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 A B S T R A C T

Punctuality is a key performance indicator for any airline, especially hub-and-spoke airlines, given their focus 
on short passenger connections. Flights that are delayed at departure need to compensate for lost time whilst 
airborne. Because fuelling takes place well before scheduled departure, predicted departure delays determine 
the planned fuel amounts for en-route speed optimization. To prevent unnecessary fuel burn, airlines benefit 
from highly accurate departure delay predictions. This study aims to extend previous work on airline departure 
delay forecasting to a dynamic and probabilistic domain, whilst incorporating novel day-of-operations airline 
information to further minimize prediction errors. Random Forest, CatBoost, and Deep Neural Network models 
are proposed for a case study on departure flights of a major hub-and-spoke airline from its hub airport between 
1 January 2020 and 1 August 2023. The Random Forest model is selected for its probabilistic performance 
and high accuracy in predicting delays between 5 and 25 min, for which en-route speed optimization has the 
largest effect. At the 90 min prediction horizon, the model reaches a Mean Absolute Error of 8.46 min and a 
Root Mean Square Error of 11.91 min. For 76% of flights, the actual delay is within the predicted probability 
distribution range. Finally, this study puts a strong emphasis on explainability. Flight dispatchers are therefore 
provided with the main factors impacting the prediction, explaining the context of the flight. The versatility of 
the model is demonstrated in two shadow runs within the procedures of an international airline, where delays 
caused by familiar and unfamiliar factors were successfully predicted.
. Introduction

Punctuality is a key performance indicator for airlines, especially 
ub-and-spoke airlines, given their focus on short passenger connec-
ions. A significant factor that affects punctuality is the departure delay 
f the flight. The latter refers to the difference between the actual 
ff-block time and scheduled off-block time, where off-block marks 
he moment when an aircraft begins to push back from the gate or 
arking position to initiate taxiing for departure. Costly passenger com-
ensation and experienced discomfort are not the only incentives for 
irlines to minimize such delays. To ensure on-time arrivals, flights that 
ere delayed at departure beyond pre-planned slacks in the scheduled 
ravel time, have to compensate for the lost time whilst airborne, 
hereby increasing fuel consumption which results in higher costs and 
missions.
Required fuel amounts are indicated in a flight’s final flight plan, 

hich is usually issued by the airline’s flight dispatcher around 90 min 
efore scheduled departure time. Accurate departure delay predictions 
reatly benefit fuel amount calculations. In case of underpredicted 
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departure delays, insufficient fuel is carried for compensating time, 
possibly leading to the loss of passenger connections. Alternatively, in 
the case of overpredicted departure delays, excessive fuel is carried, 
leading to unnecessary fuel burn due to increased aircraft mass.

Predicting these delays is not trivial, as they stem from diverse 
causes such as weather conditions, airspace capacity, airport conges-
tion, and airline resource allocation. Conventional approaches often 
rely on historical averages of flight occurrences, which yield suboptimal 
outcomes. However, given the dynamic nature of airspace operations 
and the escalating density of air traffic, historical data frequently fails 
to accurately reflect present delays.

Research has focused on developing prediction methods that go 
beyond averaging historical data, resorting to statistical and stochastic 
methods (Mueller and Chatterji, 2002; Abdel-Aty et al., 2007; Tu et al., 
2008). However, existing studies predominantly focus on the deter-
mination of a single delay value at a specific moment prior to flight 
departure. Nevertheless, the accuracy of the prediction models varies 
considerably over time with the assimilation of new data as departure 
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time approaches. An understanding of the level of uncertainty at a 
certain point in time, and of how new input values affect the final delay, 
can provide valuable guidance for decision-making. Additionally, often 
results are constrained by the lack of airline data (Dalmau et al., 
2021). However, airline decisions directly influence flight prioritization 
and resource allocation, directly shaping the final departure scenario. 
Finally, there is still wide concern on how to effectively translate the 
outcomes of these prediction models into practical tools for airline 
operations.

This study aims to cover the previous research gaps by extending 
current departure delay prediction models towards a dynamic and 
probabilistic domain. Thus, forecasting departure delay probability 
distributions for individual flights at different moments relative to their 
scheduled departure times. Simultaneously, this study aims to further 
minimize prediction errors by exploring novel day-of-operations flight 
characteristics, available from an international airline flight dataset. 
Finally, given the importance of the decisions that follow from the 
model predictions, this study places strong emphasis on explainability 
by outlining the reasoning behind the predictions of the model. Rec-
ommendations are made on how to present the outcomes of the model 
to flight dispatchers.

The remainder of the paper is structured as follows. Related work 
and the contribution of this study are presented in Section 2. There-
after, the methodology adhered to in this study is elaborated upon 
in Section 3. The results of the proposed models are then presented 
in Section 4, where one of the models is selected. Additionally, it is 
discussed how to present the results of the model to flight dispatchers. 
The model validation is performed in Section 5. Subsequently, the 
results are discussed in Section 6, alongside the results of shadow 
runs performed with real-world data and conditions at an international 
airline. Finally, Section 7 concludes this work.

2. Related work

Early related work focused on quantifying departure delays using 
statistical methods. Mueller and Chatterji (2002) found that depar-
ture delay probability distributions were best modelled using Poisson 
distributions and that arrival delay probability distributions better 
fitted Normal distributions. Furthermore, departure delays were often 
considered to be a sum of temporal components. Abdel-Aty et al. 
(2007) proposed a model building on daily, monthly, and seasonal 
patterns, and Tu et al. (2008) summed daily and seasonal patterns with 
a residual. Historical data shows that departure delays are not evenly 
distributed: the majority of flights experience minor delays whereas 
only a few flights are delayed more significantly. This unevenness, 
referred to as positive skew, was the motivation for Pérez-Rodríguez 
et al. (2017) to compare symmetric and asymmetric Bayesian logistic 
models for predicting flight delays. The skewed nature of the dataset 
favoured the performance of the latter model.

In recent work on departure delay prediction using supervised 
learning, the applicability of both tree-based models and neural net-
work models has been studied. For tree-based models, Kalliguddi and 
Leboulluec (2017) and Khan (Khan et al., 2021), concluded that simple 
decision trees were outperformed by random forests. This is expected 
as the later uses an ensemble of decision trees, showing higher accu-
racy for datasets with high-dimensional feature spaces. At the same 
time, Manna et al. (2017) showed that random forests, in their turn, 
were outperformed by boosting models. The latter can be more accurate 
as, contrary to Random Forest, it trains one tree at a time, each tree 
correcting the errors of the previous ones. With the aim of evaluating 
the performance of EUROCONTROL’s Enhanced Tactical Flow Manage-
ment System (ETFMS) against a supervised learning model, Dalmau 
et al. (2021) proposed a different boosting model: Gradient-Boosted 
Decision Trees (GBDT). Using a large number of features (over 30), it 
was found that the existing system is outperformed by the GBDT model, 
especially for prediction horizons larger than 60 min. GBDT has the 
2 
advantage of each tree in the gradient boosting correcting the errors 
of its predecessor. Vorage (2021) extended the departure delay predic-
tion to the probabilistic domain. Random Forests and Mixture Density 
Networks were proposed to generate probability density functions for 
individual flights from Amsterdam Airport Schiphol. From these distri-
butions, the probability that a forecast delay is accurate within some 
time-error interval could be computed. Later, this approach was used 
by Zoutendijk and Mitici (2021), constructing similar models to predict 
departure delays using Rotterdam Airport flight data, reaching a Mean 
Absolute Error (MAE) of around 12.5 min.

Sun et al. (2022) aimed to predict airline delays from a network 
perspective, testing the applicability of several neural networks includ-
ing a Dynamic Spatial–Temporal Graph Attention (DST-GAT) network 
and a Long Short-Term Memory (LSTM) network. Whilst the network 
architectures differed significantly, the outcomes for both models were 
comparable, with Root Mean Square Error (RMSE) values between 
5–10 min, differing per airport in the network. DST-GAT and LSTM 
networks offer the possibility of greater accuracy with large amounts 
of data with long-range dependencies. Finally, Birolini and Jacquillat 
(2023) collaborated with European airline Vueling, comparing the per-
formance of Linear Regression, Random Forest, and Extreme Gradient 
boosting models for predicting the airline’s flight delays. For each 
flight, only the primary flight delay was considered, eliminating the 
effect of precedent flights. Taking into account airline-specific informa-
tion, such as crew rosters and aircraft availability, the Extreme Gradient 
boosting model reached an MAE of around 7 min, outperforming the 
other models.

Most reviewed literature considered temporal features, flight sched-
ule features, and weather features. Among others, Sternberg et al. 
(2016) demonstrated that including weather features benefits the model
performance. Other novel features such as flight de-icing status (Dal-
mau et al., 2021) and take-off runway (Khan et al., 2021; Alonso 
and Loureiro, 2015) were proposed. Moreover, Yu et al. (2019) es-
pecially focused on short-term features, including the boarding option 
(jet bridge or bus), closing time of cargo doors and passenger doors 
and the time between check-in, boarding, and gate closure. Only 
two papers considered passenger connection information, aggregating 
numbers per flight destination. Furthermore, only a few studies had 
access to detailed airline data. Finally, although probabilistic departure 
delay forecasts for individual flights were proposed (Vorage, 2021; 
Zoutendijk and Mitici, 2021), it has not yet been investigated how such 
probabilistic forecasts change over time.

In resume, this paper intends to advance the state-of-the-art and 
cover the previously mentioned research gaps by:

1. Considering the number of planned connection passengers for every 
unique inbound-to-outbound flight combination: Only two papers 
considered passenger connection information. Ciruelos et al. (2015) 
assumed monthly connecting passenger percentages, thereby not 
specifying the numbers per individual flight. Sismanidou et al. 
(2022) had access to real passenger itineraries from a Market-
ing Information Data Tapes (MIDT) dataset, but used this data 
to determine ‘‘a proportion of connecting passengers for a specific 
itinerary by a specific air carrier ’’, therefore also averaging the 
connecting passenger numbers, missing out on the opportunity to 
use the flight-specific passenger connection data for predicting the 
departure delays.

2. Considering novel features of the day-of-operation of airlines: Only 
few studies had access to detailed airline data, through research 
partnerships with Peach and Vueling (Birolini and Jacquillat, 2023; 
Horiguchi et al., 2017). Despite these partnerships, the studies 
refrain from proposing detailed day-of-operations features, but in-
stead hold on to mostly booking and schedule information. Thus, 
there remains a research gap for the effect of day-of-operation 
features, such as last-minute airframe assignments, Target Start-up 
Approval Time (TSAT) changes, and airport delay levels.
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3. Analysing how probabilistic departure delay forecasts for individ-
ual flights change over time relative to scheduled departure, given 
the availability of new data. Several papers compared the perfor-
mance of the model at multiple moments relative to scheduled 
departure times (Dalmau et al., 2021; Sun et al., 2022; Rebollo 
and Balakrishnan, 2014; Choi et al., 2016; Gopalakrishnan and 
Balakrishnan, 2017; Schösser and Schönberger, 2022). However, 
none provides an indication of the probability distribution of the 
determined delay value. Although probabilistic departure delay 
forecasts for individual flights were already proposed (Vorage, 
2021; Zoutendijk and Mitici, 2021), it has not yet been investigated 
how such probabilistic forecasts change over time. The concept of 
dynamic probabilistic forecasts was previously used by Felder et al. 
(2010) in the domain of dynamic wind power forecasting. No such 
research has yet been performed for the prediction of departure 
delays of individual flights.

3. Methodology

This section aims to describe the methodology adopted for this 
study. First, the case study is introduced in Section 3.1. Thereafter, 
data preprocessing is discussed in Section 3.2. The model development 
process is then elaborated upon in Section 3.3. Finally, the feature 
engineering processes are explained in Section 3.4 and the model 
training and result processing are discussed in Section 3.5.

3.1. Case study

Several departure delay prediction methods are proposed and tested 
through a case study on data provided by a major international airline. 
The case study was conducted for the period between 1 January 2020 
and 1 August 2023. It should be noted that this period includes both 
the COVID period and the period just after, where logistical prob-
lems resulted in above-average departure delays. Most of the logistical 
problems were solved from November 2022 onwards, which translated 
into traffic and delay levels almost back at pre-COVID standards, still 
impacted by seasonality. Including the data of these periods with 
significantly different dynamics turns out to be beneficial as it allows 
the model to be trained on a wider variety of historical data. The 
presence of more flights towards the extremes of the departure delay 
spectrum simultaneously improves the sampling practices.

The case study involves the use of supervised learning algorithms 
to improve on an existing statistical model, currently in use at the 
airline. For predicting departure delays, the statistical model solely 
uses historical data of other flights within the same flight series. The 
supervised learning algorithms are trained to draw patterns based on 
all historical flights. Next to further minimizing the prediction error, 
the case study also aims to better explain the predicted delays by 
predicting departure delays as probability distributions over time and 
by explaining what inputs contribute to the predicted output. The study 
is split into multiple stages, illustrated in Fig.  1. These stages are 
elaborated upon in more detail in Section 3.2 to Section 3.5.

3.2. Data preprocessing

Through the collaboration with the airline, detailed flight data 
and basic traffic data of the hub airport are available. Additionally, 
historical weather data is available from the Iowa State University 
Environmental Mesonet (Iowa State University, 2023). The following 
describes how these three datasets were processed:

• Airline Data: After eliminating cancelled flights, flights with 
unpredictable delays,1 ferry flights, test flights and flights without 

1 Delays are registered using International Air Transport Association (IATA) 
Delay Codes (EUROCONTROL, 2023), a classified selection of which is deemed 
unpredictable, e.g., technical issues.
3 
recorded departure delays, the airline dataset consists of 286,000 
unique flights. For each flight, (anonymized) passenger informa-
tion and flight events, including TSAT updates and Estimated 
Time of Arrival (ETA) predictions of inbound flights, are known. 
Additionally, connection times and passenger counts of any flight 
arriving at the hub airport are available for over 90% of the 
outbound flights.

• Airport Data: After similar initial data cleaning as the airline 
data, the airport dataset consists of 562,000 flights (including 
those of the considered airline). From the available information 
on origin–destination pairs, scheduled and actual departure times, 
and flight numbers, the number of flights and average delays at 
the hub airport can be determined for any time interval within 
the case study period.

• METeorological Aerodrome Report (METAR) Data: Available 
from Iowa State University Environmental Mesonet, weather re-
ports with an update frequency of 30 min are obtained for the 
hub airport, including air temperature, dew point, humidity, wind 
direction, wind speed and gust, precipitation, visibility, cloud 
coverage, and cloud height information (Iowa State University, 
2023).

The blue bins in the left of Fig.  2 represent the number of flights for 
a specific departure delay value. The distribution of the bins confirms 
that the departure delay data for this study is positively skewed. There-
fore, the data has to be balanced through undersampling. The objective 
of undersampling is to reduce the model’s bias towards predicting delay 
values near zero, which is the majority class. The hypothesis is that 
decreasing the prevalence of these smaller delays in the training data 
will improve the model’s accuracy in predicting delay values within the 
minority class of larger delay values. Undersampling was performed by 
selecting a maximum number of flights for each bin. This maximum 
number is based on the number of flights in a select bin. Selecting 
the correct bin to undersample the excess data introduces a trade-off 
between two metrics: R2 and RMSE, illustrated on the right of Fig.  2. 
No data sampling yields relatively low RMSE values because the model 
is overfitted to the part of the departure delay spectrum with most 
data points. As a result, the errors for flights with uncommon departure 
delays are relatively high, causing the fit of the model to remain low.

To guarantee a balance of global fit and optimal model performance, 
it is chosen to select a sampling strategy whereby the number of flights 
is limited to the number of flights in the 15 min bin. This yields the 
purple distribution on the left of Fig.  2. For this sampling strategy, 
the R2 value is above its trend and the RMSE value is below its 
trend, where additional importance is given to the RMSE value as it 
increases relatively faster than the R2 value. The sampling process is 
performed at random, because other methods such as cherry-picking 
may introduce biases to the model.

Finally, to improve the accuracy and reliability of the model, out-
liers are removed from the dataset. Because of the positive skew in 
the departure delay distribution, visible on the left of Fig.  2, only 
values towards the extreme positive end are removed, since these 
values lie much farther from the median value than those towards the 
negative end. Only 1% of outlier data is removed, thereby preventing 
the potential loss of valuable data patterns. After outlier removal, the 
remaining departure delay spectrum ranges from −20 to +97 min.

3.3. Model development

From existing studies, it is apparent that simple decision trees are 
nearly always outperformed by random forests and boosting mod-
els (Kalliguddi and Leboulluec, 2017; Khan et al., 2021; Manna et al., 
2017). Additionally, more complex neural network structures would 
outperform simpler structures as long as the available training dataset is 
of sufficient size (Ye et al., 2020; Sun et al., 2022; Birolini and Jacquil-
lat, 2023). When insufficient training data is available, or the predicted 
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Fig. 1. Methodology for Dynamically Forecasting Airline Departure Delay Probability Distributions.
Fig. 2. Non-Sampled and Sampled Departure Delay Distributions (left) and Sampling Strategy Trade-Off (right).
Table 1
Hyperparameters of the models employed in this study.

 (a) Random forest model.
 Hyperparameter Value  
 nr_estimators 1000  
 max_features 4  
 max_depth 10  
 min_samples_split 4  
 min_samples_leaf 2  

 

 (b) CatBoost model.
 Hyperparameter Value

(CatBoostTH)
Value
(CatBoostPR)

 

 iterations 400 10  
 learning_rate 0.02 0.5  
 depth 10 10  
 posterior_sampling True True  
 random_state Random Random  

 

 (c) Deep neural network model.
 Hyperparameter Value  
 nr_input_neurons 15  
 nr_output_neurons 1  
 nr_hidden_neurons 16  
 nr_hidden_layers 4  
 dropout 0  
 leakyrelu_negative_slope 0.1  
 n_epochs 1000  
 batch_size 2048  
 lr_initial 1e−4  
 lr_increase 1.2  
 lr_decrease 1.2  
 lr_stop 1e−10  
processes are too random, simpler neural networks or tree-based mod-
els may outperform more complex models. This work directly compares 
the usage of three different models: Random Forest, CatBoost, and Deep 
Neural Network models.

First, Random Forest was chosen for its simplicity and high level 
of explainability, as the decision-making process at each tree can be 
easily traced to the final outcome. Next, in theory, CatBoost promises 
an increase in accuracy when compared to Random Forests due to 
its boosting mechanics. As a member of the family of GBDT machine 
learning ensemble techniques, CatBoost is particularly advantageous 
due to its exceptional ability to handle categorical data (Hancock and 
Khoshgoftaar, 2020). Finally, the utilization of a Deep Neural Network 
allows to explore whether neural-based methods could be a viable 
4 
option for this model. These have demonstrated superior performance 
over boosting methods in handling complex data structures, though this 
often comes at the expense of longer processing times and the need 
for large datasets. These three models are further developed and are 
elaborated upon in Sections 3.3.1, 3.3.2, and 3.3.3. The hyperparam-
eters for all models are shown in Table  1. The values used align with 
the best practices recommended in previous studies. Multiple different 
hyperparameters were tested, without any significant improvements in 
performance.

The delays are predicted at six prediction moments: 90, 75, 60, 45, 
30, and 15 min before scheduled departure time. To prevent the models 
from falsely propagating errors and uncertainty from one prediction 
moment to another, separate models are trained for each prediction 
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moment. For all models, hyperparameter optimization is performed 
empirically, as the effect of all parameters was understood through 
numerous model iterations in the test phase.

3.3.1. Random forest
Given its computational efficiency, robustness to outliers, and in-

terpretability, random forests have been a popular choice for modelling 
stochastic processes (Kalliguddi and Leboulluec, 2017; Sun et al., 2022; 
Birolini and Jacquillat, 2023; Rebollo and Balakrishnan, 2014). The 
random forest is an ensemble method, a forest of decision trees that 
serve as independent predictors. Furthermore, the method relies on the 
concept of bagging (bootstrap-aggregating), meaning that sub-samples 
of the dataset are used to construct unique decision trees and that, for 
regression problems, the final prediction is the mean of all individual 
results. For a probabilistic approach, a probability distribution can be 
created using all individual tree results (Vorage, 2021; Zoutendijk and 
Mitici, 2021).

To allow for generating detailed probability distributions, the num-
ber of decision trees (nr_estimators) is set to 1000. The maximum 
number of features for the model (max_features) is set to 4, following 
the binary logarithm of the number of features. The maximum model 
depth (max_depth) is set to 10 to prevent overfitting as a result of 
extremely large trees. The minimum number of samples for splits 
(min_samples_split) and leaves (min_samples_leaf ) is set to 4 and 2 re-
spectively, because larger values may yield too simple decision trees. 
The hyperparameters are summarized in Table  1a.

3.3.2. CatBoost
CatBoost (Prokhorenkova et al., 2018) is an open-source gradient 

boosting library that allows for efficient and fast predictions. The model 
treats data sequentially to prevent data leakage. The use of symmetric 
trees makes weaker learners for the boosting process, resulting in faster 
computation times. Moreover, the underlying boosting scheme of Cat-
Boost prevents overfitting and eases hyperparameter tuning (CatBoost, 
2023). CatBoost is inherently less sensitive to data imbalance. CatBoost 
models require M iterations to reach the final prediction. To allow 
probabilistic modelling, a total of N independent CatBoost models are 
created, where N is set to 1000 to match the number of estimators in 
the Random Forest model.

Two different CatBoost models are proposed, one with a smooth 
iteration scheme (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 400 and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.02), in the 
remainder referred to as CatBoostTH for its theoretical application, and 
one with a rougher iteration scheme (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 10 and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒
= 0.5), in the remainder referred to as CatBoostPR. A larger learning 
rate typically results in bigger differences between the predictions of 
consecutive trees. This often leads to greater variance in the final pre-
diction compared to a model with a lower learning rate. The increased 
variance in the final predictions may provide a more reliable measure 
of the uncertainty in the model output.

For both models, the model depth (𝑑𝑒𝑝𝑡ℎ) is set to 10, complying 
with that of the Random Forest model, allowing for their results to 
be compared directly. Note that the value of the model depth is a 
balanced trade-off, a deeper tree can fit the training data better, but 
it can also lead to overfitting. The latter is especially a problem with 
gradient boosting methods. A max depth of 10 was empirically found 
to be a good value. During training of the model, different depth values 
were compared. None of the other depths tested resulted in significant 
differences in performance.

Finally, posterior sampling (𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔) is enabled to ‘‘obtain 
uncertainty predictions with good theoretical properties’’ (Prokhorenkova 
et al., 2018). To ensure that all N independent models are unique, the 
unique state (𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒) is set randomly for every model estimator. 
The hyperparameters are summarized in Table  1b.
5 
3.3.3. Deep neural network
Neural networks are machine learning models consisting of in-

terconnected nodes that are activated by activation functions. These 
models can handle nonlinear feature relationships and are trained using 
error back-propagation, a feedback loop that tunes the internal model 
parameters to achieve the optimal performance (Svozil et al., 1997). 
For adequate training, a substantial amount (105 to 106) of historical 
flights is required to achieve meaningful results (Thiagarajan et al., 
2017). Compared to the other models, neural networks present more 
challenges in terms of model explainability.

For the neural network structure, the number of input neurons 
(𝑛𝑟_𝑖𝑛𝑝𝑢𝑡_𝑛𝑒𝑢𝑟𝑜𝑛𝑠) is the number of input features. Since the departure 
delay is the only output, the number of output neurons 
(𝑛𝑟_𝑜𝑢𝑡𝑝𝑢𝑡_𝑛𝑒𝑢𝑟𝑜𝑛𝑠) is equal to 1. There is more flexibility in determining 
the number of hidden neurons (𝑛𝑟_ℎ𝑖𝑑𝑑𝑒𝑛_𝑛𝑒𝑢𝑟𝑜𝑛𝑠), which is set to 16 
for the most optimal result. Controlling the depth of the model, the 
number of hidden layers (𝑛𝑟_ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠), is set to 4, to prevent an 
overly complex model from forming. Since preliminary results yielded 
comparable results for in-sample and out-of-sample data, the model 
was not overfit. Therefore, dropout (𝑑𝑟𝑜𝑝𝑜𝑢𝑡) is not required and is 
set to 0. Finally, for the Leaky ReLU (Rectified Linear Unit) activa-
tion functions in each of the layers of the model, the negative slope 
(𝑙𝑒𝑎𝑘𝑦𝑟𝑒𝑙𝑢_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒) is set to 0.1, to allow for negative inputs.

The hyperparameters are summarized in Table  1c. The number of 
epochs (𝑛_𝑒𝑝𝑜𝑐ℎ𝑠) is set to 1000, to facilitate enough learning iterations. 
For the regression algorithm, the MSE loss function is used. Batch sizes 
(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒) of 2048 datapoints are used, resulting in sufficient batches 
considering that the full dataset is two orders of magnitude larger. An 
adaptive learning rate is used to ease the search for global optima. The 
initial learning rate (𝑙𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙) is set to 1e-4. After every epoch, the 
learning rate is increased by an increase factor (𝑙𝑟_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒) of 1.2 if 
the current epoch prediction is better than the current-best prediction 
and decreased by a decrease factor (𝑙𝑟_𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒) of 1.2 otherwise. When 
the learning rate becomes smaller than the stop criteria learning rate 
(𝑙𝑟_𝑠𝑡𝑜𝑝) of 1e-10, the model is deemed to have converged. These 
parameter values were found by empirically tuning baseline literature 
values. This guarantees the model’s ability to generalize whilst keeping 
training times acceptable.

3.4. Features

The selected features are presented in Section 3.4.1 and their cor-
relation is discussed in Section 3.4.2. Finally, the potential uncertainty 
related to some of the features is evaluated in Section 3.4.3.

3.4.1. Selected features
The selected features from Table  2 are described in more detail 

below. Note that for the Deep Neural Network, there are trigonometric 
variations to the month of the year and hour of the day features.

• Month of Year: The numeric.2 month of the flight, following from 
the Scheduled Off-Blocks Time (SOBT)3

• Hour of Day: The departure hour of the flight, following from the 
SOBT3.

• Passenger Load Factor: The number of passengers booked com-
pared to the number of seats available on the aircraft. For a fully 
booked flight, the passenger load factor is 1. Taking a ratio rather 
than an absolute number of passengers allows to consider flights 
operated on aircraft with different seating capacities in the same 
model.

• Baggage Load Factor: The number of booked pieces of baggage 
relative to the number of booked passengers. Similarly to  the 

2 e.g. January → 1, February → 2, etc.
3  In Coordinated Universal Time (UTC).
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Table 2
Selected features after feature elimination.
 Feature name Unit Numeric Dynamic Example 
 Month of Year [–] ✓ 4  
 Hour of Day [–] ✓ 13  
 Passenger Load Factor [–] ✓ 0.73  
 Baggage Load Factor [–] ✓ 1.14  
 Transfer Passenger Percentage [–] ✓ 67  
 Number of Passengers Reduced Mobility [–] ✓ 2  
 Total Passengers Day in Membership Program [–] ✓ 35000  
 Median Delay of Flight Number [min] ✓ 7  
 Effective Delay Previous Flight [min] ✓ 12  
 Current Number of Flights at Hub Airporta [–] ✓ ✓ 20  
 Current Average Delays at Hub Airporta [min] ✓ ✓ 32  
 Current TSAT Delayb [min] ✓ ✓ 4  
 Last Aircraft Tail Swapb [min] ✓ ✓ 1500  
 Wind Speed Longitudinal Direction [kts] ✓ 8.32  
 Wind Speed Latitudinal Direction [kts] ✓ −4.25  
a In the 30 min interval before prediction moment.
b At prediction moment.
passenger load factor, taking a ratio rather than an absolute number 
of baggage pieces allows to consider flights operated on aircraft 
with different seating capacities in the same model.

• Transfer Passenger Percentage: The percentage of passengers 
booked for an outbound flight that connects from any inbound 
flight at the hub airport.

• Number of Passengers Reduced Mobility: The number of booked 
passengers with wheelchair assistance.

• Total Passengers Day in Membership Program: The total number 
of daily passengers subscribed to the membership program.

• Median Delay of Flight Number: The median departure delay of 
all flights for a given flight series. For flight series with fewer than 
25 recordings, the median delay calculation is considered to be 
too random because of the small number of data points. For these 
uncommon flights, a zero median delay is registered.

• Effective Delay Previous Flight: The effective arrival delay of the 
previous flight that propagates to the outbound flight for the same 
aircraft. Airlines incorporate slack times into their schedules to 
mitigate potential delays (Birolini and Jacquillat, 2023; Lan et al., 
2006). For inbound flight i and outbound flight j, operated by air-
line k using aircraft type l at airport m, the Scheduled Turn-Around 
Time (𝑆𝑇𝐴𝑇𝑖,𝑗) is the time difference between the Scheduled Off-
Blocks Time of the outbound flight (𝑆𝑂𝐵𝑇𝑗) and the Scheduled 
In-Blocks Time of the inbound flight (𝑆𝐼𝐵𝑇𝑖), see Eq.  (1). The 
slack time (𝜌𝑖,𝑗,𝑘,𝑙,𝑚) is the time difference between the Minimum 
Turn-Around Time4 (𝑀𝑇𝐴𝑇𝑘,𝑙,𝑚) and the Scheduled Turn-Around 
Time, see Eq.  (2). MTAT values may differ per airline, aircraft type, 
and airport. The arrival delay of the inbound flight (𝛿𝑎𝑟𝑟𝑖 ) is the 
time difference between the Actual In-Blocks Time (𝐴𝐼𝐵𝑇𝑖) and 
Scheduled In-Blocks Time of the inbound flight, see Eq.  (3). Finally, 
the effective arrival delay of the inbound flight is the arrival delay 
minus the slack time, see Eq.  (4). Since negative slack times do not 
exist, the effective arrival delay can never exceed the arrival delay 
itself. All negative effective arrival delays are set to 0 as there is 
enough available time to turn around the aircraft, regardless of how 
early the previous flight arrived. Fig.  3 illustrates the effect of slack 
times on effective arrival delays. 

𝑆𝑇𝐴𝑇𝑖,𝑗 = 𝑆𝑂𝐵𝑇𝑗 − 𝑆𝐼𝐵𝑇𝑖 (1)

𝜌𝑖,𝑗,𝑘,𝑙,𝑚 = 𝑆𝑇𝐴𝑇𝑖,𝑗 −𝑀𝑇𝐴𝑇𝑘,𝑙,𝑚 (2)

4 Airline-issued times that indicate the minimum number of minutes 
required between arrival and departure of two consecutive flights.
6 
𝛿𝑎𝑟𝑟𝑖 = 𝐴𝐼𝐵𝑇𝑖 − 𝑆𝐼𝐵𝑇𝑖 (3)

𝛿𝑎𝑟𝑟,𝑒𝑓𝑓𝑖,𝑗,𝑘,𝑙,𝑚 = 𝛿𝑎𝑟𝑟𝑖 − 𝜌𝑖,𝑗,𝑘,𝑙,𝑚 (4)

• Current Number of Flights at Hub Airport: The total number of 
flights departing from the hub airport in a 30 min time interval 
before the prediction moment. This feature is dynamic because 
for each prediction moment, the 30 min time interval is different, 
possibly resulting in a different total number of flights.

• Current Average Delays at Hub Airport: The average delay of all 
flights departing from the hub airport in a 30 min time interval 
before the prediction moment. This feature is dynamic because 
for each prediction moment, the 30 min time interval is different, 
possibly resulting in a different average delay. Mathematically, for 
every prediction moment t, the average departure delay (𝛿𝑑𝑒𝑝,𝑎𝑣𝑔𝑡 ) is 
the sum of individual departure delays (𝛿𝑑𝑒𝑝𝑗 ), divided by the total 
number of flights in the 30 min time interval (𝑁𝑡), see Eq.  (5). 

𝛿𝑑𝑒𝑝,𝑎𝑣𝑔𝑡 =
𝛴𝑁𝑡
𝑗=1𝛿𝑑𝑒𝑝𝑗
𝑁𝑡

(5)

• Current TSAT Delay: The latest available Target Start-up Approval 
Time delay update. This delay, imposed by Air Traffic Control, is 
dynamic because it may update between prediction moments.

• Last Aircraft Tail Swap The time difference between the last air-
craft tail swap (new airframe allocation) and scheduled departure 
time. This feature is dynamic because tail swaps may occur between 
prediction moments.

• Wind Speed Longitudinal/Latitudinal Direction: The longitudi-
nal (East-West) and latitudinal (North-South) components of the 
wind speed at the departure airport. Including the wind direction 
and wind speed by themselves may train the model to believe 
some wind direction would favour delays, even if the wind speed 
is almost zero. This can be avoided by combining wind speed (𝑉𝑤) 
and wind direction (𝛤𝑤) into longitudinal and latitudinal wind 
components, as presented in Eqs.  (6) and (7).

𝑉𝑤𝑙𝑜𝑛
= −𝑉𝑤 ⋅ cos (𝛤𝑤 − 90◦) (6)

𝑉𝑤𝑙𝑎𝑡
= 𝑉𝑤 ⋅ sin (𝛤𝑤 − 90◦) (7)

3.4.2. Feature correlation
The statistical correlation between all features at the 90 min pre-

diction horizon is presented in Fig.  4. The feature describing the 
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Fig. 3. Aircraft Turn-Around without Slack Times (left) and with Slack Times (right).
Fig. 4. Feature Correlation Matrix for the 90-Minute Prediction Horizon.
total number of daily passengers in the membership program shows 
relatively strong correlations with three other features: the passenger 
load factor (0.59), the current number of flights at hub airport (0.49), 
and the current average delays at hub airport (0.44). The latter two 
correlations follow from the coupling of traffic levels and associated 
delays. The former correlation follows from the fact that during busy 
periods, the number of daily passengers increases faster than the num-
ber of flights, thus resulting in higher passenger load factors. This also 
explains the negative correlation with the baggage load factor (−0.40), 
as it appears that for busy periods, the number of passengers increases 
faster than the pieces of baggage that are carried along.

Furthermore, the median delay in flight number shows a rela-
tively strong correlation with the number of passengers with reduced 
mobility. Data reveals that the 500 flights with the highest number 
of passengers with reduced mobility were operated under 11 unique 
flight numbers only. The correlation is evident because the number 
of passengers with reduced mobility heavily impacts the turnaround 
process and potential departure delays.

The feature correlations between the non-dynamic features remain 
the same at the 15 min prediction moment. The correlations between 
the dynamic features (e.g., current average delays at hub airport and 
current TSAT delay) become significantly larger. This can be explained 
by the fact that the updated dynamic features are closer to the actual 
values. Finally, for the trigonometric features used for the Deep Neural 
Network, the cosine of the hour of day has a relatively strong negative 
correlation (−0.49) with the current number of flights at hub airport. 
This makes sense as the cosine value of the hour of day is high for the 
early morning and late evening, but gradually decreases for the middle 
of the day. The number of scheduled flights develops in the opposite 
manner.
7 
3.4.3. Feature uncertainty
For flights yet to be predicted, not all input features may be exactly 

known at each of the different prediction moments. Since the historical 
training dataset consists of actual values, the use of predicted input 
values may introduce noise and biases. To guarantee the accuracy of 
the model, such potential uncertainty needs to be evaluated. Most of 
the features mentioned in Table  2 are either constant throughout the 
prediction horizon of a flight (e.g., month of year, hour of day, median 
delay of flight number), can be exactly computed for all prediction 
moments (e.g., current number of flights, delays, and TSAT delays) 
or undergo only very minor changes over the prediction horizon of a 
flight (e.g., passenger and baggage numbers). For a check on a subset 
of the flight data, large differences in actual and booking passenger 
and baggage numbers were observed only very rarely, leading to the 
assumption of using constant passenger and baggage numbers during 
the prediction horizon. For the effective delay of previous flights and 
the wind speed features, however, the uncertainty is higher.

Effective Delay Previous Flight Uncertainty: Flights operated by 
the airline on single-aisle aircraft have minimum turn-around times of 
35–50 min and thus may still be airborne 90 min prior to departure 
of the outbound flight. Flights operated on twin-aisle aircraft have 
minimum turn-around times of over 120 min. However, these flights 
may experience delays on the inbound flight, impeding the aircraft 
from being at the gate 90 min prior to departure of the outbound flight. 
Throughout the studied period, 42% of flights arrived more than 90 min 
before departure of the outbound flight; for these flights, there is no 
feature uncertainty. For the remaining flights, the effective delay of the 
previous flight can be computed from the ETA of the previous flight.

For the flights that were not yet at the hub airport 90 min prior 
to the outbound flight, the error distributions between actual and 
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Fig. 5. Previous Flight Arrival Time Prediction Error Distributions for All Flights (left) and the 3 Shortest Flights (right).
Fig. 6. Longitudinal and Latitudinal Wind Speed Developments (upper left, upper right) and Prediction Error Distributions (lower left, lower right).
predicted arrival times are presented in Fig.  5, differentiating the total 
set of flights and that of the three shortest routes that the airline 
operates. Inbound flights on these three routes are most likely to still 
be on-ground at the origin airport 90 min before departure of the 
outbound flight from the Hub Airport, affecting the uncertainty of ETA 
predictions more than whilst airborne. As a result of using the predicted 
ETA, noise is added to the model. The Inter-Quartile Range (IQR) 
is at most 6 min. Although the ETA prediction model seems slightly 
conservative, predicting a large number of flights to arrive later than 
they did in reality, there are no clear biases. Prior to this analysis, one 
might hypothesize that the error in this variable would be greater for 
shorter inbound flights that have not yet departed. In such cases, the 
final delay prediction would need to account for both departure and en-
route delays. Conversely, for longer inbound flights, at −90 min before 
the departure of the outbound flight, these flights are already in the 
enroute phase, and the departure delay is already known. Nevertheless, 
this proves that this is not the case.

Wind Speed Longitudinal/Lateral Direction Uncertainty: The 
wind speed features contain uncertainty because only METAR data is 
available to train the model. For flights yet to be predicted, the METAR 
at the scheduled departure time is still unknown at the prediction 
moment. Therefore, Terminal Aerodrome Forecasts (TAF) are used for 
predicting new flights instead. The unavailability of open-source TAF 
reports restricts the training of the model on TAF data.
8 
To validate the use of METAR data for the hub airport, for 22 days 
(1056 recordings) with various wind conditions,5 the predicted wind 
(TAF) is compared to the actual wind (METAR). The developments over 
time for the longitudinal and lateral wind components are presented in 
the upper figures of Fig.  6. In general, the TAF is capable of adequately 
predicting long-term weather developments. Some of the prediction 
errors can be attributed to the TAF reports describing how the weather 
is expected to change over a longer period of time. This is represented 
by the horizontal sections on the blue lines in the graphs. METARs have 
higher update frequencies and vary more heavily, leading to other small 
prediction errors. The bottom figures in Fig.  6 present the wind speed 
prediction error distributions for longitudinal and lateral directions. 
It can be concluded that the IQR for both directions never exceeds 
4 knots. Similar to the feature describing the effective delay of the 
previous flight, the use of predicted weather data introduces noise to 
the model, but no bias as both error distributions are symmetric and 
the medians are near-zero.

5 Wind speeds ranging from 0 to 27 kts, from every direction (rounded to 
10 degrees) at least once.
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Fig. 7. Explainability Through Feature Scaling Method.

3.5. Model training and result processing

To train the models, the full dataset is randomly split into a training 
dataset (80% of data) and a test dataset (20% of data). The departure 
delays in the training and test datasets are similarly distributed as in 
the full dataset. To minimize data leakage, the split was made per day 
instead of per flight. This ensures that when testing the model, it has 
no prior knowledge about the dynamics on the day of the flight.

To facilitate probabilistic departure delay forecasting, the models 
use all independent predictions to create probability distributions. This 
is preferred over using majority voting or computing the mean of 
all independent predictions since probability distributions indicate the 
likelihood that a delay value is predicted. To ensure high granularity, 
1000 unique independent estimators are considered. To create dynamic 
probabilistic departure delay predictions, the predictions for all predic-
tion moments are combined. The dynamic probabilistic departure delay 
predictions not only show how the predicted delay value changes over 
time, but also the evolution of the associated probability density and 
certainty.

The costs and emissions associated with the decisions made using 
the departure delay prediction model make explainability an important 
aspect of this study. For that reason, the probabilistic model perfor-
mance is one of the considerations for the model selection. Therefore, a 
method is introduced that explains the predictions based on the relative 
scaling of the features, as illustrated in Fig.  7.

First, the feature values of all flights in the test dataset are scaled by 
fitting a StandardScaler()6 on the dataset. The size of the dataset should 
be at least order of magnitude 1000 to obtain meaningful scaled feature 
values.7 The scaling is performed for each feature individually and 
returns the number of standard deviations a feature value differs from 
the mean of all flights. Large scaled feature values indicate that a flight 
stands out from others in the respective feature. Simply scaling the 
feature values does not explain the model prediction; it only considers 
the model inputs, not what the model is doing with this input data. For 
that reason, the scaled values are weighted by the feature importances, 
thereby including the importance assessment of the model. Although 
this method does not explain the exact decision-making of the model, 
it indicates how the model has treated the underlying data and how this 
affects the prediction for a certain flight. Finally, for usability purposes, 
thresholds are determined for classifying the scaled weighted feature 
values towards large, moderate, and small impacts.8 Following these 
impacts, an explainability message is constructed and provided to the 
flight dispatchers.

4. Results

This section aims to present and analyse the results from the four 
proposed models. The global model performance is presented in Sec-
tion 4.1, where the most suitable model is selected. The dynamic 
prediction behaviour of this model is then presented in Section 4.2. 
The model explainability results are discussed in Section 4.3.

6 From the scikit-learn module.
7 To have enough data points to generate feature distributions of sufficient 

granularity.
8 𝑋 ≥ 0.5 → large impact; 0.3 ≥ 𝑋 > 0.5 → moderate impact; 0.1 ≥ 𝑋 >

0.3 → small impact, for scaled weighted feature value 𝑋.
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4.1. Global model performance and selection

The performance metrics used for the model selection are outlined 
in Section 4.1.1. The global and probabilistic model performances 
are presented in Section 4.1.2 and Section 4.1.3, respectively. Fi-
nally, the model performance per departure delay bin is discussed in 
Section 4.1.4.

4.1.1. Performance metrics
Five performance metrics are proposed for evaluating the four 

proposed models, covering the model error, model fit, and proba-
bilistic performance. Each metric is briefly elaborated upon in Table 
3. Whereas the first three metrics are commonly used, the final two 
metrics are introduced in this study, especially to quantify the prob-
abilistic performance of the models. The ActInDistr metric represents 
the percentage of flights for which the actual departure delay is within 
the predicted departure probability distribution. The AvgIQR metric 
represents the average inter-quartile range of predicted flights, a mea-
sure of the model confidence. Ideally, models score high on ActInDistr
and low on AvgIQR, resulting in confident and correct predictions. 
Overconfident models predict narrow probability distributions and thus 
score low for both metrics, while underconfident models predict wide 
probability distributions and thus score high for both metrics.

4.1.2. Global model performance
For each model, distinct sub-models are developed for every pre-

diction moment. For each respective model, the MAE, RMSE, and R2 
are tabulated in Table  4 and graphically presented in Fig.  8. For all 
models, the errors decrease for shorter prediction horizons, whilst the 
R2-values increase. This follows logically from the perceived updates 
on the dynamic features. For these features, the change in correlation 
with the departure delay is illustrated in Fig.  9. As expected, the current 
average delays at hub airport and current TSAT delays yield much 
higher correlations over time. Fig.  8 shows that between 30 and 15 min 
before scheduled departure, the model improves most significantly. 
This can be explained by the fact that a large share of delays occur 
just before departure. Including more short-term features would further 
strengthen this effect, but adding such parameters is invaluable at 
larger prediction horizons, which is the main focus of this study.

In terms of MAE and RMSE errors, the CatBoostTH model slightly 
outperforms CatBoostPR. Absolute differences in MAE, RMSE, and R2 
between models are small and decrease with time, as shown in Table 
4. When expressed as percentages relative to the best model, the 
differences remain constant over time (3.1% for the MAE, 2.1% for the 
RMSE). These results suggest that, for this particular dataset, a smooth 
iteration scheme is preferable, as it may more effectively reduce the 
average error in the loss function. However, this approach could, in 
some cases, lead to overfitting or model instability. Therefore, empirical 
testing is essential for each dataset to ensure optimal performance.

The CatBoostTH model has a quasi-constant advantage over the 
other models because only for the Deep Neural Network at the 30 min 
prediction horizon, the relative differences are larger. This may be 
explained by the model reaching the maximum number of epochs, 
whereas for other prediction horizons, it converged earlier.

The Deep Neural Network does not outperform the other models. 
Next to that, the model imposes difficulties for providing probabilistic 
and explainable results. Thus, it was decided to eliminate the model 
from further selection in this work. The prediction accuracy of the other 
models is illustrated in Fig.  10, where the actual and predicted delays 
for a 90 min prediction horizon are plotted as a heatmap. In the ideal 
situation, the data points follow the diagonal dotted line, where the 
predicted delay equals the actual delay. For all models, the distributions 
follow this line to some extent, albeit with notable noise. All models 
tend to overpredict for flights with small delays and underpredict for 
flights with larger delays. This behaviour is partially caused by the 
splitting nature of the structure of the models as well as the absence 
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Table 3
Performance metrics.
 Performance metric Explanation  
 Mean Absolute Error (MAE) Absolute error between predicted and actual values  
 Root Mean Square Error (RMSE) Standard deviation of errors between predicted and actual values  
 Coefficient of Determination (R2) Proportion of variation in dependent variable predictable from independent variable 
 Actual in Distribution Percentage (ActInDistr) Percentage of flights for which actual value is in predicted probability distribution  
 Average Inter-Quartile Range (AvgIQR) Average inter-quantile range for predicted flights  
Table 4
Global model performance for out-of-sample data.
 Prediction moment [min]
 −90 −75 −60 −45 −30 −15

 Random Forest MAE [min] 8.46 8.31 8.11 7.90 7.67 7.37
 RMSE [min] 11.91 11.69 11.42 11.13 10.81 10.44
 R2 [–] 0.55 0.57 0.59 0.61 0.63 0.65

 CatBoostTH MAE [min] 8.20 8.06 7.88 7.69 7.47 7.15
 RMSE [min] 11.67 11.46 11.20 10.93 10.62 10.23
 R2 [–] 0.57 0.58 0.60 0.62 0.64 0.67

 CatBoostPR MAE [min] 8.26 8.11 7.93 7.74 7.52 7.20
 RMSE [min] 11.72 11.51 11.25 10.98 10.67 10.28
 R2 [–] 0.56 0.58 0.60 0.62 0.64 0.67

 Deep Neural Network MAE [min] 8.35 8.26 8.07 7.91 7.82 7.31
 RMSE [min] 11.81 11.64 11.39 11.16 10.92 10.42
 R2 [–] 0.56 0.57 0.59 0.61 0.62 0.66
Fig. 8. Global Model Performance over Time in terms of MAE, RMSE, and R2.
Fig. 9. Dynamic Feature Correlation over Time.

of possibly valuable information and the uncertainty associated with 
large prediction horizons.

For the Random Forest model in Fig.  10, the distribution of pre-
dicted delays shows a valley around 0 min and a peak around −5 min. 
This behaviour is caused by the data from the COVID-19 period; 
excluding this data removes the peak. For these flights, the total daily 
passenger numbers are significantly lower than regular operations. The 
valley can be explained by the absence of flights with total daily 
passenger numbers that lie in between the COVID-19 period and regular 
operations. The CatBoost models better correct for this data anomaly. 
It should be noted that excluding flights from the COVID-19 period was 
tested, but resulted in poorer prediction results because of a reduction 
in the dataset size
10 
4.1.3. Probabilistic model performance
Based on the three global performance metrics, it may seem straight-

forward to select CatBoostTH for further use. Given the emphasis on 
explainability in this study, however, the probabilistic performance also 
needs to be evaluated. For the three remaining models, the ActInDistr 
and AvgIQR are tabulated in Table  5.

Evaluating the probabilistic performance is a trade-off between two 
metrics. Ideally, a model has high correctness (i.e. high ActInDistr) and 
high confidence (i.e. low AvgIQR). Models with high ActInDistr and 
above-average AvgIQR are preferred over models with low ActInDistr 
and below-average AvgIQR, as the latter are confident yet incorrect 
models. Based on the results of Table  5, the Random Forest tends 
to be less confident on its prediction with a higher variance. This 
leads to fewer instances where none of the individual tree predictions 
align with the actual delay. In contrast, CatBoost is highly confident 
in its predictions, displaying lower variance. However, this confidence 
increases the likelihood of scenarios where the predicted delay fails to 
account for the actual observed delay. The Random Forest model yields 
generally higher prediction variation, which is desired as it prevents 
the model being confidently wrong, as can be the case for the Catboost 
models when it fails to grasp the delay cause.

Fig.  11 shows that for around 78% of flights, the actual delays are 
within the predicted probability distributions for the Random Forest 
model, greatly outperforming the other two models (8% and 44%). 
Although the AvgIQR is higher for the Random Forest, the model 
refrains from predicting wide delay probability distributions; the model 
is still able to distinguish high and low likelihoods for different delay 
values.ß
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Fig. 10. Prediction Accuracies for Random Forest, CatBoostTH and CatBoostPR models for the 90-Minute Prediction Horizon.
Table 5
Probabilistic model performance for out-of-sample data.
 Prediction moment [min]
 −90 −75 −60 −45 −30 −15

 Random Forest ActInDistr [%] 76.09 76.82 77.51 78.60 79.17 80.00
 AvgIQR [min] 5.29 5.28 5.24 5.20 5.10 4.99

 CatBoostTH ActInDistr [%] 7.43 7.67 7.61 7.93 7.87 7.89
 AvgIQR [min] 0.39 0.39 0.39 0.38 0.38 0.36

 CatBoostPR ActInDistr [%] 42.23 42.71 43.30 43.44 43.99 45.20
 AvgIQR [min] 2.35 2.35 2.33 2.29 2.26 2.21
Fig. 11. Probabilistic Model Performance over Time in terms of ActInDistr and AvgIQR.
Fig. 12. Probabilistic Departure Delay Predictions for Flight A (left) and Flight B (right) by Random Forest, CatBoostTH and CatBoostPR models (abbreviated RF, CBTH and CBPR, 
respectively) for the 90-Minute Prediction Horizon.
Fig.  12 illustrates the probabilistic advantage of the Random For-
est method over the two CatBoost models. To quantify the accuracy 
of the probabilistic prediction, a coverage is calculated. For the ex-
ample flights, the percentage of predicted probability density within 
an interval of ±10 min around the actual delay is determined. For 
flights with small prediction errors (such as Flight A), all models 
achieve high coverages, especially the confident models. For flights 
with larger prediction errors (such as Flight B), the Random Forest 
11 
reaches much higher coverages than both CatBoost models. The Ran-
dom Forest model, although less confident, thus provides a better 
probabilistic prediction. This can be attributed to Random Forest retain-
ing weaker trees, which may better represent the noise or outliers in the 
data, providing a more nuanced representation. In contrast, boosting 
methods, such as the Catboost, prioritize minimizing errors by reducing 
the effect of these weaker trees, which can lead to overly confident 
predictions. This is positive from a user perspective - models are desired 
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Fig. 13. Relation between Uncertainties and Predicted Delays for Random Forest, CatBoostTH and CatBoostPR models for the 90-Minute Prediction Horizon.
Fig. 14. Binned Performance for Random Forest, CatBoostTH and CatBoostPR models (abbreviated RF, CBTH, and CBPR respectively) for the 90-Minute Prediction Horizon, 
measured in terms of MAE and RMSE.
to indicate uncertainty associated to possibly incorrect predictions. If a 
model fails to do so, the user is likely to lose faith in the model over 
time.

Finally, the in ActInDistr and AvgIQR only marginally improve 
over time. Although the AvgIQR is expected to decrease over time as 
a result of the updated dynamic features, this is only very slightly 
the case. Since flight delays commonly arise close to departure, the 
average predicted delays are higher for shorter prediction horizons. It is 
empirically observed that some relation exists between the magnitude 
of the predicted delay and the certainty of the model, as illustrated in 
Fig.  13. As the Random Forest and CatBoostPR models predict higher 
delays, their predictions become less certain. This can be explained by 
the sampled dataset presented in Fig.  2, which contains relatively more 
flights with small delays than flights with large delays. Statistically, 
the probability of the model being trained on comparable flights is 
higher for flights with small delays, which results in more confident 
predictions for such flights. For the extremely confident CatBoostTH 
model, this pattern is hardly visible, as the IQR remains small for almost 
all predictions.

4.1.4. Binned model performance
The model performance per departure delay bin should be consid-

ered for the model selection. There is a physical limit9 to the number 
of minutes a flight dispatcher can speed up a flight to compensate for 
departure delays.

9 Dependent on many factors, e.g. flight distance, weather, aircraft weight, 
and ATFM.
12 
Flights with departure delays smaller than 25 min are particularly 
interesting for flight dispatchers to slow down or speed up. For that 
reason, the sampling strategy outlined in Section 3.2 was adopted to 
optimize the model performance in this part of the departure delay 
spectrum. Fig.  14 presents the model errors for departure delay bins 
of 5 min, where the vertical bars represent the share of data in the 
bins. The distributions are comparable, particularly those of the Cat-
BoostTH and CatBoostPR models and for delays larger than 25 min. 
For the flights particularly interesting for en-route speed optimization, 
i.e. departure delays of 5 to 25 min, the Random Forest model yields the 
smallest prediction errors. For that reason, also considering the superior 
probabilistic performance of this model, the Random Forest model is 
selected for the remainder of the study.

4.2. Dynamic model prediction behaviour

The changes in prediction error and IQR between every two con-
secutive prediction moments are presented in Table  6. Between the 90 
and 75 min prediction moments already, the prediction error and IQR 
decrease for more flights than for which they increase. These ratios only 
improve for shorter prediction horizons. Between the 30 and 15 min 
prediction horizons, for over 60% of flights, the prediction confidence 
still improves. Although, at shorter prediction horizons, a significant 
number of flights is predicted accurately and with greater certainty, 
this is not the case for all flights. A few examples are discussed next.

For flight C in Fig.  15, the prediction error decreases as the certainty 
increases. Although the initial prediction error is relatively large, the 
model corrects for it as the dynamic features are updated. Alternatively, 
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Table 6
Percentage of test flights for which prediction error and IQR increase or decrease between prediction moments.
 Prediction interval [min]
 −90 to −75 −75 to −60 −60 to −45 −45 to −30 −30 to −15 
 Decreasing Error
Decreasing IQR

29.06% 30.34% 30.44% 31.42% 33.96%  

 Decreasing Error
Increasing IQR

24.47% 24.03% 24.20% 23.23% 20.37%  

 Increasing Error
Decreasing IQR

22.14% 22.64% 22.52% 23.34% 26.26%  

 Increasing Error
Increasing IQR

24.33% 22.99% 22.84% 22.01% 19.41%  
Fig. 15. Dynamic Probabilistic Departure Delay Prediction for Flight C.

Fig. 16. Dynamic Probabilistic Departure Delay Prediction for Flight D.

for Flight D in Fig.  16, the opposite is true. The model diverges from its 
initial prediction because, for smaller prediction horizons, it considers 
the TSAT delay (which is 11 min for all prediction moments) to be more 
important. Therefore, the predicted delay slightly increases over time. 
Just one minute after the final prediction moment, the TSAT delay was 
updated to −5 min, which explains that the actual delay is much lower 
than predicted.

For a large share of flights, the prediction error and IQR hardly 
vary over time. For 54% of flights, the prediction error changes for 
all prediction intervals combined is smaller than 5 min. Similarly, for 
61% of flights, the IQR changes for all prediction intervals combined 
is smaller than 3 min. For these flights, the model is either able to 
accurately predict the delays at the first prediction moment already 
or it is unable to improve its initial prediction. Flight E in Fig.  17, is 
an example for which the prediction error and IQR are small for all 
prediction moments. If instead, the error would be constantly large, 
13 
Fig. 17. Dynamic Probabilistic Departure Delay Prediction for Flight E.

Fig. 18. Dynamic Probabilistic Departure Delay Prediction for Flight F.

this would result in a translation of the distribution with respect to the
Predicted Delay-axis. Alternatively, changes in certainty would flatten 
or steepen the distribution curves.

For a number of flights, the prediction certainty decreases as the 
prediction horizon becomes smaller. This is mostly caused by the 
model predicting higher delays, which results in additional uncertainty, 
previously explained in Section 4.1.3. Moreover, increasing uncertainty 
can be caused by contradicting features, for example flights with large 
effective delays of previous flights where the TSAT delay has not yet 
been updated. Fortunately, in many cases, the certainty increases over 
the prediction horizon, in line with Table  6. Flight F, illustrated in Fig. 
18, is an example for which the TSAT delay was large (45 min) for the 
first five prediction horizons and changed to just 12 min at the final 
prediction horizon, allowing the model to make a final prediction with 
higher confidence.
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Fig. 19. Dynamic Probabilistic Departure Delay Prediction for Flight G.

Fig. 20. Dynamic Probabilistic Departure Delay Prediction for Flight H.

For some flights, the prediction error and IQR temporarily increase 
for some parts of the prediction horizon. Temporary changes in pre-
diction error are almost always the cause of temporary changes in 
prediction certainty. Flight G in Fig.  19, is an example for which 
the prediction error is temporarily higher, caused by a temporarily 
larger TSAT delay value. This causes the probability distribution to 
temporarily translate with respect to the Predicted Delay-axis. Flight 
H in Fig.  20, is an example for which temporary high average delays 
at the hub airport cause the prediction error to increase, thereby 
temporarily decreasing the prediction certainty. The coupling between 
the prediction error and uncertainty causes the probability distribution 
to be translated and flattened simultaneously.

4.3. Model explainability results

The feature importances associated with the Random Forest model 
are presented in Section 4.3.1 and the results of the relative feature 
scaling method are presented in Section 4.3.2, with two examples of 
explainability messages outputted to the flight dispatcher.

4.3.1. Feature importance
Given the dynamic feature updates and their improving correlations 

with departure delays, presented in Fig.  9, the feature importances 
are expected to change over time as well. The feature importances 
for the 90 min prediction horizon as well as their propagation over 
time are presented in Fig.  21. The ten least important features do 
not change significantly over the full prediction horizon. The shifts 
noticed in the five most important features are more interesting to 
evaluate. Whereas at longer prediction horizons, the model considers 
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Table 7
Sensitivity flight baseline parameters.
 Feature Baseline Change 
 Month of Year 4 ±3  
 Hour of Day 14 ±4  
 Passenger Load Factor 0.75 ±0.1  
 Baggage Load Factor 0.85 ±0.1  
 Transfer Passenger Percentage 60 ±10  
 Number of Passengers Reduced Mobility 5 ±4  
 Total Passengers Day In Membership Program 42000 ±5000  
 Median Delay of Flight Number [min] 10 ±10  
 Effective Delay Previous Flight [min] 15 ±10  
 Current Number of Flights at Hub Airport [min] 15 ±5  
 Current Average Delays at Hub Airport [min] 10 ±10  
 Current TSAT Delay [min] 20 ±10  
 Last Aircraft Tail Swap [min] −900 ±300  
 Wind Speed Longitudinal Direction [kts] 10 ±5  
 Wind Speed Latitudinal Direction [kts] 10 ±5  

passenger information more important (ranked 3rd and 4th), for the 
shorter prediction horizons, these importances drop to 4th and 5th 
place respectively, almost halving in magnitude. Dynamic features 
describing the current TSAT delay and average delays at the hub airport 
become more important for shorter prediction horizons (1st and 3rd 
compared to 2nd and 5th place).

4.3.2. Explainability through feature scaling
Following the relative feature scaling method presented in Sec-

tion 3.5, explainability messages are provided to the flight dispatchers, 
indicating the significance of a given feature for this flight relative to 
all others. Including this information in the explainability message was 
one of the wishes of the flight dispatchers. The explainability message 
for Flight E, previously discussed in Section 4.2, is presented below in 
Fig.  22 for both the 90 min and 15 min prediction horizon. From the 
messages, the user is informed that the lower delay prediction at the 
15 min prediction horizon is caused by the decrease in current TSAT 
delay and current average delays at hub airport. Finally, the impact of 
delays is excluded for flights with predicted delays of less than 15 min 
because these delays typically occur due to quasi-random operational 
factors close to departure, not due to the major delay causes the model 
was trained for.

5. Model validation

This section aims to discuss the efficiency and applicability of the 
model. First, the sensitivity study is discussed in Section 5.1. There-
after, the conclusions drawn from two shadow runs are presented in 
Section 5.2. Finally, an error analysis is performed in Section 5.3, 
evaluating the flights that were most difficult for the model to predict.

5.1. Sensitivity analysis

This section focuses on the effect of altering a single input feature, 
one at a time. For this, a baseline flight was set up, the values and 
respective changes are tabulated in Table  7. The baseline values and 
changes were chosen such that hypothetically, outputs are most likely 
to lead to meaningful changes,10. The sensitivity of the mean predicted 
departure delay is shown in Fig.  23 for each of the six prediction 
moments separately. Furthermore, the probabilistic sensitivity of the 
model is illustrated in Fig.  24, for the prediction moment 90 min before 
scheduled departure.

10 By choosing baseline values and changes that are not towards the ex-
tremes of the feature value range, e.g. if the feature ranges from 0.4 to 1, 
changes are expected to be more meaningful when comparing 0.65, 0.75 and 
0.85 instead of 0.4, 0.41 and 0.42 or 0.98, 0.99 and 1.
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Fig. 21. Feature Importance for the Random Forest Model for the 90-Minute Prediction Horizon (left) and the Feature Importance Developments over the Full Prediction Horizon 
(right).
Fig. 22. Explainability messages are provided to the flight dispatchers.
In Figs.  23 and 24, the predicted departure delay hardly varies 
for changes on the hour of day, baggage load factor, transfer passen-
ger percentage, passengers with reduced mobility, current number of 
flights at hub airport, last aircraft tail swap and wind speeds features. 
This is explained by their relatively low importances in Section 4.3.1. 
Although among the six most important features in Section 4.3.1, the 
model is hardly sensitive to changes in the median delay associated 
with the flight number. The effect of changes in other parameters is 
better visible. Compared to the baseline month of April, departure de-
lays are predicted to be slightly lower if the flight was to be scheduled 
in January. Similar relations are obtained for the passenger load factor, 
current average delays at hub airport, and the total daily passengers in 
the membership program. These small differences can be explained by 
seasonality, as historically the delays are smaller in months with fewer 
passengers (such as January).

The effective delay of previous flight is the most sensitive feature. At 
the 90 min prediction horizon, an input change of 10 min results in an 
output change of almost the same size. At closer prediction moments, 
complying with the decreasing feature importance from Section 4.3.1, 
the effective delay of previous flight becomes slightly less sensitive. 
From the probabilistic sensitivity in Fig.  24, it is visible that the 
model is less confident in predicting larger departure delays. The same 
behaviour was previously observed in Section 4.1.3.

The model becomes more sensitive to the TSAT delay feature for 
smaller prediction horizons. It was previously found that this feature 
becomes more important for smaller prediction horizons. Interestingly, 
the model is more sensitive to TSAT delay increases than TSAT delay 
decreases. From historical data, it is observed that TSAT delays increase 
more frequently than they decrease. Once a new TSAT delay is issued, 
operations are often centred around accommodating this new time. 
As such, it rarely happens that a TSAT delay decreases after it has 
previously increased. Even in the case of decreases, it is often observed 
that a new increase is issued later in the process. The model has thus 
successfully learned that a TSAT delay increase is a stronger indicator 
for higher delays than a TSAT delay decrease is for smaller delays.
15 
5.2. Shadow runs

Two shadow runs were conducted: one for European flights and one 
for intercontinental flights. Table  8 lists the flights considered during 
both shadow runs. Because the input data was not available in real-
time, the model performance could only be evaluated as soon as the 
data became available. Some of the flights were delayed for reasons the 
model was not trained for, these cases are elaborated upon in the next 
paragraphs. Although the model can predict delays caused by untrained 
factors to some extent, it cannot predict all such delays. The model 
strongly benefits from the current TSAT delay feature,11 since it covers 
a wide range of operational delay causes.

• ATFM Slot: Flight M in Fig.  25, received an ATFM slot of 27 min 
just after the first prediction moment. This caused the TSAT delay 
of the flight to get extended by the same amount. To avoid the slot, 
the flight dispatcher searched for an alternative route to avoid the 
overcrowded sector. After finding a suitable route, the slot time and 
TSAT delay returned to their previous values, as is visible in the 
departure delay prediction, where temporarily higher delays with 
larger uncertainty are predicted. The flight dispatcher thus is part 
of the loop, as his/her actions influence new predicted delays.

• High-priority Flight: Flight I in Fig.  26, was a high-priority flight 
because of an important part delivery. Because of a delayed pre-
vious flight, the model severely overpredicts for this flight. Given 
the high priority, every effort was made to keep the turn-around 
time as small as possible. The model is unable to capture the high 
priority, as it is an exceptional circumstance.

• Late Fuelling: Flight 𝑇  in Fig.  27, was delayed because the fuelling 
team arrived later than planned. The model captures this effect, 
as the predicted delay increases at smaller prediction horizons, as 

11 TSAT delays often follow from Target Off-Blocks Time (TOBT) delays, 
which are issued by the airline itself.
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Fig. 23. Sensitivity Analysis for Random Forest Model using Baseline and Change Values from Table  7.
Fig. 24. Probabilistic Sensitivity Analysis for Random Forest Model at 90-Minute Prediction Horizon using Baseline and Change Values from Table  7.
a result of increasing TSAT delays. The TSAT delay feature thus 
covers the fuelling delay.

• Late Arrival Baggage: Flight R, illustrated in Fig.  28, was delayed 
because the baggage carts arrived later than planned. The model 
is unable to capture the late arrival of baggage carts, despite 
small increases in TSAT delays. Instead, the model most likely 
overpredicts because of a fully booked flight.
16 
• Delayed Maintenance: Flight K was delayed for 32 min because 
of a late return from maintenance. Since the model is not trained 
with maintenance data, the effective delay of the previous flight 
is thought to be 0 min, as the aircraft had arrived the day before 
already. Although the model does not understand the maintenance 
delay directly, it correctly predicts the departure delay because the 
maintenance delay was already known 125 min before scheduled 



M. Beltman et al. Journal of Air Transport Management 126 (2025) 102788 
Table 8
Shadow run flights.
 Date Flight number Actual delay [min] Predicted delay at the 90 min horizon [min] 
 2023–10–10 Flight I 14.00 29.36  
 Flight J 48.00 59.91  
 Flight K 32.00 32.41  
 Flight L 27.00 27.22  
 Flight M 29.00 28.32  
 Flight N 5.00 15.07  
 2023–10–27 Flight O 9.00 8.41  
 Flight P 32.00 32.96  
 Flight Q 7.00 12.87  
 Flight R 12.00 15.09  
 Flight S −4.00 15.31  
 Flight T 15.00 18.59  
 Flight U 16.00 15.34  
 Flight V 15.00 17.25  
 Flight W 5.00 16.04  
Fig. 25. Dynamic Probabilistic Departure Delay Prediction for Flight M.

departure. For that reason, the TSAT was already updated before 
the first prediction moment. The TSAT delay feature thus covers 
the maintenance delay.

5.3. Error analysis

For 179 out of the 33532 flights in the test dataset, the model 
predicts with an error of over 45 min. It is worth investigating the 
reason for such errors. Following IATA guidelines (EUROCONTROL, 
2023), primary (and secondary) delay codes are issued for delayed 
flights. These delay codes explain the cause of the flight delay and are 
thus useful for explaining high prediction errors. It should be noted that 
ambiguity may exist for the issued delay cause, as different stakeholders 
have different interests for the delay code issuing.

For the 179 flights, an overview of issued delay codes is presented 
in Fig.  29. Primary and secondary delays are represented by Delay 
Code 1 and Delay Code 2, respectively. 75.4% of flights with large 
prediction errors are caused by just 17 delay codes. For the majority 
of flights with large prediction errors, the model is not trained for 
the underlying delay causes because the data is simply unavailable 
(e.g. loading, fuelling, ATFM delay, and crew rotations) or unpre-
dictable (e.g. security/immigration, missing passengers, and flight deck 
crew request).

Given that primary delay codes contribute the most to flight delays 
and that the model accounts for the number of passengers with reduced 
mobility and the effective delay of previous flights, it is worth exploring 
why these factors were responsible for the main delay of some flights. 
For the three flights with delays caused by passengers with reduced 
mobility, the number of such passengers was 2, 7, and unknown respec-
tively. Seeing that most other flights with these numbers of passengers 
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Fig. 26. Dynamic Probabilistic Departure Delay Prediction for Flight I.

Fig. 27. Dynamic Probabilistic Departure Delay Prediction for Flight T.

with reduced mobility are only little delayed, it is no surprise that 
the model underpredicted the delay for these three flights. For the 
one flight with a delay due to aircraft rotations, the inbound flight 
effectively arrived 26 min late, however, the departure delay was much 
larger (91 min). Another reason must have caused the remainder of the 
delay. Thus, the model is not able to correctly predict the delay for this 
flight just based on the effective delay of the previous flight.

In conclusion, the model is robust to changes in input features 
and has demonstrated its capability of predicting delays caused by 
untrained factors. Due to the limited time frame of this study and the 
fact that before a shadow run, it is unknown what will cause the delays 
for the upcoming flights, only a number of these untrained factors 
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Fig. 28. Dynamic Probabilistic Departure Delay Prediction for Flight R.

could be tested. Further shadow runs are necessary to guarantee the 
applicability of the model in a broader sense.

6. Discussion

This section aims to further discuss some of the results. The feature 
elimination process is reflected upon in Section 6.1. After, Section 6.2 
discusses the tendency of the model to overpredict small delays. Finally, 
the model performance is compared to a baseline statistical model in 
Section 6.3.

6.1. Selected features

The list of selected features was presented in Table  2. In line with 
the observed feature importance in Fig.  21, for the vast majority of trees 
in the random forest, the top-level split decision is based on the Total 
Passengers Day in Membership Program, Current TSAT Delay or Effective 
Delay Previous Flight feature. These features improved the accuracy of 
the final model.

The final list of selected features went through several rounds of 
evaluation, where some interesting features were deemed not beneficial 
to the model. For example, visibility was an important feature in 
previous work by Sternberg et al. (2016), it was either covered by one 
of the other features, reducing the need for a separate feature, or the 
number of recordings with extreme fog was too low to make the models 
understand its effect. Other examples are the total number of seats and 
aircraft size, which showed a high correlation with two other features: 
total passengers and median delay of flight number. As a result, the 
total number of seats and aircraft size were removed from the model’s 
feature set. The correlation with total passengers can be attributed to 
the aircraft’s fill rate, which tends to be consistent. The correlation with 
median delay can be explained by the fact that the fleet consists of 
three distinct aircraft size groups, each typically experiencing different 
departure delays. Additionally, the number of seats was not found to 
be a significant factor in departure delay, as the turnaround process 
already accounts for longer boarding times in larger aircraft. Therefore, 
the differentiator in the boarding process is not the actual number of 
passengers but the relative number, which is captured by the Passenger 
Load Factor (and Baggage Load Factor) features.

Additionally, flight-specific passenger connection data was not used. 
Instead, the percentage of transfer passengers, was selected. Although 
this feature does not consider every inbound-outbound flight combina-
tion, it still stands out from other research as the feature is unique per 
outbound flight. This does imply, however, that the flight-specific pas-
senger connection data was not valuable enough to predict departure 
delays.
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Finally, incorporating additional features related to operational de-
cisions from airports, other airlines, or airspace constraints could signif-
icantly enhance the model’s ability to identify external causes of delays. 
However, such data is often scarce and confidential. Future work should 
prioritize the collection and analysis of this data.

6.2. Overpredicting for small delays

The overpredicting behaviour for small delays was previously eval-
uated in Fig.  10. At the 90 min prediction horizon, flights with actual 
delays up to 15 min are overpredicted by 5.17 min on average. Alter-
natively, flights with actual delays of over 15 min are underpredicted 
by 9.68 min on average. The overall overprediction distribution for the 
Random Forest model is presented in Fig.  30, for each of the six distinct 
prediction horizons. Naturally, overprediction leads to unnecessary fuel 
burn and is undesirable.

The overpredicting behaviour for smaller delays is attributed to two 
things. Firstly, almost all feature-target relations are positive,12 see Fig. 
31. As a result, when some feature values are above average, the model 
may already be inclined to predict higher delays since there are no 
features that impact the predicted delays negatively. Secondly, given 
the randomness involved with the turn-around process, the model is 
not always able to accurately predict the delay (R2 is only 0.55 at 
the 90 min prediction horizon). The overpredicting behaviour may 
also partially be caused by the fact that not all required information 
is already known at early prediction moments. This is visible in Fig. 
30, where the overpredicting behaviour reduces for shorter prediction 
horizons, but does not disappear completely.

For future work, several other logical follow-up steps can be taken 
to further improve dynamic probabilistic airline departure delay fore-
casting. Firstly, one can test the impact of incorporating other novel fea-
tures. It is recommended to explore the effect of push-back truck avail-
ability and crew rotations data as both are critical in the turnaround 
process. Secondly, it is recommended to consider actual departures 
rather than planned departures for the current average delays at hub 
airport, in order to always have complete data. Thirdly, the granularity 
of the prediction horizons can be increased to 5 or 10 min to allow 
for quicker incorporation of dynamic feature updates. Finally, it is 
recommended to perform further validation shadow runs to guarantee 
the applicability of the model to a wider range of untrained delay 
causes.

6.3. Improvement compared to statistical baseline model

The developed model is compared to an existing statistical model 
that is currently used in operations. The latter analyzes past flights, 
recording the most significant causes of delay, while excluding unpre-
dictable factors like random technical difficulties. This statistical model 
calculates the moving average of past flights, adjusted for these ex-
cluded causes. Note that specific details about this model’s functioning 
are herein intentionally omitted due to confidentiality. However, its 
use in operational settings suggests that it has an acceptable level of 
accuracy.

When considering the same case study period, the existing model 
reaches an MAE of 9.51 min, an RMSE of 18.62 min, and an R2 
of 0.13. Since this model does not consider multiple prediction mo-
ments, these performance metrics values are the same for all prediction 
horizons. The prediction performance of both models at the 90 min 
prediction moment is presented in Fig.  32, considering just a single 
flight series (upper figure) and a single day at the Hub airport (lower 
figure). Although the existing model captures the global dynamics, 
judging from the upper plot of Fig.  32, it is unable to predict large 
delays. The proposed Random Forest model is much better capable of 

12 The feature-target relations that are not positive are near zero.
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Fig. 29. Delay Code Issued for Flights with Highest Model Prediction Errors.
Fig. 30. Random Forest Departure Delay Overprediction.

predicting such large delays. Whereas the existing model overpredicts 
less for smaller delays, it is useless for days with disrupted operations 
(see lower figure in Fig.  32). The proposed Random Forest model 
is particularly of added value for the prediction of severely delayed 
flights.

6.4. Comparison with other studies

Comparing the results of this model to previous studies presents 
challenges due to differences in datasets, airlines, airports, as well as 
differences in the timeframes for predicting departure delays. Gener-
ally, studies predicting delays longer than 90 min before departure have 
reported an MAE of 5 to 15 min across various European airports (Dal-
mau et al., 2021; Birolini and Jacquillat, 2023). For shorter look-ahead 
times, the MAE typically decreases to around 3.8 to 7.7 min (Sun 
et al., 2022). In the United States, studies tend to report lower MAEs, 
ranging from 2.48 to 3.6 min (Wang et al., 2022). In contrast, the 
random forest model in this study exhibits an MAE of 8.46 min around 
90 min before departure, which decreases to 7.37 min at 15 min prior 
to departure (see Table  4). This indicates that our model’s performance 
aligns with recent optimal values identified in literature. Nevertheless, 
direct comparison is impossible as different datasets, fleets, airlines, 
and airports are used across all studies.
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A key advantage of our model is its probabilistic nature, which 
evolves over time as more information becomes available. The parame-
ter ‘ActInDist’, introduced in this study, measures how close predictions 
align with the final delay, a metric not addressed in other works. Two 
other studies focused on probabilistic departure delay forecasts for 
individual flights, namely Vorage (2021) and Zoutendijk (Zoutendijk 
and Mitici, 2021). These achieved an MAE between 12.51 to 13.23 min 
several days before flight. Zoutendijk (Zoutendijk and Mitici, 2021) 
achieved a Continuous Ranked Probability Score (CRPS) (Matheson 
and Winkler, 1976), measuring the deviation of the estimated delay 
from the actual value, of 8.86 min. Our model seems to have improved 
from this value, likely due to the reduced training dataset size used by 
Zoutendijk (Zoutendijk and Mitici, 2021).

Currently, there is a lack of direct comparisons among studies 
focused on departure delays. This is partly due to the use of data 
confidential to airlines and airports. Future efforts should prioritize the 
release of data suitable for comparative research. Given that elements 
related to airline, passengers, and airport technical resources are crucial 
for model performance, as demonstrated in this study, collaboration 
among various industry stakeholders is essential for such efforts.

7. Conclusion

Hub-and-spoke airlines generally adjust their operations to guaran-
tee passenger connections. For that reason, punctuality is one of the 
key performance indicators of such airlines. To ensure on-time arrivals, 
flights that were delayed upon departure need to compensate for the 
lost time whilst airborne. For adequate fuelling, flight dispatchers use 
departure delay predictions. The goal of this study was to propose an 
explainable supervised learning model that improves on an existing 
departure delay prediction model, as there was room for improvement.

A Random Forest model was selected as it outperformed the other 
models for the flights most suitable for en-route speed optimization 
and demonstrated superior probabilistic performance. The dynamic 
probabilistic model performance analysis then indicated that for shorter 
prediction horizons, the model was able to improve on initial pre-
dictions for a large number of flights, both in terms of correctness 



M. Beltman et al. Journal of Air Transport Management 126 (2025) 102788 
Fig. 31. Target Correlation Matrix for the 90-Minute Prediction Horizon.
Fig. 32. Comparison with baseline statistical model at 90-Minute Prediction Horizon.
and certainty. At the default 90 min prediction horizon, the model 
reaches an MAE of 8.46 min, an RMSE of 11.91 min, and an R2 
of 0.55. At the 15 min prediction horizon, these values improve to 
7.37 min, 10.44 min, and 0.65, respectively. At all prediction moments, 
for around 78% of flights, the actual delay was within the predicted 
departure delay probability distribution. For the flights that are most 
suitable for en-route speed optimization, the Random Forest model 
reached MAE values of around 5 min.

Finally, the model was validated in two shadow runs, proving the 
robustness of the model in real-life operational scenarios. Future work 
may focus on further testing the applicability of the model in different 
use cases. Further data collection and analysis may be performed to 
cover scenarios where the model lacks efficiency due to unknown 
missing data. Additionally, the granularity of the prediction horizons 
may be increased to improve the quality of decision support to airlines. 
Finally, adding features related to airspace constraints has the potential 
to improve the accuracy of the model.
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