ,y) ≤ ε ′, with ε ′ being arbitrarily small. With this assumption, the condition
of numbers of zeroes in x and y need not be stated.

Let us then look at the case where if x↓ 6= y↓. Assume that Condition 1 holds. Then by
Lemma 4.2 we know that for any ε > 0, there exists yε such that for all α ∈ (−∞,∞),

fα (x) > fα (yε ). (4.4.7)

We also know that the functions fα are continuous, and this is true even for the case when
the functions diverge to infinity. For example, consider y which does not have full rank,

3This means that x trumps another state yε such that yε is arbitrarily close to y in terms of trace distance.
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limε→0+ f0(yε ) =∞ even if yε is assumed to be of full rank. Therefore, we conclude that
Eq. (4.4.7) implies that fα (y) = limε→0+ fα (yε ) ≤ fα (x).

Note that all the functions fα , excluding α = 0 are proportional to −Hα (x). In turn, the
Rényi entropy is related to Dα (x‖η) by Eq. (2.3.19). Since D0 is obtained by taking Dα in
the limit of α → 0+, according to Remark 4.1 we have that D0(x‖η) ≥D0(y‖η).

“Condition 2 implies 1": Now, suppose that Condition 2 holds instead. From the argument
above we know that this translates to fα (x) ≥ fα (y) for all α 6= 0. For any ε > 0, define

yε = (1−ε)y+εη . (4.4.8)

Then, we know that y Â yε , which also means that y ÂT yε . Hence by Lemma 2.2, ∀α 6= 0,
fα (x) > fα (yε ).

Before we proceed, note that for any ε > 0, f0(yε ) <∞ for yε defined in Eq. (4.4.8). If
x has full rank, then it can be verified that

− 1

k

k∑
i=1

lnxi − lnk = lim
α→0+

1−α

α
Dα (x‖η). (4.4.9)

We can now analyse the following cases.
A) x is not of full rank: In this case, f0(x) =∞> f0(yε ), so the condition on f0 holds triv-
ially.
B) x is of full rank: In this case, Eq. (4.4.9) holds. Therefore we know that if Condi-
tion 2 implies D0(x‖η) ≥ D0(y‖η), then this also implies that f0(x) ≥ f0(y) > f0(yε ). This
independently verifies that Condition 2 implies that the Klimesh conditions for trumping
corresponding to α = 0 is satisfied.

By combining the analysis for α 6= 0 and α = 0, we see that assuming Condition 2 holds,
we can construct yε such that the Klimesh trumping conditions in Lemma 4.2 holds for x
and yε . Therefore by Lemma 4.2 implies that for any ε > 0, there exists yε such that xÂT yε

(Condition 1). This concludes the proof.

Remark 4.1. Since the Rényi entropies are continuous in α , one can remove any discrete
number of trumping conditions, as they are obtained in the limit from the other conditions.

Recall that noisy operations is a special case of thermal operations, when the Hamilto-
nians involved are fully degenerate. Proposition 4.1 therefore hints at how the conditions
for thermodynamics should look: for the existence of a β -catalytic thermal operation, the
state transition conditions should be expressed in terms of the Rényi divergences, where the
maximally mixed state should be replaced by the Gibbs thermal state of inverse temperature
β . In the next Section 4.5, we will prove that this is indeed the case.

4.4.2. INVESTING A SMALL AMOUNT OF EXTRA WORK
The Klimesh-Turgut conditions in Lemma 4.2, which we have used in the derivation of
Proposition 4.1, have a peculiar feature. If both rank(x),rank(y) < k, then we have to trun-
cate some zeros (reducing the dimension) and compute the conditions on smaller vectors.
However, the rank is also a quantity which is unstable under small perturbations. If we
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slightly perturb y so that we remove zeros, then this truncate becomes unnecessary. Also,
only the functions fα corresponding to negative values of α matter under such a perturba-
tion, as for positive α the functions Dα (x||η) do not depend on additional zeros, while the
functions with negative α diverge to infinity, whenever the state is not of full rank. It is
therefore desirable to eliminate such an instability on the trumping conditions.

We first note that in an earlier work, Aubrun and Nechita [140] gave conditions for
trumping, in which only Hα with α > 1 were needed (and therefore such an instability dis-
sapears). This is because they considered a special kind of closure, where one is allowed to
add an arbitrary number of zeros to the initial vector x while returning an (arbitrarily good)
approximation of the targeted output y. However, the usage of such a state is not justified
for a thermodynamic setting. This is because in [140], a pure ancilla is added and returned
it with arbitrary small error (in trace distance), but the dimension of the ancilla needs to
grow in order to make the error smaller. According to Theorem 2.1, the amount of entropy
created in this process can be non-negligible. Hence, one can view the elimination of cer-
tain state transition conditions as a consequence of secretly smuggling into the process a
resource with high informational non-uniformity (in other words, purity), without properly
accounting for its usage. Nevertheless, one may use this as an inspiration, to justify the
elimination of a subset of the second laws derived in Proposition 4.1.

In this section, by using a similar approach as in [140], we show that if we are allowed
to invest a small amount of purity, then only the conditions with α ≥ 0 are relevant. We
analyze the following three cases individually: (i) rank(x) < rank(y), (ii) rank(x) > rank(y),
and (iii) rank(x) = rank(y).

In Case (i), after truncation, x will still have zero elements, and so the Rényi divergences
Dα (x‖η) with negative α will be infinite, while Dα (y‖η) will be finite. Therefore the
conditions with negative α are always satisfied trivially.

In Case (ii) the transition cannot be realized, but this is already reported by comparing
ranks, which can be obtained using H0 = limα→0+ Hα . This implies that the impossibility
of the transition has already been reported by the conditions with α ≥ 0, and therefore the
conditions stated by α < 0 are irrelevant.

Finally, in Case (iii), if rank(x) = rank(y), we may consider two different methods of
eliminating the negative α conditions.

(A) USING AN ADDITIONAL SYSTEM WITH LARGE DIMENSION AND THE CONSUMP-
TION OF AN ARBITRARILY SMALL AMOUNT OF FREE ENERGY
Consider the joint transition:

x⊗wd+1 ⊗ηd → y⊗wd ⊗ηd+1, (4.4.10)

where wd is the vector corresponding to eigenvalues of a state ωd :

eig(ωd) =wd = (1,0, . . . ,0)︸ ︷︷ ︸
d

. (4.4.11)

In other words, ωd is a pure state on a d-dimensional Hilbert space. On the other hand, the
vector ηd = eig(1d/d) stands for the uniform distribution with d elements. If one quantifies
the amount of work invested by the change in free energy F(wd+1 ⊗ηd)−F(wd ⊗ηd+1),
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then the amount of work is equal to ln d+1
d (assuming a trivial Hamiltonian on the system,

and inverse temperature β = 1), hence it is arbitrary small in the limit of large d. Now, on
the left hand side, we have more zeros than on the other side (as initially, we had the same
number of zeros). Therefore, we are back to Case (i).

(B) ALLOWING APPROXIMATE TRANSITIONS AND USING AN ADDITIONAL QUBIT
Instead of insisting on preparing the exact output state, we may also eliminate the negative
α conditions by allowing for the preparation of an ε-approximation, with arbitrary accuracy
(as discussed in Prop. 4.1). Therefore, in Case (iii), we can also add to both sides an ancilla
in wd , a pure state of the same dimension d. Any positive integer d > 1 would suffice, for
example we could take a qubit, i.e. d = 2. Both x⊗w2 and y⊗w2 will then have the same
number of zeros. If we are interested in obtaining an output state which is only ε-close to
the ideal output, in particular such a output state could be of full rank, so that we fall into
Case (i). Then by Proposition 4.1, the transition is governed solely by the conditions with
α ≥ 0. The returned state of ancilla is now only approximately pure, but the accuracy can
be made arbitrarily good. Furthermore, the dimension is bounded, and hence the amount of
entropy/free energy change in the process is also arbitrarily small. One can also choose the
approximation in such a way that it affects only the ancilla; the original output state is not
changed and will be produced exactly.

4.5. SECOND LAWS FOR EXACT CATALYSIS ON BLOCK-
DIAGONAL STATES

We now turn to the case of the full theory of thermodynamics, where we have an interplay
between energy and information. In this case, the Hamiltonians of the system and reservoir
may be fully general. Firstly, we begin in Section 4.5.1 by showing that whenever the initial
state of the system ρS is already block-diagonal in the energy eigenbasis of ĤS, it suffices
to consider catalysts which are block-diagonal with respect to its Hamiltonian ĤC.

To derive the conditions for state transformations, we need a generalization of the ma-
jorization condition, known as d-majorization, which we describe in Section 4.5.2. This is a
criterion that takes into account not only the state, but also that of the involved Hamiltonian.
We derive the catalytic version of this, summarized as Theorem 4.3 in Section 4.5.4.

Finally, by using the above results, we apply our results to the case of catalytic thermal
operations, to derive the generalized second laws. This is summarized in Section 4.5.5.

4.5.1. BLOCK-DIAGONAL CATALYSTS ARE SUFFICIENT
Here we will show that if the initial and final states of the system ρ0

S ,ρ
1
S are block-diagonal

w.r.t. ĤS, then the diagonal elements of the output state ρ1
S will not depend on coherences

of the catalyst ρ0
C (between different energy levels), but only on block-diagonal elements 4.

This means that in such cases, we can replace the catalyst with its dephased version. The
conditional probabilities form the channel, which maps the initial diagonal elements of the
state to the final diagonal elements.

4In order to avoid notational clashes in the proof, instead of using ρS,ρ
′
S to denote initial and final states, in this

section we use ρ0
S ,ρ

1
S .
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Let us first recall that by saying a state ρS is block-diagonal, we mean that there exists
an eigenbasis of ĤS, where ρ can be written as

ρ =∑
eS

σeS |eS〉〈eS|. (4.5.1)

We denote such a common eigenbasis as {|eS〉}eS , where |eS〉 = |ES, iS〉 is an eigenvector of
ĤS corresponding to eigenvalue ES, and the index iS runs over the degeneracy of ES.

Let us first write out the joint initial state as

ρ
0
RSC = ρ

0
R ⊗ρ

0
S ⊗ρ

0
C, (4.5.2)

where ρ0
R is the heat bath, which is by definition block-diagonal. The system ρ0

C is the state
of an arbitrary catalyst, and ρ0

S is the state of the system which we assume to be block-
diagonal5. We then act with an energy-preserving unitary U and get the output state

ρ
1
RSC =Uρ

0
RSCU†. (4.5.3)

To proceed, let us use the shorthand notation |ERSC〉 = |eR,eS,eC〉, and |eR〉 = |ER, iR〉
where ER denotes energy eigenvalues and iR denotes corresponding degeneracies for system
R, likewise for system S and C. We now compute the diagonal elements of ρ1

S :

〈eS|ρ1
S |eS〉 = 〈eS|trRC(ρ1

RSC)|eS〉 =
∑

eR,eC

〈ERSC|ρ1
RSC|ERSC〉, (4.5.4)

The identity operator can be expanded as a sum

1RSC = ∑
eR,eS,eC

|ERSC〉〈ERSC|. (4.5.5)

Therefore, the diagonal elements of ρ1
S can be written as

〈ES|ρ1
S |ES〉 (4.5.6)

= ∑
eR,eC

〈ERSC|Uρ
0
RSCU†|ERSC〉 (4.5.7)

= ∑
eR,eC

〈ERSC|U1RSCρ
0
RSC1RSCU†|ERSC〉 (4.5.8)

= ∑
eR,eC

∑
e′R,e

′
C,e

′
S

e′′R,e
′′
C,e

′′
S

〈ERSC|U |ER′S′C′〉×〈ER′S′C′ |ρ0
RSC|ER′′S′′C′′〉×〈ER′′S′′C′′ |U†|ERSC〉. (4.5.9)

We may make use of the fact that ρ0
R and ρ0

S is diagonal. This means that

〈ER′S′C′ |ρ0
RSC|ER′′S′′C′′〉 = δe′Re′′R

δe′Se′′S
〈ER′S′C′ |ρ0

RSC|ER′′S′′C′′〉, (4.5.10)

5Furthermore, note that we may, without loss of generality assume that ρ0
S and ρ1

S are diagonal in the same Hamil-
tonian eigenbasis. This is because even if that is not the case, one may first consider the transition ρ0

S → ρ1a
S ,

where ρ1a
S has exactly the same eigenvalues as that of ρ1

S , but is diagonal in a different Hamiltonian eigenbasis.
However, one can always go from ρ1a

S → ρ1
S by implementing a unitary transformation in the corresponding

degenerate energy subspace, which is a valid thermal operation.
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where δXY is the Kronecker-delta function. Therefore, Eq. (4.5.9) reduces to∑
eR,eC

∑
e′R,e

′
C,e

′
S

e′′C

〈ERSC|U |ER′S′C′〉×〈ER′S′C′ |ρ0
RSC|ER′S′C′′〉×〈ER′S′C′′ |U†|ERSC〉. (4.5.11)

Since U preserves energy, we have more constraints on the summation: ER +ES +EC =
E ′

R +E ′
S +E ′

C as well as ER +ES +EC = E ′
R +E ′

S +E ′′
C. This implies that E ′

C = E ′′
C, and

therefore only the terms 〈e′C|ρ0
C|e′′C〉 where E ′

C = E ′′
C remain. This implies, therefore, that it

is sufficient to consider a catalyst ρ0
C which is already block-diagonal.

4.5.2. A GENERALIZATION OF MAJORIZATION: D̄-MAJORIZATION
A generalization of the majorization relation, and its relation to bistochastic operators was
developed in [141] in general for continuous probability density functions, which we may
specialize here for discrete probability distributions.

Definition 4.2. Given probability vectors p,q, p′,q′, we say that (p,q) D̄-majorizes
(p′,q′) if and only if for any convex function g,

∑
i

qig
(

pi

qi

)
≥∑

i
q′

ig

(
p′

i

q′
i

)
. (4.5.12)

We denote this as D̄(p||q) Â D̄(p′||q′).

We have already seen the application of Birkhoff-von Neumann theorem in Theorem
2.3, which relates majorization to transition between states. The next Lemma 4.3 was
shown in [141] to be a extension of Theorem 2.2 from majorization to D̄-majorization.

Lemma 4.3 (Theorem 2, [141]). For probability distributions p,q, p′,q′, the following two
conditions are equivalent:

(i) The vector pair (p,q) D̄-majorizes (p′,q′),

D̄(p||q) Â D̄(p′||q′). (4.5.13)

(ii) There exists a channel Λ such that

Λ(p) = p′, Λ(q) = q′. (4.5.14)

In fact it has been shown that a particular limited set of convex functions is sufficient. In
the case when q= q′, the conditions can be expressed by the so-called thermo-majorization
diagrams identified in [91]. The thermo-majorization diagrams can be easily extended also
to the case q 6= q′, although this is not relevant for our application to thermodynamics in
which q= q′ are the probabilities corresponding to the Gibbs state.

Lemma 4.3 implies Theorem 2.3, by taking q= q′ =η and noting that [141]

pÂ p′ ↔ D̄(p‖η) Â D̄(p′‖η). (4.5.15)
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A natural question is whether there is a trumping analogue for D̄-majorization. We show
that this is the case in Section 4.5.4, where we prove an extended version of Lemma 4.3
which allows catalysis. We recover analogous relations to those in Proposition 4.1. We
summarize all the different scenarios in Table 4.1.

standard majorization D̄-majorization

No catalysis D̄(p‖η) Â D̄(p′‖η) D̄(p‖q) Â D̄(p′‖q′)

∃Λ : Λ(p) = p′, Λ(η) =η ∃Λ : Λ(p) = p′, Λ(q) = q′

∀l
∑l

i=1 pi ≥∑l
i=1 p′

i comparing diagrams

(for example Fig. 4.2)

With catalysis (see Section 4.5.4)

Dα (p‖η) ≥Dα (p′‖η), ∀α ≥ 0 Dα (p‖q) ≥Dα (p′‖q′), ∀α ≥ 0

∃Λ,r : Λ(p⊗ r) = p′
ε ⊗ r, ∃Λ,r,s : Λ(p⊗ r) = p′

ε ⊗ r,

Λ(η ⊗ η̃) =η ⊗ η̃ Λ(q⊗ s) = q′⊗ s

Table 4.1: Partial orderings as criteria for state transformations. The vector p′ε is a distribution ε-close to p′.

4.5.3. NOTATIONS AND TECHNICAL TOOLS
Before setting out to prove the main result in Section 4.5.4, we develop several technical
tools and lemmas that will be used in the proof.

We will start by describing an embedding channel, which will be used later to prove the
above results. Consider the probability vector p = (p1, · · · , pk) and a vector d consisting of
natural numbers d = (d1, · · · ,dk), and let N =∑k

i=1 di. We define the embedding

Γd(p) =
k⊕

i=1
piηdi , (4.5.16)

More clearly, the image is the following N-dimensional probability distribution:

Γd(p) =
(

p1

d1
, . . . ,

p1

d1︸ ︷︷ ︸
d1

,
p2

d2
, . . . ,

p2

d2︸ ︷︷ ︸
d2

, . . . , . . . ,
pk

dk
, . . . ,

pk

dk︸ ︷︷ ︸
dk

)
.

(4.5.17)

The inverse map Γ∗d acts on the space of N-dimensional probability distributions p̃, where

p̃=
k⊕

i=1
p̃(i), (4.5.18)

with each p̃(i) = { p̃(i)
1 , · · · , p(i)

di
} being an unnormalized, di-dimensional vector. The map Γ∗d

can be written as

Γ∗d (p̃) = r, (4.5.19)
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with r = {ri}k
i=1 being a normalized probability distribution, each element ri =∑di

j=1 p̃(i)
j . The

maps Γd and Γ∗d are channels, and for all probability distributions p we have Γ∗d (Γd(p)) = p.

Moreover, consider the specific state vector γd =
(

d1
N , d2

N , . . . , dk
N

)
, and note that

∑k
i=1

di
N =

N · 1
N = 1, and therefore γd is normalized. Then, we have

Γd(γd) =ηN , (4.5.20)

is the uniform N-dimensional distribution.
In Lemmas 4.4-4.6, we develop certain properties of this embedding channel. Lemma

4.4 relates the Rényi divergence Dα (p‖q) to Dα (Γd(p)‖Γd(q)). Lemma 4.5 is a technical
tool that enables us to work with distributions containing irrational probability values, by
introducing small corrections such that we need only to consider rational values. Lastly,
Lemma 4.6 shows us when a channel can be writen as a direct sum of two channels acting
disjointly on partitions of the total input/output space. These tools will later contribute to
the establishment of Theorem 4.3, which is the main technical result we use to develop state
transition conditions via catalytic thermal operations.

Lemma 4.4. Let p ∈V (k) be an ordered, k-dimensional probability distribution, and let γd
be the k-dimensional probability vector consisting of rational-valued elements:

γd =
(

d1

N
, . . . ,

dk

N

)
, (4.5.21)

where d = (d1, · · · ,dk) is a vector where each element di ∈N is a natural number. Define the
following fine-grained, N-dimensional probability distribution

p̃= Γd(p) =
(

p1

d1
, . . . ,

p1

d1︸ ︷︷ ︸
d1

,
p2

d2
, . . . ,

p2

d2︸ ︷︷ ︸
d2

, . . . , . . . ,
pk

dk
, . . . ,

pk

dk︸ ︷︷ ︸
dk

)
.

(4.5.22)

Then for α ∈ [−∞,∞] we have

Dα (p||γd) =Dα (p̃||ηN), (4.5.23)

with ηN = (1/N, . . . ,1/N) being the uniform distribution. By Eq. (4.5.20), this means that

Dα (p||γd) =Dα (Γd(p)||Γd(γd)). (4.5.24)

Proof. Let us first assume that α 6∈ {−∞,0,1,∞}. Then

Dα (p||γd) = 1

α −1
log

k∑
i=1

pα

i

(
di

N

)1−α

(4.5.25)

= 1

α −1
log

k∑
i=1

di

(
pi

di

)α (
1

N

)1−α

(4.5.26)

= 1

α −1
log

N∑
i= j

p̃α

j

(
1

N

)1−α

=Dα (p̃||ηN), (4.5.27)
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where note that in the third inequality we sum over the elements of the fine-grained dis-
tribution p̃, and for each i ∈ {1, · · · ,k}, p̃ contains di number of degenerate values pi

di
. For

α ∈ {−∞,0,1,∞} one can obtain the relation by considering limits. Here we show this
explicitly. For α = 0, we have

D0(p||γd) =− log
∑

i:pi 6=0

(
γd

)
i =− log

∑
j:p j 6=0

di

N
=− log

∑
i: p̃i 6=0

1

N
=D0(p̃||ηN). (4.5.28)

For α →∞, we have

D∞(p||γd) = log min

{
λ : ∀i,λ ≥ pi

di/N

}
(4.5.29)

= log min

{
λ : ∀i,λ ≥ pi/di

1/N

}
=D∞(p̃||ηN), (4.5.30)

and similarly for α →−∞. Finally, for α = 1,

D1(p||γd) =
k∑

i=1
pi log

piN
di

=
k∑

i=1
di

pi

di
log

piN
di

=D1(p̃||ηN). (4.5.31)

Lemma 4.5. Given distributions q, q̃ ∈V (n), such that the trace distance d(q, q̃) ≤ ε . Then
there exists a channel E such that E(q) = q̃ and for any distribution p we have that

d(E(p), p) ≤ ε

min
j:q j>0

q j
=Θ(ε). (4.5.32)

Proof. Before beginning to construct the channel E, let us define the sets I+ = {k : qk ≥
q̃k}\{k : qk = qk = 0} and I− = {k : qk < q̃k ∨qk = q̃k = 0}, and ε+

k = qk − q̃k for k ∈ I+ and
ε−

k = q̃k −qk for k ∈ I−. Also, denote span(S ) to be the probability space of an indice set
S . Note that due to normalization of distributions q and q̃,∑

k∈I+
ε
+
k = ∑

k∈I−
ε
−
k = ε, (4.5.33)

where ε is the trace distance between q and q̃.
Let us first consider a channel R : span(I+) → span(I−), i.e. the channel R acts on any

probability distribution r ∈ span(I+), and the output probability vector R(r) ∈ span(I−). We
will later use R as a subchannel in constructing the channel E. We define R by its transition
probabilities

rk→ j =
ε−

j

ε
, k ∈I+ and j ∈I−. (4.5.34)

One can then observe the following:

1. To verify that R is a channel, note that each rk→ j ≥ 0 and
∑

j∈I−
rk→ j = 1.
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2. This channel R satisfies the following properties: for all j ∈I−,

∑
k∈I+

ε
+
k rk→ j = ε

−
j . (4.5.35)

Next, we define channel E by the following transition probabilities

sk→ j =



1− ε+
k

qk
j = k k ∈I+

0 j 6= k j,k ∈I+
ε+

k
qk

rk→ j j ∈ I− k ∈I+
1 j = k k ∈I−
0 j 6= k k ∈I−.

(4.5.36)

We note that this is a valid set of transition probabilities, by noting that since qk = q̃k + ε+
k

and q̃k,ε
+
k ≥ 0, therefore 1− ε+

k
qk

≥ 0. Also, note that when qk = 0, either 1) k ∈ I−, or
2) q̃k = qk = 0 so that one can omit the symbol for such a k altogether. The channel is
presented graphically in Fig. 4.3 for the reader’s convenience. One can check either from
Eq. (4.5.36) or from Fig. 4.3 that E is indeed a channel.

I−

I+

k1

k2......
k|I+|

k′|I−|

.

..

..

k′2

k′1

k1

k2......
k|I+|

k′|I−|

.

..

..

k′2

k′1
1

1

.

..

..

1

1−ε+k /qk

R
ε+k /qk

........

Figure 4.3: Graphical representation of the channel E.
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We now verify that the channel satisfies E(q) = q̃. For j ∈I+ we have

E(q) j =
∑
k

qk pk→ j =
∑

k∈I+
qksk→ j +

∑
k∈I−

qksk→ j︸ ︷︷ ︸
=0

(4.5.37)

= ∑
k∈I+,k 6= j

qksk→ j︸ ︷︷ ︸
=0

+q js j→ j (4.5.38)

= q j

(
1−

ε+
j

q j

)
= q̃ j, (4.5.39)

while for j ∈I− we get

E(q) j =
∑
k

qksk→ j =
∑

k∈I+
qksk→ j +

∑
k∈I−

qksk→ j (4.5.40)

= ∑
k∈I+

qk
ε+

k

qk
rk→ j +q j (4.5.41)

= ∑
k∈I+

ε
+
k rk→ j +q j = ε

−
j +q j = q̃ j. (4.5.42)

Finally, we consider any probability distribution p, and analyse the distance d(E(p), p).
Denoting E(p) = p̃ we get

p̃ j =
 p j

(
1− ε+

j
q j

)
, for j ∈ I+

ε−
j + p j, for j ∈ I−

(4.5.43)

We know that the channel E increases the probabilities in set I+, and decreases those in I−.
From Eq. (4.5.33), we also realized that the trace distance of two normalized distributions
can be written as the sum of difference across only either one of the sets I+,I−. Therefore,

1

2

∑
j
|p j − p̃ j| =

∑
j∈I+

ε
+
j

p j

q j
≤ ∑

j∈I+

ε+
j

q j
≤ ε

min
j:q j>0

q j
. (4.5.44)

This concludes the proof.

Lemma 4.6. Consider a channel such that for some fixed n-dimensional probability dis-
tribution t = (t1, . . . ,tl ,0, . . .0) the channel gives output t ′ = (t ′1, . . . ,t

′
l ,0, . . .0). Moreover,

Λ(w) =w holds for some full rank distribution w. Then this channel can be decomposed as
Λ=Λ1⊕Λ2, where Λ1 acts only on the first l-elements, mapping them onto the same group
of elements, while Λ2 acts similarly on the remaining n− l elements.

Proof. Consider the joint probability of two random variables (X ,Y ), given by the preserved
distribution w and the channel. Let X = 0 denote the event that the inputs are from the first
group (items from 1 to l), and X = 1 that they are from the second group (items from l +1
to n), and Y denotes similar events for the outputs. Since the channel preserves w, we have
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that P(Y = 0) = P(X = 0). Moreover, since the channel sends t into t ′ , this means that
p(Y = 0|X = 0) = 1. We then have

p(Y = 0) = p(Y = 0|X = 0)p(X = 0)+ p(Y = 0|X = 1)p(X = 1) (4.5.45)
= p(Y = 0)+ p(Y = 0|X = 1)p(X = 1) (4.5.46)

so that either P(X = 1) = 0 or p(Y = 0|X = 1) = 0. However, since w is of full rank, we
know that P(X = 1) > 0. Therefore p(Y = 0|X = 1) = 0 must hold. We have therefore that
P(Y = 0|X = 0) = P(Y = 1|X = 1) = 1 which means that the channel is direct sum of two
channels, acting on two disjoint groups of elements {1, · · · , l} and {l+1, · · · ,n}.

4.5.4. CATALYTIC D̄-MAJORIZATION
In this section, we prove a crucial result (Theorem 4.3), which relates monotonicity of
Rényi divergences to catalytic transformations. This can be viewed as both a generaliza-
tion of trumping relations [134, 135] and the d-majorization result [141]. It also gives an
operational interpretation to the Rényi divergences, answering the question posed in [60].

With the tools listed in Section 4.5.3 in place, we can now proceed to state and prove
the main theorem of this section.

Theorem 4.3. Consider the probability distributions p, p′,q and q′, where q and q′
have full rank. Then, the following conditions are equivalent:

(i) For all α ∈ (−∞,∞),Dα (p||q) ≥Dα (p′||q′).

(ii) For any δ > 0, there exists probability distributions r,s of full rank, a distribution
p′

δ
and a classical channel Λ such that

1. Λ(p⊗ r) = p′
δ
⊗ r,

2. Λ(q⊗ s) = q′⊗ s,

3. d(p′, p′
δ

) ≤ δ .

Moreover, we can take s=η , η being the uniform distribution onto the support of r.

Proof. "(i) → (ii)". To prove in this direction, we suppose that Condition (i) holds, and
construct a channel Λ that satisfies (ii), with some ε that can be chosen arbitrarily small.

Let us consider the following two cases separately:

(A) The probabilities in q and q′ are rational. Without loss of generality, they can be
written as q = d/N and q′ = d′/N where d,d′ are two vectors containing positive integers,
d = (d1, · · · ,dk),d′ = (d′

1, · · · ,d′
k), such that

∑k
i=1 di =∑k

i=1 d′
i =N.

With this, define two embedding channels Γd and Γd′ associated with d and d′ respec-
tively. The fine-grained distributions of p and p′ are given by

p̃= Γd(p) =
k⊕

i=1
piηi, p̃′ = Γd′ (p′) =

k⊕
i=1

p′
iη

′
i ,
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where ηi,η
′
i are maximally mixed distributions of dimensions di and d′

i respectively. Con-
dition (i) together with Lemma 4.4 tells us that

Dα (p̃||ηN) =Dα (p||q) ≥Dα

(
p′∥∥q′)=Dα

(
p̃′∥∥ηN

)
, (4.5.47)

and hence by Proposition 4.1, we know that for any ε > 0, there exists a distribution p̃′
ε such

that d
(
p̃′, p̃′

ε

) ≤ ε and p̃ can be trumped into p̃′
ε . Equivalently, there exists a probability

distribution r (the catalyst) and a bistochastic map Φ such that

Φ( p̃⊗ r) = p̃′
ε ⊗ r. (4.5.48)

Note that by Lemma 4.6, r can be without loss of generality be of full rank, or in other
words, the zeros in r do not affect finding such a bistochastic map. More precisely, let us
consider the case where r does not have full rank, but has some rank a < dim(r) instead.
Then by setting t = p̃⊗ r, t ′ = p̃′′⊗ r and w = ηN ⊗η , we can use Lemma 4.6 to show that
Φ=Φ1 ⊕Φ2, where the channel Φ1 gives us

Φ1( p̃⊗ r) = p̃′′⊗ r, Φ1(ηN ⊗ηa) =ηN ⊗ηa, (4.5.49)

where ηa is the uniform distribution on the support of r. On the other hand if r is of full
rank, then Φ=Φ1.

Now, consider the following mapping

ΛA = (
Γ∗d′ ⊗ 1

)◦Φ1 ◦ (Γd ⊗ 1) . (4.5.50)

This map ΛA transforms p⊗ r into p′′⊗ r, setting ε = δ satisfies Conditions 1 and 3 in (ii).
To satisfy Condition 2, we want ΛA(q⊗ s) = q′⊗ s for some s. This is achieved by taking
s=η , a uniform distribution of any dimension. Indeed, since Γd(q) = 1/N, (Γd ⊗1)(q⊗η) is
also a maximally mixed distribution. Since Φ1 is bistochastic, it preserves this distribution.
Finally, by definition of Γd′ we have Γ∗d′ (1/N) = q′.

(B) The distributions q or q′ contain irrational values. We show that in such cases, a similar
approach in (A) can be used, by considering distributions q̃ which are rational and close to
the original distributions.

Note that for any real α > 0, Dα (p‖q) is a continuous function of both arguments
p and q, whenever q is of full rank. For α < 0, whenever p does not have full rank, both
Dα (p‖q) and Dα (p‖q̃) diverge to infinity. When p has full rank, continuity can be obtained
by noting that Dα (p‖q) = c ·D1−α (q‖p) and Dα (p‖q̃) = c ·D1−α (q̃‖p) for some positive c,
and 1−α > 0, hence D1−α (q‖p) is continuous.

By Lemma 4.5, we use the channel E that maps q into q̃ while not perturbing p too
much. More precisely, for any ε > 0, one can define a stochastic map E such that

E(q) = q̃, d(q̃,q) ≤ ε, (4.5.51)

and d(E(p), p) ≤ Θ(ε) for any other state p. From the above discussion, we conclude that
when in the limit of ε → 0, Condition 1 implies that Dα (p||q̃) ≥ Dα (p′||q̃′) holds as well.
More precisely, since we can choose ε to be arbitrarily small, in the limit of ε → 0,

Dα (E(p)||q̃) =Dα (p||q) ≥Dα (p′||q′) =Dα (p′||q̃′). (4.5.52)
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Following part (A) of the proof which established the result for rational q and q′, we
find that there is a catalyst r, a stochastic operation ΛA and a distribution p′′ such that

d(p′′, p′) ≤ ε, (4.5.53)

and
ΛA(E(p)⊗ r) = p′′⊗ r, ΛA(E(q)⊗η) = q̃′⊗η , (4.5.54)

with η the maximally mixed distribution.
If q′ also contains irrational values, we can similarly define a second correction map

that maps q′ into q̃′ while not perturbing p′′ too much. By invoking Lemma 4.5 on q′, we
construct E ′ such that

E ′(q′) = q̃′, and for any probability distribution p′′, d(E ′(p′′), p′′) ≤Θ(ε). (4.5.55)

Our final stochastic map is given by E ′ ◦ΛA ◦E, where

(E ′⊗ 1)◦ΛA ◦ (E ⊗ 1)(q⊗η) = (E ′⊗ 1)◦ΛA(q̃⊗η)

= (E ′⊗ 1)(q̃′⊗η)

= q′⊗η , (4.5.56)

and

(E ′⊗ 1)◦ΛA ◦ (E ⊗ 1)(p⊗ r) = (E ′⊗ 1)◦ΛA(E(p)⊗ r)

= (E ′⊗ 1)(p′′⊗ r)

=E ′(p′′)⊗ r, (4.5.57)

such that by using Eq. (4.5.53) and (4.5.55), together with the triangle inequality for trace
distance,

d(E ′(p′′), p′) ≤ d(p′′, p′)+d(E ′(p′′), p′′) ≤Θ (ε) =: δ . (4.5.58)

Since ε can be chosen arbitrarily, the first part of the theorem follows.
"(ii) → (i)". Suppose that for all ε > 0 there exist probability distributions r,s, p′

ε and a
stochastic map Λ such that

d(p′, p′
ε ) ≤ ε, (4.5.59)

and

Λ(p⊗ r) = p′
ε ⊗ r, Λ(q⊗ s) = q′⊗ s, (4.5.60)

and the support of s includes the support of r. Then by monotonicity of the Rényi diver-
gences,

Dα (p′
ε ⊗ r||q′⊗ s) ≤Dα (p⊗ r||q⊗ s), (4.5.61)

which equals
Dα (p′

ε ||q′)+Dα (r||s) ≤Dα (p||q)+Dα (r||s), (4.5.62)

by additivity. Since both r and s are full rank, Dα (r||s) is finite, and can be subtracted
from both sides. Lastly, we consider the limit ε → 0. Recall that as long as the second
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argument q′ has full rank, for any α > 0, Dα (p′||q′) is continuous w.r.t. both p′ and q′.
For α < 0, whenever p′ with full rank, continuity holds. If p′ does not have full rank, then
limε→0 Dα (p′

ε‖q′) =∞=Dα (p′‖q′). Hence we obtain

Dα (p′||q′) ≤Dα (p||q) (4.5.63)

for all α > 0 and α < 0. Since D0(p‖q) = limα→0+ Dα (p‖q), the above inequality holds also
for α = 0.

4.5.5. THE SECOND LAWS FOR BLOCK-DIAGONAL STATES
In this section we formulate the state transformation conditions, namely the second laws of
thermodynamics. We will first do this for states block-diagonal in the energy eigenbasis.
The conditions are given in terms of generalized free energies, which are defined as follows:

Fα (ρ,Ĥ) := β
−1 ·

[
lnZ+ D̂α (ρ‖τ

β )
]
=F(τβ ,Ĥ)+β

−1 · D̂α (ρ‖τ
β ) (4.5.64)

where Z is the partition function for the Hamiltonian Ĥ, and τβ is the thermal state6. Since
we are analyzing the case where ρ is block-diagonal, this means that it shares a common
basis with the thermal state τβ for any β ≥ 0. Recall that in Def. 2.17, this implies that
D̂α (ρ‖τβ ) = Dα (p‖q), where p,q are eigenvalues of ρ,τβ respectively. Note that F1 is the
Helmholtz free energy in Eq. (1.1.2), and that for thermal states and pure energy eigenstates,
all free energies are equal to the Helmholtz quantity.

Theorem 4.4 (Second laws for block-diagonal states). Consider a system with Hamil-
tonian ĤS. Then a state ρS block-diagonal in the energy eigenbasis can be transformed
with arbitrary accuracy into another block-diagonal state ρ ′

S under catalytic thermal
operations if and only if, for all α ∈ (−∞,∞),

Fα (ρS,ĤS) ≥Fα (ρ ′
S,ĤS). (4.5.65)

Proof. We will prove it using Theorem 4.3. Consider an initial state of the system ρS which
is block-diagonal. In Section 4.5.1, we showed the sufficiency of using a block-diagonal
catalyst. Therefore, the entire initial state (system plus catalyst) is block-diagonal.

Suppose first that Eq. (4.5.65) holds for α ∈ (−∞,∞), for the states ρS and ρ ′
S. By

Eq. (4.5.64), this is equivalent to having

Dα (ρS||τβ

S ) ≥Dα (ρ ′
S||τ

β

S ). (4.5.66)

We now need to show that one can transform the state ρS into another state arbitrarily close
to ρ ′

S by catalytic thermal operations.
Let us denote p and p′ to be eigenvalues of ρS and ρ ′

S respectively, and q = q′ are the

eigenvalues of τ
β

S . Then, using Theorem 4.3, we get that there exists a channel Λ and
uniform distribution η such that (i) Λ preserves the state q⊗η , (ii) Λ sends p⊗r into p′

ε ⊗r,

6The main reason for defining these generalized free energies with the factor of β−1 ln2 is so that F1 reduces
exactly to the historical definition of the Helmholtz free energy.
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where p′
ε approximates p′. Condition (i) means that we can take the catalyst system with

trivial Hamiltonian. Thus we have

Λ(ρS ⊗ρC) = ρ
out
S ⊗ρC, (4.5.67)

where d(ρout
S ,ρ ′

S) ≤ ε and

Λ(τβ

S ⊗τ
β

C ) = τ
β

S ⊗τ
β

C , (4.5.68)

where τ
β

C is the maximally mixed state on catalyst system C, i.e. Λ preserves the thermal
state of the system SC. However, we know that for block-diagonal state transitions, thermal
operations are precisely the operations that preserve the thermal state [90, 91]. Thus the
required transition can be made by catalytic thermal operations.

Conversely, let us assume that for given states ρS and ρ ′
S there exists a CPTPM Λ, and

a system C with the hamiltonian ĤC, and state ρC such that

Λ(τβ

S ⊗τ
β

C ) = τ
β

S ⊗τ
β

C , Λ(ρS ⊗ρC) = ρ
out
S ⊗ρC. (4.5.69)

where d(ρout
S ,ρ ′

S) ≤ ε . In Sec. 4.5.1 we have shown that since the input and output states
are block-diagonal, we can take the state ρC to be block-diagonal too, and therefore the
existence of Λ is equivalent to the existence of a classical channel Λcl such that

Λcl(q⊗ s) = q⊗ s, Λcl(p⊗ r) = p′
ε ⊗ r, (4.5.70)

Thus we can apply Theorem 4.3, obtaining that

Dα (ρS‖τ
β

S ) ≥Dα (ρ ′
S‖τ

β

S ) (4.5.71)

for all real α which is equivalent to Eq. (4.5.65).

GETTING RID OF SECOND LAWS WITH NEGATIVE α

Similar to the approach in Section 4.4.2, in addition to the catalyst, we can consider bor-
rowing some system with fixed size (e.g. a qubit) in a pure state, given that we will return
it with arbitrary good fidelity. This will lift all the conditions on α < 0.

Theorem 4.5. Consider the case where it is allowed to borrow a qubit with a trivial
Hamiltonian ĤA = 0A, in the state ρA = |0〉〈0|, as long as it is returned ε-close in trace
distance, for all ε > 0. Then, a state ρS block-diagonal in the energy eigenbasis can be
transformed with arbitrary accuracy into another block-diagonal state ρ ′

S if and only
if for all α ≥ 0,

Fα (ρS,ĤS) ≥Fα (ρ ′
S,ĤS). (4.5.72)

Proof. The forward direction of the proof is straightforward: suppose first that one can
transform the state ρS ⊗|0〉〈0| into arbitrary good version of ρ ′

S ⊗|0〉〈0|. Then we proceed
as in the proof of Theorem 4.3 using monotonicity and additivity of Dα , also noticing that
Dα is finite. Thus, for all α ≥ 0, we get

Dα (ρS||τβ

S ) ≥Dα (ρ ′
S||τ

β

S ) (4.5.73)
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for α ≥ 0, so that by the definition of Fα in Eq. (4.5.64), which is equivalent to Dα up to a
multiplicative constant and an additive constant, the conditions in Eq. (4.5.72) are satisfied.

For the opposite direction, assume that Eq. (4.5.72) is satisfied for α ≥ 0. This implies
that Eq. (4.5.73) hold, and therefore for α ≥ 0,

Dα (ρS ⊗|0〉〈0|A||τβ

S ⊗ηA) ≥Dα (ρ ′
S ⊗|0〉〈0|A||τβ

S ⊗ηA) (4.5.74)

holds as well. This implies that for any value of ε > 0, we may consider the state ρ ′
A =

(1−ε)|0〉〈0|+ε |1〉〈1|. Then for α ≥ 0,

Dα (ρS ⊗|0〉〈0|A||τβ

S ⊗ηA) ≥Dα (ρ ′
S ⊗ρ

′
A||τ

β

S ⊗ηA) (4.5.75)

On the other hand, note that for α < 0, Dα is infinite on the left side of Eq. (4.5.75)
(since |0〉〈0|A is not of full rank), and finite on the right for any ε > 0. Moreover Dα (ρS ⊗
|0〉〈0| ||τβ

SC) = Dα (ρS‖τ
β

S )+Dα (|0〉〈0| ||τβ

C ) and same for S′. This means that Eq. (4.5.75)
also holds for α < 0 automatically. Thus we get that for all α ∈R,

Dα (ρS ⊗|0〉〈0|A||τβ

S ) ≥Dα (ρ ′
S ⊗ρ

′
A||τ

β

S ). (4.5.76)

Hence, by Theorem 4.4 we can transform the state ρS⊗|0〉〈0| into arbitrarily good approxi-
mate version of ρ ′

S ⊗|0〉〈0|.

In Theorem 4.5, we have borrowed a completely pure state qubit, and return it with full
rank (but arbitrarily close to being pure), to get rid of the conditions for negative α . This
might have raised objections, that a completely pure state is hard to obtain in the first place
according to the second laws for all α ∈R. However, let us note, that we might also borrow
a noisy version of |0〉〈0|A, namely ρδ

A = (1−δ )|0〉〈0|+δ |1〉〈1|, where δ ¿ 1.
If Fα (ρ0

S ,Ĥ) ≥ Fα (ρ1
S ,Ĥ) for α ≥ 0, We know from Theorem 4.5 that there exists a

CTO N such that N (ρS ⊗|0〉〈0|A) = ρ1
SA ≈ε ρ ′

S ⊗ρ ′
A. Therefore, since the trace distance is

non-increasing under CPTPMs, applying

d(ρ1
SA,N (ρS ⊗ρ

δ

A )) ≤ d(ρS ⊗|0〉〈0|A,ρS ⊗ρ
δ

A ) = δ . (4.5.77)

This implies that N (ρS ⊗ρδ

A ) ≈ε+δ ρ ′
S ⊗ρ ′

A, and therefore we can still 1) return the ancilla,
and 2) obtain the output state ρ1

S with accuracy ε + δ in trace norm. The usage of an
ancilla is justified here because of the small, fixed dimension, and hence the amount of
work used is also arbitrarily small. However as we will discuss in Chapter 5, if there are no
further restrictions on the available catalyst, then closeness in trace distance is not a suitable
demand on the returned catalyst in thermodynamic transformations.

APPLICATION: LANDAUER ERASURE WITH A QUANTUM MAXWELL DEMON
As an application of the results, we consider a special case of a Maxwell demon with a
memory Q, who wants to reset a system S to some final pure state |ψE〉〈ψE |S with fixed
energy E. The demon’s memory could initially be correlated with the system, so the joint
state of demon and system is given by ρSQ. The demon wishes to reset the system S, but
the local reduced state of the demon’s memory should not change.
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This problem can be seen as a fully quantum version of the standard Maxwell de-
mon/Landauer erasure scenario, and has been considered in the case of a trivial Hamil-
tonian [107, 130] and when the Maxwell demon does not have access to ancilliary systems.
The result of [107] gave a thermodynamic interpretation to the notion of negative informa-
tion [142]. in the single-shot scenario with ancillas, the notion of partial information takes
on a different form, which we shall now derive.

The cost of resetting the system, Wreset, is the minimum required amount of energy such
that the transition

ρQS ⊗|0〉〈0|→ ρQ ⊗|ψE〉〈ψE |S ⊗|Wreset〉〈Wreset| (4.5.78)

is possible via catalytic thermal operations. By applying the generalized second laws, this
quantity is given by

Wreset =− inf
α≥0

β
−1 ·

[
D̂α (ρQS‖τ

β
QS)− D̂α (ρQ ⊗ψ

E
S ‖τ

β
QS)

]
=− inf

α≥0
β
−1 ·

[
D̂α (ρQS‖τ

β
QS)− D̂α (ρQ‖τ

β
Q)

]
+E +β

−1 lnZS (4.5.79)

In the case when the Hamiltonian is trivial, this reduces to

Wreset = β
−1 · sup

α≥0

[
Hα (ρQS)−Hα (ρQ)

]
(4.5.80)

When this quantity is negative, the demon can reset the system to a pure state, and not only
does this not cost work, but the corresponding amount of work is actually gained. Finally,
in the case of standard Landauer erasure of a qubit with a non-trivial Hamiltonian (where
we don’t have a memory and start in the thermal state), Eq. (4.5.79) gives what one expects
from the macroscopic scenario, namely Wreset =E +β−1 lnZS.

4.6. SECOND LAWS FOR EXACT CATALYSIS ON ARBITRARY
QUANTUM STATES

For states which are not block-diagonal, the generalized free energies remain necessary
conditions that govern a state transition. However, they are no longer sufficient to guarantee
the possibility of transition.

Proposition 4.2 (Generalized second laws for arbitrary states). For any quantum
states ρ,ρ ′, if the transition ρ → ρ ′ is possible with arbitrary accuracy, then

i) For α ≥ 1
2 ,

D̂α (ρ ||τβ ) ≥ D̂α (ρ ′||τβ ), (4.6.1)

ii) For 1
2 ≤α ≤ 1,

D̂α (τβ ||ρ) ≥ D̂α (τβ ||ρ ′), (4.6.2)
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iii) For 0 ≤α ≤ 2,

D̃α (ρ ||τβ ) ≥ D̃α (ρ ||τβ ). (4.6.3)

This proposition follows directly from monotonicity under completely positive and
trace-preserving maps, and additivity of the quantum Rényi divergences associated with
the generalized free energies, as discussed in Section 2.3.1. More precisely, since catalytic
thermal operations are CPTPMs, we have

D̂α (ρ ||τβ ) ≥ D̂α (Λ(ρ)||Λ(τβ )) = D̂α (ρ ′||τβ ), (4.6.4)

with the first inequality due to monotonicity of D̂α under CPTPMs Λ, and the second equal-
ity following from the fact that if Λ(ρ) = ρ ′ is a CTO, then it preserves the thermal state.

These conditions are like second laws, in that they are necessary conditions which must
be respected during a thermodynamic transition, however, they are not sufficient. This
follows from the fact that there exists operations which are not catalytic thermal operations,
but do preserve the thermal state, and they can transform a block-diagonal state to one
which is not [104]. The above second laws would still hold according to data processing
inequality. However, such a transition is impossible by CTOs.

4.7. CONCLUSIONS
The second law is often seen as arising from an experimenter’s lack of control over the
system of interest. Here we see that this is not the case: we obtain our fundamental limi-
tations on state transition even in the case where the experimenter is allowed to access the
microscopic degrees of freedom of the heat bath and couple it in an arbitrary manner with
the system. The reason that such fine control does not lead to a violation of the second law
is related to the fact that even a Maxwell’s demon with microscopic control over a system
cannot violate the second law, since a demon which knows the positions and momenta of
the particles of a system, must record this information in a memory, which then needs to be
reset at the end of a cyclic process [27, 84]. For the same reason, even if the experimenter
is able to access the degrees of freedom of the heat bath, in order to violate the second law,
he/she would also require work to reset his/her memory. Remarkably, it has recently been
shown that although the limitations are derived assuming that one can perform all possible
operations, it has been shown that they are also achievable using a more explicit set of op-
erations, namely, changing the energy levels of the system, and putting parts of the system
in thermal contact with the reservoir [105].

We have therefore derived a family of fundamental limitations on thermodynamical
state transformations for both quasi-classical states, and fully quantum states. Since these
limitations are given in terms of generalisations of the free energy, they can be thought of as
second laws, combined with the first law, i.e. energy conservation. For an isolated system,
one could take the second law to be the increase in the Rényi entropies, which holds if the
allowed class of operations are mixtures of unitaries.

To summarize, in this chapter, we see that thinking of quantum thermodynamical inter-
actions in a resource theoretic framework allows us to reformulate the laws of thermody-
namics in a very natural way. In essence, the zeroeth law defines the set of allowed free
states (the thermal state), the first law the set of allowed operations (namely, energy conser-
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vation), and the second law is derived from these conditions to specify the set of allowed
transitions. Furthermore, in [143], a statement about the amount of steps needed to cool to
zero temperature has been derived, which is analogous to that of the third law.





5
INEXACT CATALYSIS

A complete picture of thermodynamical processes naturally allows for auxiliary systems
dubbed “catalysts”, i.e., any physical systems facilitating state transformations while stay-
ing close to intact in their original state, like an auxiliary system, a clock, or an actual
catalyst. In this chapter, we present a comprehensive analysis of the power and limitation
of such thermal catalysis. Specifically, we provide a family of optimal catalysts that can be
returned with minimal trace distance error after facilitating a state transformation process.
To incorporate the genuine physical role of a catalyst, we identify significant restrictions
on arbitrary state transformations under dimension or mean energy bounds, using methods
of convex relaxations. We discuss the implications of these findings on possible thermody-
namic state transformations in the quantum regime.
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5.1. INTRODUCTION
In Chapter 4, we have seen how the framework of thermal operations can be extended to
catalytic thermal operations, by allowing the inclusion of a catalyst that undergoes a cyclic
process. However, one needs to be precise about what one means by a cyclic process. At
the macroscopic scale, the fact that a process is only approximately cyclic has generally
been assumed to be enough to guarantee the second law. Here, we show that this is not the
case in the microscopic regime, and we therefore need to quantify “how cyclic” a process
is before stating the second law. Therefore, in this chapter, we explore what happens when
one relaxes the conditions on how the catalyst should be returned.

Naturally, for physically realistic scenarios inexact catalysis is anticipated, where the
catalyst is returned with a slight degradation. The loss of catalytic ability over time is
often observed in chemical reactions, suggesting that catalysts often undergo slight changes
in thermodynamic processes. In the quantum nano-regime, uncertainties such as those in
the initial state, imperfections in implementation of quantum operations, or fluctuations
induced by quantum noise can all serve to induce small changes in the catalyst. On physical
grounds, it is unreasonable to suggest that the catalyst is returned in exactly the same way.

At the macroscopic scale, the fact that a process is only approximately cyclic has gener-
ally been assumed to be enough to guarantee the second law. However, we show that this is
not the case anymore in the microscopic regime. Surprisingly, the conditions for catalytic
transformations are highly non-robust against small errors induced in the catalyst, as we
shall see later in this chapter. On physical grounds, such a setting seems implausible, and a
clarification of this puzzle seems very much warranted.

A first hint towards a resolution may be provided by looking at how the error depends
on the system size. The trace distance error ε depends on the dimension of the catalyst
states dim(ωC) := n; nevertheless one can find examples of catalysts where ε → 0 as n ap-
proaches infinity. While examples show that in principle thermal embezzling may occur
[125], hardly anything else is known otherwise. Indeed, it would be interesting to under-
stand the crucial properties that distinguish between a catalyst and a non-thermal resource
in thermodynamics. From a physical perspective, it seems highly desirable to understand
to what the effect of embezzling can even occur for physically plausible systems.

5.1.1. RESULTS AND CONTRIBUTIONS
• We provide a quantitative statement about inexactly cyclic processes, by analyzing

the case where the catalyst is returned only ε-close to its original state. We show
that depending on the measure of closeness used to quantify how intact the catalyst is
returned, different subsets of the generalized second laws would hold. This is shown
in Section 5.2.

• We define the notion of thermal embezzling: instead of merely catalyzing the reac-
tion, energy/purity has been extracted from the catalyst and used to facilitate thermo-
dynamic transformations, while leaving the catalyst close to being intact [144].

• We investigate both the power and limitations of thermal embezzling. In the regime
where both Hamiltonians of the system and catalyst are trivial, we perform an ana-
lytical construction of universal catalyst states, which are able to facilitate any state
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transition on the system S (with some fixed dimension m). We show that for a cata-
lyst to be universal, it is equivalent to facilitating a specific state transition, intuitively
speaking the hardest possible transition on system S. By analysing such a problem,
we then construct a family of universal catalyst states depending on catalyst dimen-
sion n, that achieves the optimal trace distance error. This is shown in Section 5.3.

• Given any general Hamiltonians of system and catalyst ĤS,ĤC, we identify two rea-
sonable constraints of interest on the catalyst. Once either one of these constraints
are satisfied, thermal embezzling cannot happen: 1) the dimension of the catalyst
is bounded, and 2) when the expectation value of energy of the catalyst state is fi-
nite. For both cases, we derive non-zero bounds on the trace distance error, therefore
showing that ε cannot be arbitrarily small. These bounds were derived under the
assumption that the catalyst states are block-diagonal. Case 2) is especially interest-
ing, since it holds for catalyst Hamiltonians with unbounded energy eigenvalues, as
long as the partition function ZC is finite. We then use these techniques to obtain
more specific results: not only can we prevent thermal embezzling (which makes a
statement about the ability of a catalyst to facilitate any state transition), but given
any initial and final states ρS,σS, one can obtain state-dependent lower bounds on the
trace distance error induced on the catalyst as well. This is shown in Section 5.4.

5.2. HOW TO QUANTIFY INEXACT CATALYSIS
In this section, we discuss three different measures of closeness between catalyst initial and
final states:
1) the absolute trace distance,
2) the trace distance scaled by a factor depending on the dimension of the catalyst, and
3) a new quantity we define and refer to as the work distance.

5.2.1. THERMAL EMBEZZLING: TRIVIALIZATION OF ALL STATE TRAN-
SITION CONDITIONS

At first glance, one might be tempted to demand that closeness should mean that ωC is close
to ω ′

C in terms of the trace distance d(ωC,ω
′
C). After all, as discussed in Section 2.2.3, this

quantity tells us how well one can distinguish two quantum states, given the best possible
measurement strategy. In terms of the catalyst, one might hence ask that d(ωC,ω

′
C) ≤ ε for

some arbitrary small ε .
However, a phenomenon of embezzling is known in entanglement theory, which has im-

portant implications for the inclusion of such a catalyst. Embezzling states were originally
introduced under the LOCC setting in Ref. [144]. An entangled state |ν(n)〉 shared between
parties A and B can be used to prepare some other state (of much smaller dimension),

|ν(n)〉|0〉 −→ |ω〉 ≈ε |ν(n)〉⊗ |ψ〉. (5.2.1)

The fidelity of between the actual final state, |ω〉, with |ν(n)〉⊗|ψ〉 is 1−ε , such that ε goes
to zero when n goes to infinity. This enables the approximate preparation of the state |ψ〉,
while the embezzling resource state is also left close to its original state. Such a preparation
can even be achieved simply via local operations (LO).
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The family |ν(n)〉 is therefore called a universal embezzling state if it enables the prepa-
ration of any |ψ〉 (of a fixed dimension). While this seemingly violates entanglement mono-
tonicity under LOCC operations, one quickly realises that it is because the closeness in
entanglement content of two states depend not only on the fidelity, but also the dimension.
Hence although entanglement is exhausted, due to the large dimension, |ν(n)〉 remains close
to intact on the whole. In Ref. [145], a comprehensive study about general characteristics of
embezzling states was conducted, providing insight into the necessary structure of a state to
be a good embezzler. The power of embezzling in LOCC has been applied in several areas
of quantum information, such as coherent state exchange protocols [146], projection games
[147], or as a theoretical tool in proving the quantum reverse Shannon theorem [148].

There are some similarities between thermal embezzling and LOCC embezzling, how-
ever also many distinctive features exist. Most significantly, in thermodynamic systems, the
Hamiltonian which determines the evolution of the system plays an important role in state
conversion conditions [91]. This feature is absent in LOCC embezzling. We summarize the
similarities and differences of LOCC and thermal embezzling in Table 5.1.

LOCC embezzling Thermal embezzling
State conversion

conditions
Related to majorization/thermo-majorization

Phenomena
The usage of a catalyst state of large dimension/energy

while tolerating slight degradation allows the preparation
of any desired target state to arbitrary precision

Hamiltonians Not of interest Important physical significance

States
(catalyst and system)

Pure, multipartite states Mixed states in general

Commonly used
measure of closeness

Fidelity of global state
(system and embezzling state)

Trace distance between
initial and final catalyst

Allowed operations Catalytic LOCC
LO operations

Catalytic thermal operations

Accuracy limited by Dimension of catalyst Dimension and energy

Table 5.1: An overview of differences between LOCC and thermal embezzling.

For noisy operations, where state transition conditions are described only by majorization,
one may adapt the results of Ref. [144] to show that for any initial and final states ρS,ρ

′
S,

and any ε > 0, there exists a catalyst C with dimension n, such that using the catalyst state

ω
1
C = 1

Z(n)

n∑
j=1

1

j
| j〉〈 j| , (5.2.2)

we may perform the transition ρS⊗ω1
C → ρ ′

S⊗ω1
C with trace distance error only ε . Here, Z(n)

is a normalisation constant. We shall see a more detailed analysis of thermal embezzling
later in Section 5.3 and 5.4.
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Another example of embezzling work can be adapted from an example in [144],

ω
2
C = |ψ〉〈ψ | = 1

n

n∑
j=1

| j〉〈 j|, where ĤC =
n∑

j=1
j| j〉〈 j|, (5.2.3)

having that ĤC is the Hamiltonian for a harmonic osciilator. If we consider an initial state
ρSC = |0〉〈0|S ⊗|ψ〉〈ψ |C, and apply the energy conserving operation

|0〉S| j〉C →|1〉S| j−1〉C, (5.2.4)

then by increasing n, ω2
C is left in a state 1

n -close to its original state in trace distance, even
though one unit of work (energy) has been transferred deterministically to the system.

Demanding that the catalyst be returned ε-close in trace distance is thus too weak a
condition. Intuitively, the reason why it is too weak is that we may still need to consume a
non-negligible amount of work to obtain the original catalyst from its returned version. If
we therefore concieve of an approximately cylic process, as one which the working body
is returned in a state which is ε-close in trace distance to its original form, then there is no
second law. All state transformations are possible.

5.2.2. DIMINISHING TRACE DISTANCE: RECOVERY OF MACROSCOPIC
SECOND LAW

We now consider the case where a catalyst is returned with accuracy d(ωC,ω
′
C) ≤ ε/lnN,

where N is the dimension of the catalyst. This means that not only the absolute value of
trace distance error matters, but the error also has to decrease with the size of catalyst used.
This is a further restriction compared to Section 5.2.1. We will see in such a case, we
recover the usual second law that holds for macroscopic systems.

TRIVIAL HAMILTONIANS – RECOVERING THE SHANNON ENTROPY

Let us again first consider the case where ĤS,ĤC are the trivial Hamiltonians. In particular,
we will see that in the extensive regime only the Shannon entropy matters, and the Rényi
entropies are no longer relevant. This shows that if we relax the conditions on how cyclic
the process is, by allowing relatively large inaccuracies in the returned catalyst, then we
recover the usual second law.

Theorem 5.1. Consider any states ρ,ρ ′ ∈ S(HS) where dim(S) = m, and any ε ∈
[0,1]. Let p = eig(ρ) and q = eig(ρ ′) be the eigenvalues of the input and output state
respectively. If there exists N ∈N and a catalyst with spectrum r ∈V (N) such that

p⊗ r Â s, d(s,q⊗ r) ≤ ε

lnN
, (5.2.5)

then
H(p) ≤H(q)+ε + ε lnm

lnN
+h2

(
ε

lnN

)
, (5.2.6)

with h2(x) :=−x ln(x)− (1−x) ln(1−x) being the binary entropy.
Conversely, if

H(p) <H(q), (5.2.7)
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then for N sufficiently large there exists a catalyst with spectrum r of dimension N,
and a final state s such that

p⊗ r Â s, d(s,q⊗ r) ≤ exp
(
−Θ

p
lnN

)
. (5.2.8)

for some constant c> 0.

Proof. The forward direction is straightforward: suppose there exists a catalyst with spec-
trum r such that Eq. (5.2.5) holds true. Considering the bound on trace distance between s
and q⊗ r, by Fannes inequality as presented in Theorem 2.1, we have

|H(s)−H(q⊗ r)| ≤ ε + ε lnm
lnN

+h2

(
ε

lnN

)
, (5.2.9)

implying that

H(s) ≤H(q⊗ r)+ε + ε lnm
lnN

+h2

(
ε

lnN

)
. (5.2.10)

On the other hand, the majorization condition in Eq. (5.2.5) implies that

H(p⊗ r) ≤H(s) ≤H(q⊗ r)+ε + ε lnm
lnN

+h2

(
ε

lnN

)
(5.2.11)

H(p) ≤H(q)+ε + ε lnm
lnN

+h2

(
ε

lnN

)
. (5.2.12)

Conversely, suppose Eq. (5.2.7) holds. Then we know that by typicality, and shown in
Ref. [80], for all n sufficiently large, we have

p⊗n Â q̃n (5.2.13)

for any q̃n such that for some constant c> 0,

d(q̃n,q⊗n) ≤ exp(−c
p

n). (5.2.14)

Let us consider the following catalyst introduced in [149]:

r = 1

n
[
p⊗(n−1) ⊕ q⊗ p⊗(n−2) ⊕ . . . ⊕ q⊗(n−2) ⊗ p ⊕ q⊗(n−1)] . (5.2.15)

We have

r⊗ p= 1

n
[
p⊗n ⊕ q⊗ p⊗(n−1) ⊕ . . . ⊕ q⊗(n−2) ⊗ p⊗2 ⊕ q⊗(n−1) ⊗ p

]
. (5.2.16)

Now, let us consider the state

ŝ= 1

n
[
q̃n ⊕ q⊗ p⊗(n−1) ⊕ . . . ⊕ q⊗(n−2) ⊗ p⊗2 ⊕ q⊗(n−1) ⊗ p

]
. (5.2.17)

Upon observation, one may realize that the eigenvalues of this state ŝ differs from r ⊗ p
only by the first part, i.e. p⊗n versus q̃n. Since we already know that p⊗n Â q̃n, and since
majorization is preserved under direct sum, it follows that

r⊗ pÂ ŝ. (5.2.18)
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Note that the eigenvalues of r ⊗ p and p⊗ r are the same up to reordering. Now, let us
consider the state

s= 1

n
[
q⊗ p⊗(n−1) ⊕ . . . ⊕ q⊗(n−2) ⊗ p⊗2 ⊕ q⊗(n−1) ⊗ p ⊕ q̃n

]
, (5.2.19)

which is also simply the reordering of ŝ, by moving the eigenvalues of q̃n to the end. Since
majorization only depends on eigenvalues, and not the order, we have that Eq. (5.2.18) also
implies that p⊗ r Â s.

Moreover, by writing out the state

q⊗ r = 1

n
[
q⊗ p⊗(n−1) ⊕ q⊗2 ⊗ p⊗(n−2) ⊕ . . . ⊕ q⊗(n−1) ⊗ p ⊕ q⊗n] , (5.2.20)

we see that the states q⊗ r and s are extremely similar, except for the very last part. There-
fore, we may calculate the trace distance, which is

d(s,q⊗ r) = 1

n
·d(qn,q⊗n) ≤ exp(−Θpn) = exp

(
−Θ

p
lnN

)
, (5.2.21)

in the limit n,N →∞. The last equality holds because the dimension of r is dim(r) = N =
n·mn−1, and therefore in the limit n→∞, one has that lnN =Θ(lnn)+lnm·Θ(n) =Θ(n).

GENERAL HAMILTONIANS – RECOVERING THE FREE ENERGY
Here we generalize the results of Theorem 5.1 for systems with a non-trivial Hamiltonian,
only considering the case where ρS,ρ

′
S are block-diagonal.

Theorem 5.2. Consider ε ≥ 0 and a system with some Hamiltonian ĤS and dim(S) =
m, where the initial and final states ρS,ρ

′
S are block-diagonal in the energy eigen-

basis. If there exists a catalyst ωC with spectrum of some dimension N (with some
Hamiltonian ĤC) such that

ρS ⊗ωC −−→
TO

σSC, d(σSC,ρ
′
S ⊗ωC) ≤ ε

max
{

lnN , ESC
max

} , (5.2.22)

where ES
max is maximal energy of the Hamiltonian ĤS, then

F(ρS) ≥F(ρ ′
S)−ε −β

−1 ·
[
ε + ε lnm

lnN
+h2

(
ε

lnN

)]
, (5.2.23)

where F(ρ) = 〈E〉−β−1S(ρ) is the standard free energy.
Conversely, if

F(ρS) >F(ρ ′
S), (5.2.24)

then for all N sufficiently large, there exists a catalyst with spectrum of dimension N,
and a final state σSC with a spectrum such that

ρS ⊗ωC −−→
TO

σSC, d(σSC,ρ
′
S ⊗ωC) ≤ exp

(
−Θ

(p
lnN

))
. (5.2.25)
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Proof. The forward direction is again, relatively straightforward and similar to the proof
found in Theorem 5.1, with the additional accounting for difference in average energy.
Suppose there is a catalyst ωC, and final state σSC, such that trace distance condition in Eq.
(5.2.22) holds true. Then by Fannes inequality,

∣∣S(σSC)−S(ρ ′
S ⊗ωC)

∣∣≤ ε + ε lnd
lnN

+h2

(
ε

lnN

)
. (5.2.26)

Also, we have that ∣∣∣〈E〉σSC −〈E〉ρ ′
S⊗ωC

∣∣∣≤ d(σSC,ρ
′
S ⊗ωC) ·ESC

max ≤ ε. (5.2.27)

Therefore,∣∣F(σSC)−F(ρ ′
S ⊗ωC)

∣∣≤ ∣∣〈E〉ρ −〈E〉ρ ′
∣∣+β

−1 ∣∣S(σSC)−S(ρ ′
S ⊗ωC)

∣∣ (5.2.28)

≤ ε +β
−1

[
ε + ε lnd

lnN
+h2

(
ε

lnN

)]
, (5.2.29)

which implies that

F(σSC) ≥F(ρ ′
S ⊗ωC)−ε −β

−1 ·
[
ε + ε lnd

lnN
+h2

(
ε

lnN

)]
. (5.2.30)

Furthermore, we know that since ρS ⊗ωC −−→
TO

σSC,

F(ρS ⊗ωC) ≥F(σSC). (5.2.31)

Eqns. (5.2.30) and (5.2.31) jointly give Eq. (5.2.23), while noting that the free energy is
additive under tensor product, i.e. F(ρ1 ⊗ρ2) =F(ρ1)+F(ρ2).

Conversely, suppose that Eq. (5.2.24) holds. Then from the main result of Ref. [80] we
know that for n sufficiently large,

ρ
⊗n
S −−→

TO
ρ̃, (5.2.32)

with
d(ρ̃,ρ ′⊗n

S ) ≤ exp
(−Θpn

)
. (5.2.33)

Furthermore, since for block-diagonal states, the conditions for state transition are solely
governed by thermo-majorization, we only need to concern ourselves with the ordered
eigenvalues of involved states. We will therefore continue the discussion by identifying
the states directly with its corresponding eigenvalue spectrum: let p = eig(ρS), q = eig(ρ ′

S)

and qn = eig(ρ̃). Let us, then, given the Hamiltonian ĤS, consider a catalyst with the fol-
lowing (much larger) Hamiltonian:

ĤC =
n⊕

k=1

n−1∑
i=1

Ĥ(i)
S , (5.2.34)
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where Ĥ(i)
S =

n−1 terms︷ ︸︸ ︷
1 . . .⊗ ĤS︸︷︷︸

i-th site

⊗1⊗ . . .⊗ 1. Furthemore, let us take the state of catalyst, ωC, to

have a spectrum r of the form in Eq. (5.2.15), which we write out again for convenience:

r = 1

n
[
p⊗(n−1) ⊕ q⊗ p⊗(n−2) ⊕ . . . ⊕ q⊗(n−2) ⊗ p ⊕ q⊗(n−1)] . (5.2.35)

Let us also write out the spectrum of ωC ⊗ρS and ρ ′
S ⊗ωC:

r⊗ p= 1

n
[
p⊗n ⊕ q⊗ p⊗(n−1) ⊕ . . . ⊕ q⊗(n−2) ⊗ p⊗2 ⊕ q⊗(n−1) ⊗ p

]
, (5.2.36)

q⊗ r = 1

n
[
q⊗ p⊗(n−1) ⊕ q⊗2 ⊗ p⊗(n−2) ⊕ . . . ⊕ q⊗(n−1) ⊗ p ⊕ q⊗n] . (5.2.37)

Upon observation, one may define the vector r̃, such that Eqns. (5.2.36), (5.2.37) can be
rewritten as

eig(ωC ⊗ρS) = r⊗ p= 1

n
p⊗n ⊕ r̃, eig(ρ ′

S ⊗ωC) = q⊗ r = r̃⊕ 1

n
q⊗n, (5.2.38)

where r̃ := 1
n
[
q⊗ p⊗(n−1) ⊕ q⊗2 ⊗ p⊗(n−2) ⊕ . . . ⊕ q⊗(n−1) ⊗ p

]
.

Now, let us finally note that if we consider the block-diagonal states ρin,ρout such that
eig(ρin) = 1

n p⊗n ⊕ r̃, and that eig(ρout) = r̃⊕ 1
n qn, then there exists a thermal operation N

that performs the following transition:

ρin −−→
TO

ρout. (5.2.39)

Indeed, one may first apply a thermal operation that transforms the eigenvalues p⊗n into
qn, which was shown to exist in Ref. [80], as we have mentioned above in Eq. (5.2.32).
Subsequently, since for each block under the direct sum of Eq (5.2.34), the Hamiltonian
is identical, one may switch the eigenvalues of the spectrum from the first term of the
direct sum, to the levels of its last term. This can be done because the energy levels of the
Hamiltonian are the same across the direct sum (note the form of ĤC).

So far, we have a thermal operation N that brings the initial state (corresponding to
spectra r⊗ p) to a final state close to the target (corresponding to spectra q⊗ r). Then we
reverse the above switching operation. Now, the result follows by

d(ρout,ρ
′
S ⊗ωC) = d(r̃⊕ 1

n
qn, r̃⊕ 1

n
q⊗n) ≤ 1

n
·d(qn,q⊗n) = exp

(
−Θ

(p
lnN

))
(5.2.40)

and the last inequality comes from applying Eq. (5.2.33) and the fact that the dimension of
the catalyst is N = n ·mn−1.

5.2.3. WORK DISTANCE: AN OPERATIONAL CLOSENESS MEASURE
BETWEEN STATES

The last closeness measure we consider, takes an operational perspective on the problem of
inexact catalysis. More precisely, we propose to require that the catalyst should be returned
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in a form such that, only a small amount of work is needed in order restore (via exact
catalysis) the catalyst to its original form. This is natural, in the sense that if someone loans
you a catalyst, then they would want it returned in such a way that it does not require a large
amount of work to restore it back.

We thus consider the inexact transition

ρ
0
S ⊗ρ

0
C → ρ

1
SC, (5.2.41)

and require that ρ1
C should be such that the restoration ρ1

C −−−→
CTO

ρ0
C should only require an ε

amount of work. This prompts our definition of the work distance below.

Definition 5.1. Consider states ρ,ρ ′ corresponding to some Hamiltonian Ĥ. Further-
more, consider a qubit battery that has Hamiltonian ĤW =W |W 〉〈W |. The work distance
from ρ to ρ ′ is given by

Dwork(ρ Â ρ
′) := inf {W ∈R | ρ ⊗|W 〉〈W |W −−−→

CTO
ρ
′⊗|0〉〈0|W }. (5.2.42)

Since in Chapter 4, we have shown necessary and sufficient conditions for a state transition
via CTOs, we may apply these laws to evaluate Dwork(ρ Â ρ ′) in the case where ρ,ρ ′ are
block-diagonal. More concretely, we know that ρ ⊗|W 〉〈W |W CTO−−−→ ρ ′⊗|0〉〈0|W is possible
iff for ∀α ≥ 0,

Fα (ρ‖τ
β )+ β−1

α −1
ln

[
e−βW

1+e−βW

]1−α

≥Fα (ρ1
S‖τ

β

S )+ β−1

α −1
ln

[
1

1+e−βW

]1−α

, (5.2.43)

where rearranging yields

Fα (ρ‖τ
β )+W ≥Fα (ρ ′‖τ

β ) , (5.2.44)

and therefore

W ≥Fα (ρ ′‖τ
β )−Fα (ρ‖τ

β ) = β
−1 ·

[
Dα (ρ ′‖τ

β )−Dα (ρ‖τ
β )

]
. (5.2.45)

This implies that for block-diagonal states ρ,ρ ′, the work distance is given by

Dwork(ρ Â ρ
′) = β

−1 sup
α≥0

[
Dα (ρ ′‖τ

β )−Dα (ρ‖τ
β )

]
. (5.2.46)

In Ref. [91], the extractable work from a state (by thermalizing it) and the work cost for
its formation (starting with a thermal state) via thermal operations have been given by

Ŵext(ρ) =−β
−1 lntr(Πρ τβ ) = β

−1D̃0(ρ‖τ
β ) (5.2.47)

Ŵcost(ρ) = β
−1 lnmin{λ : ρ ≤ λτβ } = β

−1D̃∞(ρ‖τ
β ), (5.2.48)

These conditions arise as special cases of our conditions, as we see in the subsequent corol-
lary: the work distance reduces to these quantities.

Corollary 5.1. Consider a block-diagonal state ρ . Then the following holds:
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• The maximum extractable work Ŵext(ρ) =−Dwork(ρ Â τβ ).

• The minimum work cost Ŵcost(ρ) = Dwork(τβ Â ρ).

Proof. To evaluate Dwork(ρ Â τ), note that ∀α, Dα (τβ ‖τβ ) = 0. On the other hand, since ρ

is block-diagonal, it commutes with τβ , and hence D̃α (ρ‖τβ ) =Dα (ρ‖τβ ). Therefore,

−Dwork(ρ Â τ
β ) =−β

−1 · sup
α>0

[−Dα (ρ‖ρ
β )] = β

−1 · inf
α>0

[Dα (ρ‖τ
β )] =Ŵext(ρ),

where the last equality holds due to the fact that the Rényi divergences are non-decreasing
in positive α . On the other hand,

Dwork(τβ Â ρ) = β
−1 · sup

α>0
Dα (ρ‖τ

β ) =Ŵcost(ρ).

Let us now return to the discussion of catalysis, where we demand that the catalyst is
returned, such that the work distance for resetting the catalyst to its original state is small,
i.e. Dwork(ρ1

C Â ρ0
C) ≤ ε . In the case where inexact catalysis occurs, we are allowed to

borrow a catalyst ρ0
C and conduct the transformation ρ0

S ⊗ρ0
C → ρ1

SC. If this transformation
is allowed via thermal operations, then we know for all α ≥ 0,

Fα (ρ0
S ⊗ρ

0
C,ρ

β

S ⊗ρ
β

C ) ≥Fα (ρ1
SC,ρ

β

S ⊗ρ
β

C ). (5.2.49)

If ρ1
SC = ρ1

S ⊗ρ1
C is of product form1, and if the cost of restoring the catalyst has to be

small, D(ρ1
C Â ρ0

C) ≤ ε , then

Fα (ρ0
S ⊗ρ

0
C,ρ

β

S ⊗ρ
β

C ) ≥Fα (ρ1
S ,ρ

β

S )+Fα (ρ1
S ,ρ

β

C ) (5.2.50)

Fα (ρ0
S ,ρ

β

S ) ≥Fα (ρ1
S ,ρ

β

S )+Fα (ρ1
C,ρ

β

C )−Fα (ρ0
C,ρ

β

C ) (5.2.51)

≥Fα (ρ1
S ,ρ

β

S )+ inf
α>0

[
Fα (ρ1

C,ρ
β

C )−Fα (ρ0
C,ρ

β

C )
]

(5.2.52)

≥Fα (ρ1
S ,ρ

β

S )− sup
α>0

[
Fα (ρ0

C,ρ
β

C )−Fα (ρ1
C,ρ

β

C )
]

(5.2.53)

≥Fα (ρ1
S ,ρ

β

S )−ε, (5.2.54)

which tells us that all our second laws are (approximately) recovered.

5.3. THE POWER OF THERMAL EMBEZZLING
In this section, we explore in detail the phenomena of thermal embezzling, which we en-
countered in Section 5.2.1. We saw that the trace distance, although enjoying an operational
significance in quantum information and commonly regarded as the standard tool to quan-
tify distance between quantum states, when applied to inexact catalysis in thermodynamics,
neglects information about the dimension/energy of the catalyst. Therefore, if trace distance

1For non-product output distributions, this argument does not hold since the α free energies are not superadditive,
namely Fα (ρAB,σAB) ≥Fα (ρA,σA)+Fα (ρB,σB) is generally not true.
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is to be used for the quantification of catalytic error, then further conditions should be stated
on the Hamiltonian/dimension of the catalyst as well.

To formulate such conditions, let us first explore the power of thermal embezzling. To
do so, we consider the scenario of preparing a pure excited state of maximum energy2

ΠS
max = |ES

max〉〈ES
max| (5.3.1)

from a thermal state τ
β

S , where β is the inverse temperature of the reservoir used in thermal
operations. Intuitively, if we are interested only in block-diagonal state transitions, then this
is the hardest thermal embezzling scenario possible. This is because for any block-diagonal
ρS, the state ΠS

max thermo-majorizes ρS, which in turn thermo-majorizes τ
β

S . Therefore, it
suffices to analyze the preparation of such a pure excited state,

ωC ⊗τ
β

S −−→
TO

ω
′
C ⊗ΠS

max, (5.3.2)

which is possible iff ωC ⊗ τ
β

S thermo-majorizes ω ′
C ⊗ΠS

max. In the next lemma, we make
precise this argument, by showing that given fixed Hamiltonians, any catalyst state that suc-
ceeds in preparing such a state can also be used to facilitate any other state transformation.

Lemma 5.1 (Universal embezzlers for block-diagonal states). Suppose there exists block-
diagonal catalysts ωC, ω ′

C (with Hamiltonian ĤC) such that ωC ⊗τ
β

S −−→
TO

ω ′
C ⊗ΠS

max holds.

Then for any states ρS,ρ
′
S diagonal (in ĤS), ωC ⊗ρS −−→

TO
ω ′

C ⊗ρ ′
S holds as well.

Proof. This can be proven by noting that having ωC ⊗ τ
β

S thermo-majorizes ω ′
C ⊗ΠS

max, is

equivalent to the existence a β -thermal operation denoted by M , such that M (ωC ⊗ τ
β

S ) =
ω ′

C ⊗ΠS
max. It remains to show that for any ρS,ρ

′
S, there exists a thermal operation M ′ such

that M ′(ωC⊗ρS) =ω ′
C⊗ρ ′

S. Since the thermal state τ
β

S is thermo-majorized by any state ρS,
and ΠS

max thermo-majorizes any other state ρ ′
S, there exist thermal operations N1,N2 such

that N1(ρS) = τ
β

S and N2(Πmax) = ρ ′
S. Finally, consider

M ′ = (1C ⊗N2)◦M ◦ (1C ⊗N1), (5.3.3)

then M ′(ωC ⊗ρS) =ω ′
C ⊗ρ ′

S. This implies ωC ⊗ρS thermo-majorizes ω ′
C ⊗ρ ′

S.

We begin by exploring the case for trivial Hamiltonians, where it is known that thermal
embezzling can occur. Recall that in this regime, thermal states are simply maximally
mixed states, and all unitary operations are allowed. In such cases, the thermo-majorization
condition reduces to majorization: ρ −−→

NO
ρ ′ is possible iff ρ Â ρ ′. To investigate thermal

embezzling in this setting, one asks if given fixed dimensions dim(S) = m and dim(C) = n,
what is the smallest ε such that there exists a catalyst state ωC that satisfies

ωC ⊗ IS

m
Âω

′
C ⊗|0〉〈0|S, (5.3.4)

2In the case where the maximum energy is degenerate, any pure state within the degenerate subspace suffices.
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where the trace distance d(ωC,ω
′
C) between the initial catalyst ωC and final catalyst ω ′

C is
not greater than ε . This trace distance is used as a measure of catalytic error throughout our
analysis. If some catalyst pair (ωC,ω

′
C) satisfies condition Eq. (5.3.4) with trace distance ε ,

then it also facilitates ωC ⊗ρS −−→
NO

ω ′
C ⊗ρ ′

S for any m-dimensional states ρ,ρ ′3.

Definition 5.2. Consider systems S,C such that dim(S) = m ≥ 2 and dim(C) = n = ma

where a≥ 1. Let Sm,n be the set of n-dimensional catalyst state pairs (ωC,ω
′
C) enabling

the transformation ωC ⊗ 1
m1S −−→

NO
ω ′

C ⊗|0〉〈0|S, by satisfying

ωC ⊗ 1

m
1S Âω

′
C ⊗|0〉〈0|S. (5.3.5)

Let dm,n = min
{
d

(
ωC,ω

′
C

) | (
ωC,ω

′
C

) ∈Sm,n
}
.

Since majorization conditions depend solely on the eigenvalues of the density matrices
ωC and ω ′

C, one can phrase this solution for dm,n in terms of a linear minimization pro-
gram over catalyst states diagonal and ordered in the same basis. In fact, the eigenvalues
of ωC,ω

′
C which give rise to optimal trace distance error can be solved by such a linear

program, although for general values of n and m, these eigenvalues are non-unique, and it
is harder to construct an analytical solution. Whenever m ≥ 2 and n = ma where a ≥ 1 is an
integer, we provide an analytic construction of catalyst states, which we later show to be
optimal for the state transformation in Eq. (5.3.4).

5.3.1. A FAMILY OF CATALYST STATES
Lemma 5.2. Consider a system S such that dim(S) =m, and a catalyst C such that dim(C) =
n=ma for some integer a≥ 1. Consider the following catalyst state pair (ωC,ω

′
C): the state

ω ′
C =∑n

i=1 ω ′
i |i〉〈i|, where

ω
′
1 =

1

1+ (m−1)a
and ω

′
i =ω

′
1m1−dlogm ie. (5.3.6)

On the other hand, ωC =∑n
i=1 ωi|i〉〈i|, where

ωi =


ω ′

1 ·m if i= 1,

ω ′
i if 2 ≤ i≤ n

m ,

0 if i> n
m .

(5.3.7)

Then the pair (ωC,ω
′
C) ∈Sm,n as defined in Def. 5.2, and therefore

dm,n ≤ d(ωC,ω
′
C) = m−1

1+ (m−1)a
. (5.3.8)

Proof. Before we begin the proof, it might be helpful to gain some intuition of what the
structure of ωC,ω

′
C looks like. For ω ′

C, a simple way to visualise this is as follows: for the

3This follows from Lemma 5.1 and substituting ĤS = 0.
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first m elements, the distribution is uniform with some probability ω1; for the next m+1 up
to m2 elements the distribution is uniform again, with probability ω1/m; and so on up to
n = ma. The initial ω1 is then chosen so that the full distribution is normalised. As for ωC,
such a state is obtained from ω ′

C by setting all the probabilities for i> n/m to be zero, while
renormalizing by increasing the largest peak of the probability distribution.

Here, we prove that ωC ⊗ 1
m1S Â ω ′

C ⊗ |0〉〈0|S, the majorization relation as stated in
Def. 5.2. It is very easy to see that this is true, once the eigenvalues of ωC and ω ′

C are
compared

ω
′
C = diag

(
ω

′
1, · · · · · · · · · ,ω ′

1︸ ︷︷ ︸
m

,
ω ′

1

m
, · · · , ω ′

1

m︸ ︷︷ ︸
m(m−1)

,
ω ′

1

m2 , · · · ,
ω ′

1

m2︸ ︷︷ ︸
m(m2−m)

,

· · · · · · , ω ′
1

ma−2 , · · · ,
ω ′

1

ma−2︸ ︷︷ ︸
m(ma−2−ma−3)

,
ω ′

1

ma−1 , · · · ,
ω ′

1

ma−1︸ ︷︷ ︸
m(ma−1−ma−2)

)
(5.3.9)

ωC = diag
(
mω

′
1,ω

′
1, · · · ,ω ′

1︸ ︷︷ ︸
m−1

,
ω ′

1

m
, · · · , ω ′

1

m︸ ︷︷ ︸
m2−m

,
ω ′

1

m2 , · · · ,
ω ′

1

m2︸ ︷︷ ︸
m3−m2

,

· · · · · · , ω ′
1

ma−2 , · · · ,
ω ′

1

ma−2︸ ︷︷ ︸
ma−1−ma−2

, 0, · · · · · · · · · · · · ,0︸ ︷︷ ︸
ma−ma−1

)
, (5.3.10)

where we have written this by making use of the fact that mk −mk−1 =m(mk−1 −mk−2).
Firstly, one can observe that since |0〉〈0|S is a pure state with a single eigenvalue 1,

therefore ω ′
C ⊗ |0〉〈0| has the same eigenvalues as ω ′

C. On the other hand, for any two
eigenvalues in ωC, if one is greater than the other, then it is greater by at least a factor of
m. This implies that when we consider ωC ⊗ 1

m 1S, the order of these eigenvalues will not
change. One can obtain the eigenvalues of ωC ⊗ 1

m 1S simply by dividing each eigenvalue of
ωC by a factor m, while increasing its multiplicity also by a factor of m. However, by doing
so using Eq. (5.3.10), one sees that we obtain a set of eigenvalues exactly equal to those in
Eq. (5.3.9). Since any vector majorizes itself, we conclude that ωC ⊗ 1S

m Âω ′
C ⊗|0〉〈0|S.

In calculating the trace distance between ωC and ω ′
C, note firstly that ωC,ω

′
C are di-

agonal in the same basis, therefore we need only consider the eigenvalues. Furthermore,
ω1 >ω ′

1 while ωi ≤ω ′
i for all i> 2. Therefore,

d(ωC,ω
′
C) = 1

2

n∑
i=1

|ωi −ω
′
i | =

∑
i:ωi>ω ′

i

(ωi −ω
′
i ) =ω1 −ω

′
1 =

m−1

1+ (m−1)a
. (5.3.11)

This shows that

dm,n ≤ m−1

1+ (m−1)a
, (5.3.12)

since we have constructed a specific state pair achieving this trace distance. This bound
shows that dm,n decreases with a= logm n.
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In the next section we will see that for catalysts satisfying Eq. (5.3.5), smaller values of
trace distance cannot be achieved, which implies that Eq. (5.3.12) is true with equality, and
the family presented in Lemma 5.2 is optimal.

5.3.2. OPTIMAL CATALYSIS
In this section we show by induction that

dm,n ≥ m−1

1+ (m−1)a
. (5.3.13)

Recall that our problem is to minimize the trace distance d(ωC,ω
′
C) over states ωC,ω

′
C such

that Eq. (5.3.5) is satisfied. We first show that it suffices to minimize over states which are
diagonal in the same basis.

Lemma 5.3 (Optimal initial and final catalyst pairs are diagonal in the same basis). Con-
sider fixed n-tuples of eigenvalues (ω1, · · · ,ωn) and (ω ′

1, · · · ,ω ′
n), such that ωC =∑

i ωi|ei〉〈ei|
and ω ′

C = ∑
i ω

′
i | fi〉〈 fi| are diagonal in two different bases {|ei〉}, {| fi〉}. If (ωC,ω

′
C) satisfies

Eq. (5.3.5), then there exists ω̃C = ∑
i ω̃i|ei〉〈ei| such that d(ωC,ω

′
C) ≥ d(ωC,ω̃C) and that

(ωC,ω̃C) also satisfies Eq. (5.3.5).

Proof. There are two steps in this proof: firstly, we construct ω̃C from ω ′
C and show that

the trace distance decreases by invoking data processing inequality. Then, we use Schur’s
theorem to show that majorization holds.

Let ω̃C = N (ω ′
C), where N (ρ) = ∑

i |ei〉〈ei|ρ |ei〉〈ei| is the fully dephasing channel in
the basis {|ei〉}. Note that since ωC is already diagonal in {|ei〉}, N (ωC) = ωC. Because the
trace distance is non-increasing under CPTPMs, in particular TOs, we have

d(ωC,ω
′
C) ≥ d(N (ωC),N (ω ′

C)) = d(ωC,ω̃C) . (5.3.14)

On the other hand, we will show that ω ′
C Â ω̃C; in other words, eig(ω ′

C) Â eig(ω̃C). Recall
that ω̃C = N (ω ′

C) and, from the definition of N , observe that the eigenvalues eig(ω̃C) are
precisely the diagonal elements of ω ′

C in the basis {|ei〉}. Schur’s theorem (which we’ve
seen in Theorem 2.4) says that for any Hermitian matrix M, eig(M) majorizes the diagonal
elements of M. Therefore, we have that ω ′

C Â ω̃C. Making use of the initial assumption
ωC ⊗ IS/mÂω ′

C ⊗|0〉〈0|S, we now see that

ωC ⊗ 1

m
IS Âω

′
C ⊗|0〉〈0|S Â ω̃C ⊗|0〉〈0|S , (5.3.15)

which concludes the proof.

We are now ready to establish a lower bound on dm,n for n=ma, where we use Lemma
5.3 so that we only consider cases where both states are simultaneously diagonalized.

Theorem 5.3. Consider integers m≥ 2 and n=ma where a≥ 1. Then

dm,n = m−1

1+ (m−1)a
, (5.3.16)
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where dm,n is defined in Def. (5.2). Hence, the family of catalyst states from Sec-
tion 5.3.1 achieves this optimal trace distance.

Proof. To begin, note that the majorization condition

ωC ⊗ 1

m
IS Âω

′
C ⊗|0〉〈0|S (5.3.17)

only depends on the eigenvalues of ω and ω ′. For fixed eigenvalues, the trace distance
d(ω,ω ′) is minimized if the two states share the same eigenbasis and the eigenvalues are
ordered in the same way, e.g., in decreasing order, as discussed in Lemma 5.3. Hence, from
now on we consider only diagonal states ω = diag(ω1, . . . ,ωn) and ω ′ = diag(ω ′

1, . . . ,ω
′
n),

where ω1 ≥ ω2 ≥ . . . ≥ ωn and ω ′
1 ≥ ω ′

2 ≥ . . . ≥ ω ′
n. Here, diag(· · · ) denotes the diagonal

matrix with the corresponding diagonal elements. To prove the theorem, we only need to
show that

dm,n ≥ m−1

1+ (m−1)a
(5.3.18)

as the other inequality follows from the family of embezzling states exhibited in Lemma
5.2. We use induction on the integer a. For the base case a = 1, we need to show that
dm,m ≥ 1 − 1/m. Consider any feasible solution (ω,ω ′) in dimension n = m. From the
majorization condition

ω ⊗ 1

m
Im Âω

′⊗|0〉〈0| ⇔
(
ω1

m
, . . . ,

ω1

m
, . . . ,

ωm

m
, . . . ,

ωm

m

)
Â (ω ′

1, . . . ,ω
′
m,0, . . . ,0) (5.3.19)

it follows that ω1/m≥ω ′
1 and ωi = 0 for i≥ 2. Hence, ω1 = 1 and 1/m≥ω ′

1. Since ω ′
1 is the

largest of the m values ω ′
i , we get ω ′

i = 1/m for all i. Finally, a simple calculation reveals
that d(ω,ω ′) = 1−1/m, which establishes the base case.

For the inductive step, we assume that

dm,n = m−1

1+ (m−1)a
, (5.3.20)

for some n=ma and aim to show that

dm,k =
m−1

1+ (m−1)(a+1)
(5.3.21)

for k =ma+1. The main idea is to consider an optimal catalyst pair (ω,ω ′) ∈Sm,k and from
it construct a catalyst pair (σ ,σ ′) ∈ Sm,n in dimension n = ma. Since our construction will
allow to relate d(σ ,σ ′) ≥ dm,n to d(ω,ω ′) = dm,k, we then obtain a lower bound on dm,k in
terms of dm,n as in Eq. (5.3.20).

Let us start by using the state pair that satisfies Eq. (5.3.17) and achieves dm,k, and from
it derive some useful properties. Firstly, pick (ω,ω ′) ∈Sm,k so that d(ω,ω ′) = dm,k. As be-
fore, without loss of generality, we assume that ω = diag(ω1, . . . ,ωk) and ω ′ = diag(ω ′

1, . . . ,ω
′
k)

where ω1 ≥ . . .≥ωk and ω ′
1 ≥ . . .≥ω ′

k. The majorization condition

ω ⊗ 1

m
Im Âω

′⊗|0〉〈0| ⇔
(
ω1

m
, . . . ,

ω1

m
, . . . ,

ωk

m
, . . . ,

ωk

m

)
Â (ω ′

1, . . . ,ω
′
k,0, . . . ,0) (5.3.22)
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again implies that ω1 > ω ′
1 and ωi = 0 for i > k/m = ma. To further simplify matters, we

can also assume that ωi ≤ ω ′
i for all i ≥ 2. This is because we can always replace ω with

ω̃ = diag(ω̃1, . . . ,ω̃k), where

ω̃i =

ω ′
i if ωi >ω ′

i ,

ωi otherwise,
(5.3.23)

for i ≥ 2 and ω̃1 is chosen so that
∑

i ω̃i = 1. In essence, all the majorization advantage of
ω against ω ′ can be piled upon the first, largest eigenvalue of ω . The reader is referred to
Fig.5.1 for a visual comparison. This replacement is valid since (ω̃,ω ′) still satisfies the
majorization condition. Furthermore,

d(ω,ω ′) = ∑
i:ωi>ω ′

i

ωi −ω
′
i = d(ω̃,ω ′) (5.3.24)

implies that the distance is unchanged.

Figure 5.1: A visual comparison between an example of states ω,ω ′ and ω̃ , as defined in the proof of Theorem
5.3. We see that whenever ω ≥ ω ′ (yellow bar larger than brown), we can define ω̃ (blue) such that ω̃ = ω , and
renormalize ω̃ by increasing ω̃1. Also form this visualization one can observe that the trace distance as described
in Eq. (5.3.24) does not change.

Subsequently, we proceed to bound dm,n. To do this, we start from the optimal catalyst
pair (ω,ω ′) ∈ Sm,k, and construct a smaller catalyst pair (σ ,σ ′) ∈ Sm,n in dimension n =
ma = k/m. Essentially, this is done by directly applying a cut to the dimension of the final
catalyst state ω ′, reducing it to having dimension k/m = n. Similarly, the same amount of
probability is cut from the initial state, and both states are renormalized.

Let us decribe this in more detail: denote δ = ∑
i>k/m ω ′

i and pick index s and value
ω̂s ≤ ωs so that

∑
i<s ωi + ω̂s = 1−δ . Note that s ≤ k/m2, since the majorization condition

Eq. (5.3.22) implies that

∑
i≤k/m2

m∑
j=1

ωi

m
= ∑

i≤k/m2

ωi ≥
∑

i≤k/m
ω

′
i = 1−δ . (5.3.25)
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This inequality is obtained by summing up the first k/m elements of both distributions in
the L.H.S. and R.H.S. of Eq. (5.3.22). We now define

σ = 1

1−δ
diag

(
ω1, · · · ,ωs−1,ω̂s,0, · · · · · · ,0

)
, (5.3.26)

σ
′ = 1

1−δ
diag

(
ω

′
1, · · · ,ω ′

s−1,ω
′
s,ω

′
s+1, · · · ,ω ′

k/m
)
. (5.3.27)

Since
∑

i<s ωi + ω̂s = ∑
i≤k/m ω ′

i = 1− δ the states σ and σ ′ are properly normalized. To
establish that (σ ,σ ′) ∈ Sm,n, we need to show that the majorization condition holds true.
We consider two separate cases: when ω̂s =ωs, and when ω̂s 6=ωs.

If ω̂s = ωs, then the inequalities in the majorization condition for (σ ,σ ′) have already
been enforced by the majorization condition of (ω,ω ′). Hence, (σ ,σ ′) is a valid catalyst
pair in dimension n= k/m, i.e., (σ ,σ ′) ∈Sm,k. Let us now make the following two observa-
tions.

1. d (ω,ω′′′) ≥≥≥δ. To see this, recall that ωi = 0 for i> k/m= n, and thus

d(ω,ω ′) = ∑
i:ω ′

i>ωi

ω
′
i −ωi ≥

∑
i>k/m

ωi = δ . (5.3.28)

2. d (ω,ω′′′) === (1−−−δ)d (σ,σ′′′). To see this, note that

d(ω,ω ′)
1−δ

= 1

1−δ

∑
i:ωi>ω ′

i

ωi −ω
′
i =

ω1 −ω ′
1

1−δ
= d(σ ,σ ′) (5.3.29)

since only the first diagonal element of σ is strictly larger than the corresponding
diagonal element of σ ′.

Combining observations (1) and (2) gives

dm,k = d(ω,ω ′) = (1−δ ) ·d(σ ,σ ′) ≥
[

1−d(ω,ω ′)
]
·d(σ ,σ ′) ≥ (1−dm,k) ·dm,n, (5.3.30)

since
d(σ ,σ ′) ≥ dm,n = m−1

1+ (m−1)a
. (5.3.31)

Rearranging gives us

dm,k ≥
dm,n

1+dm,n
= m−1

1+ (m−1)(a+1)
(5.3.32)

and we have completed the inductive step.
If ω̂s 6=ωs, then the majorization inequalities involving ω̂s might fail to hold. Therefore,

instead of (σ ,σ ′) we consider the following, slightly different, pair of states

ζ =σ = 1

1−δ
diag

(
ω1, · · · ,ωs−1,ω̂s,0, · · · ,0

)
, (5.3.33)

ζ
′ = 1

1−δ
diag

(
ω

′
1, · · · ,ω ′

(s−1)m, l, · · · ,ω̄,ω ′
sm+1, · · · ,ω ′

k/m
)
, (5.3.34)
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where
l = 1

m
(
ω

′
(s−1)m+1 + . . .+ω

′
sm

)
. (5.3.35)

The diagonal elements of ζ ′ are still in descending order, and the state is properly normal-
ized. To argue that (ζ ,ζ ′) is a valid pair of catalyst states, we need to verify the majorization
inequalities that are not directly implied by the majorization condition for (ω,ω ′). That is,
we need to verify that for all 1 ≤ j ≤m,

C+ j
m

ω̂s ≥C′+ jl, (5.3.36)

where C =∑s−1
i=1 ωi and C′ =∑(s−1)m

i=1 ω ′
i .

We can see that this is true for (ζ ,ζ ′) because in this regime of Eq. (5.3.36), both sides
increase linearly with the indices j, and for the endpoints j = 0 and j = m, the L.H.S. is
higher than the R.H.S., which is guaranteed by the majorization condition for (ω,ω ′),

C ≥C′ and C+ ω̂s ≥C′+ml. (5.3.37)

Therefore, for any 0 ≤ p≤ 1, we have that

(1− p)C+ p(C+ ω̂s) ≥ (1− p)C′+ p(C′+ml). (5.3.38)

Taking p = j/m yields the desired inequality (5.3.36) and hence (ζ ,ζ ′) is a valid catalyst
pair. Lastly, note that reasoning similar to the one in Eq. (5.3.29) can be used to deduce that

d(ω,ω ′)
1−δ

= d(ζ ,ζ ′). (5.3.39)

Therefore, d(ζ ,ζ ′) = d(σ ,σ ′) and we can use the argument from the previous case to com-
plete the inductive step.

By this proof of induction we have shown that dm,n ≥ m−1/(1+ (m−1)a) for all m,n =
ma and a ≥ 1. This together with the conclusion in Lemma 5.2 that the quantity dm,n ≤
m−1/(1+ (m−1)a) proves that

dm,n = m−1

1+ (m−1)a
, (5.3.40)

and the state pair described in Eq. (5.3.6) and (5.3.7) is optimal.

Fig. 5.2 compares our final catalyst state with the state ω̃C = 1
Z(n)

∑n
j=1

1
j | j〉〈 j|, with Z(n) =∑n

j=1 1/ j being the normalization constant, as we’ve seen previously in Section 5.2.1. The
family ω̃C was proposed in Ref. [144] for embezzling in the LOCC setting. In Fig. 5.3,
we compare the trace distance error achieved by catalyst ω̃C from Ref. [144] with the error
achieved by our catalyst ωC. We see that for small dimensions, our catalyst outperforms
ω̃C, however asymptotically the error scales with logn for both catalysts.
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Figure 5.2: The eigenvalues of our final catalyst state ω ′
C (blue) versus those of ω̃C proposed in Ref. [144] (red,

dashed), for a) m= 2,n= 8 and b) m= 3,n= 27. Similarities can be observed in the structure of both constructions.
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Figure 5.3: The comparison of trace distance error for our state (blue, solid) and the catalyst state in Fig. 5.2 (red,
dashed), for the case where m= 2.

5.4. THE LIMITATIONS OF THERMAL EMBEZZLING
In this section, we investigate constraints on the catalyst that would prevent thermal embez-
zling with arbitrarily small error. The investigations were done for general Hamiltonians.
In Section 5.4.1 we consider a dimension constraint on the catalyst, while in Section 5.4.2
we allow infinite-dimensional catalysts, but with an upper bound on the average energy.

5.4.1. DIMENSION CONSTRAINTS
BLOCK-DIAGONAL STATES

As mentioned in Lemma 5.1, given Hamiltonians ĤS and ĤC, it suffices to consider

ωC ⊗τ
β

S −−→
TO

ω
′
C ⊗ΠS

max, (5.4.1)

where the possibility of transition is governed by thermo-majorization. We prove whenever
the dimension of the catalyst (and system) are finite, there exists a lower bound on the
accuracy of thermal embezzling. Such a bound is dependent on ĤS and ĤC. To do so,
consider the problem

ε = min d(ωC,ω
′
C) (5.4.2)

s.t. ωC ⊗τ
β

S →ω
′
C ⊗ΠS

max, 0 ≤ω,ω ′ ≤ 1.
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In Chapter 4, we showed that for block-diagonal initial and final states ρS,ρ
′
S, it is

sufficient to consider block-diagonal catalysts. Therefore, since τ
β

S and ΠS
max are block-

diagonal, it is sufficient to consider ωC,ω
′
C which are block-diagonal with respect to ĤC.

Since all α-Rényi divergences are monotonically decreasing with thermal operations, sat-
isfying the thermo-majorization conditions in Eq. (5.4.2) also implies that

D∞(ωC ⊗τ
β

S ‖τ
β

CS) ≥D∞(ω ′
C ⊗ΠS

max‖τ
β

CS).

To simplify this expression, note that τ
β

CS = τ
β

C ⊗τ
β

S and that Rényi divergences are additive
under tensor product. Furthermore, Dα (ρ‖ρ) = 0 for any ρ . Therefore,

D∞(ωC‖τ
β

C )+0 ≥D∞(ω ′
C‖τ

β

C )+ log
ZS

e−βES
max

, (5.4.3)

where ZS is the partition function of the system. The eigenvalues of ωC and ω ′
C are denoted

as {ω j} and {ω ′
j}, respectively. Evaluting D∞ by using the definition in Eq. 2.3.6, we obtain

max
i

ωi

τi
≥ ZS

e−βES
max

max
j

ω ′
j

τ j
, where τ j = e−βEC

j

ZC
,

τ j being the eigenvalues of the thermal state for the catalyst, for the energy eigenstate
with energy eigenvalue EC

i , with normalization ZC, the partition function of the catalyst.
Therefore, we can consider a relaxation of Eq. (5.4.2),

ε̂ = min d(ωC,ω
′
C) (5.4.4)

s.t. max
i

ω ′
i + ε̂

τi
≥ ZS

e−βES
max

max
j

ω ′
j

τ j
,

∀ j, 0 <ω
′
j ≤ 1,

where ε ≥ ε̂ . Since D∞ depends only on the maximum of ω ′
i /τi, the optimal strategy

to increase D∞ while going from ω ′
C to ωC is to increase a specific eigenvalue ω ′

i by an
amount ε̂ .

In the next Lemma 5.4, we show that ε ≥ ε̂ ≥ δ > 0 whenever EC
max,E

S
max <∞.

Lemma 5.4 (Lower bound to error in catalysis). Consider ĤS,ĤC finite-dimensional, and
denote {ES

i }m
i=1, {EC

i }n
i=1 to be the set of energy eigenvalues respectively. Then for some fixed

EC
max,E

S
max, consider any probability distribution r (which corresponds to eigenvalues of a

catalyst ω), and ε̂ such that

max
i

ri + ε̂

τi
≥ ZS

e−βES
max

max
j

r j

τ j
, (5.4.5)

where τi = e−βEC
i /ZC. Note that index i runs over all energy levels EC

i . Then

ε̂ ≥
(

ZS

e−βES
max

−1

)
e−βEC

max

ZC
6= 0. (5.4.6)

In other words, thermal embezzling of block-diagonal states with arbitrary accuracy is not
possible.
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Proof. Firstly, let r∗,τ∗ indicate the eigenvalues such that r∗/τ∗ = max j r j/τ j. Then

max
i

ri

τi
+max

i

ε̂

τi
≥ max

i

ri + ε̂

τi
≥ r∗

τ∗
ZS

e−βES
max

.

The first term of L.H.S. is equal to r∗/τ∗, and therefore can be grouped with R.H.S. to form

max
i

ε̂

τi
≥ r∗

τ∗

(
ZS

e−βES
max

−1

)
≥ ZS

e−βES
max

−1,

where the second inequality holds since we know that D∞(r‖q) = logmaxi ri/τi = logr∗/τ∗ ≥
0, therefore r∗/τ∗ ≥ 1. Finally, taking the maximization of 1/τi over i gives 1/τmin, recall
that τi corresponds to probabilities of the thermal state being in the eigenstate with energy
Ei. Therefore, τmin = e−βEC

max /ZC, and we get

ε̂ ≥
(

ZS

e−βES
max

−1

)
e−βEC

max

ZC
. (5.4.7)

ARBITRARY STATES
The case of arbitrary states are treated separately, since our Lemma 5.1 on universal embez-
zlers hold only for diagonal states, where necessary and sufficient conditions are known for
state transformations. Nevertheless, since the monotonicity of quantum Rényi divergences
D̂α is still a necessary condition for arbitrary state transformations ρS −−→

TO
ρ ′

S, one can use

techniques very similar to those in Section 5.4.1 to lower bound the embezzling error.
More precisely, denote ε(ρS,ρ

′
S) to be the solution of

ε(ρS,ρ
′
S) := min d(ωC,ω

′
C)

s.t. D̂∞(ωC ⊗ρS‖τ
β

CS) ≥ D̂∞(ω ′
C ⊗ρ

′
S‖τ

β

CS), 0 ≤ω,ω ′ ≤ 1.
(5.4.8)

Recall that τ
β

CS = τ
β

C ⊗τ
β

S , and D̂α is additive under tensor product. Therefore, by defin-

ing κ1(ρS,ρ
′
S) := D̂∞(ρ ′

S‖τ
β

S )− D̂∞(ρS‖τ
β

S ), we can rewrite the constraint in Eq. (5.4.8)

D̂∞(ωC‖τ
β

C ) ≥ D̂∞(ω ′
C|τ

β

C )+κ1(ρS,ρ
′
S). (5.4.9)

Note that this is almost equivalent to Eq. (5.4.3), except the constant logZS/e−βES
max previ-

ously is now replaced with κ1(ρS,ρ
′
S). By following the same steps used to prove Lemma

5.4, we obtain a lower bound depending on ρS,ρ
′
S.

Lemma 5.5. Consider system and catalyst Hamiltonians which are finite-dimensional, and
denote {ES

i }m
i=1 and {EC

i }n
i=1 to be the set of energy eigenvalues respectively. Then for some

fixed 0 ≤ EC
max,E

S
max < ∞, consider any probability distribution r (which corresponds to

eigenvalues of a catalyst ω), and ε̂ such that

max
i

ri + ε̂

τi
≥ 2κ1(ρS,ρ

′
S) ·max

j

r j

τ j
, ∀ j,0 < r j ≤ 1, (5.4.10)
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where τi = e−βEC
i /ZC and κ1(ρS,ρ

′
S) =D∞(ρ ′

S‖τ
β

S )−D∞(ρS‖τ
β

S ). Note that index i runs over
all energy levels EC

i . Then

ε(ρS,ρ
′
S) ≥

[
2κ1(ρS,ρ

′
S) −1

] e−βEC
max

ZC
6= 0. (5.4.11)

This implies thermal embezzling with arbitrary accuracy, using a diagonal catalyst is not
possible for any κ1(ρS,ρ

′
S) > 0.

Comparing Lemma 5.4 and Lemma 5.5 which are very similar, one sees that for non-
diagonal states Lemma 5.5 gives a state-dependent lower bound on the embezzling error.
However for diagonal states, the bound in Lemma 5.4 can be made state-independent be-
cause of the existence of universal embezzlers.

5.4.2. ENERGY CONSTRAINTS
In this section, we provide lower bounds for the error in catalysis, given constraints only
on the average energy of the catalyst state. We do so by fixing an upper bound on the
average energy of the catalyst to the problem stated in Eq. (5.4.2). Note that this means
that only infinite-dimensional catalysts are of interest, since any finite-dimensional catalyst
automatically has an upper bound on its average energy.

By looking at the Rényi divergence for α = 1/2, we can show a non-zero lower bound
on the catalytic error, for cases where the partition function of the catalyst Hamiltonian ZC
is finite. This minimal assumption covers most physical scenarios, especially if we want
the thermal state to be well defined. Again we start with block-diagonal states, then later
generalize to arbitrary states.

BLOCK-DIAGONAL STATES
Firstly, let us recall the problem stated in Eq. (5.4.2). We aim at minimizing the trace
distance between all initial and final catalyst states, such that the most significant thermal
embezzlement of a smaller system S can be achieved. We denote again the block-diagonal
initial and final catalysts by ωC and ω ′

C with energy eigenvalues {ω j} and {ω ′
j}, so that

d(ωC,ω
′
C) = 1

2

∞∑
j=1

|ω j −ω
′
j|. (5.4.12)

By invoking only the monotonicity of D1/2, we analyze the alternative relaxed problem

min
1

2

∞∑
j=1

|ω j −ω
′
j|, (5.4.13)

s.t.
∞∑
j=1

(ω ′
j
1/2 −A1/2

ω
1/2
j )γEC

j ≥ 0,
∞∑
j=1

ω
′
j = 1,

∞∑
j=1

ω j = 1,

∀ j, ω
′
j,ω j ≥ 0, and

∞∑
j=1

EC
j ω j ≤E,

where
A= ZS

e−βES
max

, (5.4.14)
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and γ = e−β /2 < 1. Furthermore, since A = (mini τi)−1 with τi forming a probability distri-
bution (that of a thermal state), one can deduce that whenever the dimension of system S is
m≥ 2, A≥m≥ 2 holds as well.

The solution of this minimization problem serves as a lower bound to the optimal trace
distance error. This problem can be relaxed to a convex optimisation problem. We can
arrive at a simple bound, however, with rather non-technical means. In essence, we intro-
duce split bounds, so that the optimization can be written as two independent, individually
significantly simpler optimization problems. We make use of the inequality

x1/2 −a1/2y1/2 ≤ |x−y|1/2 − f (a)y, (5.4.15)

which holds true for x,y ∈ [0,1],a≥ 2 and with f :R+ →R+ defined as

f (a) = 1

2

a2

a2 +1
. (5.4.16)

We can then relax the problem by replacing the first constraint in Eq. (5.4.13), with x j
taking the role of |ω j −ω ′

j|, and y j taking the role of ω j, to arrive at

min
1

2

∞∑
j=1

x j, (5.4.17)

s.t.
∞∑
j=1

[
x1/2

j − f (A)ω j

]
e−βEC

j /2 ≥ 0,
∞∑
j=1

ω j = 1,

∀ j, x j,ω j ≥ 0 and
∞∑
j=1

EC
j ω j ≤E.

Let us first concern ourselves with the upper bound on average energy,
∑∞

j=1 EC
j ω j ≤E.

In the next Lemma 5.6, we show that such a constraint implies that the total probability of
having relatively low energy eigenvalues cannot be vanishingly small.

Lemma 5.6 (Lower bound to sums of eigenvalues). Consider any probability distribu-
tion {ωi} over ascendingly ordered energy eigenvalues {EC

i }, with the property that the en-
ergy eigenvalues are unbounded, i.e. limn→∞EC

n =∞. If the expectation value of energy∑∞
i=1 ωiEC

i ≤E for some finite constant E, define for any 0 <W < 1

j(W ) = min
{

j : EC
j+1 >

E
1−W

}
. (5.4.18)

Then
j(W )∑
i=1

ωi ≥W.

Proof. One can easily prove this by contradiction. Assume that
j(W )∑
i=1

ωi < W instead, and

therefore
∞∑

i= j(W )+1
ωi > 1−W . This violates the energy constraint, since

∞∑
i= j(W )+1

ωiEC
i > (1−W )

E
1−W

=E. (5.4.19)
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Having established Lemma 5.6, let us return to Eq. (5.4.17). Note that this minimization
can be split into two independent parts: we may first consider the subproblem of minimizing∑∞

j=1 ω je
−βEC

j /2, with respect to the constraints ∀ j,ω j ≥ 0 and
∑∞

j=1 EC
j ω j ≤ E. Define εC

to be the solution of the simple linear problem involving only variables {ω j}, which we
explicitly write out in Corollary 5.2. One can then use Lemma 5.6 to place a lower bound
on the quantity εC, which we detail in Corollary 5.2.

Corollary 5.2 (Lower bound to εC). For a set of unbounded energy eigenvalues {EC
i }, con-

sider the minimization problem

εC = min
∞∑
j=1

ω je
−βEC

j ,

s.t.
∞∑
j=1

ω j = 1, ω j ≥ 0 ∀ j, and
∞∑
j=1

EC
j ω j ≤E.

Denote γ = e−β ∈ (0,1). Then for j(W ) = min{ j : EC
j+1 >E/1−W },

εC ≥ max
W∈(0,1)

Wγ
E j(W ) . (5.4.20)

Proof. This is a direct application of Lemma 5.6, since the first and second constraints are
satisfied automatically by any probability distribution. Given some W ∈ (0,1), by Lemma
5.6 we know that

∑ j(W )
i=1 ωi ≥W . The objective function then can be lower bounded as

∞∑
i=1

ωie−βEi ≥
j(W )∑
i=1

ωie
−βEC

j(W ) ≥Wγ
EC

j(W ) , (5.4.21)

for any such W . To obtain the best lower bound, one maximizes over all W ∈ (0,1).

Remark 5.1 (Temperature dependence). The bound obtained in Corollary 5.2 is dependent
on β , the inverse temperature of the bath, and goes to zero in the limit β →∞.

We have now solved the subproblem involving variables {ωi}. Inserting the solution into
the former optimisation problem in Eq. (5.4.17), we arrive at following problem:

min
1

2

∞∑
j=1

x j s.t.
∞∑
j=1

x1/2
j e−βEC

j /2 ≥ f (A)εC, ∀ j,x j ≥ 0.

The optimal solution for this minimization can easily be lower bounded by considering the
Lagrange dual, which is

max − 1

4
λ

2
∞∑
j=1

e−βEC
j +λ f (A)εC, s. t. λ ≥ 0.

In fact, this can be immediately solved as a quadratic problem for a single variable. Let

g(λ ) =
∞∑
j=1

e−βEC
j λ

2 +λεC, (5.4.22)
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and consider the stationary point of the function by setting first derivative w.r.t. λ to zero,

− 1

2
λ

∑
i

e−βEi + f (A)εC = 0, (5.4.23)

where the second derivative is negative, hence this implies a maximum point. Substituting
this into the objective function gives f (A)ε2

C/ZC, and hence we conclude that

ε ≥ 1

2

f (A)2ε2
C

ZC
.

In this way, we arrive at the main result.

Theorem 5.4 (Energy constraint limits the accuracy of thermal catalysis). Consider
the transformation ωC⊗τS −−→

TO
ω ′

C⊗|ES
max〉〈ES

max|, where dopt = d(ωC,ω
′
C) is the error

induced on the catalyst. Then for all catalyst states with finite average energy, dopt is
lower bounded by

dopt ≥ 1

2

f (A)2ε2
C

ZC
, (5.4.24)

where f (x) is defined in Eq. (5.4.16), A = ZS/e−βES
max , εC = maxW∈(0,1)Wγ

EC
j(W ) and

j(W ) = min{ j : EC
j+1 >E/(1−W )}.

In other words, thermal embezzling of diagonal states with arbitrarily small accuracy
in trace distance is not possible.

ARBITRARY STATES
Similar to discussions in Section 5.4.1 , when states ρS or ρ ′

S are non-diagonal, we can still
obtain a state dependent lower bound for the catalytic error. For any state ρS, ρ ′

S, let us
define the quantity

κ2(ρS,ρ
′
S) := D̂1/2(ρ ′

S‖τS)− D̂1/2(ρS‖τS). (5.4.25)

Then a lower bound can be obtained by following the steps as proved in Section 5.4.2, only
now replacing the constant A defined in Eq. (5.4.14) with a state-dependent function.

Lemma 5.7. For quantum states ρS and ρ ′
S, consider the transformation ωC ⊗ρS −−→

TO
ω ′

C ⊗
ρ ′

S, where dopt = d(ωC,ω
′
C) is the error induced on the catalyst. Then for all block-diagonal

catalyst states with finite average energy, dopt is lower bounded by

dopt ≥ 1

2

f (2κ2(ρS,ρ
′
S))2ε2

C

ZC
,

where f (x) is defined in Eq. (5.4.16), while the other quantities are given by

κ2(ρS,ρ
′
S) = D̂1/2(ρ ′

S‖τS)− D̂1/2(ρS‖τS),

εC = max
W∈(0,1)

Wγ
EC

j(W ) ,

j(W ) = min{ j : EC
j+1 >E/1−W }.
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This implies that thermal embezzling with arbitrary accuracy, using a block-diagonal cat-
alyst is not possible for any κ2(ρS,ρ

′
S) > 0.

5.5. CONCLUSIONS AND OUTLOOK
In summary, in this chapter we considered inexact catalysis, where the catalyst is returned
not exactly to its original state, but with some small error. We analyze how the generalized
second laws change when different closeness measures are used to quantify catalytic error.
In this process, we identify the problem of thermal embezzling. We carefully investigated
the power and limitations of this phenomena under different physical scenarios. While
this effect can be powerful in the case of fully degenerate Hamiltonians, under physically
ubiquitously common settings, it is very limited. Based on the physical considerations that
catalysts have non-trivial Hamiltonians, we resolve the puzzle of thermal embezzling, for
all catalyst states which are block-diagonal. We summarize our findings in Table 5.2.

Energy
levels of HC

Dimension of
catalyst Bounded Unbounded

Fully degenerate No Yes

Bounded No Probably, true at least for
fully degenerate Hamiltonians

Unbounded N/A No, if average energy and
partition function is finite

Table 5.2: The occurance of thermal embezzling (inducing any arbitrary state transitions) with arbitrary precision,
under different settings. For regimes labeled "No", explicit bounds on the trace distance error (in the catalyst)
can be found in Eq. (5.3.16), Eq. (5.4.6) and Eq. (5.4.24), where these bounds are derived for the case where
initial/final states of the system are block-diagonal.

The bounds on dimensionality are closely related to energy restrictions. While placing
an upper bound on the dimension directly imply an upper bound on the average energy, the
reverse statement is not generally true. However, if one restricts not only the expectation
value of the energy distribution, but also restricts its variance to be finite, then this is al-
most equivalent to placing a dimension restriction. For example, given any non-degenerate
Hamiltonian ĤC with unbounded eigenvalues, consider the set of catalyst states such that the
average energy and variance of a given catalyst is finite. Then by the Chebyshev inequality
[69], one can understand that this is equivalent to introducing a cut-off on the maximum
energy eigenvalue (and therefore on the dimension).

For infinite-dimensional Hamiltonians, we have shown that for certain classes of cata-
lyst Hamiltonians, explicit bounds can be derived on the trace distance error of a catalyst
when the average energy is finite. Our results have covered a large range of Hamiltonians
which are commonly found in physical systems - including the important case of the har-
monic oscillator in free systems - with the minimal assumption that partition function ZC is
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finite, which holds for all systems for which the Gibbs thermal state is well-defined. How-
ever, we know that thermal embezzling can be arbitrarily accurate as dimension grows, at
least in the simplest case of the trivial Hamiltonian. This implies that there will be specific
cases of infinite-dimensional Hamiltonians where simply bounds on average energy do not
give explicit bounds on thermal embezzling error. We suspect that this may be true for
systems with unbounded dimension, but bounded Hamiltonians. The reason is that if di-
mension is unbounded, then there must exist an accumulation point in the energy spectrum.
The subspace of this accumulation point will be very similar to the trivial Hamiltonian.



6
HEAT ENGINES: FROM

CLASSICAL TO QUANTUM

Sadi Carnot’s theorem regarding the maximum efficiency of heat engines is considered to
be of fundamental importance in thermodynamics. This theorem famously states that the
maximum efficiency depends only on the temperature of the heat baths used by the engine
- but not the specific details on how these baths are actually realized. Carnot’s results can
be derived as a consequence of the second law of thermodynamics. Given that the second
law has to be refined in the quantum microscopic regime, how does that affect the funda-
mental performance of a quantum heat engine? Furthermore, a suitable way of quantifying
work for microscopic quantum systems has been constantly debated in the field of quantum
thermodynamics. Can we find a characterization of work that justifies the energy extracted
from a quantum heat engine? To address these questions, in this chapter we build a model
for a generic quantum heat engine, and propose three different characterizations of work:
perfect, near perfect and imperfect work. We demonstrate that in the regime where only
the macroscopic second law matters, then Carnot’s result may be recovered in such a heat
engine setup.
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6.1. INTRODUCTION
In this chapter, we turn to look at heat engines, which are systems designed in order to
convert heat or thermal energy into usable, often either chemical energy which is stored up,
or directly into mechanical work. Throughout the past century, countless efforts have been
poured into designing explicit (classical) heat engines that perform at a high efficiency, or
high power. Although the intricacies of materials and engineering designs may affect the
performance of a heat engine from a practical level, ultimately there are fundamental lim-
itations that are universal for all heat engines possibly conceived of. In the classical realm
of thermodynamics, such fundamental features have been outlined by the works of Carnot,
Kelvin, Clausius, and other physicists/engineers less known for their work on thermody-
namics, such as Helmholtz, Otto, etc.

6.1.1. HEAT ENGINES: A CLASSICAL BACKGROUND
Nicolas Léonard Sadi Carnot is often described as the “father of thermodynamics”. In his
only publication in 1824 [150], Carnot gave the first successful theory of the maximum ef-
ficiency of heat engines. It was later used by Rudolf Clausius and Lord Kelvin to formalize
the second law of thermodynamics and define the concept of entropy [151, 152]. Carnot
concluded that the maximum efficiency did not depend upon the exact nature of the working
fluids. He stated this for emphasis as a general proposition in [150]:

The motive power of heat is independent of the agents employed to realize it;
its quantity is fixed solely by the temperatures of the bodies between which is
effected, finally, the transfer of caloric.

For his “motive power of heat", we would today say “the efficiency of a reversible heat
engine", and rather than “transfer of caloric" we would say “the reversible transfer of heat."
Working fluids refers to the substance (normally gas or liquid) which constitutes the thermal
reservoir, which are at fixed temperatures. Carnot defined a hypothetical heat engine (now
known as the Carnot engine) which would achieve the maximum efficiency. By using re-
versibility arguments according to the classical second law, he showd that such a reversible
engine would attain the maximum efficiency. Later, this efficiency - now known as the
Carnot efficiency (CE) - was shown to be

ηC = 1− βHot

βCold
, (6.1.1)

where βCold, βHot are the inverse temperatures of the cold and hot baths respectively.
As the variety of heat engines have increased by day, the variation in size has also

widened. From the steam engine and heat pumps of the 19th century, we have moved on
to the design of mesoscopic machines for biomedical purposes [11, 153]. Such machines
include a whole variety of molecular motors functioning on the basis of Brownian theory of
motion [13]. Even in this classical regime, the fundamentals of classical thermodynamics
break down due to the fact that energy fluctuations become non-negligible [154]. As stud-
ies have rightly noted, the results of such fluctuations are the signature of small engines,
which are absent in the macroscopic regime. This already hints at the need of a refined
understanding of thermodynamics, as we attempt to adapt it to the quantum microregime.
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6.1.2. QUANTUM HEAT ENGINES (QHES)
Recent advancements in the engineering and control of quantum systems, have further
pushed the applicability of conventional thermodynamics to its limits. Unlike the large scale
heat engines that inspired thermodynamics, we are now able to built nanoscale quantum
machines consisting of a mere handful of particles, prompting many efforts to understand
quantum thermodynamics [45, 91, 92, 108, 117, 123–125, 127, 155–161]. Such studies are
highly motivated by the prospects of designing small, energy efficient machines applicable
to state-of-the-art devices, particularly those relevant for quantum computing and informa-
tion processing. Such devices are too small to admit statistical methods, and the workings
of thermodynamics become more intricate in such regimes [45, 91, 108, 125, 159]. On the
other hand, coherences and entanglement which are present in quantum mechanics, have
no analog in the classical world.

Quantum heat engines (QHE) are therefore machines that perform the task of work
extraction when the involved systems are not only extremely small in size/particle numbers,
but also subjected to the laws of quantum physics. The question then arises: how efficient
can these machines be?

Recently, a number of schemes for QHEs have been proposed and analyzed, involv-
ing systems such as ion traps, photocells, or optomechanical systems [126, 160, 162–167].
Some of these schemes lie outside the usual definition of a heat engine (see Fig. 6.1). For
example, instead of the engine using a hot and cold bath, the extended quantum heat engine
(EQHE) has access to reservoirs which are not in a thermal state [20, 156, 160]. In this
case, EQHE with high efficiencies (even surpassing ηC) have been proposed and demon-
strated. Nevertheless, [161] has pointed out that the second law is, strictly speaking, never
violated for such EQHEs because one always has to invest extra work in order to create and
replenish these special non-thermal reservoir states. In contrast, in this chapter we consider
the standard setting of a quantum heat engine, in which the baths are indeed thermal. We
have seen in Chapter 4 that the laws of thermodynamics for small quantum systems are
more restrictive due to finite-size effects. It turns out that such laws introduce additional
restrictions on the performance of QHEs [168]. Furthermore, considering a probabilistic
approach towards work extraction, [169] found that the achievement of Carnot efficiency is
a very unlikely event, when considering energy fluctuations in the microregime.

Can we design a QHE that operates between genuinely thermal reservoirs and yet
achieves a high efficiency? To answer this question, several protocols have been proposed
[126, 170] and analyzed, showing that they operate at the Carnot efficiency. Crucial to these
results is the definition of work, where we have discussed briefly in Chapter 3. In these
approaches, the most common approach of quantifying work is to measure the average in-
crease in energy of an ancillary system, sometimes referred to as the battery, after a certain
work extraction protocol [126, 127, 171–173]. The quality of work extracted is usually ar-
gued to be good by quantifying higher moments of the energy distribution, or by restricting
the amount of entropy to be low. However, while such approaches limit the amount of heat
contribution to the energy extracted, they do not completely prevent it. What’s more, no
justification goes into using such a definition of work. A universally agreed upon definition
of performing microscopic work is lacking, and it remains a constantly debated subject in
the field of quantum thermodynamics [108, 122–124, 173]. This is mainly why a complete
picture describing the performance limits of a QHE remains unknown.
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6.1.3. RESULTS AND CONTRIBUTIONS
The goal of this chapter is to adopt the theoretical framework of catalytic thermal opera-
tions in order to describe a heat engine in full generality. We highlight the following steps
achieved, which form the basis for Chapter 7.

• We start from the most basic conceptual model of a heat engine, and identify the role
of each components in a resource theoretic framework.

• We discuss the quantification of extracted work, and provide a way to classify the
quality of work according to the (relative) amount of entropy produced and stored
in the energy output. We distinguish three types of work: perfect, near perfect and
imperfect work.

• Using our setup, we derive the maximum attainable efficiency of a heat engine ac-
cording to the standard second law. We arrive at Carnot’s statement in full mathemat-
ical rigour, for the extraction of both perfect and near perfect work.

6.1.4. CHAPTER OUTLINE
Sections 6.2 and 6.3 lay the main framework for our analysis. The generic setup of a QHE
is described with full rigour in Section 6.2, while different characterizations of work is
discussed in Section 6.3. With these foundations to steer our analysis, we apply the second
laws derived in Chapter 4 to find the amount of extractable work in such a QHE. Section
6.4.1 does this assuming only the macroscopic second law holds, while in Section 6.4.2 we
derive the maximum extractable work according to all the generalized second laws.

In Section 6.5 we turn to the central quantity of interest, namely the efficiency of a
QHE. Section 6.5.1 gives the formal definition of this quantity, while 6.5.2 shows that under
certain assumptions, a simplified expression can be derived for efficiency, which depends
explicitly only on the final state of the cold bath.

Before we move on to Chapter 7, in Section 6.6, we first use our setup and derive the
maximum efficiency by considering only the standard second law. Here, we show that the
classically known result for maximum efficiency can be derived in this model, according to
the standard second law for both perfect work and near perfect work. We spell out rigorous
derivations of some thermodynamic identities, which will also be useful later in Chapter 7.

6.2. A GENERIC SETUP FOR QUANTUM HEAT ENGINES
Let us first describe a generic QHE, which is in essence, a procedure for extracting work
from two thermal baths at a temperature difference. The basic components of a QHE are
detailed in Fig. 6.1. Such an engine comprises of four basic elements: two thermal baths at
distinct temperatures, a machine, and a battery. The machine interacts with these baths in
such a way that utilizes the temperature difference between the two baths to perform work
extraction. The extracted work can then be transferred and stored in the battery, while the
machine returns to its original state. The total Hamiltonian

Ĥt = ĤCold + ĤHot + ĤM + ĤW, (6.2.1)

is the sum of each individual Hamiltonian, where the indices Hot, Cold, M, W represent
a hot thermal bath (Hot), a cold thermal bath (Cold), a machine (M), and a battery (W)
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τH,βHot

τC,βCold

ρM
0

ρW
0

Figure 6.1: A heat engine extracts work from the temperature difference of a hot bath (red) at inverse temperature
βh and cold bath (blue) at inverse temperature βc. The term bath indicates that the initial states of these systems

are thermal, τ
βh
Hot = exp(−βhĤHot)/Zβh

Hot and τ
βc
Cold = exp(−βcĤCold)/Zβc

Cold with inverse temperatures βh and βc,

and partition functions Zβh
Hot and Zβc

Cold respectively. The machine itself corresponds to a quantum system M with
Hamiltonian ĤM, starting in an arbitrary state ρM. The battery indicates the system on which work is extracted
and stored as energy. Let ρ0

W denote the initial state of the work system, and ĤW its Hamiltonian. Operating the
entire heat engine for one cycle corresponds to applying a global unitary transform U across both baths, the actual
machine, and the work system. In order to account for all energy transfers we will thereby demand that [U,Ĥ] = 0,
where Ĥ = ĤM + ĤCold + ĤHot + ĤW. That is, U conserves total energy.
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respectively. Let us also consider an initial state

ρ
0
ColdHotMW = τ

0
Cold ⊗τ

0
Hot ⊗ρ

0
M ⊗ρ

0
W. (6.2.2)

We assume the systems were initially brought together in an uncorrelated fashion, because
they have not interacted with each other beforehand. The state τ0

Hot (τ0
Cold) is the initial ther-

mal state at inverse temperature βh (βc), corresponding to the hot (cold) bath Hamiltonian
ĤHot(ĤCold), and βh < βc. The initial machine (ρ0

M,ĤM) can be chosen arbitrarily, as long
as its final state is preserved (and therefore the machine acts like a catalyst).

We adopt the resource theory approach by allowing all unitaries U on the global system
such that [U,ĤColdHotMW] = 0. If (τ0

Hot,ĤHot) and (ρ0
M,ĤM) can be arbitrarily chosen, then

any such unitary U , (τ0
Hot,ĤHot) and (ρ0

M,ĤM) defines a catalytic thermal operation which
one can perform on the joint state ColdW. This implies that the cold bath is used as a
non-thermal resource, relative to the hot bath. By catalytic thermal operations that act on
the cold bath, using the hot bath as a thermal reservoir, and the machine as a catalyst, one
can extract work and store it in the battery. The aim is to achieve a final reduced state
ρ1

ColdHotMW, such that

ρ
1
ColdMW = trHot(ρ

1
ColdHotMW) = ρ

1
ColdW ⊗ρ

1
M, (6.2.3)

where ρ1
M = ρ0

M, and ρ1
Cold is the final joint state of the cold bath and battery.

Finally, we describe the battery such that the state transition ρ0
ColdW −−−→

CTO
ρ1

ColdW stores

work in the battery. To do so, consider the battery with Hamiltonian

ĤW :=
nW∑
i=1

EW
i |Ei〉〈Ei|W. (6.2.4)

For some parameter ε ∈ [0,1), we consider the initial and final states of the battery to be

ρ
0
W = |E j〉〈E j|W, (6.2.5)

ρ
1
W = (1−ε)|Ek〉〈Ek|W +ε |E j〉〈E j|W, (6.2.6)

respectively. The extracted work during a transformation Wext is defined as

Wext :=EW
k −EW

j . (6.2.7)

where we define EW
k > EW

j so that Wext > 0. The parameter ε corresponds to the failure
probability of extracting work, usually chosen to be small.

To summarize, so far we have made the following minimal assumptions:

(A.1) Product state: There are no initial correlations between the cold bath, machine and
battery. Initial correlations we assume do not exist, since each of the initial systems
are brought independently into the process. This is an advantage of our setup, since
if one assumed initial correlations, one would then have to use unknown resources to
generate them in the first place.



6.3. PERFECT, NEAR PERFECT AND IMPERFECT WORK

6

103

(A.2) Perfect cyclicity: The machine undergoes a cyclic process, i.e. ρ0
M = ρ1

M, and is also
not correlated with the rest of the cold bath and battery, as described in Eq. (6.2.3).
This is to ensure that the machine does not get compromised in the process: since
if ρ0

M was initially correlated with some reference system R, then by monogamy of
entanglement, correlations between ρ1

M and ρ1
ColdW would potentially destroy such

correlations between the machine M with R. Later on, we consider in Chapter 7 a
relaxation, where the machine is allowed to be correlated with the battery and bath as
well, as long as the reduced state ρ1

M = ρ0
M remains unchanged. We will see that this

does not affect the results of our analysis.

(A.3) Isolated quantum system: The heat engine as a whole, is isolated from and does not
interact with the world. This assumption ensures that all possible resources in a work
extraction process have been accounted for.

(A.4) Finite dimension: The Hilbert space associated with ρ0
ColdHotMW is finite dimensional

but can be arbitrarily large. Moreover, the Hamiltonians ĤCold, ĤHot, ĤM and ĤW all
have bounded pure point spectra, meaning that these Hamiltonians have eigenvalues
which are bounded.

Let us also define the notion of a quasi-static heat engine, which will be important in
our analysis.

Definition 6.1. (Quasi-static [168]) A heat engine is quasi-static if the final state of the
cold bath is a thermal state and its inverse temperature β f only differs infinitesimally
from the initial cold bath temperature, i.e. β f = βc −g, where 0 < g ¿ 1. We also refer
to g as the quasi-static parameter.

6.3. PERFECT, NEAR PERFECT AND IMPERFECT WORK
The definition of work when dealing with nanoscale quantum systems has seen much atten-
tion lately [45, 91, 108, 123–125]. As we have seen in Chapter 3, work is always understood
as changing the energy of a system, which we call battery.

One aspect of extracting work W is to bring the battery’s initial state ρ0
W to some final

state ρ1
W such that W = tr(ρ1

WĤW)− tr(ρ0
WĤW) > 0. However, a change in average energy

alone, does not yet correspond to performing work. It is implicit in our macroscopic un-
derstanding of work that the energy transfer takes place in an ordered form. When lifting a
weight, we know its final position and can exploit this precise knowledge to transfer all the
work onto a third system without - in principle - losing any energy in the process. In the
quantum regime, such knowledge corresponds to ρ1

W being a pure state; and when ρ1
W is di-

agonal, then ρ1
W is an energy eigenstate. We can thus understand work as an energy transfer

about which we have perfect information, while heat, in contrast, is an energy transfer about
which we hold essentially no information. Clearly, there is also an intermediary regime in
which we transfer energy, while having some - but not perfect - information.

To illustrate this idea, consider a two-level system battery, where we extract work by
transiting from an initial energy eigenstate |E j

W〉〈E j
W| to another energy eigenstate |Ek

W〉〈Ek
W|,

where Ek
W−E j

W > 0. Changing the energy, while having some amount of information corre-
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Figure 6.2: A battery is a work-storage component of a heat engine. In the nanoscale regime, a minimal way
of modeling the battery is as a two-level system [125] . Performing work corresponds to “lifting” the state from
ground state to the excited state, where the energy gap is fine-tuned to the amount of work Wext to be done. While
an arbitrary energy spacing is difficult to realize in a two-level system, it can be done by picking two levels with
the desired spacing from a quasi-continuum battery: this battery comprises of a large but finite number of discrete
levels which form a quasi-continuum. Such a battery closely resembles the classical notion of a “weight attached
to a string" as considered in [126] . The battery can be charged from a particular state (e.g. the ground state) to
any of the higher levels.

sponds to changing the state of the battery to a mixture ρ1
W = (1−ε)|Ek

W〉〈Ek
W|+ε |E j

W〉〈E j
W|

for some parameter ε ∈ [0,1]. The case of ε = 0 corresponds to doing perfect work.
The smaller ε is, the closer we are to the situation of perfect work. One can characterize

this intermediary regime by the von Neumann entropy S(ρ1
W). For perfect work, S(ρ1

W) = 0,
while for heat transfer (thermalization), under a fixed average energy, the two-level battery
becomes thermal, since the thermal state maximizes entropy for a fixed energy [23].

When ε > 0, what is relevant is not ε as an absolute, but relative to the energy extracted
Wext. We are thus interested in ∆S/Wext where

∆S := S(ρ1
W)−S(ρ0

W) (6.3.1)

is the change in entropy of the battery. We categorize work into the following regimes:

Definition 6.2. (Perfect work) An amount of work extracted Wext is referred to as perfect
work when ε = 0.

Definition 6.3. (Near perfect work) An amount of work extracted Wext is referred to as
near perfect work when

1) 0 < ε ≤ l, for some fixed l < 1 and

2) 0 < ∆S
Wext

< p for any p> 0, i.e.
∆S

Wext
is arbitrarily small.
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When Wext is finite, items 1) and 2) are both satisfied only in the limit ε → 0, iff

lim
ε→0+

∆S
Wext

= 0. (6.3.2)

Definition 6.4. (Imperfect work) An amount of work extracted Wext is referred to as
imperfect work when

1) 0 < ε ≤ l, for some fixed l < 1 and

2)
∆S

Wext
= p for some value p> 0, i.e.

∆S
Wext

is lower bounded away from zero.

The limit of ε → 0 will be the focus of our analysis, for several reasons. Firstly, for
any finite amount of near perfect work extraction, ε should be arbitrarily small, as we have
seen in Def. 6.3. On the other hand, we show that the Carnot efficiency is achieved in the
quasi-static limit, i.e. g → 0. In this limit, since the cold bath does not change, the amount
of work extractable Wext is infinitesimal. Furthermore, recall that one is interested not in the
absolute values of ∆S, but the ratio ∆S

Wext
, for most cases of imperfect work (when the ratio

of ∆S
Wext

is finite) we know that ∆S is vanishingly small, and therefore so is ε .

6.4. CONDITIONS FOR WORK EXTRACTION
In this section, we briefly state the laws that govern the transition ρ0

ColdHotMW → ρ1
ColdHotMW

for one cycle of our heat engine. By applying these laws, the amount of extractable work
W ext can be quantified and expressed as a function of the cold bath.

6.4.1. SECOND LAW FOR MACROSCOPIC SYSTEMS
Let us first recall what conventional thermodynamics predict about how much work is ex-
tractable. The cold bath, machine and battery form a closed but not isolated thermodynamic
system. This means only heat exchange (and not mass exchange) occurs between these sys-
tems and the hot bath. Therefore, a transition from ρ0

ColdMW to ρ1
ColdMW will be possible if

and only if the Helmholtz free energy, F does not increase

F(ρ0
ColdMW) ≥F(ρ1

ColdMW), (6.4.1)

where

F(ρ) := 〈Ĥ〉ρ − 1

β
S(ρ), (6.4.2)

and S(ρ) :=−tr(ρ lnρ) and 〈Ĥ〉ρ := tr(Ĥρ) being the entropy and the mean energy of state
ρ respectively. Throughout the chapter, whenever the state is a thermal state at temperature
β , we use the shorthand notation 〈ĤCold〉β and S(β ).

The Helmholtz free energy bears a close relation to the relative entropy which we have
defined in Eq. (2.3.11). Whenever ρ and σ are diagonal in the same basis,

D(ρ‖σ ) =∑
i

pi ln
pi

qi
, (6.4.3)
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where pi,qi are the eigenvalues of ρ and σ respectively. Now, for any Hamiltonian Ĥ,
consider τβ = e−β Ĥ /Zβ , which is the thermal state at some inverse temperature β , with
partition function Zβ = tr[e−β Ĥ ], and denote its eigenvalues as qi. Then for any diagonal
state ρ with eigenvalues pi, and denoting {Ei}i as the eigenvalues of Ĥ,

D(ρ‖τ
β ) =∑

i
pi ln

pi

qi
=−S(ρ)+∑

i
pi(βEi + lnZβ ) = βF(ρ)+ lnZβ . (6.4.4)

This implies that

F(ρ) = 1

β
[D(ρ‖τ

β )− lnZβ ]. (6.4.5)

6.4.2. SECOND LAWS FOR NANOSCOPIC SYSTEMS
In the microscopic quantum regime, where only a few quantum particles are involved, it has
been shown in Chapter 4 that macroscopic thermodynamics is not a complete description
of thermodynamical transitions. More precisely, not only the Helmholtz free energy, but a
whole other family of generalized free energies have to decrease during a state transition.
This places further constraints on whether a particular transition is allowed. In particular,
these laws also give necessary and sufficient conditions, when a system with initial state
ρ0

ColdW can be transformed to final state ρ1
ColdW (both block-diagonal), with the help of any

catalyst/machine which is returned to its initial state after the process.
We can apply these second laws to our scenario by associating the catalyst with ρ0

M, and
considering the state transition ρ0

W⊗τ0
Cold −−−→CTO

ρ1
W⊗ρ1

Cold as described in Section 6.2. Note

that the initial state ρ0
W ⊗ τ0

Cold is block-diagonal in the energy eigenbasis (for the battery
by our choice, and for the cold bath because it is a thermal state). By catalytic thermal
operations, the final state is also block-diagonal in the energy eigenbasis. Furthermore,
according to Theorem 4.5 in Chapter 4, the transition from ρ0

W ⊗ τ0
Cold −−−→

CTO
ρ1

W ⊗ρ1
Cold is

then possible iff

Fα (τ0
Cold ⊗ρ

0
W,τh

ColdW) ≥Fα (ρ1
Cold ⊗ρ

1
W,τh

ColdW) ∀α ≥ 0, (6.4.6)

where τh
ColdW is the thermal state of the system at inverse temperature βh of the surrounding

bath. On occasion, we will refer to a particular transition as being possible/impossible
according to the Fα free energy constraint. By this, we mean that for that particular value
of α and transition, Eq. (6.4.6) is satisfied/not satisfied.

The reader should note that for both Section 6.4.1 and 6.4.2, the conditions for state
transformation place upper bounds on the quantity Wext. In particular, this allows us to
express the maximum values Wext can take (such that the joint state transformation of cold
bath and battery is possible) in terms of quantities related to the cold bath, and the error
probability ε . It is also worth comparing the conditions for state transformation in Section
6.4.1 and 6.4.2, which are stated in Eqs. (6.4.1) and (6.4.6). In particular, Eq. (6.4.1) is but
a particular instance of Eq. (6.4.6), and therefore the nanoscopic second laws always place
a stronger upper bound on Wext compared to the macroscopic second law.
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6.5. EFFICIENCY OF HEAT ENGINES
6.5.1. DEFINITIONS
Given the initial and final states ρ0

ColdHotMW,ρ1
ColdHotMW that define a particular heat engine,

the efficiency is defined as

η := Wext

∆H
, (6.5.1)

where Wext is the amount of work extracted which is defined in Eq. (6.2.7), and ∆H is the
amount of mean energy drawn from the hot bath, namely ∆H := tr(ĤHotρ

0
Hot)−tr(ĤHotρ

1
Hot),

where ρ1
Hot is the reduced state of the hot bath.

Now, consider the set of conditions on state transformations given by Eq. (6.4.6) for
nanoscale systems. These conditions place a restriction on the range of values Wext can
take. Therefore, for any fixed ρ1

Cold, we define ηnano(ρ1
Cold) as the maximum achievable

efficiency as a function of the final state of the cold bath. More precisely,

η
nano(ρ1

Cold) (6.5.2)

= sup
Wext

η(ρ1
Cold) s.t. Fα (ρ0

W ⊗τ
0
Cold,τ

h
ColdW) ≥Fα (ρ1

W ⊗ρ
1
Cold,τ

h
ColdW) ∀α ≥ 0.

In Eq. (6.5.2), each quantity expect for ρ1
Coldis fixed (recall that the states ρ0

W,ρ1
W are fixed

according to Eq. (6.2.5) and (6.2.6)), therefore we have written the quantity in Eq. (6.5.1)
as η = η(ρ1

Cold) to remind ourselves of this explicit dependency. Therefore, the maximum
efficiency will correspond to maximizing over the final state of the cold bath:

η
nano
max = sup

ρ1
Cold∈S(HCold)

η
nano(ρ1

Cold), (6.5.3)

where S(HCold) is the space of all quantum states in HCold.
In the macroregime, we have to satisfy a less stringent requirement, namely the macro-

scopic second law of thermodynamics. And hence we have that for fixed ρ1
Cold, ηmac(ρ1

Cold)
is the maximum efficiency as a function of ρ1

Cold

η
mac(ρ1

Cold) = sup
Wext

η(ρ1
Cold) s.t. F(ρ0

ColdMW) ≥F(ρ1
ColdMW) (6.5.4)

and tr(Ĥtρ
0
ColdHotMW) = tr(Ĥtρ

1
ColdHotMW), (6.5.5)

where ĤColdHotMW is defined in Eq. (6.2.1). Similarly to the nanoscale setting, the maxi-
mum efficiency is

η
mac
max = sup

ρ1
Cold∈S(HCold)

η
mac(ρ1

Cold). (6.5.6)

We can also define the maximum quasi-static efficiencies for the macro and nano scale. The
maximum efficiency of a quasi-static heat engine (see Def. 6.1), is

η
stat,nano
max = lim

g→0+
η

nano(τ(g)), (6.5.7)

η
stat,mac
max = lim

g→0+
η

mac(τ(g)), (6.5.8)
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for the nanoscopic and macroscopic cases respectively. The state τ(g) ∈ HCold is the ther-
mal state with Hamiltonian ĤCold at temperature β f = βc −g and ηnano,ηmac are defined in
Eqs. (6.5.2) and (6.5.4) respectively.

6.5.2. A SIMPLIFIED EXPRESSION FOR EFFICIENCY
We can find a more useful expression for ∆H appearing in Eq. (6.5.1). This can be obtained
by observing that since only energy preserving operations are allowed, we have

tr(Ĥtρ
0
ColdHotMW) = tr(Ĥtρ

1
ColdHotMW), (6.5.9)

where ĤColdHotMW = ĤHot + ĤCold + ĤM + ĤW. Since the Hamiltonian does not contain
interaction terms between these systems, the mean energy depends only on the reduced
states of each system. Mathematically, it means that Eq. (6.5.9) can be written as

tr(ĤHotρ
0
Hot)+ tr(ĤColdρ

0
Cold)+ tr(ĤMρ

0
M)+ tr(ĤWρ

0
W) = (6.5.10)

tr(ĤHotρ
1
Hot)+ tr(ĤColdρ

1
Cold)+ tr(ĤMρ

1
M)+ tr(ĤWρ

1
W). (6.5.11)

Also, note that since ρ0
M = ρ1

M, therefore tr(ĤMρ0
M) = tr(ĤMρ1

M). This implies that we have

∆H =∆C+∆W, (6.5.12)

where

∆C := tr
[
ĤColdρ

1
Cold

]− tr
[
ĤColdτ

βc
Cold

]
, (6.5.13)

and

∆W := tr(ĤWρ
1
W)− tr(ĤWρ

0
W). (6.5.14)

are changes in average energy of the cold bath and battery. We can thus write Eq. (6.5.1) as

η = Wext

∆W +∆C
. (6.5.15)

Furthermore, from Eqs. (6.2.5), (6.2.6), (6.2.7) and (6.5.14), we have ∆W = (1−ε)Wext, and
hence we can write the inverse efficiency as

η
−1(ρ1

Cold) = 1−ε + ∆C(ρ1
Cold)

Wext(ρ1
Cold)

, (6.5.16)

where we have made explicit the ρ1
Cold dependency. We already know from the setting that

ρ0
Cold is thermal. If ρ1

Cold is also a thermal state at some temperature β according to the cold
bath Hamiltonian ĤCold, we will sometimes use the shorthand notation η(β ) for η(ρ1

Cold)
and ∆W (β ), ∆C(β ) for ∆W (ρ1

Cold), ∆C(ρ1
Cold) respectively.
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6.6. MAXIMUM EFFICIENCY ACCORDING TO MACROSCOPIC
THERMODYNAMICS

In this section, we study the efficiency of the setup detailed in Section 6.2 under the con-
straints of macroscopic thermodynamics, as described in Section 6.4.1. This implies that
the Helmholtz free energy solely dictates whether ρ0

ColdW → ρ1
ColdW is possible.

Box 6.6.1: Maximum efficiency for QHEs according to macroscopic thermo-
dynamics

We find that in both cases of extracting perfect and near perfect work,

(1) The maximum achievable efficiency is the Carnot efficiency.

(2) The Carnot efficiency can be achieved for any cold bath Hamiltonian.

(3) The Carnot efficiency is only achieved when the final state of the cold bath is
thermal (according to a different inverse temperature β f ).

(4) The Carnot efficiency is only achieved for quasi-static heat engines.

This section can be summarized as follows: in Section 6.6.1, we first apply the macro-
scopic law of thermodynamics, namely the fact that Helmholtz free energy is non-increasing,
to our heat engine setup. By making use of energy conservation, we can derive the amount
of maximum extractable work as shown in Eq. (6.6.5). Next, in Section 6.6.2 we show that
when considering the extraction of perfect work, we show the points (1)-(4) as stated above.
In Section 6.6.3, we show that points (1)-(4) hold also when considering near perfect work.

The main results can be found in Theorem 6.1 and Lemma 6.6. One may think that
the conclusions in Box 6.6.1 are obvious, since it has long been known that the optimal
achievable efficiency of a heat engine operating between two thermal baths is the Carnot
efficiency, and that this efficiency can only be achieved quasi-statically. The motivations for
proving these results here are two-fold. Firstly, this is a rigorous and mathematical proof
of optimality, while usually one encounters arguments such as reversibility, or that the heat
engine must remain in thermal equilibrium at all times during the working of the heat en-
gine. Secondly, we will find later on at the nano/quantum scale that the Carnot efficiency
can be achieved but observation (2) does not hold anymore. For these reasons, it is worth-
while proving that one can actually achieve points (1)-(4) in this setting for any cold bath
Hamiltonian according to macroscopic thermodynamics. From a practical point of view,
many of the technical results proved here will be needed in the proofs of Section 7.4, where
we derive the maximum efficiency for nanoscale quantum systems.
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6.6.1. MAXIMUM EXTRACTABLE WORK ACCORDING TO MACROSCOPIC
LAW OF THERMODYNAMICS

Our first task is to find an expression for Wext in the macroregime. We do so by solving Eq.
(6.4.1) for Wext such that

〈ĤColdMW〉
ρ1

ColdMW
− 1

βh
S(ρ1

ColdMW) ≤ 〈ĤColdMW〉
ρ0

ColdMW
− 1

βh
S(ρ0

ColdMW). (6.6.1)

Since the joint Hamiltonian does not contain interaction terms, therefore the mean energy
also depends only on the reduced states. Furthermore, entropy is additive under tensor
product, therefore one can rewrite Eq. (6.6.1) by expanding its terms,

〈ĤCold〉ρ1
Cold

+〈ĤM〉
ρ1

M
+〈ĤW〉

ρ1
W
− 1

βh

[
S(ρ1

Cold)+S(ρ1
M)+S(ρ1

W)
]≤ (6.6.2)

〈ĤCold〉ρ0
Cold

+〈ĤM〉
ρ0

M
+〈ĤW〉

ρ0
W
− 1

βh

[
S(ρ0

Cold)+S(ρ0
M)+S(ρ0

W)
]
,

Furthermore, note that ρ0
M = ρ1

M, and therefore S(ρ0
M),〈ĤM〉

ρ0
M

are common terms on both
sides of Eq. (6.6.2) which can be cancelled out. Furthermore, by our construction of the
battery in Eqs. (6.2.5)-(6.2.6), we have that 〈ĤW〉

ρ0
W
=EW

j and 〈ĤW〉
ρ1

W
= (1−ε)EW

k +εEW
j .

Thus, Eq. (6.6.2) can be simplified to

(1−ε)Wext +〈ĤCold〉ρ1
Cold

− 1

βh
S(ρ1

Cold) ≤ 〈ĤCold〉ρ0
Cold

− 1

βh
S(ρ0

Cold)+ 1

βh
∆S, (6.6.3)

where Wext has been defined in Eq. (6.2.7). Also, noting that S(ρ0
W) = 0, S(ρ1

W) = h2(ε),
therefore ∆S = h2(ε) and thus (1−ε)Wext ≤F(ρ0

Cold)−F(ρ1
Cold)+ 1

βh
h2(ε).

We can also express Wext with the relative entropy instead, by using Eq. (6.4.5),

Wext ≤ (1−ε)−1
[
F(ρ0

Cold)−F(ρ1
Cold)+ 1

βh
h2(ε)

]
(6.6.4)

= 1

βh

[
D(ρ0

Cold‖τ
h
Cold)−D(ρ1

Cold‖τ
h
Cold)+h2(ε)

]
. (6.6.5)

6.6.2. MAXIMUM EFFICIENCY FOR PERFECT WORK IS CARNOT EF-
FICIENCY

Proof Sketch
In this section, we find the maximum efficiency according to Eq. (6.5.6), for the case
of ε = 0 which implies h2(ε) = 0. We do this by the following steps:

1. Evalaute Wext. According to Eq. (6.6.5), we know that

Wext =F(ρ0
Cold)−F(ρ1

Cold) = 1

βh

[
D(ρ0

Cold‖τ
h
Cold)−D(ρ1

Cold‖τ
h
Cold)

]
. (6.6.6)

Note that here equality can be achieved because in macroscopic thermodynamics,
satisfying the free energy constraint is a necessary and sufficient condition for the
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possibility of a state transformation. Note that since by construction the initial and
final states of the battery are pure energy eigenstates, namely ε = 0 and therefore

Wext =∆W. (6.6.7)

2. Write inverse maximum efficiency as optimization problem. By substituting the
simplified expression for efficiency derived in Eq. (6.5.16) into Eq. (6.5.6), we
have

η
−1
max = inf

ρ1
Cold

(ηmac)−1 = 1+ inf
ρ1

Cold

∆C
Wext

. (6.6.8)

3. Maximize Wext given a fixed value of ∆C. In Lemma 6.1, where we show that given
a fixed ∆C, the final cold bath state that maximizes Wext is uniquely a thermal state.

4. Show that 3) implies that efficiency is maximized by a thermal state of the cold bath.
This is proven in Lemma 6.2. Therefore, this implies one only needs to optimize
Eq. (6.6.8) over one variable, i.e. β f , the final temperature of the cold bath.

5. Show that the efficiency is strictly increasing with β f . This is done first by proving
several identities, which are summarized in Corollary 6.1. Using these identities,
we prove in Lemma 6.4 that the first derivative of efficiency w.r.t. β f is always
positive over the range where Wext > 0. This leads us to conclude, in Theorem
6.1, that maximum efficiency is achieved in the limit β f → β−

c , and evaluating the
efficiency at this limit gives us the Carnot efficiency.

Firstly, let us develop a technical Lemma 6.1, which concerns the unique solution to-
wards maximizing Wext for a fixed ∆C. By applying Lemma 6.1, we show in Lemma 6.2
that the maximal efficiency is achieved when ρ1

Cold is a thermal state. The reader can easily
find similar proofs in [174].

Lemma 6.1. Given any Hamiltonian ĤCold, a corresponding thermal state τh
Cold, and a

fixed initial state ρ0
Cold, consider the maximization over final states ρ1

Cold,

max
ρ1

Cold

Wext (6.6.9)

over all block-diagonal states ρ1
Cold, for a fixed value of ∆C. Then the solution for ρ1

Cold is

unique: the optimal ρ1
Cold = τ

β ′
Cold is the thermal state for some inverse temperature β ′.

Proof. Firstly, from Eq. (6.5.13) we see that the constraint ∆C being a constant, is the same
as tr

[
ĤColdρ1

Cold
]

being a constant. This is because they differ only by a constant term. On
the other hand, from Eq. (6.5.14) and (6.6.7), we can see that Eq. (6.6.9) is equal to

max
ρ1

Cold

Wext = 1

βh

[
D(ρ0

Cold‖τ
h
Cold)−min

ρ1
Cold

D(ρ1
Cold‖τ

h
Cold)

]
. (6.6.10)

Since ρ1
Cold and τ are both diagonal in the energy eigenbasis (ρ1

Cold by the statement in the
lemma, and τ by it being a thermal state), one can evaluate the relative entropy by using
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Eq. (6.4.3). Denote the eigenvalues of our variable ρ1
Cold to be {pi}i, and the eigenvalues of

the thermal state τ to be {qi}i. We can then write the optimization problem as

min
{pi}

∑
i

pi(ln pi − lnqi); subject to
∑

i
piEi = c constant,and

∑
i

pi = 1,

where qi = e−βEi
Zβ

and Zβ =∑
i e−βEi . We can now employ techniques of Lagrange multipliers

to solve this optimization. The constrained Lagrange equation is

L({pi},λ ) =∑
i

pi(ln pi − lnqi)+λ

(∑
i

Ei pi −c

)
+µ

(∑
i

pi −1

)
, (6.6.11)

dL
d pi

= (ln pi − lnqi +1+λEi +µ) = 0, (6.6.12)

dL
dλ

=∑
i

Ei pi −c= 0,
dL
dµ

=∑
i

pi −1 = 0. (6.6.13)

The normalized solution is

pi = e−β ′Ei

Zβ ′
, Zβ ′ = e(1+µ)Zβ , (6.6.14)

and pi are probabilities corresponding to the Boltzmann distribution, according to inverse
temperature β ′ = β +λ . Depending on the mean energy constraint c and normalization
condition, one can solve for the Lagrange multipliers λ and µ . With this we conclude that
the state ρ which maximizes D(ρ1

Cold‖τ) is a thermal state, where its temperature is such
that the constraint on mean energy is satisfied.

Lemma 6.2. Consider the work extraction process described by the state transformation
ρ0

ColdW −−−→
CTO

ρ1
ColdW, where ρ0

Cold, ρ0
W and ρ1

W have been described in Section 6.2. Denote

HCold as the Hilbert space of the cold bath. Then the maximal efficiency in Eq. (6.6.8) is
obtained for a final state of the cold bath ρ1

Cold, which is thermal:

η
−1
max = 1+ inf

ρ1
Cold∈Sτ

∆C
Wext

, (6.6.15)

where Sτ the set of all thermal states (for ĤCold with any temperature T > 0). Furthermore,
all non-thermal states do not achieve the maximum efficiency, i.e.

η
−1
max < 1+ ∆C

Wext

∣∣∣
ρ1

Cold

for any ρ
1
Cold ∈ S(HCold) \ Sτ . (6.6.16)

Proof. First of all, note that without loss of generality we can always consider only block-
diagonal final states, since the initial state ρ0

ColdHotMW is block-diagonal, and that CTOs do
not create coherences between energy eigenstates. We begin by substituting Eqs. (6.5.13)
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and (6.6.6) into Eq. (6.6.8), and finding

η
−1
max = 1+ inf

ρ1
Cold

∆C
Wext

(6.6.17)

= 1+ inf
ρ1

Cold

βh∆C
D1(τc

Cold‖τh
Cold)−D1(ρ1

Cold‖τh
Cold)

(6.6.18)

= 1+βh

sup
ρ1

Cold

D1(τc
Cold‖τh

Cold)−D1(ρ1
Cold‖τh

Cold)

tr(ĤColdρ1
Cold)− tr(ĤColdτc

Cold)

−1

. (6.6.19)

In the last line of Eq. (6.6.19), we see that only two terms depend on the maximization
variable ρ1

Cold. This means we can perform the maximization in two steps:

sup
ρ1

Cold

D1(τc
Cold‖τh

Cold)−D1(ρ1
Cold‖τh

Cold)

tr(ĤColdρ1
Cold)− tr(ĤColdτc

Cold)
= sup

A>0

D1(τc
Cold‖τh

Cold)−B(A)

A
(6.6.20)

where B(A) is the optimal value of a separate minimization problem:

B(A) = inf
ρ1

Cold∈S(HCold)

tr(HColdρ1
Cold)−tr(ĤColdτc

Cold)=A

D1(ρ1
Cold‖τ

h
Cold) (6.6.21)

From Lemma 6.1, we know that the solution of the sub-minimization problem in Eq. (6.6.21)
has a unique form, namely ρ1

Cold = τ
f

Cold is a thermal state of some temperature β f . There-
fore, Eq. (6.6.20) can be simplified to

sup
ρ1

Cold

D1(τc
Cold‖τh

Cold)−D1(ρ1
Cold‖τh

Cold)

tr(ĤColdρ1
Cold)− tr(ĤColdτc

Cold)
= sup

β f

D1(τc
Cold‖τh

Cold)−D1(τ f
Cold‖τh

Cold)

tr(ĤColdτ
f

Cold)− tr(ĤColdτc
Cold)

. (6.6.22)

Whats more, for every constant A, the function

f (x) =
1+βh

[
D1(τc

Cold‖τh
Cold)−x

A

]−1
−1

(6.6.23)

is bijective in x ∈ R and thus due to the uniqueness of the sub-minimization problem in
Eq. (6.6.21), we conclude that for all non-thermal states ρ1

Cold, the corresponding efficiency
will be strictly less than that of Eq. (6.6.19). Thus from Eq. (6.6.22) and (6.6.19) we con-
clude the lemma.

We continue to solve the optimization problem in Eq. (6.6.8) by only looking at final
states which are thermal (according to some final temperature β f which we optimize over).
In the next Lemma 6.3 and Corollary 6.1, we derive some useful and interesting identities.
These identities concern quantities such as the derivatives of mean energy and entropy of
the thermal state (with respect to inverse temperature), and relates them to the variance of
energy. The reader can find similar proofs in any standard thermodynamic textbook (For
example in Sections 6.5, 6. of [175]), but we derive them here for completeness.
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Lemma 6.3. For any cold bath Hamiltonian ĤCold, consider the thermal state τβ = 1
Zβ

e−β ĤCold

with inverse temperature β . Define 〈ĤCold〉β = tr(ĤColdτβ ), and S(β ) =−τβ lnτβ to be the
mean energy and entropy of τβ . Then the following identities hold:

d〈ĤCold〉β

dβ
=−var(ĤCold)β ,

dS(β )

dβ
=−β ·var(ĤCold)β , (6.6.24)

where var(ĤCold)β = 〈Ĥ2
Cold〉β −〈ĤCold〉2

β
is the variance of energy for τβ .

Proof. Intuitively we know that the expectation value of energy increases as temperature
increases (or as β decreases). More precisely, consider the probabilities of τβ for each
energy level of the Hamiltonian ĤCold, given by pi = Z−1

β
e−βEi , where Zβ =∑

i e−βEi , and

d pi

dβ
= 1

Z2
β

[
−Eie−βEi ·Zβ − dZβ

dβ
·e−βEi

]
=−piEi − pi

Zβ

dZβ

dβ
=−piEi + pi〈ĤCold〉β .

(6.6.25)

The last equality holds because of the following identity:

−1

Z
dZ
dβ

= −1

Z

∑
i

(−Ei)e−βEi =∑
i

piEi = 〈ĤCold〉β . (6.6.26)

Therefore, we have

d〈ĤCold〉β

dβ
=∑

i

d〈ĤCold〉β

d pi

d pi

dβ
=∑

i
Ei ·

[−piEi + pi〈ĤCold〉β

]
(6.6.27)

=−〈Ĥ2
Cold〉β +〈ĤCold〉2

β
=−var(ĤCold)β . (6.6.28)

On the other hand, similarly, one can prove the second identity by writing down the expres-
sion of entropy for the thermal state,

S(β ) =−∑
i

e−βEi

Zβ

ln
e−βEi

Zβ

=∑
i

βEi
e−βEi

Zβ

+ lnZβ

∑
i

e−βEi

Zβ

= β 〈ĤCold〉β + lnZβ . (6.6.29)

Therefore, the derivative of S(β ) w.r.t. β is

dS(τβ )

dβ
= 〈ĤCold〉β +β

d〈ĤCold〉β

dβ
+ 1

Zβ

dZβ

dβ
= β · d〈ĤCold〉β

dβ
=−β ·var(ĤCold)β . (6.6.30)

By using Lemma 6.3 in a special case, we obtain the following corollary:

Corollary 6.1. Given any Hamiltonian ĤCold, consider the quantities

∆C(β f ) = tr(ĤColdτβ f )− tr(ĤColdτβc ) = 〈ĤCold〉β f −〈ĤCold〉βc , (6.6.31)

Wext(β f ) =F(τβc )−F(τβ f ) = 1

βh

[
D(τβc‖τβh

)−D(τβ f ‖τβh
)
]
, (6.6.32)
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where τβ corresponds to the thermal state defined by ĤCold at inverse temperature β . Then

d∆C(β f )

dβ f
=−var(ĤCold)β f (6.6.33)

dWext(β f )

dβ f
= βh −β f

βh
var(ĤCold)β f . (6.6.34)

Proof. For ∆C(β f ), it is straightforward from Lemma 6.3 that

d∆C(β f )

dβ f
=

d〈ĤCold〉β f

dβ f
=−var(ĤCold)β f . (6.6.35)

On the other hand, ∆W (β f ) can be simplified by substituting Eq. (6.4.5) into Eq. (6.6.32),

Wext(β f ) =F(τβc )−F(τβ f ) = 〈ĤCold〉βc −〈ĤCold〉β f −
1

βh

[
S(τβc )−S(τβ f )

]
. (6.6.36)

With this, we can evaluate the derivative by applying Lemma 6.3 for
d〈ĤCold〉β f

dβ f
, and group-

ing common factors together:

dWext(β f )

dβ f
=−

d〈ĤCold〉β f

dβ f
+ 1

βh

dS(τβ f )

dβ f
= βh −β f

βh
var(ĤCold)β f .

In the next step, by using Corollary 6.1, we show that the optimal efficiency is achieved
only in the quasi-static limit, i.e. in the limit β f → β−

c .

Lemma 6.4. Consider the efficiency of a heat engine where ρ1
Cold = τ

f
Cold,

η(β f ) = Wext(β f )

∆C(β f )+Wext(β f )
. (6.6.37)

Then for all β f < βc,
dη(β f )

dβ f
> 0.

Proof. To prove this, we show that dη−1

dβ f
< 0, where η−1 = 1+ ∆C

Wext
. Evaluating the derivative

of η−1 w.r.t. β f , we obtain

dη−1

dβ f
= 1

W 2
ext

·
[d∆C(β f )

dβ f
Wext −

dWext(β f )

dβ f
∆C

]
(6.6.38)

=
var(ĤCold)β f

W 2
ext

·
[
−Wext −

βh −β f

βh
∆C

]
(6.6.39)

=
var(ĤCold)β f

W 2
ext

·
[
∆C+ 1

βh

[
S(βc)−S(β f )

]− βh −β f

βh
∆C

]
(6.6.40)

=
var(ĤCold)β f

W 2
ext

β f

βh
·
[
∆C− 1

β f
[S(β f )−S(βc)]

]
. (6.6.41)
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The first equality is obtained by invoking the chain rule of differentiation. The second
equality is obtained by substituting dWext

dβ f

′
, d∆C

dβ f
, as evaluated earlier in Corollary 6.1. The

third equality is obtained by expressing Wext according to Eq. (6.6.36), plus recognizing
that 〈ĤCold〉τβ f

−〈ĤCold〉τβc
= ∆C. The last inequality is obtained, simply by taking out a

common term β f /βh. We then make the following observations:

1) The factor β f

βhW 2
ext

> 0,

2) The variance of energy for any positive temperature var(ĤCold)β f > 0,

3) and the last term ∆C− 1
β f

[S(β f )−S(βc)] can be written as F(τβ f )−F(τβc ), where F is the
free energy of a system w.r.t. a bath with inverse temperature β f . But then, since τβ f is the
thermal state with the same inverse temperature, this means that τβ f is the unique state that
minimizes free energy. Therefore, F(τβc )−F(τβ f ) > 0 for any τβc .

From Lemma 6.2 and Lemma 6.4, we conclude that the maximization of efficiency for
any Hamiltonian Ĥ happens for a final state which is thermal, and the greater its inverse
temperature β f , the higher efficiency is. With these lemmas we can now prove the main
result of this section (Theorem 6.1).

In the next theorem, we evaluate the efficiency at the limit β f → β−
c , and show that it

corresponds to the Carnot efficiency.

Theorem 6.1 (Carnot Efficiency). Consider all heat engines which extract perfect
work (see Definition 6.2). Then according to the macroscopic second law of thermo-
dynamics, the maximum achievable efficiency (see Eq. (6.5.6)) is the Carnot efficiency

η
mac
max = 1− βh

βc
. (6.6.42)

It can be obtained for all cold bath Hamiltonians ĤCold, but only for quasi-static heat
engines (as defined in Def. 6.1 and Eq. (6.5.8) for quasi-static maximum efficiency),
where an infinitesimal amount of work is extracted.

Proof. From Eq. (6.5.6), we have an expression for the optimal efficiency in terms of a
maximization over final cold bath states ρ1

Cold ∈ S(HCold). By Lemma 6.2, we know that
the optimal solution is obtained only for thermal states. Subsequently, by Lemma 6.4, it is
shown that when the final cold bath is of temperature β f , the corresponding efficiency is
strictly increasing w.r.t. β f . Also note that since by definition Wext > 0, this implies that
β f < βc. Intuitively, this is because heat cannot flow from a cold to hot system without any
work input. One can also see this mathematically, by showing that for any β ≥ βh,

dF(τβ )

dβ
= d

dβ

[
〈ĤCold〉β − 1

βh
S(β )

]
=

(
β

βh
−1

)
var(ĤCold)β ≥ 0. (6.6.43)

This implies that if β f ≥ βc ≥ βh, then F(β f ) ≥ F(βc), and according to Eq. (6.6.32) Wext ≤
0. Therefore, the optimal efficiency is achieved only when the ρ1

Cold = τ
f

Cold where β f
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approaches βc from below. Let β f = βc −g, where g> 0. Thus we have

η
−1
max = lim

g→0+
(ηmac)−1(βc −g), (ηmac)−1(βc −g) = 1+ ∆C

Wext

∣∣∣
ρ1

Cold=τ(βc−g)
. (6.6.44)

Since as g→ 0+, both the numerator and denominator vanish, we can evaluate this limit by
first applying L’Hôspital rule, the chain rule for derivatives (for any function F , dF

dg =− dF
dβ f

),
and then Corollary 6.1 to obtain

lim
g→0+

∆C
Wext

= lim
g→0+

d∆C
dg

dWext
dg

= lim
β f →β−

c

d∆C
dβ f

dWext
dβ f

= βh

βc −βh
.

This implies that

η
−1
max = lim

g→0+
(ηmac)−1(βc −g) = 1+ βh

βc −βh
= βc

βc −βh
(6.6.45)

and hence ηmax = 1− βh
βc

.

6.6.3. MAXIMUM EFFICIENCY FOR NEAR PERFECT WORK IS STILL
CARNOT EFFICIENCY

In this section, we show that even while allowing a non-zero failure probability ε > 0 in the
near perfect work scenario, the maximum achievable efficiency is still the Carnot efficiency.
It is worth noting that this result is also important later, as an upper bound to maximum
efficiency in the nanoscopic regime. We first prove it in Lemma 6.5 for the case where the
final state of the battery is fixed as in Eq. (6.2.6). Then later, we show in Lemma 6.6 that
Carnot is still the maximum, even if we allow a more general final battery state. Before
we present the proof, it is useful for the reader to recall the definition of near perfect work
(Def. 6.3) and quasi-static heat engines (Def. 6.1).

Lemma 6.5. Consider all heat engines which extract near perfect work. Then according to
the macroscopic second law of thermodyanmics, the maximum efficiency of a heat engine,
ηmac

max is the Carnot efficiency

η
mac
max = sup

ρ1
Cold∈S(HCold)

η
mac(ρ1

Cold) = 1− βh

βc
, (6.6.46)

and the supremum can only be achieved for quasi-static heat engines.

Proof. The ideas in this proof are very similar to that of Section 6.6.2, and the main com-
plication comes from proving that even if we allow ε > 0, as long as ∆S/Wext is arbitrarily
small, the maximum efficiency cannot surpass the Carnot efficiency.

Let us begin by establishing the relevant quantities for near perfect work extraction. The
amount of work extractable from the heat engine, when we have a probability of failure,
according to the standard free energy can be obtained by solving Eq. (6.6.6). We thus have
that the maximum Wext is

Wext = β
−1
h (1−ε)−1 [

D(τβc‖τβh
)−D(ρ1

Cold‖τβh
)+∆S

]
, (6.6.47)
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where ∆S is defined in Eq. (6.3.1).
Before we continue with the analysis, we will note a trivial consequence of Eq. (6.6.47).

Condition 1) in Def 6.3 implies that (1−ε)−1 is upper bounded. The terms in square brackets
in Eq. (6.6.47) are also clearly upper bounded for finite βc,βh. Hence Wext is bounded from
above. ∆S is solely a function of ε and only approaches zero in the limits ε → 0+, ε → 1−;
and ε → 1− is forbidden by 1) in Def 6.3. Thus if 1) and 2) in Def 6.3 are satisfied,

lim
ε→0+

∆S
Wext

= 0. (6.6.48)

In turn, if Eq. (6.6.48) is satisfied, then we have near perfect work by Def. 6.3. Thus Eq.
(6.6.48) is satisfied iff we have near perfect work. We will use this result later in the proof.

Extracting a positive amount of near perfect work implies that we can rule out all states
ρ1

Cold such that D(τβc‖τβh
) ≤D(ρ1

Cold‖τβh
) from the analysis. This can be proven by contra-

diction: if D(τβc‖τβh
) ≤ D(ρ1

Cold‖τβh
), then from Eq. (6.6.47), we have βhWext ≤∆S/(1−ε)

and together with 2) in Def 6.3 this would imply that 0 < βh(1−ε) ≤ ∆S
Wext

< p. If we require
this to hold for all p> 0, it means ε has to be arbitrarily close to 1. However, since from 1)
Def. 6.3 we have ε ≤ l < 1, this cannot be satisfied for all p> 0, leading to a contradiction.

From Eq. (6.6.8) we have

(
η

mac
max

)−1 = 1−ε + inf
ρ1

c ∈S

∆C
Wext

= (1−ε) ·
[

1+ βh∆C
D(τβc‖τβh

)−D(ρ1
Cold‖τβh

)+∆S

]
, (6.6.49)

where ∆C and is defined in Eq. (6.5.13).
Firstly, let us show that with a similar analysis as shown in Lemma 6.2, the maximum

efficiency occurs when ρ1
Cold is a thermal state. From Eq. (6.6.49), we have

(
η

mac
max

)−1 = (1−ε)

[
1+βh inf

ρ1
Cold∈S

∆C
D(τβc‖τβh

)−D(ρ1
Cold‖τβh

)+∆S

]
(6.6.50)

= (1−ε)

[
1+βh inf

A>0

A
D(τβc‖τβh

)−B(A)+∆S

]
(6.6.51)

where

B(A) = inf
ρ1

Cold∈S

tr(ĤColdρ1
Cold)−tr(ĤColdτβc )=A

D(ρ1
Cold‖τβh

). (6.6.52)

We can split this minimization problem to Eqs. (6.6.51) and (6.6.52) because D(τβc‖τβh
)

and ∆S do not depend on the variable ρ1
Cold. Furthermore, when ρ1

Cold is a thermal state of
inverse temperature β f , we have seen in the beginning of the proof in Theorem 6.1 that for
Wext > 0, β f < βc. This implies that the variable A=∆C = tr(ĤColdτβ f )− tr(ĤColdτβc ) > 0.

By Lemma 6.1, for any fixed A > 0 we conclude that the infimum in Eq. (6.6.52) is
achieved uniquely when ρ1

Cold is a thermal state. Therefore, our optimization problem is
simplified to optimization over final temperatures β f (or g= βc −β f ),

(
η

mac
max

)−1 = (1−ε) ·

1+βh inf
β f

∆C>0

∆C
D(τβc‖τβh

)−D(τβ f ‖τβh
)+∆S

 . (6.6.53)
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Consider cases of β f , where D(τβc‖τβh
)−D(τβ f ‖τβh

) is non-vanishing (finite), which are
non quasi-static. Note that this always corresponds to extracting near perfect work, since
when ε → 0+, we have ε,∆S → 0 and these contributions dissapear from Eq. (6.6.53). How-
ever, by Lemma 6.2 we also know that the infimum over β f occurs uniquely at the quasi-
static limit, when g → 0+. This means that for all non quasi-static cases, Carnot efficiency
cannot be achieved. What remains, is then to consider the quasi-static heat engine. Ex-
tracting near perfect work in this case corresponds to requiring that limg→0+

∆S
Wext

= 0, where

ε = ε(g) and limg→0+ ε(g) = 0. Equivalently, limg→0+
Wext
∆S =∞. Substituting Eq. (6.6.47)

into this relation, we have

lim
g→0+

(1−ε(g))−1

[
1+

D(τβc‖τβh
)−D(τβ f ‖τβh

)

∆S

]
=∞ (6.6.54)

which implies that lim
g→0+

D(τβc‖τβh
)−D(τβ f ‖τβh

)

∆S
=∞, or equivalently,

lim
g→0+

∆S
D(τβc‖τβh

)−D(τβ f ‖τβh
)
= 0. (6.6.55)

Finally, we evaluate the inverse efficiency at the quasi-static limit,

(
η

stat,mac
max

)−1 = lim
g→0+

(1−ε(g)) ·
[

1+βh
∆C

D(τβc‖τβh
)−D(τβ f ‖τβh

)+∆S

]
(6.6.56)

= 1+βh lim
g→0+

∆C
D(τβc‖τβh

)−D(τβ f ‖τβh
)+∆S

(6.6.57)

= 1+βh lim
g→0+

∆C[
D(τβc‖τβh

)−D(τβ f ‖τβh
)
] ·

(
1+ ∆S

D(τβc‖τβh
)−D(τβ f ‖τβh

)

)−1

(6.6.58)

= 1+βh lim
g→0+

d∆C(τβ f )/dg

dD(τβ f ‖τβh
)/dg

= 1− βh

βh −βc
, (6.6.59)

where from Eq. (6.6.58) to (6.6.59), we make use of Eq. (6.6.55): the second term within
the limit is simply 1, and the first term depends only on g, which we can obtain Eq. (6.6.59)
by invoking the L’Hôspital rule. The last equality in Eq. (6.6.59) then follows directly from
the identities we derived for dWext

dβ f
and d∆C

dβ f
in Corollary 6.1,

d∆C
dg

=−d∆C
dβ f

=−var(ĤCold)β f (6.6.60)

dD(τβ f ‖τβh
)

dg
=−

dD(τβ f ‖τβh
)

dβ f
= βh

dWext

dβ f
= (βh −β f )var(ĤCold)β f , (6.6.61)

while in the limit g→ 0, β f = βc.
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Finally, we now see that the quasi-static efficiency is

η
stat,mac
max =

(
βh −βc −βh

βh −βc

)−1

= βc −βh

βc
= 1− βh

βc
(6.6.62)

which is exactly the Carnot efficiency.

Later, in Section 7.5.2 we will need Lemma 6.2 to hold in a more general scenario, i.e.
instead of the final battery state being ρ1

W = (1−ε)|Ek〉〈Ek|W+ε |E j〉〈E j|W, we want to allow
the final battery state to be any energy block-diagonal state with trace distance ε away from
|Ek〉〈Ek|W. Therefore, we prove the next generalized lemma.

Lemma 6.6. Consider all heat engines which extract near perfect work , but allowing for
any final battery state with a trace distance ε to the ideal final pure state |Ek〉〈Ek|W. Then
according to the macroscopic second law of thermodynamics, the maximum efficiency of a
heat engine, ηmax is the Carnot efficiency

η
mac
max = sup

ρ1
Cold∈S(HCold)

η
mac(ρ1

Cold) = 1− βh

βc
, (6.6.63)

and the supremum is only achieved for quasi-static heat engines.

Proof. Firstly, let us note that since the initial state ρ0
ColdW we start out with is energy

block-diagonal, the final state has to also be block-diagonal. Therefore, given the product
structure between the cold bath and battery, it is sufficient to consider the case when the
final battery state is energy block-diagonal. Next, let us note that any final state ρ2

W which
is energy block-diagonal, and has trace distance ε with |Ek〉〈Ek|W can be written as,

ρ
2
W = (1−ε)|Ek〉〈Ek|W +ερ

junk
W , where ρ

junk
W =∑

i
pi|Ei〉〈Ei|W,

∑
i

pi = 1 and pk = 0.

(6.6.64)
Next, one can calculate Wext given by the standard free energy condition, i.e.

F(τβc )+F(ρ0
W) ≥F(ρ1

Cold)+F(ρ1
W). (6.6.65)

Using the identity F(ρ) = tr(Ĥρ)−β−1S(ρ), we have that

F(τβc )+E j ≥F(ρ1
Cold)+ (1−ε)Ek +ε tr(ĤWρ

junk
W )−β

−1
h S(ρ2

W). (6.6.66)

Substituting Wext =Ek −E j, and rearranging terms, we have

(1−ε)Wext ≤F(τβc )−F(ρ1
Cold)+β

−1
h ∆S−ε ·

[
tr

(
ĤWρ

junk
W

)
−E j

]
. (6.6.67)

Finally, by using the identity (in Eq. (6.4.5)) that F(ρ) = β−1
h [D(ρ‖τβh

)− lnZβh
], the maxi-

mum amount of extractable work is given by

Wext = (1−ε)−1
β
−1
h · [D(τβc‖τβh

)−D(ρ1
Cold‖τβh

)+∆S−εẼ], (6.6.68)

where Ẽ = tr(ĤWρ
junk
W )−E j.
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Following the steps in Lemma 6.5, in particular the derivations in Eq. (6.6.50) and
(6.6.51), we have

(
η

mac
max

)−1 = (1−ε) ·

1+βh inf
β f

∆C>0

∆C
D(τβc‖τβh

)−D(τβ f ‖τβh
)+∆S−εẼ

 . (6.6.69)

To show Eq. (6.6.69) gives the Carnot efficiency, we show that 1) for non quasi-static cases
where β f < βc, Carnot efficiency is not attained, and 2) in the quasi-static limit, Carnot
efficiency is attained.

Let us first consider the case of extracting a non-vanishing amount of near perfect work,
i.e. for all cases where β f < βc. Then near perfect work, by Def. 6.3, corresponds to the
limit ε → 0,

η
−1 = lim

ε→0
(1−ε) ·

[
1+βh

∆C
D(τβc‖τβh

)−D(τβ f ‖τβh
)+∆S−εẼ

]
(6.6.70)

= 1+βh
∆C

D(τβc‖τβh
)−D(τβ f ‖τβh

)
. (6.6.71)

In this limit, all terms involving ε vanish, and the inverse efficiency has the same expression
as the efficiency for perfect work. We already know from Lemma 6.4 that the infimum over
β f cannot be obtained in this regime, since the inverse efficiency is strictly decreasing with
β f . Therefore, again we are left with analyzing the quasi-static limit for this problem.
Following the derivation in Eq. (6.6.58) for the quasi-static limit, we obtain

(
η

stat,mac
max

)−1 = 1+βh lim
g→0+

∆C[
D(τβc‖τβh

)−D(τβ f ‖τβh
)
] ·

(
1+ ∆S−εẼ

D(τβc‖τβh
)−D(τβ f ‖τβh

)

)−1

,

(6.6.72)

where ε = ε(g) and note that requiring near perfect work implies that

lim
g→0+

∆S
D(τβc‖τβh

)−D(τβ f ‖τβh
)
= 0. (6.6.73)

Next, we observe the relationship between ε and ∆S, in the regime where ε is small. Given
any ε > 0 denoting the trace distance d(ρ2

W, |Ek〉〈Ek|W) = ε , the smallest amount of entropy
that can be produced corresponds to ∆S = h2(ε). This is because if we try to distribute the
weight ε over more energy eigenvalues, then by majorization the entropy only increases.
But we also know that ε ≤ h2(ε) for small values of ε , in particular over the regime ε ∈ [0, 1

2 ].
Therefore, we have that in this regime, ε ≤ h2(ε) ≤∆S holds. Therefore, we also know that

lim
g→0+

εẼ
D(τβc‖τβh

)−D(τβ f ‖τβh
)
= 0, (6.6.74)

where ε = ε(g). Plugging Eqns. (6.6.73) and (6.6.74) into Eq. (6.6.72), we have that the
quasi-static efficiency is η

stat,mac
max = 1− βh

βc
.





7
THE EFFICIENCY OF QUANTUM

HEAT ENGINES

In the quantum nanoregime, instead of simply the standard free energy that governs tran-
sitions for macroscopic thermodynamics, a continuous family of generalized free energies
jointly dictate the possibility of a thermodynamical state transition. In this chapter, we
show this implies that Carnot’s results on efficiency of heat engines needs to be revised. In
particular, more information about the bath other than its temperature is required to decide
whether maximum (Carnot) efficiency can be achieved. In particular, we derive new funda-
mental limitations of the efficiency of heat engines that show that the Carnot efficiency can
only be achieved under special circumstances, and we derive a new maximum efficiency for
others. This renewed understanding of thermodynamics has implications for nanoscale en-
gineering aiming to construct quantum thermal machines. We also show that if one allows
for a definition of work that tolerates a non-negligible entropy increase in the battery, then a
small scale heat engine can possibly exceed the Carnot efficiency. This can be done without
using any additional resources such as coherence or correlations, and furthermore can be
achieved by using finite-size quantum heat baths as well. This highlights the importance of
choosing a good work quantifier in the quantum nanoregime.
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7.1. INTRODUCTION
In this chapter, we consider the generalized second laws applied to the setup of a quan-
tum heat engine which we have seen in Chapter 6. We’ve seen in Chapter 4 that a whole
other family of generalizes second laws jointly determine the possibility of a transition, for
nanoscale quantum systems. How does Carnot’s result differ in the light of these general-
ized second laws?

Adopting the setup described with detail in Section 6.2, we turn to the conditions for
state transitions of nanoscale quantum systems, as detailed in Section 6.4.2. The reader will
see that due to these extra constraints from the generalized free energies, the fundamental
limitations on efficiency will differ greatly from the macroscopic observations as derived
in Section 6.6. This highlights the difference between a quantum heat engine versus its
classical counterpart.

7.1.1. RESULTS AND CONTRIBUTIONS
We show in this chapter that unlike at the macroscopic scale - at which Carnot’s funda-
mental results hold - there is a new fundamental limitation to the maximal efficiency at the
nanoscale. Most significantly, this new efficiency depends on the working substance (ther-
mal baths). We find that the Carnot efficiency can be achieved, but only when the thermal
baths satisfy certain conditions. Otherwise, a reduced efficiency is obtained, highlighting
the significant difference in the performance of heat engines as our devices decrease in size.

No perfect work We show that in the nanoscopic regime, no heat engine can perform
perfect work (ε = 0). That is, the efficiency of any such heat engine is zero. More formally,
it means that there exists no global energy preserving unitary (see Fig. 6.1) for any Wext > 0.

Efficiency Clearly, however, heat engines can be built, prompting the question how this
might be possible. We show that for any ε > 0, there exists a process such that Wext > 0.
Therefore, a heat engine is possible if we ask only for near perfect work. This can even
be envisioned in the macroscopic regime, where a heat engine that only extracts work with
probability 1− ε , but over many cycles of the engine we do not notice this feature when
looking at the average work gained in each run.

To study the efficiency in the nanoscale regime, we have made crucial use of the second
laws presented in Chapters 4 and 6. It is apparent from these laws that we might only dis-
cover further limitations to the efficiency than we see at the macroscopic scale. Indeed they
do arise, as we find that the efficiency no longer depends on just the temperatures of the heat
baths. Instead, the explicit structure of the cold bath Hamiltonian ĤCold becomes important
(a similar argument can be made for the hot bath). Consider a cold bath comprised of n
two-level systems everyone with its own energy gap, where n can be arbitrarily large, but
finite. Let us denote the spectral gap of the cold bath – the energy gap between its ground
state and first excited state – by Emin. We can then define the quantity

Ω= Emin(βCold −βHot)

1+e−βColdEmin
, (7.1.1)

and study the efficiency in the quasi-static limit. This means that the final state of the
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cold bath is thermal, and its final temperature Tf is higher than TCold by only a positive
infinitesimal amount.

Whenever Ω ≤ 1, we show that the maximum and attainable efficiency is indeed the
familiar Carnot efficiency, which can be expressed as

η =
(
1+ βHot

βCold −βHot

)−1

. (7.1.2)

However, when Ω> 1, we find a new nanoscale limitation: the efficiency is only

η =
(
1+ βHot

βCold −βHot
Ω

)−1

(7.1.3)

for a quasi-static heat engine. One might hope to obtain a higher efficiency compared to
Eq. (7.1.3) by going away from the quasi-static setting, however we also show that such an
efficiency is always strictly less than the Carnot efficiency.

a) b)

Ω > 1

E

Ω ≤ 1

E

Figure 7.1: For fixed inverse temperatures βCold, βHot, the efficiency of a nanoscale heat engine depends
on the structure of the cold bath. At the nano/quantum scale, Carnot’s statement about the universality of heat
engines does not hold. We find that the maximum efficiency of a heat engine, does depend on the “working fluid”.
In (a) the energy gaps are small enough to allow the heat engine to achieve Carnot efficiency, i.e., Ω ≤ 1. In (b)
the efficiency of the heat engine is reduced below the Carnot efficiency because the energy gap of the qubits are
above the critical value Ω> 1.

One might question whether the inability to achieve Carnot efficiency always, is a direct
consequence of the generalized second laws, or perhaps also either by an overly stringent
model of heat engine, or an overly strict characterization of work. However, we show that
this is not the case. First of all, since for the macroscopic second law, we recover exactly
what Carnot predicted with our setup (in Chapter 6), this implies that our inability to achieve
what Carnot predicted according to the macroscopic laws of thermodynamics is not only
a consequence of an overly stringent model. Secondly, we even prove our results for a
highly generic case (Section 7.5) where the final states of bath, machine and battery may be
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correlated. A more generic form of the battery final state can also be allowed. Thirdly, to
justify our characterization of work, we also investigate the consequences of allowing for
imperfect work, instead of near perfect work. In this case, we show that Carnot efficiency
may even be surpassed. This should not come as a surprise, because we are no longer
asking for work - energy transfer about which we have (near) perfect information. Our
notion of (near) perfect work therefore is one that is necessary, in order to clearly distinct
from heat/average energy.

We present results for the full range of possible limits for different types of work ex-
traction, with the corresponding findings about the maximum achievable efficiency for
nanoscale heat engines, according to the generalized second laws derived in Chapter 4.
We summarize the main results of this chapter in Table 7.1.

Type Maximum efficiency

Perfect work ε = 0 Wext > 0 is not possible (Lemma 7.2, pg 127).

Near perfect work lim
ε→0

∆S
Wext

= 0 The Carnot efficiency ηC is the theoretical
maximum for all quantum heat engines, and
can only be approached uniquely in the quasi-
static limit. However, ηC can be approached
only if certain conditions on the bath Hamilto-
nian are met. Otherwise, the maximum attain-
able efficiency is strictly upper bounded away
from ηC. We derive such conditions for an n
qubit cold bath (Theorem 7.1, pg 151 and The-
orem 7.4, pg 173).

Imperfect work
(this paper)

lim
ε→0

∆S
Wext

= p,

p ∈ (0,∞)

∞ Unknown, however examples of exceeding CE
can be found (Corollary 7.2, pg 187).

Table 7.1: Different regimes of work corresponding to different limits of the ratio lim
ε→0

∆S
Wext

, and the corresponding

findings on the maximum achievable efficiency for a nanoscale quantum heat engine.

7.1.2. CHAPTER OUTLINE
In Section 6.6 of the last chapter, we saw how Carnot’s results on heat engines can be re-
established in the framework of catalytic thermal operations. We have also seen that the
conditions for a particular amount of work extraction are governed by different second laws
in ther macroscopic and nanoscopic regime, as detailed in Sections 6.4.1 and 6.4.2. Chapter
6 arrives at the same conclusion as Carnot’s result by using the macroscopic second law (for
the cases of perfect and near perfect work). However, in this chapter, we will turn expand
the full derivation of how these statements change for nanoscale quantum systems.

In particular, Section 7.2 analyzes the case of perfect work. There, we see that for a
heat engine operating between two thermal baths, perfect work cannot be extracted.
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Sections 7.3-7.5 analyzes the case of near perfect work, where heat contributions are
arbitrarily small compared to the amount of energy extracted. Section 7.3 introduces a non-
zero failure probability ε for the cases of non-perfect work (for including both near perfect
and imperfect work). Building on Section 7.3, in Section 7.4 we analyze the case of near
perfect work, where we show how a quantum heat engine may still achieve Carnot effi-
ciency, under certain conditions. Section 7.5 show us how the results of Section 7.4 would
still hold, considering an even more general QHE setup which allows final correlations
across the bath, battery and machine.

Finally, Sections 7.6 and 7.7 consider the case of imperfect work. Section 7.6 considers
the first case of imperfect work as shown in Table 7.1, where the amount of entropy created
is still comparable with the amount of extracted energy. In Section 7.7, we show that by
using the second type of imperfect work, Carnot efficiency can be surpassed.

7.2. A QHE CANNOT EXTRACT PERFECT WORK
We will first show that with the general setup as described in Section 6.2, no perfect work
can ever be extracted. In other words, whenever the failure probability of work extraction
ε = 0, then for any value of Wext > 0, and for any final state ρ1

Cold, the transition |E j〉〈E j|W⊗
τ0

Cold →|Ek〉〈Ek|W⊗ρ1
Cold is not possible.

Lemma 7.1. Consider the Hamiltonian ĤW given by Eq. (6.2.4), and any two energy levels
E j

W,Ek
W such that Wext =Ek

W−E j
W > 0. Then for any inverse temperature βh > 0, the thermal

state τW = 1

tr
(
e−βhĤW

)e−βhĤW satisfies

tr
[(|E j〉〈E j|W −|Ek〉〈Ek|W

)
τW

]> 0. (7.2.1)

Proof. Follows directly from the definitions. Since Wext > 0, we know that EW
j < EW

k .

Evaluating the quantity above gives 1

tr
(
e−βhĤW

) · (e−βhEW
j −e−βhEW

k

)
> 0.

Lemma 7.2. Consider any general quantum state ρ0
Cold of full rank. Then for any ρ1

Cold,
the transition from ρ0

Cold ⊗ρ0
W −−−→

CTO
ρ1

Cold ⊗ρ1
W is not possible if

tr
[(
Π

ρ0
W
−Π

ρ1
W

)
τW

]
> 0, (7.2.2)

where Πρ is the projector onto the support of state ρ , and τW is the thermal state of the
working body at the initial hot bath temperature.

Proof. One can show this by invoking one of the quantum second laws, in particular for
α = 0 in Proposition 4.2, which says that if ρin −−−→

CTO
ρout is possible, then

D̃0(ρin‖τ) ≥ D̃0(ρout‖τ), (7.2.3)

where τ is the thermal state of the system at bath temperature, and

D̃0(ρ‖σ ) = lim
α→0+

1

α −1
lntr[ρα

σ
1−α ] =− lntr[Πρ σ ]. (7.2.4)
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Applying this law with ρin = ρ0
W ⊗ρ0

Cold and ρout = ρ1
W ⊗ρ1

Cold, we arrive at

D̃0(ρ0
W‖τ

h
W)− D̃0(ρ1

W‖τ
h
W) ≥ D̃0(ρ1

Cold‖τ
h
Cold)− D̃0(ρ0

Cold‖τ
h
Cold), (7.2.5)

where τh
Cold and τh

W are thermal states of the cold bath and battery with inverse temperature
βh respectively. Since ρ0

Cold has full rank, and since τh
Cold is normalized, therefore according

to Eq. (7.2.4), D̃0(ρ0
Cold‖τh

Cold) = 0. Furthermore, since the α−Rényi divergence D̃0 is non-
negative, therefore the r.h.s. of Eq. (7.2.5) is lower bounded by 0. Thus, we have

tr
[(
Π

ρ0
W
−Π

ρ1
W

)
τW

]
≤ 0. (7.2.6)

Since this is a necessary condition for state transformations, we arrive at the conclusion that:
when Eq. (7.2.6) is violated, state transformations are not possible. But from Lemma 7.1,
any type of perfect work extraction violates Eq. (7.2.6). Therefore, in this setting, perfect
work extraction is always impossible.

To summarize, Lemma 7.2 implies that if the initial state of the cold bath is thermal, and
therefore of full rank, then any work extraction scheme via CTOs bringing ρ0

W = |E j〉〈E j|W
to ρ1

W = |Ek〉〈Ek|W where Wext = EW
k −EW

j > 0 is not possible. This implies that perfect
work, although desirable in principle, is an extremely strict form of work, and cannot be
achieved in a generic heat engine setting. Such a phenomena is closely analogous to zero-
error data compression: whenever a piece of information is represented by a random vari-
able X over a probability distribution of full rank, then one cannot achieve zero-error in
transmission if the data is compressed and transmitted in a message of shorter length [46].

7.3. THE EXTRACTION OF NON-PERFECT WORK
Since perfect work cannot be extracted in the setting of a quantum heat engine, we turn to
analyze the cases of non-perfect work, i.e. when the probability of failure is ε > 0. Such a
regime includes both near perfect work and imperfect work, depending on the value of ∆S

Wext
.

• In Sections 7.3.1 and 7.3.2, we begin by evaluating the expression for efficiency according
to the nanoscopic laws of thermodynamics, and comparing it to the expression according
to macroscopic law of thermodynamics. The relation between these two efficiencies are
summarized in Eq. (7.3.7): the nanoscopic efficiency is always smaller than the macro-
scopic efficiency. Since the latter attains Carnot efficiency only in the quasi-static limit,
it will be possible for the former only to attain Carnot efficiency in the quasi-static limit.

• We analyze the quasi-static regime, focusing on the special case where the cold bath
consists of n qubits. Note that the quasi-static limit corresponds to the case of small g> 0.
In such cases, Wext is infinitesimally small, and therefore ε also has to be arbitrarily small
for near perfect work extraction. Moreover, we are also generally interested in cases
where the failure probability of work extraction is small. This motivates us to perform
Taylor expansion of the analytical expressions for Wext and ∆C w.r.t. g and ε . This is
done in Section 7.3.3, and later applied throughout the rest of the chapter.
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7.3.1. AN EXPLICIT EXPRESSION FOR Wext
Our first task is to work out an explicit expression for Wext depending on the initial and final
states of the cold bath, ε and hot bath (inverse) temperature βh. Such as expression is found
by applying the generalized second laws as detailed in Section 6.4.2.

Lemma 7.3. Consider the transition

τ
0
Cold ⊗ρ

0
W −−−→

CTO
ρ

1
Cold ⊗ρ

1
W with ε > 0. (7.3.1)

where ρ0
W and ρ1

W are defined in Eqs. (6.2.5), (6.2.6) respectively. Let Wext denote the
maximum possible value such that Eq. (7.3.1) is possible with a thermal bath of inverse
temperature βh. Let βc > βh. Then the final state ρ1

Cold =
∑

i p′
i|Ei〉〈Ei|Cold is block-diagonal

in the energy eigenbasis, and

Wext = inf
α≥0

Wα , (7.3.2)

Wα = 1

βh(α −1)
[ln(A−ε

α )−α ln(1−ε)], (7.3.3)

A=
∑

i pα

i q1−α

i∑
i p′α

i q1−α

i
, (7.3.4)

where pi = e−βcEi
ZβC

, and qi = e−βhEi
Zβh

. The quantities W1 and W∞ are defined by taking the limit

α → 1,+∞ respectively.

Proof. Since both τ0
Cold⊗ρ0

W and ρ1
Cold⊗ρ1

W are block-diagonal, Eq. (6.4.6) is necessary and
sufficient for Eq. (7.3.1) to be satisfied. We can apply the additivity of Rényi divergences,
to Eq. (6.4.6):

Dα (ρ0
W‖τW)+Dα (τβc‖τβh

) ≥Dα (ρ1
W‖τW)+Dα (ρ1

Cold‖τβh
), (7.3.5)

where τW is the thermal state with Hamiltonian ĤW at inverse temperature βh. We define
Wα to be the value of EW

k −EW
j that satisfies Eq. (7.3.5) with equality. A straightforward

manipulation of these equations gives the expression for Wα . Then Wext = infα≥0 Wα is the
maximum value that satisfies the inequalities Eq. (7.3.5) for all α ≥ 0.

We can use this to write down an explicit solution to the maximization problem of
evaluating ηnano(ρ1

Cold) in Eq. (6.5.2). Using the simplified expression for efficiency in
Eq. (6.5.16) and Lemma 7.3, we arrive at

η
nano(ρ1

Cold) =
(

1−ε + ∆C(ρ1
Cold)

infα≥0Wα (ρ1
Cold)

)−1

(7.3.6)

where Wα is given by Eqs. (7.3.3), (7.3.4) and recall ∆C can be found in Eq. (6.5.13).
From the expression of Wext in Lemma 7.3, we see that the goal of computing the max-
imum achievable efficiency, sup

ρ1
Cold

ηnano(ρ1
Cold) remains a formidable task. In the next

section, see will show that we can use the results from Section 6.6, to drastically simplify
the problem.
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7.3.2. AN UPPER BOUND FOR THE EFFICIENCY
Before moving on to solving the nanoscale efficiency, we will first use the results of Section
6.6.3 to find upper bounds for the efficiency in the nanoscale regime.

Recall how we have observed when comparing Sections 6.4.1 and 6.4.2, that the family
of generalized free energies Fα contains the case of F1, which corresponds to the Helmholtz
free energy. Therefore, from Lemma 7.3, it follows that W1 is simply the maximum amount
of extractable work according to the macroscopic law of thermodynamics (as written ex-
plicitly in Eq. (6.4.1)). From Eqs. (6.5.4), (6.5.16),

η
mac(ρ1

Cold) =
(

1−ε + ∆C(ρ1
Cold)

W1(ρ1
Cold)

)−1

. (7.3.7)

One can now compare Eq. (7.3.7) with Eq. (7.3.6), and note that for any ρ1
Cold, we have

W1(ρ1
Cold) ≥ infα≥0Wα (ρ1

Cold). Therefore, we conclude that for any ρ1
Cold,

η
nano(ρ1

Cold) ≤η
mac(ρ1

Cold). (7.3.8)

Earlier in Theorem 6.1, we have proven that for the case of near perfect work extraction,
ηmac(ρ1

Cold) ≤ ηC. This implies that the same holds for ηnano(ρ1
Cold) when extracting near

perfect work.
Eq. (7.3.8) in conjunction with Lemma 6.5 has an important consequence. Namely,

sup
ρ1

Cold∈S(HCold)

η
nano(ρ1

Cold) (7.3.9)

≤ 1−βh/βc if ρ1
Cold that solves the supremum is that of a quasi-static heat engine,

< 1−βh/βc if ρ1
Cold that solves the supremum is not that of a quasi-static heat engine.

This tells us that if we cannot achieve the Carnot efficiency for a quasi-static heat engine, we
can then never achieve it, and can only achieve a strictly smaller efficiency. Therefore, in
order to determine whether a QHE can achieve Carnot efficiency, it suffices to only consider
the quasi-static regime.

7.3.3. EVALUATING NON-PERFECT WORK FOR THE QUASI-STATIC HEAT
ENGINE

The aim of this section is to provide a calculation for the non-perfect work Wext extractable
in quasi-static heat engines, i.e. the case where ε,g ¿ 1. This will be done by We first
assume, without loss of generality that the cold bath consists of n systems (this is without
loss of generality because in particular n= 1 can be used). Such an assumption allows us to
introduce the parameter n, where ρ0

Cold can be written as

ρ
0
Cold =

n⊗
i=1

τi,βc , (7.3.10)

where τi,βc is the thermal state of i-th system Hamiltonian Ĥi,c at inverse temperature βc.
For the simplicity of subsequent proofs, we present them in the special case of identical
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systems, i.e. that Ĥi,c = Ĥc for all 1 ≤ i≤ n. This means Eq. (7.3.10) can be reduced to

ρ
0
Cold = τ

⊗n
βc

. (7.3.11)

Furthermore, since we consider quasi-static heat engines, the output state is

ρ
1
Cold = τ

⊗n
β f

, (7.3.12)

with β f = βc − g ,where 0 < g ¿ 1. Eq. (7.3.11) together with Eq. (7.3.12) allows us to
further simplify Eq. (7.3.4) to

A=
( ∑

i pα

i q1−α

i∑
i p′α

i q1−α

i

)n

, (7.3.13)

where pi = e−βcEi
Zβc

, p′
i = e−β f Ei

Zβ f
, and qi = e−βhEi

Zβh
are probabilities of thermal states for the

Hamiltonian Ĥc. The proof is analogous to Lemma 7.3, but now noting that in Eq. (7.3.5)
we can replace Dα (τCold‖τβh

) and Dα (ρ1
Cold‖τβh

) with nDα (τβc‖τβh
) and nDα (τβ f ‖τβh

) re-
spectively. This follows from the fact that Rényi divergences are additive.

As mentioned previously, we are interested in the case where both ε > 0 and g > 0 are
infinitesimally small. With the goal of finding a solution for Wext from Eqs. (7.3.2), (7.3.3),
and (7.3.13); we will proceed to find an expansion of Wα for small ε and g.

THE EXPANSION OF A FOR A QUASI-STATIC HEAT ENGINE
To simplify our calculations of Wext, especially that of efficiency, it is important to express
A in Eq. (7.3.13) in terms of its first order expansion w.r.t. the parameter g. Recall that this
parameter g = βc −β f is the difference of inverse temperature between the initial and final
state of the cold bath.

Firstly, note that for any integer n, the expression in Eq. (7.3.13) evaluates to A|g=0 = 1.
This is because at g= 0, β f = βc and therefore the probabilities pi, p′

i are identical. To obtain
an approximation in the regime 0 < g¿ 1, we derive

dA
dg

=−n

(∑
i

pα

i q1−α

i

)n (∑
i

p′α
i q1−α

i

)−n−1 [∑
i

α p′α−1
i q1−α

i
d p′

i

dg

]
(7.3.14)

=−αnA

(∑
i

p′α
i q1−α

i

)−1 [∑
i

p′α
i q1−α

i (Ei −〈Ĥc〉β f )

]
. (7.3.15)

The first equality holds by noticing that only the probabilities p′
i depend on g, which means

only the denominator in Eq. (7.3.13) is differentiated, using the chain rule

dA({p′
i})

dg
=∑

i

dA({p′
i})

d p′
i

d p′
i

dg
. (7.3.16)
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The equality in Eq. (7.3.15) makes use of the fact that
d p′i
dg = − d p′i

dβ f
= p′

i(Ei − 〈Ĥc〉β f ) as
derived in Eq. (6.6.25). Evaluated at g= 0, implies that p′

i = pi, and therefore this gives

dA
dg

∣∣∣
g=0

=αnBα , where (7.3.17)

Bα = 1∑
i

pα

i q1−α

i

∑
i

pα

i q1−α

i
(〈Ĥc〉βc −Ei

)
. (7.3.18)

Recall that pi,qi are probabilties of the thermal states of Ĥc, at inverse temperatures βc,βh
respectively. With this, we can write the expansion of A with respect to g as

A= 1+αngBα +Θ(g2). (7.3.19)

Later, we need to evaluate the derivative of Bα w.r.t. α . This quantity, at α = 1, has a
close relation to the change in average energy of the cold bath (per copy), ∆C

n .

Lemma 7.4. Let

∆C′(βc) := d
dg
∆C(β f )

∣∣∣
g=0

, (7.3.20)

where recall β f = βc −g. Then

B′
1 =

dBα

dα

∣∣∣
α=1

= βc −βh

n
∆C′(β f ) = (βc −βh) ·var(Ĥc)βc . (7.3.21)

Proof. From the definition of ∆C and using Eqs. (7.4.24), (7.3.10), (7.3.12), we have

∆C
n

= tr
[(

τβ f −τβc

)
Ĥc

]
. (7.3.22)

Recalling that β f = βc −g and using Eq. (6.6.35), from Eq. (7.3.22) it follows

1

n
∆C′(βc) = 1

n
d∆C
dg

∣∣∣∣
g=0

=−1

n
d∆C
dβ f

∣∣∣∣
β f =βc

= var(Ĥc)βc . (7.3.23)

Now, let us evaluate the partial derivative of Bα w.r.t. α . Denoting ri = pi
qi

, and invoking the
chain rule of derivatives for Eq. (7.3.18), we have

dBα

dα
=

(∑
i

pα

i q1−α

i

)−2 {[∑
i

qirα

i lnri ·
(〈Ĥc〉βc −Ei

)][∑
i

pα

i q1−α

i

]
(7.3.24)

−
[∑

i
qirα

i lnri

][∑
i

pα

i q1−α

i · (〈Ĥc〉βc −Ei
)]}

. (7.3.25)
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Substituting α = 1 into Eq. (7.3.24), we obtain that
∑

i pα

i q1−α

i = 1. Also,
∑

i pα

i q1−α

i ·(〈Ĥc〉βc −Ei
) = 0 while the factor multiplied in front is finite. Therefore, we are left with

B′
1 =

∑
i

pi lnri ·
(〈Ĥc〉βc −Ei

)
(7.3.26)

=∑
i

pi

[
ln

Zh

Zc
+ (βh −βc)Ei

]
· (〈Ĥc〉βc −Ei) (7.3.27)

= (βc −βh) ·var(Ĥc)βc =
βc −βh

n
·∆C′(βc). (7.3.28)

The second equality comes from substituting ri = pi
qi
= e(βh−βc)Ei ·Zh/Zc. In the third equality,

ln Zh
Zc

is brought out of the summation, while the summation yields 0. Subsequently, we
invoke

∑
i piEi(〈Ĥc〉βc −Ei) = 〈Ĥc〉2

βc
−〈Ĥ2

c 〉βc =−var(Ĥc)βc .

A simple application of Lemma 7.4 is a Taylor expansion for ∆C with respect to the
quasi-static parameter g.

Lemma 7.5. Consider a quasi-static heat engine where the cold bath described by ĤCold
consists of n identical systems at inverse temperature βc. Denote the inverse temperature of
the hot bath as βh, and consider the following function

∆C := tr
(
ĤColdτ

⊗n
β f

)
− tr

(
ĤColdτ

⊗n
β f

)
. (7.3.29)

Then in the quasi-static limit, where the cold bath final state is a thermal state of inverse
temperature β f = βc −g, where 0 < g¿ 1,

∆C = nB′
1

βc −βh
·g+Θ(g2), (7.3.30)

where B′
α = dBα

dα
and Bα is defined in Eq. (7.3.18).

Proof. This lemma is directly obtained by Taylor expansion of Eq. (7.3.29), noting two
things: 1) that ∆C|g=0 = 0, and that 2) when ρ1

Cold = τβ f ,

d∆C
dg

∣∣∣∣
g=0

= nB′
1

βc −βh
. (7.3.31)

THE EXPANSION OF Wα IN THE QUASI-STATIC HEAT ENGINE
We now proceed to derive an expansion of Wα valid for small g, and ε . Note that W1 is
defined through continuity to be the limit of the Rényi divergences at α → 1, and the small
ε and g expansion does not hold for α = 0, we shall have to examine W1 and W0 separately.
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(A) For ε > 0, α ∈ (0,1)∪ (1,∞)

Wα = 1

βh(α −1)
[ln(A−ε

α )−α ln(1−ε)] (7.3.32)

= 1

βh(α −1)

[
ln

(
1+αngBα +Θ(g2)−ε

α
)−α ln(1−ε)

]
(7.3.33)

= 1

βh(α −1)

[
αngBα +Θ(g2)−ε

α +Θ(ε2α )+Θ(gε
α )−α

(−ε +Θ(
ε

2))] , (7.3.34)

= 1

βh(α −1)

[
αngBα −ε

α +αε
]+Θ(g2)+Θ(ε2α )+Θ(gε

α )+Θ(ε2). (7.3.35)

In the second equality, we have used the expansion of A derived in Eq. (7.3.19). In the third
equality, we use the Taylor series for natural logarithm

ln(1+x) =
∞∑

k=1

(−1)k+1

k
xk, |x| < 1, (7.3.36)

to expand both of the natural logarithms in Eq. (7.3.32). The order terms of Θ(g3), Θ(g4),
Θ(g2εα ) vanish because they are of higher order compared with Θ(g2) and Θ(gεα ). The last
equality occurs because cΘ(g(x)) =Θ(g(x)) for any c ∈R\0.

(B) For ε > 0, α = 1
Going back to the state transition conditions in Eq. (7.3.5), note that W1 is the maximum
value such that Eq. (7.3.5) holds with equality, when all Dα terms in Eq. (7.3.5) are evalu-
ated at α → 1. Recall that limα→1 Dα (ρ‖τ) =D(ρ‖τ) yields the relative entropy. Therefore,
one can write an equation for W1 in a more compact form: W1 is the value such that

n ·
[
〈Ĥc〉βc −

1

βh
S(βc)

]
= n ·

[
〈Ĥc〉β f −

1

βh
S(β f )

]
+ (1−ε)W1 − 1

βh
h2(ε), (7.3.37)

where 〈Ĥc〉βc is the mean energy evaluated at inverse temperature βCold, S(βc) is the von
Neumann entropy of the state τβc , and h2(ε) is the binary entropy function. Rearranging
Eq. (7.3.37), we get

W1 = 1

1−ε

[
n〈Ĥc〉βc −n〈Ĥc〉β f −n

1

βh

(
S(βc)−S(β f )

)+ 1

βh
h2(ε)

]
. (7.3.38)

We can further expand Eq. (7.3.38) using a power law expansion in g and ε for the terms in
Eq. (7.3.38), obtaining

W1 =
[
1+ε +Θ(ε2)

] ·[n
d(−〈Ĥc〉β f +β−1

h S(β f ))

dg

∣∣∣
g=0

g+Θ(g2)+ 1

βh
h2(ε)

]
. (7.3.39)
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To proceed, we recall that β f = βc −g and evaluate the term

d(−〈Ĥc〉β f +β−1
h S(β f ))

dg

∣∣∣∣
g=0

=
d(〈Ĥc〉β f −β−1

h S(β f ))

dβ f

∣∣∣∣
β f =βc

(7.3.40)

=−var(Ĥc)βc +
βc

βh
var(Ĥc)βc (7.3.41)

= βc −βh

βh
var(Ĥc)βc . (7.3.42)

This implies that when fully expanded, Eq. (7.3.39) reads as

W1 =ng
βc −βh

βh
var(Ĥc)βc +β

−1
h h2(ε)+Θ(εg)+Θ(ε)h2(ε)+Θ(gε

2)+Θ(ε2)h2(ε) (7.3.43)

+Θ(g2)+Θ(εg2)+Θ(ε2g2) (7.3.44)

=ng
βc −βh

βh
var(Ĥc)βc +β

−1
h (−ε lnε +ε)+Θ(εg)+Θ(ε2 lnε)+Θ(ε2)+Θ(g2), (7.3.45)

where we have used h2(ε) = −ε lnε +Θ(ε), which follows from finding the power-law ex-
pansion of the binary entropy.

Although Eq. (7.3.35) is not defined for α = 1, we can evaluate it in the limit α → 1 to
see if it coincides with the correct expression of W1 (in Eq. (7.3.45)) at least for the leading
order term (found in square brackets of Eq. (7.3.35)). For the leading order term of Eq.
(7.3.35), we find

lim
α→1

1

βh(α −1)

[
αngBα −ε

α +αε
]= β

−1
h

[
ng lim

α→1

αBα

α −1
− lim

α→1

εα −αε

α −1

]
(7.3.46)

= β
−1
h

[
ng lim

α→1

αBα

α −1
+ (−ε lnε +ε)

]
, (7.3.47)

= ng
βc −βh

βh
var(Ĥc)βc +β

−1
h (−ε lnε +ε). (7.3.48)

The last equality holds because

lim
α→1

αBα

α −1
= lim

α→1

dBα

dα
(7.3.49)

= (βc −βh) ·var(Ĥc)βc , (7.3.50)

where Eq. (7.3.49) is derived from L’Hôspital rule (B1 = 0 follows from the definition,
see Eq. (7.3.17)), and Eq. (7.3.50) comes by invoking Lemma 7.4. Thus noting that Eq.
(7.3.48) is simply the first two terms in Eq. (7.3.50), we conclude that the small g > 0 and
ε > 0 expansion of Wα for α > 0 can be summarized as

Wα = (7.3.51)
1

βh(α−1)

[
αngBα −εα +αε

]+Θ(g2)+Θ(ε2α )+Θ(gεα )+Θ(ε2) if α > 0, α 6= 1

lim
α→1+

1

βh(α −1)

[
αngBα −ε

α +αε
]+Θ(εg)+Θ(ε2 lnε)+Θ(ε2)+Θ(g2) if α = 1.
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(C) For α = 0
We will now investigate the α = 0 case. This is also particularly important to understand
the difference between perfect and non-perfect work, since in Section 7.2, the impossibility
of extracting perfect work arises from evaluating the allowed values of Wext under the α =
0 constraint. We show that by allowing ε > 0, Wext > 0 is allowed once again. Recall
D0(p‖q) = limα→0 Dα (p‖q) =∑

i:pi 6=0 qi. Thus from Eq. (7.3.5) we have

D0(ρ0
W‖τW)−D0(ρ1

W‖τW) ≥ nD0(τβ f ‖τβh
)−nD0(τβc‖τβh

) = 0. (7.3.52)

where the last equality follows from the fact that thermal states have full rank. When-
ever ε > 0, this inequality is satisfied for any value of Wext according to Eq. (6.2.5) and
(6.2.6). Therefore, taking into account Eqs. (7.3.51) and (7.3.52), for quasi-static heat en-
gines which extract non-perfect work, we only need to solve

Wext = inf
α>0

Wα , (7.3.53)

where Wα is given by Eq. (7.3.51).

7.4. EFFICIENCY OF A QHE WHEN EXTRACTING NEAR
PERFECT WORK

Due to the impossibility result of extracting perfect work, we consider a first relaxation,
namely the extraction of near perfect work in the nanoscale setting.

Box 7.4.1: Maximum efficiency for QHEs according to nanoscopic thermody-
namics

For a QHE that extracts near perfect work, we find that

(1) The maximum achievable efficiency is still the Carnot efficiency.

(2) The Carnot efficiency is only achieved when the final cold bath state is ther-
mal (with a different temperature Tf ). This is proven in Section 7.3.2.

(3) The Carnot efficiency is only achieved for quasi-static heat engines.

(4) The Carnot efficiency cannot be achieved for all cold bath Hamiltonians.This
is summarized in Theorem 7.1 (Section 7.4.3). Sections 7.4.1 and 7.4.2 con-
tain technical proofs, that pave the way for deriving this main result.

We give a brief outline the structure for this section:

• In Section 7.4.1, we identify how to choose ε(g) such that it corresponds to drawing near
perfect work in the quasi-static limit. We first begin by observing that any continuous
function ε(g) that vanishes in the limit g → 0 can be characterized with a real-valued
parameter κ̄ that determine how quickly ε goes to zero with respect to g. This is shown
in Lemma 7.6. In Lemma 7.7, we show that near perfect work is drawn only if κ̄ ∈ [0,1].
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• Lemma 7.7 gives us the analytical expression and minimization range to evaluate Wext,
according to Eq. (7.4.6). In Section 7.4.2, we show how one can evaluate this optimiza-
tion problem, by comparing the stationary points and endpoints of the function αBα

α−1 that
gives the leading term in Eq. (7.4.6). Lemma 7.8 proves a technical property of the first
derivative of this function. Using it, we prove in Lemma 7.9 that one can always choose
ε(g) with some κ̄ < 1 such that the infimum of αBα

α−1 is obtained at either α = κ̄ or α →∞.

• Finally, in Section 7.4.3, we use the results in Section 7.4.2 regarding the evaluation of
Wext to find the efficiency in the quasi-static limit.

7.4.1. THE CHOICE OF ε DETERMINES INFIMUM TO EVALUATING Wext
In this section, we will show that the infimum over all α > 0 in Eq. (7.3.53) can be simplified
to taking the infimum over α > κ̄ instead for some parameter κ̄ , where κ̄ determines how
quickly ε goes to 0 with respect to the parameter g. We define κ̄ in Lemma 7.6 and show
its existence, for any function of ε(g) such that limg→0+ ε(g) = 0.

Lemma 7.6. For any continuous function ε(g) > 0 satisfying lim
g→0+

ε(g) = 0, ∃ κ̄ ∈R≥0 s.t.

δ (κ) = lim
g→0+

εκ (g)

g
=


0 if κ > κ̄

σ ≥ 0 if κ = κ̄

∞ if κ < κ̄

(7.4.1)

where κ̄ = +∞ is allowed (that is to say, limg→0+
εκ (g)

g diverges for every κ ∈ R≥0) and
σ =+∞ is also allowed.

Proof. The main idea in this proof is to divide the non-negative real line into an infinite
sequence of intervals in an iterative process. We specify the ends of these intervals by con-
structing a sequence {κi}∞i=1, and evaluating δ at these points. We then prove that according
to our construction, there are only two possibilities:
1) κi forms a convergent sequence, where the limit limn→∞κn = κ̄ , or
2) the ends of these intervals extend to infinity. In this case, κ̄ =∞.
The way to construct this interval is as follows: in the first round, pick some κ1 > 0. The
corresponding interval is [0,κ1]. Evaluate δ (κ1). If δ (κ1) =∞, then proceed to look at the
interval [κ1,

3
2 κ1]. Otherwise if δ (κ1) <∞, choose κ2 = κ1

2 and evaluate δ (κ2). Depending
on whether δ (κ2) goes to infinity, we pick one of the intervals [0,κ2] or [κ2,κ1].

A general expression of choosing κn can be written: during the n-th round, define the
sets S (0)

n ,S (∞)
n such that

S (0)
n = {κi|1 ≤ i≤ n and δ (κi) = 0, }

S (∞)
n = {κi|1 ≤ i≤ n and δ (κi) =∞}.

Note that if we find δ (κi) = c 6= 0 for some finite constant c, then our job is finished, i.e.
κ̄ = κi (We prove this later). Subsequently, define for n≥ 1,

κ
(0)
n = min

κ∈S (0)
n

κ and κ
(∞)
n = max

κ∈S (∞)
n

κ.
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0
κ

κ κ

for all κ < κn, 

for all κ > κn+1,

δ(κ)

δ(κ)=∞

δn+1< ∞

δ(κ)=0

δn=∞

δn+2 < ?

Figure 7.2: Illustration of the scenario where δ (κn) =∞ and δ (κn+1) <∞.

If either sets are empty, we use the convention that the corresponding minimization/maximization
equals 0. Once these quantities are defined, we can choose the next interval by evaluating

κn+1 = κ
(∞)
n + |κ (∞)

n −κ
(0)
n |

2
. (7.4.2)

In the n-th round, the corresponding interval is [κ (∞)
n ,κn+1].

Let us now analyze why we can use this scheme to find κ̄ . Firstly, consider the case
where for each κi picked, δ (κi) =∞. This means that in each round, κ

(∞)
n = κn increases

with n (by the iterative scheme), and κ
(0)
n = 0 always stays at zero. Note that this scheme has

been constructed in a way such that limn→∞κn =∞. Indeed, for all n, by using Eq. (7.4.2),

κn+1 = 3

2
κn =

(
3

2

)2

κn−1 = ·· · =
(

3

2

)n
κ1, (7.4.3)

which tends to infinity as n → ∞, whenever κ1 > 0. Later we will prove a property of
the function δ , which combined with this scenario means that δ (κ) =∞ for every κ ≥ 0.
Therefore, κ̄ =∞.

Next, suppose that there exist an n-th round, such that δ (κn) =∞ and δ (κn+1) <∞, as
illustrated in Fig 7.2. Note that the function δ (κ) has a peculiar property, i.e. we know that
if δ (κn) =∞, then for any κ < κn,

δ (κ) = lim
g→0+

ε
κ−κn (g)︸ ︷︷ ︸
→+∞

εκn (g)

g︸ ︷︷ ︸
→∞

=+∞.
(7.4.4)

On the other hand, if δ (κn+1) = 0, then we know that for any κ > κn+1,

δ (κ) = lim
g→0+

ε
κ−κn+1 (g)︸ ︷︷ ︸

→0

εκn+1 (g)

g︸ ︷︷ ︸
→0

= 0. (7.4.5)
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Moreover, if δ (κ j) = c 6= 0 for some positive, finite c, then following the same arguments,
one can easily see that for all κ < κ j, δ (κ) =∞ and for κ > κ j, δ (κ) = 0. In this case we
find that κ̄ = κ j. These observations are illustrated in Figure 7.2 for clarity.

One can now evaluate κn+2 (which is the midpoint of κn and κn+1) and its corresponding
value of δ (κn+2). From this point on, in each iteration we either find κ̄ exactly (whenever
the function δ when evaluated produces a finite, non-zero number), or the length of the
next interval gets halved, and goes to zero in the limit of n →∞. This, by Eq. (7.4.2), also
implies that limn→∞κ

(∞)
n = limn→∞κ

(0)
n . We also know the following:

1) for all κ < κ
(∞)
n ,δ (κ) =∞,

2) for all κ > κ
(0)
n ,δ (κ) = 0.

Therefore, κ̄ exists and κ̄ = limn→∞κ
(∞)
n = limn→∞κ

(0)
n . By this we conclude the proof.

To provide some intuition about how κ̄ compares the rate of convergence ε,g → 0, let
us look at the following examples:
1) Consider ε1(g) = exp(−1/g). Then κ̄ = 0 with σ =∞.
2) Consider ε2(g) = g lng. Then κ̄ = 1 with σ =∞.
3) Consider ε3(g) = c ·g1/k for k > 0. Then κ̄ = k with σ = c.

NEAR PERFECT WORK CORRESPONDS TO κ̄ ∈ [0,1]
In the next lemma, we consider the scenario of near perfect work, given in Def. 6.3, and
show that this imposes a finite range of values κ̄ should take. Given a particular κ̄ , we also
show that the minimization of Eq. (7.3.53) changes with κ̄ .

Lemma 7.7. Consider any ε(g) ∈ (0,1] as a continuous function of g, where g > 0. If
limg→0+ ε(g) = 0 and limg→0+

∆S
Wext

= 0, then the following holds:

1. The quantity κ̄ (defined in Lemma 7.6) is within the interval κ̄ ∈ [0,1], where the limit
limg→0+

ε lnε

g = 0 has to hold if κ̄ = 1.

2. The amount of extractable work can be written as

Wext = g ·
[

inf
α≥κ̄

nαBα

α −1
+ f (g)

]
, (7.4.6)

where limg→0+ f (g) = 0 and infα≥κ̄ can be exchanged for infα>κ̄ if κ̄ = 0.

Proof. Firstly, Eq. (7.3.51) simplifies our expression for Wext: Wext = inf
α≥0

Wα , where

βhWα =

gW̃α +Θ(g2)+Θ(ε2α )+Θ(gεα )+Θ(ε2) if α ∈ (0,1)∪ (1,∞)

gW̃1 +Θ(εg)+Θ(ε2 lnε)+Θ(ε2)+Θ(g2) if α = 1,

(7.4.7)

and

W̃α := 1

α −1

(
αnBα +α

ε

g
− εα

g

)
, (7.4.8)
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and for α = 1

W̃1 =
(

lim
α→1

αnBα

α −1

)
+ ε

g
− ε

g
ln(ε). (7.4.9)

From now on, the order terms in Eq. (7.4.7) can be neglected, since it can be checked
that all of them are of higher order compared to the terms we grouped in W̃α , in the limit
of vanishing g. Even then, we note that due to the complicated form of Wext, it is not
straightforward to begin our proof with the assumption limg→0+

∆S
Wext

= 0.
Instead, we begin by noting that given a function ε(g) that satisfies the conditions of the

above lemma, then one can invoke Lemma 7.6, and therefore there exists a κ̄ ∈ R≥0 such
that Eq. (7.4.1) holds. We then, for all possible κ ∈R≥0, evaluate all W̃α to take the infimum
and obtain Wext. Given Wext, we then evaluate the quantity limg→0+

∆S
Wext

= 0.

The value of κ̄ determines how the limits of quantities like ε

g ,
εα

g behave. Therefore, we
need to split the analysis into three different regimes: κ̄ ∈ [0,1), κ̄ = 1, κ̄ ∈ (1,∞).

1) For κ̄ ∈ [0,1)

For this case, we know the following limits:
A. limg→0+

ε

g = 0.

B. For α < κ̄ , limg→0+
εα

g =∞.

C. For α = κ̄ , limg→0+
εα

g =σ ≥ 0.

D. For α > κ̄ , limg→0+
εα

g = 0.

E. Note that ∃ k1 > κ̄ such that 1−k1 > 0. Thus limg→0+
ε

g lnε = limg→0+
εk1

g ε1−k1 lnε = 0.
Therefore, by using Eq. (7.4.8) and (7.4.9) (for α = 1 separately) we have

W̃α =



+∞ if α ∈ [0, κ̄)

αnBα

α −1
+σ +Θ

(
ε

g

)
if α = κ̄

αnBα

α −1
+Θ

(
εα

g

)
if α ∈ (κ̄,1)

αnBα

α −1
+Θ

(
ε

g

)
if α ∈ (1,∞)

lim
α→1

αnBα

α −1
+Θ

(
ε lnε

g

)
if α = 1,

(7.4.10)

where the expression in Eq.(7.4.10) has been written as a leading order term, plus higher
order terms that vanish in the limit g→ 0.

Therefore, we conclude that for κ̄ ∈ [0,1) and any σ ≥ 0, due to continuity in α of αnBα

α−1 ,

βhWext = inf
α>0

Wα = g ·
[

inf
α≥κ̄

αnBα

α −1
+Θ(

f (g)
)]
, (7.4.11)

where f satisfies limg→0+ f (g) = 0 in the expression of Eq. (7.4.10), Both functions vanish
as g tends to zero. Note that if κ̄ = 0, then infα≥κ̄ can be exchanged for infα>κ̄ since in Eq.
(7.3.53) the point α = 0 was already excluded.
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We can now calculate limg→0+
∆S

Wext
for κ̄ ∈ [0,1) and any σ ≥ 0:

lim
g→0+

∆S
Wext

= lim
g→0+

−ε lnε − (1−ε) ln(1−ε)(
infα≥κ̄

αnBα

α−1

)
g

(7.4.12)

= lim
g→0+

1

infα≥κ̄
αnBα

α−1

 −ε lnε

g︸ ︷︷ ︸
→0 (Item E)

− ε +Θ(ε2)

g︸ ︷︷ ︸
→0 (Item A)

= 0,

where we have assumed that

inf
α≥κ̄

αnBα

α −1
> 0. (7.4.13)

As we will see later (see Eq. (7.4.30)), Eq. (7.4.13) holds if κ̄ > 0. However,

αnBα

α −1
= 0, (7.4.14)

if α = 0 and we need to use Eq. (7.4.10) for the case α ∈ (κ̄,1) for κ̄ = 0. From which we
conclude that

βhWext = inf
α>0

Wα ≥ ε
1/2 =Θ( f (g)), (7.4.15)

thus we have

lim
g→0+

∆S
Wext

≤ lim
g→0+

−ε lnε − (1−ε) ln(1−ε)

ε1/2/g
= lim

g→0+
g(−ε

1/2 lnε −ε
1/2) = 0. (7.4.16)

thus from Eqs. (7.4.14), (7.4.15), and (7.4.16), we conclude that Eq. Eqs. (7.4.11) and
(7.4.12) are still valid when κ̄ = 0. To summarize, so far we have proven that whenever
κ̄ ∈ [0,1), Eq. (7.4.6) holds for some f (g) which vanishes as g tends to zero, and furthermore
limg→0+

∆S
Wext

= 0.

2) For κ̄ ∈ (1,∞)

In this regime, like the previous analysis, we can list out the following limits:
A. limg→0+

ε

g = 0.

B. By definition of κ̄ , for α < 1, limg→0+
εα

g =∞.

C. limg→0+
ε lnε

g =∞ since both ε

g and lnε goes to infinity as g→ 0.
Therefore, by using Eq. (7.4.8) and (7.4.9) (for α = 1 separately) we have

W̃α =



1
g · 1

1−α

[
εα +Θ(ε)+Θ(g)

]
if α ∈ [0,1)

1
g ·

[−ε lnε +Θ(ε)+Θ(g)
]

if α = 1

1
g · 1

α−1

[
αε +Θ(εα )+Θ(g)

]
if α ∈ (1,∞).

(7.4.17)
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Note that for all of these expressions in Eq. (7.4.17), W̃α →∞. Next we want to calculate
Wext, which is the infimum of Wα , taken over all α ≥ 0. Note that in the limit of vanishing
g, ε also goes to zero. Therefore in Eq. (7.4.17), the equation of W̃α which vanishes most
quickly in the limit g → 0 happens when α ∈ (1,∞). Therefore, we conclude that for κ̄ ∈
(1,∞) and any σ ≥ 0,

βhWext = inf
α≥1

Wα = g ·
[

inf
α≥1

α

α −1

ε

g
+Θ(

f (g)
)]= ε +g ·Θ(

f (g)
)

(7.4.18)

We can now calculate limg→0+
∆S
W for κ̄ ∈ (1,∞) and any σ ≥ 0:

lim
g→0+

∆S
W

= lim
g→0+

−ε lnε − (1−ε) ln(1−ε)

ε
= lim

g→0+
−ε lnε

ε︸ ︷︷ ︸
→∞

− ε +Θ(ε2)

ε︸ ︷︷ ︸
→1

=+∞. (7.4.19)

From this, we note that the whole regime of κ̄ ∈ (1,∞) does not contain any cases corre-
sponding to our condition of interest: limg→0+

∆S
Wext

= 0 never holds.

3) For κ̄ = 1

Similar to the first two cases, we again list out the relevant limits:
A. limg→0+

ε

g =σ for some σ ≥ 0.

B. For α < 1, limg→0+
εα

g =∞.

C. For α > 1, limg→0+
εα

g = 0.
Therefore, by using Eq. (7.4.8) and (7.4.9) (for α = 1 separately) we have

W̃α =



1
g · 1

1−α

[
εα +Θ(ε)+Θ(g)

]
if α ∈ [0,1)

1
g ·

[−ε lnε +Θ(ε)+Θ(g)
]

if α = 1 && σ > 0

n lim
α→1

αBα

α −1
− ε lnε

g
≥ n lim

α→1

αBα

α −1
if α = 1 && σ = 0

1
α−1

[
αnBα +ασ −Θ

(
εα

g

)]
if α ∈ (1,∞).

(7.4.20)

Note that for α ∈ [0,1) and the case α = 1 && σ > 0, W̃α tends to infinity, while for the other
cases W̃α is finite.

Therefore, we can conclude that for κ̄ = 1,

βhWext = g ·
[(

inf
α≥1

α

α −1
(nBα +σ )

)
+Θ(

f (g)
)]
, (7.4.21)

where f (g) = εα

g vanishes as g tends to zero.
Now, we evaluate the limit limg→0+

∆S
W for κ̄ = 1 and any σ ≥ 0:

lim
g→0+

∆S
W

= lim
g→0+

−ε lnε − (1−ε) ln(1−ε)(
infα≥1

1
α−1 (αnFα +ασ )

)
g
= lim

g→0+
−ε lnε

c ·g − ε +Θ(ε2)

c ·g︸ ︷︷ ︸
→0

. (7.4.22)
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This limit of interest can be zero if and only if limg→0+
ε lnε

g = 0.

We have calculated the limits limg→0+ ∆S/Wext to leading order in g for all functions
ε(g) > 0 satisfying limg→0+ ε = 0. These are found in Eqs. (7.4.12), (7.4.19), and (7.4.22).
We have found that limg→0+ ∆S/Wext = 0 occurs only in two cases:
i) κ̄ ∈ [0,1), and
ii) κ̄ = 1 and limg→0+

ε lnε

g = 0.
The amount of work, Wext is found in Eq. (7.4.11) and (7.4.21) respectively. Indeed, they
take the form of Eq. (7.4.6), for different functions f (g). With this, we conclude the proof
of the lemma.

Therefore, since we have analyzed in Lemma 7.7 the full range of κ̄ ∈R≥0, we summa-
rize the possible functions of ε(g) into the following Table 7.2, for any continuous function
ε(g) such that lim

g→0
ε(g) = 0.

lim
g→0

∆S
Wext

Characterization

Near perfect work 0 κ̄ ∈ [0,1)

κ̄ = 1 ∧ lim
g→0

ε ln 1
ε

g
= 0

p> 0 κ̄ = 1 ∧ lim
g→0

ε ln 1
ε

g
= p′, 0 < p′ <∞

Imperfect work
κ̄ = 1 ∧ σ = p′′ > 0

∞
(
This implies that lim

g→0

ε ln 1
ε

g
=∞

)
κ̄ ∈ (1,∞)

Table 7.2: Each choice of a continuous function ε such that lim
g→0

ε = 0, can lead to different regimes of ∆S
Wext

in the

quasi-static limit, depending on the values of κ̄,σ and lim
g→0

−ε lnε

g
. Recall Lemma 7.6 for definitions of κ̄ and σ .

7.4.2. SOLVING THE INFIMUM FOR Wext
We have seen in Lemma 7.7 that the function αBα

α−1 corresponds to the largest order term in
Wext w.r.t. small g (quasi-static heat engine). Our next objective is to find the infimum of
αBα

α−1 over α ∈ [κ̄,∞] appearing in Eq. (7.4.6). Such an infimum is is not easy to evaluate for
an arbitrary Hamiltonian, but whenever the cold bath consists simply of multiple identical
qubits, we show that the derivative d

dα

αBα

α−1 has some nice properties. Roughly speaking,
this derivative does not have many roots, which in turn means that αBα

α−1 does not have many
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turning points. We have used this to prove in Lemma 7.9 that the infimum is either obtained
at α = κ̄ or α →∞.

Let us begin by noting that the derivative of αBα

α−1 w.r.t. α is given by

d
dα

αBα

α −1
= Bα

α −1
+α

B′
α

α −1
− αBα

(α −1)2 = B′
α

(α −1)2

[
α(α −1)− Bα

B′
α

]
= B′

α

(α −1)2 G(α),

(7.4.23)

where G(α) := α(α −1)− Bα

B′
α

. To simplify our analysis, in addition to the generic assump-
tions (A.1)-(A.4) elaborated in Section 6.2, from now onwards we make the following
additional assumption about the cold bath Hamiltonian:

(A.5) The Hamiltonian is taken to be of n qubits:

ĤCold =
n∑

k=1
1⊗(k−1) ⊗ Ĥc,k ⊗ 1⊗(n−k), where Ĥc,k =Ek|Ek〉〈Ek|, (7.4.24)

and Ek > 0 is the energy gap of the k-th qubit. We present the subsequent proofs first for the
case of identical qubits, more precisely, the case where Ek = E for all 1 ≤ k ≤ n. Later on,
we show in Theorem 7.1 that the main result can be extended to non-identical qubits.

With this assumption, we evaluate the quantities Bα ,B′
α , and d

dα

Bα

B′
α

. Firstly, we start by
evaluating Bα as defined by Eq. (7.3.18) to obtain a simple expression:

Bα =E · e−βcE

1+e−βcE
−E · e−αβcEe−(1−α)βhE

1+e−αβcEe−(1−α)βhE
(7.4.25)

=E · 1

1+eβcE
−E · eαβhE

eαβhE +e(βh+αβc)E
(7.4.26)

= E
1+eβcE

·
1−

eαβhE
(
1+eβcE

)
eαβhE +e(βh+αβc)E

 (7.4.27)

= E
1+eβcE

· e(βh+αβc)E −e(βc+αβh)E

eαβhE +e(βh+αβc)E
(7.4.28)

= E
1+eβcE

·e(βh+αβc)E · 1−e−(α−1)(βc−βh)E

eαβhE +e(βh+αβc)E
. (7.4.29)

We note that Eq. (7.4.28) is zero only if α = 1, and thus for α 6= 1, αBα /(α − 1) 6= 0.
Furthermore, note that by examining the third term in Eq. (7.4.29), we see that Bα < 0 if
α −1 ≤ 0, while Bα > 0 if α −1 ≥ 0. Therefore, we can conclude that

αBα

α −1
> 0 ∀α > 0. (7.4.30)

We also derive the first derivative of Bα w.r.t. α for the special case of qubits:

B′
α = dBα

dα
= E2(βc −βh)[

eαβhE +e(βh+αβc)E
]2 ·e(βh+αβc+αβh)E . (7.4.31)
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Note that since βc > βh by our construction, therefore whenever E > 0, then B′
α > 0 always

holds. By further algebraic manipulation, we compute the first derivative of the function

d
dα

Bα

B′
α

= cosh[w(βc,βh,α)E]

cosh(βcE/2)
, (7.4.32)

where w(βc,βh,α) = (βc −βh)α +βh − βc
2 .

We have written Eq. (7.4.23) in this form, since for the special case of qubits, namely
Eq. (7.4.31), B′

α > 0 is always true. Therefore, looking at the function G(α) whether it is
positive or negative) will tell us whether αBα

α−1 (and therefore Wα ) is increasing or decreasing
in a particular interval.

In Lemma 7.8, we identify the conditions on the energy spacing E such that several
different properties of G(α) hold.

Lemma 7.8. Consider G(α) = α(α −1)− Bα

B′
α

, where Bα ,B′
α is defined in Eq. (7.4.28) and

(7.4.31). Then the following holds:
1) If E(βc −βh) tanh(βcE/2) > 2,

∃0 < τ < 1 s.t. G(α) < 0 ∀α ∈ (τ,1)∪ (1,∞) (7.4.33)

2) If E(βc −βh) tanh(βcE/2) < 2,

∃ α > 1 s.t. G(α) > 0 ∀α ∈ (0,1)∪ (1,α)

G(α) < 0 ∀α ∈ (α,∞). (7.4.34)

3) If E(βc −βh) tanh(βcE/2) = 2,

G(α) > 0 ∀α ∈ (0,1)

G(α) < 0 ∀α ∈ (1,∞). (7.4.35)

Proof. First we note that since B1 = 0, therefore G(1) = 0. Let us also compute the derivative
of G(α) w.r.t. α:

G′(α) = 2α −1− cosh
(
(−βc/2+βh + (βc −βh)α)E

)
cosh(βcE/2)

. (7.4.36)

Before we continue, there are several properties of the function G′(α) which we shall make
use of. Firstly, note that G′(1) = 0, in other words, G′ has a root at α = 1. Also, G′(∞) =−∞
for any value of E > 0, βh > 0, βc > βh

1. Also, since 2α − 1 is linear (and hence both
convex and concave), while the −cosh function is strictly concave2 , therefore the function
G′(α) is strictly concave. This implies that the second derivative G′′(α) = d2G(α)

dα2 is strictly
decreasing w.r.t. α .

These properties of G′(α) indicate that we can fully analyze the function by considering
3 different cases:
1This is due to the fact that 2α increases linearly w.r.t. α , while the cosh term increases exponentially.
2To be more precise; due to the concavity of f (x) =−acosh(b+xc) for a> 0. This follows from the strict concavity
of the cosh function, the invariancy of strict concavity under an affine transformation and the invariancy of strict
concavity under multiplication by a positive constant.
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1. G′′(1) < 0. This is when G′ has two roots at α = {a,1}, wherewhere a ∈ (−∞,1).

2. G′′(1) > 0. This is when G′ has two roots at α = {1,a}, where a ∈ (1,∞).

3. G′′(1) = 0. This is when G′ has a single root at α = 1.

Figure 7.3: G′′(1) < 0. Figure 7.4: G′′(1) > 0. Figure 7.5: G′′(1) = 0.

We shall now consider these cases one by one. Suppose that

G′′(1) =G′′(α)
∣∣∣
α=1

= 2− (βc −βh)E tanh

(
βcE

2

)
< 0, (7.4.37)

then G′′(α) < 0 for all α ∈ (1,∞). Note that Eq. (7.4.37) corresponds to the first condition
in the lemma stated above.

This information about the second derivative G′′(α) now allows us to conclude the fol-
lowing about G(α):

1. If for all α ∈ (1,∞), G′′(α) < 0, then we know that G′(α) < 0 holds for all α ∈ (1,∞)
too. Furthermore, this implies that G(α) is monotonically decreasing in the interval
(1,∞) and therefore, G(α) < 0 for all α ∈ (1,∞).

2. G′′(1) < 0 also implies that there exists an interval (τ,1) such that G′(1) > 0 (See Fig.
7.3). And since G(1) = 0, this implies that within the interval (τ,1), G(α) < 0.

With this, we prove the first statement of the lemma.

Let us now analyze the second case, where G′′(1) > 0. This implies that G′(α) > 0 at
least for some interval α ∈ (1,a), then G′(α) changes sign exactly once at α = a, and goes
to −∞. (Refer to Fig. 7.4). Also, recall that in the limit of α →∞, G also goes to −∞.
Therefore, we conclude that there exists some α such that

G(α)

{
> 0 α ∈ (1,α)

< 0 α ∈ (α,∞)
(7.4.38)

With this, we prove the second statement of the lemma.
Finally, we look at the case where G′′(1) = 0, and make the following observations:

1. Since the function G′(α) is concave, and since G′′(1) = 0 implies that α = 1 is an
extremum point for the function G′(α), we know that it must also be the global max-
imum. Therefore, we know that for any α 6= 1,G′(α) < 0.
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2. Since for the interval α ∈ (−∞,1),G′(α) < 0 and we know that G(1) = 0, therefore we
can deduce that for any α ∈ (−∞,1), G(α) > 0.

3. Since for the interval α ∈ (1,∞),G′(α) < 0 and we know that G(1) = 0, therefore we
can deduce that for any α ∈ (1,∞), G(α) < 0.

With this, we prove the final statement of the lemma, and complete our proof.

To summarize, in Lemma 7.8 we have identified conditions involving the energy gap of
Ĥc, and the temperatures βh,βc. Depending on whether these conditions are satisfied, we
can describe the positivity/negativity of G(α) for different regimes of α . Comparing these
different scenarios, we prove in Lemma 7.9 that for a quasi-static heat engine, the minimum
of infα≥κ̄

αBα

α−1 is obtained only either at α = κ̄ or α =∞.

Lemma 7.9. There exists some 0 ≤ ν < 1 such that ∀ κ satisfying ν < κ < 1, the following
infimum is obtained at one of two points

inf
α≥κ

αBα

α −1
= inf

{
lim
α→κ

αBα

α −1
, lim
α→∞

αBα

α −1

}
< lim

α→κ ′
αBα

α −1
, ∀κ

′ ∈ (κ,∞), (7.4.39)

where Bα is defined in Eq. (7.4.28). Furthermore, if E(βc −βh) tanh(βcE/2) ≤ 2, then we
can set ν = 0.

Proof. 1. If
d

dα

αBα

α −1

> 0 ∀α ∈ (0,1)∪ (1,α) for some α ≥ 1

< 0 ∀α ∈ (α,∞).

(7.4.40)

then ∀ κ ∈ (0,1),

inf
α≥κ

αBα

α −1
= inf

{
lim
α→κ

αBα

α −1
, lim
α→∞

αBα

α −1

}
< lim

α→κ ′
αBα

α −1
, ∀κ

′ ∈ (κ,∞). (7.4.41)

Recall from Eq. (7.4.23) that

d
dα

αBα

α −1
= B′

α

(α −1)2 G(α), (7.4.42)

where B′
α > 0, and we have derived some properties of G(α) in Lemma 7.8. In this proof,

we apply Lemma 7.8 directly to consider the three scenarios detailed in Lemma 7.8.
First, consider the first statement of Lemma 7.8. If E(βc −βh) tanh(βcE/2) > 2, then ∃

0 < t < 1 s.t.

d
dα

αBα

α −1
< 0, ∀α ∈ (t,1)∪ (1,∞), (7.4.43)

then by continuity of αBα

α−1 in α , we conclude that ∀κ satisfying t < κ < 1,

inf
α≥κ

αBα

α −1
= lim

α→∞
αBα

α −1
< lim

α→κ ′
αBα

α −1
, ∀ κ

′ ∈ (κ,∞). (7.4.44)
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Next, let us consider the second and third statements of Lemma 7.8 jointly, where E(βc −
βh) tanh(βcE/2) ≤ 2. Note that both statements proved in Lemma 7.8 (namely, Eq. (7.4.34)
and (7.4.35)) can be rewritten as the fact that there exists α ≥ 1 s.t.

d
dα

αBα

α −1

> 0 for α ∈ (0,1)∪ (1,α)

< 0 for α ∈ (α,∞).

(7.4.45)

In fact, the third statement is simply a special case of the second, where α = 1. If Eq. (7.4.45)
holds, then ∀ κ ∈ (0,1),

inf
α≥κ

αBα

α −1
= inf

{
lim
α→κ

αBα

α −1
, lim
α→∞

αBα

α −1

}
< lim

α→β

αBα

α −1
∀ β ∈ (κ,∞). (7.4.46)

By setting τ = 0, we see that the statement of Lemma 7.9 is achieved.
Therefore, since we have analyzed all three cases stated in Lemma 7.8, we conclude

that there always exists ν ∈ [0,1) such that Eq. (7.4.39) will always be satisfied ∀ κ ∈ (ν ,1).

7.4.3. EVALUATING THE MAXIMUM EFFICIENCY FOR NANOSCALE QHES
In this section, we derive the efficiency of quasi-static heat engines in the nano /quantum
regime. We first need to define the quantity

Ω := min
i∈{1,...,n}

Ei(βc −βh)

1+e−βcEi
, (7.4.47)

where recall that Ei is the energy gap of the cold bath qubits, as described in Eq. (7.4.24).
Before stating the maximum efficiency, we will derive the efficiency as a function of κ̄

defined in Lemma 7.6 (recall that this parameter is determined by the choice of ε). For
simplicity, we will still consider the special case where Ei = E for all i in Lemma 7.10.
Lemma 7.10 shows us that under the condition of extracting near perfect work, one can
choose ε (and therefore κ̄) such that a certain maximum efficiency value is achieved. The
closer κ̄ is to unity, the slower limg→0+ ∆S/W converges to zero, and also the closer the
efficiency is to the Carnot efficiency.

Using this lemma, we prove achievability of the Carnot efficiency which depends on Ω.

Lemma 7.10 (Quasi-static efficiencies as a function of κ̄). For any n ∈Z+ number of qubits,
consider quasi-static heat engines (Def. 6.1) as a function of κ̄ (defined in Lemma 7.6)
which extract near perfect work (Def. 6.3). For any κ ∈ (0,∞)\{1}, define

γ(κ) := κBκ

κ −1
(7.4.48)

where Bκ is defined in Eq. (7.4.28), while γ(1) and γ(∞) are defined by taking the limits
κ → 1,∞ respectively.
If Ω≤ 1 (see Eq. (7.4.47)):
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1) There exists ν ∈ [0,1) such that for any κ̄ ∈ (ν ,1] (and limg→0+ (ε lnε)/g= 0 if κ̄ = 1),
the maximum efficiency is

η
−1(κ̄) = 1+ βh

βc −βh

γ(1)

γ(κ̄)
+Θ( f (g))+Θ(g)+Θ(ε), (7.4.49)

where γ(1) ≥ γ(κ̄) with equality iff κ̄ = 1 and limg→0+ f (g) = 0.

2) The corresponding amount of work extracted is

Wext(κ̄) = ng
βh

[
γ(κ̄)+Θ(

f (g)
)]
. (7.4.50)

If Ω> 1:

1) There exists ν ′ ∈ [0,1) such that for any κ̄ ∈ (ν ′,1] (and limg→0+ (ε lnε)/g= 0 if κ̄ = 1),
the maximum efficiency is

η
−1(κ̄) = 1+ βh

βc −βh

γ(1)

γ(∞)
+Θ( f (g))+Θ(g)+Θ(ε), (7.4.51)

where γ(1) < γ(∞).

2) The corresponding amount of work extracted is

Wext(κ̄) = g
n
βh

[
γ(∞)+Θ(

f (g)
)]

(7.4.52)

Proof. Firstly, let us begin by deriving the explicit form for γ(1) and γ(∞):

γ(1) = lim
α→1

α

α −1
Bα = lim

α→1
Bα +αB′

α =B′
1 =

E2(βc −βh)

(1+eβcE )2
eβcE , (7.4.53)

where we have made use of the L’Hôspital rule. For α →∞, since

lim
α→∞Bα = lim

α→∞
E

1+eβcE

eβhE −eβcEe−α(βc−βh)E

eβhE +e−α(βc−βh)E
= E

1+eβcE
,

therefore we have

γ(∞) = lim
α→1

(
1+ 1

α −1

)
·Bα = E

1+eβcE
. (7.4.54)

By Lemma 7.9, we know that the infimum of γ(α) for α ∈ [κ̄,∞) and κ̄ ∈ (ν ,1] is either at
α = κ̄ or α →∞. Therefore, if we take the ratio of Eqs. (7.4.53) and (7.4.54) to be

γ(1)

γ(∞)
= E(βc −βh)

1+e−βcE
=Ω≤ 1, (7.4.55)

then γ(∞) ≥ γ(1) > γ(κ̄), therefore the infimum of γ(α) for α ∈ [κ̄,∞) and κ̄ ∈ (ν ,1] has to
be obtained at α = κ̄ . Taking this into account, we can use Lemmas 7.7 and 7.9 to calculate
the amount of work extracted:

Wext = inf
α≥0

Wα = g ·
[

inf
α>κ̄

n
βh

γ(κ̄)+Θ(
f (g)

)]= g
n
βh

[
γ(κ̄)+Θ(

f (g)
)]
, (7.4.56)
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where limg→0+ f (g) = 0. On the other hand, ∆C is the change of average energy in the cold
bath system, (recall this is done by Taylor expansion around g= 0)

∆C = n
(
〈E2〉βc −〈E〉2

βc

)
g+Θ(

g2)= nγ(1)

βc −βh
g+Θ(

g2) . (7.4.57)

Using Eq. (6.5.14), we have ∆W = (1− ε)Wext. The (inverse) efficiency, according to the
expression in Eq. (6.5.16) is then

η
−1(κ̄) = 1+ ∆C

Wext
−ε (7.4.58)

= 1+ nγ(1)/(βc −βh)g+Θ(
g2

)
nγ(κ̄)g/βh +Θ

(
g f (g)

) −ε (7.4.59)

= 1+ βh

(βc −βh)

γ(1)

γ(κ̄)
+Θ( f (g))+Θ(g)+Θ(ε), (7.4.60)

where we have used limg→0+ f (g) = 0 which is proven in Lemma 7.7.
Next, consider the efficiency when Ω> 1 is satisfied. Using Ω> 1 and Eq. (7.4.55), we

have that γ(∞) < γ(1). Therefore, from Lemma 7.9, due to continuity of γ(κ̄) in κ̄ , there
exists a ν ′ ∈ [0,1) such that for any κ̄ ∈ (ν ′,1],

inf
α≥κ̄

γ(α) = γ(∞). (7.4.61)

Since for near perfect work, Eq. (6.3.2) holds and therefore Lemma 7.7 can be used to
calculate the amount of work extracted

Wext = inf
α≥0

Wα = g ·
[

inf
α>κ̄

n
βh

γ(κ̄)+ f (g)

]
= g

n
βh

[
γ(∞)+ βh

n
f (g)

]
, (7.4.62)

where limg→0+ f (g) = 0. Therefore, the inverse efficiency is

η
−1(κ̄) = 1+ ∆C

Wext
−ε (7.4.63)

= 1+ nγ(1)/(βc −βh)g+Θ(
g2

)
nγ(∞)g/βh +Θ

(
g f (g)

) −ε (7.4.64)

= 1+ βh

(βc −βh)

γ(1)

γ(∞)
+Θ( f (g))+Θ(g)+Θ(ε), (7.4.65)

where we have used limg→0+ f (g) = 0 which is proven in Lemma 7.7.

Finally, Lemma 7.10 can be used to make a statement regarding the maximum achiev-
able efficiency ηnano

max . This is summarized in Lemma 7.11.

Lemma 7.11. Consider a QHE where the cold bath consists of n identical qubits with
energy gap E, and Ω as defined in Eq. (7.4.47). If near perfect work is extracted, then:
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1) If Ω≤ 1, the maximum efficiency ηnano
max (see Eq. (6.5.3)) is the Carnot efficiency:

η
nano
max =

(
1+ βh

βc −βh

)−1

=ηC. (7.4.66)

Furthermore, this efficiency is achieved only for quasi-static heat engines, i.e. ηmax =
η

stat,nano
max (see Eq. (6.5.7)).

2) If Ω> 1 and the heat engine is quasi-static, then the achievable efficiency is

η
stat,nano
max =

(
1+ βh

βc −βh
Ω

)−1

<ηC. (7.4.67)

3) If Ω> 1 the maximum efficiency ηnano
max is strictly less than the Carnot efficiency.

Proof. In Lemma 6.5, it is shown that the Carnot Efficiency always provides an upper bound
on ηnano

max when considering near perfect work. In Lemma 7.10, we derived the optimal
achievable efficiency for quasi-static heat engines as a function of κ̄ when near perfect
work is extracted. If Ω≤ 1 is satisfied, according to Lemma 7.10, we can choose κ̄ < 1 but
arbitrarily close to one, thus achieving an efficiency arbitrarily close to the Carnot efficiency.
Thus since the upper bound is equal to the lower bound, we prove Item 1) of the Theorem.

Similarly, if Ω> 1, we may prove Item 2) by noting that in Lemma 7.10, we have seen
that the condition Ω> 1 is equivalent to γ(1) > γ(∞). This implies already that the Carnot
efficiency can never be achieved. By Lemma 7.10, there exists a regime κ̄ ∈ (ν ′,1] where
ν ′ < 1, such that the achievable efficiency of the quasi-static heat engine (in the limit g→ 0)
is given by

η
stat,nano
max =

(
1+ βh

βc −βh

γ(1)

γ(∞)

)−1

=
(
1+ βh

βc −βh
Ω

)−1

<ηC. (7.4.68)

Item 3) follows from Item 2), and the fact that we have established in Eq. (7.3.9) of
Section 7.3.2 that the maximum achievable efficiency ηnano

max can only be achieved by a quasi-
static heat engine.

NON-IDENTICAL QUBITS
By making use of Lemma 7.10, one can generalize Lemma 7.11 to consider the more gen-
eral case stated in Assumption (A.5) at the beginning of Section 7.4.2, where the cold bath
consists of n non-identical qubits. For convenience, we rewrite the general cold bath Hamil-
tonian here: for a set of variables E1, · · · ,En > 0,

ĤCold =
n∑

k=1
1⊗(k−1) ⊗ Ĥk

c ⊗ 1⊗(n−k), where Ĥk
c =Ek|Ek〉〈Ek|, (7.4.69)

With such a cold bath, we have the following theorem:

Theorem 7.1. Consider a QHE with a cold bath consisting of n qubits with energy
gaps {Ei}n

i=1, and Ω as defined in Eq. (7.4.47). If near perfect work is extracted, then
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1) IfΩ≤ 1, the maximum efficiency ηnano
max (see Eq. (6.5.3)) is the Carnot efficiency:

η
nano
max =

(
1+ βh

βc −βh

)−1

=ηC. (7.4.70)

Furthermore, this efficiency is achieved only for quasi-static heat engines, i.e.
ηmax =η

stat,nano
max (see Eq. (6.5.7)).

2) If Ω> 1 and the heat engine is quasi-static, then the achievable efficiency is

η
stat,nano
max =

(
1+ βh

βc −βh
Ω

)−1

<ηC. (7.4.71)

3) If Ω> 1 the maximum efficiency ηnano
max is strictly less than the Carnot efficiency.

Proof. 1) is simple to prove: as long as there exists a qubit with energy Ei such that
Ei(βc−βh)

1+e−βhEi
≤ 1, a straightforward way to achieve Carnot efficiency is to simply disregard

the rest of the cold bath, and act only on such qubits. The result is a simple application of
1) in Lemma 7.11, by noting that the achievement of Carnot efficiency does not depend on
the number of qubits involved (as long as there is 1 qubit that satisfies the condition). This
strategy might be sub-optimal in terms of work extracted, but it is sufficient for our proof.

Figure 7.6: Illustration of the minima of two individual functions f (x),g(x) and minima of f (x)+g(x).

For 2) and 3), suppose that Ω> 1. Since Ω is a monotonic function of E, we conclude
that for all Ei where 1 ≤ i ≤ n, Ωi := Ei(βc−βh)

1+e−βhEi
> 1. By Lemma 7.10, we see that this implies

that the work extractable for all the individual qubits (which is an optimization problem
over all α ≥ 0) is obtained at α →∞. In general, considering the qubits collectively does
not mean that the collective Wext is additive. This is because the minima of two functions is
not necessarily the minima of these individual functions added together, as illustrated in the
leftmost and middle diagrams of Figure. 7.6. However, (as illustrated on rightmost diagram
of Figure. 7.6), if all the functions have their minima at the same value, then the collective
minima is also obtained at that value3.

With this in mind, we show that no matter which subset of qubits S one picks, Carnot
efficiency cannot be achieved. We begin by introducing the notation γi(α), where γi(α)

3More rigorously, consider two functions f (x) and g(x) such that min
x

f (x) = f (x∗) and min
x

g(x) = g(x∗). On

one hand, it holds that minx[ f (x)+g(x)] ≥ minx f (x)+minx g(x) = f (x∗)+g(x∗). However, for any value of x∗,
f (x∗)+g(x∗) ≥ minx f (x)+g(x). Therefore, min

x
f (x)+g(x) = f (x∗)+g(x∗).
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is defined in the same way with γ(α) in Eq. (7.4.48), but the index i indicates that E is
substituted by Ei. Furthermore, recall that from Eq. (7.4.55), Ωi > 1 is equivalent to having
γi(1) > γi(∞). Now, consider any subset of qubit indices S , the amount of extractable work
(as a function of g) is

W S
ext =

g
βh

[ ∑
i∈S

γi(∞)+ f (g)

]
, (7.4.72)

where limg→0+ f (g) = 0.
On the other hand, we have that ∆C depends on the individual reduced qubit states,

since there are no interaction terms in ĤCold. Therefore, similar to Eq. (7.4.57),

∆CS = g
βc −βh

∑
i∈S

γi(1)+Θ(
g2) . (7.4.73)

Following the same proof in Eq. (7.4.63) of Lemma 7.10,

η
−1(κ̄) = 1+ ∆C

Wext
−ε = 1+ βh

βc −βh

∑
i∈S γi(1)∑

i∈S γi(∞)
+Θ(g)+Θ(ε). (7.4.74)

In order to maximize efficiency, one is left to pick a subset S such that the quantity∑
i∈S γi(1)∑

i∈S γi(∞) is minimized. It is straightforward to see that this subset S = {i|Ωi =Ω} should
only contain indices such that Ωi achieves the minimum value Ω. Therefore, the achievable
efficiency in the limit g→ 0 is given by

η
stat,nano
max =

(
1+ βh

βc −βh
Ω

)−1

<ηC. (7.4.75)

Lastly, Item 3) follows with the exact same argument as in Lemma 7.11.

RECOVERING CARNOT EFFICIENCY IN THE LIMIT OF MANY QUBITS
Suppose n is large. Then since we have a spectrum which looks like a quasi-continuum:
the full range of the spectrum is very large, compared to the individual energy gaps. One
expects that in such a case, baths are of much higher temperature (relatively small values
of βc,βh), then the effects of quantization should give us the classical observations of being
able to achieve Carnot always.

This can be seen, that for Emin = min
i∈{1,··· ,n}

Ei, if the quantities βcEmin,βhEmin ¿ 1, then

Ω= Emin(βc −βh)

1+e−βcEmin
≤Emin(βc −βh) ¿ 1. (7.4.76)

Whenever Ω≤ 1, by Theorem 7.1 Carnot efficiency is achievable.

7.4.4. MULTIPLE QUASI-STATIC CYCLES OF A QHE
So far, it has been proven that a heat engine may achieve the Carnot efficiency when Ω≤ 1.
However, this can only be achieved when the heat engine is quasi-static, and in this limit,
the amount of work extracted is infinitesimally small. However, we show in the subsequent
lemma that when Ω ≤ 1, a QHE with a machine that runs over infinitely many cycles can
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Cold bath

Hot bath

Machine

Qubit 1 Qubit 2 Qubit N...                ...                ...               ...               ...               ...               ...   

1st
cycle

Nth
cycle

N-1 th
cycle

...                ...                ...               ...               ...       

Side view 
of Fig. 9

Figure 7.7: Depiction (top view) of a heat engine comprising of a hot bath, a cold bath consisting of n identical
qubits, a machine and a battery. In each cycle, the machine interacts specifically with one qubit from the cold bath,
together with the hot bat and battery. After the end of one cycle, the machine is returned to its original state, and
acts on a different qubit in the cold bath.

Cold
bath

Hot
bath

Machine

1st
cycle

Nth
cycle

N-1 th
cycle

..
.

..
.

2nd
cycle

Top view 
of Fig. 8

Figure 7.8: Side view of the heat engine. After each cycle of the machine, the battery, depicted here as a weight
moves upward by a small amount. After N machine cycles, it has been lifted from its original position |Ẽ j〉 to a
final state that has most of its weight on |Ẽk〉.
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also achieve the Carnot efficiency, while extracting a finite amount of work W with an
arbitrarily small entropy increase in the battery.

For simplicity, we will work with the case in which the quasi-continuum battery has a
part of its spectrum equal to that of at least N qubits, each with an energy gap Wext. Let Ẽ j
and Ẽk be the smallest and largest energy eigenvalues within this battery subspace. We only
use this subspace of the battery. The heat engine is operated between a hot bath, cold bath
using a machine which undergoes N cycles. We let the initial state of the battery be

ρ
0
W = |Ẽ j〉〈Ẽ j|, (7.4.77)

while we wish the final state of the battery to be of the form

ρ
1
W = r|Ẽk〉〈Ẽk|+ (1− r)ρψ , (7.4.78)

ρψ is a state orthogonal to |Ẽk〉, and r ∈ (0,1) is to be specified in the subsequent lemma.
We define the amount of work extracted from the machine for N cycles

Wcyc := Ẽk − Ẽ j. (7.4.79)

For simplicity, we will consider the case where the cold bath consists of n identical qubits
with Ω≤ 1, and during each cycle the machine interacts with one qubit from the cold bath.
The operation of the heat engine is depicted in Fig. 7.7 and 7.8.

Corollary 7.1. For any finite amount of work W we wish to extract, and any parameter
δ > 0 there exists an n-identical qubit cold bath with Ω ≤ 1, and an N ∈ N+ number of
machine cycles with n≥N such that:

1) The amount of extractable work is Wcyc ≥W −δ ,

2) The amount of entropy in the battery is given by S(ρ0
W) = 0, S(ρ1

W) ≤ δ 4,

3) The probability of extracting the amount of work Wcyc is r ≥ 1−δ , and

4) the maximum efficiency η =ηC is given by Carnot efficiency.

Proof. Since in the qubit subspace, the spectrum is that of at least N qubits, we can write
the initial state in the form

ρ
0
W = |E j〉〈E j|⊗N , (7.4.80)

with ĤW|E j〉⊗N = Ẽ j|E j〉⊗N . One can now, however, apply the results of Lemma 7.10 in
each of the N cycles. According to Lemma 7.10, each cycle will result in the battery qubit
transition |E j〉〈E j|→ (1−ε)|Ek〉〈Ek|+ε |E j〉〈E j|, where ε(g) is a function of the quasi-static
parameter g, and we may choose the characteristic parameter κ̄ ∈ (0,1) for near perfect work
extraction. The final state of the battery is thus

ρ
1
W = [

(1−ε)|Ek〉〈Ek|+ε |E j〉〈E j|
]⊗N

. (7.4.81)

4Recall that this implies near perfect work is drawn.
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Noting that |Ẽk〉〈Ẽk| = |Ek〉〈Ek|⊗N by definition, Eq. (7.4.81) can be written as

ρ
1
W = (1−ε)N |Ẽk〉〈Ẽk|+

[
1− (1−ε)N]

ρψ . (7.4.82)

with ρψ orthogonal to |Ẽk〉. From Eq. (7.4.79) it follows,

Wcyc =NWext = Ng
βh

[
γ(κ̄)+Θ(

f (g)
)]
, (7.4.83)

where in the last line we have used Eq. (7.4.50). We now set

N =N(g) = βh

γ(κ̄)

W
g

(7.4.84)

for all g> 0 satisfying the constraint N(g) ∈N+. For any positive constant βhW
γ(κ̄) > 0, one can

always consider the values of βhW
γ(κ̄) > g > 0 so that N(g) is large. This constraint imposes

g = βhW /(γ(κ̄)N), where N has to be an integer. Therefore, g now belongs to a subset of
the positive real line, rather than the positive real line itself as previously. However, since g
monotonically decreases to zero as N increases to infinity, we can still take the limit g→ 0+
as before, thus achieving

Wcyc =W +Θ(
f (g)

)
. (7.4.85)

Since limg→0+ f (g) = 0, we conclude Item 1).

The entropy of the final state of the battery can be calculated as

S(ρ1
W) =NS

(
(1−ε)|Ek〉〈Ek|+ε |E j〉〈E j|

)= βhW
γ(κ̄)

(1−ε) ln(1−ε)+ε lnε

g
=Θ

(
ε lnε

g

)
.

(7.4.86)

Furthermore, recall from the proof of Lemma 7.7 that limg→0+
ε lnε

g = 0, for all κ̄ ∈ (0,1).
Thus, from Eq. (7.4.86) we conclude that 2) in Corollary 7.1 holds.

We will now prove part 3) of the Corollary. From Eq. (7.4.82) and part 3) of the
Corollary, we can identify r = (1−ε)N . We thus study the limit

lim
g→0+

(1−ε)N =
(

lim
g→0+

(1−ε)1/g
)βhW /γ(κ̄)

(7.4.87)

=
 lim

g→0+

(1−ε)1/ε︸ ︷︷ ︸
→e

ε/gβhW /γ(κ̄)

(7.4.88)

= 1, (7.4.89)

where going to the last line, we have used that fact that since limg→0+
ε lnε

g = 0, it also im-
plies that ε/g→ 0 as g→ 0+. This concludes Item 3).
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Finally, Item 4) follows directly by noting that ∆C is additive over the amount of cycles,
and so is Wcyc as shown in Eq. (7.4.83). Therefore, η = 1−ε + N∆C

NWext
=ηC, since by Lemma

7.11, in each individual cycle Carnot efficiency can be achieved.

Therefore, by choosing δ > 0 sufficiently small in Corollary 7.1, we can extract any
finite amount of work with an arbitrarily small entropy contribution, and also with an effi-
ciency arbitrarily close to the Carnot efficiency as long as Ω≤ 1.

7.5. EXTENSIONS TO THE SETUP
Arguably, one may think that the inability to always achieve the Carnot efficiency ηC for
QHEs is due to some subtlety of our setup (even though in Chapter 6 it has been shown that
according to the macroscopic laws of thermodynamics, one can always achieve the Carnot
efficiency with the setup). For such reasons, in the next few sections it is shown that even
under more general conditions than those laid out in Section 6.2, one still cannot achieve
the Carnot efficiency when Ω> 1.

In Section 7.5.1, we show that allowing for correlations between the final state of the
battery and cold bath (and/or the finite dimensional machine) does not allow us to achieve
the Carnot efficiency. The main result is summarized in Theorem 7.2.

In Section 7.5.2, we show that allowing for the battery to be any state with trace dis-
tance ε from |Ek〉〈Ek|W still does not allow us to achieve ηC when Ω> 1. This shows that
whenever we are unable to achieve the Carnot efficiency, it is not a artificial defect from an
overly specified battery model. The main result is summarized in Theorem 7.3.

7.5.1. FINAL CORRELATIONS BETWEEN BATTERY, COLD BATH, AND
MACHINE

In Section 7.3.1, we assumed that the final state of the heat engine after tracing out the hot
bath was of tensor product form

trHot(ρ
1
ColdHotMW) = ρ

1
Cold ⊗ρ

1
M ⊗ρ

1
W, (7.5.1)

where ρ1
W = ε |E j〉〈E j|W+(1−ε)|Ek〉〈Ek|W. We also demanded that the heat engine is cyclic

i.e. that ρ1
M = ρ0

M. In this section, we show that if one allows for the final state of the
battery, cold bath and machine to become correlated, while keeping the same restrictions
on the reduced states ρ1

W,ρ1
M, one still cannot achieve the Carnot efficiency when Ω > 1.

That is to say, we allow the final state to be

trHot(ρ
1
ColdHotMW) = ρ

1
ColdMW (7.5.2)

with only two natural constraints, namely 1) that our heat engine actually extracts work, i.e.
that ρ1

W = ε |E j〉〈E j|W + (1−ε)|Ek〉〈Ek|W, as before, and also 2) that the heat engine is still
cyclic, i.e. ρ1

M = ρ0
M. Throughout this section, (unless stated otherwise) we use ρ1

ColdMW to
denote any generic tripartite quantum state on the cold bath, machine and battery satisfying
the above two constraints.

• We first define the generalized efficiency where one is allowed to consider correlated
final states. We see that although this may potentially affect the amount of extractable
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work Wext, the amount of heat change in the bath remains the same, by making use
of energy conservation and the fact that the global Hamiltonian ĤColdHotMW does not
contain interaction terms between subsystems.

• We then make use of the generalized second law when α = 1, in order to show that
final correlations still prohibits the surpassing of Carnot efficiency. This is proven by
noting that the von Neumann entropy is subadditive, and the result is summarized in
Lemma 7.14.

• Finally, we turn to the case where Ω> 1, where recall that without final correlations
it is shown in Theorem 7.1 that Carnot efficiency cannot be achieved. We show that
even when final correlations are allowed, Carnot efficiency remains unachievable.

DEFINING THE GENERALIZED EFFICIENCY
Let us recall that in Section 6.5.2, we established that if the following assumptions hold:

(i) the final reduced state of the battery ρ1
W is fixed by Eq. (6.2.6),

(ii) the state of the machine is preserved, i.e. ρ0
M = ρ1

M,

(iii) the final state is of tensor product form, i.e. ρ1
ColdMW = ρ1

Cold ⊗ρ1
M ⊗ρ1

W,

then the efficiency for a particular transformation ρ0
ColdHotMW → ρ1

ColdHotMW simplifies to
being only an explicit function of ρ1

Cold. This simplified expression of the efficiency in
Eq. (6.5.16) is then used to evaluate, for example, ηmac(ρ1

Cold) in Eq. (6.5.4).
Since we now drop Assumption (iii) for the final state being uncorrelated, the efficiency

and the work extracted Wext will become dependent on the tripartite final state ρ1
ColdMW

instead. Therefore, let us first write a generalized expression for the maximum efficiency
corresponding to a transition ρ0

ColdHotMW → ρ1
ColdHotMW:

η
qm(ρ1

ColdMW) := sup
Wext

η(ρ1
Cold,Wext) s.t. trHot[UρColdHotMWU†] = ρ

1
ColdMW, (7.5.3)

[U,ĤColdHotMW] = 0, (7.5.4)

ρ
1
W = ε |E j〉〈E j|W + (1−ε)|Ek〉〈Ek|W, (7.5.5)

ρ
1
M = ρ

0
M. (7.5.6)

See Fig 6.1 for a definition of the other quantities appearing in Eq. (7.5.3). Recall that the
definition of η is given by η =Wext/∆H as in Eq. (6.5.1). In Section 6.5.2 we showed that
this can be simplified to

η = (1−ε +∆C/Wext)
−1, (7.5.7)

where ∆C = ∆C(ρ1
Cold). This equation holds under Assumption (i) and (ii), together with

the fact that the global Hamiltonian does not contain interaction terms between both baths,
battery, and machine. Since the derivation of Eq. (7.5.7) does not require Assumption (iii),
it still holds for a general tripartite final state ρ1

ColdMW. However, dropping Assumption
(iii) may potentially allow for larger values of Wext, and therefore subsequently might affect
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ηqm. For this reason we write ηqm =ηqm(ρ1
ColdMW) to remind ourselves that it is a function

of the entire final state ρ1
ColdMW.

We have written η = η(ρ1
Cold,Wext) to explicitly show the Wext dependency of η5.

Throughout this section, we analyze Eq. (7.5.3) only in the case of near perfect work (recall
Def. 6.3). For the purpose of our proofs, we need to define a new family of intermediate
efficiencies. They provide the maximum possible efficiency, when considering only a par-
ticular instance α ≥ 0 of the generalized second laws. For any α ∈ [0,∞), let us denote

η
qm
α (ρ1

ColdMW) =sup
Wext

η(ρ1
Cold,Wext) (7.5.8)

s.t. Fα (τ0
Cold ⊗ρ

0
M ⊗ρ

0
W,τh

ColdMW) ≥Fα (ρ1
ColdMW,τh

ColdMW), (7.5.9)

tr(ĤColdHotMWρ
0
ColdHotMW) = tr(ĤColdHotMWρ

1
ColdHotMW), (7.5.10)

ρ
1
W = ε |E j〉〈E j|W + (1−ε)|Ek〉〈Ek|W, (7.5.11)

ρ
1
M = ρ

0
M. (7.5.12)

See Eq. (4.5.64) for definition of Fα . We denote η
qm
∞ = lim

α→∞η
qm
α . The condition Eq. (7.5.10)

is always satisfied when all the second laws are satisfied (i.e. when there exists a CTO that
brings ρ0

ColdMW to ρ1
ColdMW). We add Eq. (7.5.10) as a constraint in this problem, since

satisfying one of the α second laws does not necessarily guarantee the existence of such an
energy preserving operation, but nevertheless we still need energy conservation in order to
write the efficiency η in the form of Eq. (7.5.7).

CARNOT EFFICIENCY CANNOT BE SURPASSED

Proof Sketch
We show that Carnot efficiency ηC cannot be surpassed even when we allow arbitrary
final correlations in the final state ρ1

ColdMW. This is done in the following steps:

1. Using the definitions of generalized efficiency (allowing correlations) in Eq. (7.5.3)
and generalized intermediate efficiencies in Eq. (7.5.8), we prove an inequality
between ηqm(ρ1

ColdMW) and η
qm
α (ρ1

ColdMW), for all α ≥ 0. This is done in Lemma
7.12. From this, we also conclude that ηqm(ρ1

ColdMW) ≤η
qm
1 (ρ1

ColdMW).

2. On the other hand, we show that for any final state of the cold bath, machine
and battery ρ1

ColdMW, the generalized intermediate efficiency for α = 1 only in-
creases, if we consider the tensor product of the marginals ρ1

ColdMW. In other words,
η

qm
1 (ρ1

ColdMW) ≤ η
qm
1 (ρ1

Cold ⊗ρ1
W ⊗ρ1

M). One can intuitively see why this is true:
it comes from the fact that the von Neumann entropy is subadditive, therefore the
final state ρ1

Cold⊗ρ1
W⊗ρ1

M contains more entropy than ρ1
ColdMW. Therefore accord-

5Although not written explicitly in Eq. (7.5.3), we should remember that U(t),ρ0
M,ĤHot and ĤM are arbitrary,

other than satisfying condition (A.4) in Section 6.2. As such, by maximizing η over Wext, these quantities will
accommodate their optimal values to maximize ηqm(ρ1

ColdMW). This is an advantage, since it rules out cases
such as when the Hamiltonian does not support a thermal state (e.g. when the corresponding thermal state’s
partition function diverges). In this section we consider any cold bath Hamiltonian ĤCold that satisfies (A.6) in
Section 6.2 (i.e. finite dimensional). As such it will always have a well defined thermal state.
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ing to the α = 1 second law, one can potentially draw more work by going to the
state ρ1

Cold ⊗ρ1
W ⊗ρ1

M instead of a correlated state ρ1
ColdMW.

3. Since the final state yielding η
qm
1 (ρ1

Cold ⊗ρ1
W ⊗ρ1

M) is of tensor product form, As-
sumption (iii) holds, and the efficiency only depends on the final state of the cold
bath ρ1

Cold. This means that Eq. (7.5.8) for α = 1 reduces to Eq. (6.5.4). Lastly,
using Lemma 7.17 allows us to further show in Lemma 7.14 that even by allowing
correlations in ρ1

ColdMW, the efficiency ηqm(ρ1
ColdMW) can never surpass ηC.

Firstly, let us fix the following notation: for an R-partite state ρA1A2...AR , define

ρA1A2...AR :=
R⊗

i=1
ρAi . (7.5.13)

Comparing ρA1A2...AR and ρA1A2...AR , one will see that each subsystem has the same reduced
state, but the global state is different. Another useful thing is to note that if one is given a
Hamiltonian which does not contain any interaction terms between each subsystem, i.e.

ĤA1A2...AR =
R∑

i=1
1A1 ⊗·· ·ĤAi · · ·1AR , (7.5.14)

then we may conclude that

tr(ĤA1A2...ARρA1A2...AR ) =
R∑

i=1
tr(ĤAiρAi ) =

R∑
i=1

tr(ĤAiρAi ) = tr(ĤA1A2...AR ρA1A2...AR ).

(7.5.15)

Lemma 7.12. For all α ≥ 0 and all states ρ1
ColdHotMW,

η
qm(ρ1

ColdMW) ≤η
qm
α (ρ1

ColdMW), (7.5.16)

where ηqm and η
qm
α are defined in Eqs. (7.5.3) and (7.5.8) respectively.

Proof. To prove this lemma, one needs to show that the constraints for ηqm are a subset
of those for η

qm
α . Note that the constraints on reduced states ρ1

W,ρ1
M are identical for both

quantities, so no comparison is needed. What remains is to see that given any unitary U that
satisfies Eq. (7.5.3) and (7.5.4), then by the generalized second laws, the initial and final
states will satisfy Eq. (7.5.9) for all α ≥ 0. Furthermore, since [U,ĤColdHotMW] = 0, average
energy is also preserved, and therefore Eq. (7.5.10) holds.

As a consequence of these observations, the set of allowed unitaries U(t) in Eq. (7.5.3)
is a subset of allowed transitions ρ0

ColdMW → ρ1
ColdMW in Eq. (7.5.8).

Lemma 7.13. For any final state ρ1
ColdMW, consider the quantity η

qm
1 (ρ1

ColdMW) defined in
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Eq. (7.5.8). Consider the optimization problem

a(ρ1
ColdMW) :=sup

Wext

η(ρ1
Cold,Wext) (7.5.17)

s.t. F1(τ0
Cold ⊗ρ

0
M ⊗ρ

0
W,τh

ColdMW) =F1(ρ1
ColdMW,τh

ColdMW), (7.5.18)

tr(ĤColdHotMWρ
0
ColdHotMW) = tr(ĤColdHotMWρ

1
ColdHotMW), (7.5.19)

ρ
1
W = ε |E j〉〈E j|W + (1−ε)|Ek〉〈Ek|W, (7.5.20)

ρ
1
M = ρ

0
M. (7.5.21)

Then, η
qm
1 (ρ1

ColdMW) = a(ρ1
ColdMW).

Proof. We begin by noting that the free energy F1 can be written as

F1(ρ,τh) = tr(Ĥρ)−β
−1
h S(ρ), (7.5.22)

where 〈Ĥ〉ρ := tr[Ĥρ], and S(ρ) = −tr(ρ lnρ) is the von Neumann entropy, while τh is
the thermal state at inverse temperature βh for the Hamiltonian Ĥ. Also, let us recall that
Wext =EW

k −EW
j > 0 where EW

j is a constant.
Next, we consider the free energies F1(τ0

Cold⊗ρ0
M⊗ρ0

W,τh
ColdMW) and F1(ρ1

ColdMW,τh
ColdMW)

respectively, and how they relate to Wext. First of all, note that the quantity F1(τ0
Cold ⊗ρ0

M ⊗
ρ0

W,τh
ColdMW) is simply a constant that does not depend on Wext. This is because

F1(τ0
Cold ⊗ρ

0
M ⊗ρ

0
W,τh

ColdMW) =F1(τ0
Cold,τ

h
Cold)+F1(τ0

M,τh
M)+F1(τ0

W,τh
W)

=F1(τ0
Cold,τ

h
Cold)+F1(τ0

M,τh
M)+ tr(ĤWρ

0
W)−β

−1
h S(ρ0

W)

=F1(τ0
Cold,τ

h
Cold)+F1(τ0

M,τh
M)+EW

j ,

where the first two terms do not depend on the battery Hamiltonian at all, while in the last
equality we have made use of the fact that ρ0

W = |E j〉〈E j|W. On the other hand,

F1(ρ1
ColdMW,τh

ColdMW) = tr(ĤColdMWρ
1
ColdMW)−β

−1
h S(ρ1

ColdMW)

= tr(ĤColdρ
1
Cold)+ tr(ĤMρ

1
M)+ tr(ĤWρ

1
W)−β

−1
h S(ρ1

ColdMW)

= tr(ĤColdρ
1
Cold)+ tr(ĤMρ

1
M)−β

−1
h S(ρ1

ColdMW)+EW
j + (1−ε)Wext.

Note that again, tr(ĤColdρ1
Cold) and tr(ĤMρ1

M) do not depend on the battery Hamiltonian and
therefore do not depend on EW

k . Similarly, S(ρ1
ColdMW) depends only on the eigenvalues of

the state, and is independent of EW
k . Since 1− ε ∈ (0,1], we may conclude the following:

F(ρ1
ColdMW,τh

ColdMW) is a continuous function that strictly increases w.r.t. Wext.
To prove this lemma, it suffices to show that the supremum over Wext in Eq. (7.5.8) for

α = 1 is achieved when F1(τ0
Cold ⊗ρ0

M ⊗ρ0
W,τh

ColdMW) = F1(ρ1
ColdMW,τh

ColdMW). We do this
by contradiction: suppose Ŵext achieves the supremum for η

qm
1 , and for such value Ŵext,

F1(τ0
Cold ⊗ρ

0
M ⊗ρ

0
W,τh

ColdMW) >F1(ρ1
ColdMW,τh

ColdMW).

Since F(ρ1
ColdMW,τh

ColdMW) is a continuous, strictly increasing function w.r.t. Wext, there
must exist an W ′

ext > Ŵext such that F1(τ0
Cold ⊗ρ0

M ⊗ρ0
W,τh

ColdMW) ≥ F1(ρ1
ColdMW,τh

ColdMW)
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also holds. Furthermore, since by Eq. (7.5.7) we know that the efficiency is strictly increas-
ing w.r.t. Wext as well, it follows that W ′

ext achieves a higher value of efficiency compared to
Ŵext while satisfying the required constraints.

This is a contradiction, and therefore we conclude that the optimization for η
qm
1 can be

simplified to a(ρ1
ColdMW), where the constraint on F1 holds with equality.

Lemma 7.14. For any QHE with the final state ρ1
ColdHotMW, then for perfect or near perfect

work extraction (recall Defs. 6.2 and 6.3), we have

η
qm (

ρ
1
ColdMW

) (1)≤ η
qm
1

(
ρ

1
ColdMW

) (2)≤ η
qm
1

(
ρ

1
ColdMW

) (3)= η
mac

(
ρ

1
Cold

) (4)≤ 1− βh

βc
,

(7.5.23)

with equality in (2) iff ρ1
ColdMW = ρ1

ColdMW. The quantities η
qm
1 and ηmac are defined in Eq.

(7.5.8) and Eq. (6.5.4) respectively.

Proof. We begin by noting that inequality (1) is a direct consequence of Lemma 7.12, while
inequality (4) holds because of Lemma 6.6. It remains to prove inequalities (2) and (3).
Proof of inequality (2): Using the definition in Eq. (7.5.8) together with Lemma 7.13, we
compare the quantities

η
qm
1 (ρ1

ColdMW) =sup
Wext

η(ρ1
Cold,Wext) (7.5.24)

s.t. F1(τ0
Cold ⊗ρ

0
M ⊗ρ

0
W,τh

ColdMW) =F1(ρ1
ColdMW,τh

ColdMW),

tr(Ĥtρ
0
ColdHotMW) = tr(Ĥtρ

1
ColdHotMW),

ρ
1
W = ε |E j〉〈E j|W + (1−ε)|Ek〉〈Ek|W,

ρ
1
M = ρ

0
M,

and

η
qm
1 (ρ1

ColdMW) =sup
Wext

η(ρ1
Cold,Wext) (7.5.25)

s.t. F1(τ0
Cold ⊗ρ

0
M ⊗ρ

0
W,τh

ColdMW)F1(ρ1
ColdMW,τh

ColdMW),

tr(Ĥtρ
0
ColdHotMW) = tr(Ĥtρ

1
ColdHotMW),

ρ
1
W = ε |E j〉〈E j|W + (1−ε)|Ek〉〈Ek|W,

ρ
1
M = ρ

0
M.

We first make the following observations:

• By definition of ρ1
ColdMW, we have that ρ1

Cold = ρ1
Cold. Therefore, the term ∆C in

Eq. (7.5.7) which is only a function of the reduced state on the cold bath is the same
for both efficiencies in Eq. (7.5.24) and Eq. (7.5.25). To compare the efficiencies, we
need only to compare the value of Wext that satisfies the free energy constraint in both
optimization problems.
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• It is known that the von Neumann entropy is subadditive6

S(ρAB) ≤ S
(
ρAB

)
, (7.5.26)

with equality iff ρAB = ρAB. Furthermore, since ĤColdMW does not contain interaction
terms, as we have demonstrated earlier in Eq. (7.5.15),

tr(ĤColdMWρ
1
ColdMW) = tr(ĤColdMWρ

1
ColdMW). (7.5.27)

Thus, by Eq. (7.5.22) we conclude that

F1(ρ1
ColdMW) ≤F1(ρ1

ColdMW), (7.5.28)

with equality iff ρ1
ColdMW = ρ1

ColdMW.

• For any final state ρ1
ColdMW where ρ1

W = ε |E j〉〈E j|W+ (1−ε)|Ek〉〈Ek|W, we have seen
in the proof of Lemma 7.13 that F1(ρ1

ColdMW,τh
ColdMW) is a continuous function that

strictly increases with Wext.

With these three observations we can now prove inequality (2). Note that when ρ1
ColdMW =

ρ1
ColdMW, (2) holds trivially. Therefore, let us consider the case where ρ1

ColdMW 6= ρ1
ColdMW.

Suppose Ŵext achieves the supremum in η
qm
1 (ρ1

ColdMW), and for such a value of Ŵext,

F1(τ0
Cold ⊗ρ

0
M ⊗ρ

0
W,τh

ColdMW) =F1(ρ1
ColdMW,τh

ColdMW) (7.5.29)

>F1(ρ1
ColdMW,τh

ColdMW). (7.5.30)

Note that since F1(ρ1
ColdMW,τh

ColdMW) strictly increases with Wext, therefore there exists

W ′
ext > Ŵext such that W ′

ext satisfies F1(τ0
Cold ⊗ρ0

M ⊗ρ0
W,τh

ColdMW) = F1(ρ1
ColdMW,τh

ColdMW).
Therefore, W ′

ext is a feasible solution for Eq. (7.5.25), i.e. it satisfies the constraints in the
optimization problem. In conclusion, we have

η
qm
1 (ρ1

ColdMW) =
[

1−ε + ∆C
Ŵext

]−1

≤
[

1−ε + ∆C
W ′

ext

]−1

≤η
qm
1 (ρ1

ColdMW). (7.5.31)

This proves inequality (2).
Proof of equality (3): Consider the quantity η

qm
1 (ρ1

ColdMW). Since the state ρ1
ColdMW

takes on a product structure form between all the subsystems now, Assumption (iii) in the
beginning of Section 7.5.1 holds again. By the third and fourth constraints in Eq. (7.5.24),
we know that Assumptions (i) and (ii) also hold. Therefore, we know that under these
assumptions the efficiency does not depend anymore on the global state ρ1

ColdMW, but only

ρ1
Cold. Again comparing the conditions of ηmac(ρ1

Cold) and η
qm
1 (ρ1

ColdMW), we see that they
are exactly the same quantity.

Therefore, Lemma 7.14 tells us that correlations between the final states of the cold
bath, machine and battery cannot allow us to surpass the Carnot efficiency.
6The reader may find a proof in page 395 of Ref. [176].
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ACHIEVABILITY OF CARNOT EFFICIENCY STILL DEPENDS ON BATH HAMILTONIAN

Proof Sketch
Earlier, we proved in Lemma 7.14 that Carnot efficiency remains an upper bound to the
efficiency of any arbitrary final state ρ1

ColdMW. Here, we prove that when Ω> 1 holds,
one cannot achieve the Carnot efficiency even when allowing correlations between the
final states of the battery and the cold bath. This is done in the following steps:

1. According to Lemma 7.14, Carnot efficiency can be attained only when all the
inequalities in Eq. (7.5.23) are satisfied with equalities. We use this to prove in
Lemma 7.15 that in order to achieve the Carnot efficiency, we may only consider
the limit where correlations in the final state vanish. Not only so, the magnitude of
these correlations also have to vanish quickly enough in order for Carnot efficiency
to be achieved. In particular, we define a parameter k which quantifies the amount
of correlations, and show that k has to vanish faster than the quasi-static parameter
g, in order to achieve the Carnot efficiency ηC.

2. Next, in Lemma 7.16, we show that if the parameter k vanishes faster than the
quasi-static parameter g, then whenever Ω > 1, one can derive an upper bound
for the intermediate efficiency η

qm
∞ (ρ1

ColdMW) which considers the amount of work
extractable by invoking only the generalized second law of α → ∞. Combining
Lemma 7.15 and Lemma 7.16, we conclude in Corollary 7.2 that when Ω > 1,
ηqm ≤η

qm
∞ <ηC is strictly upper bounded away from the Carnot efficiency.

Before we begin, let us note that by definition, the initial state ρ0
ColdW is block-diagonal.

Furthermore, the state ρ0
ColdMW is of the form ρ0

Cold ⊗ρ0
M ⊗ρ0

W. Since w.l.o.g. we can
assume that ĤM is the trivial Hamiltonian, and ρ0

M is always block-diagonal. Therefore
the state ρ0

ColdMW is always block-diagonal. Since catalytic thermal operations cannot cre-
ate coherences [125], ρ1

ColdMW has to be also block-diagonal in the energy eigenbasis of
ĤColdMW.

We observe that any ρ1
ColdMW can always be written as

ρ
1
ColdMW = (1−k∗)ρ1

ColdMW +k∗ρ
corr
ColdMW, (7.5.32)

where k∗ = min
{
k ∈ [0,1]

∣∣∣ρ1
ColdMW = (1−k)ρ1

ColdMW +kQ,Q≥ 0
}
. This means that ρ1

ColdMW

can be written as a convex combination of two states: one being ρ1
ColdMW, and the other

ρcorr
ColdMW containing all other correlations. Note that such a k∗ always exists, in particular,

k = 1 is always a feasible solution.

We now define a particular parametrization of the final states,

ρ
1
ColdMW(k,ρno corr

ColdMW,ρcorr
ColdMW) := (1−k)ρno corr

ColdMW +kρ
corr
ColdMW, k ∈ [0,k∗] (7.5.33)
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where the following holds:

(i) ρ
no corr
ColdMW = ρ

1
ColdMW, (7.5.34)

(ii) ρ
corr
ColdMW 6= ρ

no corr
ColdMW, (7.5.35)

(iii) ρ
1
M = (1−k)ρno corr

M +kρ
corr
M = ρ

0
M. (7.5.36)

Since in our heat engine, the initial state has no coherences, it suffices to consider a block-
diagonal final state ρ1

ColdMW. This implies that ρno corr
ColdMW = ρ1

ColdMW is also diagonal in
the energy eigenbasis, and therefore the same holds for ρcorr

ColdMW due to Eq. (7.5.33). All
correlations between the individual systems of cold bath, machine and battery are contained
only in ρcorr

ColdMW. Therefore, ρ1
ColdMW(·, ·, ·) parametrizes every possible quantum state on

HColdMW which is diagonal in the global energy eigenbasis and that returns the machine
locally to its initial state after one cycle of the heat engine. In Eq. (7.5.36), ρ1

M is the final
state of the machine, since the heat engine is cyclic, recall that we require ρ1

M = ρ0
M.

Lemma 7.15. Consider any family of states ρ1
ColdMW(k,ρno corr

ColdMW,ρcorr
ColdMW) parametrized

by k, as detailed in Eqns. (7.5.33)-(7.5.36). If the quantum efficiency η
qm
1 defined in Eq.

(7.5.8) achieves the Carnot efficiency

η
qm
1 (ρ1

ColdMW) = 1− βh

βc
, (7.5.37)

then the following conditions are satisfied:

1) The state ρ1
ColdMW is the final state of a quasi-static heat engine (see Def. 6.1)

ρ
1
ColdMW = τ(g)⊗ρ

0
M(g)⊗ρ

1
W with g→ 0+. (7.5.38)

2) The correlations must vanish sufficiently quickly. That is to say, the parameter k in
Eq. (7.5.33) vanishes more quickly compared to g, i.e.

lim
g→0+

k
g
= 0. (7.5.39)

Proof. Firstly, suppose that Carnot efficiency is achieved, i.e. ηqm(ρ1
ColdMW) = 1− βh

βc
. Then

according to Lemma 7.14, all inequalities in Eq. (7.5.23) should be satisfied with equality,
in particular inequality (4). We have established in Lemma 6.6 that this equality is only
achieved in the quasi-static limit, i.e. ρ1

Cold = τCold(g) where g→ 0+. This implies Condition
1) in the statement of the lemma.

The proof for Condition 2) consists of calculating Wext for α = 1 in Eq. (7.5.8) to leading
order in g and k. This Wext quantity is later used to evaluate η

qm
1 . We show that we can

write the expression for η
qm
1 into two terms: one term describes the efficiency when there

are no final correlations, and the other term is a strictly negative contribution which must
vanish in order to achieve Carnot efficiency. This latter constraint gives us Eq. (7.5.39).

Let us denote W ′
ext as the value of energy gap Wext =EW

k −EW
j that solves

F1(τ0
Cold ⊗ρ

0
M(g)⊗ρ

0
W,τh

ColdMW) =F1(ρ1
ColdMW(k,ρno corr

ColdMW,ρcorr
ColdMW),τh

ColdMW)7, (7.5.40)
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while Ŵext as the value that solves the case where k = 0, i.e.

F1(τ0
Cold ⊗ρ

0
M(g)⊗ρ

0
W,τh

ColdMW) =F1(ρno corr
ColdMW,τh

ColdMW). (7.5.41)

Since ρno corr
ColdMW = ρ1

ColdMW = ρ1
Cold⊗ρ0

M(g)⊗ρ1
W contains no correlations, Ŵext was given by

Eq. (6.6.47). According to Lemma 7.13, we know that W ′
ext and Ŵext are the values of Wext

which solve sup
Wext

η
qm
1 (ρ1

ColdMW,Wext) and sup
Wext

η
qm
1 (ρ1

ColdMW,Wext) respectively. Solving Eq.

(7.5.41) for W ′
ext with the aid of Eq. (7.5.22), we find

W ′
ext =Ŵext −χ, (7.5.42)

where Wext is the solution to Eq. (7.5.41) when k = 0, given by Eq. (6.6.47), while

χ := 1

βh

1

1−ε

[
S(ρno corr

ColdMW)−S
(
ρ

1
ColdMW(k,ρno corr

ColdMW,ρcorr
ColdMW)

)]
. (7.5.43)

Let us first note some properties of χ , which we will later use:

• Since S(·) is subadditive, due to the parametrization of ρ1
ColdMW(·, ·, ·) in Eq. (7.5.33),

we have

χ ≥ 0, (7.5.44)

with equality iff ρ1
ColdMW = ρ1

ColdMW (i.e. k = 0). Therefore, this implies Ŵext
W ′

ext
≥ 1.

• It holds that

d
dk

χ(k,ρno corr
ColdMW,ρcorr

ColdMW)
∣∣∣
k=k0

= 0 (7.5.45)

if and only if

ρ
1
ColdMW(k0,ρ

no corr
ColdMW,ρcorr

ColdMW) = 1ColdMW/N. (7.5.46)

Eqs. (7.5.45) and (7.5.46) are direct consequences of the observations:
1) Entropy is strictly concave, i.e. S

(
ρ1

ColdMW(k,ρno corr
ColdMW,ρcorr

ColdMW)
)

is strictly con-
cave in k ∈ [0,1]. Therefore, by Eq. (7.5.46) χ is strictly convex in k ∈ [0,1]. When
the first derivative dχ

dk = 0, this must be the global minimum [177].
2) However, we know that the entropy is uniquely maximized (and therefore χ is
uniquely minimized) for the maximally mixed state.

Returning to evaluate the efficiency, we use Eq. (7.5.7) to calculate

[ηqm
1 (ρ1

ColdMW)]−1 = 1−ε + ∆C(ρ1
Cold)

W ′
ext

= 1−ε + ∆C(ρ1
Cold)

Ŵext

Ŵext

W ′
ext

(7.5.47)

≥ 1−ε + ∆C(ρ1
Cold)

Ŵext
.
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The last inequality holds because we know the terms ∆C(ρ1
Cold),Ŵext and W ′

ext are all non-

negative, while we have established that Ŵext
W ′

ext
≥ 1.

With Condition 1), we now know that

1−ε + ∆C(ρ1
Cold)

Wext
= 1− βh

βc
,

in the quasi-static limit, and therefore a necessary condition to achieve the Carnot efficiency
is that limg→0

Ŵext
W ′

ext
= 1 also in the quasi-static limit. Using the relation W ′

ext = Ŵext +χ , we
have the requirement that

lim
g→0+

χ(k,ρno corr
ColdMW(g),ρcorr

ColdMW)

Ŵext(ρno corr
ColdMW(g))

= 0.

First, let us observe that Ŵext(ρno corr
ColdMW(g)) = Wext(βc −g) given by Eq. (6.6.36). The

leading order term of Wext(βc−g) =Θ(g) as g→ 0+. Therefore, in order to satisfy the above
requirement, we must firstly have limg→0 χ = 0. From Eqs. (7.5.33), (7.5.43), this implies
that we need k → 0 for all ρno corr

ColdMW.
Since the numerator and denominator of Eq. (7.5.48) both go to zero, by L’Hospital

rule, to evaluate the limit we need to take the derivative of both terms w.r.t. g. Therefore,
we expand χ to first order in k and g. From Eq. (7.5.43) it follows

χ(k,ρno corr
ColdMW(g),ρcorr

ColdMW) = d
dk

χ(k,ρno corr
ColdMW(0),ρcorr

ColdMW)
∣∣∣
k=0

·k

+ d
dg

χ(0,ρno corr
ColdMW(g),ρcorr

ColdMW)
∣∣∣
g=0

·g+o(gk)+o(k2)+o(g2)

= d
dk

χ(k,ρno corr
ColdMW(0),ρcorr

ColdMW)
∣∣∣
k=0

k+o(gk)+o(k2)+o(g2).

The term d
dg χ(0,ρno corr

ColdMW(g),ρcorr
ColdMW)

∣∣∣
g=0

= 0 since when k = 0, χ will be constant for all g.

Next, we note that since Eqs. (7.5.44) holds, it must be that d
dk χ(k,ρno corr

ColdMW(0),ρcorr
ColdMW)

∣∣∣
k=0

≥
0. Furthermore, from Eq. (7.5.45), we have that

d
dk

χ(k,ρno corr
ColdMW(0),ρcorr

ColdMW)
∣∣∣
k=0

6= 0, (7.5.48)

for all ρcorr
ColdMW since by definition ρ1

ColdMW(0,ρno corr
ColdMW(0),ρcorr

ColdMW) 6= 1ColdMW/N. We can
infer that ρ1

ColdMW is not maximally mixed from a few observations, for example: this is
true because we have required that the reduced state on the battery is not maximally mixed
since we consider near perfect work extraction.

Thus, taking into account Wext(βc −g) =Θ(g), Eq. (7.5.48) implies Eq. (7.5.39).

By now, we have established a constraint on how quickly correlations have to vanish
w.r.t. g, for the possibility of achieving Carnot efficiency. In the next Lemma 7.16, we show
that the constraints given by Eq. (7.5.39) can be used to derive an upper bound for η

qm
∞ .
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Lemma 7.16. If Conditions 1) and 2) of Lemma 7.15 are satisfied, then the quantity η
qm
∞

can be upper bounded by

η
qm
∞ (ρ1

ColdMW(k,ρno corr
ColdMW(g),ρcorr

ColdMW))

≤
[

1+ βh

βc −βh

γ(1)

γ(∞)

]−1

+Θ( f (g))+Θ(k/g)+Θ(g)+Θ(ε), (7.5.49)

with limg→0+ f (g) = 0.

Proof. The main idea of our proof is as follows: we show that if Eqns. (7.5.38) and (7.5.39)
hold, then we can upper bound Wext while considering only the F∞ condition. This bound
only differs by a small amount from the value yielded when no correlations are present.
Substituting this into the expression for η

qm
∞ , we obtain Eq. (7.5.49).

Let us begin by analyzing the difference in eigenvalues of the states ρ1
ColdMW and

ρ1
ColdMW. Recall that

ρ
1
ColdMW(k,ρno corr

ColdMW,ρcorr
ColdMW) = (1−k)ρno corr

ColdMW +kρ
corr
ColdMW (7.5.50)

where ρno corr
ColdMW,ρcorr

ColdMW are both block-diagonal. Since ρ1
ColdMW is a mixture of two block-

diagonal states, it is also block-diagonal. Let us denote its eigenvalues as [ρ1
ColdMW]i.

As for ρ1
ColdMW, Eqn. (7.5.38) gives the explicit form of the state,

ρ
1
ColdMW = ρ

1
Cold ⊗ρ

1
M ⊗ρ

1
W = τ(g)⊗ρ

0
M(g)⊗ρ

1
W. (7.5.51)

Let us denote its eigenvalues as [ρ1
ColdMW]i.

We first observe two properties involving trace distance d(·, ·):
(P.i) Consider two states σ1,σ2 diagonal in the same eigenbasis. Then if ρ = (1−k)σ1+kσ2

for some k ∈ [0,1], then one can conclude that the distance

d(ρ,σ1) ≤ k. (7.5.52)

(P.ii) For any two states ρ,σ diagonal in the same basis, with eigenvalues pi,qi, if their
trace distance

d(ρ,σ ) ≤ ε, (7.5.53)

then this implies that their eigenvalues cannot differ by more than ε , i.e. ∀i, |pi−qi| ≤
ε . By using this fact, we may first calculate the trace distance between ρ1

ColdMW and
ρ1

ColdMW, then bound the difference of their eigenvalues.

We find that

d(ρ1
ColdMW,ρ1

ColdMW) ≤ d(ρ1
ColdMW,ρno corr

ColdMW)+d(ρno corr
ColdMW,ρ1

ColdMW) (7.5.54)

≤ k+d(ρno corr
Cold ,ρ1

Cold)+d(ρno corr
M ,ρ1

M)+d(ρno corr
W ,ρ1

W) (7.5.55)
≤ 4k. (7.5.56)
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The first inequality is a triangle inequality that holds for all states. The second inequal-
ity holds because of (P.i), and because trace distance is subadditive under tensor product
(note that both ρno corr

ColdMW and ρ1
ColdMW are tensor product states). The third inequality holds

because we know d(ρ1
ColdMW,ρno corr

ColdMW) ≤ k and that trace distance decreases under partial
trace. By (P.ii), Eq. (7.5.56) tells us that ∀i,

[ρ1
ColdMW]i = [ρ1

ColdMW]i +o(k). (7.5.57)

With Eq.(7.5.57), we may relate the F∞ quantities for the states ρ1
ColdMW and ρ1

ColdMW.
From the definition of F∞, we have

F∞
(
ρ

1
ColdMW(k,ρno corr

ColdMW(g),ρcorr
ColdMW),τh

ColdMW
)

(7.5.58)

= lnmax
i

{
[ρ1

ColdMW]i

τi

}
, (7.5.59)

= lnmax
i

 [ρ1
ColdMW]i

τi

+o(k), (7.5.60)

=F∞
(
τ(g)⊗ρ

0
M(g)⊗ρ

1
W,τh

ColdMW

)
+o(k), (7.5.61)

where we used Eq. (7.5.51) in the last line.
The next step is to evaluate the restriction on Wext that satisfies

F∞(τ0
Cold ⊗ρ

0
M ⊗ρ

0
W,τh

ColdMW) ≥F∞
(
ρ

1
ColdMW(k,ρno corr

ColdMW(g),ρcorr
ColdMW),τh

ColdMW

)
(7.5.62)

=F∞
(
τ(g)⊗ρ

0
M(g)⊗ρ

1
W,τh

ColdMW

)
+o(k), (7.5.63)

for Wext up to order o(k). Taking into account the additivity of F∞ under tensor product, we
can rearrange Eq. (7.5.63) to provide an upper bound on Wext,

Wext ≤ ng
βh

[
γ(∞)+Θ( f (g))+o(k/g)

]
, (7.5.64)

where limg→0+ f (g) = 0, γ(∞) is given by Eq. (7.4.54).
Lastly, we want to evaluate the intermediate efficiency η

qm
∞ as defined in Eq. (7.5.8).

To do so, we use the expressions Wext from Eq. (7.5.64) and ∆C from Eq. (7.4.57), and
substitute them into the expression for efficiency in Eqs. (7.5.7), yielding

η
qm
∞ (ρ1

ColdMW) = sup
Wext>0

(
1−ε + ∆C

Wext

)−1

(7.5.65)

≤
[

1+ βh

(βc −βh)

γ(1)

γ(∞)

]−1

+Θ( f (g))+o(k/g)+Θ(g)+Θ(ε), (7.5.66)

which proves the lemma.

Finally, combining the above lemmas allow us to conclude that allowing further corre-
lations in the final state cannot allow us to achieve Carnot efficiency when Ω> 1.
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Theorem 7.2. Suppose that Ω> 1. Parametrizing the final state of the heat engine by
Eq. (7.5.33)-(7.5.36) in order to consider correlations in the final state, the quantum
efficiency ηqm defined in Eq. (7.5.3) is strictly upper bounded by the Carnot efficiency,

sup
k∈[0,1], ρno corr

ColdMW

η
qm (

ρ
1
ColdMW(k,ρno corr

ColdMW, ρ
corr
ColdMW)

)< 1− βh

βc
. (7.5.67)

Proof. From Lemma 7.12, we have that both ηqm ≤ η
qm
1 and ηqm ≤ η

qm
∞ hold. Thus a

necessary condition to achieve the Carnot efficiency ηC for a particular ρ1
ColdMW, is that

both η
qm
1 and η

qm
∞ are equal to or greater than the Carnot efficiency.

Lemma 7.15 first proves that in order for ηC ≤ η
qm
1 , Eqs. (7.5.38) and (7.5.39) are

necessary conditions for η
qm
1 to achieve Carnot efficiency. However, when Eqs. (7.5.38),

(7.5.39) are satisfied, then Lemma 7.16 provides an upper bound on the efficiency η
qm
∞ in

Eq. (7.5.49).
Now, suppose Ω > 1. Since it is shown in Eq. (7.4.55) that γ(1)/γ(∞) = Ω, plugging

this into the leading term appearing in Eq. (7.5.49)[
1+ βh

(βc −βh)

γ(1)

γ(∞)

]−1

, (7.5.68)

we have that the quantity η
qm
∞ < ηC is strictly less than the Carnot efficiency. Therefore,

ηqm ≤η
qm
∞ <ηC as well.

7.5.2. A MORE GENERAL FINAL BATTERY STATE
For the simplicity of our analysis, we have assumed that the battery is left in the specific
final state described in Eq. (6.2.6), i.e. an amount of work Wext = Ek −E j is extracted,
except with failure probability ε that the battery remains in the initial state |E j〉〈E j|W. In
this section, we show that this is a simplification which can be removed in general, i.e. the
final battery state is allowed to be any state within the ε-ball of |Ek〉〈Ek|W. In particular, our
result that the Carnot efficiency cannot be achieved when Ω> 1 still holds.

Proof Sketch
In Lemma 7.17, we show that for any final state of the cold bath ρ1

Cold, allowing a more
general final battery state does not affect the amount of work bounded by the F∞ con-
dition, provided ε is upper bounded by a constant factor. We then use this to prove in
Theorem 7.3 that for the case of near perfect work extraction, when Ω> 1, ηC cannot be
achieved even if we allow a more general battery final state.

Lemma 7.17. For any given ρ0
Cold,ρ

1
Cold, with ρ0

W = |E j〉〈E j|W, consider the maximum
W 1∞ := Ek1 −E j such that ρ0

Cold ⊗ρ0
W → ρ1

Cold ⊗ρ1
W is allowed by the non-increasing F∞

condition, which is equivalent to having

D∞(ρ0
Cold‖τ

βh
Cold)+D∞(ρ0

W‖τ
βh
W ) ≥D∞(ρ1

Cold‖τ
βh
Cold)+D∞(ρ1

W‖τ
βh
W ), (7.5.69)
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with
ρ

1
W = (1−ε)|Ek1〉〈Ek1 |W +ε |E j〉〈E j|W. (7.5.70)

On the other hand, consider any battery final state

ρ
2
W = (1−ε)|Ek2〉〈Ek2 |W +ερ

junk
W , (7.5.71)

where ρ
junk
W is an block-diagonal state orthogonal to |Ek2〉〈Ek2 |W which may depend on ε ,

i.e. ρ
junk
W = ∑

i pi|Ei〉〈Ei|W with pk2 = 0 and
∑

i pi = 1. Define W 2∞ := Ek2 −E j such that
ρ0

Cold ⊗ρ0
W → ρ1

Cold ⊗ρ2
W is allowed by the non-increasing F∞ condition, i.e.

D∞(ρ0
Cold‖τ

βh
Cold)+D∞(ρ0

W‖τ
βh
W ) ≥D∞(ρ1

Cold‖τ
βh
Cold)+D∞(ρ2

W‖τ
βh
W ). (7.5.72)

Then for all 0 < ε ≤ ε̂ =
[

1+eβh(Emax−E j)
]−1

, Emax being the largest energy eigenvalue of

ĤW , we have W 1∞ =W 2∞.

Proof. Firstly, note that any block-diagonal state ρ2
W with trace distance d(ρ2

W, |Ek2〉〈Ek2 |W) =
ε can be written in the form of Eq. (7.5.71). Rearranging the terms in Eq. (7.5.69),

D∞(ρ1
W‖τ

βh
W ) ≤D∞(ρ0

W‖τ
βh
W )+D∞(ρ0

Cold‖τ
βh
Cold)−D∞(ρ1

Cold‖τ
βh
Cold) =: A. (7.5.73)

Using the definition of D∞ in Eq. (2.3.4) to expand the L.H.S. of Eq. (7.5.73), we obtain

lnmax
{

(1−ε)eβhEk1 , εeβhE j
}
≤A− lnZβh

W . (7.5.74)

We know that since near perfect work is extracted, ε is arbitrarily small. This implies that
for ε small enough, max

{
(1−ε)eβhEk1 , εeβhE j

}
= (1−ε)eβhEk1 .

Similarly, one can evaluate Eq. (7.5.69) to obtain

lnmax

{
(1−ε)eβhEk2 ,

{
ε pieβhEi

}
i 6=k2

}
≤A− lnZβh

W . (7.5.75)

Note that the maximization in Eq. (7.5.75) only picks out the maximum value. In particular,
denoting Emax to be the largest energy eigenvalue of the battery, then whenever

(1−ε)eβhEk2 ≥ εeβhEmax , (7.5.76)

or equivalently

ε ≤
[

1+eβh(Emax−Ek2 )
]−1

, (7.5.77)

then max

{
(1−ε)eβhEk2 ,

{
ε pieβhEi

}
i6=k2

}
= (1−ε)eβhEk2 . In other words, as long as ε is up-

per bounded by Eq. (7.5.77), we know which terms attains the maximization in Eq. (7.5.74).
However, we also want an upper bound that is independent of any limit involving the final
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state ρ1
ColdMW we wish to take, or any amount of work extracted (and therefore, we want the

bound to be independent of Ek2 ). As such, let us construct the upper bound ε ≤ ε̂ where8,

ε̂ := inf
Ek2

W 2∞>0

[
1+eβh(Emax−Ek2 )

]−1 =
[

1+eβh(Emax−E j)
]−1

.
(7.5.78)

Finally, note that for ε ≤ ε̂ , Ek1 and Ek2 correspond to solutions for the maximization in both
Eq. (7.5.74) and Eq. (7.5.75), and the R.H.S. are identical for both equations. Therefore,
the maximum possible values for Ek1 ,Ek2 are the same, and hence W 1∞ =W 2∞.

We will use Lemma 7.17 to prove Theorem 7.3. But before we proceed, let us fix some
notation. Define the efficiency as a function of α ≥ 0 :

η
J
α (ρ1

Cold) = sup
EkJ −E j>0

η(ρ1
Cold)

s.t. Fα (ρ0
W ⊗τ

0
Cold,τ

h
ColdW) ≥Fα (ρJ

W ⊗ρ
1
Cold,τ

h
ColdW),

tr(Ĥtρ
0
ColdHotMW) = tr(Ĥtρ

1,J
ColdHotMW).

with J = 1,2 denotes the final battery ρJ
W. We also define an α-independent efficiency:

η
J(ρ1

Cold) = sup
EkJ −E j>0

η(ρ1
Cold)

s.t. Fα (ρ0
W ⊗τ

0
Cold,τ

h
ColdW) ≥Fα (ρJ

W ⊗ρ
1
Cold,τ

h
ColdW), ∀α ≥ 0.

Note that for any α ≥ 0, and any state ρ1
Cold, ηJ

α (ρ1
Cold) ≥ηJ(ρ1

Cold) holds.
We already know from Theorem 7.1 that when Ω> 1, for any final cold bath state ρ1

Cold,
the efficiency η1(ρ1

Cold) < ηC. Theorem 7.3 shows that this is also true for η2(ρ1
Cold), i.e.

when allowing a more general battery final state.

Theorem 7.3. Consider a heat engine with a cold bath consisting of n qubits, that
extracts near perfect work. If Ω> 1 as defined in Eq. (7.4.47), then for any final cold
bath state ρ1

Cold, the efficiency η2(ρ1
Cold) is strictly less than the Carnot efficiency.

Proof. Firstly, suppose that Ω > 1. By Lemma 7.10, we know that the maximum allowed
amount of work is evaluated at α =∞, and by Lemma 7.11 we know that the efficiency for
quasi-static heat engine is

lim
g→0

η
1(τβ f ) = lim

g→0
η

1
∞(τβ f ) <ηC. (7.5.79)

On the other hand, by Lemma 6.6, η2(ρ1
Cold) can only possibly achieve Carnot efficiency

in the quasi-static limit. In other words, for all other final states ρ1
Cold we know that Carnot

efficiency cannot be achieved. It suffices to see that in the quasi-static limit,

lim
g→0

η
2(τβ f ) ≤ lim

g→0
η

2
∞(τβ f ) = lim

g→0
η

1
∞(τβ f ) = lim

g→0
η

1(τβ f ) <ηC. (7.5.80)

8Although such a bound is dependent on ĤW, note that as long as ĤW has a finite-dimensional spectra, ε̂ is a fixed
value that does not vanish to zero, and does not exceed 1

2 .
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The second equality is obtained by noting that for any state ρ̃1
Cold (and therefore for τβ f ):

1. ∆C is the same for both expressions of efficiency η1∞(ρ1
Cold) and η2∞(ρ1

Cold).

2. For any heat engine that extracts near perfect work, only the limit ε → 0 is relevant,

and by Lemma 7.17, for all 0 < ε <
[

1+eβh(Emax−E j)
]−1

, W 1∞(ρ̃1
Cold) =W 2∞(ρ̃1

Cold).

Hence, from Items 1 and 2, one concludes that η1∞(ρ̃1
Cold) = η2∞(ρ̃1

Cold) for any state ρ̃1
Cold.

The third equality in Eq. (7.5.80) comes directly from Eq. (7.5.79).

7.6. EFFICIENCY OF DRAWING IMPERFECT WORK WITH
ENTROPY COMPARABLE WITH Wext

One can ask whether it is possible to exceed Carnot efficiency when imperfect work is
extracted. In this section, we first consider a sub-regime of imperfect work, where

∆S
Wext

→ p for some p> 0. (7.6.1)

One can see that only certain choices of ε(g) will lead to having such a limit, which we have
seen on Table 7.2. We prove that for all choices of ε such that Eq. (7.6.1) is true, one cannot
surpass the Carnot efficiency. However, it is interesting to note that, if only the standard
free energy is responsible for determining state transitions, then Carnot efficiency might be
exceeded!

Theorem 7.4. Consider a quasi-static heat engine where the failure probability of
extracting work is ε(g), g being the quasi-static parameter, such that

lim
g→0+

εκ (g)

g
=

0 if κ ≥ 1

∞ if κ < 1.

(7.6.2)

and lim
g→0

ε ln 1
ε

g
= c > 0. Then the maximum achievable efficiency is upper bounded by

the Carnot efficiency.

Proof. Firstly, note that an example for such a choice of ε can be constructed, i.e. ε ln 1
ε
=

c ·g.
We make use of Eq. (7.6.2) to analyze Wext. Rewriting Eq. (7.3.51) by first drawing out

a factor of g,
Wext = g · inf

α>0
W̃α , (7.6.3)

where

W̃α =


1

βh(α−1)

[
αnBα − εα

g + αε

g

]
+Θ(g)+Θ

(
ε2α

g

)
+Θ(εα )+Θ

(
ε2

g

)
, if α ∈ (0,∞)\{1},

β−1
h

[
lim

α→1+
αnBα

α −1
+ ε ln 1

ε

g

]
+Θ(ε)+Θ

(
ε2 lnε

g

)
+Θ

(
ε2

g

)
+Θ(g), α = 1.

(7.6.4)
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Note that the (inverse) efficiency in the quasi-static limit is given by

η
−1 = lim

g→0+
1−ε + ∆C

Wext
= 1+ lim

g→0+
∆C

Wext
≥ 1+ lim

g→0+
∆C
Wα

, (7.6.5)

where any α > 0 gives an upper bound. However, since ∆C and Wα are both vanishing in
the quasi-static limit (for any α > 0), we can also evaluate the limit by using Eq. (7.3.30),

lim
g→0+

∆C
Wα

= nB′
1

βc −βh
·
(

lim
g→0

W̃α

)−1

. (7.6.6)

We are, then, interested in picking α that gives us the tightest bound, i.e. the smallest
value for limg→0W̃α . This leads us to scrutinize Eq. (7.6.4) in the light of ε(g) that satisfies
the statement of the theorem. First of all, note that Eq. (7.6.2) implies that for values of
α ∈ (0,1), the term −εα

g(α−1) goes to infinity as g → 0+, while other terms are finite. This
implies that the minimization can be restricted to parameters α ≥ 1. Notice also all the
order terms vanish when we take the limit g → 0, therefore we need only to deal with the
largest order terms in Eq. (7.6.4).

Consider the case where α = 1. We have that

lim
g→0

W̃1 = 1

βh

[
lim

α→1+
αnBα

α −1
+c

]
, (7.6.7)

where we have seen that c> 0, by choice of ε(g). On the other hand, for α > 1 the expression
for W̃α can be further simplified in the quasi-static limit,

lim
g→0

W̃α = αnBα

βh(α −1)
if α ∈ (1,∞). (7.6.8)

This is because the terms εα

g , αε

g now vanish as g → 0+. From this we also see that since

W̃1 > β−1
h lim

α→1+
αnBα

α −1
, and by continuity of the function αnBα

α−1 for α ∈ (1,∞), W̃1 can also

be disregarded in the minimization (see Figure 7.9 for a pictorial understanding).

Figure 7.9: The value of W̃α at α = 1 can be ignored while minimizing W̃α over α ∈ [1,∞), because the neigh-
bouring values of the function for α > 1 is lower.

Upon scrutiny, one sees that in the quasi-static limit, the contribution from ε has dropped
out of the expression for Wext. Intuitively this tells us that having such a probability of
failure ε does not help to boost Wext, and in turn the efficiency. In particular, we can use the
lower bound:

η
−1 = 1+ lim

g→0+
∆C

Wext
≥ nB′

1

βc −βh

[
lim
α→1

αnBα

βh(α −1)

]−1

, (7.6.9)

where we have substituted Eq. (7.6.8) and (7.6.6) into Eq. (7.6.5), while picking α → 1 as
our bound. This limit is evaluated as

lim
α→1+

αnBα

α −1
= n

βh
(B1 +B′

1) = n
βh

B′
1. (7.6.10)
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The first equality in Eq. (7.6.10) comes by noting that B1 = 0, and therefore applying the
L’Hospital rule. The second equality comes again from noting that B1 = 0. Finally, substi-
tuting this into Eq. (7.6.9), we have

η
−1 ≥ 1+ nB′

1

βc −βh
· βh

nB′
1

(7.6.11)

= 1+ βh

βc −βh
=η

−1
C . (7.6.12)

one finds that the upper bound on efficiency yields the Carnot expression, i.e. η ≤ηC. This
means that for choices of ε(g) according to the statement of the theorem, Carnot efficiency
cannot be surpassed.

Remark 7.1. By comparing Eq. (7.6.8) and Eq. (7.4.6), we see that this sub-regime of
imperfect work is actually very similar to the case of near perfect work when κ̄ = 1. In
particular, the value of Wext is given over the same minimization, i.e. over values α > 1 of
the second laws, and the contributions from ε vanish in the quasi-static limit. Therefore,
it follows that the results regarding achievability of Carnot efficiency (depending on bath
Hamiltonian), such as Lemma 7.11 and Theorem 7.1, not only holds for near perfect work,
but also for this sub-regime of imperfect work.

In conclusion, in the regime where p is finite, the reason that one cannot exceed Carnot
efficiency stems from the fact that there exists a continuous family of generalized free en-
ergies in the quantum microregime.

7.7. SURPASSING ηC WITH IMPERFECT WORK
In this section, we show that if one considers imperfect work, then heat contributions will
allow us to surpass the Carnot efficiency. In this section, we will mainly be focusing on the
case where ĤCold consists of n-identical qubits. We begin with a proof outline, followed
by the technical lemmas developed in Section 7.7.1. The results are then summarized in
Section 7.7.2.

Proof Sketch
Let us first recall certain results which we have previously derived, by restating them
here for the reader’s convenience. Applying the generalized second laws, by Lemma
7.3, Wext is given by a minimization problem over the continuous range of a real-valued
variable α > 0,

Wext = inf
α>0

Wα , (7.7.1)

where for α ∈ (0,∞)\{1},

Wα = 1

βh(α −1)

[
ln(A−ε

α )−α ln(1−ε)
]
, (7.7.2)

A=
( ∑

i pα

i q1−α

i∑
i p′α

i q1−α

i

)n

, (7.7.3)
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where pi = e−βcEi
Zβc

are the eigenvalues of the thermal state for Ĥc at inverse temperature

βc, p′
i are eigenvalues of the final cold bath ρ1

Cold, and qi = e−βhEi
Zβh

are the probabilities

corresponding to the thermal state of the cold bath with respect to βh. The quantities
W1,W∞ are defined by the limits limα→1Wα , limα→∞Wα respectively.

Earlier in Eq. (7.3.51), we also showed that the expansion of Wα for any α > 0, in
the regime where g,ε → 0 can be written as the following:

Wα = 1

βh(α −1)

[
αngBα −ε

α +αε
]+Θ(g2)+Θ(ε2α )+Θ(gε

α )+Θ(ε2), (7.7.4)

and for α = 1,

W1 =
[

lim
α→1+

1

βh(α −1)

(
αngBα −ε

α +αε
)]+Θ(εg)+Θ(ε2 lnε)+Θ(ε2)+Θ(g2),

(7.7.5)
where the function Bα

a, when ĤCold consists of n identical qubits with energy gap E,
is given by

Bα = E
1+eβcE

· e(βh+αβc)E −e(βc+αβh)E

eαβhE +e(βh+αβc)E
(7.7.6)

Furthermore, we also checked explicitly that by first taking the limit limα→∞Wα , then
expanding in small g,ε gives the same expression, i.e. Eq. (7.7.4) holds also in the
limit α →∞.

Therefore, the difficulty of evaluating the efficiency lies in performing the opti-
mization of Wα over α ∈ (0,∞), which is neither monotonic nor convex. However, by
manipulating our freedom of choosing ε , we show that in certain parameter regimes
of βc,βh, and E, one can evaluate a simple, analytical expression for Wext. The steps
taken are outlined as follows:

1. We start by choosing the failure probability to be ε = ε1 ·g, where ε1 is indepen-
dent of the quasi-static parameter g.

2. Starting out from the expression for extractable work given in Eq. (7.7.4) and
(7.7.5), we prove that in the quasi-static limit, the regime α ∈ (0,1] need not be
considered in the optimization. This is proven in Lemma 7.18.

3. We show that the function Wα which we desire to minimize has at most one
unique local minima. To do so, we establish technical Lemmas 7.21, 7.22 and
7.23, in order to arrive at Lemma 7.24.

4. We show that ε1 can be chosen such that ε > 0 (Lemma 7.25), and that we choose
it so that we know that a particular α∗ ∈ (1,2) corresponds to a stationary point
(Lemma 7.26), specifically a local minima (Lemma 7.27). Since we established
Item 3, this implies that we have identified a unique local minima.
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5. We show that under certain conditions, Wα∗ <W∞. This implies that Wα∗ cor-
responds to the global minima which we desire to evaluate.

6. The conditions for Items 3-5 are summarized in Corollary 7.2, where one can
now, by choosing the parameter α∗, evaluate Wext analytically, and therefore use

η
−1 = 1−ε + ∆C

Wext
(7.7.7)

to calculate the efficiency. On the other hand, the calculation of ∆C is straight-
forward once ρ0

Cold,ρ
1
Cold are fixed, and for the quasi-static limit, we expand ∆C

in terms of the quasi-static parameter g.

aThe function Bα was defined in Eq. (7.3.18), and reduces to a simplified expression for the case where the
cold bath consists of n identical qubits in Eq. (7.4.28).

7.7.1. TECHNICAL LEMMAS USED FOR THE PROOF OF COROLLARY
7.2

Building on the results adapted Section 7.3, this section contains the technical lemmas and
proofs used to develop the proof of Corollary 7.2.

Lemma 7.18. Given any heat engine, consider the state transition

τβCold ⊗ρ
0
W → ρ

1
Cold ⊗ρ

1
W, (7.7.8)

where ρ0
W = |E j〉〈E j|W, ρ1

W = (1−ε)|Ek〉〈Ek|W+ε |E j〉〈E j|W respectively, where Wext =Ek−
E j. Let ε = ε1 ·g, where note that ε1 > 0 is independent of α and g. Then there exists g′ > 0
such that for all 0 < g≤ g′,

Wext = inf
α>0

Wα = inf
α>1

Wα , (7.7.9)

where Wα is defined in Eq. (7.7.4).

Proof. We start out from the most general expression of extractable work, given by Eq. (7.7.2).
Let us first note that for any α ∈ [0,∞), Wα is a continuous function of g, and that limg→0Wα =
0. This can be seen by directly plugging in g= 0 into Eq. (7.7.3), and since ε = 0, |A|g=0 = 1,
therefore for all α > 0, we have Wα = 0 (the case of W1 is automatically true as well, since
W1 is defined by taking the limit α → 1). Furthermore, for different values of g > 0, the
value Wext = infα>0Wα can be obtained at different values of α such that the optimal α

depends on g. However, in the quasi-static limit, there must exist a particular α1 > 0 that
achieves the minimum value, i.e.

lim
g→0

Wext

Wα1

= 1, (7.7.10)

where This implies that for any α ′ 6=α1, we have that

lim
g→0

Wα ′

Wα1

≥ 1. (7.7.11)
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However, since we know that both limg→0Wα ′ = 0 and limg→0Wα1 = 0. Therefore by
L’Hospital rule, this implies that if we define the first derivative of Wα w.r.t. g:

I(α) = dWα

dg
, (7.7.12)

then for any α ′, we also have

lim
g→0

I(α ′)
I(α1)

≥ 1. (7.7.13)

This implies that the solution α1 to the minimization problem of infα>0Wα , in the limit
where g → 0, is also the solution for the minimization problem infα>0 I(α). Substituting
ε = ε1 ·g into Eq. (7.7.12), we obtain

I(α) = 1

βh(α −1)

[
1

A−εα

(
dA
dg

−αε
α
1 gα−1

)
+ αε1

1−ε

]
. (7.7.14)

We now see how Eq. (7.7.14) behaves when g → 0. For any α < 1, the terms involved are
A|g=0 = 1, ε |g=0 = 0, dA

dg

∣∣∣
g=0

=αnBα , and

gα−1 →∞. (7.7.15)

Eq. (7.7.15) in particular implies that in the limit of g → 0, I(α) diverges to infinity in the
interval α ∈ (0,1). Furthermore, note that since this does not happen for the regime α > 1,
and all other terms do not diverge, therefore in the α > 1 regime there must be some α such
that I(α) <∞ is finite. This allows us to conclude that α1 ∉ (0,1).

We will now exclude the point α = 1 from the minimization. We make use of the small
ε,g expansion of Wα in Eq. (7.7.4) to see why this is so, by calculating the limit limg→0

W1
W∞ .

Let us first substitute ε = ε1 ·g, and write out the expression for W∞:

W∞ = lim
α→∞Wα = ng

βh

[
lim

α→∞
αBα

α −1
+ ε1

n

]
+Θ(g2)+Θ(ε2α )+Θ(gε

α )+Θ(ε2) (7.7.16)

= ng
βh

[
B∞+ ε1

n

]
+Θ(g2), (7.7.17)

where by definition of Θ(x) it is sufficient to keep the largest order term when several order
functions are summed. One can check that B∞ = limα→∞Bα is finite for all finite dimen-
sional Ĥc. Meanwhile, from Eq. (7.7.5), by substituting our choice of ε we have

W1 = 1

βh
lim

α→1+
αngBα −εα +αε

α −1
+Θ(εg)+Θ(ε2 lnε)+Θ(ε2)+Θ(g2) (7.7.18)

= 1

βh
lim

α→1+
ngB′

α +αngBα −ε
α lnε +ε +Θ(g2 lng) (7.7.19)

= ng
βh

[
B′

1 −ε1 lnε +ε1
]+Θ(g2 lng) > ng

βh
·ε1 · ln

1

ε
+Θ(g2 lng). (7.7.20)

The second equality comes by applying L’Hospital rule for differentiation limits, and the
third equality comes by substituting α = 1 into the equation, while noting that B1 = 0, and
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using ε = ε1 · g. The last inequality sign comes from noting that B′
1,ε1 > 0. Comparing

Eq. (7.7.17) and (7.7.20) , we see that

lim
g→0

W1

W∞
> lim

g→0

ng
βh

·ε1 · ln 1
ε
+Θ(g2 lng)

ng
βh

[
B∞+ ε1

n
]+Θ(g2)

= lim
g→0

ε1 · ln 1
ε1·g

B∞+ ε1
n

=∞, (7.7.21)

and therefore in the quasi-static regime, W1 >W∞.
We have thus proven that in the quasi-static limit, the global minima for Wext = infα>0Wα

will not be obtained in the interval α ∈ (0,1]. This in turn implies that

inf
α>0

Wα = inf
α>1

Wα . (7.7.22)

With Lemma 7.18, one can dismiss the regime 0 <α ≤ 1 when considering the infimum
over Wα in Eq. (7.7.4). Furthermore, we can already apply Lemma 7.18 to understand how
∆S

Wext
behaves in the quasi-static limit, which we prove in Lemma 7.19.

Lemma 7.19. For any heat engine where ε = ε1 ·g, with ε1 independent of g, in the quasi-
static limit g→ 0+, we have

lim
g→0+

∆S
Wext

=∞. (7.7.23)

Proof. From Lemma 7.18, and by using Eq. (7.7.4) we see that for some particular α1 ∈
(1,∞),

Wext = 1

βh(α1 −1)

[
αngBα1 −ε

α +αε
]+Θ(g2)+Θ(ε2α )+Θ(gε

α )+Θ(ε2) (7.7.24)

= g
βh(α1 −1)

[
α1nBα1 +α1ε1

]+Θ(gα1 )+Θ(g2)+Θ(
g2α1

)+Θ(
g1+α1

)
. (7.7.25)

This implies that the leading order term in Wext is of first order in g. On the other hand,

∆S =−ε lnε − (1−ε) ln(1−ε) (7.7.26)

=−ε1 ·g ln(ε1 ·g)− (1−ε)[−ε +Θ(ε2)] (7.7.27)

=−ε1 ·g lng+ε1 lnε1 ·g+ε +Θ(ε2)+Θ(ε3) (7.7.28)

=−ε1 ·g lng+Θ(g)+Θ(g2)+Θ(g3). (7.7.29)

The second equality is obtained by substituting ε = ε1 ·g and writing ln(1−ε) =−ε +Θ(ε2)
in terms of Taylor expansion. The third equality is obtained by expanding out all the multi-
plied brackets, while the last equality is obtained by noting that Θ(ε) =Θ(g), and therefore
concluding that the leading order term (which has the slowest convergence rate as g→ 0) is
of order g lng. With this, one can evaluate the limit

lim
g→0+

∆S
Wext

= lim
g→0+

−ε1 ·g lng+Θ(g)+Θ(g2)+Θ(g3)
g

βh(α1−1)

[
α1nBα1 +α1ε1

]+Θ(gα1 )+Θ(g2)+Θ(
g2α1

)+Θ(
g1+α1

)
= lim

g→0+
−ε1 · lng+Θ(1)+Θ(g)+Θ(g2)

1
βh(α1−1)

[
α1nBα1 +α1ε1

]+Θ(gα1−1)+Θ(g)+Θ(
g2α1−1

)+Θ(
gα1

)
=∞.
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The second equality is obtained by dividing both numerator and denominator with g. Then
we see that in the numerator, −ε1 · lng goes to infinity, while the other terms remain finite.
On the other hand, the denominator goes to a finite constant. Therefore, we conclude that
limg→0+

∆S
Wext

=∞.

In Lemma 7.18, we have also shown that in the quasi-static limit, the solution α1 that
corresponds to the infimum in Wext coincides with the solution of the infimum for the func-
tion I(α) = dWα

dg . By again making use of this function I(α), in the next step, we show that
since we are interested in the quasi-static limit and the case where ε = ε1 ·g, another useful
simplification will help us to obtain the minimum for Wext.

Lemma 7.20. For ε = ε1 ·g where ε1 is independent of α and g, consider the function

I(α) = dWα

dg
= 1

βh(α −1)

[
1

A−εα

(
dA
dg

−αε
α
1 gα−1

)
+ αε1

1−ε

]
, (7.7.30)

where Wα is given by Eqns. (7.7.2) and (7.7.3). Let α1 be the solution that achieves the
infimum in the quasi-static limit, such that for all other α ′ > 0,

lim
g→0

I(α ′)
I(α1)

≥ 1. (7.7.31)

Then, α1 is also the solution that achieves the infimum for G(α) = 1
βh(α−1) (αnBα +αε1) in

the regime α ∈ (1,∞), i.e.
G(α1) = inf

α>1
G(α). (7.7.32)

Proof. To see this, note that in Lemma 7.18 we have established that α1 is not within
the interval (0,1], since within this interval, limg→0 I(α) =∞. On the other hand, for any
α ∈ (1,∞),

lim
g→0

I(α) = lim
g→0

1

βh(α −1)

[
dA
dg

−αε
α
1 gα−1 +αε1

]
=G(α). (7.7.33)

This concludes the lemma.

Lemma 7.20 implies that while analyzing Wext = infα>0Wα in the quasi-static limit,
where we are interested in finding the solution α1 that satisfies Eq. (7.7.10), it suffices to
analyze a much simpler function

G(α) = 1

β (α −1)
(αnBα +αε1), (7.7.34)

since G(α1) = infα>1 G(α). Looking back to compare G(α) with the Taylor expansion of Wα

evaluated in Eq. (7.7.4), we see intuitively why this function provides us the same solution
to α1 as for Wext in the quasi-static limit: G(α) is simply the largest order term (more
precisely, it is the term associated with order g) of the Taylor expansion in the interval
α ∈ (1,∞).
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G(α) HAS AT MOST ONE LOCAL MINIMA IN α ∈ (1,∞)
In this section, we prove a total of 4 lemmas, where the last Lemma 7.24 builds on the rest,
arriving at the conclusion that G(α) has only at most one local minima in α ∈ (1,∞).

The next Lemmas 7.21 and 7.22 would establish a useful property of dG(α)
dα

, namely that
this function has not more than 3 roots in the regime α ∈ (1,∞), i.e. G(α) does not have
more than 3 stationary points. Then in Lemma 7.23 we show how the value of limα→∞G(α)
is approached. In the proof of these lemmas, we make use of the following quantities:

B′
α = dBα

dα
= E2(βc −βh)[

eαβhE +e(βh+αβc)E
]2 ·e[βh+α(βc+βh)]E (7.7.35)

B′′
α = d2Bα

dα2 = E3
(
βc −βh

)2[
eαβhE +e(βh+αβc)E

]3 ·e[βh+α(βc+βh)]E ·
[
eαβhE −e(αβc+βh)E

]
. (7.7.36)

It is useful to note that whenever βc > βh, then for all α ≥ 0, B′
α > 0 and B′′

α < 0 .
In order to calculate the infimum of G(α) over the interval α > 1, we compute

dG(α)

dα
= n

βh

B′
α

(α −1)2

{
α(α −1)− Bα

B′
α

− ε1

nB′
α

}
. (7.7.37)

Lemma 7.21. Consider the function f (α) := α(α − 1)− Bα

B′
α

− ε1
nB′

α

, which is found in the

R.H.S. of Eq. (7.7.37). Then its first derivative f ′(α) = d f (α)
dα

is strictly concave in the
domain α ∈ (1,∞). This also implies that f (α) has at most 3 roots in the regime α ∈ (1,∞).

Proof. Note that f ′(α) = g′(α)+ ε1
n

B′′
α

B′2
α

, where g′(α) = d
dα

[
α(α −1)− Bα

B′
α

]
. We have seen the

exact same function before in Eq. (7.4.36) of Lemma 7.8, where we have shown that g′(α)
is a strictly concave function. On the other hand, by using the definitions in Eq. (7.7.35)
and (7.7.36), one can evaluate the second derivative of

d2

dα2

B′′
α

B′2
α

= (
βc −βh

)2 e−[βh+α(βc+βh)]EE ·
[
e2αβhE −e2(αβc+βh)E

]
.

All the terms in the equation above are positive, except for the last term which is always
negative in the regime α ∈ (1,∞) when βh < βc. Therefore, the function B′′

α

B′2
α

is strictly

concave as well. This implies that f ′(α) is the addition of two strictly concave functions,
and therefore is also strictly concave itself over the interval α ∈ (1,∞).

One can apply Lemma 7.21 to analyze the function G(α) to show that it does not have
more than 3 stationary points.

Lemma 7.22 (G(α) has not more than 3 stationary points). Consider the continuous func-
tion G(α) = n

βh(α−1)

[
αBα + αε1

n
]

in the regime α ∈ (1,∞). Then the equation dG(α)
dα

= 0 has
at most 3 roots, i.e. the function G(α) has not more than 3 stationary points.

Proof. Let us begin by writing out the function

dG(α)

dα
= n

βh

1

(α −1)2 B′
α

[
α(α −1)−n

Bα

B′
α

− ε1

nB′
α

]
.
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Since from the expression in Eq. (7.7.35), we see that B′
α > 0 whenever βh < βc, by Lemma

7.21, we know that dG(α)
dα

can have at most 3 roots.

Lemma 7.23 (G(α) is approached from above). Consider the continuous function G(α) =
n

βh(α−1)

[
αBα + αε1

n
]

in the regime α ∈ (1,∞). Then the limit lim
α→∞G(α) exists and is ap-

proached from above.

Proof. We have seen from Eq. (7.7.17) that limα→∞G(α) exists and is some finite number.
We then only need to prove that in the limit of large α , the quantity dG(α)

dα
< 0. This can be

seen from Eq. (7.7.37), which we rewrite here again

dG(α)

dα
= n

βh

1

(α −1)2

[
α(α −1)B′

α −Bα − ε1

n

]
. (7.7.38)

Let us compare the terms in the large bracket of the R.H.S.. The first term

α(α −1)B′
α =α(α −1)E2(βc −βh)e−βhEe−α(βc−βh)E (7.7.39)

has a quadratic term in α multiplied by a term which decreases exponentially in α , i.e.
limα→∞α(α −1)B′

α = 0. On the other hand, the remaining terms

lim
α→∞−Bα − ε1

n
=−

[
E

1+eβcE
+ ε1

n

]
< 0. (7.7.40)

Since for large α À 1, the multiplicative factor in Eq. (7.7.38) is positive, we have that
dG(α)

dα
< 0. This implies that the function G(α) approaches the limit α →∞ from above.

Lemmas 7.22 and 7.23 combined gives us the next lemma, which further narrows down
the amount of distinct local minimas for G(α) in the regime α ∈ (1,∞).

Lemma 7.24. The function G(α) has at most one local minima in the interval α ∈ (1,∞).

Proof. By Lemma 7.22, we know that the function G(α) has at most 3 stationary points in
the regime α ∈ (1,∞). Firstly, suppose that G(α) has only 1 or 2 stationary points. Then it
is clear that there cannot exist two distinct local minimas, since for a continuous function
with two local minimas, there has to be at least another local maxima in between, which is
also a stationary point, which leads to a contradiction.

Now, suppose that G(α) has 3 stationary points, found at 1 < α1 < α2 < α3 < ∞ re-
spectively. Note that two neighbouring stationary points cannot both correspond to local
minimas, as reasoned out in the previous paragraph. Therefore, the only way for there to
exist 2 local minimum points, is to have α1,α3 corresponding to local minimas. If there are
no more stationary points in the regime α > α3, then G(α) can only be non-decreasing in
α ∈ (α3,∞), and the limit α →∞ has to be approached from below. However, by Lemma
7.23 we know that this cannot be true.

This establishes the fact that G(α) does not have two distinct local minimas. Therefore,
it implies that whenever we find some α∗ corresponding to a local minima, it will be the
unique local minima of the entire function. This simplifies the minimization of G(α) in
Eq. (7.7.34) to comparing G(α∗) with G(∞).



7.7. SURPASSING ηC WITH IMPERFECT WORK

7

183

INFIMUM FOR G(α) DETERMINED BY CHOICE OF ε1

In the next 4 lemmas, we then prove that by making use of our liberty to choose ε1, we can
design it such that infα>1 G(α) is obtained at any α∗ we desire.

Lemma 7.25. (Conditions for positive ε1) Consider the function

ε1(a,n) := n[a(a−1)B′
a −Ba], (7.7.41)

where a ∈R,n ∈Z+. When the condition

E < 2

βc −βh

1+eβcE

eβcE −1
(7.7.42)

holds, then there exists some α∗ > 1 such that ε1(α∗,n) > 0.

Proof. We begin by noting that ε(1,n) = 0 for any n ∈Z+. A Taylor expansion around a= 1
determines the positivity of ε(a,n) for a= 1+δ where δ ¿ 1. Therefore, we calculate

dε1(a,n)

da
= n[(a−1)B′

a +aB′
a +a(a−1)B′′

a −B′
a] = n(a−1)[2B′

a +aB′′
a]. (7.7.43)

It is easy to see from Eq. (7.7.43) that dε1(a,n)
da

∣∣∣
a=1

= 0. Therefore, the term that determines
positivity of ε1(a,n) around a= 1 is the second derivative,

d2ε1(a,n)

da2 = n[2B′
a +aB′′

a + (a−1)(2B′′
a +B′′

a +aB′′′
a )]. (7.7.44)

The quantity d2ε1(a,n)
da2

∣∣∣
a=1

= n[2B′
1 +B′′

1 ] we can expressed in a simplified form,

d2ε1(a,n)

da2

∣∣∣∣
a=1

= n(βc −βh)e(βc+3βh)EE2

[eβhE +e(βc+βh)E ]3

[
2+ (βc −βh)E +eβcE (2−βcE +βhE)

]
. (7.7.45)

For this to be positive, it implies that 2+ (βc −βh)E + eβcE (2−βcE +βhE) > 0. By further
rearranging terms, we find

(βc −βh)E(1−eβcE ) >−2(1+eβcE ) (7.7.46)

E < 2

βc −βh

eβcE +1

eβcE −1
. (7.7.47)

Lemma 7.26. Consider the function G(α) as described in Eq. (7.7.34). When ε1 is given
by Eq. (7.7.41) for some a=α∗ > 1, then dG(α)

dα

∣∣∣
α=α∗ = 0.

Proof. To see this, let us write out the final form of the first derivative of G(α) in Eq. (7.7.37),

dG(α)

dα
= 1

βh

1

(α −1)2

{
α(α −1)nB′

α −nBα −ε1
}
. (7.7.48)

Substituting Eq. (7.7.41) into the equation above gives us 0 when α =α∗.
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So far, for a specific design of ε1, we’ve found conditions expressed in Eq. (7.7.42) such
that ε1 > 0 and G(α∗) is a stationary point. Next, we can write down further conditions such
that when given α∗ and ε1(α∗,n) as defined in Lemma 7.25, one can now find conditions
on E such that G(α) not only is a stationary point, but also a local minima.

Lemma 7.27. Consider the functions

dG(α)

dα
= 1

βh

1

(α −1)2

[
α(α −1)nB′

α −nBα −ε1
]
, (7.7.49)

and

Bα = E
1+eβcE

· e(βh+αβc)E −e(βc+αβh)E

eαβhE +e(βh+αβc)E
.

If the following condition holds:

E < 1

βc −βh
, (7.7.50)

there one can find some α∗ > 1 in the vicinity of α = 1 such that when we define ε1(α∗,n) :=
n[α∗(α∗−1)B′

α∗ −Bα∗ ], then ε1(α∗,n) > 0. Furthermore if 1 <α∗ < 2 is chosen, then

d2G(α)

dα2

∣∣∣∣
α=α∗

> 0.

Proof. We first note that if E < 1
βc−βh

, then Eq. (7.7.42) holds and therefore by Lemma
7.25, one can choose α∗ > 1 and close to 1 such that ε1(α∗,n) > 0. Next, we calculate the
analytical expression of d2G(α)

dα2 in terms of B′
α and B′′

α . Differentiating Eq. (7.7.49),

d2G(α)

dα2 = 1

βh

1

(α −1)4

{
(α −1)2 [

(α −1)nB′
α +αnB′

α +α(α −1)nB′′
α −nB′

α

]
−2(α −1)

[
α(α −1)nB′

α −nBα −ε1
]}

= 1

βh

1

(α −1)3

{
(α −1)

[
2(α −1)nB′

α +α(α −1)nB′′
α

]−2
[
α(α −1)nB′

α −nBα −ε1
]}

= 1

βh

1

(α −1)3

{
n(α −1)2 [

2B′
α +αB′′

α

]−2
[
α(α −1)nB′

α −nBα −ε1
]}
. (7.7.51)

Substituting α =α∗ into Eq. (7.7.51), one sees that the last term vanishes, and therefore

d2G(α)

dα2

∣∣∣∣
α=α∗

= n
βh

1

(α∗−1)

[
2B′

α∗ +αB′′
α∗

]
. (7.7.52)

Since α∗ > 1, we see that to guarantee positivity of Eq. (7.7.52) is equivalent to showing
that the last term 2B′

α∗ +αB′′
α∗ is strictly positive. To do so, we evaluate the terms B′

α and
B′′

α . By both hand derivation and Mathematica, we obtain the expressions

B′
α = 1

[eαβhE +e(βh+αβc)E ]2
·E2(βc −βh) ·e[βh+α(βc+βh)]E (7.7.53)
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and

B′′
α = 1

[eαβhE +e(βh+αβc)E ]3
·E3(βc −βh)2 ·e[βh+α(βc+βh)]E ·

[
eαβhE −e(αβc+βh)E

]
. (7.7.54)

One can then calculate the last term in Eq. (7.7.52), which we again obtain a simplified
expression via Mathematica,

2B′
α∗ +αB′′

α∗ = (βc −βh)E2

[eαβhE +e(βh+αβc)E ]3︸ ︷︷ ︸
>0

· e[βh+α(βc+βh)]E︸ ︷︷ ︸
>0

· f (α∗), (7.7.55)

where

f (α∗) := eα∗βhE [2+α
∗(βc −βh)E]+e(α∗βc+βh)E [2−α

∗(βc −βh)E] (7.7.56)

= 2
[
eα∗βhE +e(α∗βc+βh)E

]
︸ ︷︷ ︸

>0

+α
∗(βc −βh)E

[
eα∗βhE −e(α∗βc+βh)E

]
︸ ︷︷ ︸

<0

. (7.7.57)

Note that the second term is always negative because α∗ > 1 and βc > βh. Therefore, to
lower bound f (α∗) we want to upper bound the factor α∗(βc −βh)E. By letting 1 <α∗ < 2
and E < 1

βc−βh
, one can have α∗(βc −βh)E < 2, which gives

2B′
α∗ +αB′′

α∗ > 2
[
eα∗βhE +e(α∗βc+βh)E

]
+2

[
eα∗βhE −e(α∗βc+βh)E

]
= 4eα∗βhE > 0. (7.7.58)

Note that the constraints on α∗ and E are not necessary, however sufficient and takes a
relatively simple form.

Finally, for G(α∗) to be the global minima, we need one last condition: that G(α∗) <
G(∞). In the next lemma, we again develop conditions such that this is true.

Lemma 7.28. Suppose α∗E < 1
βc−βh

. Then for ε1(α∗,n) defined as in Eq. (7.7.41), we have
that G(α∗) <G(∞).

Proof. To do so, we write out the expressions for G(α∗) and G(∞), while substituting in
the expression for ε1 in Eq. (7.7.41). The former can be written using Eq. (7.7.34), while
the later has been derived in Eq. (7.7.17):

G(α∗) = n
βh

α∗

α∗−1
[Bα∗ +α

∗(α∗−1)B′
α∗ −Bα∗ ] = n

βh
α

∗2B′
α∗ (7.7.59)

G(∞) = n
βh

[
E

1+eβcE
+ ε1

n

]
. (7.7.60)

For G(α∗) <G(∞), this means

α
∗2B′

α∗ < E
1+eβcE

+α
∗(α∗−1)B′

α∗ −Bα∗ ,
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and therefore

E
1+eβcE

−α
∗B′

α∗ −Bα∗ > 0. (7.7.61)

Expanding Eq. (7.7.61), and using the shorthand X := eα∗βhE +e(βh+α∗βc)E , we obtain

E
1+eβcE

− (βc −βh)α∗2E2

X2 e[βh+α∗(βc+βh)]E − E
1+eβcE

e(βh+α∗βc)E +e(βc+α∗βh)E

X

= E
1+eβcE

1

X2

{
X2 −α

∗E(βc −βh)(1+eβcE )e[βh+α∗(βc+βh)]E −X
[
eα∗βhE +e(βh+α∗βc)E

]}
= E

1+eβcE

1

X2

{
X

[
eα∗βhE +E(α∗βh+βc)E

]
−α

∗E(βc −βh)
(
1+eβcE

)
e[βh+α∗E(βc+βh)]E

}
= E

X2

{
Xeα∗βhE −α

∗E
(
βc −βh

)
e[βh+α∗E(βc+βh)]E

}
= E

X2 ·eα∗βhE
{
X −α

∗E
(
βc +βh

)
e(βh+α∗βc)E

}
= E

X2 ·eα∗βhE
{
eα∗βhE +e(βh+α∗βc)E [

1−α
∗E

(
βc −βh

)]}
.

The calculation above can be checked as follows: the first equality is obtained by taking
out a common factor from all the three terms. The second equality focuses on the large
bracket, and combines the first and third terms by expanding one of the X in the first term.
In the third and fourth equality, one recognizes more common factors in the third line,
and therefore pulls out the terms eα∗βhE and (1+ eβcE ). The fifth equality is obtained by
expanding X , while regrouping terms. To demand that Wα∗ <W∞, implies that we want

eα∗βhE +e(βh+α∗βc)E [
1−α

∗E(βc −βh)
]> 0. (7.7.62)

Rearranging Eq. (7.7.62), we have

eα∗βhE > e(βh+α∗βc)E [
α

∗E(βc −βh)−1
]
. (7.7.63)

One can continue to simplify the expression by bringing e(βh+α∗βc)E , and subsequently the
−1 to the L.H.S., yielding

1+e−α∗(βc−βh)Ee−βhE >α
∗E(βc −βh). (7.7.64)

Since βc −βh > 0, one obtains an expression for α∗E:

α
∗E < 1+e−α∗(βc−βh)Ee−βhE

βc −βh
. (7.7.65)

Also, because βc −βh > 0, and we have that e−α∗(βc−βh)Ee−βhE > 0, therefore as long as
α∗E < 1

βc−βh
, Eq. (7.7.61) is satisfied and Wα∗ <W∞. This concludes our proof.

Lemma 7.18, 7.24, 7.25, 7.26 and 7.27 together presents a set of mathematical condi-
tions such that α∗ can be chosen such that Wα has a global minima at Wα∗ . This is presented
in Eq. (7.7.67) of Corollary 7.2.
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7.7.2. EXAMPLES OF SURPASSING THE CARNOT EFFICIENCY
We conclude Section 7.7 by presenting Corollary 7.2, which formally states the main result
of this section. It establishes a simplification of the efficiency of a quasi-static quantum
heat engine, given a cold bath consisting of n identical qubits, each with energy gap E.
In this corollary, we consider the special case where the failure probability ε ∝ g is pro-
portional to the quasi-static parameter g, and evaluate the efficiency in the limit g → 0. We
have shown in Lemma 7.19 that this corresponds to extracting imperfect work, in particular,

lim
ε→0

∆S
Wext

=∞. For such a case, we show that whenever E < 1
2(βc−βh) , then for some param-

eter α∗, we can choose the proportionality constant c(α∗) = ε

g such that the corresponding
efficiency of such a heat engine is given by a simple analytical expression. Therefore, by
numerically evaluating such an expression for different parameters βc,βh,E,n,α∗ etc, one
can find examples of surpassing the Carnot efficiency.

Corollary 7.2. Consider a quasi-static heat engine with a cold bath consisting of n iden-
tical qubits with energy gap E. Given the inverse temperatures of the hot and cold bath
βh,βc > 0 respectively, and for α ∈ (1,∞) define the functions

Bα = E
1+eβcE

· e(βh+αβc)E −e(βc+αβh)E

eαβhE +e(βh+αβc)E
. (7.7.66)

If the energy gap of the qubits satisfies

E < 1

2(βc −βh)
, (7.7.67)

then there exists an α∗ ∈ (1,2) such that the following holds:

1. The failure probability of the heat engine, can be chosen as ε = g ·n[α∗(α∗−1)B′
α∗ −

Bα∗ ] > 0, where B′
α = dBα

dα
is the first derivative of Bα according to α .

2. In the quasi-static limit, the amount of extractable work Wext is achieved by Wα∗ , i.e.

lim
g→0

Wext

Wα∗
= 1. (7.7.68)

3. The (inverse) efficiency of the described heat engine in the quasi-static limit is given
by η−1 = 1+ βh

βc−βh

1
α∗2

B′
1

B′
α∗
.

Proof. Since 1+eβcE

eβcE−1
> 1, if Eq. (7.7.67) holds, then Eq. (7.7.42) holds. Therefore Item 1 is

a direct result of Lemma 7.25.
Item 2 concerns the quantity Wext, given by Eq. (7.7.1)-(7.7.3). Suppose that α1 is

the solution such that Eq. (7.7.68) holds. Since we have made a choice of ε according to
Item (1), then in the proof of Lemma 7.18, we have shown that α1 is also the solution that
provides the infimum for

I(α) = dWα

dg
(7.7.69)
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in the quasi-static limit. Furthermore, in Lemma 7.20, we have also shown that α1 is also
the solution that ahieves the minimum for infα>1 G(α), where G(α) is given by Eq. (7.7.34)
(it is the leading order term of I(α) with respect to g). Therefore, if we can show that
α∗ achieves the global minima for G(α) in the region α ∈ (1,∞), then we know that Wα∗

satisfies Eq. (7.7.68).
Let us now see why the infimum infα>1 G(α) = G(α∗). If one chooses α∗ ∈ (1,2) and

that Eq. (7.7.67) holds, then Eq. (7.7.50) holds as well, and so Lemma 7.27 and Lemma
7.28. Therefore,

• By Lemma 7.24 we know G(α) does not have more than one distinct local minima.

• By Lemma 7.26 and 7.27, G(α∗) is a unique local minima.

• By Lemma 7.28, G(α∗) <G(∞). Therefore, G(α∗) is the global minima.

Finally, for the fixed parameters n ∈Z+,E ∈R,α∗ ∈ (1,2), we can evaluate the efficiency
of our quasi-static heat engine for a cold bath comprising of identical qubits. This can be
done by evaluating the efficiency for our heat engine:

η
−1 = lim

g→0+
1−ε + ∆C

Wext
. (7.7.70)

The term ε = ε1 ·g=Θ(g), where ε1 = n[α∗(α∗−1)B′
α∗−Bα∗ ] is a finite constant. Therefore

we know lim
g→0+

ε = 0. On the other hand, we have

lim
g→0

∆C
Wext

= lim
g→0

∆C
Wext

· Wext

Wα∗
= lim

g→0

d∆C
dg

dW∗
α

dg

(7.7.71)

= nB′
1

βc −βh
·
[

lim
g→0

I(α∗)

]−1

(7.7.72)

= nB′
1

βc −βh
·
[

lim
g→0

G(α∗)

]−1

(7.7.73)

= nB′
1

βc −βh
· βh

nα∗2B′
α∗

. (7.7.74)

The second equality holds by noting that both ∆C and W∗
α vanish in the limit g → 0, and

therefore apply the L’Hospital rule. In the third equality, we used the first derivative of ∆C
as calculated in Eq. (7.3.31) of Lemma 7.5. Subsequently, we use Lemma 7.20 to calculate
the value of I(α∗) in the quasi-static limit. Therefore, substituting Eq. (7.7.74) into the
expression for efficiency in Eq. (7.7.70), we have Item 3, i.e.

η
−1 = 1+ lim

g→0+
∆C

Wext
(7.7.75)

= 1+ βh

βc −βh

1

α∗2

B′
1

B′
α∗

. (7.7.76)
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Figure 7.10: Achievable efficiency versus Carnot
efficiency with respect to α∗ ∈ (1,2), βh = 1, βc =
10 and E = 0.4

βc−βh
.

Figure 7.11: Achievable efficiency versus Carnot
efficiency with respect to βc, with α∗ = 1.2, βh = 1,
E = 0.4

βc−βh
.

Figure 7.12: Achievable efficiency versus Carnot
efficiency with respect to E, with α∗ = 1.2, βh = 1,
βc = 10, E = 0.4

βc−βh
.

With this, we can numerically plot out in Figures 7.10-7.12 the achievable efficiency as
a function of βc,βh,n,E,α∗, in the limit where g→ 0+. It is worth noting that from Item 3)
of Corollary 7.2, we see that the efficiency contains terms that originate from the expression
of ε1 chosen in Item 1) of the corollary. It is then, perhaps, unsurprising that we observe the
surpassing of Carnot efficiency (for some values of α∗ > 1). Indeed, although the average
energy change in the battery is positive, i.e. ∆W = (1−ε)Wext > 0, the change in free energy
of the battery,

∆FW =F(ρ1
W)−F(ρ0

W) =∆W −β
−1
h ∆S, (7.7.77)

is actually negative. This can be seen when we compute the limit

lim
g→0+

∆FW

∆W
= lim

g→0+

∆W −β−1
h ∆S

∆W
= 1−β

−1
h lim

g→0+
∆S

(1−ε)Wext
=−∞,

where the last limit comes from noting that lim
g→0+

ε = 0, and applying Lemma 7.19. It is

worth noting that Eq. (7.7.67) is in the regime where if one considers drawing near perfect
work, it is always possible to achieve arbitrarily close to Carnot efficiency. Therefore, the
blue curve never falls below the yellow line. The improvement in efficiency happens most
when the parameter α∗ is adjusted, since this is the parameter that determines how quickly
the ratio ∆S

Wext
→∞ in the quasi-static limit.
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7.8. CONCLUSIONS AND OUTLOOK
In this chapter, we have applied the generalized second laws derived in Chapter 4 of the
thesis to the setting of a quantum heat engine. We analyze the attainable efficiency for four
qualitatively different regimes of work extraction.

In the first regime of perfect work, we show that a quantum heat engine can never
extract perfect work by operating between two thermal baths. This can be seen by invoking
the generalized second law for F0(ρ‖τ), which is related to the relative rank of state ρ with
respect to τ . Intuitvely, this can be understood as meaning that since thermal baths have
a non-zero occupational probability (however small) across all energy levels, it becomes
impossible to distill work with zero failure probability. However, we also show that work
can be extracted once an arbitrarily small amount of failure probability ε > 0 is allowed.

In the subsequent sections, we analyze near perfect work, where not only the failure
probability of work extraction ε > 0 is small, but also the amount of entropy created ∆S is
negligible relative to the amount of work extracted Wext. This corresponds to the regime
where ∆S

Wext
is arbitrarily small. We show that the generalized second laws still allow for the

achievability of Carnot efficiency, remarkably even for the case where one of the thermal
baths is finite in size (even when the cold bath consists of just one qubit!). However, the
achievability of Carnot efficiency does not longer hold for arbitrary bath Hamiltonians. This
represents a fundamental diversion from classical thermodynamics.

An interesting observation during the course of our work, but omitted in this thesis,
is the fact that the machine is a necessary component for achieving the Carnot efficiency
while extracting near perfect work. In other words, the state transition ρ0

ColdW → ρ1
ColdW

for the case of a quasi-static heat engine can only be achieved via catalytic thermal opera-
tions, instead of simply thermal operations. This emphasizes the importance of a physical
object used to extract work while possibly undergoing a cyclic process, while successively
interacting with both thermal baths. Therefore, when designing quantum heat engines, this
should be taken into account, and whenever small errors occur, the issue of embezzling
should always be discussed to ensure a fair evaluation of the heat engine’s efficiency.

Finally, we investigated two regimes of imperfect work: 1) ∆S
Wext

is non-zero but finite,
and 2) where ∆S

Wext
→ ∞. For Case 1), Carnot efficiency remains an upper bound to the

efficiency of quantum heat engines according to the generalized second laws. However,
if one were to only invoke the macroscopic second law as a condition for state transition,
then Carnot efficiency can be surpassed. For Case 2), we show examples where Carnot
efficiency can be surpassed. This shows that our characterization of work has successfully
captured the idea that heat contributions that pollute the extracted energy, if not properly
accounted for, will lead to the illusion that one might exceed Carnot efficiency.
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CONCLUSIONS AND OUTLOOK

This is a concluding chapter, that provides a brief reflection and summary of all the scien-
tific contributions presented in this thesis. An outlook for future research follows, where I
outline the main steps one should take in seeking experimental verification of these theo-
retical predictions.
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8.1. SUMMARY OF THESIS CONTRIBUTIONS
We summarize the findings that have contributed to our understanding of the foundations
of quantum thermodynamics:

• Derivation of generalized second laws

? We started out from the framework of thermal operations, and extended it by allowing
the inclusion of a catalyst, which is any additional, finite-size quantum system that is
returned to its exact initial state at the end of the process. With this, we derive a family
of generalized free energies Fα (ρ,Ĥ) where α ∈ R, defined in Eq. (4.5.64), page 62
for states block-diagonal in the energy eigenbasis. We have shown that for a system S
with Hamiltonian ĤS, the possibility of a state transition ρS → ρ ′

S via catalytic thermal
operations, is dictated by whether for all α ∈R, if we have that Fα (ρS,ĤS) ≥Fα (ρ ′

S,ĤS).
These form necessary and sufficient conditions for transitions involving block-diagonal
initial and final states.

? We also shown that the set of generalized laws for the case where α < 0 can be elim-
inated, whenever one allows the usage of an additional ancilla such that it is returned
ε−close to its original state (in particular, it is sufficient for such an ancilla to be 2-
dimensional). This is desirable because the generalized free energies for α < 0 are
quantities which are unstable under perturbations of the rank of the quantum state.

? For abitrary, non-diagonal states, we show that the generalized second laws also hold,
however they constitute necessary but insufficient conditions for a transition.

• Unearthing and solving the problem of thermal embezzling

? We consider a relaxed requirement on the catalyst, i.e. the catalyst is returned ε−close
to its original state. We find that the form of the generalized second laws depend largely
on the different measures used to quantify ε . We derive the consequences of inexact
catalysis on the generalized second laws by using three different measures: 1) trace
distance, 2) trace distance scaled by log of the catalyst dimension, and 3) the work
distance. The problem of thermal embezzling occurs when only a requirement on trace
distance is placed on the catalyst: all state transition conditions are nullified.

? Focusing on the case of a fully-degenerate (trivial) Hamiltonian, we find a special class
of optimal catalyst initial and final pairs ωC,ω

′
C such that the trace distance d(ωC,ω

′
C)

is minimized, while going from ωC to ω ′
C allows the preparation of any state on a

system S (therefore nullifying all generalized second laws).

? We identify physical restrctions such that thermal embezzling does not happen. We
show that whenever the dimension of the catalyst is upper bounded, thermal embez-
zling does not happen. However, even when the catalyst is infinite-dimensional, as
long as 1) the partition function ZC is finite, and 2) the initial state ωC has an upper
bounded amount of average energy, thermal embezzling is also not possible anymore.

• Application of the generalized second laws to the study of heat engines

? We consider how the generalized second laws may be applied to a generic heat engine,
that operates by interacting with two thermal baths of different temperature. We then
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provide a way of characterizing the quality of work that divides extracted energy into
three regimes: perfect, near perfect, and imperfect work. We show that for perfect and
near perfect work extraction, heat engines that obey the macroscopic second law will
be able to attain the Carnot efficiency, regardless of the bath Hamiltonian structure.
This recovers in full rigour the results of Sadi Carnot in our heat engine model.

? We evaluate the maximum efficiency for quantum heat engines obeying the general-
ized second laws, while considering again these three types of work. We find that the
extraction of perfect work (with zero entropic contributions) becomes impossible. On
the other hand, when considering near perfect work, Carnot efficiency remains a the-
oretical maximum for heat engines, however it is not anymore achievable regardless
of the involved bath Hamiltonians. For the case of a cold bath consisting n qubits, we
derive necessary and sufficient conditions on the bath Hamiltonian for the achievability
of Carnot efficiency. Lastly, we show that if one considers the extraction of imperfect
work, then Carnot efficiency can even be surpassed. This stresses the importance of
using an appropriate definition of work in the quantum nanoregime, an issue which has
usually not been sufficiently addressed for explicit quantum heat engine protocols.

8.2. AN OUTLOOK FOR FUTURE RESEARCH: EXPERIMEN-
TAL VERIFICATION OF THEORETICAL PREDICTIONS

Quantum thermodynamics is still a new-rising, exciting field of research, with many open
problems left to explore. In this concluding section, we will focus on expounding a par-
ticular theme for future research, which we believe to be of immediate succession of the
contents in this thesis.

So far, findings in this area of research involve deriving fundamental limits to whether
a state transition is possible. Such findings make predictions that are absent in classi-
cal macroscopic systems, and arise because the systems of interest are finite in size, and
quantum-mechanical. The constructed framework is fully general in its applicability to
quantum systems, and yet it captures the gist of how such systems may interact with a
thermal environment. However, the key question still remains: Can these limits be reliably
achieved in the real world? The experimental observations would determine, on a practical
level, whether these theoretical predictions are truly relevant when it comes to assessing the
performance of quantum-mechanical thermodynamic protocols. Should this be achieved,
it would serve as a first step towards designing energy efficient nanoscale devices that can
perform tasks such as work extraction and cooling [168].

Besides such practical significance, another important goal one hopes to achieve in
the process of experimental implementation is a critical assessment of the current theoret-
ical framework. Given its highly mathematical and abstract structure, the question arises
whether TRTs can sufficiently describe the variety of experimental systems we have in the
laboratory. This is likely to be true, since classical thermodynamics is also widely applica-
ble, despite its simple premises. However, further development based on the current frame-
work of TRTs (for example, adaptations which are more setup-specific) will be important in
order to put the theory to the test. As discussed in Ref. [178] it remains a challenge to con-
nect these powerful theoretical results with the relevant experimental systems. Therefore,
working towards an experimental demonstration of TRTs also implies a great improvement
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on the theoretical aspect, providing a coherent understanding of quantum thermodynamics.
There are three main steps towards this goal.

(A) SYSTEMATIC GENERALIZATION OF TRTS
The following comprises a selection of important generalizations one may perform, for a
more complete description of TRTs, bringing them closer to testable predictions:

• Proper energy accounting under more complex circumstances
Allowing more general forms of interaction Hamiltonian between system and bath, by
accounting for non-energy preserving interactions justly. Currently, to ensure that energy
is preserved during the thermodynamic process, the allowed interaction Hamiltonians are
restricted to commute with the joint free Hamiltonian ĤS+ĤB of the system (S) and bath
(B). This however makes a non-trivial limitation on the number of possible ways to have
coupling between systems. For a complete picture, it remains to perform a just energy
accounting when more general coupling terms are allowed.

• Generalizations regarding the usage of thermal baths

1. The state transition conditions could be generalized to the case where only a simple
selection of thermal baths are available. This is due to the fact that although all Gibbs
states (given any Hamiltonian) are justifiable resources, not all Gibbs states can be
easily created, because not all quantum systems thermalize naturally. It would there-
fore be interesting to show whether all thermodynamic state transitions can still be
achieved when only a set of naturally producable Gibbs states are accessible.

2. By using various reservoir engineering techniques, it is possible to generate non-
thermal/squeezed quantum reservoirs. From a resource-theory perspective, if one
would allow the free usage of these reservoirs, then an arbitrary amount of work may
be extracted. Such non-classical baths have been suggested to allow for efficiencies
beyond the Carnot efficiency in context of trapped ions [160], however these notions
are yet to be brought into contact with TRTs. Therefore, one may consider what is
a meaningful way of quantifying work extraction rates, at the expense of using such
additional, non-thermal resources.

• Extension to infinite-dimensional/continuous variable systems
TRTs are currently formalized only for systems which can have arbitrarily large but finite
dimensions. However, a large selection of quantum systems are continuous variable in
nature, such as a quantized electromagnetic field, mechanical modes of opto-mechanical
systems, and so on. One could therefore, adapt existing mathematical tools that govern
information processing tasks for infinite-dimensional systems [179], and construct the
corresponding generalization for TRTs.

(B) FINDING SUITABLE EXPERIMENTAL PLATFORMS
One has to identify relevant platforms of which the theory gives a natural description, in
order to test the predictions of TRTs. In order to perform TRTs, one should choose an
experimental setup where one can perform to a good approximation the following:

• initialize Gibbs states (to be used as thermal baths),
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• initialize system of interest,

• switch on and off interaction Hamiltonians between system and bath quickly to imple-
ment the desired unitary operation,

• perform readouts with high fidelity.

Potential candidates commonly used for quantum computing include for example trapped
ions, superconducting qubits, quantum dots, or cold atoms. TRT in its fully general form
could also be tailored in more specific ways to better describe such specific systems. For
example, consider the architectures of trapped ions, a setting in which recently a single ion
heat engine has been realized [22]. In this context, ions confined in linear Paul traps with
tapered geometry and can readily be driven thermally by coupling it alternately to hot and
cold reservoirs, realized by exposing the ion to a laser cooling beam. This makes ions very
natural candidates to facilitate interactions between different thermal reservoirs, as ancil-
lary systems/catalysts. Thermal operations and their ramifications can also be explored in
systems of cold atoms on top of atom chips, in which potentials to which the cold atoms
are being subjected can be made programmable.

(C) DEVELOPMENT OF TOOLS TO CONCLUDE THE VERIFICATION OF THEORETI-
CAL PREDICTIONS FROM EXPERIMENTAL DATA
The third question is immediate: what predictions can (or cannot) precisely be proven or
verified experimentally? The list below comprises of possible implementation examples:

• Initialize a Gibbs state τ , an initial quantum state ρ and perform a specific set of
thermal operations on the joint system, yielding final states {σi}i. Perform quantum
state tomography to identify the form of these states. Which generalized free energies
can we conclude to have decreased in the process, given only a finite number of trials?

• Identify a work extraction protocol, resulting in the storage of energy in an ancillary
system W . Assess the amount of energy fluctuations present in W . It would be inter-
esting to devise a quantum heat engine that aims for near-perfect work and achieves
the Carnot efficiency, which I have shown to be theoretically possible in Ref. [168].

• Demonstrate a protocol that uses a catalyst and returns it approximately, and show
that one can embezzle work from such a process [125, 180].

Much of the above will require the development of appropriate certification tools that allow
to assess whether the anticipated operation has actually been realised. This will be chal-
lenging, given that we aim for statements about the single-shot behaviour, given perhaps
only a finite number of trials. For example, for any finite number of trials, measurement
estimates from state tomography necessarily fluctuates around those of the true quantum
state. A challenge is to distill confidence regions [181] where the true quantum state lies
in with high probability, and evaluate the behaviour of generalized free energies in such
confidence regions.

A thorough list of approaches and methods have been discussed in the three steps above,
however one can see that each of these steps can be analyzed as subproblems, quite inde-
pendently from each other.
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