

TU Delft | The European Post-master in Urbanism | Graduation Project

Resilient Medway River Landscape

Adaptive Design Strategies for a Sustainable Coastal Landscape

Yu-Wen Lin (5090881) P5 Presentation | 5th July, 2021

1st mentor: Dr. Steffen Nijhuis 2nd mentor: Dr. Daniele Cannatella

CONTENT

Introduction 01 Ch1-2. Research Design

Analysis 02 Ch 3. From the River Thames Basin to Medway Estuary

Design Exploration 03 Ch 4-5. Sheppey. Rainham. Medway

04

Vision on Regional Development Ch 6. Flood mitigation, ecosystem, and socio-economic development

Synthesis and Outlook 05 Ch 7. Conclusion and reflection

PART 1

INTRODUCTION AND METHODOLOGICAL FRAMEWORK

1.1 – Motivation

- 1.2 Content of Work
- 1.3 Problem Statement
- 1.4 Research Objective and Questions
- 2.1 Theory: Resilience
- 2.2 Research Strategies
- 2.3 Research Design

Resilient Medway River Landscape– Adaptive Design Strategies for a Sustainable Coastal Landscape

EMU Graduation Yu-Wen Lin

Motivation

FASCINATION

River Medway estuary, River Thames basin, The UK

Fig. 0xford 2007 flood. Source: https://www.oxfordmail.co.uk/news/15427077.2007-floods-10-years-part-two-city-swamped/.

Yu-Wen Lin

Content of work

AN AREA SHAPED BY MILITARY AND MARITIME **HISTORY**

Fig. Historic timeline of Medway towns. Source: Ordnance Survey; Image of Sheerness: Oszibusz Drone Photo and Video; Other photos: Visit Medway Website.

Rochester Cathedral

Rochester Castle (1836)

Yu-Wen Lin

Coastal erosion: The 'forgotten' community left to fall off a cliff. July 2020. Source: BBC news. https://www.bbc.com/news/uk-england-53367000.

Problem field

CLIMATE CHANGE IN KENT AND MEDWAY

- 1. Sea level rise 0.8-0.9 m, accompanied by north sea surge with an additional 1 to 3 m
- 2. Natural erosion of coastline
- 3. Intertidal habitats losses

Aerial images show the extent of flooding in Yalding, a town in the upper stream of River Medway. Image source: Hawkeye Aerial Media.

		South East England					
	Change in mean temperature		Change in rainfall			Projected sea level	
	Annual	Summer Winter		Annual	Summer	Winter	rise
2040	+1°C to 2°C	+2°C to +3°C	+1°C to +2°C	-10% to +10%	-20% to -30%	+10% to +20%	0.16-0.29m
2080	+4°C to 5°C	+5°C to +6°C	+3°C to +4°C	-10% to +10%	-30% to -50%	+20% to +30%	0.39-0.80m
2100	_	-	-	-	-	-	0.90m

Table of climate change key figures in Kent and Medway. Source: The Climate Change Risk and Impact Assessment for Kent and Medway (CCRIA) and Thames Estuary 2100.

Fig. Time series of time-mean sea level change and the spatial pattern of change at 2100 in the highest emission scenario–Scenario RCP 8.5. Source: UKCP18 Science Overview Report. 2018. Met Office.

B. Synthesis map of sea level in 4 m= rise 1 m (Thames 2100 scenario)

C. Synthesis map of sea level in 5 m= rise 2 m (Thames 2100 scenario)

D. Synthesis map of sea level in 10 m= rise 7M (an extreme version in this study)

Problem field

SCENARIO OF SEA LEVEL RISE

Scenarios

- 1. Rise 0.8m by 2080 (Scenario RCP8.5)
- 2. Rise 0.9m-2m by 2100 (Thames 2100)
- 3. North sea surge: additional 1 to 3m
- 4. Scenarios in this study: 7m

Influential zone

- A. Sea port
- B. Flooding of low-lying cities: Medway, Chatham, Sittingbourne
- C. Submerged of low-lying cities
- D. Similar to C., but in a wider range

Data source: LIDAR Composite DTM 2019. Developed by author. The white lines are the current road systems.

Low-lying cities (Medway City Estate)

Interface between river and urban: Low spatial quality, difficult to experience water (Chatham)

Sea level rise will lead to coastal squeeze for intertidal habitat. (Grain)

PROBLEM STATEMENT

- 1. Climate change magnifies the uncertainties of flooding risks from the sea and the hinterland. Sealevel rise, inland water discharge, aging flood defense, and coastal erosion are the main challenges for the Medway river estuary. Intertidal habitats are going to be submerged by the rising sea and thus lose the ecological gradient.
- 2. The capacity of the Medway river estuary to adapt to flood risks and the uncertainties associated with climate change is weak due to the intensification of industrial uses, urban development, and port construction. This degrading leads to the loss of flood buffers and the loss of recreational value of the river landscape.

Methodological framework

THEORY: RESILIENCE

Fig. Ball-and-cup schematic diagram of resilience. The cup represents the region in the state space or basin of attraction, in which the system tends to remain, and includes all possible values of system variables of interest. The ball represents the state of the system at any given time. Diagrams are adapted from Liao (2012).

"Resilience is about cultivating the capacity to sustain development in the face of expected and surprising change and diverse pathways of development and potential thresholds between them (Folke, 2016)."

Resilience in relation to flooding risks and climate adaptation

RESEARCH OBJECTIVE

Develop and apply design strategies for a more resilient Medway River Estuary addresses flooding, urban, and ecological development.

RESEARCH QUESTIONS

- 1. How does the socio-ecological system of the Medway River Estuary function?
 - 1) How did the urban landscape adapt and transform over time?
 - 2) What are the challenges and potentials for the Medway River Estuary?
- 2. What design strategies and principles are suitable for flood mitigation and socio-ecological inclusive development?
 - 1) What design principles and strategies for resilient landscape can be applied in the Medway river estuary?
 - 2) What are the spatial strategies for the different parts of the watershed in the Medway river landscape?
- 3. How to apply the design strategies and principles in Medway River Estuary to increase its socio-ecological resilience?

LANDSCAPE-BASED REGIONAL DESIGN

Research strategy

DESIGN-RELATED RESEARCH

PART 2

ANALYSIS

RQ1. How does the socio-ecological system of the Medway River Estuary function? 3.1 – Scaling through the Thames river basin

3.2 – Comparison of the Thames cities

3.3 – Understanding of the River Medway Estuary

3.4 – Scenario study

3.5 – Conclusion

Resilient Medway River Landscape– Adaptive Design Strategies for a Sustainable Coastal Landscape

EMU Graduation Yu-Wen Lin

Analysis

SCALING THROUGH THE THAMES RIVER BASIN

Data Source: Landuse: Corine landcover 2018. River and flood: Environment Agency. Population: ONS, mapped by author. Road and green space: OS Local

Characteristics	Broad river valley Unleashed river, relief channel, controlled river City locates in valley and on the high ground	Flat alluvial plain Channelized river, high ground and embankment Densely populated city locates on river plain		
Strategies	 Redesign of dike: setback/ naturalizing Relief channel / green belt/ room for the river (increase retention time and space) Re-forestation and re-vegetation (increase sponge capacity) 	 Drainage design in the built environment (increase retention space) Redesign of dike, emphasizing on waterfront interface Re-vegetation of urban green system (increase sponge capacity) 		

City	located on the high ground, close to the river or the sea
1.	Redesign of dike: setback/ naturalizing (increase retention space in flood

Wide range of geographical difference (hills, valley, alluvial plain)

plain)

Estuary

- 2. Coastal management
- Restoration of tidal habitat dynamics
 Waterfront city redevelopment

Analysis

UNDERSTANDING OF THE RIVER MEDWAY ESTUARY

-last part of tidal river -meanders in valley -residential town

Bend of River Medway

-interface between valley and estuary -floodplain underwent brownfield transformation -major urbanization area -River Medway joining River Thames esturay -The Swale joining from the west Costal erosion on Isle of Sheppey

Legend rivercourse foreshore contour line (10m interval) low-lying zone: lower than 10m woodland open space

coastal erosion zone

Coastal erosion risk (NCERM, 2018)

- ------ erodible flood defense
- floodable flood defense

Risk of Flooding from Rivers and Sea (Environmental Agency, 2020)

- High: each year, there is a chance of flooding of greater than 1 in 30 (3.3%).
- Medium: each year, there is a chance of flooding of between 1 in 30 (3.3%) and 1 in 100 (1%).
- Low: each year, there is a chance of flooding of between 1 in 100 (1%) and 1 in 1000 (0.1%).

Analysis

WORKING WITH TIDE

Tidal range

Neap tide: -1.4~1.8m(3.2m) Spring tide: -2.8~ 3.2m(5.8m)

Habitats connected to tide

Example: 1.8m, neap tide high tide level, around 75% of the time the patch could expose to air. If it is lower, then it could be a mudflat habitat.

Vulnerable to sea level rise

If sea level rise, the current intertidal vegetation, such as reeds, might be flooded.

Fig. Histogram of sea-level recording at 15-minutes intervals in three years at Sheerness (from 2015 to 2017) converted to OD. Data source: British Oceanographic Data Centre (BODC). Sheerness tide gauge. https://www.ntslf.org/tides/datum). Developed by author.

Yu-Wen Lin

A STEADILY GROWING AREA

	Distri	ct	Neighborhood with the highest density		
	Medway Unitary authority	Swale Borough	Medway 022A	Swale 001C	
Population (2019)	278,556	150,082	2,176		
Area(ha)	19,203	37,340	12.82	9.47	
Population density	14.51	4.02	169.73	187.96	

Table 1. Population density: 2019

	Distri	ct	The fastest-growing neighborhood			
	Medway Unitary authority	Swale Borough	Medway 004A	Swale 004G		
Population (2011)	263,925	135,835	2,019	1,829		
Population (2019)	278,556	150,082	2,835	3,124		
Growth (2011-2019)	5.54%	10.49%	40.42%	70.80%		

Table 2. Population growth

Data source: Office for National Statistics (ONS), Medway Local Plan, and Swale Local Plan. Developed by author.

Resilient Medway River Landscape 21

Yu-Wen Lin

Analysis

Analysis

ECONOMIC TRANSFORMATION

- Medway: from traditional manufacturing industries to service sector
- Swale: major occupation groups are 2,5, and 9.
- Tourism industry potential: both boroughs have a steady 10% of "Caring, Leisure, And Other Service Occupations."

MEDWAY	2018	2019	2020	Growth (2018-2020)
Total population	277,855	278,556	-	-
Economic activity (aged 16-64) population	144,100	144,400	138,100	-6,000
Total of occupation group 1-5	92,600	92,100	90,200	-2,400
Total of occupation group 6-9	51,600	50,200	43,400	-8,200

SWALE	2018	2019	2020	Growth (2018-2020)
Total population	148,519	150,082	-	-
Economic activity (aged 16-64) population	64,500	66,600	67,200	2,700
Total of occupation group 1-5	37,100	42,900	41,400	4,300
Total of occupation group 6-9	23,300	22,500	26,800	3,500

Data source: Official Labour Market Statistics (Nomis). Developed by author.

■ Medway 2018 ■ Medway 2019 ■ Medway 2020

■ Swale 2018 ■ Swale 2019 ■ Swale 2020

Analysis

SCENARIO STUDY

Scenario study is one of the foreseen study methodologies that are available for exploring the future in the face of complexity and uncertainty of the environment.

- Push forward some extremes 1.
- Learning from the overlapped location and identify key intervention clusters 2.

Rapid Economic Growth

Category 1: Critical location

Category 2: Optional location

coastline protection scheme ← – → new network connection

scenario.

+

Areas that change in both scenarios, but in a different way and under the influence of different driving forces. critical road infrastructure enhancement space for tidal river flood-proof strategy for coastal city regeneration of urban centers 0 industrial transition

Areas that change in one scenario, but do not change in another

expansion of port area and adjacent industrial zone

reclamation of land by connecting current islands

- 1 Medway and Chatham: transitional urban waterfront
- 2 Medway estuary: restore ecosystem surrounding by industrial zones
- 3 Sittingbourne: industry and logistic center of Swale
- 4 Isle of Sheppey: combined issues of flood protection, port development, and livelihood safeguarding

Conclusion of analysis

POTENTIAL MAP AS THE BASIS FOR UPCOMING DESIGN ASSIGNMENT

Yu-Wen Lin

PART 3

STRATEGIES AND PRINCIPLES

RQ2. What design strategies and principles are suitable for flood mitigation and socio-ecological inclusive development?

4.1 - Identification of local scale sites

4.2 – Precedent study

4.3 – Strategies and principles

Resilient Medway River Landscape– Adaptive Design Strategies for a Sustainable Coastal Landscape

EMU Graduation Yu-Wen Lin Strategies and principles

IDENTIFICATION OF LOWER-SCALE SITES

Strategies and principles

Restoration of tidal habitat, regional scale cases in NL

Coastline protection cases in UK

PRECEDENT **STUDY**

Time

Location	Delfzijl, Eems- Dollard estuary, NL
Time	2021
Feature	The project restored salt marshes by reusing sludge. It improv

Restoration of tidal habitat, micro scale cases in NL

Kwelderlandschap / Saltmarsh Pilot Marconi

arsnes by reusing sludge. It improves water quality, created a nature reserve, and contributed to coastal safety and the attractiveness of the coast.

De Kleine Polder

Eems- Dollard estuary, NL Location 2019 Feature The project aimed to restore natural gradient, create space for birds and fish, and introduce recreational areas on the urban side.

Sandscaping Scheme of Bacton to Walcott

Location	North Norfolk coast, UK	
Time	2019	
Feature	UK's first sandscaping scheme	

Jaywick Sea Defence System

Location	Essex coast, UK
Time	1980s
Feature	Fish tail offshore coastal breakwater

Floating Marsh Mattresses

Location

Time

Feature

Pre-grown Cord Grass Mats

Salt Fleet Flats Thames river, UK

Location

Feature

Time

Time 1997 - 2005, and 2006 - 2011 Featu The flats was created on grazing land by reducing the ground level, using the material arising to create a new 2.4km-long flood defence embankment and breaching the existing flood defence to allow the site to be flooded.

Wallasea Island Managed Retreat

Location	Wallasea, UK
Time	1997 - 2005, and 2006 - 2011
Feature	Large wetlands are reconstructed that form a nature area to com- pensate wetlands and bird habitat losses; a flood storage facility and a recreational area.

Markermeer, NL Location Eastern Scheldt, NL Time 2019 2012~ placed close to share/ funtioned ad wave attenuator Feature

It is used in higher intertidal zone for consolidation and stabilization of tidal flats, and for the creation/restoration of pioneer salt marsh zones.

Resilient Medway River Landscape 27

Yu-Wen Lin

Strategies and principles

PROPOSED DESIGN PRINCIPLES

PART 3

DESIGN EXPLORATION

RQ 3. How to apply the design strategies and principles in Medway River Estuary to increase its socio-ecological resilience?

5.1 – Site 1. Minster coastline management

- 5.2 Site 2. Lower Rainham: restoration of tidal habitat
- 5.3 Site 3. Medway City Estate: adaptive urban waterfront

Resilient Medway River Landscape– Adaptive Design Strategies for a Sustainable Coastal Landscape

EMU Graduation Yu-Wen Lin Site 1. Minster coastline management

COASTAL CLIFF EROSION AND RETREAT

How to increase the adaptability of the Minster coastline under coastal cliff erosion and shoreline retreat?

- South part of the island is low-lying marshes and nature reserve
- North part is the economic center and under protection
 - Port of Sheerness: deep-water access port (-20m)
 - Connected to the historic center
- Minster-on-sea
 - 76 meters above sea level
 - Main residential cluster with public investment according to the local plan of Swale

3

Yu-Wen Lin

Site 1. Minster coastline management

IDENTIFY THE URGENCIES

Bathymetry

The potential intervention section is around 0 to -5 meters depth and has a 1 in 470 gentle • slope.

Urgency: 200 meter's retreat over the next 100 years

All areas apart from the Leas have a high annual erosion rate, which would encounter a • 200 meters' retreat over the next 100 years (Environment Agency, 2018)

Conclusion: the priority section to protect->

Minster Sea Cliff Defence to Bugsby's Hole ٠

Fig. Bathymetric maps and section diagrams. Data source: Defra, Marine DEM.

Fig. Coastal Retreat projection (Minster to Bugsby's Hole). Source: Environment Agency. (2018). Mapped by Mott MacDonald.

Yu-Wen Lin

Veer

Projected future cumulative retreat (m)

Year	Leysdown-on-Sea (BA8.2 & 9.1)	Warden Bay Defended (BA9.2)	Warden Bay Undefended (BA10.1 & 9.2)	Barrows Brook to Warden Point (BA 10.1)	Hen Brook to Barrows Brook (BA 10.1)	Bugsby Hole to Hen Brook (BA 10.1)	Minster to Bugsby Hole (BA10.1)	Minster Cliffs sea defence (BA 11.1)	The Leas (BA 11.1)
2015	0	0	0	0	0	0	0	0	0
2065	125	28	125	214	116	100	89	100	17
2115	290	193	290	496	269	231	206	231	38

Table. Summary of the cumulative shoreline retreat for the North Sheppey Cliff under a 'Do Nothing' scenario. Source: Environment Agency. (2018). Mapped by Mott MacDonald.

DESIGN RESEARCH AND INITIAL DESIGN CONCEPTS

- 1. Coastal breakwater as backbone
- 2. Nature-based solution perspective: combination of ecosystem elements and hard engineering approaches
- 3. Multifunction: coastal protection, restoration of ecosystem, and recreational use

Fig. conceptual sketches mapped the potential location of offshore breakwaters

MAPPING THE POTENTIAL

0

Objective

- Shoreline protection (total length: 2000~5000 1. meters)
- Protect major housing cluster (15,670 inhabitants) 2.

Legend

- Major road
- Major housing cluster
- Potential site for interface design <---> Surf zone
- Potential zone for coastal intervention

-6

-5

PROPOSAL

Nature-based interventions to increase coastal resilience

tidal park with recreational and leisure use

accessible waterfront

space for new habitats

growing marshes with pre-grow mats or floating marsh mattresses

integrating vegetated foreshores

A GROWING SYSTEM

Balance of natural formative elements: Wind, wave, tidal force, species interaction.

Phase 1: 2021-2030

0. Current shoreline

- C. Wind, waves, and tides disperse the sediment along the island chain. Mudflat landscape forms.
- D. Pre-grown cord grass mats are installed.

A. Breakwater construction B. Mud motor: deposit of dredged sediment around breakwater

E. Saltmarsh plants capture the sediment and grow the marsh. F. Development of recreational footpath.

DESIGN DETAIL

Site 1. Minster coastline

CONCLUSION

Nature Dynamics, Multifunctional program, Ecological Benefits

CHAPTER 5

DESIGN EXPLORATION

RQ 3. How to apply the design strategies and principles in Medway River Estuary to increase its socio-ecological resilience?

- 5.1 Site 1. Minster coastline management
- 5.2 Site 2. Lower Rainham: restoration of tidal habitat
- 5.3 Site 3. Medway City Estate: adaptive urban waterfront

Resilient Medway River Landscape– Adaptive Design Strategies for a Sustainable Coastal Landscape

EMU Graduation Yu-Wen Lin

URGENCIES IN THE MEDWAY ESTUARY

Saltmarsh loss due to urbanization

Much of the salt marsh area of the estuary has been lost through the removal of material for rick-making in the 19th century, or reclaimed and embanked (Cundy, et al., 2007).

Table. Saltmarsh area losses 1973-1988. Source: Kirby, R. (2013).

	Medway	Swale	
Saltmarsh area (1973)	843.8 ha	397.5 ha	
Lost by erosion (1973–1988)	180.1 ha	61.6 ha	
Percentage of total	21.3%	14.6%	

URGENCIES IN RAINHAM COASTLINE

Flood defenses hinder the gradient between land and water

Yu-Wen Lin

DESIGN RESEARCH: HYDROLOGY STUDY

Height (m)

-0.8 10.3

21.5

32.7

43.9

55.2

66.3

77.6

88.8

100

A A	

Digital elevation model as analytic base

Data source: LIDAR Composite DTM 2019

Generating streamlines by
hydrology tools through ArcGIS

Legend

- ----> Generated streamline
- Flood defense
- Surface flooding spots

Identify potential new landscape structure according to surface water flow and flooding risk data

DESIGN EXPLORATION

Proposal

Concept 1. Linear buffer

Concept 2. Cut and De-build

Concept 3. Habitat Restoration

INITIAL DESIGN IDEAS

EXPLORATIO

EXPLORATION OF DIFFERENT LAYOUT PLAN

PROPOSED PLAN

adaptive zone (reserved land) for future climate events

adaptive flood defense

- recreational or residential block
- footpath and cycling path system
- access to coast

A GROWING SYSTEM

Reference projects in UK

Salt Fleet Flats

Phase 2: 2030-2060

Excavate current dike structure . Excavate surface ground to align with existing marshes.

Place pre-grown marsh mattresses. Space for intertidal habitats to grow.

Wallasea Island Managed Retreat

Site 2. Rainham coastline. Design detail.

INTERFACE WITH NATURAL GRADIENT

В

C

D

CONCLUSION

Restoration of tidal habitats and river-land interface

CHAPTER 5

DESIGN EXPLORATION

RQ 3. How to apply the design strategies and principles in Medway River Estuary to increase its socio-ecological resilience?

- 5.1 Site 1. Minster coastline management
- 5.2 Site 2. Lower Rainham: restoration of tidal habitat
- 5.3 Site 3. Medway City Estate: adaptive urban waterfront

Resilient Medway River Landscape– Adaptive Design Strategies for a Sustainable Coastal Landscape

EMU Graduation Yu-Wen Lin

Site 3. Medway city estate URGENCIES: LOSS OF FLOOD ADAPTABILITY

- A. Rochester castle
- B. Rochester cathedral
- C. Chatham historic dockyard
- D. Medway city estate

Left: Medway city estate in 1939. Image source: Historic England. Right: Medway city estate in 2021. Image source: Google satellite.

Legend

	adaptive zone: space for tidal river
	brown field: potential allocation site
	core of mixed-use development
+ +	industrial transition
C]	pilot site

iain road

0

 $\star - \rightarrow$ shipping route

Site 3. Medway city estate

DEVELOPMENT STRATEGIES

- 1. Adaptive zones provide space for tidal river and restore tidal dynamics
- 2. Brownfields serve as relocation or allocation sites among adjacent development
- 3. Mixed-use development at city centers provide key services for the adjacent residential areas
- 4. Riverfront developments need to improve landscape quality and create recreational added values

Medway tidal park

 marina

 mixed-use of commercial and industrial zone

 footpath in tidal park

 flood defense and multifunctional community space

Yu-Wen Lin

Resilient Medway River Landscape 52

Legend

Site 3. Medway city estate

RECREATIONAL NETWORK

	Attractions
Heritage	Rochester Castle, Rochester Cathedral, Chatham Historic Dockyard, Upnor Castle, Fort Amherst, Great Lines Heritage Park
Core of water activity	Chatham marina, Medway tidal park marina
Landscape	Medway waterfront, Saxon Shore Way
Ecological education	Medway tidal park
	Mobility types for different users

Leisure and holiday tourists	yachting, sailing, biking
Youth tourists	public transportation (train, bus)

Local train, bus, automobile commuters

Yu-Wen Lin

Site 3. Medway city estate

PHASING ACCORDING TO THE TRANSFORMABILITY

	High <	► Low	
Land use	Mono-function (industrial use)	Mixed-use (industrial, retail, office use)	
Stakeholder	Single	Multiple	
Plot size	Larger than 2000 m2	Small than 2000 m2	
Open space ratio	Higher than 25%	Lower than 25%	

Phase 1: 2021-2040

- 1. Relocation.
- 2. Several open spaces in a single-use plot could be developed into wetlands.
- The linear plot adjacent to the River Medway is suggested to develop into a landscape structure

Phase 2: 2040-2070

- 1. Connect the pioneer wetlands to become part of the river system.
- 2. Construct infrastructure systems, such as the marina and the flood defense.

Phase 3: 2070-2100

- 1. Programming.
- 2. Develop mixed-use zones adjacent to the new flood defense landscape park.
- 3. Develop community spaces/classrooms inside the tidal park.

Site 3. Medway city estate SPACE FOR TIDAL RIVER

Phasing

A. Excavate and restore wetland

B. Excavate deeper and connect other wetlands to create water channel

C. Riparian vegetation

D. Tidal park development

Site 3. Medway city estate

SPATIAL QUALITY

Adapt to sea level rise Create ecological benefits Place to work and visit

Design exploration

CONCLUSION

Design strategies and principles are applied in local scale sites to increase the socio-ecological resilience of coastal landscape.

Resilient Medway River Landscape 57

PART 4

Resilient Medway River Landscape-Adaptive Design Strategies for a Sustainable Coastal Landscape

EMU Graduation Yu-Wen Lin

VISION ON REGIONAL DEVELOPMENT

6.1 – Landscape strategy

6.2 -Initial guidelines for implementation

Landscape strategy

VISION ON REGIONAL DEVELOPMENT

Resilient Medway river landscape

- 1. Capacity to adapt to uncertainties
 - 1) Environmental perspective
 - 2) Anthropocene perspective
- 2. Resilient development
 - 1) Complex system
 - 2) Adapt through time
 - 3) Governance

Initial guidelines for implementation

FLOOD MITIGATION STRATEGY

Maintenance of seabird habitat Safeguarding agriculture Enhancement of ecological gradient in valley

	phase 1: 2021-2030	phase 2: 2030-2070	phase 3: 2070-2100
coastline protection			9 🕄
robust waterfront		•	
adaptive interface		ڪ 🗠	
sponge capacity	8 💿 🗘		

Yu-Wen Lin

Initial guidelines for implementation

ECOSYSTEM DEVELOPMENT

Safeguarding agriculture

Enhancement of ecological gradient in valley

	phase 1: 2021-2030	phase 2: 2030-2070	phase 3: 2070-2100
intertidal habitat realignment and restoration of saltmarsh		@ @	
restoration of riparian corridor			
strengthen ecological gradient in the valley		Ø 🗘	00
safeguarding agriculture		₲ ₺	(h)

Core areas of ecosystem Ecotone dynamics ← - → Seabird moving route Tidal habitat restoration X Breeding and resting space for seabird Enhancement of woodland ale Proposed saltmarsh restoration site Safeguarding of agriculture

1

and the second

Initial guidelines for implementation

SOCIO-ECONOMIC DEVELOPMENT

B-**B**-**X**

Yu-Wen Lin

disaster response plan

62

PART 5

Resilient Medway River Landscape-Adaptive Design Strategies for a Sustainable Coastal Landscape

EMU Graduation Yu-Wen Lin

SYNTHESIS AND OUTLOOK

7.1 – Conclusion

7.2 – Reflection

Synthesis and outlook

OVERVIEW OF RESEARCH PROCESS

RESEARCH QUESTION	How does the socio-ecological -system of the Medway River Estuary function?	What design strategies and principles are suitable for flood mitigation and socio-ecological inclusive development?	How to apply the design strategies and principles in Medway River Estuary to increase its socio-ecological resilience?	
	Chapter 3: Analysis	Chapter 4: Principles and strategies	Chapter 5: Design application	Chapter 6: Regional scheme
RESEARCH OUTCOME		Image: Section of the section of th		
	Design research		Research-by-design	
RESEARCH-DESIGN	Regional scale analysis	Comparative analysis	Experimental design study	
RELATION	Potentials & Challenges	Precedent study	Transform generic Site-specific analysis knowledge to	Conclude the study outcome in regional scheme
	Identify locations	Generate knowledge	specific Apply design principles	
	Local scale analysis	Develop principles and strategies	Explore and test differe v proposals in local scale	ent design sites
	Τ	T TT	Revised principles	

Synthesis and outlook

LESSONS LEARNED – STUDY OF THE NATURAL PROCESS

- 1. Learned principles from the natural formative process.
- 2. Study of the natural formative process inform the designer of design decisions.
- Example: Rainham site
 - Potential locations for saltmarsh restoration: understanding of the formative elements of landscape, i.e. bathymetry, tidal range
 - To identify which locations are above the sea level at a certain percentage of the time in a year and are suitable for plants to grow.
- Example: Rainham site & Medway site
 - The analysis of surface water flow leads to the design decision of the form of dike relocation.
- Example: Sheppey site
 - Understanding of coastal zones: shoreline, foreshore, breaker zone, littoral zone.
 - Study of the type of flood defense infrastructures.
- 2. Natural dynamics would determine the final design results.
- Example: Sheppey site
 - The shape of the barrier islands may differ from what is drawn in the plan.
 - It is a system designed by the designer, but nature will continue working on it.
 - Adaptive management mechanisms, such as the mud motor, are also needed to increase coastal resilience decades later.

LESSONS LEARNED - ROLE OF URBAN DESIGNER

THANK YOU

Resilient Medway River Landscape— Adaptive Design Strategies for a Sustainable Coastal Landscape

The European Post-master in Urbanism Yu-Wen Lin

linyuwendy@gmail.com linyuwen.urbanist@gmail.com

