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ARTICLE INFO ABSTRACT

Keywords: Punctuality is a key performance indicator for any airline, especially hub-and-spoke airlines, given their focus
Departure Delay on short passenger connections. Flights that are delayed at departure need to compensate for lost time whilst
Supervised learning airborne. Because fuelling takes place well before scheduled departure, predicted departure delays determine

Random Forest
CatBoost
Deep Neural Networks

the planned fuel amounts for en-route speed optimization. To prevent unnecessary fuel burn, airlines benefit
from highly accurate departure delay predictions. This study aims to extend previous work on airline departure
delay forecasting to a dynamic and probabilistic domain, whilst incorporating novel day-of-operations airline
information to further minimize prediction errors. Random Forest, CatBoost, and Deep Neural Network models
are proposed for a case study on departure flights of a major hub-and-spoke airline from its hub airport between
1 January 2020 and 1 August 2023. The Random Forest model is selected for its probabilistic performance
and high accuracy in predicting delays between 5 and 25 min, for which en-route speed optimization has the
largest effect. At the 90 min prediction horizon, the model reaches a Mean Absolute Error of 8.46 min and a
Root Mean Square Error of 11.91 min. For 76% of flights, the actual delay is within the predicted probability
distribution range. Finally, this study puts a strong emphasis on explainability. Flight dispatchers are therefore
provided with the main factors impacting the prediction, explaining the context of the flight. The versatility of
the model is demonstrated in two shadow runs within the procedures of an international airline, where delays
caused by familiar and unfamiliar factors were successfully predicted.

1. Introduction departure delays, insufficient fuel is carried for compensating time,

possibly leading to the loss of passenger connections. Alternatively, in

Punctuality is a key performance indicator for airlines, especially the case of overpredicted departure delays, excessive fuel is carried,
hub-and-spoke airlines, given their focus on short passenger connec- leading to unnecessary fuel burn due to increased aircraft mass.

tions. A significant factor that affects punctuality is the departure delay Predicting these delays is not trivial, as they stem from diverse

of the flight. The latter refers to the difference between the actual causes such as weather conditions, airspace capacity, airport conges-

off-block time and scheduled off-block time, where off-block marks tion, and airline resource allocation. Conventional approaches often

the moment when an aircraft begins to push back from the gate or
parking position to initiate taxiing for departure. Costly passenger com-
pensation and experienced discomfort are not the only incentives for
airlines to minimize such delays. To ensure on-time arrivals, flights that
were delayed at departure beyond pre-planned slacks in the scheduled
travel time, have to compensate for the lost time whilst airborne,
thereby increasing fuel consumption which results in higher costs and
emissions.

Required fuel amounts are indicated in a flight’s final flight plan,

rely on historical averages of flight occurrences, which yield suboptimal
outcomes. However, given the dynamic nature of airspace operations
and the escalating density of air traffic, historical data frequently fails
to accurately reflect present delays.

Research has focused on developing prediction methods that go
beyond averaging historical data, resorting to statistical and stochastic
methods (Mueller and Chatterji, 2002; Abdel-Aty et al., 2007; Tu et al.,
2008). However, existing studies predominantly focus on the deter-

which is usually issued by the airline’s flight dispatcher around 90 min mination of a single delay value at a specific mo.m(?nt prior to ﬂlght
before scheduled departure time. Accurate departure delay predictions depa.rture. Nevertht.eless, t.he accuracy .Of .the prediction models varies
greatly benefit fuel amount calculations. In case of underpredicted considerably over time with the assimilation of new data as departure
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time approaches. An understanding of the level of uncertainty at a
certain point in time, and of how new input values affect the final delay,
can provide valuable guidance for decision-making. Additionally, often
results are constrained by the lack of airline data (Dalmau et al.,
2021). However, airline decisions directly influence flight prioritization
and resource allocation, directly shaping the final departure scenario.
Finally, there is still wide concern on how to effectively translate the
outcomes of these prediction models into practical tools for airline
operations.

This study aims to cover the previous research gaps by extending
current departure delay prediction models towards a dynamic and
probabilistic domain. Thus, forecasting departure delay probability
distributions for individual flights at different moments relative to their
scheduled departure times. Simultaneously, this study aims to further
minimize prediction errors by exploring novel day-of-operations flight
characteristics, available from an international airline flight dataset.
Finally, given the importance of the decisions that follow from the
model predictions, this study places strong emphasis on explainability
by outlining the reasoning behind the predictions of the model. Rec-
ommendations are made on how to present the outcomes of the model
to flight dispatchers.

The remainder of the paper is structured as follows. Related work
and the contribution of this study are presented in Section 2. There-
after, the methodology adhered to in this study is elaborated upon
in Section 3. The results of the proposed models are then presented
in Section 4, where one of the models is selected. Additionally, it is
discussed how to present the results of the model to flight dispatchers.
The model validation is performed in Section 5. Subsequently, the
results are discussed in Section 6, alongside the results of shadow
runs performed with real-world data and conditions at an international
airline. Finally, Section 7 concludes this work.

2. Related work

Early related work focused on quantifying departure delays using
statistical methods. Mueller and Chatterji (2002) found that depar-
ture delay probability distributions were best modelled using Poisson
distributions and that arrival delay probability distributions better
fitted Normal distributions. Furthermore, departure delays were often
considered to be a sum of temporal components. Abdel-Aty et al.
(2007) proposed a model building on daily, monthly, and seasonal
patterns, and Tu et al. (2008) summed daily and seasonal patterns with
a residual. Historical data shows that departure delays are not evenly
distributed: the majority of flights experience minor delays whereas
only a few flights are delayed more significantly. This unevenness,
referred to as positive skew, was the motivation for Pérez-Rodriguez
et al. (2017) to compare symmetric and asymmetric Bayesian logistic
models for predicting flight delays. The skewed nature of the dataset
favoured the performance of the latter model.

In recent work on departure delay prediction using supervised
learning, the applicability of both tree-based models and neural net-
work models has been studied. For tree-based models, Kalliguddi and
Leboulluec (2017) and Khan (Khan et al., 2021), concluded that simple
decision trees were outperformed by random forests. This is expected
as the later uses an ensemble of decision trees, showing higher accu-
racy for datasets with high-dimensional feature spaces. At the same
time, Manna et al. (2017) showed that random forests, in their turn,
were outperformed by boosting models. The latter can be more accurate
as, contrary to Random Forest, it trains one tree at a time, each tree
correcting the errors of the previous ones. With the aim of evaluating
the performance of EUROCONTROL’s Enhanced Tactical Flow Manage-
ment System (ETFMS) against a supervised learning model, Dalmau
et al. (2021) proposed a different boosting model: Gradient-Boosted
Decision Trees (GBDT). Using a large number of features (over 30), it
was found that the existing system is outperformed by the GBDT model,
especially for prediction horizons larger than 60 min. GBDT has the
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advantage of each tree in the gradient boosting correcting the errors
of its predecessor. Vorage (2021) extended the departure delay predic-
tion to the probabilistic domain. Random Forests and Mixture Density
Networks were proposed to generate probability density functions for
individual flights from Amsterdam Airport Schiphol. From these distri-
butions, the probability that a forecast delay is accurate within some
time-error interval could be computed. Later, this approach was used
by Zoutendijk and Mitici (2021), constructing similar models to predict
departure delays using Rotterdam Airport flight data, reaching a Mean
Absolute Error (MAE) of around 12.5 min.

Sun et al. (2022) aimed to predict airline delays from a network
perspective, testing the applicability of several neural networks includ-
ing a Dynamic Spatial-Temporal Graph Attention (DST-GAT) network
and a Long Short-Term Memory (LSTM) network. Whilst the network
architectures differed significantly, the outcomes for both models were
comparable, with Root Mean Square Error (RMSE) values between
5-10 min, differing per airport in the network. DST-GAT and LSTM
networks offer the possibility of greater accuracy with large amounts
of data with long-range dependencies. Finally, Birolini and Jacquillat
(2023) collaborated with European airline Vueling, comparing the per-
formance of Linear Regression, Random Forest, and Extreme Gradient
boosting models for predicting the airline’s flight delays. For each
flight, only the primary flight delay was considered, eliminating the
effect of precedent flights. Taking into account airline-specific informa-
tion, such as crew rosters and aircraft availability, the Extreme Gradient
boosting model reached an MAE of around 7 min, outperforming the
other models.

Most reviewed literature considered temporal features, flight sched-
ule features, and weather features. Among others, Sternberg et al.
(2016) demonstrated that including weather features benefits the model
performance. Other novel features such as flight de-icing status (Dal-
mau et al,, 2021) and take-off runway (Khan et al., 2021; Alonso
and Loureiro, 2015) were proposed. Moreover, Yu et al. (2019) es-
pecially focused on short-term features, including the boarding option
(jet bridge or bus), closing time of cargo doors and passenger doors
and the time between check-in, boarding, and gate closure. Only
two papers considered passenger connection information, aggregating
numbers per flight destination. Furthermore, only a few studies had
access to detailed airline data. Finally, although probabilistic departure
delay forecasts for individual flights were proposed (Vorage, 2021;
Zoutendijk and Mitici, 2021), it has not yet been investigated how such
probabilistic forecasts change over time.

In resume, this paper intends to advance the state-of-the-art and
cover the previously mentioned research gaps by:

1. Considering the number of planned connection passengers for every
unique inbound-to-outbound flight combination: Only two papers
considered passenger connection information. Ciruelos et al. (2015)
assumed monthly connecting passenger percentages, thereby not
specifying the numbers per individual flight. Sismanidou et al.
(2022) had access to real passenger itineraries from a Market-
ing Information Data Tapes (MIDT) dataset, but used this data
to determine “a proportion of connecting passengers for a specific
itinerary by a specific air carrier”, therefore also averaging the
connecting passenger numbers, missing out on the opportunity to
use the flight-specific passenger connection data for predicting the
departure delays.

2. Considering novel features of the day-of-operation of airlines: Only
few studies had access to detailed airline data, through research
partnerships with Peach and Vueling (Birolini and Jacquillat, 2023;
Horiguchi et al., 2017). Despite these partnerships, the studies
refrain from proposing detailed day-of-operations features, but in-
stead hold on to mostly booking and schedule information. Thus,
there remains a research gap for the effect of day-of-operation
features, such as last-minute airframe assignments, Target Start-up
Approval Time (TSAT) changes, and airport delay levels.
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3. Analysing how probabilistic departure delay forecasts for individ-
ual flights change over time relative to scheduled departure, given
the availability of new data. Several papers compared the perfor-
mance of the model at multiple moments relative to scheduled
departure times (Dalmau et al., 2021; Sun et al., 2022; Rebollo
and Balakrishnan, 2014; Choi et al., 2016; Gopalakrishnan and
Balakrishnan, 2017; Schosser and Schonberger, 2022). However,
none provides an indication of the probability distribution of the
determined delay value. Although probabilistic departure delay
forecasts for individual flights were already proposed (Vorage,
2021; Zoutendijk and Mitici, 2021), it has not yet been investigated
how such probabilistic forecasts change over time. The concept of
dynamic probabilistic forecasts was previously used by Felder et al.
(2010) in the domain of dynamic wind power forecasting. No such
research has yet been performed for the prediction of departure
delays of individual flights.

3. Methodology

This section aims to describe the methodology adopted for this
study. First, the case study is introduced in Section 3.1. Thereafter,
data preprocessing is discussed in Section 3.2. The model development
process is then elaborated upon in Section 3.3. Finally, the feature
engineering processes are explained in Section 3.4 and the model
training and result processing are discussed in Section 3.5.

3.1. Case study

Several departure delay prediction methods are proposed and tested
through a case study on data provided by a major international airline.
The case study was conducted for the period between 1 January 2020
and 1 August 2023. It should be noted that this period includes both
the COVID period and the period just after, where logistical prob-
lems resulted in above-average departure delays. Most of the logistical
problems were solved from November 2022 onwards, which translated
into traffic and delay levels almost back at pre-COVID standards, still
impacted by seasonality. Including the data of these periods with
significantly different dynamics turns out to be beneficial as it allows
the model to be trained on a wider variety of historical data. The
presence of more flights towards the extremes of the departure delay
spectrum simultaneously improves the sampling practices.

The case study involves the use of supervised learning algorithms
to improve on an existing statistical model, currently in use at the
airline. For predicting departure delays, the statistical model solely
uses historical data of other flights within the same flight series. The
supervised learning algorithms are trained to draw patterns based on
all historical flights. Next to further minimizing the prediction error,
the case study also aims to better explain the predicted delays by
predicting departure delays as probability distributions over time and
by explaining what inputs contribute to the predicted output. The study
is split into multiple stages, illustrated in Fig. 1. These stages are
elaborated upon in more detail in Section 3.2 to Section 3.5.

3.2. Data preprocessing

Through the collaboration with the airline, detailed flight data
and basic traffic data of the hub airport are available. Additionally,
historical weather data is available from the Iowa State University
Environmental Mesonet (lowa State University, 2023). The following
describes how these three datasets were processed:

+ Airline Data: After eliminating cancelled flights, flights with
unpredictable delays,’ ferry flights, test flights and flights without

1 Delays are registered using International Air Transport Association (IATA)
Delay Codes (EUROCONTROL, 2023), a classified selection of which is deemed
unpredictable, e.g., technical issues.
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recorded departure delays, the airline dataset consists of 286,000
unique flights. For each flight, (anonymized) passenger informa-
tion and flight events, including TSAT updates and Estimated
Time of Arrival (ETA) predictions of inbound flights, are known.
Additionally, connection times and passenger counts of any flight
arriving at the hub airport are available for over 90% of the
outbound flights.

Airport Data: After similar initial data cleaning as the airline
data, the airport dataset consists of 562,000 flights (including
those of the considered airline). From the available information
on origin—destination pairs, scheduled and actual departure times,
and flight numbers, the number of flights and average delays at
the hub airport can be determined for any time interval within
the case study period.

METeorological Aerodrome Report (METAR) Data: Available
from Iowa State University Environmental Mesonet, weather re-
ports with an update frequency of 30 min are obtained for the
hub airport, including air temperature, dew point, humidity, wind
direction, wind speed and gust, precipitation, visibility, cloud
coverage, and cloud height information (lowa State University,
2023).

The blue bins in the left of Fig. 2 represent the number of flights for
a specific departure delay value. The distribution of the bins confirms
that the departure delay data for this study is positively skewed. There-
fore, the data has to be balanced through undersampling. The objective
of undersampling is to reduce the model’s bias towards predicting delay
values near zero, which is the majority class. The hypothesis is that
decreasing the prevalence of these smaller delays in the training data
will improve the model’s accuracy in predicting delay values within the
minority class of larger delay values. Undersampling was performed by
selecting a maximum number of flights for each bin. This maximum
number is based on the number of flights in a select bin. Selecting
the correct bin to undersample the excess data introduces a trade-off
between two metrics: R2 and RMSE, illustrated on the right of Fig. 2.
No data sampling yields relatively low RMSE values because the model
is overfitted to the part of the departure delay spectrum with most
data points. As a result, the errors for flights with uncommon departure
delays are relatively high, causing the fit of the model to remain low.

To guarantee a balance of global fit and optimal model performance,
it is chosen to select a sampling strategy whereby the number of flights
is limited to the number of flights in the 15 min bin. This yields the
purple distribution on the left of Fig. 2. For this sampling strategy,
the R2 value is above its trend and the RMSE value is below its
trend, where additional importance is given to the RMSE value as it
increases relatively faster than the R2 value. The sampling process is
performed at random, because other methods such as cherry-picking
may introduce biases to the model.

Finally, to improve the accuracy and reliability of the model, out-
liers are removed from the dataset. Because of the positive skew in
the departure delay distribution, visible on the left of Fig. 2, only
values towards the extreme positive end are removed, since these
values lie much farther from the median value than those towards the
negative end. Only 1% of outlier data is removed, thereby preventing
the potential loss of valuable data patterns. After outlier removal, the
remaining departure delay spectrum ranges from —20 to +97 min.

3.3. Model development

From existing studies, it is apparent that simple decision trees are
nearly always outperformed by random forests and boosting mod-
els (Kalliguddi and Leboulluec, 2017; Khan et al., 2021; Manna et al.,
2017). Additionally, more complex neural network structures would
outperform simpler structures as long as the available training dataset is
of sufficient size (Ye et al., 2020; Sun et al., 2022; Birolini and Jacquil-
lat, 2023). When insufficient training data is available, or the predicted
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Table 1

Hyperparameters of the models employed in this study.

(c) Deep neural network model.

Hyperparameter Value
b) CatBoost model. nr_input_neurons 15
(a) Random forest model. ® nr_output neurons 1
Hyperparameter Value Hyperparameter ~ Value Value nr hidden_neurons 16
- (CatBoostTH) (CatBoostPR) nr hidden layers 4
nr_estimators 1000 5 -
iterations 400 10 dropout 0
max_features 4 . .
mao depth 10 learning rate 0.02 0.5 leakyrelu_negative_slope 0.1
b P es solic . depth 10 10 n_epochs 1000
min_samp les_;fa i 9 posterior_sampling ~ True True batch_size 2048
Lsampres. random_state Random Random Ir_initial le-4
Ir_increase 1.2
Ir_decrease 1.2
Ir_stop le-10

processes are too random, simpler neural networks or tree-based mod-
els may outperform more complex models. This work directly compares
the usage of three different models: Random Forest, CatBoost, and Deep
Neural Network models.

First, Random Forest was chosen for its simplicity and high level
of explainability, as the decision-making process at each tree can be
easily traced to the final outcome. Next, in theory, CatBoost promises
an increase in accuracy when compared to Random Forests due to
its boosting mechanics. As a member of the family of GBDT machine
learning ensemble techniques, CatBoost is particularly advantageous
due to its exceptional ability to handle categorical data (Hancock and
Khoshgoftaar, 2020). Finally, the utilization of a Deep Neural Network
allows to explore whether neural-based methods could be a viable

option for this model. These have demonstrated superior performance
over boosting methods in handling complex data structures, though this
often comes at the expense of longer processing times and the need
for large datasets. These three models are further developed and are
elaborated upon in Sections 3.3.1, 3.3.2, and 3.3.3. The hyperparam-
eters for all models are shown in Table 1. The values used align with
the best practices recommended in previous studies. Multiple different
hyperparameters were tested, without any significant improvements in
performance.

The delays are predicted at six prediction moments: 90, 75, 60, 45,
30, and 15 min before scheduled departure time. To prevent the models
from falsely propagating errors and uncertainty from one prediction
moment to another, separate models are trained for each prediction
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moment. For all models, hyperparameter optimization is performed
empirically, as the effect of all parameters was understood through
numerous model iterations in the test phase.

3.3.1. Random forest

Given its computational efficiency, robustness to outliers, and in-
terpretability, random forests have been a popular choice for modelling
stochastic processes (Kalliguddi and Leboulluec, 2017; Sun et al., 2022;
Birolini and Jacquillat, 2023; Rebollo and Balakrishnan, 2014). The
random forest is an ensemble method, a forest of decision trees that
serve as independent predictors. Furthermore, the method relies on the
concept of bagging (bootstrap-aggregating), meaning that sub-samples
of the dataset are used to construct unique decision trees and that, for
regression problems, the final prediction is the mean of all individual
results. For a probabilistic approach, a probability distribution can be
created using all individual tree results (Vorage, 2021; Zoutendijk and
Mitici, 2021).

To allow for generating detailed probability distributions, the num-
ber of decision trees (nr_estimators) is set to 1000. The maximum
number of features for the model (max features) is set to 4, following
the binary logarithm of the number of features. The maximum model
depth (max_depth) is set to 10 to prevent overfitting as a result of
extremely large trees. The minimum number of samples for splits
(min_samples_split) and leaves (min samples_leaf) is set to 4 and 2 re-
spectively, because larger values may yield too simple decision trees.
The hyperparameters are summarized in Table 1a.

3.3.2. CatBoost

CatBoost (Prokhorenkova et al., 2018) is an open-source gradient
boosting library that allows for efficient and fast predictions. The model
treats data sequentially to prevent data leakage. The use of symmetric
trees makes weaker learners for the boosting process, resulting in faster
computation times. Moreover, the underlying boosting scheme of Cat-
Boost prevents overfitting and eases hyperparameter tuning (CatBoost,
2023). CatBoost is inherently less sensitive to data imbalance. CatBoost
models require M iterations to reach the final prediction. To allow
probabilistic modelling, a total of N independent CatBoost models are
created, where N is set to 1000 to match the number of estimators in
the Random Forest model.

Two different CatBoost models are proposed, one with a smooth
iteration scheme (iterations = 400 and learning rate = 0.02), in the
remainder referred to as CatBoostTH for its theoretical application, and
one with a rougher iteration scheme (iterations = 10 and learning_rate
= 0.5), in the remainder referred to as CatBoostPR. A larger learning
rate typically results in bigger differences between the predictions of
consecutive trees. This often leads to greater variance in the final pre-
diction compared to a model with a lower learning rate. The increased
variance in the final predictions may provide a more reliable measure
of the uncertainty in the model output.

For both models, the model depth (depth) is set to 10, complying
with that of the Random Forest model, allowing for their results to
be compared directly. Note that the value of the model depth is a
balanced trade-off, a deeper tree can fit the training data better, but
it can also lead to overfitting. The latter is especially a problem with
gradient boosting methods. A max depth of 10 was empirically found
to be a good value. During training of the model, different depth values
were compared. None of the other depths tested resulted in significant
differences in performance.

Finally, posterior sampling (posterior_sampling) is enabled to “obtain
uncertainty predictions with good theoretical properties” (Prokhorenkova
et al., 2018). To ensure that all N independent models are unique, the
unique state (random_state) is set randomly for every model estimator.
The hyperparameters are summarized in Table 1b.

Journal of Air Transport Management 126 (2025) 102788

3.3.3. Deep neural network

Neural networks are machine learning models consisting of in-
terconnected nodes that are activated by activation functions. These
models can handle nonlinear feature relationships and are trained using
error back-propagation, a feedback loop that tunes the internal model
parameters to achieve the optimal performance (Svozil et al., 1997).
For adequate training, a substantial amount (10° to 10°) of historical
flights is required to achieve meaningful results (Thiagarajan et al.,
2017). Compared to the other models, neural networks present more
challenges in terms of model explainability.

For the neural network structure, the number of input neurons
(nr_input_neurons) is the number of input features. Since the departure
delay is the only output, the number of output neurons
(nr_output_neurons) is equal to 1. There is more flexibility in determining
the number of hidden neurons (nr_hidden_neurons), which is set to 16
for the most optimal result. Controlling the depth of the model, the
number of hidden layers (nr_hidden_layers), is set to 4, to prevent an
overly complex model from forming. Since preliminary results yielded
comparable results for in-sample and out-of-sample data, the model
was not overfit. Therefore, dropout (dropout) is not required and is
set to 0. Finally, for the Leaky ReLU (Rectified Linear Unit) activa-
tion functions in each of the layers of the model, the negative slope
(leakyrelu_negative_slope) is set to 0.1, to allow for negative inputs.

The hyperparameters are summarized in Table 1c. The number of
epochs (n_epochs) is set to 1000, to facilitate enough learning iterations.
For the regression algorithm, the MSE loss function is used. Batch sizes
(batch_size) of 2048 datapoints are used, resulting in sufficient batches
considering that the full dataset is two orders of magnitude larger. An
adaptive learning rate is used to ease the search for global optima. The
initial learning rate (Ir_initial) is set to le-4. After every epoch, the
learning rate is increased by an increase factor (/r_increase) of 1.2 if
the current epoch prediction is better than the current-best prediction
and decreased by a decrease factor (Ir_decrease) of 1.2 otherwise. When
the learning rate becomes smaller than the stop criteria learning rate
(Ir_stop) of 1le-10, the model is deemed to have converged. These
parameter values were found by empirically tuning baseline literature
values. This guarantees the model’s ability to generalize whilst keeping
training times acceptable.

3.4. Features

The selected features are presented in Section 3.4.1 and their cor-
relation is discussed in Section 3.4.2. Finally, the potential uncertainty
related to some of the features is evaluated in Section 3.4.3.

3.4.1. Selected features

The selected features from Table 2 are described in more detail
below. Note that for the Deep Neural Network, there are trigonometric
variations to the month of the year and hour of the day features.

» Month of Year: The numeric.? month of the flight, following from
the Scheduled Off-Blocks Time (SOBT)?

Hour of Day: The departure hour of the flight, following from the
SOBTS3.

Passenger Load Factor: The number of passengers booked com-
pared to the number of seats available on the aircraft. For a fully
booked flight, the passenger load factor is 1. Taking a ratio rather
than an absolute number of passengers allows to consider flights
operated on aircraft with different seating capacities in the same
model.

Baggage Load Factor: The number of booked pieces of baggage
relative to the number of booked passengers. Similarly to the

2 e.g. January — 1, February — 2, etc.

3 In Coordinated Universal Time (UTC).
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Table 2
Selected features after feature elimination.
Feature name Unit Numeric Dynamic Example
Month of Year [-] v 4
Hour of Day [-] v 13
Passenger Load Factor [-] v 0.73
Baggage Load Factor [-] v 1.14
Transfer Passenger Percentage [-] v 67
Number of Passengers Reduced Mobility [-] v 2
Total Passengers Day in Membership Program [-] v 35000
Median Delay of Flight Number [min] v 7
Effective Delay Previous Flight [min] v 12
Current Number of Flights at Hub Airport® [-] v v 20
Current Average Delays at Hub Airport? [min] v v 32
Current TSAT Delay” [min] v v 4
Last Aircraft Tail Swap® [min] v v 1500
Wind Speed Longitudinal Direction [kts] v 8.32
Wind Speed Latitudinal Direction [kts] v —4.25
2 In the 30 min interval before prediction moment.
b At prediction moment.
passenger load factor, taking a ratio rather than an absolute number
of baggage pieces allows to consider flights operated on aircraft
. . . P Ogrr, = AIBT; — S1BT; (3)
with different seating capacities in the same model. i
» Transfer Passenger Percentage: The percentage of passengers 4
booked for an outbound flight that connects from any inbound 5a'neffi<j.k,1,m = Barr; = Pijclm @

flight at the hub airport.

Number of Passengers Reduced Mobility: The number of booked
passengers with wheelchair assistance.

Total Passengers Day in Membership Program: The total number
of daily passengers subscribed to the membership program.
Median Delay of Flight Number: The median departure delay of
all flights for a given flight series. For flight series with fewer than
25 recordings, the median delay calculation is considered to be
too random because of the small number of data points. For these
uncommon flights, a zero median delay is registered.

Current Number of Flights at Hub Airport: The total number of
flights departing from the hub airport in a 30 min time interval
before the prediction moment. This feature is dynamic because
for each prediction moment, the 30 min time interval is different,
possibly resulting in a different total number of flights.

Current Average Delays at Hub Airport: The average delay of all
flights departing from the hub airport in a 30 min time interval
before the prediction moment. This feature is dynamic because
for each prediction moment, the 30 min time interval is different,
possibly resulting in a different average delay. Mathematically, for
every prediction moment ¢, the average departure delay (64,4, ) is
the sum of individual departure delays (5[1% ), divided by the total
number of flights in the 30 min time interval (N,), see Eq. (5).

Effective Delay Previous Flight: The effective arrival delay of the
previous flight that propagates to the outbound flight for the same
aircraft. Airlines incorporate slack times into their schedules to
mitigate potential delays (Birolini and Jacquillat, 2023; Lan et al., 2{1’15 dep,
2006). For inbound flight i and outbound flight j, operated by air- Odepavg, = —_—
line k using aircraft type [ at airport m, the Scheduled Turn-Around
Time (ST AT, ;) is the time difference between the Scheduled Off-

N )

t

Current TSAT Delay: The latest available Target Start-up Approval

Blocks Time of the outbound flight (SOBT;) and the Scheduled Time delay update. This delay, imposed by Air Traffic Control, is
In-Blocks Time of the inbound flight (S1BT,), see Eq. (1). The dynamic because it may update between prediction moments.
slack time (p; ; ,,,) is the time difference between the Minimum + Last Aircraft Tail Swap The time difference between the last air-
Turn-Around Time* (MTAT;,,,) and the Scheduled Turn-Around craft tail swap (new airframe allocation) and scheduled departure
Time, see Eq. (2). MTAT values may differ per airline, aircraft type, time. This feature is dynamic because tail swaps may occur between
and airport. The arrival delay of the inbound flight () is the prediction moments.

time difference between the Actual In-Blocks Time (AIBT,) and * Wind Speed Longitudinal/Latitudinal Direction: The longitudi-
Scheduled In-Blocks Time of the inbound flight, see Eq. (3). Finally, nal (East-West) and latitudinal (North-South) components of the
the effective arrival delay of the inbound flight is the arrival delay wind speed at the departure airport. Including the wind direction
minus the slack time, see Eq. (4). Since negative slack times do not and wind speed by themselves may train the model to believe
exist, the effective arrival delay can never exceed the arrival delay some wind direction would favour delays, even if the wind speed

is almost zero. This can be avoided by combining wind speed (V,,)
and wind direction (I',) into longitudinal and latitudinal wind
components, as presented in Egs. (6) and (7).

itself. All negative effective arrival delays are set to 0 as there is
enough available time to turn around the aircraft, regardless of how
early the previous flight arrived. Fig. 3 illustrates the effect of slack
times on effective arrival delays.

STAT,; = SOBT; - SIBT, o) Vi = =Vi - c08 (I, = 90°) O
Pijiim=STAT,; — MTAT},, @ Vo = Vo sin (I, = 90°) )

3.4.2. Feature correlation
4 Airline-issued times that indicate the minimum number of minutes The statistical correlation between all features at the 90 min pre-
required between arrival and departure of two consecutive flights. diction horizon is presented in Fig. 4. The feature describing the
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Fig. 3. Aircraft Turn-Around without Slack Times (left) and with Slack Times (right).
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Fig. 4. Feature Correlation Matrix for the 90-Minute Prediction Horizon.

total number of daily passengers in the membership program shows
relatively strong correlations with three other features: the passenger
load factor (0.59), the current number of flights at hub airport (0.49),
and the current average delays at hub airport (0.44). The latter two
correlations follow from the coupling of traffic levels and associated
delays. The former correlation follows from the fact that during busy
periods, the number of daily passengers increases faster than the num-
ber of flights, thus resulting in higher passenger load factors. This also
explains the negative correlation with the baggage load factor (-0.40),
as it appears that for busy periods, the number of passengers increases
faster than the pieces of baggage that are carried along.

Furthermore, the median delay in flight number shows a rela-
tively strong correlation with the number of passengers with reduced
mobility. Data reveals that the 500 flights with the highest number
of passengers with reduced mobility were operated under 11 unique
flight numbers only. The correlation is evident because the number
of passengers with reduced mobility heavily impacts the turnaround
process and potential departure delays.

The feature correlations between the non-dynamic features remain
the same at the 15 min prediction moment. The correlations between
the dynamic features (e.g., current average delays at hub airport and
current TSAT delay) become significantly larger. This can be explained
by the fact that the updated dynamic features are closer to the actual
values. Finally, for the trigonometric features used for the Deep Neural
Network, the cosine of the hour of day has a relatively strong negative
correlation (—0.49) with the current number of flights at hub airport.
This makes sense as the cosine value of the hour of day is high for the
early morning and late evening, but gradually decreases for the middle
of the day. The number of scheduled flights develops in the opposite
manner.

3.4.3. Feature uncertainty

For flights yet to be predicted, not all input features may be exactly
known at each of the different prediction moments. Since the historical
training dataset consists of actual values, the use of predicted input
values may introduce noise and biases. To guarantee the accuracy of
the model, such potential uncertainty needs to be evaluated. Most of
the features mentioned in Table 2 are either constant throughout the
prediction horizon of a flight (e.g., month of year, hour of day, median
delay of flight number), can be exactly computed for all prediction
moments (e.g., current number of flights, delays, and TSAT delays)
or undergo only very minor changes over the prediction horizon of a
flight (e.g., passenger and baggage numbers). For a check on a subset
of the flight data, large differences in actual and booking passenger
and baggage numbers were observed only very rarely, leading to the
assumption of using constant passenger and baggage numbers during
the prediction horizon. For the effective delay of previous flights and
the wind speed features, however, the uncertainty is higher.

Effective Delay Previous Flight Uncertainty: Flights operated by
the airline on single-aisle aircraft have minimum turn-around times of
35-50 min and thus may still be airborne 90 min prior to departure
of the outbound flight. Flights operated on twin-aisle aircraft have
minimum turn-around times of over 120 min. However, these flights
may experience delays on the inbound flight, impeding the aircraft
from being at the gate 90 min prior to departure of the outbound flight.
Throughout the studied period, 42% of flights arrived more than 90 min
before departure of the outbound flight; for these flights, there is no
feature uncertainty. For the remaining flights, the effective delay of the
previous flight can be computed from the ETA of the previous flight.

For the flights that were not yet at the hub airport 90 min prior
to the outbound flight, the error distributions between actual and
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Fig. 6. Longitudinal and Latitudinal Wind Speed Developments (upper left, upper right) and Prediction Error Distributions (lower left, lower right).

predicted arrival times are presented in Fig. 5, differentiating the total
set of flights and that of the three shortest routes that the airline
operates. Inbound flights on these three routes are most likely to still
be on-ground at the origin airport 90 min before departure of the
outbound flight from the Hub Airport, affecting the uncertainty of ETA
predictions more than whilst airborne. As a result of using the predicted
ETA, noise is added to the model. The Inter-Quartile Range (IQR)
is at most 6 min. Although the ETA prediction model seems slightly
conservative, predicting a large number of flights to arrive later than
they did in reality, there are no clear biases. Prior to this analysis, one
might hypothesize that the error in this variable would be greater for
shorter inbound flights that have not yet departed. In such cases, the
final delay prediction would need to account for both departure and en-
route delays. Conversely, for longer inbound flights, at —90 min before
the departure of the outbound flight, these flights are already in the
enroute phase, and the departure delay is already known. Nevertheless,
this proves that this is not the case.

Wind Speed Longitudinal/Lateral Direction Uncertainty: The
wind speed features contain uncertainty because only METAR data is
available to train the model. For flights yet to be predicted, the METAR
at the scheduled departure time is still unknown at the prediction
moment. Therefore, Terminal Aerodrome Forecasts (TAF) are used for
predicting new flights instead. The unavailability of open-source TAF
reports restricts the training of the model on TAF data.

To validate the use of METAR data for the hub airport, for 22 days
(1056 recordings) with various wind conditions,” the predicted wind
(TAF) is compared to the actual wind (METAR). The developments over
time for the longitudinal and lateral wind components are presented in
the upper figures of Fig. 6. In general, the TAF is capable of adequately
predicting long-term weather developments. Some of the prediction
errors can be attributed to the TAF reports describing how the weather
is expected to change over a longer period of time. This is represented
by the horizontal sections on the blue lines in the graphs. METARs have
higher update frequencies and vary more heavily, leading to other small
prediction errors. The bottom figures in Fig. 6 present the wind speed
prediction error distributions for longitudinal and lateral directions.
It can be concluded that the IQR for both directions never exceeds
4 knots. Similar to the feature describing the effective delay of the
previous flight, the use of predicted weather data introduces noise to
the model, but no bias as both error distributions are symmetric and
the medians are near-zero.

5 Wind speeds ranging from 0 to 27 kts, from every direction (rounded to
10 degrees) at least once.
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3.5. Model training and result processing

To train the models, the full dataset is randomly split into a training
dataset (80% of data) and a test dataset (20% of data). The departure
delays in the training and test datasets are similarly distributed as in
the full dataset. To minimize data leakage, the split was made per day
instead of per flight. This ensures that when testing the model, it has
no prior knowledge about the dynamics on the day of the flight.

To facilitate probabilistic departure delay forecasting, the models
use all independent predictions to create probability distributions. This
is preferred over using majority voting or computing the mean of
all independent predictions since probability distributions indicate the
likelihood that a delay value is predicted. To ensure high granularity,
1000 unique independent estimators are considered. To create dynamic
probabilistic departure delay predictions, the predictions for all predic-
tion moments are combined. The dynamic probabilistic departure delay
predictions not only show how the predicted delay value changes over
time, but also the evolution of the associated probability density and
certainty.

The costs and emissions associated with the decisions made using
the departure delay prediction model make explainability an important
aspect of this study. For that reason, the probabilistic model perfor-
mance is one of the considerations for the model selection. Therefore, a
method is introduced that explains the predictions based on the relative
scaling of the features, as illustrated in Fig. 7.

First, the feature values of all flights in the test dataset are scaled by
fitting a StandardScaler()° on the dataset. The size of the dataset should
be at least order of magnitude 1000 to obtain meaningful scaled feature
values.” The scaling is performed for each feature individually and
returns the number of standard deviations a feature value differs from
the mean of all flights. Large scaled feature values indicate that a flight
stands out from others in the respective feature. Simply scaling the
feature values does not explain the model prediction; it only considers
the model inputs, not what the model is doing with this input data. For
that reason, the scaled values are weighted by the feature importances,
thereby including the importance assessment of the model. Although
this method does not explain the exact decision-making of the model,
it indicates how the model has treated the underlying data and how this
affects the prediction for a certain flight. Finally, for usability purposes,
thresholds are determined for classifying the scaled weighted feature
values towards large, moderate, and small impacts.® Following these
impacts, an explainability message is constructed and provided to the
flight dispatchers.

4. Results

This section aims to present and analyse the results from the four
proposed models. The global model performance is presented in Sec-
tion 4.1, where the most suitable model is selected. The dynamic
prediction behaviour of this model is then presented in Section 4.2.
The model explainability results are discussed in Section 4.3.

6 From the scikit-learn module.

7 To have enough data points to generate feature distributions of sufficient
granularity.

8 X > 0.5 — large impact; 0.3 > X > 0.5 — moderate impact; 0.1 > X >
0.3 —» small impact, for scaled weighted feature value X.
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4.1. Global model performance and selection

The performance metrics used for the model selection are outlined
in Section 4.1.1. The global and probabilistic model performances
are presented in Section 4.1.2 and Section 4.1.3, respectively. Fi-
nally, the model performance per departure delay bin is discussed in
Section 4.1.4.

4.1.1. Performance metrics

Five performance metrics are proposed for evaluating the four
proposed models, covering the model error, model fit, and proba-
bilistic performance. Each metric is briefly elaborated upon in Table
3. Whereas the first three metrics are commonly used, the final two
metrics are introduced in this study, especially to quantify the prob-
abilistic performance of the models. The ActInDistr metric represents
the percentage of flights for which the actual departure delay is within
the predicted departure probability distribution. The AvgIQR metric
represents the average inter-quartile range of predicted flights, a mea-
sure of the model confidence. Ideally, models score high on ActinDistr
and low on AVgIQR, resulting in confident and correct predictions.
Overconfident models predict narrow probability distributions and thus
score low for both metrics, while underconfident models predict wide
probability distributions and thus score high for both metrics.

4.1.2. Global model performance

For each model, distinct sub-models are developed for every pre-
diction moment. For each respective model, the MAE, RMSE, and R2
are tabulated in Table 4 and graphically presented in Fig. 8. For all
models, the errors decrease for shorter prediction horizons, whilst the
R2-values increase. This follows logically from the perceived updates
on the dynamic features. For these features, the change in correlation
with the departure delay is illustrated in Fig. 9. As expected, the current
average delays at hub airport and current TSAT delays yield much
higher correlations over time. Fig. 8 shows that between 30 and 15 min
before scheduled departure, the model improves most significantly.
This can be explained by the fact that a large share of delays occur
just before departure. Including more short-term features would further
strengthen this effect, but adding such parameters is invaluable at
larger prediction horizons, which is the main focus of this study.

In terms of MAE and RMSE errors, the CatBoostTH model slightly
outperforms CatBoostPR. Absolute differences in MAE, RMSE, and R2
between models are small and decrease with time, as shown in Table
4. When expressed as percentages relative to the best model, the
differences remain constant over time (3.1% for the MAE, 2.1% for the
RMSE). These results suggest that, for this particular dataset, a smooth
iteration scheme is preferable, as it may more effectively reduce the
average error in the loss function. However, this approach could, in
some cases, lead to overfitting or model instability. Therefore, empirical
testing is essential for each dataset to ensure optimal performance.

The CatBoostTH model has a quasi-constant advantage over the
other models because only for the Deep Neural Network at the 30 min
prediction horizon, the relative differences are larger. This may be
explained by the model reaching the maximum number of epochs,
whereas for other prediction horizons, it converged earlier.

The Deep Neural Network does not outperform the other models.
Next to that, the model imposes difficulties for providing probabilistic
and explainable results. Thus, it was decided to eliminate the model
from further selection in this work. The prediction accuracy of the other
models is illustrated in Fig. 10, where the actual and predicted delays
for a 90 min prediction horizon are plotted as a heatmap. In the ideal
situation, the data points follow the diagonal dotted line, where the
predicted delay equals the actual delay. For all models, the distributions
follow this line to some extent, albeit with notable noise. All models
tend to overpredict for flights with small delays and underpredict for
flights with larger delays. This behaviour is partially caused by the
splitting nature of the structure of the models as well as the absence
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Table 3
Performance metrics.
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Performance metric Explanation

Mean Absolute Error (MAE)

Root Mean Square Error (RMSE)

Coefficient of Determination (R2)

Actual in Distribution Percentage (ActInDistr)
Average Inter-Quartile Range (AvgIQR)

Absolute error between predicted and actual values

Standard deviation of errors between predicted and actual values

Proportion of variation in dependent variable predictable from independent variable
Percentage of flights for which actual value is in predicted probability distribution
Average inter-quantile range for predicted flights

Table 4
Global model performance for out-of-sample data.

Prediction moment [min]

-90 =75 -60 -45 -30 -15
Random Forest MAE [min] 8.46 8.31 8.11 7.90 7.67 7.37
RMSE [min] 11.91 11.69 11.42 11.13 10.81 10.44
R2 [-] 0.55 0.57 0.59 0.61 0.63 0.65
CatBoostTH MAE [min] 8.20 8.06 7.88 7.69 7.47 7.15
RMSE [min] 11.67 11.46 11.20 10.93 10.62 10.23
R2 [-] 0.57 0.58 0.60 0.62 0.64 0.67
CatBoostPR MAE [min] 8.26 8.11 7.93 7.74 7.52 7.20
RMSE [min] 11.72 11.51 11.25 10.98 10.67 10.28
R2 [-] 0.56 0.58 0.60 0.62 0.64 0.67
Deep Neural Network MAE [min] 8.35 8.26 8.07 7.91 7.82 7.31
RMSE [min] 11.81 11.64 11.39 11.16 10.92 10.42
R2 [-] 0.56 0.57 0.59 0.61 0.62 0.66
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Fig. 8. Global Model Performance over Time in terms of MAE, RMSE, and R2.
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of possibly valuable information and the uncertainty associated with
large prediction horizons.

For the Random Forest model in Fig. 10, the distribution of pre-
dicted delays shows a valley around 0 min and a peak around —5 min.
This behaviour is caused by the data from the COVID-19 period;
excluding this data removes the peak. For these flights, the total daily
passenger numbers are significantly lower than regular operations. The
valley can be explained by the absence of flights with total daily
passenger numbers that lie in between the COVID-19 period and regular
operations. The CatBoost models better correct for this data anomaly.
It should be noted that excluding flights from the COVID-19 period was
tested, but resulted in poorer prediction results because of a reduction
in the dataset size

10

4.1.3. Probabilistic model performance

Based on the three global performance metrics, it may seem straight-
forward to select CatBoostTH for further use. Given the emphasis on
explainability in this study, however, the probabilistic performance also
needs to be evaluated. For the three remaining models, the ActInDistr
and AvgIQR are tabulated in Table 5.

Evaluating the probabilistic performance is a trade-off between two
metrics. Ideally, a model has high correctness (i.e. high ActInDistr) and
high confidence (i.e. low AvgIQR). Models with high ActInDistr and
above-average AvgIQR are preferred over models with low ActInDistr
and below-average AvgIQR, as the latter are confident yet incorrect
models. Based on the results of Table 5, the Random Forest tends
to be less confident on its prediction with a higher variance. This
leads to fewer instances where none of the individual tree predictions
align with the actual delay. In contrast, CatBoost is highly confident
in its predictions, displaying lower variance. However, this confidence
increases the likelihood of scenarios where the predicted delay fails to
account for the actual observed delay. The Random Forest model yields
generally higher prediction variation, which is desired as it prevents
the model being confidently wrong, as can be the case for the Catboost
models when it fails to grasp the delay cause.

Fig. 11 shows that for around 78% of flights, the actual delays are
within the predicted probability distributions for the Random Forest
model, greatly outperforming the other two models (8% and 44%).
Although the AvgIQR is higher for the Random Forest, the model
refrains from predicting wide delay probability distributions; the model
is still able to distinguish high and low likelihoods for different delay
values.3
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Fig. 10. Prediction Accuracies for Random Forest, CatBoostTH and CatBoostPR models for the 90-Minute Prediction Horizon.
Table 5

Probabilistic model performance for out-of-sample data.

Prediction moment [min]

-90 -75 -60 —45 -30 -15
Random Forest ActInDistr [%] 76.09 76.82 77.51 78.60 79.17 80.00
AvgIQR [min] 5.29 5.28 5.24 5.20 5.10 4.99
CatBoostTH ActInDistr [%] 7.43 7.67 7.61 7.93 7.87 7.89
AvgIQR [min] 0.39 0.39 0.39 0.38 0.38 0.36
CatBoostPR ActInDistr [%] 42.23 42.71 43.30 43.44 43.99 45.20
AvgIQR [min] 2.35 2.35 2.33 2.29 2.26 2.21
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Fig. 11. Probabilistic Model Performance over Time in terms of ActInDistr and AvgIQR.
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respectively) for the 90-Minute Prediction Horizon.

Fig. 12 illustrates the probabilistic advantage of the Random For-
est method over the two CatBoost models. To quantify the accuracy
of the probabilistic prediction, a coverage is calculated. For the ex-
ample flights, the percentage of predicted probability density within
an interval of +10 min around the actual delay is determined. For
flights with small prediction errors (such as Flight A), all models
achieve high coverages, especially the confident models. For flights
with larger prediction errors (such as Flight B), the Random Forest

11

reaches much higher coverages than both CatBoost models. The Ran-
dom Forest model, although less confident, thus provides a better
probabilistic prediction. This can be attributed to Random Forest retain-
ing weaker trees, which may better represent the noise or outliers in the
data, providing a more nuanced representation. In contrast, boosting
methods, such as the Catboost, prioritize minimizing errors by reducing
the effect of these weaker trees, which can lead to overly confident
predictions. This is positive from a user perspective - models are desired
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to indicate uncertainty associated to possibly incorrect predictions. If a
model fails to do so, the user is likely to lose faith in the model over
time.

Finally, the in ActInDistr and AvgIQR only marginally improve
over time. Although the AvgIQR is expected to decrease over time as
a result of the updated dynamic features, this is only very slightly
the case. Since flight delays commonly arise close to departure, the
average predicted delays are higher for shorter prediction horizons. It is
empirically observed that some relation exists between the magnitude
of the predicted delay and the certainty of the model, as illustrated in
Fig. 13. As the Random Forest and CatBoostPR models predict higher
delays, their predictions become less certain. This can be explained by
the sampled dataset presented in Fig. 2, which contains relatively more
flights with small delays than flights with large delays. Statistically,
the probability of the model being trained on comparable flights is
higher for flights with small delays, which results in more confident
predictions for such flights. For the extremely confident CatBoostTH
model, this pattern is hardly visible, as the IQR remains small for almost
all predictions.

4.1.4. Binned model performance

The model performance per departure delay bin should be consid-
ered for the model selection. There is a physical limit’ to the number
of minutes a flight dispatcher can speed up a flight to compensate for
departure delays.

9 Dependent on many factors, e.g. flight distance, weather, aircraft weight,
and ATFM.

and CatBoostPR models (abbreviated RF, CBTH, and CBPR respectively) for the 90-Minute Prediction Horizon,

Flights with departure delays smaller than 25 min are particularly
interesting for flight dispatchers to slow down or speed up. For that
reason, the sampling strategy outlined in Section 3.2 was adopted to
optimize the model performance in this part of the departure delay
spectrum. Fig. 14 presents the model errors for departure delay bins
of 5 min, where the vertical bars represent the share of data in the
bins. The distributions are comparable, particularly those of the Cat-
BoostTH and CatBoostPR models and for delays larger than 25 min.
For the flights particularly interesting for en-route speed optimization,
i.e. departure delays of 5 to 25 min, the Random Forest model yields the
smallest prediction errors. For that reason, also considering the superior
probabilistic performance of this model, the Random Forest model is
selected for the remainder of the study.

4.2. Dynamic model prediction behaviour

The changes in prediction error and IQR between every two con-
secutive prediction moments are presented in Table 6. Between the 90
and 75 min prediction moments already, the prediction error and IQR
decrease for more flights than for which they increase. These ratios only
improve for shorter prediction horizons. Between the 30 and 15 min
prediction horizons, for over 60% of flights, the prediction confidence
still improves. Although, at shorter prediction horizons, a significant
number of flights is predicted accurately and with greater certainty,
this is not the case for all flights. A few examples are discussed next.

For flight C in Fig. 15, the prediction error decreases as the certainty
increases. Although the initial prediction error is relatively large, the
model corrects for it as the dynamic features are updated. Alternatively,

12
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Percentage of test flights for which prediction error and IQR increase or decrease between prediction moments.

Prediction interval [min]

-90 to -75 -75 to —60 —60 to —45 —45 to —-30 —-30 to -15
Decreasing Error 29.06% 30.34% 30.44% 31.42% 33.96%
Decreasing IQR
Decreasing Error 24.47% 24.03% 24.20% 23.23% 20.37%
Increasing IQR
Increasing Error 22.14% 22.64% 22.52% 23.34% 26.26%
Decreasing IQR
Increasing Error 24.33% 22.99% 22.84% 22.01% 19.41%
Increasing IQR
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Fig. 15. Dynamic Probabilistic Departure Delay Prediction for Flight C.
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Fig. 16. Dynamic Probabilistic Departure Delay Prediction for Flight D.

for Flight D in Fig. 16, the opposite is true. The model diverges from its
initial prediction because, for smaller prediction horizons, it considers
the TSAT delay (which is 11 min for all prediction moments) to be more
important. Therefore, the predicted delay slightly increases over time.
Just one minute after the final prediction moment, the TSAT delay was
updated to —5 min, which explains that the actual delay is much lower
than predicted.

For a large share of flights, the prediction error and IQR hardly
vary over time. For 54% of flights, the prediction error changes for
all prediction intervals combined is smaller than 5 min. Similarly, for
61% of flights, the IQR changes for all prediction intervals combined
is smaller than 3 min. For these flights, the model is either able to
accurately predict the delays at the first prediction moment already
or it is unable to improve its initial prediction. Flight E in Fig. 17, is
an example for which the prediction error and IQR are small for all
prediction moments. If instead, the error would be constantly large,
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Fig. 17. Dynamic Probabilistic Departure Delay Prediction for Flight E.
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Fig. 18. Dynamic Probabilistic Departure Delay Prediction for Flight F.

this would result in a translation of the distribution with respect to the
Predicted Delay-axis. Alternatively, changes in certainty would flatten
or steepen the distribution curves.

For a number of flights, the prediction certainty decreases as the
prediction horizon becomes smaller. This is mostly caused by the
model predicting higher delays, which results in additional uncertainty,
previously explained in Section 4.1.3. Moreover, increasing uncertainty
can be caused by contradicting features, for example flights with large
effective delays of previous flights where the TSAT delay has not yet
been updated. Fortunately, in many cases, the certainty increases over
the prediction horizon, in line with Table 6. Flight F, illustrated in Fig.
18, is an example for which the TSAT delay was large (45 min) for the
first five prediction horizons and changed to just 12 min at the final
prediction horizon, allowing the model to make a final prediction with
higher confidence.
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Fig. 19. Dynamic Probabilistic Departure Delay Prediction for Flight G.
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Fig. 20. Dynamic Probabilistic Departure Delay Prediction for Flight H.

For some flights, the prediction error and IQR temporarily increase
for some parts of the prediction horizon. Temporary changes in pre-
diction error are almost always the cause of temporary changes in
prediction certainty. Flight G in Fig. 19, is an example for which
the prediction error is temporarily higher, caused by a temporarily
larger TSAT delay value. This causes the probability distribution to
temporarily translate with respect to the Predicted Delay-axis. Flight
H in Fig. 20, is an example for which temporary high average delays
at the hub airport cause the prediction error to increase, thereby
temporarily decreasing the prediction certainty. The coupling between
the prediction error and uncertainty causes the probability distribution
to be translated and flattened simultaneously.

4.3. Model explainability results

The feature importances associated with the Random Forest model
are presented in Section 4.3.1 and the results of the relative feature
scaling method are presented in Section 4.3.2, with two examples of
explainability messages outputted to the flight dispatcher.

4.3.1. Feature importance

Given the dynamic feature updates and their improving correlations
with departure delays, presented in Fig. 9, the feature importances
are expected to change over time as well. The feature importances
for the 90 min prediction horizon as well as their propagation over
time are presented in Fig. 21. The ten least important features do
not change significantly over the full prediction horizon. The shifts
noticed in the five most important features are more interesting to
evaluate. Whereas at longer prediction horizons, the model considers

14
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Table 7

Sensitivity flight baseline parameters.
Feature Baseline Change
Month of Year 4 +3
Hour of Day 14 +4
Passenger Load Factor 0.75 +0.1
Baggage Load Factor 0.85 +0.1
Transfer Passenger Percentage 60 +10
Number of Passengers Reduced Mobility 5 +4
Total Passengers Day In Membership Program 42000 +5000
Median Delay of Flight Number [min] 10 +10
Effective Delay Previous Flight [min] 15 +10
Current Number of Flights at Hub Airport [min] 15 +5
Current Average Delays at Hub Airport [min] 10 +10
Current TSAT Delay [min] 20 +10
Last Aircraft Tail Swap [min] -900 +300
Wind Speed Longitudinal Direction [kts] 10 +5
Wind Speed Latitudinal Direction [kts] 10 +5

passenger information more important (ranked 3rd and 4th), for the
shorter prediction horizons, these importances drop to 4th and 5th
place respectively, almost halving in magnitude. Dynamic features
describing the current TSAT delay and average delays at the hub airport
become more important for shorter prediction horizons (1st and 3rd
compared to 2nd and 5th place).

4.3.2. Explainability through feature scaling

Following the relative feature scaling method presented in Sec-
tion 3.5, explainability messages are provided to the flight dispatchers,
indicating the significance of a given feature for this flight relative to
all others. Including this information in the explainability message was
one of the wishes of the flight dispatchers. The explainability message
for Flight E, previously discussed in Section 4.2, is presented below in
Fig. 22 for both the 90 min and 15 min prediction horizon. From the
messages, the user is informed that the lower delay prediction at the
15 min prediction horizon is caused by the decrease in current TSAT
delay and current average delays at hub airport. Finally, the impact of
delays is excluded for flights with predicted delays of less than 15 min
because these delays typically occur due to quasi-random operational
factors close to departure, not due to the major delay causes the model
was trained for.

5. Model validation

This section aims to discuss the efficiency and applicability of the
model. First, the sensitivity study is discussed in Section 5.1. There-
after, the conclusions drawn from two shadow runs are presented in
Section 5.2. Finally, an error analysis is performed in Section 5.3,
evaluating the flights that were most difficult for the model to predict.

5.1. Sensitivity analysis

This section focuses on the effect of altering a single input feature,
one at a time. For this, a baseline flight was set up, the values and
respective changes are tabulated in Table 7. The baseline values and
changes were chosen such that hypothetically, outputs are most likely
to lead to meaningful changes,'’. The sensitivity of the mean predicted
departure delay is shown in Fig. 23 for each of the six prediction
moments separately. Furthermore, the probabilistic sensitivity of the
model is illustrated in Fig. 24, for the prediction moment 90 min before
scheduled departure.

10 By choosing baseline values and changes that are not towards the ex-
tremes of the feature value range, e.g. if the feature ranges from 0.4 to 1,
changes are expected to be more meaningful when comparing 0.65, 0.75 and
0.85 instead of 0.4, 0.41 and 0.42 or 0.98, 0.99 and 1.
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Fig. 22. Explainability messages are provided to the flight dispatchers.

In Figs. 23 and 24, the predicted departure delay hardly varies
for changes on the hour of day, baggage load factor, transfer passen-
ger percentage, passengers with reduced mobility, current number of
flights at hub airport, last aircraft tail swap and wind speeds features.
This is explained by their relatively low importances in Section 4.3.1.
Although among the six most important features in Section 4.3.1, the
model is hardly sensitive to changes in the median delay associated
with the flight number. The effect of changes in other parameters is
better visible. Compared to the baseline month of April, departure de-
lays are predicted to be slightly lower if the flight was to be scheduled
in January. Similar relations are obtained for the passenger load factor,
current average delays at hub airport, and the total daily passengers in
the membership program. These small differences can be explained by
seasonality, as historically the delays are smaller in months with fewer
passengers (such as January).

The effective delay of previous flight is the most sensitive feature. At
the 90 min prediction horizon, an input change of 10 min results in an
output change of almost the same size. At closer prediction moments,
complying with the decreasing feature importance from Section 4.3.1,
the effective delay of previous flight becomes slightly less sensitive.
From the probabilistic sensitivity in Fig. 24, it is visible that the
model is less confident in predicting larger departure delays. The same
behaviour was previously observed in Section 4.1.3.

The model becomes more sensitive to the TSAT delay feature for
smaller prediction horizons. It was previously found that this feature
becomes more important for smaller prediction horizons. Interestingly,
the model is more sensitive to TSAT delay increases than TSAT delay
decreases. From historical data, it is observed that TSAT delays increase
more frequently than they decrease. Once a new TSAT delay is issued,
operations are often centred around accommodating this new time.
As such, it rarely happens that a TSAT delay decreases after it has
previously increased. Even in the case of decreases, it is often observed
that a new increase is issued later in the process. The model has thus
successfully learned that a TSAT delay increase is a stronger indicator
for higher delays than a TSAT delay decrease is for smaller delays.

15

5.2. Shadow runs

Two shadow runs were conducted: one for European flights and one
for intercontinental flights. Table 8 lists the flights considered during
both shadow runs. Because the input data was not available in real-
time, the model performance could only be evaluated as soon as the
data became available. Some of the flights were delayed for reasons the
model was not trained for, these cases are elaborated upon in the next
paragraphs. Although the model can predict delays caused by untrained
factors to some extent, it cannot predict all such delays. The model
strongly benefits from the current TSAT delay feature,'' since it covers
a wide range of operational delay causes.

+ ATFM Slot: Flight M in Fig. 25, received an ATFM slot of 27 min
just after the first prediction moment. This caused the TSAT delay
of the flight to get extended by the same amount. To avoid the slot,
the flight dispatcher searched for an alternative route to avoid the
overcrowded sector. After finding a suitable route, the slot time and
TSAT delay returned to their previous values, as is visible in the
departure delay prediction, where temporarily higher delays with
larger uncertainty are predicted. The flight dispatcher thus is part
of the loop, as his/her actions influence new predicted delays.
High-priority Flight: Flight I in Fig. 26, was a high-priority flight
because of an important part delivery. Because of a delayed pre-
vious flight, the model severely overpredicts for this flight. Given
the high priority, every effort was made to keep the turn-around
time as small as possible. The model is unable to capture the high
priority, as it is an exceptional circumstance.

Late Fuelling: Flight 7' in Fig. 27, was delayed because the fuelling
team arrived later than planned. The model captures this effect,
as the predicted delay increases at smaller prediction horizons, as

11 TSAT delays often follow from Target Off-Blocks Time (TOBT) delays,
which are issued by the airline itself.
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0.06 baseline baseline ___ baseline
(0.85) (60%) 4 (5 pax)
0.04 - = feature +0.1 == feature +10.0% == feature +4.0 pax
0.02 - = feature -0.1 —~— feature -10.0% —— feature -4.0 pax
! x mean x mean X mean
0 b4 X X
Fary Total Passengers Day in Membership Program Median Delay of Flight Number Effective Delay Previous Flight
2 0.06 % baseline ___ baseline baseline
[ (42000 pax) (10 min) /’ ‘\\ (15 min)
0 0.04 - = feature +5000.0 pax == feature +10.0 min 7 \ == feature +10.0 min
_B’ 0.02 —— feature -5000.0 pax == feature -10.0 min \\ -~ feature -10.0 min
= X mean X mean x mean
3 0 = =
©
.8 Current Number of Flights at Hub Airport Current Average Delays at Hub Airport Current TSAT Delay
E 0.06 baseline ___ baseline 7 baseline
(15 flights) (10 min) (20 min)
0.04 — = feature +5.0 flights — = feature +10.0 min - == feature +10.0 min
0.02 - — feature -5.0 flights —— feature -10.0 min  —— feature -10.0 min
x mean X mean S X mean
0 b4 — K 3¢
Last Aircraft Tail Swap Wind Speed Longitudinal Direction Wind Speed Latitudinal Direction
0.06 baseline baseline baseline
(-900 min) (10 kts) (10 kts)
0.04 == feature +300.0 min == feature +5.0 kts == feature +5.0 kts
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Fig. 24. Probabilistic Sensitivity Analysis for Random Forest Model at 90-Minute Prediction Horizon using Baseline and Change Values from Table 7.

a result of increasing TSAT delays. The TSAT delay feature thus
covers the fuelling delay.

Late Arrival Baggage: Flight R, illustrated in Fig. 28, was delayed
because the baggage carts arrived later than planned. The model
is unable to capture the late arrival of baggage carts, despite
small increases in TSAT delays. Instead, the model most likely
overpredicts because of a fully booked flight.

16

» Delayed Maintenance: Flight K was delayed for 32 min because
of a late return from maintenance. Since the model is not trained
with maintenance data, the effective delay of the previous flight
is thought to be 0 min, as the aircraft had arrived the day before
already. Although the model does not understand the maintenance
delay directly, it correctly predicts the departure delay because the
maintenance delay was already known 125 min before scheduled
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Table 8
Shadow run flights.
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Date Flight number Actual delay [min] Predicted delay at the 90 min horizon [min]
2023-10-10 Flight I 14.00 29.36
Flight J 48.00 59.91
Flight K 32.00 32.41
Flight L 27.00 27.22
Flight M 29.00 28.32
Flight N 5.00 15.07
2023-10-27 Flight O 9.00 8.41
Flight P 32.00 32.96
Flight Q 7.00 12.87
Flight R 12.00 15.09
Flight S -4.00 15.31
Flight T 15.00 18.59
Flight U 16.00 15.34
Flight V 15.00 17.25
Flight W 5.00 16.04
Flight M Flight I
== Actual Dela: Pred. Moment ——- Actual Dela: Pred. Moment
L I sﬁ;‘:jiacltgglg)élay -—- Predicted Dilay -90 min 45 : ﬁf;‘éiaétgjlg’élay ——. Predicted D)élay ~80 min
—— -75 min —— -75 min
'c' 60 —— -60 min '£'40 1 —— -60 min
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: 825 0.04 3
5 30 5 0.024
s L 20 1
a o 0.00 .
20 &
= 151 e o > g -80\/\'
10 0 25 20 & 25 ¢ 20 @e}\
90 75 60 45 30 15 | T€dicteg 5313;5[10.0 Ob,“\o 50 75 -60 45 30 15 ' redicteq Dseola75[ 100 O 3
Pred. Moment [min] min] & Pred. Moment [min] i &

Fig. 25. Dynamic Probabilistic Departure Delay Prediction for Flight M.

departure. For that reason, the TSAT was already updated before
the first prediction moment. The TSAT delay feature thus covers
the maintenance delay.

5.3. Error analysis

For 179 out of the 33532 flights in the test dataset, the model
predicts with an error of over 45 min. It is worth investigating the
reason for such errors. Following IATA guidelines (EUROCONTROL,
2023), primary (and secondary) delay codes are issued for delayed
flights. These delay codes explain the cause of the flight delay and are
thus useful for explaining high prediction errors. It should be noted that
ambiguity may exist for the issued delay cause, as different stakeholders
have different interests for the delay code issuing.

For the 179 flights, an overview of issued delay codes is presented
in Fig. 29. Primary and secondary delays are represented by Delay
Code 1 and Delay Code 2, respectively. 75.4% of flights with large
prediction errors are caused by just 17 delay codes. For the majority
of flights with large prediction errors, the model is not trained for
the underlying delay causes because the data is simply unavailable
(e.g. loading, fuelling, ATFM delay, and crew rotations) or unpre-
dictable (e.g. security/immigration, missing passengers, and flight deck
crew request).

Given that primary delay codes contribute the most to flight delays
and that the model accounts for the number of passengers with reduced
mobility and the effective delay of previous flights, it is worth exploring
why these factors were responsible for the main delay of some flights.
For the three flights with delays caused by passengers with reduced
mobility, the number of such passengers was 2, 7, and unknown respec-
tively. Seeing that most other flights with these numbers of passengers
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Fig. 26. Dynamic Probabilistic Departure Delay Prediction for Flight I.
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Fig. 27. Dynamic Probabilistic Departure Delay Prediction for Flight T.

with reduced mobility are only little delayed, it is no surprise that
the model underpredicted the delay for these three flights. For the
one flight with a delay due to aircraft rotations, the inbound flight
effectively arrived 26 min late, however, the departure delay was much
larger (91 min). Another reason must have caused the remainder of the
delay. Thus, the model is not able to correctly predict the delay for this
flight just based on the effective delay of the previous flight.

In conclusion, the model is robust to changes in input features
and has demonstrated its capability of predicting delays caused by
untrained factors. Due to the limited time frame of this study and the
fact that before a shadow run, it is unknown what will cause the delays
for the upcoming flights, only a number of these untrained factors
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Fig. 28. Dynamic Probabilistic Departure Delay Prediction for Flight R.

could be tested. Further shadow runs are necessary to guarantee the
applicability of the model in a broader sense.

6. Discussion

This section aims to further discuss some of the results. The feature
elimination process is reflected upon in Section 6.1. After, Section 6.2
discusses the tendency of the model to overpredict small delays. Finally,
the model performance is compared to a baseline statistical model in
Section 6.3.

6.1. Selected features

The list of selected features was presented in Table 2. In line with
the observed feature importance in Fig. 21, for the vast majority of trees
in the random forest, the top-level split decision is based on the Total
Passengers Day in Membership Program, Current TSAT Delay or Effective
Delay Previous Flight feature. These features improved the accuracy of
the final model.

The final list of selected features went through several rounds of
evaluation, where some interesting features were deemed not beneficial
to the model. For example, visibility was an important feature in
previous work by Sternberg et al. (2016), it was either covered by one
of the other features, reducing the need for a separate feature, or the
number of recordings with extreme fog was too low to make the models
understand its effect. Other examples are the total number of seats and
aircraft size, which showed a high correlation with two other features:
total passengers and median delay of flight number. As a result, the
total number of seats and aircraft size were removed from the model’s
feature set. The correlation with total passengers can be attributed to
the aircraft’s fill rate, which tends to be consistent. The correlation with
median delay can be explained by the fact that the fleet consists of
three distinct aircraft size groups, each typically experiencing different
departure delays. Additionally, the number of seats was not found to
be a significant factor in departure delay, as the turnaround process
already accounts for longer boarding times in larger aircraft. Therefore,
the differentiator in the boarding process is not the actual number of
passengers but the relative number, which is captured by the Passenger
Load Factor (and Baggage Load Factor) features.

Additionally, flight-specific passenger connection data was not used.
Instead, the percentage of transfer passengers, was selected. Although
this feature does not consider every inbound-outbound flight combina-
tion, it still stands out from other research as the feature is unique per
outbound flight. This does imply, however, that the flight-specific pas-
senger connection data was not valuable enough to predict departure
delays.
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Finally, incorporating additional features related to operational de-
cisions from airports, other airlines, or airspace constraints could signif-
icantly enhance the model’s ability to identify external causes of delays.
However, such data is often scarce and confidential. Future work should
prioritize the collection and analysis of this data.

6.2. Overpredicting for small delays

The overpredicting behaviour for small delays was previously eval-
uated in Fig. 10. At the 90 min prediction horizon, flights with actual
delays up to 15 min are overpredicted by 5.17 min on average. Alter-
natively, flights with actual delays of over 15 min are underpredicted
by 9.68 min on average. The overall overprediction distribution for the
Random Forest model is presented in Fig. 30, for each of the six distinct
prediction horizons. Naturally, overprediction leads to unnecessary fuel
burn and is undesirable.

The overpredicting behaviour for smaller delays is attributed to two
things. Firstly, almost all feature-target relations are positive,'” see Fig.
31. As a result, when some feature values are above average, the model
may already be inclined to predict higher delays since there are no
features that impact the predicted delays negatively. Secondly, given
the randomness involved with the turn-around process, the model is
not always able to accurately predict the delay (R2 is only 0.55 at
the 90 min prediction horizon). The overpredicting behaviour may
also partially be caused by the fact that not all required information
is already known at early prediction moments. This is visible in Fig.
30, where the overpredicting behaviour reduces for shorter prediction
horizons, but does not disappear completely.

For future work, several other logical follow-up steps can be taken
to further improve dynamic probabilistic airline departure delay fore-
casting. Firstly, one can test the impact of incorporating other novel fea-
tures. It is recommended to explore the effect of push-back truck avail-
ability and crew rotations data as both are critical in the turnaround
process. Secondly, it is recommended to consider actual departures
rather than planned departures for the current average delays at hub
airport, in order to always have complete data. Thirdly, the granularity
of the prediction horizons can be increased to 5 or 10 min to allow
for quicker incorporation of dynamic feature updates. Finally, it is
recommended to perform further validation shadow runs to guarantee
the applicability of the model to a wider range of untrained delay
causes.

6.3. Improvement compared to statistical baseline model

The developed model is compared to an existing statistical model
that is currently used in operations. The latter analyzes past flights,
recording the most significant causes of delay, while excluding unpre-
dictable factors like random technical difficulties. This statistical model
calculates the moving average of past flights, adjusted for these ex-
cluded causes. Note that specific details about this model’s functioning
are herein intentionally omitted due to confidentiality. However, its
use in operational settings suggests that it has an acceptable level of
accuracy.

When considering the same case study period, the existing model
reaches an MAE of 9.51 min, an RMSE of 18.62 min, and an R2
of 0.13. Since this model does not consider multiple prediction mo-
ments, these performance metrics values are the same for all prediction
horizons. The prediction performance of both models at the 90 min
prediction moment is presented in Fig. 32, considering just a single
flight series (upper figure) and a single day at the Hub airport (lower
figure). Although the existing model captures the global dynamics,
judging from the upper plot of Fig. 32, it is unable to predict large
delays. The proposed Random Forest model is much better capable of

12 The feature-target relations that are not positive are near zero.
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Il Counts Delay Code 1
mmm Counts Delay Code 2

Delay Code Descriptions:

0 4 8 12 16
Number of Flights

20

01:
03:
04:
15:

16:

19:
32:
36:
39:
65:

81:

85:
86:
91:
93:
94:
95:

Airline internal code
Airline internal code
Airline internal code
Boarding, discrepancies,
missing passenger
Commercial publicity,
passenger convenience
Reduced mobility
Loading/equipment
Fueling/defueling
Technical/equipment
Flight deck crew
request

ATFM due to en-route
demand capacity
Mandatory security
Immigration, customs
Load connection
Aircraft rotation
Cabin crew rotation
Crew rotation (flight
deck or entire crew)

Fig. 29. Delay Code Issued for Flights with Highest Model Prediction Errors.
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Fig. 30. Random Forest Departure Delay Overprediction.

predicting such large delays. Whereas the existing model overpredicts
less for smaller delays, it is useless for days with disrupted operations
(see lower figure in Fig. 32). The proposed Random Forest model
is particularly of added value for the prediction of severely delayed
flights.

6.4. Comparison with other studies

Comparing the results of this model to previous studies presents
challenges due to differences in datasets, airlines, airports, as well as
differences in the timeframes for predicting departure delays. Gener-
ally, studies predicting delays longer than 90 min before departure have
reported an MAE of 5 to 15 min across various European airports (Dal-
mau et al., 2021; Birolini and Jacquillat, 2023). For shorter look-ahead
times, the MAE typically decreases to around 3.8 to 7.7 min (Sun
et al., 2022). In the United States, studies tend to report lower MAEs,
ranging from 2.48 to 3.6 min (Wang et al., 2022). In contrast, the
random forest model in this study exhibits an MAE of 8.46 min around
90 min before departure, which decreases to 7.37 min at 15 min prior
to departure (see Table 4). This indicates that our model’s performance
aligns with recent optimal values identified in literature. Nevertheless,
direct comparison is impossible as different datasets, fleets, airlines,
and airports are used across all studies.

A key advantage of our model is its probabilistic nature, which
evolves over time as more information becomes available. The parame-
ter ‘ActInDist’, introduced in this study, measures how close predictions
align with the final delay, a metric not addressed in other works. Two
other studies focused on probabilistic departure delay forecasts for
individual flights, namely Vorage (2021) and Zoutendijk (Zoutendijk
and Mitici, 2021). These achieved an MAE between 12.51 to 13.23 min
several days before flight. Zoutendijk (Zoutendijk and Mitici, 2021)
achieved a Continuous Ranked Probability Score (CRPS) (Matheson
and Winkler, 1976), measuring the deviation of the estimated delay
from the actual value, of 8.86 min. Our model seems to have improved
from this value, likely due to the reduced training dataset size used by
Zoutendijk (Zoutendijk and Mitici, 2021).

Currently, there is a lack of direct comparisons among studies
focused on departure delays. This is partly due to the use of data
confidential to airlines and airports. Future efforts should prioritize the
release of data suitable for comparative research. Given that elements
related to airline, passengers, and airport technical resources are crucial
for model performance, as demonstrated in this study, collaboration
among various industry stakeholders is essential for such efforts.

7. Conclusion

Hub-and-spoke airlines generally adjust their operations to guaran-
tee passenger connections. For that reason, punctuality is one of the
key performance indicators of such airlines. To ensure on-time arrivals,
flights that were delayed upon departure need to compensate for the
lost time whilst airborne. For adequate fuelling, flight dispatchers use
departure delay predictions. The goal of this study was to propose an
explainable supervised learning model that improves on an existing
departure delay prediction model, as there was room for improvement.

A Random Forest model was selected as it outperformed the other
models for the flights most suitable for en-route speed optimization
and demonstrated superior probabilistic performance. The dynamic
probabilistic model performance analysis then indicated that for shorter
prediction horizons, the model was able to improve on initial pre-
dictions for a large number of flights, both in terms of correctness
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Fig. 32. Comparison with baseline statistical model at 90-Minute Prediction Horizon.

and certainty. At the default 90 min prediction horizon, the model
reaches an MAE of 8.46 min, an RMSE of 11.91 min, and an R2
of 0.55. At the 15 min prediction horizon, these values improve to
7.37 min, 10.44 min, and 0.65, respectively. At all prediction moments,
for around 78% of flights, the actual delay was within the predicted
departure delay probability distribution. For the flights that are most
suitable for en-route speed optimization, the Random Forest model
reached MAE values of around 5 min.

Finally, the model was validated in two shadow runs, proving the
robustness of the model in real-life operational scenarios. Future work
may focus on further testing the applicability of the model in different
use cases. Further data collection and analysis may be performed to
cover scenarios where the model lacks efficiency due to unknown
missing data. Additionally, the granularity of the prediction horizons
may be increased to improve the quality of decision support to airlines.
Finally, adding features related to airspace constraints has the potential
to improve the accuracy of the model.
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