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Abstract— Tactile sensing provides crucial information about
the stability of a grasped object by a robotic gripper. Tactile
feedback can be used to predict slip, allowing for timely response
to perturbations and to avoid dropping objects. Tactile sensors,
included in robotic grippers, measure vibrations, strain or
shearing forces which are produced by the movement of the
grasped object. With sufficient spatial resolution, tactile sensors
can even classify slip or estimate the 3d force displacement
field. However, current tactile sensors fail to preemptively detect
slippage, requiring fast reaction times during applications in
real-time control. Here we show a perception framework that
can predict slippage before it occurs by estimating the frictional
safety margin. The safety margin indicates the margin to the
frictional strength of a grasp, which decreases for reduced friction
or increased load force. An accurate safety margin estimate
allows for more efficient robot grip force control while providing
robustness against object uncertainty and frictional conditions.
We developed a high resolution tactile sensor, on which we trained
a convolutional neural network to learn the relationship between
tactile images and the safety margin. The network’s performance
is evaluated on unseen test data, showing robustness to variations
in environmental conditions. The results demonstrate that the
tactile images contain the information needed to produce accurate
safety margin estimates. These estimates can be used for control
up to 20% of the minimum required grip force, mimicking human
grasping behavior. This approach can drive new grasp control
methods and enable robotic grasping of fragile objects in highly
dynamic environments. Applications can be found in harvesting,
parcel sorting, or improving human-robot interaction.

Index Terms—robotic grasping, grip force control, friction,
safety margin estimation

I. INTRODUCTION

Robots have an increasing appearance in our daily lives.
Our food is sorted by automated transporting systems for
increased greenhouse efficiency [1], parcels are sorted by
robotic sorting systems [2], and we even let robots take care
of our family in elderly homes [3]. Yet, all these robotic
systems are limited in their applications by a lack of stable
grasping in unknown settings, making grasping one of the most
fundamental problems in robotic manipulation [4]. Tactile
feedback can provide the necessary information to improve
robotic grasping behavior with timely feedback to unforeseen
conditions. This thesis work improves on the current field of
robotic tactile sensing by presenting a new vision-based tactile
sensor. Data obtained from this sensor were used to train a
convolutional neural network, resulting in a tactile perception
framework that is able to estimate the proximity of slip.
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Fig. 1. This figure illustrates the contact mechanics and resultant forces
present when grasping a fragile object with a robotic pinch grasp in three
dynamical scenarios. In A, the object is at rest. The gripper fingers apply a
certain grasping (normal) force (Fn), and in this static case, no lateral force
(Fl) is present at the fingertip. The robotic finger is completely stuck against
the object, and the blue arrow indicates we are in the lower end of the friction
cone. In B, the object is lifted off the ground. This results in Fl at the fingertip,
causing the blue resultant force to rise in the friction cone towards point 1.
The critical lateral force (F ∗

l ) at point 2 indicates the point of full slippage.
The frictional safety margin is given by the distance between points 1 and
2. The margin decreases together with the declining apparent contact area at
the fingertip that is still stuck to the object. In C, Fl is increased until the
resulting blue arrow reaches outside the friction cone, past F ∗

l at point 2.
There is 0% safety margin remaining and the object starts to slip.
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A. Mechanical analysis of the grasping process

Robotic manipulation often makes use of the pinch grasp
to manipulate objects. In a pinch grasp the object is enclosed
between multiple (gripper) fingers which constrain the free
configuration space around the object. The constraint is
realized by applying sufficient grip force (Fn) to overcome the
lateral force (Fl) caused by the object’s weight. The frictional
relationship between these two forces is given by the friction
coefficient (µ) as follows:

Static friction: Fl ≤ µsFn

Kinetic friction: F ∗
l = µkFn

(1)

In these equations, a distinction is made between µs for
the static case before the onset of slip, and µk for the kinetic
scenario in the case of full slippage. As our focus is to
prevent the grasp from failing, this work will focus on the
static case only and we will refer to the applicable friction
coefficient as µ from now on. Fn and Fl are the forces that
can be applied through a frictional contact. They are related
by µ to form the friction cone, indicated with the gray area
in Figure 1. The friction cone describes the equilibrium
range of the pinch grasp. When the grasped object is in
equilibrium, you are within the gray area as Fn is large
enough to overcome Fl/µ and the static part in Equation 1
holds. All points within the friction cone from Figure 1 will
therefore result in a stable grasp. The edge case of stability is
reached on the line µ = F ∗

l /Fn, where Fn and the maximum
lateral force (F ∗

l ) caused by the weight of the object are in
exact equilibrium at the current frictional state. If the edge
case is not yet reached, we can describe the distance from
the line µ with the frictional safety margin, on which we will
elaborate in Section I-D.

We can increase the safety margin of a grasp by increasing
Fn. However, forces can be limited by the grasping hardware,
and it might not always be desirable to exert large forces
on fragile or deformable objects. This limitation results in
a friction cone of finite size, which can only evaluate grasp
equilibrium when exact values for Fl and µ are known.
However, estimates of Fl fluctuate during manipulation tasks
where dynamic movements come into play. Furthermore,
the friction cone relies on a constant µ throughout the
grasping scenario. Equation 1 already showed that the friction
coefficient can change between static and dynamic cases. A
small overshoot in Fl can cause the object to slip indefinitely
if the dynamic µ is lower than the static µ. Even when limiting
ourselves to the static situation only, µ can differ as a result
of a variety of aspects. Variations in e.g. apparent contact area
(by varying Fn), temperature, humidity [5] or rapid dynamic
movements [6] will result in variability of µ. These variations
will cause alterations in both magnitude and direction of
the resulting force in the robotic fingertips, as displayed in
Figure 1. To react accordingly, we need to measure the full
spatial force distribution field at the entire robotic fingertip
surface.

B. Related work in robotic tactile sensing

Tactile sensors can measure the contact mechanics at the
robotic fingertip surface needed to quantify the entire force
distribution field at the surface. Next to the spatial force
distribution, the measured surface can contain information
about the object’s shape, local texture or other material
properties. Early research into robotic tactile sensing shows
the use of strain gauges, acceleration, and pressure sensors
to measure static and dynamic deformations up to 1000 Hz
at the robotic fingertip skin [7]–[10]. The static deformations
can be used to quantify the touch of an object, while the
highly dynamic signals can aid in indicating the onset of slip,
as movement in the local micro texture results in vibrations
before the object completely slips.

A disadvantage in these works is the lack of spatial
information. Using strain gauges to properly replicate the 2d
receptive area of the human hand would require a plethora
of sensors and requires high effort for robust integration and
wiring. An indication of the onset of slip by an acceleration or
pressure sensor is useful only if the magnitude of vibrations
until full slip is known. Furthermore, these sensors can
experience noise coming from other vibration sources such
as the motors of the robot.

More recent works in artificial tactile sensing deploy a
miniature camera that can track deformations in the soft skin
of the robotic fingertip. These vision-based tactile sensors can
achieve high spatial resolutions at moderately high sampling
rates, with minimal integration effort. By equipping the inside
of the fingertip surface with reflective colors and markers, the
internal camera can detect object movements along the robotic
fingertip surface. Subsequently, a model can be developed to
map the obtained pixel values to perception metrics on slip
and shear in multiple directions.

The GelSight/GelSlim family of tactile sensors [11]–[13]
comprise of a spherical membrane. A set of RGB lights
illuminates parts of the membrane, each reflecting on one-
third of a special reflective coating on the inside of the sensing
skin. Deformations in the tactile surface result in a changing
color pattern which is converted to geometric height maps
representing the object in contact. The addition of single-
colored markers provide information about shear and slip. By
calculating the entropy over the shear marker distribution, the
authors are able to give an estimate of the stick-slip ratio.
The stick-slip ratio is where part of the robotic finger, often
the middle, is still stuck on the object, while other parts of
the robotic finger have already slipped. The respective contact
areas of the robotic fingertips representing the stick and slip
cases can be divided to obtain the stick-slip ratio. Estimating
this ratio allows for classifying the onset of slip by comparing
against a predefined threshold. However, these works have to
manually provide a threshold to classify the onset of slip,
which can vary amongst different gripper-object interfaces.
Furthermore, no measure of accuracy in slip detection is
mentioned in any of these works, and they state to have
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difficulties with smooth objects and small variations in surface
geometries. Lastly, their algorithm needs to be simplified for
improved prediction speed for it to be used in real-time control
tasks. More specifically, one of these GelSight works used a
machine learning approach [11]. Here, a convolutional neural
network (VGG-16 net) is trained to learn the relationship
between tactile images, and forces sensed by a separate sensor.
For some basic shapes (sphere, cylinder, flat) the neural net
learned from tactile image inputs the in-plane normal and
lateral force, and torque around the axis perpendicular to the
sensor. However when evaluating, the network shows moderate
performance on similar objects and is not able to generalize
to new objects or contact conditions.

A similar work using another vision-based tactile sensor
also train a convolutional neural network (ShufflenetV2)
to reproduce the 3d force displacement field [14]. They
developed a tactile sensor with single-colored fluorescent
markers, randomly distributed over a tactile sensing dome [15].
When training the tactile images and their respective polar
coordinates against ground-truth force data, they are able to
discriminate linear from rotational slip. When evaluating on
unseen objects with different geometric properties, they are
able to manipulate the amount of rotational slip and perform
successful pendulum swing-up manipulation tasks.

Another vision-based tactile sensor is the TacTip [16],
that increases single-color marker movements by placement
on pins, thereby making the sensor more sensitive to small
deformations. The authors also adopt machine learning
approaches to classify their tactile data for ‘slipped’ and
‘static’ objects during robotic grasping. In a recent TacTip
work [17], a support vector machine is trained on pin velocity
data. The pin velocities are obtained by extracting marker
locations and taking the difference between two consecutive
images. The train data for the support vector machine, which
is a binary classifier, were manually labeled with the labels
‘slip’ and ‘static’ by investigation of the velocity displacement
field. During evaluation, the authors obtained a slip detection
classification accuracy of 99.88%. In a following work [18], a
convolutional neural network is trained on raw input images
to perform edge detection. The addition of machine learning
improved the results compared to the probabilistic model
developed in their previous work [19].

Despite these impressive results, all these works focus
on a binary classification of slip or static situations. This
classification in two groups will only result in feedback once
the object starts sliding, which will put strong requirements
on the real-time controller to reinstate stability. Furthermore,
numerous cases can be thought of where the object should
not even move in the first place. We can conclude that when
performing highly dynamic manipulation tasks, as for robotic
pick-and-place, these classification systems do not provide
the crucial information for preventing dropping objects.

C. Human grasp force regulation

Humans have, as opposed to the previously presented
works in robotics, a more distinct skill set to regulate
grasp force during manipulation. Humans use multiple
sensory inputs during manipulation tasks, such as visual,
auditory and proprioceptive feedback [20], [21]. Although
we know that inferring close-contact information from the
object is predominantly done by the four mechanoreceptor
types forming the human sense of touch [21]–[23]. These
mechanoreceptors are excited by different dynamic events at
which neural spikes will be sent to the central nervous system
for processing. Our brain translates the neural activity within
15 ms to a proper response for our motor control system [24].
Recent work [25] explains that the neural activity is likely
to be efficiently encoded, resulting in fast response times of
100 - 150 ms from the tactile sense to motor control [26].
When discussing the quality of a human grasp, the frictional
safety margin is often used to describe the distance between
the frictional strength of the grasp and the current external
load forces acting on the object [27], [28]. The safety margin
describes how far the grasp is from failing. While maintaining
grip, humans are able to keep these margins within 10 - 40% of
the minimum required grip force, dependent on the desired slip
probability and the estimated environmental uncertainty [21],
[29].

D. Safety margin in grasp force control

The frictional safety margin can be evaluated by comparing
only the current lateral force to the maximum lateral force
reached at full sliding. Using the margin in grasp force control
provides advantages over evaluation of the friction cone as it
is more resistant against varying friction conditions. From a
contact mechanics point-of-view, the safety margin provides
us with an understanding about the amount of stiction at the
sensor surface. From a motor control point-of-view, the safety
margin gives us an estimate how far we are from full slippage,
i.e. the point of minimum required grip force to overcome the
lateral force at the current frictional state. The safety margin is
a relative estimation between the current lateral force Fl and
the critical lateral force F ∗

l at which slippage occurs, and is
calculated as shown in Equation 2.

SM(t) =
F ∗
l − Fl(t)

F ∗
l

(2)

The frictional safety margin relates to the friction cone
as depicted in Figure 1. It ranges from 100% when normal
force is present but zero lateral force is pulling on the object,
to 0% when Fl ≥ µ · Fn and the object is at the onset
of slip. Equation 2 only includes components in the lateral
force, making the safety margin resistant to variations in
(unpredictable) contact mechanics. Therefore, estimating the
safety margin using tactile sensing is the logical step in
improving grasping robustness.

3



E. New ChromaTouch tactile sensor

This thesis work advances on the state of the art in
vision-based tactile sensing, by presenting a new iteration in
the ChromaTouch family, initially developed and improved
in [30], [31]. As part of this thesis work, a new version of the
tactile sensor is produced and presented in [32]. Section II
will elaborate on the design and manufacturing of the new
tactile sensor.

F. Contributions

This work develops a perception framework capable of
estimating grasp equilibrium using the frictional safety margin.
The acquired estimates provide enough accuracy to allow for
grip force manipulation at 20% of the minimum required
grip force, mimicking the efficiency of a human grasp which
usually keeps the safety margin below 10 - 40%. To achieve
this goal, we developed our own vision-based tactile sensor
according to the design principles first presented in [30]. This
sensor produces high-resolution tactile images describing the
tactile surface displacement field. A perception framework
based on a convolutional neural network is trained to estimate
the frictional safety margin for the current grasp by only using
these tactile images as input. The output result is a value
ranging from 100 - 0% indicating the margin to an unstable
grasp. Using this metric, we are able to estimate the onset
of slip, invariant to changes in friction caused by changing
environments. To best of the author’s knowledge, this is the
first work presented where the frictional safety margin is used
to improve the quality of a robotic grasp.

G. Outline

The following section presents the design principles and
manufacturing process of the newly developed tactile sensor.
Section III discusses the experimental setup and data collection
to establish the perception framework. The results will be
presented in Section IV. Finally, in Section V the results will
be discussed and this work is concluded by comparing the
performance and limitations with closely related literature.

II. HARDWARE

The first part of this thesis work is focused on developing
the tactile sensor. The design is a new iteration on the
ChromaTouch tactile sensor, where advancements have been
made in resolution, robustness, and manufacturability of the
sensor.

A. Improved high-resolution tactile sensing

State-of-the-art robotic tactile sensors exploit the high
resolution of miniature cameras to perceive deformations from
the sensor surface skin. In earlier work from our lab [30],
a new type in this class of vision-based tactile sensors is
presented. Compared to the related works, our tactile sensor
has increased resolution for detecting partial slip by measuring
the full three-dimensional deformation field. The sensor dome
encompasses two layers of overlapping markers, translucent

(1)
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Fig. 2. The subtractive color mixing principle by means of two shifting
marker layers. 1) shows the position of the markers when in rest. The marker
placement provides sensitivity to 2) shearing force, and 3) normal indentation.
On the top, from the inside out: a) the fish-eye camera maps the hemispherical
dome with markers to the flat surface, b) LED ring, c) empty, open area
allows for large deformations of the sensing skin, d) inner layer with magenta
markers, e) soft silicone intermediate layer, f) outer layer with cyan markers,
g) outside white silicone layer diffuses internal light and blocks external
influences. Adapted with permission from the author from [32].

and opaque, which can be tracked simultaneously by the
camera. This method fully exploits all three RGB color
channels from the camera at all marker locations, thereby
increasing the sensing resolution compared to the other related
works.

This first spherical version of the ChromaTouch is presented
in [31]. Fabrication involved a complex process where the
elastomeric skin is molded in the 2d surface, and then folded
to form a 3d sphere. Apart from the residual stress in the skin
causing decreased resolution, this process creates lines where
the four quadrants are glued together. The authors argue that
these lines decrease resolution as no markers can be present
here. Furthermore, sensor robustness is decreased as these are
possible points of failure.

During the time span of this thesis work, a new iteration
of the ChromaTouch vision-based tactile sensor is developed,
which is presented here and described in more detail in [32].
The main contribution of that work is a simplification of
the manufacturing process, where the spherical dome can
be printed in its 3d shape directly. Apart from ease of
manufacturing, this offers more flexibility in marker placement
and alignment. As the dome can be printed in one piece, there
are no break lines with possible cause for failure. In our related
work [32], we present that up to 400 markers can be placed
on the 42 mm outside diameter dome. In the current work, the
200 marker version is used.

B. Sensor dome

The tactile sensing dome is the most vital part of the
assembly, essential for transforming tactile information to
deformations which can be captured by the camera. The
colored markers are embedded within an inner and outer
layer, separated by a distance δ. The marker layers are
modeled in Grasshopper1, a parametric CAD design tool,
where the markers are equally distributed along the sensor

1https://www.rhino3d.com/6/new/grasshopper/
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Fig. 3. An exploded view of the sensor assembly comprising the
ChromaTouch tactile dome on top (white outside layer omitted for visibility),
and the assembly holding the camera and fish-eye lens, LED ring, and a
cooling fan for the camera body during long operations.

surface according to [33]. The resulting 3d CAD file is
printed in two separate parts on a Stratasys J735 polyjet
additive manufacturing printer2, which allows to create an all-
in-one design including the various materials needed for the
layers, embedded markers and a rigid frame for mounting.
The layers supporting the colored markers consist of the
AgilusClear30 elastomer with a shore hardness of 30A. The
high softness of the material allows for large deformations
in the tactile sensing dome, increasing the resolution when
tracking subtle contacts. However, the soft material comes
with the disadvantage of having strong viscoelastic effects.
This is partly counteracted by casting elastic silicone (Smooth-
On SORTA-Clear 12) in between the marker layers, and on
the outside of the dome, thereby improving the sensor’s time
response. The outside silicone layer is mixed with white
pigment, to diffuse the internal light along the inside of the
dome. This provides equally distributed lighting conditions
at all marker locations while minimizing internal reflections.
Furthermore, the white outside layer acts as a barrier against
perturbations in external light. Figure 2 illustrates the principle
of subtractive color mixing. More details on the design
principles and manufacturing choices of the current version
of ChromaTouch can be found in our previous work [32].

C. Electronics and housing

For easy and robust use of the tactile sensor, a handheld
device is designed that accommodates the sensor dome,
camera and all electronics needed for operation. The housing
is modular, allowing for easy repairs or modifications, and it
can be used in-hand or mounted on a robot. The sensor dome
on top can be replaced easily if we experience effects of wear
and tear. The integrated USB-camera (Basler Dart daA1600-

2https://www.stratasys.com/-/media/files/printer-spec-sheets/
j735-j750-3d-printers-spec-sheet.pdf

top viewside view

d = [1-6] mm

r = 10 mm

Fig. 4. Side and top view of the experimental setup for data collection.
From the side, the sensor moves an indentation depth d = [1-6] mm into the
surface, after which a 10 mm lateral sliding movement is executed, reaching
full slippage of the sensor. Subsequently, the sensor moves back up and resets
to the origin position. Data gathered at the solid lines is included in the dataset.
The top view shows the target positions, randomly sampled on a circle with
radius r=10 mm. The sensor indents to the desired depth at the center point,
after which the robot will perform a linear motion to any of the 50 sampled
points, holding the indentation depth constant. 3 sliding trials are indicated
with the dashed lines. The indicated points are sampled for the 4 mm indented
train dataset.

60uc with a Basler Evetar M118B029520IR fish-eye lens) is
used for marker tracking. The camera has a maximum spatial
resolution of 1600 x 1200 px at a sampling frequency of 60
Hz. The lens comes with a 178 degree viewing angle, which
maps the markers from the hemisphere onto the camera sensor.
Furthermore, the focal point is placed somewhat inside the
hemispherical surface, to optimize focus at several indentation
depths. These two design choices minimize the need for
digital preprocessing when we are integrating the tactile
perception framework. Lighting is provided by an Adafruit
NeoPixel Ring 16. The 16 RGB LEDs provide enough light
to overcome external influences, and allow the camera to be
used at short exposure times. The integrated LED drivers allow
for straightforward control using a microprocessor capable
of providing high frequency Pulse-width Modulation signals,
such as the popular Arduino Uno. The complete sensor
assembly with the ChromaTouch tactile dome, fish-eye lens,
camera, lighting, and housing is shown in Figure 3.

III. METHODS

A. Experimental setup

An experimental setup is developed to obtain tactile image
data relevant for training our tactile perception framework on
the frictional safety margin. For ease of implementation, the
tactile sensor is mounted directly on the wrist of a Universal
Robots UR5 6 degrees of freedom robotic manipulator. Our
initial experiment was to have an object sliding between two
tactile gripper fingers. We can now translate this experiment
to the horizontal plane, where the tactile sensor is sliding
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Fig. 5. This figure illustrates the complete pipeline of the tactile perception framework. During training, input images are fed one-by-one into the convolutional
neural network. In this network based on the ShufflenetV2 architecture, 5 stages of convolutional and pooling layers are completed. Some of the activation
functions of the first convolutional layer are shown in the top-left, indicating that the model has trained on several marker properties and on the image
background. This information is condensed in the final fully connected layer to a single output, the safety margin prediction. The prediction is compared with
the target (real) safety margin value using a Mean-Squared-Error loss function. Backpropagation is then used to optimize the network’s weights and biases
according to the computed loss until sufficient performance is reached.

across the workspace surface. A side view of the experimental
setup is displayed in Figure 4. The training phase of the
convolutional neural network requires real safety margin
values as target data. Therefore, we measure lateral sliding
force using an ATI Nano43 6 degree of freedom force-
torque sensor. A 3d-printed flat surface is mounted on the
force sensor, on which the tactile sensor has ample space
for sliding. The force sensor is connected through a National
Instruments USB-6215 DAQ to a Windows laptop running
MATLAB. Robot control is done with a separate Linux
machine, which also collects the tactile images from our
sensor. Both computers are synchronized using the network
time protocol as described in Section III-D.

B. Convolutional neural network training

In recent years, machine learning models such as
the convolutional neural network have found increasing
applications in vision for robotics [34]. Section I-B provided
several examples of vision-based tactile sensors, which all
incorporate convolutional neural networks to perceive contact
mechanics from tactile images. The to us most closely related
work [14] used ShufflenetV2, an implementation in the field
of convolutional neural networks. ShufflenetV2 is a new
iteration in a class of lightweight, mobile convolutional neural
networks [35]. The updated version offers increased speed
and accuracy compared to other lightweight networks such as
MobilenetV2. We have resolved to using the same architecture.
Due to the practical advantages of being able to train on
a simple machine, this makes our work more suitable for
widespread use. We trained all of our models on a mobile
NVIDIA Quadro P1000 4GB GPU with 640 CUDA cores.
For the full model, we trained the ShufflenetV2 architecture

to 30 epochs (iterations) in just under 3 hours. For simplicity
reasons, our predictions are evaluated on six cores of a mobile
Intel i7-8750H CPU @ 2.20/4.10 GHz.

The dataset is split in 70% train, 10% test and 20%
evaluation data, and loaded into the network in batches with
batch size = 32. The standard ShufflenetV2 architecture is
used, with one adaptation to have the final fully connected
layer connected to a single output node, which in our
case represents the frictional safety margin value. During
the training phase, the ShufflenetV2 weights and biases
are adjusted to better fit the train dataset. For intermediate
evaluation of the network, the mean-squared-error loss is
calculated on the test dataset. Subsequently, the network’s
weights and biases are updated during the backpropagation
step. Here, we used the AdamW optimizer with the following
standard parameters: learning rate = 1−3, β’s = (0.9,
0.999), ϵ = 1−8, weight decay = 1−2. These form the
hyperparameters, together with the batch size, which is the
amount of images used for training at the same time. Using
the Optuna3 framework, the evaluation dataset is used to tune
the hyperparameters of our network. However, these newly
trained parameters resulted in models which showed strong
overfitting behavior. We want our model to generalize between
various datasets, frictional contacts and indentation depths, so
we reverted to the original parameters which showed better
generalization performance.

C. Data collection

As our goal is to make an estimator for the frictional
safety margin, the convolutional neural network will be trained

3https://optuna.org/
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to model the relation between the tactile input images and
target values containing the safety margin. This dataset is
obtained with the following experimental procedure: The robot
compresses the tactile image sensor into the center of the
force sensor, to indentation depths in the discrete range [1-
6] mm. When looking from the top, a circle can be drawn
with the indentation point at the center, and a radius r=10
mm. Points are sampled randomly on this circle, after which
the robot moves the sensor to the desired points while keeping
the indentation depth constant. To calculate the safety margin
according to Equation 2, it is necessary that every movement
continues until full sliding. The selected radius should be
large enough to overcome deformations of the tactile sensing
surface, and thus full slippage should be present between the
sliding tactile sensor and the surface. When measuring lateral
force over displacement and verifying the critical points, we
obtained with some trial-and-error a desired sliding distance
of r=10 mm. The points are randomly sampled in the (x,y)-
plane to allow the network to generalize to movements in
both lateral directions. After reaching the sampled points,
the sensor retracts from the surface, allowing for residual
forces and sensor displacements to be released, and resets
to the start position. Finally, we record the sliding trials at
various indentation depths, enabling the model to generalize
for varying grip forces. All movements are executed in a quasi-
static manner, at 5% of maximum robot velocity (3.14 m/s)
and acceleration (3.14 m/s2), to limit unwanted dynamic
events in the tactile images. Figure 4 shows a top and side
view of the data collection procedure. One full sliding trial,
as indicated with the blue arrows in this figure, has a trial time
of approximately 1 second.

The frictional safety margin can be calculated from the
lateral force Fl as described by Equation 2. Therefore, the raw
experiment data have to be shaped into safety margin target
values. The force sensor provides 3-dimensional force data.
We can compute the magnitude of the x and y dimensions to
obtain the lateral force (Fl) in Newton. By setting the gradient
to dFl

dsl
< 0.05, we can find the first critical point for zero

safety margin. To limit the influence of noise at the boundaries
of the gradient calculation, a feasible search range in lateral
displacement (sl) of [2-6] mm has been defined on a trial-and-
error basis.

During the experiments, tactile image data are collected
from the sensor at 60 Hz at a resolution of 800 x 600
px. This resolution is more than twice the input size of
the convolutional neural network, providing room for later
alterations, if needed. The acquisition speed is high enough
to provide continuous measurements during the sliding
trials. Furthermore, position data from the robot’s joints are
collected at the maximum robot’s communication speed of
125 Hz. This position data are used for plotting results and
aids in defining the search range for the safety margin critical
points. The force sensor provides the force data needed for
training at a sampling frequency of 1000 Hz. Figure 5 shows
the complete pipeline for training of the friction perception
network.

Fig. 6. After every collected dataset, a timing plot has been made to verify the
alignment of the datasets. This figure shows two events over time: the robot
position moving into the force plate (solid line) and the resultant normal
force (dashed). Two vertical lines indicate where the indentation procedure
stops. For this trial the time delay is measured to be 16 ms, equal to half the
resolution of the slowest (position) sampling rate at 125 Hz.

D. Data synchronization

Data collection is done on a Windows and a Linux
machine simultaneously. It is important that these data are
synchronized, as otherwise essential information can get lost.
For example, we determine the safety margin critical points
in a range restricted by the position data. Furthermore, the
tactile images are collected by a different computer than the
force data. When these do not align perfectly, the model
relates the wrong safety margin target value to the indentation
image. When working with the high sampling rates mentioned
above, it can be difficult to synchronize data at a later stage.
Therefore, we should make sure that the data are already
in sync during collection. This is achieved by connecting
both computers on the same time Ethernet network. Using
the network time protocol framework4, we can host a time
server on the Linux computer. The network time protocol
client on the Windows computer subscribes to this server
and syncs its time to the nanosecond with the host. Figure 6
shows some data of both computers plotted together to verify
that they are in sync. As the robot’s normal indentation
movement stops, there should be no further increase in
normal force measured by the force sensor. The figure shows
that both data types are synchronous within 16 ms, e.g. half
the resolution of the (lowest) position sampling rate at 125 Hz.

4http://www.ntp.org/
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Fig. 7. This figure shows the typical trend of the safety margin, in A plotted
over trial time, and in B over lateral displacement sl. The raw data of 5
sliding trials are plotted in gray with the mean of the trials in black. It can
be seen that a sliding trial consists of three phases. In the resting phase, both
the tactile sensor and force plate are not yet in contact, resulting in a 100%
safety margin. During the normal phase, the robot moves the tactile sensor
perpendicular into the force plate, resulting in some noisy activation of the
safety margin estimate due to non-linear effects in the force sensor. Finally,
during the sliding phase, the robot moves the tactile sensor in the horizontal
plane, causing the safety margin to decrease to 0% at full slippage.

IV. RESULTS

After all preparations have been done, the convolutional
neural network presented in the previous section is trained. In
this section, the behavior of the trained network is analyzed,
and the resulting performance is shown.

A. Safety margin trend

Figure 7 shows several typical trends for the real safety
margin value as measured by the force sensor in the
experimental setup. In subplot 7A, safety margin is plotted
over the trial time duration. The plot can be divided in three
stages. The first stage is the resting phase where the tactile
sensor and force sensor are not in contact yet. The second
stage is where the robot moves the tactile sensor perpendicular
into the force plate. As can be seen, this results in a decrease
of the measured safety margin, as the force sensor does not
have a perfect response to shearing forces caused by imperfect
orthogonal alignment. The third stage is where the robot starts
moving in the lateral plane, which decreases the safety margin
towards the critical point of 0%. Figure 7B shows the same
real safety margin measurement plotted against the lateral
displacement sl [mm]. This plot shows that the tactile sensor
maintains some stiction to the force plate before full slippage
occurs between [2-5] mm of lateral displacement. The noise
around the 100% mark of the plot is caused by the nonlinear
activation of the force sensor during the normal indentation
phase.

Fig. 8. This figure shows for two differently trained models the network
prediction accuracy when interpolating at an unseen indentation depth. The
means of the datasets are plotted in black lines, while the raw data are plotted
in gray. Model 1 is trained at indentation depths 1, 2, 3, and 5 mm, whilst
model 2 is trained at 2, 3, 5, and 6 mm. Evaluating both models at the unseen
4 mm indentation depth shows that both models have comparable interpolation
performance, and they follow the real safety margin within a small margin of
error.

B. Interpolation and extrapolation behavior

It is important that the trained network works at varying
indentation depths which will occur during a normal robotic
grasp. Our train and test datasets are all discretized to the
1 mm precision of the robot. Therefore, we can investigate
the interpolation capabilities by removing an indentation
depth from the train set, and subsequently evaluating the
performance of our test set on that indentation depth. We
have trained model 1 at indentation depths 1, 2, 3, and 5
mm, and model 2 at 2, 3, 5, and 6 mm. We have chosen to
exclude 4 mm from the train dataset as it is roughly in the
middle of the dataset to interpolate upon. Figure 8 shows
an evaluation of both models at the unknown indentation
depth, showing the interpolation behavior of the models. It
can be seen that, apart from noise around the 100% mark,
both models interpolate fairly well. They both show the
same trend, and cross the 20% real safety margin line within
respectable margin.

Next to interpolation, extrapolation behavior is important to
maintain grasping performance at unseen ranges in indentation
depth. Figure 9 shows the extrapolation capabilities for the
two trained models from the interpolation section. Model 1
did not see any data during training at 6 mm, while for
model 2 the 1 mm data were excluded. Figure 9 shows the
performance of the two models at both indentation depths.
The black lines again show the mean of the datasets, with
the raw data from 5 sliding trials per dataset plotted in gray.
We can see that the extrapolation performance of model 2
is worse than the performance of model 1 which has seen
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Fig. 9. This figure shows the extrapolation behavior of the two models from
the interpolation section. The extrapolation capabilities are explored in the low
and high indentation range. The figure shows that extrapolation to the low (1
mm) indentation range results in late activation and a general underestimation
of the real safety margin. Extrapolation to the high (6 mm) indentation range
results in generally better performance, but comes with more noise effects
during the normal indentation phase.

data at this indentation depth. The point of first activation
for the extrapolated model is where the real safety margin
already decreased to 40%. We see that model 1 which has
preliminary information at this indentation depth, is able to
make more accurate estimates although the predicted safety
margin of 40% is still an underestimation of the real margin of
20%. However, when performing the same type of evaluation
for the extrapolation behavior at 6 mm indentation depth, we
see that the mean performance of both models is much more
similar compared to the 1 mm case.

These different results can be explained by comparing
the signal strength resulting from both indentation depths,
displayed in Table I. The table shows that the signal strength
increases with indentation depth. Especially the low signal
strength at 1 mm explains the models’ slower activation,
as there is a small amount of moving pixels which can be
used to perform the safety margin estimation. For the 6 mm
indentation depth, we can observe the opposite behavior. Due
to the high signal strength, a lot of pixels are already moving
when the sensor is indented into the force plate. This causes
more pixels to activate and results in a decreasing safety
margin before there is any lateral movement.

C. Generalization behavior

One aim of this work is to show that the perception
framework is robust against minor changes in frictional
conditions. Therefore, train and evaluation data are gathered at
multiple days. As explained in the introduction, changes in e.g.
humidity will result in variability in the friction coefficient, as
can be seen in Figure 10. It shows that there is a large variation
in frictional coefficient (µ) between our evaluation dataset,

TABLE I
SIGNAL STRENGTH AT ALL SIX INDENTATION DEPTHS, MEAN AND

STANDARD DEVIATION OVER ALL 5 TRIALS FROM THE EVALUATION
DATASET. THE SIGNAL STRENGTH IS A METRIC FOR THE AMOUNT OF

MOVING PIXELS IN THE IMAGE ON WHICH THE MODEL CAN ESTIMATE THE
SAFETY MARGIN. IT IS CALCULATED AS FOLLOWS: SUM(Il − In)/(TOTAL

PIXELS), WITH Il THE IMAGE DURING COMPLETE SLIDING, AND In
DURING THE NORMAL INDENTATION PHASE.

1 mm 2 mm 3 mm 4 mm 5 mm 6 mm

Sig. strength [-] 5.40 12.36 13.18 16.35 16.04 17.52
std [-] 0.36 1.37 0.25 0.51 0.19 0.56

Fig. 10. The calculated friction coefficient µ shows large variability between
datasets calculated on different days, due to e.g. changes in environmental
humidity. It can be seen that the (2,4,6) dataset follows the theory for
decreasing µ when increasing indentation depth, while the other dataset shows
more unexpected behavior.

gathered at two different days. Furthermore, µ in the 2, 4 &
6 mm dataset decreases with increasing apparent contact area,
while the opposite is true for the 1, 3 & 5 mm dataset. These
differences underline the importance of robustness against
friction variability, as we show in this results section.

D. Full model

The complete model is trained at all six indentations depths.
Our total dataset is gathered during 300 sliding trials divided
over the six indentation depths, resulting in 66.500 images or
100 GB of data. Figure 11 shows the obtained results evaluated
at 1, 5 and 6 mm indentation. These three indentations are
displayed here as 1 and 6 mm show considerably lower
performance than the rest, and the most consistent result is
obtained at 5 mm. The mean and standard deviation of all
errors can be found in Table II. Figures of all results can
be found in Appendix A. Figure 11 shows that 1 mm and 6
mm are still under- and overestimating. This is comparable to
behavior found in the extrapolation models from Section IV-B.
The results for the four other indentation depths all show to
be close to the optimal diagonal between prediction and real
safety margin.

9



Fig. 11. Results for the complete model trained at all six indentation depths. It
can be seen that both boundary scenarios (1 and 6 mm) are under performing
compared to the rest of the model. This can be explained by fewer data
available for the model to generalize here. The four other indentations showed
comparable good performance, with the most consistent result at 5 mm showed
here as well.

TABLE II
ERROR AND STANDARD DEVIATION OF THE COMPLETE TRAINED MODEL

IN PERCENTAGE POINT [PP]. IT CAN BE SEEN THAT THE BEST RESULTS
ARE OBTAINED AT 2, 3, 4, AND 5 MM INDENTATION DEPTH, WHILE THE

TWO EDGE CASES SHOW LESS ACCURATE PERFORMANCE.

1 mm 2 mm 3 mm 4 mm 5 mm 6 mm

Error [pp] 9.28 4.99 4.25 3.78 3.83 11.51
std [pp] 7.10 2.74 2.04 2.83 1.69 6.06

E. Model speed

Next to having accurate results, the model is only useful
when the prediction speed is fast enough to run in a real-
time controller. On our evaluation set, the average prediction
time on 360 images is 19.07 ms ± 0.22 ms. This allows for
a controller to run at 50 Hz, which is close to our camera’s
maximum acquisition rate of 60 Hz. If more speed is desired,
predictions can be made on the above mentioned GPU instead
of the CPU, but this comes at the cost of copying data to the
video memory, possibly increasing the total prediction time.

V. DISCUSSION & CONCLUSION

The goal of this thesis is to evaluate the stability of a
robotic grasp by estimating the frictional safety margin
from the gripper-object contact. Unfortunately, there are
no current works in robotics which use the safety margin
for evaluating grasp stability. It is therefore difficult to
compare our performance and accuracy scores directly to
other related works. The more closely related works in
robotic literature are those which use vision-based tactile
sensors to e.g. perform slip detection. The works on the
GelSight/GelSlim [11]–[13] sensors predict slip based on the
stick/slip ratio. However, as explained in the introduction,
their predictions come with moderate performance. More

important: as they only classify slip, the point of activation
is generally too late to be used for real-time control. The to
us most closely related work is from Bi et al. [14], who use
tactile images to obtain the contact force field in continuous
time. They do not estimate the onset of slip directly, but
by comparing the predicted forces to ground-truth values,
they are able to make an accurate estimate on the onset of slip.

We have brought slip prediction a step further by directly
estimating the frictional safety margin from raw RGB
images. We have improved upon tactile sensing results
obtained with the ChromaTouch tactile sensor compared
to earlier works [30]–[32], where amongst others the
sensor’s capability of exploring object shapes and curvatures
were demonstrated. As part of the current work, we have
improved the vision-based tactile sensor by developing a
new manufacturing method, aiding in sensor versatility and
robustness. Furthermore, this increased tactile resolution
which is properly captured by a new vision system. Using
the improved hardware, we have trained a tactile perception
framework able to mimic human grasping behavior by
estimating the frictional safety margin [25]. We have shown
that we can estimate the safety margin to a high enough
accuracy which allows the grasp to be controlled at 20% of
the minimum required grip force. This is done at varying
indentation depths, as will be the case in real-life grasping
tasks with a controller on grip force. It is shown that
the network architecture is capable of interpolating for
these indentation depths in the whole mm space, leading
us to the conclusion that it would most likely be able to
perform smaller interpolations in the sub-mm space with
comparable accuracy. We have found that the model shows
decreased performance on the boundaries of the train set
because the model has fewer data points to generalize to. It
became apparent that the responsiveness of the model at low
indentation depths is slow because of a lower signal strength
in the tactile images. The best performance was found in
the range of [2-5] mm indentation depth, with safety margin
prediction errors < 5±3 pp. Furthermore, these safety margin
estimations are at a high enough refresh rate to be used in
real-time control tasks. Lastly, we have shown that estimating
the friction coefficient on our evaluation data gives highly
variable results. This is in part due to the viscous effects
of our dome, and can be eliminated by putting more strict
quasi-static constraints on our data collection process. This
high variability in friction indicates that grip force control
based on the friction cone directly will likely be unsuccessful,
whilst our safety margin estimator is robust against these
variances.

The developed perception framework also comes with its
limitations. Although the safety margin gives a clear indication
of the amount of incipient slippage between gripper and object,
it does not contain spatial information. Furthermore, despite it
has been shown that the trained convolutional neural network
generalizes well between parts of the training set, it shows
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moderate performance at low indentation depths and at the
boundary conditions. This can be partly solved by adapting
the train dataset to better incorporate these lower indentations,
but the relatively low signal strength in this range makes the
safety margin estimate noisy. This can be improved by using
a softer silicone during manufacturing, thereby lowering the
force range to which the sensor is sensitive and increasing
deformability. However, it should be noted that softer domes
can show more viscous behavior, increasing response times.
We have proven that fabrication of such sensors is possible,
but these new prototypes are not yet tested in estimating
the safety margin. Furthermore, changing sensor domes for
varying tasks could be a solution, but no analysis is done about
the perception framework’s robustness to these changes.

The dataset is collected using a specifically designed
experimental procedure. If we are able to develop a training
process using data more regularly encountered in robotic
manipulation, we could train and improve the network online,
as is done in other robotic works [36]. However, the real
safety margin can only be computed when the real-life objects
are being dropped, as we need to measure the critical point
in lateral force. Even with the specific training setup, the
safety margin estimation suffers from noise during normal
indentation of the sensor. This is in part due to non-linear
measurements from the force sensor, but it also has to
do with the network’s incapability to capture dynamical
phenomena, as it is trained on single images. Capabilities to
capture dynamical phenomena can be implemented by training
on sequences of input images, by e.g. using a Recurrent
Neural Network, a Long Short-Term Memory network, or the
now rapidly evolving Transformers [37], [38]. Furthermore,
minimizing oscillations should improve the current quasi-static
performance, as the tactile sensing surface is relying on its
(fast) elastic response. Instead of actuating an entire arm, a
more precise gripper can be used.

The last limitations to this work are on sensor robustness
and manufacturing, and are not necessary limitations but
more small drawbacks inherent to new soft robotic designs.
After a several hundred sliding trials on dry surfaces, the
tactile sensor starts to show some wear and tear. Especially
the separately casted white diffusive outer layer shows signs
of detachment, which influences the deformation image
perceived by the camera. These effects are visible in some
of our train and test data. This wear did not seem to have a
noticeable influence yet, but might worsen the signal strength
over time. Last, the addition of additive manufacturing greatly
simplified the sensor construction with respect to [31], but
naturally there is still room for improvement, as some manual
labor remains with respect to casting silicone between the
marker layers.

For future work, it would be interesting to move to a
more realistic manipulation scenario with variations in speed,
shape, and contact conditions. Quantifying and controlling
rotational slip would be a topic of interest, as it is also
controlled during human manipulation and is demonstrated

for other vision-based tactile sensors in the literature.
Another compelling path would be to explore the indentation
sensitivity for softer, more compliant, ChromaTouch sensors.
A last recommendation for future research would be to
explore the possibilities for a complete robotic gripper with
ChromaTouch tactile sensors equipped on all fingertips.

That brings us to the conclusion of this thesis work.
Our main contribution is the introduction of the frictional
safety margin to robotic applications. We have shown that
we can correctly estimate these margins, leading to improved
robotic manipulation behavior. To the best of the author’s
knowledge, no other works in robotics are available where
the safety margin is estimated to process information from
tactile sensors. We showed that the trained perception network
is capable of estimating these safety margins with a high
enough accuracy to allow for control at 20% of the minimum
required grip force, thereby mimicking the efficiency of a
human grasp. The obtained results are robust to fluctuations in
frictional conditions within-trial (e.g. change in force changes
the apparent contact area) and environmental conditions
(humidity). Furthermore, because of this invariance to small
fluctuations in friction, the perception algorithm should be able
to generalize to measurements of new objects with comparable
geometry and hardness. Although the perception network does
not achieve 100% accuracy, we have shown that the safety
margin estimates show accurate trends over time. Combined
with a safety margin of 20% makes this work well suited for
controlling the grip force during robotic grasping.
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APPENDIX

A. Final results, presented per indentation depth

Fig. 12. Prediction accuracy of the safety margin at 1 mm indentation depth. The 5 trials in grey are plotted with the mean in the dark black line.

Fig. 13. Prediction accuracy of the safety margin at 2 mm indentation depth. The 5 trials in grey are plotted with the mean in the dark black line.
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Fig. 14. Prediction accuracy of the safety margin at 3 mm indentation depth. The 5 trials in grey are plotted with the mean in the dark black line.

Fig. 15. Prediction accuracy of the safety margin at 4 mm indentation depth. The 5 trials in grey are plotted with the mean in the dark black line.

14



Fig. 16. Prediction accuracy of the safety margin at 5 mm indentation depth. The 5 trials in grey are plotted with the mean in the dark black line.

Fig. 17. Prediction accuracy of the safety margin at 6 mm indentation depth. The 5 trials in grey are plotted with the mean in the dark black line.
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