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Summary 
 
Enhanced pre-stack depth migration, characterized by improved resolution and amplitudes, ensures a 

more accurate representation of the subsurface, proving essential for reducing the likelihood of 
geological misinterpretations and facilitating informed decision-making in seismic exploration. 

However, obtaining high-resolution images with preserved amplitudes through standard depth 

migration could face several hurdles known as migration artifacts. Iterative least-squares migration 
(LSM) was developed to address these migration artifacts. However, the convergence rate of LSM using 

a gradient descent approach tends to be slow. Several researchers have attempted to achieve 

computational efficiency in linearized LSM through gradient preconditioning. In the context of iterative 

least-squares wave-equation migration, this extended abstract compares three minimization approaches 
that differ in error functions and gradient preconditioning—including the depth-dependent Hessian 

approximation inverse—through two numerical examples, one with an inverse-crime scenario and the 

other with a non-inverse-crime scenario. 
 



A Comparative Study of Three Hessian Approximations in Wave-Equation Migration

Introduction

Pre-stack depth migration in exploration seismology transforms seismic data into a subsurface depth
image, aiming for accurate positioning of seismic amplitudes. However, obtaining high-resolution images
with preserved amplitudes through standard pre-stack depth migration faces several hurdles associated
with irregular acquisition geometry and organized noises, among others, degrading image accuracy,
known as migration artifacts (Jones, 2018).

Iterative least-squares migration (LSM) represents an advanced variant of pre-stack depth migration,
where the subsurface reflectivity model (image) receives iterative updates through an iterative migration-
demigration cycle to converge towards an "ideal representation" of the reflectivity model, aiming to
mitigate the migration artifacts (Nemeth et al., 1999). However, the convergence rate of LSM using a
gradient descent approach tends to be rather slow. It may require quite a few iterations to get higher
accuracy due to the band-limited nature of seismic data, making it a demanding computational effort.

Linearized LSM, where the forward problem is linearized through the Born approximation, aims to
accelerate the convergence rate and achieve the highest possible accuracy within the resolution power of
the acquired seismic data. It minimizes S, a quadratic function of δr∪,

S(δr∪) =
1
2

∫
ω

dω ∑
s
∥δds,ω −Js,ωδr∪∥2

2, (1)

with the minimizer (Lines and Treitel, 1984),

∂S
∂δr∪

= 0 → δr∪ =−
Re

{∫
ω

dω ∑
s

J†
s,ωδds,ω

}
Re

{∫
ω

dω ∑
s

J†
s,ωJs,ω

} , (2)

in which δr∪ is the upward reflectivity model perturbation vector, ω is an angular frequency component,
s means a shot, δd denotes the data residual vector, † means adjoint, J stands for the partial derivatives of
the modeled wavefield, known as the Jacobian matrix, and J†J is known as the Hessian approximation
matrix (Ha). The upward reflectivity model can be then updated iteratively via r∪k+1 = r∪k +αkδr∪k , where
k and α are the iteration number and the minimization step length, respectively. If one assumes that S
is a quadratic function of the δr∪ω (frequency-dependent reflectivity model perturbation), the minimizer
transforms to (Jang et al., 2009; Oh and Min, 2013),

δr∪ =−
∫

ω

dω δr∪ω =−
∫

ω

dω

Re
{

∑
s

J†
s,ωδds,ω

}
Re

{
∑

s
J†

s,ωJs,ω

} , (3)

in which, an effective deconvolution effect on the source signature is facilitated through the sequential
application of the denominator (Hessian approximation) to the gradient at each frequency, compared to
Equation 2.

Over time, the replacement of the denominator in Equations 2 and 3 (gradient preconditioning) with
cost-effective alternatives has been pursued by several researchers to ensure the computational efficiency
of linearized LSM in large-scale applications (e.g., Shin et al., 2001; Plessix and Mulder, 2004; Choi
et al., 2008; Lu et al., 2018). In the context of space-frequency linearized least-squares one-way wave-
equation migration, which uses angle-independent reflection/transmission coefficients and involves
upward/downward wavefield extrapolation between virtual data levels within the medium (Berkhout,
2014a), Abolhassani and Verschuur (2022) introduced a depth-dependent Ha. They partition Ha into
smaller operators, each capturing the correlation of partial derivative wavefields at identical depth levels.
Constructed and applied (its inverse) directly at each virtual data level within the medium, the depth-
dependent Hessian approximation efficiently minimizes the associated computational expenses, as the
number of model parameters per virtual data level represents only a small fraction of the total. Combined
into a single matrix, these operators form a block-diagonal approximation for Ha.
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Table 1: Investigated approaches

Approach Error
Function

Update
Equation Denominator in the Update Equation Explanation

AP-c S(δr∪) 2 “Equation 27” in Plessix and Mulder (2004)
(i.e., diagonal approximation of Ha) –

AP-1 S(δr∪ω ) 3 depth-dependent version of ∑s J†
s,ω Js,ω

(i.e., block-diagonal approximation of Ha)
–

AP-2 S(δr∪ω ) 3 depth-dependent version of (∑s Js,ω )
†

∑s Js,ω
(i.e., block-diagonal approximation of Ha)

including interference between sources
in the denominator but mathematically

cheaper compared to the AP-1 approach

In this extended abstract, we initially compare three minimization approaches, as listed in Table 1, using
an "inverse-crime" scenario. Subsequently, given the similar performance of AP-1 and AP-2, but with
AP-2 being cheaper, we further compare AP-c and AP-2 using a full-wavefield "non-inverse-crime"
scenario. We end the paper with conclusions.

Theory

In LS-WEM, we use a space-frequency one-way wavefield extrapolation scheme called primary-wavefield
modeling (PWMod) (Berkhout, 2014b). This scheme models angle-independent two-way primary
reflection data, including reflection and transmission effects,

p−
mod (z0,ω) =

1

∑
m=N

L−
z0;zm︷ ︸︸ ︷[[m−1

∏
n=1

W−
zn−1;zn

T− (zn)

]
W−

zm−1;zm

](
r∪ (zm)◦p+

mod (zm,ω)
)

(4)

p+
mod (zm,ω) =

[[ 1

∏
n=m−1

W+
zn+1;zn

T+ (zn)

]
W+

z1;z0

]
s+ (z0,ω) , (5)

in which p−
mod (z0,ω) is the monochromatic upgoing wavefield modeled at z0, p+

mod (zm,ω f ) is the
monochromatic downgoing wavefield modeled at zm, W−

zn−1;zn
is the upward phase-shift extrapolation

matrix-operator from zn to zn−1, W+
zn+1;zn

is the downward phase-shift extrapolation matrix-operator from
zn to zn+1, r∪ (zm) represents the angle-independent upward reflectivity vector-operator at zm, T± (zn) de-
notes the downward/upward transmission diagonal-matrix-operator

(
T± (zn)= I±diag(r∪ (zn)

)
, s+ (z0,ω f )

shows the monochromatic downgoing physical source at the Earth’s surface, N is the total number of
virtual depth levels, and the symbol ◦ means element-wise product.

Compared to PWMod, FWMod (full-wavefield modeling) takes into account the multiple scattering by
replacing Equation 5 with (Berkhout, 2014b),

P+
mod (zm,ω) =

N

∑
m=1

L+
zm;z0

(
s+ (z0,ω)+ r∩ (zm)◦p−

mod (zm,ω)
)
, (6)

where r∩ (zm) is the angle-independent downward reflectivity vector-operator at zm with r∩ =−r∪. Now,
running the recursive summation in Equation 4 for multiple iterations results in multiple scattering.

In the introduction, we outlined three minimization approaches for linearized least-squares one-way
wave-equation migration, listed in Table 1, to be examined and compared in this study, namely AP-c,
AP-1, and AP-2, where AP stands for amplitude preserved. The nominator in all update equations
(“gradient”) for a pair of source and frequency components and a given depth level (zm) reads,

gs(zm,ω) = Re

{(
p+

mod,s (zm,ω)

)∗
◦

back-propagated wavefield︷ ︸︸ ︷(
L−†

z0;zm
δd−

s (ω)

) }
, (7)

where ∗ denotes the complex conjugate transpose.

To calculate the denominators for AP-c, AP-1, and AP-2, the only absent component is the Jacobian
matrix. Abolhassani and Verschuur (2022) presented the expression of Js (zm,ω) as,

Js (zm,ω) =
[

p+1 mod,s (zm,ω f )L−
∗,1z0;zm

p+2 mod,s (zm,ω f )L−
∗,2z0;zm

. . . p+nx mod,s (zm,ω f )L−
∗,nx z0;zm

]
,

(8)
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in which L−
∗, jz0;zm

denotes the jth column of L−
z0;zm

, j denotes the lateral location of a model parameter at
zm, nx denotes the number of model parameters at zm.

Examples
In the first example, our true model is a section of the BP 2004 model,
including gas clouds. To enhance the model, we introduce three point
diffractors to the model, as shown in Figure 1. The model consists of a
grid with 351 × 326 points in both horizontal and vertical directions. On
top of the model, we have positioned 51 shot points with a spacing of
175 meters. For each shot, 351 receivers spaced 25 meters apart record
reflection data. The source function used in this example is a Ricker
wavelet with a dominant frequency of 10 Hz. Our forward modeling
tool for generating the observed dataset is PWMod, i.e., only primaries,
applied on the true model (“inverse-crime” scenario), with a recording
time of 4.092 seconds. Employing an accurate migration velocity model
(without diffractors), we evaluate and compare AP-c, AP-1, and AP-2.
Figures 2a, 2b, and 2c compare the results after 5 iterations.
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Figure 1: BP 2004 model:
True image
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(a) AP-c
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(b) AP-1
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Figure 2: BP 2004 model example: Estimated images after 5 iterations and convergence history

AP-1 and AP-2 outperform AP-c in resolution and amplitude preservation. Figure 2c highlights significant
disparities. Notably, interference between neighboring mono-frequency sources in AP-2 doesn’t degrade
the image. Figure 2d confirms the faster convergence of AP-1 and AP-2 over AP-c. Given the similar
performance of AP-1 and AP-2, the second example exclusively compares AP-2 with AP-c, as AP-2 is
cheaper than AP-1 due to requiring fewer matrix-matrix multiplications.

In the second example, we use a density-driven wedge model (Figure
3) with alternating reflection coefficients (r∪ = ±0.1), where the true
velocity model is a homogeneous velocity of 2000 m/s. Acoustic finite-
difference modeling with a 1 m grid and a 15 Hz Ricker wavelet generates
observed reflection data. For 2.92 s, 401 receivers, planted on top of the
model, at 10 m spacing record 31 shots at 120 m spacing from 200 m to
3800 m, triggered sequentially on top of the model. For inversion, with
the same source-receiver setup and the true homogeneous velocity model,
FWMod with a 10 m horizontal grid and a 4 m vertical grid models the
reflection data in each iteration (non-inverse-crime scenario). With this
experimental setup, we evaluate and compare AP-c and AP-2. Figure 4
displays the estimated images after 5 and 10 iterations.
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Figure 3: Wedge model: True
density
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(a) AP-c: Iteration 5
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(b) AP-2: Iteration 5
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(c) AP-c: Iteration 10
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(d) AP-2: Iteration 10

Figure 4: Wedge model example: Estimated images after 5 and 10 iterations
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(a) AP-c
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Figure 5: Wedge model example: Data residuals after 10 iterations for selected sources.

As seen in Figure 4, AP-2 exhibits superior resolution and significantly better-preserved amplitudes in
half the iterations of AP-c. Once again, and now in a non-inverse-crime scenario, we observe that the
interference between adjacent mono-frequency sources in AP-2 doesn’t degrade the image. Figure 5
depicts the data residual of AP-c and AP-2 after 10 iterations for selected sources. It confirms that AP-2
reaches smaller data errors (faster convergence in terms of iterations).

Conclusions

This study highlights the notable impact of depth-dependent Hessian approximations in large-scale
linearized least-squares migration, with AP-2 distinguishing itself in resolution power and amplitude
perseverance. The example with "non-inverse-crime" scenario pinpoints the convergence benefit (in terms
of iterations) of AP-2 over AP-c, achieving superior images and less data errors in half the iterations. The
resistance of AP-2 to the interference between sources adds further to its appeal. These findings make
clear the potential of depth-dependent Hessian approximations to enhance seismic imaging, fostering
improved subsurface characterization and interpretation.
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