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A hybrid control framework for fast methods under invexity:
Non-Zeno trajectories with exponential rate

A. Sharifi Kolarijani, P. Mohajerin Esfahani and T. Keviczky

Abstract— In this paper, we propose a framework to design
a class of fast gradient-based methods in continuous-time that,
in comparison with the existing literature including Nesterov’s
fast-gradient method, features a state-dependent, time-invariant
damping term that acts as a feedback control input. The
proposed design scheme allows for a user-defined, exponential
rate of convergence for a class of nonconvex, unconstrained
optimization problems in which the objective function satisfies
the so-called Polyak–Łojasiewicz inequality. Formulating the
optimization algorithm as a hybrid control system, a state-
feedback input is synthesized such that a desired rate of
convergence is guaranteed. Furthermore, we establish that the
solution trajectories of the hybrid control system are Zeno-free.

I. INTRODUCTION

Gradient-based optimization methods have received an
increased level of interest from a wide range of communities
recently because of their beneficiary properties such as ease
of implementation. Originating from the dynamical system
viewpoint to optimization algorithms suggested by Polyak
in [22], a heavy-ball moving in a potential field, the damped
2nd-order ordinary differential equation (ODE)

Ẍ(t) + γ(t)Ẋ(t) +∇f
(
X(t)

)
= 0 (1)

has found numerous applications in design and analysis
of a class of optimization algorithms. This class of algo-
rithms is called momentum-based algorithms in the literature,
where the function γ : R≥0 → R>0 denotes the damping
term. It has been shown that a higher rate of convergence
can be achieved compared to the 1st-order ODE Ẋ(t) =
−∇f

(
X(t)

)
, i.e., the gradient system. This point of view

has been employed and extended to various settings, see e.g.,
[1], [2].

Seemingly founded on a different basis, i.e., the notion
of estimate sequences, Nesterov proposed his celebrated
accelerated algorithm in [16] which has also been ex-
tended to other settings such as [18], [19]. Nonetheless, the
performance of the approach remained mysterious despite
many studies to describe the underlying principles of the
accelerated methodology, such as [4], [6].

In this regard, the authors in [23] ”suprisingly” discovered
that Nesterov’s method is a particular discretization of (1)
with γ(t) = 3

t . In other words, they have been able to
show that acceleration-based methods and momentum-based
methods are in fact the same in nature and originated from

The authors are with the Delft Center for Systems and Control, TU Delft,
The Netherlands ({a.sharifikolarijani,
p.mohajerinesfahani,t.keviczky}@tudelft.nl).

the ODE (1). We shall call the algorithms based on the 2nd-
order ODE (1) fast algorithms in the rest of the paper.

Followed by the observation made in [23], the application
of 2nd-order ODE (1) with a dynamical system viewpoint
has become one of the prominent tools to design and analyze
fast optimization methods. The ODE (1) is generalized into
non-Euclidean settings and into higher order methods using
the Bregman Lagrangian in [24]. Following [24], a “rate-
matching” Lyapunov function is proposed in [25] with its
monotonicity property established for both continuous and
discrete dynamics. In the context of the dynamical system
viewpoint, a control-oriented framework has been introduced
to design and analyze optimization methods by [15]. The
authors in [15] use the concept of integral quadratic con-
straints (IQC’s) from the robust control literature to design
iterative algorithms under the strong convexity assumption.
The strong convexity assumption in [15] is relaxed to weaker
assumptions, such as the quasiconvexity assumption, in [7]
using an IQC-based approach. Utilizing dissipativity theory
along with the IQC-based framework, in order to provide
rate analyses, a framework to construct Lyapunov functions
is proposed in [11].

In what follows, we mention some of the characteristic
features of fast methods mainly in the continuous-time case:
• Faster convergence rate: Under convexity assumption,

it has been shown that fast methods guarantee the con-
vergence rate of O( 1

t2 ) in continuous-time (and O( 1
k2 )

in discrete-time where k is iteration index) whereas
the gradient systems guarantee the convergence rate
O( 1

t ) (and the corresponding gradient descent method
guarantees the convergence rate O( 1

k ));
• Non-monotonicity of fast methods: Although fast

methods guarantee an order of magnitude increase in the
guaranteed convergence rate compared to the gradient-
based methods, they suffer from a non-monotonic be-
havior. To avoid such an undesired behavior certain
restarting schemes are proposed in the literature, such
as the ones in [17], [21] in discrete-time and [23] in
continuous-time.

• Regularity for exponential convergence: Under strong
convexity assumption and generally using restarting
schemes, it is shown that an exponential rate of conver-
gence can be achieved, see e.g., [23], [25] in continuous-
time fast methods (it is worth mentioning that the
authors in [24] show an exponential convergence under
uniform convexity assumption). In the discrete-time
case, we refer the interested reader to [21] and the
references therein for more details.
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Research hypothesis: Based upon the above discussion,
one may raise the following question: treating the damping
term γ(t) as a state-dependent input u(x), is it possible
to propose a framework to synthesize this input such that
the properties of the underlying optimization method are
improved?

Our methodology (Synthesis of damping term): In this
paper, we provide a control-oriented framework to achieve
an exponential rate of convergence O(e−αt) for an uncon-
strained, smooth optimization problem in the suboptimality
measure f

(
X(t)

)
− f∗, given a positive scalar α. Motivated

by the above hypothesis, we first amend the dynamical
system (1) by substituting the time-dependent damping co-
efficient γ(t) by a state-dependent feedback input in the
form of u

(
X(t), Ẋ(t)

)
. Inspired by restarting schemes, we

next extend the class of dynamical systems represented by
ODE’s to the class of hybrid control systems. The amended
2nd-order ODE becomes the continuous flow in the hybrid
formulation. We then construct a state-dependent feedback
law such that the convergence rate of O(e−αt) is guaranteed.
The flow set of the hybrid system is specified based on an
admissible control input range [umin, umax]. Finally, the jump
map of the hybrid control system is defined through the map-
ping (X>,−β∇>f(X))> such that the jump map’s range is
a subset of the flow set. This work is in continuation of the
author’s previous work [14] where a particular focus is given
to analyzing the zeno-free feature of the resulting controlled
hybrid systems. For the sake of brevity, we exclude the
technical proofs and refer to [13], [14] in which the detailed
proofs are provided. A summary of our main contributions
in the context of continuous-time fast methods follows: (i)
Guaranteeing a desired exponential convergence, we provide
a hybrid control framework to synthesize the damping term
γ(t) as a state-dependent feedback input u(X, Ẋ) unlike the
common time-dependent damping term in the literature (The-
orem 3.1); (ii) Our framework requires the objective function
to satisfy the Polyak–Łojasiewicz (PL) inequality that is a
weaker regularity assumption compared to the one mentioned
in the literature (i.e., strong convexity) (Assumption (A2));
and (iii) Under the additional assumption that the Hessian
of the objective function is Lipschitz (Assumption (A3)), we
establish that the solution trajectories to the hybrid control
system are Zeno-free.

Notations: The sets Rn and Rm×n denote the n-
dimensional Euclidean space and the space of m×n dimen-
sional matrices with real entries, respectively. For a matrix
M ∈ Rm×n, M> is the transpose of M , M � 0 (≺ 0) refers
to M positive (negative) definite, M � 0 (� 0) refers to M
positive (negative) semi-definite, and λmax(M) denotes the
maximum eigenvalue of M . The n × n identity matrix is
denoted by In. For a vector v ∈ Rn and i ∈ {1, · · · , n},
vi represents the i-th entry of v and ‖v‖ :=

√
Σni=1 v

2
i

is the Euclidean 2-norm of v. For two vectors x, y ∈ Rn,
〈x, y〉 := x>y denotes the Euclidean inner product. For a
matrix M , ‖M‖ :=

√
λmax(A>A) is the induced 2-norm.

Given the set S ⊆ Rn, ∂S and int(S) represent the boundary
and the interior of S, respectively.

II. PRELIMINARIES

In this section, we first introduce the notion of hybrid
control system that is adapted from [8]. We then present
the class of optimization problems considered in this study
followed by the formal description of the problem statement.

Definition 2.1 (Hybrid control system): A time-invariant
hybrid control system H comprises a controlled ODE and
a jump (or a reset) rule introduced as:{

ẋ = F
(
x, u(x)

)
, x ∈ C

x+ = G(x), otherwise, (H)

where x+ ∈ Rn is the state of the hybrid system after a
jump, the function u : Rn → Rm denotes a feedback signal,
the function F : Rn × Rm → Rn is the flow map, the set
C ⊆ Rn is the flow set, and the function G : ∂C → int(C)
represents the jump map.
The concept of Zeno behavior in hybrid dynamical systems
refers to the phenomenon that an infinite number of jumps
occur in a bounded time interval. By contrast, we call a
solution trajectory Zeno-free if the number of jumps within
any finite time interval is bounded. A sufficient condition to
fulfill the Zeno-free feature is to provide a lower bound for
the time interval between any consecutive jumps. It is worth
noting that there exist solution concepts in the literature that
accept Zeno behaviors, see for example [3], [9].

Consider the class of unconstrained optimization problems

f∗ := min
X∈Rn

f(X), (2)

where f : Rn → R is an objective function. We now state
the main problem addressed in this paper.

Problem 2.2: Consider the unconstrained optimization
problem (2) where the objective function f is twice differen-
tiable. Given a positive scalar α, design a fast gradient-based
method in the form of a hybrid control system (H) with α-
exponential convergence rate, i.e. for any initial condition
X(0) and any t ≥ 0 we have

f
(
X(t)

)
− f∗ ≤ e−αt

(
f
(
X(0)

)
− f∗

)
,

where {X(t)}t≥0 denotes the solution trajectory to the
system (H).

Assumption 2.3 (Regularity assumptions): We stipulate
that the objective function f : Rn → R is twice differentiable
and fulfills the following properties.
• (Bounded Hessian) The Hessian of function f , denoted

by ∇2f(x), is uniformly bounded, i.e.,

−`fIn � ∇2f(x) � LfIn, (A1)

where `f and Lf are non-negative constants.
• (Gradient dominated) The function f satisfies the

Polyak-Łojasiewicz inequality with a positive constant
µf , i.e., for every x in Rn the inequality

1

2

∥∥∇f(x)
∥∥2 ≥ µf(f(x)− f∗

)
, (A2)

holds, where f∗ is the minimum of f on Rn.

4079

Authorized licensed use limited to: TU Delft Library. Downloaded on January 12,2022 at 13:40:11 UTC from IEEE Xplore.  Restrictions apply. 



• (Lipschitz Hessian) The Hessian of the function f is
Lipschitz, i.e., for every x, y in Rn the inequality∥∥∇2f(x)−∇2f(y)

∥∥ ≤ Hf‖x− y‖, (A3)

holds, where Hf is a positive constant.
Remark 2.4 (Lipschitz gradient): Since the function f is

twice differentiable, Assumption (A1) implies that the func-
tion ∇f is also Lipschitz with a positive constant Lf , i.e.,
for every x, y in Rn we have∥∥∇f(x)−∇f(y)

∥∥ ≤ Lf‖x− y‖. (3)
We record some key features of functions that satisfy (A2).
Remark 2.5 (PL functions and invexity): The PL inequal-

ity implies the invexity of a function that is first introduced by
[10]. The notion of invexity can be viewed as a generalization
of the notion of convexity.

Remark 2.6 (Non-uniqueness of stationary points): The
PL inequality requires the (not necessarily singular) set of
stationary points of a function (i.e., {x : ∇f(x) = 0}) to be
global minimizers [5].

Example 1 (Popular PL functions [12]): Compositions
of a strongly convex function and a linear function satisfy
the PL inequality which include as an example least squares
problems, i.e., f(x) = ‖Ax − b‖2. Any strictly convex
function over a compact set satisfies the PL inequality. As
such, the log-loss objective function in logistic regression,
i.e., f(x) = Σni=1 log

(
1 + exp(bia

>
i x)

)
, is locally invex.

III. MAIN RESULTS

We now present the main results of this work along
with several remarks highlighting their implications. In what
follows we use the notation x := (x1, x2) such that the
variables x1 and x2 represent the dynamics X and Ẋ ,
respectively.

In the first step we provide a type of parameterization
for the hybrid system (H). Given a positive scalar α, the
proposed parameterization denoted by uα(x) enables achiev-
ing the rate of convergence O(e−αt) in the suboptimality
measure f

(
X(t)

)
− f∗. Motivated by the dynamics of fast

gradient methods [23], we start with a 2nd-order ODE as the
continuous evolution (or the flow map) F : R2n×R→ R2n

defined as

F
(
x, uα(x)

)
=

(
x2

−∇f(x1)

)
+

(
0

−x2

)
uα(x). (4a)

The feedback law uα : R2n → R is given by

uα(x) = α+
‖∇f(x1)‖2 − 〈∇2f(x1)x2, x2〉

〈∇f(x1),−x2〉
. (4b)

The main feature of the proposed control structure is to
ensure achieving an α-exponential convergence rate, see
[14, Subsection 4.1] for more details. Notice that the state-
dependent feedback input uα(x) has replaced the time-
dependent damping term γ(t) in the dynamics (1). In the
next step, we consider an admissible interval [umin umax] to
characterize a candidate flow set C ⊂ R2n, i.e.,

C =
{
x ∈ R2n : uα(x) ∈ [umin, umax]

}
, (4c)

where umin, umax represent the range of acceptable control
values. Notice that the flow set C is the domain in which
the hybrid system (H) can evolve continuously. Furthermore,
observe that when 〈∇f(x1),−x2〉 = 0 (e.g., at an optimal
state x∗1 where ∇f(x∗1) = 0), the input (4b) is not well-
defined. Nonetheless, the way the flow set C is defined in (4c)
prevents the occurrence of such a case. We finally introduce
the jump map G : R2n → R2n parameterized by a constant
β

G(x) =

(
x1

−β∇f(x1)

)
. (4d)

The parameter β ensures that the range space of the jump
map G is a strict subset of int(C). By construction, one can
inspect that any neighborhood of the optimizer x∗1 has a non-
empty intersection with the flow set C. That is, there always
exist paths in the set C that allow the continuous evolution
of the Hybrid system to approach arbitrarily close to the
optimizer.

The first result of this section introduces a mechanism to
compute the hybrid system’s parameters umin, umax, and β
to achieve the desired exponential convergence rate O(e−αt).

Theorem 3.1 (Continuous-time hybrid dynamics [14]):
Consider a positive scalar α and a smooth function
f : Rn → R satisfying Assumptions (A1) and (A2). Then,
the trajectory of the continuous-time hybrid control system
(H) with the respective parameters (4) and starting from
any initial condition x(0) with ∇f

(
x1(0)

)
6= 0 satisfies

f
(
x1(t)

)
− f∗ ≤ e−αt

(
f
(
x1(0)

)
− f∗

)
, ∀t ≥ 0, (5)

if the scalars umin, umax, and β are chosen such that

umin < α+ β−1 − Lfβ, (6a)

umax > α+ β−1 + `fβ, (6b)
α ≤ 2µfβ. (6c)

Proof: See the proof of [14, Theorem 3.1].
Remark 3.2 (Weaker regularity than strong convexity):

The PL inequality is a weaker requirement than the strong
convexity, which is often assumed in similar contexts [23],
[24], [25]. It is worth noting that such a condition has also
been used in the context of 1st-order oracle, non-accelerated
algorithms [12].

Remark 3.3 (Hybrid embedding of restarting): The
hybrid framework intrinsically captures a restarting scheme
through the jump map. The scheme is a weighted gradient
where the weight factor β is essentially characterized by
the given data α, µf , `f , and Lf . One may inspect that the
constant β can be in fact introduced as a state-dependent
weight factor to potentially improve the performance.
Nonetheless, for the sake of simplicity of exposition, we do
not pursue this level of generality in this paper.

Remark 3.4 (Fundamental limits on control input): In
order to guarantee the rate of convergence of O

(
e−αt

)
,

Theorem 3.1 asserts the following theoretical limits on
umin and umax: (i) the upper-bound on the admissible input
interval umax is required to be larger than α, and (ii) the
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lower-bound on the admissible input interval umin has to be
negative if the geometrical property α ≥ 2µf√

max{Lf−2µf ,0}
holds based on the given α. In other words, Theorem 3.1
essentially indicates a lack of geometrical richness of the
function f . As a result, it is required to inject energy to
the dynamical system through negative damping in order to
achieve an exponential rate of convergence. It is also natural
to expect that the practical rate of convergence increases as
umin decreases.

Remark 3.5 (2nd-order information): Although our pro-
posed framework requires 2nd-order information, i.e., the
Hessian∇2f , this requirement only appears in a mild form as
an evaluation in the same spirit as the modified Newton step
proposed in [20]. Furthermore, we emphasize that our results
still hold true if one replaces ∇2f(x1) with its upper-bound
LfIn following essentially the same analysis. For further
details we refer the reader to [14, Subsection 4.1].

The next result establishes a key feature of the solution tra-
jectories generated by the dynamics (H) with the respective
parameters (4), that the solution trajectories are indeed Zeno-
free. The Zeno-free feature is particularly of interest in this
context since it facilitates the development of discrete-time
algorithms based on the continuous-time analysis performed
in this paper.

Theorem 3.6 (Zeno-free hybrid trajectories [13]):
Consider a smooth function f : Rn → R satisfying
Assumption 2.3, and the corresponding hybrid control
system (H) with the respective parameters (4) satisfying (6).
Given the initial condition

(
x1(0),−β∇f

(
x1(0)

))
with

∇f
(
x1(0)

)
6= 0, the time between two consecutive jumps

of the solution trajectory, denoted by τ , satisfies for any
scalar r > 1

τ ≥ log

max

{
a1

a2 + a3

∥∥∥∇f(x1(0)
)∥∥∥ + 1, r1/δ

} , (7)

where the constants involved are defined as

C :=
(umax − α) +

√
(umax − α)2 + 4Lf
2

, (8a)

δ := C + max{umax,−umin}, (8b)
Lf := max{`f , Lf}, (8c)

a1 := min{umax − (α+ β−1 + `fβ), (8d)

(α+ β−1 − Lfβ)− umin}, (8e)

a2 := rLfδ
−1(rβC + 1) + β−1 + (r2 + r + 1)βLf , (8f)

a3 := r3β2Hfδ
−1. (8g)

Consequently, the solution trajectories are Zeno-free.
Proof: See the proof of [13, Theorem 3.2].

Remark 3.7 (Non-uniform inter-jumps): Notice that The-
orem 3.6 suggests a lower bound for the inter-jump interval
τ that depends on ‖∇f

(
x1
)
‖. In light of the fact that the

solution trajectories converge to the optimal solutions, and
as such ∇f

(
x1
)

tends to zero, one can expect that the
frequency at which the jumps occur reduces as the hybrid

control system evolves in time. We refer to Section IV for a
numerical example illustrating this phenomenon.

The main novelty of the proposed approach is to allude
to a more general framework (i.e., the hybrid formulation)
to capture the dynamics of fast methods, even the ones
with restarting schemes. Although we have focused on
the parameterization (4) for the hybrid dynamics (H) by
following a trajectory-based analysis, it is not difficult to see
that other fast methods, whether continuous- or discrete-time,
with either time- or state-dependent restarting schemes, can
be brought to a hybrid formulation. More importantly, the
authors believe that the fast methods in the literature that are
already accompanied with Lyapunov functions are extremely
suitable for this framework. As a result, one is then enabled
to employ other specifically-tailored tools for hybrid systems
in control theory and can hopefully provide a more unified
form of analysis and interpretation for such methods.

In regard to the practical aspect of the user-defined rate α,
one should bear in mind that although the continuous-time
analysis in this paper does not warrant any restriction on α, a
large α does, however, push the inter-jump interval τ toward
zero, see Theorem 3.6. Thus, the impact of a large α is the
possibility of more frequent jumps as the dynamics evolve
in time. Observe that the continuous flow is the part of the
hybrid dynamics that is the main source of speeding up the
rate of convergence in the suboptimality measure. The jump
map is simply a weighted gradient descent. Suppose that one
seeks to discretize the continuous hybrid dynamics with a
large α to attain a discrete-time hybrid control system (i.e.,
an iterative optimization algorithm). A large α may seem
attractive in a continuous-time setting but this choice may
lead to (i) a very small step size for the time discretization
or (ii) frequent activation of the jump map. As a result, one
should take into account other considerations in choosing α.
We refer the reader to [14, Theorem 3.7] for a more detailed
discussion.

IV. NUMERICAL EXAMPLE

In what follows, we present an academic example that
by itself does not warrant the effectiveness of our proposed
method (and in general gradient-based methods) but it serves
as a comparison. Consider the problem (2) with the function
f(x1) = x>1 Qx1 where Q = diag{0.1, 0.2, · · · , 0.5}. It is
straightforward to show that Lf = 2λmax(Q) = 1, µf =
2λmin(Q) = 0.2, and `f = 0 (since f is convex). The hybrid
system (H) with the parameters (4) is simulated for two
sets of parameters given in Table I, namely HD1 and HD2,
which are depicted by the solid blue and dashed black lines
in the figures, respectively. The results are also compared
to Nesterov’s accelerated dynamics (1) with γ(t) = 3

t
employing the “speed restarting” proposed by [23], which
we call NSR and it is depicted by the dash-dotted brown
line in the figures.

Fig. 1 shows that the trajectories generated by the dynam-
ics (H) with the respective parameters HD1 or HD2 possess
faster convergence behavior compared to e−αt

(
f
(
x1(0)

)
−

f∗
)

(depicted by the solid yellow line) validating the claim
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time
0 5 10 15 20 25

10!4

10!2

100

102

Rate
HD1
HD2
NSR

Fig. 1. Rate bound e−αt
(
f
(
x1(0)

)
− f∗

)
, suboptimality decay

f
(
x1(t)

)
− f∗ for the trajectories of the hybrid systems (HD1 and HD2),

and the speed restarting Nesterov’s accelerated scheme (NSR) [23].

time
0 5 10 15 20 25

-2

0

2

4

6

HD1
HD2
NSR

Fig. 2. Control inputs uα
(
x(t)

)
of the hybrid systems (HD1 and HD2), and

the damping coefficient γ(t) for the speed restarting Nesterov’s accelerated
scheme (NSR) [23].

made in Theorem 3.1. Fig. 2 depicts the variation of damping
term in the three cases NSR, HD1, and HD2. Three observa-
tions are due here. First, an exponential rate of convergence
can be attained via a bounded interval for the damping
term; the general form of damping term considered in the
literature is q

t where q is a positive scalar. Second, our
framework allows the damping term to admit negative values
in certain time intervals during which the convergence rate
increases. Third, as the dynamics (H) progress in time, the
inter-jump intervals increase validating the assertion made in
Remark 3.7.

V. CONCLUSIONS AND FUTURE WORKS

A system-theoretic framework was introduced to construct
a class of optimization methods for unconstrained, smooth

TABLE I
HYBRID DYNAMICAL SYSTEM PARAMETERS.

α β umin umax

HD1 0.1 0.25 1.05 24.6
HD2 0.1 0.5 -1.755 12.6

optimization problems satisfying the Polyak–Łojasiewicz in-
equality in continuous time. Our methodology is trajectory-
based and enables achieving a desired, exponential rate of
convergence. There are obvious directions that can be pur-
sued to extend the results in this work, such as constraint sat-
isfaction, parallelization, distributed implementation. How-
ever, we believe that in order to claim practical benefits of
the presented results, for example in large scale problems,
the next necessary step is to provide a discretization method
for the continuous-time hybrid system proposed here, that is
the subject of our current studies.
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