
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://cas.tudelft.nl/

CAS-2023-00

M.Sc. Thesis

On-chip Self Timed SNN Custom Digital
Interconnect System

Jiongyu Huang B.Sc.

Abstract
A Spiking neural network (SNN) is a type of artificial neural network
which encodes information using spike timing, network structure, and
synaptic weights to emulate the information processing function of
the human brain. Within an SNN, it is always required to support
the spike transmission that travels between neurons(array). This the-
sis aims to design a customized high-speed interconnect system which
supports multi-point communication in a neuromorphic computing
system. The burst-mode two-wire protocol in point-to-point commu-
nication is applied in this interconnect system, which is designed in
high-level modelling with SystemC. In order to improve the utilization
of hardware resources, a virtual channel system is involved. Further-
more, this system could be extended to a variable number of neuron
arrays to support different types of spiking neural networks. Also,
optimization methods are adopted to increase the transmission rate
of the system and save unnecessary energy consumption. The inter-
connect system could achieve a throughput of 3.802 Gbits/s with the
given MNIST use case, based on the evaluation of simulation results.

On-chip Self Timed SNN Custom Digital
Interconnect System

My Subtitle

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Jiongyu Huang B.Sc.
born in Shang’yu, China

This work was performed in:

Circuits and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2023 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “On-chip Self Timed SNN Custom Digital Interconnect System” by
Jiongyu Huang B.Sc. in partial fulfillment of the requirements for the degree of
Master of Science.

Dated: 30.01.2023

Chairman:
Prof. Dr. Ir. Rene van Leuken

Advisor:
Dr. Aditya Dalakoti

Committee Members:
Dr. C. Galuzzi

iv

Abstract

A Spiking neural network (SNN) is a type of artificial neural network which encodes
information using spike timing, network structure, and synaptic weights to emulate
the information processing function of the human brain. Within an SNN, it is al-
ways required to support the spike transmission that travels between neurons(array).
This thesis aims to design a customized high-speed interconnect system which supports
multi-point communication in a neuromorphic computing system. The burst-mode two-
wire protocol in point-to-point communication is applied in this interconnect system,
which is designed in high-level modelling with SystemC. In order to improve the uti-
lization of hardware resources, a virtual channel system is involved. Furthermore, this
system could be extended to a variable number of neuron arrays to support different
types of spiking neural networks. Also, optimization methods are adopted to increase
the transmission rate of the system and save unnecessary energy consumption. The in-
terconnect system could achieve a throughput of 3.802 Gbits/s with the given MNIST
use case, based on the evaluation of simulation results.

v

vi

Acknowledgments

I would like to thank my advisors, Prof. Rene Van Leuken, Ir. Alexander de Graaf,
Dr. Aditya Dalakoti and Dr. Kamlesh Singh for their kind feedback and suggestions
in every weekly meeting. I am especially grateful to Dr. Aditya Dalakoti and Prof.
Rene van Leuken, who provided me with the directions for the thesis when I felt lost.

Also, I would like to thank my colleague master students, Yichen Yang and Tianyu Du,
who provide firm support and work with me in Innatera Nanosystems.

Finally, I would like to thank my parents, Xiaomei Yan and Meilong Huang. Without
their selfless support and encouragement, it would be impossible to complete my studies
at TUDelft.

Jiongyu Huang B.Sc.
Delft, The Netherlands
30.01.2023

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Objective . 2
1.3 Contribution . 2
1.4 Outline . 3

2 Background 5
2.1 Spiking Neural Networks . 5
2.2 Address Event Representation . 8
2.3 Interconnect Strategies For SNN Implementations 10

2.3.1 Shared bus topology . 10
2.3.2 Network-on-chip . 11
2.3.3 Current NoC-based SNN Approaches 12

3 Design 15
3.1 Methodology Flow . 15
3.2 Overview . 15
3.3 Design of an Event-driven Mechanism 18
3.4 Design of a SerDes Link . 20

3.4.1 Two-wire encoding . 21
3.4.2 Design of the Transmitter . 22
3.4.3 Design of the Receiver . 25

3.5 Design of the Multi-Point Communication 27
3.5.1 Virtual channel for a single physical channel 28
3.5.2 Overall Controller . 31

3.6 Data Processing Before Transmission 32
3.6.1 Packet Generator . 33
3.6.2 Crossbar . 34

3.7 System Parameterization . 37

4 Simulation and Results 39
4.1 Simulation with MNIST dataset . 39

4.1.1 Mapping to a real MNIST network 39
4.1.2 Simulation Waveform . 40
4.1.3 Timing and Throughput . 43

4.2 Power and Area . 45

ix

5 Conclusion and Future Work 53
5.1 Conclusion . 53
5.2 Future Work . 54

x

List of Figures

2.1 The trend of increasing power densities and clock frequencies of proces-
sors. [17] . 6

2.2 Neural network inside the human brain. [14] 6
2.3 Architecture of a multilayer spiking neural network. [13] 7
2.4 SNN with connections and Biological Neuron. 8
2.5 Standard address event representation (AER) protocol. 9
2.6 The mechanism of point-to-point AER communication. 9
2.7 (a) A two-layer feed forward fully interconnected network with neurons

per layer and (b) its bus-based interconnect scheme representation. [4] . 11
2.8 A general representation of a NoC-based architecture [8]. 12
2.9 Block diagram of the FACETS network core with connection pattern

between synapses [18]. 13
2.10 The architecture of the EMBRACE network [10]. 14

3.1 Architecture of the communication link. 17
3.2 Inner structure of a Control System. 17
3.3 Working mechanism of an event-driven component. 20
3.4 The SerDes Link Between Two Neuron Arrays. 21
3.5 Two-wire Burst-mode Encoding. 22
3.6 The Digital Block of Transmitter. 23
3.7 The Inner Structure of a Transmitter. 23
3.8 DFF with double size. 24
3.9 Output from a Pulse Generator. 24
3.10 Inner Structure of an OR Gate Tree. 25
3.11 The Digital Block of Receiver. 26
3.12 The Inner Structure of a Receiver. 26
3.13 The Inner Structure of the Data pack block. 27
3.14 Direct Connection between two neuron arrays. 28
3.15 A physical channel divided into four virtual channels. 29
3.16 The Digital Block of a Pulse Latch. 30
3.17 Block Diagram of the Overall Controller. 32
3.18 OR Gate Tree to judge validation. 34
3.19 Inner Structure of a Packet Generator. 34
3.20 Crossbar switch states. [19] . 35
3.21 Typical design of crossbar switch. 36
3.22 PLA with an AND array followed by an OR array. [23] 36
3.23 (a) A simplified version of the file tree diagram within this project folder.

(b) The listed parameter in the head file parameter.h. 37

4.1 The inner structure of a quarter of MNIST Neural Network 40
4.2 The mapping of an MNIST network to this communication system . . . 41

xi

4.3 The data flow to transmit and receive a packet 41
4.4 The waveform when transmitting a packet 42
4.5 The waveform when receiving a packet 42
4.6 The Delay of a 2-Input MUX Gate [24] 43
4.7 The Power Consumption of a 2-Input And Gate 48

5.1 A more flexible mapping strategy . 55

xii

List of Tables

2.1 Trade-off regarding the implementation of neural systems. [4] 10

4.1 Gate number of the Transmitter . 46
4.2 Gate number of the Receiver . 46
4.3 Gate number for Packet Generator System 46
4.4 The Gate Counting for the System with kGE 47
4.5 The Energy Consumption For Pulse-mode Gate Family 48
4.6 Energy Consumption of the Transmitter 50
4.7 The Energy Consumption of the Receiver 50
4.8 The Energy Consumption of the Global Controller 51
4.9 The Energy consumption and Power of the System 51

xiii

xiv

Introduction 1
1.1 Problem Statement

With the growth in transistor integration density and complementing of the multi-
core architecture, the modern Von Neumann computing system continued to succeed
in development since its birth. However, the CPU, memory and other components
are placed separately physically in a traditional Von Neumann computing system. To
connect the whole computing system, the communication bus must exist, which con-
sumes a lot of energy and becomes the speed bottleneck for this system. Furthermore,
due to the physical limitations, the trend of transistor size shrinking has slowed down.
As the density of data escalates dramatically, the von Neumann architecture becomes
fundamentally non-scalable and inefficient when extracting valuable data.

Inspired by the human brain’s working mechanism, a non-traditional computing archi-
tecture, named neuromorphic computing system, was proposed in the 1980s to mimic
mammalian neurology. It uses the very-large-scaled-integrated (VLSI) circuit to imple-
ment neural system whose architecture is based upon neurobiology. There are different
types of neural networks, such as recurrent neural networks (RNN), artificial neural
networks (ANN), convolutional neural networks (CNN), etc.

This thesis elaborates on the process of designing a high-speed, self-timed interconnect
system between neuron arrays within in Spiking Neural Network (SNN). Asynchronous
self-timed burst mode is a kind of methodology in which a small pulse signal (spike) is
used for marking a certain time period to progress the processes in a circuit. Conven-
tionally, the clock is widely used in circuits with the function of transmitting a signal.
When applying the clock signal, it works by flipping on and off constantly, based upon
the frequency of the clock cycle, during which the power is dissipated, whether data
is moving or not. The clock on an SoC system is generally generated by a reference
clock with the PLL(Phase-Locked Loop) and the digital frequency divider, and it may
be connected to drive thousands of register clock terminals for the whole circuit. As it
is impossible for any single cell to have such a large driving capacity, a large number of
buffers must be inserted. Also, in order to ensure the same delay to each register, the
clock tree needs to be balanced. With the development of the manufacturing process
and the increase of the design scale, the power consumption generated by the clock tree
accounts for a higher and higher proportion of the power consumption of the entire
SoC, sometimes accounting for almost 50%.

However, for a neuromorphic system, its frequency of events happening is much lower
than a traditional processor. Thus, a considerable amount of energy is unnecessarily
consumed when a clock tree is used in an SNN system. Furthermore, as process nodes
shrink, the process variability adds to the difficulty of satisfying timing closure for SoC

1

design. This problem is exacerbated by clock tree balancing, jitter as well as clock
skew, which make this issue dramatically more difficult to solve.

Consequently, in our interconnect system, the Self Timed Burst Mode Asynchronous
Logic is used to eliminate the need for clocks. In a self-timed circuit, when a process
is about to be triggered, a pulse/spike corresponding to it, which is called an event,
will act like a signpost to make the circuit follow in time to coordinate its sequence
of actions, replacing the function of the clock in a traditional circuit. These events
will not be activated until their specific trigger conditions are met. Thus, a self-timed
circuit only consumes little power during its idle state.

To develop this interconnect system and verify its functionality, both the SNN array
as well as interconnects are involved. The SNN arrays refer to a large amount of data
output from the separate dies on a chip, and the scale of the data varies with the
changing application scenario. However, the implementation of the SNN array is not
included in this thesis. To make up for this, a trained MNIST network is applied to
simulate the SNN array. The interconnects between these ’virtual’ SNN arrays are
implemented in a self-timed logic. These interconnects are specifically focused on the
design of transmitters, receivers as well as the protocol with which they connect to each
other. To reduce the use of resources and ensure the stability of data, a two-wire SerDes
link is used to transfer information, which could ensure high speed and low latency. In
addition, a multi-point communication mechanism is designed in our system, as there
are multiple neuron arrays in a neuromorphic system generally. Depending on the
test case provided, it is expected to evaluate different types of encoding and decoding
schemes, with the trade-off between power, area and other evaluation criteria.

1.2 Objective

The objective of this thesis is to design and implement a customized high-speed inter-
connect system in self-timed burst mode asynchronous logic. This interconnect system
is applied to transfer data within a neuromorphic computing system and some optimiza-
tion methods are proposed to enhance the performance of this system. Furthermore,
MNIST user cases will be provided to verify its functions and evaluate relevant power,
area and throughput features.

1.3 Contribution

The contributions of this thesis are:

• Implement a serial link in asynchronous self-timed logic to capture spikes and
transfer data between neuron arrays.

• Present optimization methods to compress output data from neuron arrays.

• Combine the serial link with the data compression method to speed up data
transfer between neuron arrays.

2

1.4 Outline

The following is the structure of the thesis:

• Chapter 2:
It provides some background information about the neuromorphic computing sys-
tem as well as the self-timed pulse-mode communication link.

• Chapter 3:
It introduces the design flow of the whole interconnect link system. A detailed
explanation has been provided for all the components implemented. How they
cooperate with each other has been elaborated as well. Also, the Parameteriza-
tion of this system and some optimization methods have been mentioned in this
chapter.

• Chapter 4:
In this chapter, the power, performance and area of the interconnect system have
been evaluated. The simulation results are shown in detail as well.

• Chapter 5:
This chapter concludes this interconnect system and suggests some future im-
provements.

3

4

Background 2
This chapter first describes the architecture of a neuromorphic system, which contains
a huge amount of connectivity to transmit data among nodes within its inner network.
Also, as mentioned before, the system’s spike rate is at a relatively low level most of
the time. Because of that, an event-based methodology could be more suitable for a
neuromorphic system. Furthermore, different communication patterns are introduced
and discussed to evaluate whether they can overcome the bottleneck of data throughput
during the spike rate’s peaking period.

2.1 Spiking Neural Networks

As transistor technology advances, a greater number of transistors may be accommo-
dated in the same space within a chip. The switching frequency also increases with the
improvement of the transistor technology. However, in terms of computation, memory,
and communication, the traditional von Neumann architecture is inherently inefficient
and nonscalable when trying to handle complex scenarios with massive data. As the
figure 2.1 shows, with the improvement of the clock frequency, the power density of
the processors keeps increasing as well, which brings greater heat dissipation pressure
and power overhead to the system. To overcome this issue, a lengthy ambition [16] has
been to use neuroscientific insights to create a versatile computer that is energy and
space efficient, homogeneously scalable to large networks of neurons and synapses, and
flexible enough to run complex behavioural models of the neocortex as well as networks
inspired by neural architectures [6].

Figure 2.2 shows a cross-section of the neuron networks inside the cortex of the brain.
The neurons in the figure are connected to each other and transfer information to
each other through their connections. Inspired by natural neural networks, spiking
neural network (SNN) processing is utilised in neuromorphic compute accelerator ICs,
which use neuron models to communicate information in the form of asynchronous
events [21]. SNN is a kind of artificial network which is made up of neurons, axons
as well as synapses. Apart from that, SNN incorporates the time factor also into
its working model. Not like what they do in traditional networks, in SNN, a neuron
does not transfer data when reaching the end of each propagation cycle (if this SNN
network has a clock). Instead, only when a neuron’s accumulated value, which is
known as membrane potential, exceeds its threshold, will this neuron generate a spike
or pulse. Figure 2.3 shows a three-layer network with one input layer with p input spike
trains, one output layer with n neurons, as well as a single hidden layer. In an SNN
neuron network, each neuron has one long wire which snakes away to the neurons in
the other layers. Based upon this long wire, which is known as an axon, spikes from the

5

Figure 2.1: The trend of increasing power densities and clock frequencies of processors. [17]

Figure 2.2: Neural network inside the human brain. [14]

previous layer can be transferred to the next layer. Neurons placed in different layers
communicate through synapses, which work as connecting points between the axon on
one side and the neuron body on the other.

6

Figure 2.3: Architecture of a multilayer spiking neural network. [13]

Figure 2.4 illustrates how SNN imitates the work of biological neuron networks. From
the point of view of computing machines, the human brain has many qualities that are
superior to modern supercomputers [17]. For comparison, traditional computers oper-
ate in the range of Gigahertz (GHz), which leads to its high power density of around
100 W/cm2. This value is headed away from the operating point of the human brain,
as figure 2.1 shows. when the human brain is at work, it only runs at an average firing
rate of around 10 Hz with a relatively low power density at 10 mW/cm2. Also, the
brain is highly efficient in how it processes information and tolerates faults. As men-
tioned before, the basic processing units in the human brain’s network are neurons and
synapses, which connect in a complex pattern. Apparently, the human brain’s function
is different dramatically from the traditional Von-Neumann architectures, which require
far more space and power to operate. According to [1], the human brain is made up
of about 86 billion neurons, forming a parallel computing system massively. Though
every single neuron’s inner structure is relatively simple, its immense parallelism leads
to the neuron network’s excellent performance. Based upon this, the behaviour of an
individual neuron can be analyzed and imitated as a single computational unit which
is independent of the other neurons.

Based on the features of the human brain mentioned above, simulating a neuromorphic
system using traditional computing architecture is not only difficult but also inefficient.
Brain-inspired neuromorphic architectures, which have parallel processors (neurons)
have been proposed. These neuromorphic architectures operate at low-frequency and
do relatively simple operations. For each neuron, it has locally distributed memory
stored at the connection points to other elements, which corresponds to the synaptic
connections to other neurons. To implement these neuromorphic networks, different
communication methods have been evaluated in order to make use of the neuromorphic
system’s inherent and scalable parallelism.

7

Figure 2.4: SNN with connections and Biological Neuron.

2.2 Address Event Representation

Address event representation (AER), first proposed in [15], is an event-based protocol
which is commonly used in inter-chip communication between image sensors and neuro-
morphic processors to convey pulses. The mechanism of how the AER communication
method works is shown in Figure 2.5, where the squares on both sides represent their
respective neurons of the transmitting chip and receiving chip. As depicted, when the
neural network is working, some neurons will produce some spikes at different times.
The encoder encodes the address of the spiking neuron as an unique binary address.
This binary address is transferred to the decoder through a digital bus. The decoder
on the receiving chip asynchronous decodes the address and places the signal to the
corresponding location. In AER, a spike is uniquely identified by two sets of informa-
tion: the spiking neuron’s position within the system, which is explicitly encoded as
an address, and the moment that the spike occurs, which is implicitly encoded since
the events are conveyed in real-time. The encoded information is called as an address-
event, which is represented as a star in the square. As a data-driven digital multiplexing
protocol, the AER is widely used in transmitting neural signals. It could send several
pulses via a single wire(channel), providing a method which is more close to how hu-
man neurology works. The number of inter-neuron communication channels required
by this AER method is reduced from n to about log2 n. For example, if a system had
one million senders and one million receivers, one-to-one wiring would necessitate one
million wires, whereas AER would necessitate it to around 20 (log2 1, 000, 000) wires.

However, as a point-to-point communication method, this solution may encounter some
problems in practical application scenarios. As mentioned before, the encoder encodes
the incoming pulses based upon their channel’s address and the decoder receives these
pulse asynchronously. Because of this asynchronous nature, there is no need for an
AER circuit to process the timing information alone with the pulse. The time relation-
ship between pulses can be expressed by the sequence of occurrence of the event [20].

8

Figure 2.5: Standard address event representation (AER) protocol.

Figure 2.6: The mechanism of point-to-point AER communication.

The decoder receives the message and generates a fixed width pulse to the appropriate
channel. In a neuromorphic network, it is quite common for multiple neurons to gen-
erate spikes at the same time. When pulses collide, in a classic AER circuit with fixed
priority, the channel with the channel with the highest priority has much more chances
to transmit pulses than the channel with the lowest priority. This could result in timing
problems in the channels with low priority. For example, in figure 2.6, the channel1
has the highest priority while the channel 3 has the lowest priority. At a certain mo-
ment, both channel1 and channel3 need to transmit a pulse. After the point-to-point
AER communication, the small timing error occurs at the channel3, whose priority
is the lowest. Though this timing error is very small, in actual application scenarios,
for example in AER-based image sensor field [27], this small error can have critical
consequences.

9

2.3 Interconnect Strategies For SNN Implementations

For SNN implementation, several methodologies have been investigated, including soft-
ware, firmware, and full-custom design. Table 2.1 summarises the neural system im-
plementation strategies and highlights the trade-offs in terms of real-time constraints,
area utilisation, power consumption, as well as architectural reconfiguration for imple-
mentation.

Table 2.1: Trade-off regarding the implementation of neural systems. [4]

Implementation

approach

Area

utilisation

Power

consumption

Execution

speed

Architectural

reconfiguration

Software High High Low High

Firmware Medium Medium Medium Medium

Hardware Low Low High Medium

In this section, related work regarding the interconnect techniques used in hardware
SNN implementations is summarised. Network-on-chip (NoC) designs are discussed
in particular, as a result of their suitability for enabling large-scale SNN hardware
implementations.

2.3.1 Shared bus topology

Using direct neuron-to-neuron communication via a common bus architecture provides
a straightforward mechanism for neuron interaction. However, for a fully connected
network using this shared bus topology, the number of bus lines necessary to link
neurons is equal to the number of neurons in the pre-synaptic layer multiplied by
the number of neurons in the post-synaptic layer. Thus, the bus-shared approach is
not scalable. Furthermore, a bus-based system has switching needs which expand non-
linearly with the size of the network mesh [8]. In Figure 2.7(a), there is a fully connected
2x3 neuron network topology. Its neural network implementation is shown in Figure
2.7(b), which utilizes a bus-based connectivity technique. In this diagram, the dark
transfers signal from a pre-synaptic neuron to a post -synaptic neuron, and the grey
lines are utilized to provide corresponding synaptic weight (w) to each neuron.

This two-layer fully interconnected feed forward neuron network, where n neurons are
placed in each layer, arranges an interconnect density of n2, making this architecture
concept unworkable in terms of space utilisation. Besides, the real-time execution
cannot be guaranteed by this bus-oriented design, since the network latency grows
proportionately to the number of neural processing parts linked to the common bus [4].
When constructing a large neural network, using this method will make it difficult to
meet the overall timing constraints of the system.

10

(a) A 2×3 fully connect network (b) Bus-based interconnect scheme of a

2×3 network topology.

Figure 2.7: (a) A two-layer feed forward fully interconnected network with neurons per layer

and (b) its bus-based interconnect scheme representation. [4]

2.3.2 Network-on-chip

A System on Chip (SOC) is a single ship which incorporates many capabilities re-
quired for a system onto a single chip. This may include one or more processor cores,
memory subsystems, IO subsystems, and other similar functional logic/IP (Intellectual
properities), all of which are integrated as a single IC device. For a traditional SoC
computing architecture, it becomes more and more difficult to meet modern massive
data processing scenarios, where high throughput and interconnection capacity between
each subsystems are required. To alleviate this dilemma, several researches [2] [7] have
presented the network-on-chip (NoC) interconnect architecture as a possible solution
to the on-chip communication issues encountered in SoC.

A Network on Chip (NOC) is an on-chip interconnect technique applied on SOC de-
signs to connect diverse design blocks (or IPs) effectively. Inspired by the personal
computer (PC) network, the NoC architecture tries to imitate the method of how data
is transferred in a PC network. Within a computer network, PCs are connected to
each other typically, delivering information from one location to another under ded-
icated protocols and policies. To allow seamless integration of the computers inside
the network, information is often carried via many communication layers, separating
computing from communication. Nonetheless, while the NoC interconnect paradigm
was inspired initially by the computer network, applying traditional computer network
algorithms and methods directly into the NoC paradigm is not acceptable [2]. This
is because that there exist certain constrains in terms of power consumption and area
utilisation that are not of primary concern for typical network computer applications.
In order to implement a NoC network on hardware, the aforementioned constraints

11

Figure 2.8: A general representation of a NoC-based architecture [8].

need to be considered.

Generally, a NoC architecture is made up of a collection of shared cores or processing
units, network adapters, routers as well as links or connections that are organized in
a specific topology based on the application scenarios. The goal of a NoC connection
fabric is to reduce wire routing congestion on chip, making timing closure easier, and
offering a standardized mechanism for adding or removing numerous IPs in the SOC
design. Mapped to the SNN network, the processing units refer to the neuron models
which are attached to the NoC routers through the neural network. Network adapters
provide interface methods as well as communication mechanisms which allow spiking
neuron models to communicate with one another via routers. Link’s working principle
is inspired spiking neuron synapses/axons. The SNN topology defines how spiking neu-
rons models in a network are connected. The Figure 2.8 illustrates the block diagram
of a NoC-based SNN network, where a conventional 4x4 SNN topology and its associ-
ated fundamental NoC components such as core or processing units, network adapters,
routing nodes as well as links are included.

2.3.3 Current NoC-based SNN Approaches

A general reconfigurable SNN platform based on NoC is presented in [25]. The plat-
form connects up to 108 digital integrate-and-fire (I&F) spiking neurons using a 2D
mesh topology as well as some NoC routers. As the first attempt to leverage the NoC
paradigm to facilitate SNN interconnections in hardware, this SNN was developed on
an FPGA board. The platform outperforms in terms of real-time needs for a variety
of applications including principle component analysis (PCA) classification as well as
character and face recognition. The architecture, however, is built on non-adaptive

12

Figure 2.9: Block diagram of the FACETS network core with connection pattern between

synapses [18].

routers that lack traffic congestion control methods. Furthermore, because the dig-
ital neuron implementation employs an on-chip look-up table, the scalability of this
platform is limited because the look-up table size grows with the number of neurons.

FACETS system is a high-density hardware neural network design that leverages mul-
tilayer communication, as described in [18]. For a FACETS system, its core processing
building unit is a wafer module with 180,000 leaky integrate-and-fire (LI&F) neurons
and 256 synapses per neuron. As shown in figure 2.9, in order to link many FACETS
wafers based on a 2D torus topology, this platform employs a mix of hierarchical buses
for managing neuron communication inside the wafer and an NoC router for providing
the wafer-to-wafer connectivity fabric.

In [10], an EMBRACE architecture is proposed. This custom-embedded mixed signal
scalable SNN architecture combines the programmability features of FPGAs and the
scalable interconnectivity of NoC routers to implement large-scale artificial neural net-
works with a custom low-area/power programmable analogue CMOS neuron/synapse
cell. Figure 2.10 illustrates the architecture of this EMBRACE network. The left side

13

Figure 2.10: The architecture of the EMBRACE network [10].

of this figure shows a 2D EMBRACE NoC-based implementation for an SNN network.
The Brain Tile, seen on the right side, is made up of a digital NoC router and analogue
neural cells and synapses. One at a time, the NoC sends incoming spikes to a neural
tile. Each spike is sent to the destination synapse through the signal Spike in. When
a neuron fires, a spike pulse is created on the signal Spike out, which the NoC routes
to several synaptic destinations.

14

Design 3
From chapter 2, the basics of the neuromorphic system as well as some typical com-
munication patterns have been explained. Also, these different strategies have been
discussed in terms of their features and limitations. Based on that, a new on-chip
interconnect system is proposed to transfer data between an SNN network in this chap-
ter. According to the specific requirements of an SNN network, the approaches how to
design this system are elaborated on in detail.

3.1 Methodology Flow

A detailed explanation of the design workflow of the proposed link system is as follows:

1) propose an overall multi-point communication link structure.

2) make a behaviour-level description (SystemC) of the event-driven cell.

3) make a behaviour-level description (SystemC) of the two-wire encoding protocol.

4) make a behaviour-level description (SystemC) of the arbitration mechanism.

5) make a behaviour-level level description (SystemC) of the SerDes link.

6) Verify the logical correctness of this link system.

7) Inject an MNIST data set to each neuron array to run a real-case testbench.
Estimate the throughput of the system.

8) Estimate the area and power consumption of each gate by consulting the TSMC
library.

3.2 Overview

This thesis aims to propose a self-timed on-chip high-speed interconnect link which
supports N-to-N multi-point communication within an SNN network system. As this
link system works in a neural network, excessive energy consumption is unacceptable.
Though the average frequency of a neural network is much lower than a traditional
processor, there exist peak periods where the spiking rate is very high. As a result,
this interconnect link is required to be low-power, low-latency as well as high-speed.
By using SystemC, this interconnect link is designed in system-level modelling. This
means the components that make up this link system are mainly described at the
behaviour level, mixed with some amount of RTL-level description. As mentioned in
2, a neuromorphic computing system generally includes multiple neuron arrays. These

15

neuron arrays accumulate the input spikes and generate the output spike to another
neural array. This process can be presented as the data propagation between SNN
layers. As the spiking neural networks are event-driven in this scenario, there are
no clock signals as well as related timing blocks (PLL/DLL) required in the whole
architecture. Thus, the design method is defined as asynchronous. Since there is no
clock, all components consume no additional energy while in an idle state. This makes
this interconnect link power-efficient, especially in a neuromorphic system where the
average frequency is quite low.

This communication link is designed to realize the information exchange between the
layers of an SNN network. In this given neural network application scenario, there are
four neuron arrays placed on a single chip. Each neuron array can then be mapped to
a layer of neurons (input layer, hidden layer or output layer) in a neural network. Each
array includes 256 neurons, which means that each array has at least 256 input ports
and output ports when communicating from layer to layer.

Figure 3.1 depicts the overall architecture of this low-power, low-latency and high-
speed link system. There are four neuron arrays placed on a single chip, each neuron
array has a receiver RX at its input side, receiving and decoding the serial information
transferred through the SerDes link. As mentioned before, when the accumulated value
of a neuron exceeds the specified threshold, the neuron will release a spike and clear
the value accumulated before. The pulse width of this generated spike is less than 1ns,
which is too short to be captured by a traditional flip-flop. For this reason, a custom
’pulse-latch’ gate needs to be used to latch a pulse signal from the neuron to high
logic. A previous contributor [26] has already implemented this pulse gate so we could
assume that the pulses have been captured successfully. Multiple ’pulse-latch’ gates are
connected together to form a memory, which is the block named Pulse Latch0, Latch1
and etc. These Pulse Latches can capture and store the output of each neuron array
temporarily.

After capturing the spikes from the neuron arrays and storing them as logic high in
the Pulse Latches, these data will transfer to the Controller system, which are blocks
named CS0 to CS3 in the figure. Each neuron array has its own TX, which is included
in the Controller system, as well as RX. Each Controller system can receive all data
from 4 Pulse Latches, while each Pulse Latch can only capture the spikes from its
corresponding neuron array. This is because, in a neural network, it is very common
for multiple neuron arrays to send information to the same target at the same time.
Considering the worst case, each transmitter needs to have the ability to transfer data
from any neuron array to its corresponding receiver. This is also the structural basis for
this connection system to realize the multi-point communication function. However,
as depicted in Figure 3.1, there are thousands of wires needed to build connections
between Pulse Latches and the Packet Generator systems. Because of induction, cross-
coupling, and other factors, the signal in a specific wire may be reduced or disrupted
when data is transferred. As a result, inaccuracy increases considerably, necessitating
additional processing at the receiver. Furthermore, it is unrealistic to place so many
wires in the same place for a chip layout. This problem will be discussed in chapter
5 as a future work. In the following simulations, it is assumed that the receiver can

16

Figure 3.1: Architecture of the communication link.

Figure 3.2: Inner structure of a Control System.

accurately and successfully receive all spike signals from the neuron arrays.

The inner structure of a packet generator system is shown in Figure 3.2. Once the
block Spike detector detects the data from Pulse Latches, the Arbiter and MUX will
cooperate to determine the sequence of data transmission. The 256-width packet is
then transferred to the Crossbar to do mapping operations between two neuron arrays.
The processed packet is stored in a DFF0, which is positively triggered by the signal
from the Arbiter. The Packet Generator extracts the effective information in DFF0

17

and separates them into two opposite packets to provide to the Serilizer for parallel-
to-serial data transmission. The mechanism of this process will be explained in more
detail in this chapter.

In the following chapter, we will first introduce the method of constructing a self-
time logic utilizing the features of SystemC. After that, the SerDes link between one
transmitter and one receiver is explained. Then, the structure of Virtual Channels
between multiple neuron arrays and their working mechanism is illustrated. Addition-
ally, an optimization method to increase the transmission efficiency of a SerDes link
is proposed. In the end, the parameterization of this system is explained to show the
system’s scalability and flexibility.

3.3 Design of an Event-driven Mechanism

In a spike neural network, the communication information is in the form of spikes. Since
there is no clock used, the communication process is event-driven. Thus, communication
in SNN is completely asynchronous. Without an event, which could be a spike from
the external environment or other components in this case, the components within
this communication system will stay in an idle state, and the information will not be
transferred until the firing of a spike.

Since this communication link is built in a system-level modelling, many SystemC
unique features which are specially developed for simulating circuits can be helpful to
realize the basic functions of circuit event-driven.

In order to better explain the role of events in SystemC, some explanations need to be
made to help understand related concepts. SystemC is actually a collection of classes
and libraries based on the C++ programming language. As a result, the SystemC
language’s core grammar is derived straight from C++. There is a very important basic
concept in SystemC called process. SystemC processes are similar to C++ methods
or functions, except that they execute simultaneously. This is because it is needed to
represent the fundamental behaviour of a system, which might have several circuits
working in parallel. Therefore, a typical programme that runs sequentially cannot
completely represent the behaviour of the circuit system.

In SystemC, there are three macros which can be used to declare a process
- SC THREAD, SC CTHREAD and SC METHOD. These macros correspond to
threads, clocked threads and methods respectively. These macros are used to register
the processes within their module. The code sample below demonstrates the typical
syntax for registering a process in SystemC.

1 // Registering a method

2 SC_METHOD(<process_name >);

3 sensitive << <signal1 > << <signal2 >;

18

4

5 // Registering a thread

6 SC_THREAD(<process_name >);

7 sensitive << <signal1 > << <signal2 >;

8

9 // Registering a clocked thread

10 SC_CTHREAD(<process_name >, <event_name >);

In this example, the ⟨process name⟩ specifies which C++ procedure is being registered
as a process. And the sensitive keyword is utilized to declare a sensitivity list for
methods and threads. This is significant since it defines when the process runs. The
code written in a standard C++ method runs sequentially once the method is invoked,
which means that the method body’s statements are executed in order until reaching
the last line. After that, this method is completed and all the associated memory with
it is released. However, this is not the representative behaviour of a real genuine circuit,
which remains in a steady state until the change of one of the input signals. To match
the behaviour of real hardware circuits in a more precise way, the sensitivity list is used
to imitate this behaviour. To achieve this, listing all of the signals which can trigger
the process in the sensitive keywords is a good solution.

In the syntax of SystemC, there is also an object called event, which is a completely
software-level concept. The event object is created by the keywords sc event. sc event
is a class declared in the SystemC library, and it is used for process synchronization.
In SystemC, any declared event is an object of the class sc event. As shown in the last
line of the code example, a process instance can be triggered or resumed when an event
occurs, i.e., when the event is notified. The notification of an event is also encapsulated
as a function in the class sc event. There are multiple ways to call this method, which
is explained as follows:

1) void notify(): this creates an immediate notification.

2) void notify(SC ZERO TIME): this creates a notification with Delta.

3) void notify(value, sc time unit): this creates a notification at the given time. For
example, there is a statement:

ev1.notify(1, SC NS);

This line of code notifies an event named ev1 after 1ns.

By using the features introduced above, the event-driven features of the circuit can
be realized. According to the characteristics of the process in SystemC, the processes
within a component are divided into two parts, one is the ’event generating’ processes
and the other is the ’functional’ processes. As illustrated in Figure 3.3, for an ’event
generating’ process, the context in its sensitive list is all input signals from outside
or other components. The purpose of an ’event generating’ process is to generate

19

Figure 3.3: Working mechanism of an event-driven component.

events based on the inputs to this component. In this case, once the process detects
a spike from the neurons, this process will generate an event, which is dedicated to
activating other processes. A ’functional’ process is used to implement the functions
that the component should have. The sensitive list of this process can only be the
event generated by the ’event generating’ process. In other words, this component
will not have any other actions until the event it sets occurs. This is exactly the
working principle of an event-driven circuit. Furthermore, by using the function call
void notify(value, sc time unit), the delay time of the notification of an event can be
controlled, which is very helpful when doing the timing analysis of the circuit.

3.4 Design of a SerDes Link

In our user case, there are multiple neuron arrays placed within the same chip. The
input and output bandwidths of these arrays are both 256 bits, so this standard array
is also called a square array. Providing 256 wires to connect two neuron arrays seems
to be the most straightforward solution. However, by design, this parallel transmission
requires all signals from the transmitter to arrive at the receiver at the same time.
This cannot be ensured during the peak period with high frequencies, since the signal
transit time for all signal lines cannot be guaranteed to be the same. The greater the
frequency, the greater the importance of these tiny differences. As a result, the receiver
must wait until all signal lines are established, which obviously reduces the transmission
rate. Also, when doing parallel transmission, sending hundreds of bits simultaneously
produces noise and leaves scope for error.

In serial transmission, there is no crowding as at a time only one bit is sent, which
eliminates the crowding and chances of noise and error. In the case of serial trans-
mission, this indicates that the crosstalk between signals is negligible. Thus, for data
transmission between two neuron arrays, serial transmission is applied in this project.
As shown in Figure 3.4, the data is converted from parallel to serial at the transmitter
side. This packet is then sent in serial through the link and converted from serial to
parallel at the receiver side. Because of this mechanism, the transmitter works as a

20

Figure 3.4: The SerDes Link Between Two Neuron Arrays.

serializer and receiving end plays the role of a deserializer.

SerDes is the abbreviation of serializer and deserializer. The expansion of demands
for hardware signals has prompted people to pursue the improvement of high-speed
signal transmission efficiency. As data transmission requires higher and higher bus
bandwidth, parallel transmission technology is hindered by a series of problems such
as difficult timing synchronization, serious signal offset, weak anti-interference ability
and high design complexity. Compared with parallel transmission technology, serial
transmission technology has fewer pins, strong scalability, point-to-point connection,
and can provide higher bandwidth than parallel transmission, so it has been widely
used in the field of embedded high-speed transmission.

3.4.1 Two-wire encoding

In order to ensure the stability of data during transmission and further reduce the
number of pins and wires, a serial link [22] is implemented to transfer the parallel data
into serial bits and then transfer them in order through the link. This link adopts
the feed-forward architecture [3], which removes the need for a handshake protocol to
control data flow between the data source and the data sink. Though this is a slight
benefit for short-distance communications, it is critical for long-distance communica-
tions. In order to make up for this problem, a two-wire burst-mode logic using dual-rail
encoding protocol [9] is introduced, where signals are presented using pulse mode and
transmitted through two wires. In this protocol, one line is used to present the logic
’0’ and the other line is used to present the logic ’1’.

In this project, a dual-rail encoding protocol is used to transfer the data through
the SerDes link. By utilizing a two-wire burst mode protocol, multiple-bit information
could be transferred from parallel to serial. Figure 3.5 illustrates how the two-wire burst
mode protocol is used to convey a 7-bit packet from parallel to serial. This protocol
utilizes two wires, which are named zero line and one line, for signal transmission within
the chip. Every pulse which occurs on the zero line means a logical ’0’ for that signal,
whereas the pulse on the one line corresponds to a logical ’1’. The sequence between the
pulses implicitly reflects the sequence between the bits in the signal. Also, because of
this asynchronous mechanism, it is impossible to have pulses on both lines at the same

21

Figure 3.5: Two-wire Burst-mode Encoding.

interval. As shown in the figure, the data packet which needs to be sent is 1110100.
The least significant bit in this information is ’0’, which is sent firstly on the zero line.
After a short time interval, the next bit is transferred in a similar way. From the lowest
bit to the highest bit, this string of multi-bit information is serialized and transmitted
from the transmitter to the receiver. There is no clock involved in this method, as the
sequence of the spikes could represent the relative timing information for these spikes.

Compared with the direct parallel transmission of information, converting the signal
to serial and then decoding it at the receiving side theoretically takes more time. In
this neuromorphic system, it is assumed that all the logic gates use the TSMC 28nm
technology, where the minimum time interval resolution to ensure that the circuit can
work properly is 250ps. Take this value as the pulse width and the minimal time interval
between pulses, each bit needs to consume 250ps+250ps=0.5ns while encoding. The
bit width of each neuron array’s output is 256 bits. Considering the worst case, all 4
arrays need to transfer their packet through the SerDes at the same time, utilizing a
single two-wire encoding link, the time consumed in this case can be calculated as:

T = 4× 256× 0.5ns ≈ 0.5µs = 5× 10−7s (3.1)

Though converting the parallel information into serial takes more time compared with
the parallel transmission, this extra time consumption is acceptable under this specific
scenario. In a neuromorphic system, the average frequency of events occurring is around
10Hz, which means that pulses will be generated every 0.1s. Compared with this
value, the time consumed in equation 3.1 could be negligible. Thus, sending the packet
generated from the neuron arrays in serial will not cause serious timing issues in this
SNN network.

3.4.2 Design of the Transmitter

In this SerDes link system, the transmitter is mainly responsible to convert the data
from parallel into serial. Figure 3.6 shows the transmitter block in our system as well as
its input and output ports. The port Packet out from the previous component Packet
Generator in Figure 3.2, and the port clk2 is used to activate the inner DFFs in the
transmitter. Once the DFFs have captured the signals, a start signal is generated inside
the transmitter, indicating the start of the serialization conversion. As long as this start
signal is generated, the TX will start to transfer the data from parallel to serial. The
output port One line corresponds to the logic high from port Packet out, and the port

22

Figure 3.6: The Digital Block of Transmitter.

Figure 3.7: The Inner Structure of a Transmitter.

Zero line corresponds to the logic low. At one time, there is one spike on one and only
one of the two data lines, as the information represented by these two lines is opposite.

As mentioned above, a two-wire encoding protocol is applied there to convert the input
data from parallel to serial. Figure 3.7 illustrates the inner structure of a transmitter.
Based on this figure, the working principle of this component can be explained in a
more intuitive way. In order to achieve the functionality of a transmitter, there are
basically three sub-components needed:

• DFF with double size: this component is placed at the input side to process and
temporarily store the inputs from the Pulse Generator.

• Pulse Generator: this component is used to generate parallel pulse signals with
predefined time intervals.

• OR Gate Tree: this component extracts valid information from a 256 bits width
packet and concentrates them on one line.

Figure 3.8 shows the function of the subcomponent DFF with double size, which is
to do a bitwise NOT on the input data and then store the data before and after the
operation in two DFFs respectively. The reason for this is that there is a delay in the
actual level of the inverters, and the time spent on NOT operations of hundreds of
input bits is not uniform. If the DFF is not inserted to store stable data, it may cause
timing-related problems during subsequent conversions. With this subcomponent, it
can be ensured that the outputs of the two signals Data one and Data zero are stable

23

Figure 3.8: DFF with double size.

Figure 3.9: Output from a Pulse Generator.

and being produced simultaneously. When this subcomponent finishes processing the
input signal, it generates a start signal inside the TX to activate the pulse generator.

As illustrated in Figure 3.9, once receiving the start signal from the previous subcom-
ponent, the Pulse Generator block generates 272 consecutive spikes in 272 separate
lines. A suitable pulse spacing should be provided between every two pulses. As the
TSMC 28nm library is applied in this project, this time interval is 500ps. These se-
quential pulses are used to do bitwise AND operations with two data packets from
ports Data one and Data zero.

Figure 3.10 shows the inner structure of the OR Gate Tree subcomponent. In this
example, the process of how the data in Data one is generated is demonstrated. The
working principle for data in Data zero is duplicated as Data one and not shown in this
figure. There are primarily two parts, with bitwise AND gates on the left side and the
OR gate tree on the right side. This figure demonstrates how the packet from Data one
port is transferred from parallel to serial and finally outputs at the port One line. First,
a big AND gate is placed to do a bitwise AND operation between the consecutive spikes
from a Pulse Generator and the packet data from DFF1. Following that, if the logic

24

Figure 3.10: Inner Structure of an OR Gate Tree.

high appears in the Data one, the pulse is assigned to the intermediate signal Inner one,
with the same pulse width as the pulse from Pulse Generator. Otherwise, the logic high
is in the packet data from DFF2, which is completely opposite to the DFF1. So, the
pulse is assigned to the port intermediate signal Inner zero, which is connected to
another OR Gate Tree that is responsible for port Data zero. After that, the parallel
intermediate signal Inner one is injected into the gate tree, which converts the 256-
bit signal into a single 1-bit line. The same data processing occurs on another data
line as well. These two OR gate trees essentially generate the transmitter’s two-bit
output, converting the input data from parallel to serial and delivering it out through
the SerDes link.

3.4.3 Design of the Receiver

Figure 3.11 shows the receiver block in our communication system as well as its input
and output ports. The receiver is used to decode the spike packet from two ports
One line and Zero line, as seen in Figure 3.5, converting this 2 bits serial data into a
256 bits parallel data packet and outputting the result on the port RX out. To achieve
this, several components are needed, which will be demonstrated step by step in the
following content.

Figure 3.12 demonstrates how the receiver works. The two input ports One line and
Zero line are connected with the same-named ports from the transmitter. Once the
receiver detects a new spike packet, an internal start signal is triggered to start the
decoding process, which transfers the serial packet into parallel. After decoding, an
internal signal named RX Done jumps to logic high, indicating the completion of this
conversion. Then the receiver creates the parallel spike output at the port Spike out.

25

Figure 3.11: The Digital Block of Receiver.

Figure 3.12: The Inner Structure of a Receiver.

In order to achieve the functionality of a receiver, there are mainly 4 subcomponents
needed:

• Counter: this subcomponent is used to count the number of pulses from the ports
One line and Zero line. To achieve this function, the signals from these two ports
connect to an OR gate, whose output connects to the input of this Counter.
When the value of this counter has just switched from 0 to 1, it generates a start
signal to activate the Pulse Generator. When it reaches the maximum value, the
intermediate signal RX Done turns to logic high, indicating the accomplishment
of the receiving process. As a result, this counter acts as a monitor in the receiver.

• Data Pack: The inner structure of the Data Pack block is shown in Figure 3.13. It
seeks to turn the serial data into parallel while also distinguishing the pulse from
Zero Line and One Line. When the counter starts working, the Pulses queue

26

Figure 3.13: The Inner Structure of the Data pack block.

signal from the Pulse Generator does the logic AND operation with two data
inputs. For each pulse, the data from the two input lines are identified as logic high
or logic low using the AND operator, and then output its corresponding position
at the output port, which is allocated through the pulse signal Pulses queue from
the Pulse Generator.

• Pulse Generator: following the same design as in the transmitter, this component
generates parallel pulse signals with predefined time intervals. The waveform
generated by it is the same as that in Figure 3.9.

• Pulse-mode Latch: This subcomponent store the output results from the
Data Pack. Depending on whether a logic high appears in data zero or data one
signal, it determines one bit of the resulting packet at a time. Once receiving the
RX out signal, the result is outputted at the port Spike out.

3.5 Design of the Multi-Point Communication

As indicated in Section 3.4, a SerDes link connection has been designed to achieve
point-to-point communication. However, in this neuromorphic system, there are mul-
tiple neuron arrays working simultaneously. As a result, it is quite common when
multiple arrays require to transfer data at the same time. For a basic point-to-point
communication method, this conflict can lead to blockage of the data transmission
path. Furthermore, the destination of each data packet can be the same or different,
which requires the multi-point processing capability of the communication system. In
order to alleviate this problem, a solution which supports multi-point communication
is proposed in this chapter.

The simplest method to solve this problem can be adding more SerDes links at the
hardware level. By doing that, multiple data packets from different neuron arrays can be
sent to their destination at the same time. However, this method has several drawbacks.
Firstly, in an SNN network, a neuron array may receive signals from any other neuron
array, including itself. Considering the worst case, the number of SerDes links that each
neuron array needs to be assigned to is equal to the total number of arrays on the chip.
Figure 3.14 illustrates an example of the direct connection between two neuron arrays.

27

Figure 3.14: Direct Connection between two neuron arrays.

We could see that there are 2×2 = 4 links needed. If the communication link system is
designed using this methodology, the number of SerDes links required is the square of
the number of neuron arrays, which is 4×4 = 16 in our user case where 4 neuron arrays
are placed on the same chip. With the expansion of the number of neuron arrays, the
number of SerDes links requirements grows exponentially, dramatically increasing the
area and the power consumption of the whole system. Furthermore, these extra SerDes
links will be in an idle state most of the time due to the low average frequency of neural
network operation, which is a waste of resources on the chip.

To conclude, directly increasing the number of SerDes links is not an appropriate so-
lution to achieve multi-point communication. This communication system should be
designed in a more resource-efficient way. Hence, based on the SerDes link, we propose
a solution which multiplexes a physical channel using virtual channels (VCs) to reduce
congestion during packet transmission. VCs provide multiple buffers for each physi-
cal channel, which could reduce latency and increase the network throughput. The
following content elaborates on the design details of this VCs scheme step by step.

3.5.1 Virtual channel for a single physical channel

As mentioned above, it is not a good choice to increase the number of transmission
channels directly from the hardware level. So the method of VCs is introduced to
improve the reuse rate of the channel. VCs topology is widely used by makers of
commercial parallel computers due to its simplicity, low cost, and distance insensitivity.
By doing that, a physical channel could support several virtual channels multiplexed
across the physical channel. Its architecture is illustrated in Figure 3.15.

In this virtual channel circuit, a single physical SerDes link can be shared by four virtual
channels. Inside this VCs system, there are several components needed to achieve its
functionality. The collaboration of these components ensures an appropriate packet
transfer mechanism. The following content demonstrates how these three components
interact locally and how this controller interacts with Transmitter and Receiver.

28

Figure 3.15: A physical channel divided into four virtual channels.

• Pulse Latch
The pulse latch from figure 3.16 is connected with a neuron array at the input side
of this virtual channel system. After capturing the spikes from its corresponding
neuron array, the Pulse latch could convert the received spikes into a logic high
and store them in proper positions within the 256-bit bandwidth. By doing so,
the pulse latch records the short-duration pulses and stores them in a stable way.
When the data is stored in the latch, an intermediate signal, which is named as
Dara new in the figure, is pulled to logic high to trigger the arbiter connected to
the latch.

Furthermore, the pulse latch performs as a buffer within this virtual channel
system. As there are multiple virtual channels sharing the same physical SerDes
link, there will be conflicts when multiple virtual channels try to occupy the link
at the same. However, as there is only one link at the output, only one data
packet from a virtual channel could be transferred through the SerDes link at one
time. The data packet from the other channels has to wait in its own buffer until
it is the channel’s turn to use the physical link. Without this pulse latch or buffer,
several data packets will be missed when they try to occupy the physical channel
simultaneously. Once finishing the data transmission, the pulse latch will receive
a reset signal to clear the data, waiting for new spikes from the neuron array.

• Spike Detector
The spike detector in this virtual channel system is used to judge and generate
the application of each virtual channel to the physical channel. It receives the
outputs from the four pulse latches and outputs the Req signal to the arbiter. It
is placed between the Pulse Latches and the arbiter, monitoring the output of

29

Figure 3.16: The Digital Block of a Pulse Latch.

four pulse latches to determine whether there is a need to use the SerDes link.
Take one pulse latch’s output as an example, as long as it detects one logic high
value within these 256 bits, the detector will pull the corresponding bit high at its
output signal Req, prompting the arbiter that the data packet from this channel
has a request to use the SerDes link.

• Arbiter
In this virtual channel system, when multiple neuron array requests to send the
data packet simultaneously, an arbiter is needed to determine their sequence.
The arbiter is a very common module in digital design and has a wide range of
applications. The definition of an arbiter is that when two or more modules need
to occupy the same resource, an arbiter is needed to decide which module will
occupy the resource. In general, a module that proposes to occupy a resource
needs to generate a request signal. After all the requests are sent to the arbiter,
it will return a grant. The most important point of the arbiter is that only one
module can be granted. because this resource can only be occupied by one module
at a time.

In this scenario, in order to provide arbitration among several neuron arrays, a
round-robin arbiter is designed. The arbiter receives a 4-bit Req signal from the
Spike Detector, representing the request of each neuron array. Once the value
of the signal Data new changes, which indicates the new spikes from the neuron
array, the arbiter starts to process the Req signal. The Gnt signal will then be
generated at the output port, indicating the authorization for transmission of a
specific packet whose priority is the highest. When this packet transmission is
complete, subsequent components will send a Finish signal to the arbiter. Once
receiving this signal, the data stored in the corresponding pulse latch will be
cleared. Then the value of Gnt signal changes, allowing second-priority packets
to transmit data. By repeating this process, all data packets can use the physical
channel for data transmission in an orderly manner until new data from the neuron
array arrives. The above is the process of the arbiter to achieve round-robin. The
formula for calculating the Gnt signal by Req signal is as follows:

Gnt = Req&Req − 1, (3.2)

Reqnew = Req&Gnt (3.3)

30

When a virtual channel requests to transmit a packet, its corresponding bit in Req
turns to logic high. Then the arbiter does the arbitration to permit the virtual
channel with the highest priority. After the transmission of this virtual channel
is completed, the Req signal will change. How the Reqnew is calculated is shown
in the formula 3.3, and the Gnt output will also change accordingly. By default,
array0 has the highest priority and array3 has the lowest priority.

• MUX
In a digital circuit, a data selector or multiplexer (referred to as MUX) is a device
that selects one of the digital input signals for output. It is used here to increase
the amount of data within a certain amount of bandwidth. Once receiving the
arbitration result from the Round Robin Arbiter, the MUX selects the path from
the pulse latch to the transmission line, without having to have a SerDes link for
each input signal.

3.5.2 Overall Controller

The communication system is designed to link four neuron arrays and allows the prop-
agation of packets between them. As these neuron arrays are placed on the same chip,
this communication system is designed under an on-chip scenario. Compared with the
off-chip scenario, on-chip cores could connect with each other for a high-bandwidth,
low-latency communication. More wires could be used within the chip to help control
the data transmission between the neuron arrays.

In Figure 3.1, each neuron array is assigned to a SerDes link, which refers that the
number of SerDes links needed is equal to the number of neuron arrays on this chip.
By applying this methodology, the requirement of resources for building the SerDes
links has a linear growth relationship with the number of neuron arrays, which is much
more efficient than the original solution depicted in Figure 3.14.

After determining the number of SerDes Links needed for this link system, the main
problem faced by the control system is that one neuron array may need to send packets
to multiple destinations. In other words, a data packet may send requirement signals to
multiple physical SerDes Links. Figure 3.15 illustrates a basic virtual channel system
with a local controller which is responsible for only one physical channel. However,
there are four SerDes links within this communication link system, and the order and
time consumption of each packet is different. If we simply duplicate the system shown
in Figure 3.15 by 4 times, it will affect the reset time of the data buffered in the
pulse latch. If a packet is reset before being transmitted, no data will be transferred,
increasing the data miss rate of the system. Conversely, if the data is not reset in time
after the transmission is completed, subsequent data will not be correctly stored in the
corresponding buffer, which will also affect the subsequent data transmission.

To solve that, the global switching controller is designed to ensure the correctness of
the data reset time. As Figure 3.17 illustrates, all the local controllers are integrated
into one global controller. Each pulse latch is assigned an individual counter. Only
when the number of grants received by a latch is equal to the number of requirements

31

Figure 3.17: Block Diagram of the Overall Controller.

sent by it, that cache will be reset.

3.6 Data Processing Before Transmission

In the previous design, during data transmission, all packets were completely trans-
mitted. In this way, when a SerDes link transmits a data packet, it needs to convert
the whole 256-bit information from parallel to serial. However, in subsequent testing
cases, a quarter MNIST dataset is used in our testbench. For this MNIST dataset, the
average spiking rate is around 20%. For a 256 bits neuron array, every time new data
is generated, only 20% of neurons will generate spikes, which means that a large part
of the values in a data packet is logic low. Furthermore, the value of this part of logic
0 will consume the same time and power as logic 1 when it is transmitted through the
SerDes link, which is undoubtedly a waste of resources for the system.

In this section, an optimization regarding this problem is proposed. Compared with
the original method, the new method analyzes and compresses the internal data of
each packet before data transmission. In the previous solution, the whole packet is
transmitted, which involves unnecessary energy and latency, considering that most of
the values within a packet are logic low. The new method divides the entire packet into

32

several segments. If the data stored in a segment is all 0, the segment will not be sent
by the SerDes link, which improves the resource utilization and transmission efficiency
of the system. From figure 3.2, it can be seen that this data processing part is mainly
realized by two components: Crossbar and Packet Generator. The rest of this chapter
will elaborate on the design and functionalities of these two components.

3.6.1 Packet Generator

No matter how the data changes in a packet, as long as this packet is recognized as
valid (that is, there is at least one logic high within it), the previous solution will send
the entire packet to the destination through the SerDes link. For example, suppose
there are two packets to be transmitted, the first packet contains 1 logic high value and
254 logic low values, and the second packet contains 255 logic high values. Although
there is a huge difference in the amount of information contained in the two packets,
the time and energy consumed by transmitting these two packets are exactly the same.

The improved method divides the entire packet into several segments, and then checks
these segments separately to determine whether they are valid or not. By default, the
256 bits are divided into 16 segments, and each segment contains 16 bits. The value
of the number of segments can be changed to 4, 8, 32 and so on. How this value can
be parameterizable is explained in chapter 3.7. At present, this value is set as 16 to
facilitate subsequent explanations.

After dividing the packet into 16 equal parts, the first thing to do is to judge whether
each segment is all 0. This judgment can be realized by a series of OR Gate trees.
Figure 3.18 illustrates this judgement process. Each segment is assigned an OR Gate
tree, and the 16 bits contained in each segment pass through their assigned OR Gate
tree. The output of each OR Gate tree is gathered together in sequence according to
the respective segments to form a 16-bit wide output signal Valid. Each bit within this
signal represents the validation of this segment. If one of the bit Valid[n] is zero, it
means that all the values in the segment represented by this bit are 0. In other words,
the segment is judged to be invalid and will not be transmitted by the SerDes link.
Within a segment, as long as at least one value is 1, it can be judged as valid.

After judging each segment, the next step is to integrate the Valid signal and values
in each segment according to the result to generate a new packet. As Figure 3.19
shows, the newly generated packet Packet out has a bit width of 272 bits. The Valid
signal is placed in the header of the Packet out, indicating the location and number of
valid segments. The segments judged to be valid will be inserted into the Packet out
sequentially according to the original order, but the segments judged to be invalid are
omitted, which reduces the amount of information transmitted. Considering the worst
case, all segments are judged to be valid, plus the Valid signal, a total of 272 bits
of signals need to be transmitted, which is why the bit width of the output signal
Packet out is 272 bits. Considering the 20% spike rate factor, when the system is
running, most of the values in signal Packet out are 0 in most cases.

33

Figure 3.18: OR Gate Tree to judge validation.

Figure 3.19: Inner Structure of a Packet Generator.

3.6.2 Crossbar

In a neuron network, the output from the previous neuron array is not in one-to-one
correspondence with the input at the receiving end, which means that any output bit
may be connected to any input bit. And the connection mode of neuron arrays varies
between different arrays. Moreover, these connections are required to be configurable
under different circumstances. To solve that, a crossbar mechanism needs to be pro-
posed to solve the mapping problems between the neuron arrays properly.

In a network, a crossbar switch is used to transport data or signals between two separate
sites. The crossbar setup is a matrix in which each crossbar switch runs between two
locations, in a design which is intended to connect every component of an architecture
to every other component. To conclude, crossbar switches are designed to implement
all permutations of connections among any inputs to any outputs.

In our communication system, the crossbar is designed as a generic SystemC model to
allow easy customization of the number of ports needed for a given use case. Consistent
with the previous design, the crossbar divides a 256-bit-width packet into 16 segments
and builds a 16-16 connection system. As this component is designed in a behaviour

34

Figure 3.20: Crossbar switch states. [19]

model, the code implementing it does not involve the actual structure of the cross-
bar switch. For this reason, we propose two possible designs based on the crossbar’s
functionality: one is the Switches and the other is the Programming Logic Array(PLA).

• Switch
Originally, a crossbar switch is developed for interconnection networks of mul-
tiprocessors. In the beginning, a crossbar is a 2x2 buffer-less switch. It could
be in one of the two states, cross or bar, which is the reason why it is named
crossbar. Figure 3.20 shows the input-to-output permutation of a basic crossbar
in two states.

By implementing any input-to-output permutation with additional inputs and
outputs, the concept of a crossbar switch was extended to larger sizes of switches.
A crossbar switch’s architecture is simple yet resource-intensive, as it must imple-
ment all possible permutations of inputs to outputs. One of the typical designs
of a crossbar switch is shown in Figure 3.21, where 4 switches are used to imple-
ment this basic 2x2 crossbar switch. With the growth of the number of switch
terminals, the cost of the crossbar switch increases at a rate of O(N2), where N is
the number of terminals. To make matters worse, the large-sized crossbar switch
is composed of the basic switch cascaded in Figure 3.21. The larger the size of a
crossbar switch, the higher the physical interconnect distance and delays, which
led to the development of networks of crossbar switches [19]. Due to the above
defects, when considering the Resister Transfer Level design of this component,
this traditional crossbar switch topology will not be applied in our system.

• PLA

A programmable logic array (PLA) is a type of logic device that is used to con-
struct combinational logic circuits. As shown in Figure 3.22, the PLA consists of a
set of programmable AND Gates and OR Gates, which will then be conditionally
complemented to form an output. For a PLA with N inputs variables, it requires
to have 2N . And for M outputs from a PLA, there should be M OR Gates, each
having programmable inputs from the output of the AND Gates. Many logic
functions may be synthesised in the sum of products canonical form using this
arrangement.

35

Figure 3.21: Typical design of crossbar switch.

Figure 3.22: PLA with an AND array followed by an OR array. [23]

Enters from the lower left-hand side, the inputs are named as x0, x1, ..., xN−1 in
turn. Along the vertical lines, their complemented and uncomplemented values are
fed into the AND array. The term zi from the horizontal line indicates a product
term, which is the logic AND of all the inputs linked to it by the connections
(represented by the black points in AND Plane).

In Figure 3.22, for example, the first term z0 is equal to z0, the second term z0
is equal to x1x3, and the fourth term z3 is equal to x0x1x3x4. Each vertical line
in the OR Gate Plane represents a sum of the term z linked to it, which is also
represented by the black points. For example, in Figure 3.22, the term y2 equals to
z1 + z3. When these two arrays are combined, they offer a programmable method
for constructing any three-level not-and-or logic function of the input signals.

Compared with the purely switching method mentioned in the previous chapter.
PLAs have more flexibility than it does since the connections between the AND
and OR gates are programmable. Also, the structural design of PLA has a higher

36

utilization rate for its gates, making it more power-efficient than the previous
method [11], which is crucial in our low-power system design.

3.7 System Parameterization

This multi-point communication link is designed to be configurable and parameteriz-
able. Some criteria should be developed to determine the sequence of priority When
data from different arrays need to utilize the same SERDES link. Moreover, as the
average spiking rate for a neuron array is around 20%, sending the whole packet gen-
erated through the SERDES link wastes a great amount of unnecessary energy. A
more power-efficient solution is to divide the whole into several segments. The point
here is that cutting the entire packet into several segments is a process that needs
to be evaluated. The appropriate value of the number of segments can be valuable
depending on the changes in the test environment and test data. Building the whole
modelling in a parameterizable way could make this process much more convenient. As
Figure 3.23(a) shows, a header file dedicated to storing relevant parameters is created
separately. Before each simulation of this link system, as shown in Figure 3.23(b),
the relevant parameters in this file will be predefined to support adjusting the system
according to the requirements.

(a) The tree file in project

folder.

(b) The content in head file parameter.h .

Figure 3.23: (a) A simplified version of the file tree diagram within this project folder. (b)

The listed parameter in the head file parameter.h.

37

38

Simulation and Results 4
In this chapter, the power, performance and area of this interconnect system are eval-
uated with different kinds of application scenarios. A data set from a trained MNIST
network is injected to provide the data source for neuron arrays in our system. This
helps the testbench to build the simulation environment and verify the functionality of
the system. Meanwhile, the real delay of each component and the wire is considered to
investigate their effects on the system.

4.1 Simulation with MNIST dataset

In this part, certain data sets from MNIST training results are injected into this on-chip
interconnect system to verify the function of our system. In the meantime, different
mapping approaches between the MNIST data set and the neuron arrays in this inter-
connect system are presented. As a result, additional functional criteria can be taken
into consideration to evaluate the working conditions of the system. Furthermore, dif-
ferent sets of waveforms for different patterns are illustrated and described. Finally,
we studied the system’s limitations and determined the throughput range for various
application cases.

4.1.1 Mapping to a real MNIST network

Within an MNIST neural network, there exist three types of layers, which are the input
layer, the hidden layer as well as the output layer. In our simulation environment, the
amount of data is only a quarter of a standard MNIST network. As Figure 4.1 shows, a
standard image from an MNIST dataset is seen as a matrix with the size 28x28. While
in our use case, only a quarter of the pixels are used to inject into the neural network.
In this quarter of the MNIST network, 4 sets of dates encapsulated in separate .txt
files are provided, named Spike in, Spike h1, Spike h2 as well as Spike out. Also, an
extra file which stores the time interval between the spikes is provided to offer these
data with a uniform timestamp.

Once the appropriate data sources are obtained, the next step is to map this quarter
of the MNIST network into our interconnect system and then carry out the simulation
for the system. As shown in Figure 4.1, there are only 3 layers of neurons within this
network. Our interconnect system, on the other hand, contains four neural arrays. To
map this neuron network in our communication link system, the neuron array 0 acts
as a virtual input in our testbench. Mapped to the level of reality, this virtual input
layer could be regarded as an array of sensors, which read the pixel from the source and

39

Figure 4.1: The inner structure of a quarter of MNIST Neural Network

transfer the data into our system in the form of spikes. As for the other three neuron
arrays, they are in charge of operating as the input layer, the hidden layer, as well as
the output layer respectively.

As the design of a neuron array is not involved in this project, after a neuron array
receives the signal transmitted through the SerDes link, on the transmitter side, the
neuron array will output the packet from the injecting MNIST dataset, instead of the
data it received. An interface is created at the output of the neuron array, which allows
the data to be injected into the pulse latches (buffers) of each of the controllers. As
shown in figure 4.2, these interfaces are represented as red arrows, from the MNIST
Dataset to the output of each array. The output bit width of each neuron array is 256
bits, which is larger than the bit width of any layers from the MNIST dataset provided.
The bits which are not covered by the data provided by the MNIST dataset are filled
with logic 0 by default.

4.1.2 Simulation Waveform

According to the file which stores the timestamp for the testbench, the whole simulation
process starts from 0ms to 19.5ms. During the simulation, four neuron arrays keep
on extracting data from the MNIST Dataset, which generates thousands of packets.
Because of that, it is too ambiguous to illustrate the whole simulation result in one
figure. Instead, the waveform that contains the entire simulation process is divided
into several segments. By zooming in on the specific segments of the waveform, the
working principle and data flow of the whole system can be elaborated in detail.

40

Figure 4.2: The mapping of an MNIST network to this communication system

As shown in figure 4.2, once a neuron array receives a packet from its receiver, it will
extract a packet from the MNIST Dataset. This packet will then be processed by
the controller and transmitted to its destination through a SerDes link. Figure 4.3
illustrates one transmission between array 0 and array 1 under this methodology. The
arrows in red represent the data signal while the arrows in black represent the control
signals which are triggered by the data flow. A more detailed explanation with relevant
waveform will be provided in the follow-up content.

Figure 4.3: The data flow to transmit and receive a packet

The first waveform illustrated in figure 4.4 depicts the system’s beginning stage. First,
the global reset signal turns from low to high, clearing all pending events or errors and
returning the system to a normal state. As there is no spike generated from the neuron
array at that time, all the components mentioned in figure 4.3 are in an idle state. Then
at 30ns, a spike packet is injected from array 0 into its corresponding Pulse Latch. As
shown in figure 4.4, the pulse in(0) signal with 256 bit-width, which represents the
output from array 0, changes from 0 to the values read from the Spike in.

In this process of transmitting a packet from array 0 to array 1, only the Spike in from
the MNIST Dataset has a specific value while the outputs from the other three are all

41

0. Because of that, to make the waveform diagram not too cluttered, the outputs from
the other three neuron arrays are not included. For the same reason, only the receiver
waveform of array 1, RX out(1) is shown in the figure.

Once the arbiter detects a packet in pulse in(0), it will receive a requirement on the
bit corresponding to the array 0, which is the least significant bit in our case. As
there is only one requirement among the four arrays, the gnt signal from the arbiter
turns to ’0001’, operating the MUX to allow this packet to occupy the subsequent
components. In order to facilitate the comparison of the data at the receiving end and
the sending end, the data will bypass the Crossbar component directly, which means
the segments within this packet will not change their sequences. After the Packet
Generator component finishes processing the data, it will generate a pulse named start
to the transmitter. After that, the packet can be transmitted to the destination array
through the SerDes link. It could be observed from the waveform that a bunch of pulses
are generated in signal SerDes ONE and SerDes ZERO after the rising edge from the
signal start.

Figure 4.4: The waveform when transmitting a packet

Figure 4.5: The waveform when receiving a packet

42

Figure 4.5 depicts a successful packet reception in neuron array 1. At around 85ns, the
arbiter receives a finish signal from the transmitter, claiming that the packet has been
received successfully. The final decoding result can be found in signal RX out(1), which
is fully equal to the packet sent from pulse in(0). Also, once the arbiter receives the
finish signal, it will send a reset signal to the pulse latch corresponding to that array,
which is represented as the least significant bit as well. This signal helps the pulse latch
to clear the packet that has already been transmitted so that it can receive new pulses
from the array.

4.1.3 Timing and Throughput

Throughput is an essential measure for evaluating the performance of this interconnect
system. Based on the waveform produced during the simulation, this interconnect
system works properly under the previous MNIST use case. However, this is only
a functional simulation which focuses on logic function rather than timing. In the
previous analysis, all the gates used in this system are assumed to be ideal, which means
that the actual delay of each gate is ignored. As a result, the delays and latencies of
our system may not be accurately reflected in the simulation results.

In order to objectively evaluate the throughput of the system, the first step needs to
do is to introduce a real physical delay for each gate. Under normal circumstances,
this step could be achieved during the synthesis. Synthesis is the process of converting
RTL into a gate-level netlist. There is a step in the synthesis process to optimize the
netlist based on the designer’s delay, area, and other limitations. However, this on-chip
interconnect system is developed in SystemC system-level modelling and it is hard to
introduce the standard delay file SDF for timing simulation (post-simulation).

Consequently, We made a delay estimate for all types of gates used in the project.
Take a 2-input multiplexer as an example, by searching relevant keywords ’MUX’ in
the datasheet of TSMC N28HPC Standard Cell Library [24], some data could be found
regarding the delay of this type of gate. As shown in figure 4.6, the propagation delay
of the gate varies as the working environment changes, while we do not have accurate
data on the working environment. To compensate for this, a compromise solution is to
add up all the values and take the average. Although the delay obtained in this way
will have a large error with the actual one, at least their order of magnitude is at the
same level.

Figure 4.6: The Delay of a 2-Input MUX Gate [24]

43

The basic logic of designing the whole system is to design each component individually
and connect them together. Because of that, after the delay of each component is
clarified, the overall delay simulation of the system is naturally completed. Take the
component of the receiver as an example, the inner structure of a receiver is illustrated
in figure 3.12 and figure 3.13. It could be judged that each bit needs to be processed
by one And Gate and one Latch Gate, which is the critical path of this component.
As mentioned in section 3.3, the event-triggering mechanism of the SystemC is very
helpful to simulate the propagation delay in this case. The code shown below is a
part of the process of a component used to activate its data processing function. The
second line of code is the processing method without delay under ideal conditions.
As a comparison, the third line of code simulates the delay according to the amount
of data that needs to be decoded by the receiver. The variables LATCH Delay and
AND Delay are the propagation delays of the corresponding gates estimated from [24].
Furthermore, considering the actual working situation, the delay of each gate is not
completely constant when it is working. For a more realistic simulation, a function
named random is prepared to provide a 10% delay fluctuation, as shown in line 4.

1 else if (count==(16 + 16* num_spike)){

2 //ev1.notify ();

3 ev1.notify ((16+ num_spike)*(LATCH_Delay+AND_Delay),SC_NS);

4 //ev1.notify(random ((16+ num_spike)*(LATCH_Delay+AND_Delay)

,0.1),SC_NS);

5 count = 0;

6 num_spike = 0;

7 }

After introducing the physical delay to the system, the overall waveform did not change
significantly and the system still works properly. This indicates that the current test-
bench has not met the throughput limit of this system. Hence, for the MNIST use case,
we multiply the numbers in timestamp by the same value, so that the time interval
between each of the spike packet decrease at the same rate. When the time interval is
reduced to a certain extent (269.47ns on average), it could be found that some packets
are lost during the transmission when observing the waveform. Thus, the throughput
of our interconnect system under this MNIST use case can be calculated as:

Throughput =
4× 256

269.47× 10−9
≈ 3.802 Gbits/s (4.1)

44

4.2 Power and Area

As this on-chip communication system is developed in system-level modelling using
SystemC, the code which builds up this system cannot be directly synthesized. As a
result, it is quite difficult to acquire accurate data in terms of the power and area of
this interconnection system. In order to evaluate the area of this system, what we can
do is estimate the gate number of each component based on the code that builds them.
Furthermore, for a specific application scenario, the number of gates switching times
can be recorded to get a power estimation. The following sections demonstrate the
result of the area and power estimations respectively.

• Area
To estimate the area of this interconnect system, the inner structure of each
component needs to be evaluated. For example, the OR Gate Tree group as
illustrated in Figure 3.18 needs a bunch of OR Gates to implement its structure.
As there are 16 segments and each segment contains 16 bits, the number of OR
Gates needed for this component can be calculated:

OR Gate = 16× (8 + 4 + 2 + 1) = 240 (4.2)

Because of that, the changes in simulation parameters could result in different
structures of the relevant component. Again take the OR Gate Tree group in
Figure 3.18 as an example, if the number of segments changes from 16 to 8, the
number of OR Gates needed is:

OR Gate = 8× (16 + 8 + 4 + 2 + 1) = 248 (4.3)

In order to ensure that the system structure of the analysis part is consistent
with the previous system design part, the following calculations are based on this
premise: each neuron array in the system contains 256 neurons, and a 256-bit
packet is equalized divided into 16 segments during processing.

Besides, within this pulse-mode link system, the gate is divided into two categories,
one is the normal gate and the other is the pulse-mode gate. Applying the pulse-
mode gate to our design is due to the fact that the neurons generate spike signals
to carry information within a neural network. However, because of the short
duration with the narrow width of a spike, normal logic gates are incapable of
handling such high-speed signals. Thus, the pulse-mode gate family are applied
in our system, which includes Pulse Latch, Pulse AND as well as Pulse OR gate.
A previous contributor has already implemented these pulse-mode gates. The
data on the power consumption of these gates is also cited in that contributor’s
article.

Table 4.1 and Table 4.2 record the number of logic gates required to build a
transmitter and a receiver including both normal and pulse-mode gates. Table
4.3 shows the gate number in a packet generator system. As mentioned before,

45

Table 4.1: Gate number of the Transmitter

Number of Segment =16
Transmitter process

valid spike sel pulse generator one zero line or gate tree 3DFF Total
Pulse Latch 0 0 0 0 0 0
Pulse And 0 0 0 0 0 0
Pulse Or 0 0 0 0 0 0
AND Gate 0 108 16 562 0 686
OR Gate 240 25 8 27 0 300
XOR Gate 0 59 16 18 0 93
NOT Gate 0 3 0 0 0 3
MUX 0 0 480 0 0 480
DFF 0 0 0 0 792 792
Delay Element 0 4 0 0 0 4

Table 4.2: Gate number of the Receiver

Number of Segment =16
Receiver process

do count spike count ser to pal Total
Pulse Latch 0 0 272 272
Pulse And 0 0 0 0
Pulse Or 272 0 0 272
AND Gate 18 26 8 52
OR Gate 19 5 4 28
XOR Gate 18 16 8 42
NOT Gate 0 2 0 2
MUX 0 14 480 494
DFF 0 0 0 0
Delay Element 0 4 0 4

this packet generator system works as a global controller to operate the data path
for physical SerDes links with multiple virtual channels.

From the table shown above, it can be indicated that the number of gates needed
for a crossbar is much larger than other components. And the area consumed
by the transmitter and receiver is significantly larger than the part where the

Table 4.3: Gate number for Packet Generator System

Number of Segment =16
PG process

spike detec arbiter round-robin reset divid Corssbar Total
Pulse Latch 0 0 0 0 0 0
Pulse And 0 0 0 0 0 0
Pulse Or 0 0 0 0 0 0
AND Gate 8 12 16 8 65536 65580
OR Gate 4 4 4 4 16 32
XOR Gate 8 8 8 8 0 32
NOT Gate 0 4 0 0 0 4
MUX 8 0 0 0 0 8
DFF 0 0 0 0 0 0
Delay Element 3 1 2 1 0 7

46

controller removes the crossbar part. In order to display the area consumed by the
system more intuitively, the kilo Gate Equivalent (kGE) method is used to define
the manufacturing-technology-independent complexity of this circuit. The silicon
area of a two-input drive-strength-one NAND gate typically forms the technology-
dependent unit area, which is frequently referred to as gate equivalent. According
to the complexity of the implementation, various gates are first converted to a
number of NAND Gates according to their respective ratios, and then the data
from the table 4.1, 4.2, 4.3 are accumulated. The results are shown in Table 4.4.

Table 4.4: The Gate Counting for the System with kGE

Gate Counting
Gate 1 array 4 array
Pulse Latch Gate 272 1088
Pulse And Gate 0 0
Pulse Or Gate 272 1088
AND Gate 66318 265272
OR Gate 360 1440
XOR Gate 167 668
NOT Gate 9 36
MUX 982 3928
DFF 792 3168
Delay Element 15 60
kGE(kilo Gate Equivalent) 207.924 831.696

• Power
The power consumption of this system will be estimated in this subsection. Con-
sidering the fact that dynamic power always consumes the majority of overall
power usage, the effect of the static power of the circuit is ignored. To calculate
the dynamic power consumption, the first thing that needs to be clarified is the
energy consumption for each switching of the different gates. In [26], a previous
contributor has already implemented the pulse-mode logic gates. Table 4.5 in
this thesis displays the energy consumption per switching of the pulse-mode gates
family, where the power supply remains at 0.8 volts and the pulse has a period of
200ns. As for the energy consumption of normal logic gates, we refer to the TSMC
Standard Cell Library. Each basic logic gate will have a set of relevant data when
transferred from high to low and low to high. For example, figure 4.7 shows a
group of data under a certain scenario. Since there are multiple sets of data for
the same type of gate, our processing method is to accumulate these data and take
an average value, and use this average value to represent the power consumption
of this gate. Although this is only a rough assumption and not accurate, at least
it can ensure that the values we use are in the same order of magnitude as the
real values.

After determining the power consumption of each gate, the next step is to get
the switching time of these gates. This problem cannot be simply summarized as

47

Table 4.5: The Energy Consumption For Pulse-mode Gate Family

Pulse-mode Gate Energy Consumption(J)
Pulse Latch Gate 3.47E-15
Pulse And Gate 6.17E-15
Pulse Or Gate 6.90E-15
Pulse Delay Gate 5.68E-15

Figure 4.7: The Power Consumption of a 2-Input And Gate

a calculation of how many times each component is called, because the process
in a component may be activated multiple times. To get as accurate values as
possible, a global variable for each process is created for each of the processes. The
process of using this method is shown in the code below. Since these variables are
global, their values of them will not be lost every time the corresponding process
ends. Instead, every time each process is triggered, the value of its corresponding
variable is incremented by one. When the entire simulation ends, these variables
are recorded as outputs to facilitate our subsequent calculations.

1 // At the head of a file

2 int pulse_latch_time = 0;

3 int pulse_reset_time = 0;

4

5 // Within a process

6 if(flag_reset){

7 pulse_reset_time +=1; // count the reset time

8

9 //At the main body

10 cout << "Pulse reset time is " << pulse_reset_time <<endl;

48

11 cout << "Pulse latch time is " << pulse_latch_time <<endl;

To evaluate the power consumption of the system, a specific use case should be
provided. On this basis, the switching time can be printed out, multiplied by the
power consumption value of a single gate per flip. After that, the total power
consumption of this system can be estimated. According to our assumption, the
speed of the on-chip link is 2GHz and the time interval between two packets is
5us. Two use cases are defined below to reveal the power consumption in different
situations.

– Case 1:
There are 4 neuron arrays placed on a single chip. Each neuron array sends
a packet to another adjacent neuron array for every 5us.

– Case 2:
There are 4 neuron arrays placed on a single chip. Each neuron array sends
a packet to all the other 3 neuron arrays for every 5us.

By applying the method as the code above shows, we could get the number of times
each process was activated during the simulation. From table 4.1, 4.2 and table
4.3, the number of gates triggered in each process can be extracted. According
to the above two sets of data, the switching time of each gate can be calculated,
as shown in the equation 4.4. Also, the power consumption of all kinds of gates
used in our system has already been clarified. Thus, the calculation of energy
consumption can be processed. The equation 4.5 illustrates how to calculate the
power consumption of the system.

Numbergates switching =
∑

process

(Trigger times×Gates in process) (4.4)

Egates =
∑
gate

(Switching times× Energy per switching) (4.5)

Refer to the data in a relevant article [5], it is assumed that each spike takes 7.36pJ
to propagate through the on-chip link. With this data, the total energy of the
system can be determined. Then based on equation 4.6, the power of the system
can be calculated from the energy consumption during the whole simulation. In
this equation, the α refers to the energy to transfer a single spike, which is 7.36
in our case. The β refers to the total number of packets transferred by this link
system. And the parameter Egates is obtained from the equation 4.5.

Psystem =
Egates + α× Packet Size× β

Total T ime
(4.6)

From the Area analysis (part 4.2), it can be concluded that the number of gates
consumed by the component Corssbar occupies more than 90% of the system.

49

And, the chip area consumed by the controller part except the crossbar is negligible
compared with the transmitter and receiver. Therefore, it is necessary to divide
the same use case into two scenarios for discussion. In one scenario, the crossbar
works normally, and the segments in a packet will be arranged according to the
configuration before being transmitted; in the other case, the crossbar does not
work, and the segment selected as ”valid” will directly bypass this part.

Table 4.6: Energy Consumption of the Transmitter

Switching Time Sum Total energy
Pulse Latch 776 2.69E-12

1.48E-11

Pulse And 0 0.00E+00
Pulse Or 0 0.00E+00
AND Gate 16341 1.10E-11
OR Gate 978 5.17E-13
XOR Gate 891 3.45E-13
NOT Gate 41 2.17E-14
MUX 341 1.04E-13
DFF 8 2.10E-14
Delay Element 55 2.42E-14

Table 4.7: The Energy Consumption of the Receiver

Switching Time Sum Total energy
Pulse Latch 549 1.90E-12

1.38E-11

Pulse And 0 0.00E+00
Pulse Or 567 3.91E-12
AND Gate 6029 4.07E-12
OR Gate 2058 1.09E-12
XOR Gate 4662 1.81E-12
NOT Gate 273 1.45E-13
MUX 2778 8.49E-13
DFF 0 0.00E+00
Delay Element 39 1.71E-14

Table 4.6 and 4.7 show the energy consumption of a transmitter and a receiver
when they transfer a 256-bit packet respectively. And the 4.8 shows the energy
consumption for the global controller to allocate the data path for a packet. There
are two values in the rows of AND and OR gates in Table 4.8, in which the values
in brackets represent the overall energy consumption of the part when the crossbar
in the controller is working. From these tables, it could be concluded that when
the power consumption of the transmitter and the receiver is quite similar. When
the crossbar in the controller is working, the overall energy consumption of this
part accounts for 80.4% of the total energy consumption. However, when the
crossbar is not working, the energy consumption of the controller is negligible
compared to the transmitter and receiver.

After estimating the energy consumption, the next element to consider is the

50

Table 4.8: The Energy Consumption of the Global Controller

Switching Time Sum Total energy
Pulse Latch 0 0.00E+00

2.14E-12
(9.85E-11)

Pulse And 0 0.00E+00
Pulse Or 0 0.00E+00
AND Gate 3573(145745) 2.03E-12 (9.84E-11)
OR Gate 54(1085) 2.84E-14 (2.99E-14)
XOR Gate 90 3.49E-14
NOT Gate 44 2.31E-14
MUX 36 1.09E-14
DFF 0 0.00E+00
Delay Element 30 1.33E-14

time factor. As mentioned in equation 3.1, the time needed to propagate a 256-
bit packet through the SerDes link is about 0.5µs. According to [12], the latency
of an on-chip communication is in the order of nanoseconds, which is significantly
smaller than the results from equation 3.1. Considering the worst case, a pair
of a transmitter and a receiver needs to encode and decode three 256-bit packets
for every 5µs, and the time required to finish this operation is less than 2µs.
Therefore, these two use cases do not break the theoretical timing constraint of
the system.

Table 4.9 displays the energy consumption and the power of this on-chip commu-
nication link system. In the same manner as in Table 4.8, the data in brackets
represents the estimation of energy and power when the crossbar is working. Ac-
cording to this table, power obviously changes with different use cases. As more
packets are transmitted and travel through the SerDes link, the energy as well as
power increases.

Table 4.9: The Energy consumption and Power of the System

α β Total Energy(J) Total Power(mW)

Use case 1 7.36E-12 8 1.633E-8 (5.084E-8) 6.519(20.295)

Use case 2 7.36E-12 24 9.786E-8 (2.926E-7) 19.578(58.544)

51

52

Conclusion and Future Work 5
5.1 Conclusion

Within a neuromorphic computing system, a high-speed interconnect link system is
needed to transfer the packets between the neurons. Moreover, as the spiking neural
networks are event-driven, the communication link system generally excludes the clock
signal and associated blocks.

A customized high-speed on-chip interconnect system in self-timed burst mode asyn-
chronous logic is proposed in this thesis. This on-chip interconnect system is basically
created from a SerDes link, which eliminates the clock signal and uses the burst-mode
protocol to transform the packet from parallel to a two-wire serial format. To capture
the spikes from the neuron arrays, a customized pulse latch gate designed by a pre-
vious contributor is needed. Each neuron is assigned a SerDes link with its matching
transmitter and receiver. The resources of these SerDes links are uniformly scheduled
by their controllers. As the neural array generates spikes at random, it is very common
to cause a collision within a SerDes link. To address this issue, the arbitration and vir-
tual channel working mechanism are introduced into the controller. To further improve
the throughput and decrease power consumption, a packet is split into multiple seg-
ments before being transmitted, and the segments that do not contain valid information
will be filtered out. Furthermore, the system remains adaptable and parameterizable
throughout the design process, allowing it to be configured with different use cases.

The system is designed in SystemC, which is quite difficult to be synthesized. In
order to evaluate the power, area and throughput performance, we use the datasheet
of the TSMC28nm library [24] to estimate the area, power consumption and delay
of each gate. To verify the system’s functionality, we map a neural network from
a quarter MNIST training result into our interconnect system. In order to better
simulate real working scenarios, a 10% bandwidth to the propagation delay of each
gate is added during the simulation. With the shrink of the time interval between
the spike packets, the throughput limit of this interconnect system is reached. In this
MNIST testing case, this interconnect system’s throughput is around 3.802 Gbits/s,
which meets the demands of this application scenario. The power of the system varies
greatly with the change in the use case. Considering the worst case, when all neuron
arrays generate packets at the same time and send them to all other neuron arrays,
the power consumption of the system is 58.544mW, most of which is consumed by the
crossbar.

53

5.2 Future Work

Although the functionality of our interconnect is verified, this project still has deficien-
cies to be improved in the future. Some of the possibilities where further work might
be optimized are as follows:

• Synthesis of the Circuit
In this project, SystemC is used to design the system in high-level modelling.
Because of that, the synthesis of the circuit is missed. The core components of
this system can be rewritten in a synthesizable language such as SystemVerilog in
the future so that more accurate data on power consumption, area and throughput
can be obtained.

• Hierarchical Routing of Wires
As shown in figure 3.1, the outputs of the pulse latches are directly transmitted
to the control system through thousands of wires. This not only occupies a large
amount of on-chip space but also causes crosstalk interference between signal
lines, affecting data transmission in other signal lines. In the future, we could
consider using the hierarchical wiring method to optimize this part, or perform an
additional serial-to-parallel operation at the expense of a part of the transmission
rate.

• More Flexible Control Of Data Flow
According to the current design of this interconnect system, the flow of data is
defined before the system starts to operate. That is to say, we cannot temporarily
change the flow of data between neuron arrays when the program is running
halfway. This limits the flexibility of the system. For example, the mapping of
MNIST dataset is illustrated in figure 4.2. However, the output of the hidden
layer and the output layer only occupies a small part of a neuron array. If the
direction of data flow between neuron arrays is variable, the mapping strategy can
be shown in Figure 5.1. With the crossbar, the spike in and spike out can share
the same neuron array, while the other two Spike hidden spikes could use another
neuron array. This can significantly reduce the area and power consumption.
Furthermore, a more flexible control makes it feasible to map with a recurrent
neuron network, which allows output from some nodes to affect subsequent input
to the same nodes.

54

Figure 5.1: A more flexible mapping strategy

55

56

Bibliography

[1] Filipp Akopyan and Sawada. Truenorth: Design and tool flow of a 65 mw 1 million
neuron programmable neurosynaptic chip. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 34(10):1537–1557, 2015.

[2] Luca Benini and Giovanni De Micheli. Networks on chips: A new soc paradigm.
computer, 35(1):70–78, 2002.

[3] Forrest Brewer, David McCarthy, and Merritt Miller. Automated timing constraint
generation for pulse gate circuits. 2021.

[4] Snaider Carrillo, Jim Harkin, Liam McDaid, Sandeep Pande, Seamus Cawley,
Brian McGinley, and Fearghal Morgan. Advancing interconnect density for spiking
neural network hardware implementations using traffic-aware adaptive network-on-
chip routers. Neural Networks, 33:42–57, 2012.

[5] Zengguang Cheng, Carlos Ŕıos, Wolfram H. P. Pernice, C. David Wright, and
Harish Bhaskaran. On-chip photonic synapse. Science Advances, 3(9):e1700160,
2017.

[6] PS Churchland and TJ Sejnowski. The computational brain mit press. Cambridge,
Massachusetts, 1992.

[7] William James Dally and Brian Patrick Towles. Principles and practices of inter-
connection networks. Elsevier, 2004.

[8] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection networks.
Morgan Kaufmann, 2003.

[9] M.R. Greenstreet and Jihong Ren. Surfing interconnect. In 12th IEEE Interna-
tional Symposium on Asynchronous Circuits and Systems (ASYNC’06), pages 9
pp.–106, 2006.

[10] Jim Harkin, Fearghal Morgan, Liam McDaid, Steve Hall, Brian McGinley, and
Seamus Cawley. A reconfigurable and biologically inspired paradigm for computa-
tion using network-on-chip and spiking neural networks. International Journal of
Reconfigurable Computing, 2009, 2009.

[11] Scott Hauck, Katherine Compton, Ken Eguro, Mark Holland, Shawn Phillips, and
Akshay Sharma. Totem: domain-specific reconfigurable logic. 01 2023.

[12] Rajib Kar, Vikas Maheshwari, Ashis Kumar Mal, and A.K. Bhattacharjee. Delay
analysis on-chip vlsi interconnect using gamma distribution function. International
Journal of Computer Applications, 1, 02 2010.

[13] Santosh Kulkarni, Sishaj P. Simon, and K. Sundareswaran. A spiking neural net-
work (snn) forecast engine for short-term electrical load forecasting. Applied Soft
Computing, 13(8):3628–3635, 2013.

[14] Shih-Chii Liu, Tobi Delbruck, Giacomo Indiveri, Adrian Whatley, and Rodney
Douglas. Event-based neuromorphic systems. John Wiley & Sons, 2014.

57

[15] Misha Mahowald. Vlsi analogs of neuronal visual processing: a synthesis of form
and function. 1992.

[16] Carver Mead. Adaptive retina. In Analog VLSI implementation of neural systems,
pages 239–246. Springer, 1989.

[17] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun
Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Naka-
mura, Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar Appuswamy,
Brian Taba, Arnon Amir, Myron D. Flickner, William P. Risk, Rajit Manohar,
and Dharmendra S. Modha. A million spiking-neuron integrated circuit with a
scalable communication network and interface. Science, 345(6197):668–673, 2014.

[18] Johannes Schemmel, Johannes Fieres, and Karlheinz Meier. Wafer-scale integra-
tion of analog neural networks. In 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence), pages
431–438. IEEE, 2008.

[19] Dimitrios Serpanos and Tilman Wolf. Chapter 4 - interconnects and switching
fabrics. In Dimitrios Serpanos and Tilman Wolf, editors, Architecture of Network
Systems, The Morgan Kaufmann Series in Computer Architecture and Design,
pages 35–61. Morgan Kaufmann, Boston, 2011.

[20] Rafael Serrano-Gotarredona, Matthias Oster, Patrick Lichtsteiner, Alejan-
dro Linares-Barranco, Rafael Paz-Vicente, Francisco Gómez-Rodŕıguez, Luis
Camuñas-Mesa, Raphael Berner, Manuel Rivas-Pérez, Tobi Delbruck, et al.
Caviar: A 45k neuron, 5m synapse, 12g connects/s aer hardware sensory–
processing–learning–actuating system for high-speed visual object recognition and
tracking. IEEE Transactions on Neural networks, 20(9):1417–1438, 2009.

[21] Jan Stuijt, Manolis Sifalakis, Amirreza Yousefzadeh, and Federico Corradi. µbrain:
An event-driven and fully synthesizable architecture for spiking neural networks.
Frontiers in Neuroscience, 15, 05 2021.

[22] I. Sutherland and S. Fairbanks. Gasp: a minimal fifo control. In Proceedings
Seventh International Symposium on Asynchronous Circuits and Systems. ASYNC
2001, pages 46–53, 2001.

[23] Ted H. Szymanski, Martin Saint-Laurent, Victor Tyan, Albert Au, and Boonchuay
Supmonchai. Field-programmable logic devices with optical input–output. Appl.
Opt., 39(5):721–732, Feb 2000.

[24] Taiwan Semiconductor Manufacturing Company Ltd. TSMC N28HPC Standard
Cell Library, January 2016. Version 110c.

[25] T. Theocharides, G. Link, N. Vijaykrishnan, M.J. Invin, and V. Srikantam. A
generic reconfigurable neural network architecture as a network on chip. In IEEE
International SOC Conference, 2004. Proceedings., pages 191–194, 2004.

[26] Fang Yang. Designing asynchronous gate library with new system level trade-offs.
08 2021.

58

[27] Jilin Zhang, Jinsong Wei, and Hong Chen. An address event representation cir-
cuits design with rotation priority against pulse collision. In 2019 IEEE Interna-
tional Conference on Electron Devices and Solid-State Circuits (EDSSC), pages
1–3, 2019.

59

	Abstract
	Acknowledgments
	Introduction
	Problem Statement
	Objective
	Contribution
	Outline

	Background
	Spiking Neural Networks
	Address Event Representation
	Interconnect Strategies For SNN Implementations
	Shared bus topology
	Network-on-chip
	Current NoC-based SNN Approaches

	Design
	Methodology Flow
	Overview
	Design of an Event-driven Mechanism
	Design of a SerDes Link
	Two-wire encoding
	Design of the Transmitter
	Design of the Receiver

	Design of the Multi-Point Communication
	Virtual channel for a single physical channel
	Overall Controller

	Data Processing Before Transmission
	Packet Generator
	Crossbar

	System Parameterization

	Simulation and Results
	Simulation with MNIST dataset
	Mapping to a real MNIST network
	Simulation Waveform
	Timing and Throughput

	Power and Area

	Conclusion and Future Work
	Conclusion
	Future Work

