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S U M M A RY

Synchronization of oscillators is an ubiquitous phenomenon that involves mechanical
systems, like pendulum clocks, but also biological systems, like peacemaker cells in
the heart or neural activity in the brain. If we consider biological systems at the
microscale, namely at the scale of cells, we find that processes like locomotion and
fluid transport often exploit synchronization of mechanical oscillators called flagella or
cilia. These oscillators at the microscale are whip-like structures extending from the
cell body. They are present in a number of micro-organisms like sperm cells,
Paramecium or the algae C. reinhardtii. In human, cilia are found in the lungs, the
respiratory tract and the middle ear. Cilia are activated in a coordinated way to
effectively carry out their function, such as draining mucus. The mechanism behind
this cilia coordination is still debated. It is not clear how very simple organisms
lacking any feedback system have developed complex oscillatory patterns involving
coordination among a multitude of cilia or flagella. There is high interest in
understanding the fundamental principles ruling ciliary dynamics, since they would
impact medical and engineering applications. The purpose of this thesis is to
investigate the mechanisms regulating the synchronization of cilia and flagella.

A long standing hypothesis is that synchronization of cilia and flagella is mediated by
mechanical forces transmitted through the fluid, namely hydrodynamic forces. In the
present study, we address this possibility experimentally. We design an experiment in
which we dynamically interact with a micro-organism in real time. We focus our study
on one particular micro-organism, the algae C. reinhardtii. We impose on C. reinhardtii
hydrodynamic forces in the form of a periodic background flow, and we measured how
these forces affect flagellar synchronization.

C. reinhardtii has two flagella that beat continuously together at a frequency of ≈ 53
Hz. Their synchronous beating allows the cells to feed and to propel forward in water.
A peculiar characteristic of the two flagella is that, if isolated, they actually beat at two
different frequencies. In particular, one flagellum named cis- flagellum beats at a
frequency of ≈ 53 Hz, while the other flagellum, the trans- flagellum, beats at ≈ 70 Hz.
However, when the cell is swimming, the two flagella are synchronized and beat at the
frequency of the cis-flagellum. Understanding the mechanisms regulating such
synchronous beating in C. reinhardtii, would broaden the understanding of ciliary
dynamics in general. In fact, an important property of cilia and flagella is that their
molecular structure is highly conserved among different eukaryotic organisms.
Therefore the activation and behaviour of cilia is expected to be similar in different
micro-organisms.

In our experiments on C. reinhardtii, we find that an external periodic hydrodynamic
forcing is able to shift the intrinsic beating frequency of the cell, therefore establishing
that flagellar behaviour can, in fact, be influenced by hydrodynamic interactions.
However, we observe that, even if we impose an hydrodynamic forcing 10 times
stronger than the hydrodynamic forces normally experienced by the cell, we are able
to shift the intrinsic beating frequency of the cell by only few Hertz. Therefore, the
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external hydrodynamic forcing has a relatively weak effect on flagellar beating
frequency. Since the mismatch between the intrinsic frequencies of the two flagella is
on the order of 20 Hz, it is unlikely that the synchrony between flagella would be a
consequence of hydrodynamic interaction forces. These results are confirmed by
numerical simulations in which the flow field around the cell in a typical experiment
is computed.

Given that hydrodynamic interactions do not seem to be the main mechanism
behind flagellar synchronization, we propose another synchronization mechanism
based on intracellular mechanical coupling of flagella. In C. reinhardtii, the two flagella
are mechanically connected inside the cell by a network of structural fibers. We
perform experiments on a mutant (the vfl3), where this fiber structure is impaired. We
neither observe synchronization between the two flagella of vfl3, nor observe
synchronization with an external hydrodynamic forcing. These results suggest that
synchronization between the two flagella is not possible if the intracellular mechanical
connection in not present and, therefore, it seems likely that the mechanism
responsible for flagellar synchronization is based on the intracellular coupling rather
than on the hydrodynamic forces between the flagella.

In addition, our experiments demonstrate a very good analogy between
C. reinhardtii and the prototypical model for an ideal self sustained oscillator.
C. reinhardtii behaves like a self sustained oscillator with a well defined
synchronization range, delimited by an Arnold tongue. Results on multiple cells are
consistent and identify the same synchronization region. In addition, when the forcing
is arrested, C. reinhardtii flagella return to beat at their original frequency within less
than one beating cycle. No permanent alteration of the intrinsic frequency occurs after
imposing an external forcing for up to 10 minutes.

We also perform experiments in which the periodic forcing is stronger on one
flagellum than on the other one and we measure the coupling between the flagella and
the external flow. We observe that a forcing acting more strongly on the cis- flagellum
induces synchronization of the flagella with the forcing while a forcing of same
strength acting more strongly on the trans- flagellum hardly triggers synchronization.
This result confirms the dominant role of the cis- flagellum in controlling the beating
pattern and the dominance in the coupling between flagella of intracellular coupling
over hydrodynamic interaction.

Finally, we investigate the role of hydrodynamic interactions on the antiphase beating
observed in a mutant of C. reinhardtii, the ptx1 mutant. We compute the hydrodynamic
viscous forces imposed by the flow on the flagella and the hydrodynamic interaction
between the flagella. We find the first contribution to be over an order of magnitude
larger than the second one. These results indicate that the antiphase beating mode is
not sustained by hydrodynamic forces between the two flagella, similar to the normal
in-phase beating mode.
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S A M E N VAT T I N G

Synchronisatie van oscillatoren is een wijdverbreid fenomeen dat terug te vinden is in
mechanische systemen, zoals slingerklokken, maar ook in biologische systemen, zoals
pacemaker cellen in het hart of neurale activiteit in de hersenen. Als we biologische
systemen op microschaal bekijken, op de schaal van cellen, vinden we dat processen
als voortbeweging en stromingstransport vaak de synchronisatie van oscillatoren
exploiteren. Om precies te zijn, deze oscillatoren op microschaal zijn zweepachtige
structuren die zich uitstrekken uit het lichaam van de cell en flagella of cilia genoemd
worden. Ze zijn terug te vinden in een aantal micro-organismen, zoals spermacellen,
Paramecium en de algen C. reinhardtii. Bij mensen zijn cilia te vinden in de longen,
luchtwegen en het middenoor. Cilia worden geactiveerd op een gecoördineerde
manier om effectief hun functie uit te voeren, zoals bijvoorbeeld het draineren van
slijm. De mechanismen achter de coördinatie van cilia zijn nog onderwerp van
discussie. Het is niet duidelijk hoe zeer simpele organismen, zonder enig feedback
systeem, complexe oscillatiepatronen kunnen ontwikkelen die coördinatie van een
veelvoud van cilia of flagella omvatten. Er is grote interesse om de fundamentele
principes die de dynamica van cilia bepalen te begrijpen, omdat dat belangrijke impact
kan hebben voor medische en technische toepassingen.

Het doel van deze thesis is te onderzoeken welke mechanismen de synchronisatie
van cilia en flagella reguleren.

Een hypothese is dat synchronisatie van cilia en flagella wordt gemedieerd door
mechanische krachten die door de vloeistof worden overgedragen, namelijk
hydrodynamische krachten. In deze studie bekijken we deze mogelijkheid
experimenteel. We hebben een experiment ontworpen waarin we in realtime
dynamisch reageren op een micro-organisme. We kozen als studie micro-organisme de
algen C. reinhardtii. Op de C. reinhardtii leggen we hydrodynamische krachten op, in de
vorm van een periodieke achtergrondstroom, en we meten hoe die krachten de
flagellarische synchronisatie beïnvloeden. C. reinhardtii heeft twee flagella die continu
samen kloppen met een frequentie van ongeveer 53 Hz. Door hun synchrone slagen
kunnen de cellen voortstuwen in water en voer. Een bijzonder kenmerk van de twee
flagella is dat ze op twee verschillende frequenties slaan wanneer ze worden
geïsoleerd. In het bijzonder slaat één flagellum genaamd cis- flagellum op een
frequentie van ongeveer 53 Hz, terwijl het andere flagellum, het trans- flagellum, op
ongeveer 70 Hz slaat. Wanneer de cel echter zwemt, worden de twee flagella’s
gesynchroniseerd en kloppen ze op de frequentie van de cis-. Het begrijpen van het
mechanisme dat zo’n synchrone slag in C. reinhardtii reguleert, zou het begrip van
ciliaire dynamica in het algemeen vergroten. Een belangrijke eigenschap van cilia en
flagellen is dat hun moleculaire structuur in hoge mate geconserveerd is onder
verschillende eukaryote organismen en daarom wordt verwacht dat de activering en
het gedrag van cilia in verschillende micro-organismen vergelijkbaar zijn.

In onze experimenten op C. reinhardtii vinden we dat een externe hydrodynamische
versterking in staat is om de intrinsieke pulsfrequentie van de cel te verschuiven, wat
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betekent dat flagellaire gedrag wordt beïnvloed door hydrodynamische interacties. We
merken echter op dat zelfs door een hydrodynamische forcing op te leggen die 10
keer sterker is dan de hydrodynamische krachten die normaal door de cel worden
ervaren, we slechts in staat zijn de intrinsieke pulsfrequentie van de cel enkele Hertz te
verschuiven. Daarom heeft de externe hydrodynamische versterking een schaars effect
op de flagellaire frequentie. Aangezien intrinsiek de frequentiemismatch tussen de twee
flagella in de orde van 20 Hz ligt, is het onwaarschijnlijk dat de synchronie tussen
flagella een gevolg is van hydrodynamische interactiekrachten. Deze resultaten worden
bevestigd door numerieke simulaties waarin het stroomveld rond de cel in een typisch
experiment is berekend.

Aangezien hydrodynamische interacties niet het belangrijkste mechanisme lijken te
zijn achter flagellaire synchronisatie, stellen we een ander synchronisatiemechanisme
voor dat gebaseerd is op intracellulaire mechanische koppeling van flagellen. In
C. reinhardtii zijn de twee flagella mechanisch verbonden binnen de cel door een
structuur van vezels. We voerden experimenten uit op een mutant (de vfl3), waar deze
vezelstructuur in verminderd is. We hebben de synchronisatie tussen de twee flagella
in vfl3 nooit waargenomen, ook niet bij het opleggen van een externe
hydrodynamische forcing. Deze resultaten suggereren dat synchronisatie tussen de
twee flagella niet mogelijk is als de intracellulaire mechanische verbinding niet
aanwezig is en het daarom waarschijnlijk lijkt dat het mechanisme dat
verantwoordelijk is voor flagellarische synchronisatie gebaseerd is op de intracellulaire
koppeling in plaats van de hydrodynamische krachten.

Bovendien toonden onze experimenten een zeer goede analogie tussen C. reinhardtii
en een ideale zelfonderhoudende oscillator. C. reinhardtii gedraagt zich als een
zelfonderhoudende oscillator met een goed gedefinieerd synchronisatiebereik dat
wordt begrensd door een Arnold tong. Resultaten op meerdere cellen zijn consistent
en identificeren hetzelfde synchronisatiegebied. Bovendien, wanneer het forceren is
gestopt, keert de frequentie terug naar de oorspronkelijke frequentie binnen één
slagcyclus. Er vindt geen permanente wijziging van de intrinsieke frequentie plaats na
het tot 10 minuten lang opleggen van een externe forcering.

We hebben ook experimenten uitgevoerd waarbij de periodieke versterking sterker
was op één flagellum dan op het andere flagellum, waarbij we de koppeling met de
stroming maten. We hebben waargenomen dat de versterking die sterker op het
cis-flagellum werkt, de synchronisatie van de flagellen met de forceren induceert,
terwijl andersom nauwelijks synchronisatie wordt getriggert. Dit resultaat bevestigt de
dominante rol van de cis- flagellum bij het beheersen van het slagpatroon en de
dominantie van intracellulaire koppeling ten opzichte van hydrodynamische interactie
in de koppeling tussen flagellen.

Ten slotte onderzochten we de rol van hydrodynamische interactie bij het antifase-
kloppen dat wordt waargenomen in een mutant van C. reinhardtii, de ptx1 mutant. We
berekenen de hydrodynamische viskeuze krachten die worden veroorzaakt door de
stroming en de hydrodynamische interactie tussen de flagellen. We vinden dat de eerste
bijdrage een orde van grootte groter is dan de tweede. Deze resultaten geven aan dat
het antifase-kloppen, evenals het normale infase-kloppen, niet wordt ondersteund door
hydrodynamische krachten tussen de twee flagella.
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I N T R O D U C T I O N

1.1 synchronization in nature

The phenomenon that we now call synchronization was observed for the first time by
the Dutch physicist Christiaan Huygens in 1665. In the winter of that year, while
spending some time at home, he observed that two pendulum clocks hanging next to
each other were swinging in perfect synchrony. He was surprised by this event given
the imprecision of clocks at that time. Even if their motion was perturbed by some
interference, the synchrony was restored shortly after. This accidental finding is
recalled nowadays as the first documented investigation about the behaviour of
'coupled oscillators' [1]. But what happened to those pendulum clocks?

As Huygens explained in a letter to his father, since the two clocks were hanging
from the same beam, a weak mechanical coupling was created between them through
the beam. The transmission of imperceptible vibrations allowed the two pendulums to
synchronize their swinging. Since Huygens observation, synchronization has been
observed in physical, chemical and biological systems [2]. In nature, there are many
examples of coupled oscillators. Regarding physiological processes, these include
peacemaker cells in the heart that spontaneously synchronize with each other [3] and
insulin secreting cells in the pancreas. In the brain, synchronized neural activity is
associated both with normal physiological functions such as regulation of the
circadian rhythm (the endogenous 24 hours oscillation in many biological processes),
but also with diseases like schizophrenia, epilepsy or Parkinson's disease [4]. Fireflies
blinking in synchrony at night or crickets chirping in unison are another spectacular
example of synchronization involving a multitude of organisms [5, 6].

The aforementioned examples are synchronization processes at the macroscale.
Synchronization is also observed in nature at the microscale and can involve one or a
multitude of organisms, as discussed in the next paragraph. This thesis originates
from the need to complete current knowledge on synchronization processes at the
microscale.

synchronization at the small scale

Synchronization at the microscale is often observed to mediate processes like
locomotion and fluid transport. Such processes are carried out by a number of
micro-organisms including spermatozoa, bacteria and algae, which have developed
the capability to propel in fluid environment in order to feed [7]. In these
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micro-organisms, synchronization is found in the coordinated activation of whip-like
structures extending from the cell body called flagella or cilia [8]. Synchronization of
cilia and flagella's main purpose is to increase the efficiency in fluid transport. At the
sub-micrometer scale characteristic of cilia and flagella, the viscous damping
overcomes inertia by far. As a consequence, the physical principles ruling the
swimming of a macroscopic organism like a fish or a human do not hold for a
bacterium or a spermatozoon, making the propulsion at the microscale a very
inefficient process. To illustrate this difficulty in motility, G.I. Taylor compares the
motion of a sperm cell in its fluid environment with that of a human who is forced to
swim in a pool filled with honey [9].

Since locomotion at the microscale cannot rely on inertia, micro-organisms
developed particular propulsion strategies to overcome viscous dissipation and
achieve an effective displacement in fluid medium. These strategies involve complex
spatiotemporal organization in the activation and movement of cilia and flagella [10].
As a matter of fact, even if the environment is dominated by viscous dissipation, the
coordinated beating of many cilia produces an effective fluid transport resulting in net
propulsion. The ability of cilia and flagella to spontaneously beat and synchronize
with one another has opened a rich discussion. It is still unclear which physical
mechanisms allow a simple single cellular organism lacking any feedback system to
develop complex oscillatory patterns involving coordination among a multitude of
cilia [11] or among flagella in different cells [12]. A fundamental understanding of
ciliary dynamics is still lacking, and would be of high interest for both medical and
engineering applications [13, 14]. In the medical context, cilia are found in a variety of
human organs and perform important physiological functions. Defects in ciliary
activation are associated with a number of diseases, such as respiratory and cystic
disorders of internal organs, alterations in vision, smell, hearings and infertility [15].

Engineering applications mimicking ciliary mixing properties have allowed the
development of new biomimetic materials able to drive flows at the microscale [13].
Bio-inspired cilia closely resemble biological cilia and have the potential to be
implemented in future biomedical applications [13, 16]. Ongoing investigations also
include micro-robots for targeted drug delivery, minimally invasive medicine [17] and
single cell manipulation [18]. Currently, artificial cilia are activated externally by
magnetic fields but the future ambition is to control cilia internally by exploiting
molecular motors as in the biological version [19].

As we discussed, cilia have an important role in human physiological processes and
engineering applications, therefore have been largely investigated in the last decade to
understand how the synchronous activation is achieved. Shedding light on this issue
motivated the present work, as discussed in the next section.

1.2 aim of the thesis

In order to reproduce the beating patterns and organized activation of cilia, a
thorough understanding of ciliary dynamics is needed. For example, cilia can form a
metachronal wave to transport fluid. An open question is: which physical mechanisms
regulate the transition from the disordered motion of thousand of cilia to the large
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scale synchronous activation pattern? Mechanical interactions are a physical
mechanism that has been suggested to mediate ciliary coordination.

In this thesis we investigate this hypothesis experimentally by mechanically
interacting with flagellated micro-organisms in real time. The results obtained
elucidate the role of mechanical forces in flagellar synchronization and challenge the
actual models on flagellar motility.

1.3 outline of the thesis

The following five chapters of this thesis are divided as follows. Chapter 2 is dedicated
to the background on cilia and flagella synchronization and the relevance of this study
within this research field. Given the current knowledge on cilia synchronization, it is
not clear to which extent mechanical interaction among cilia through the fluid
environment is involved in mediating their coordinated beating. We approach this
problem experimentally and chapter 3 details the experimental setup and the
experimental procedure. Chapter 4 presents the experiments, data analysis and results
linking the behaviour of Chlamydomonas reinhardtii (C. reinhardtii) with that of an ideal
oscillator. Details on the data analysis methodology are presented in this chapter since
custom image processing algorithms are developed to extract the relevant information
from experiments. Chapter 5 addresses in details the mechanism at the base of
flagellar synchronization. Experimental data analysed in this chapter are combined
with numerical flow reconstruction to provide quantitative description of the
mechanical forces involved in flagellar motility. Finally, in chapter 6 we summarize the
relevant findings in this study and provide an outlook for future perspectives on the
investigation of flagellar motility.
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B A C K G R O U N D

The first visualization of spermatozoa and bacteria swimming dates back to 1677. The
Dutch scientist Antoni van Leeuwenhoek developed the first microscope in Delft and
discussed his observations on living creatures at the microscale in the ‘Letter on
Protozoa’ [20]. His pioneering work raised numerous questions on fluid dynamics
associated with the motility of microswimmers. From the second half of the 20th
century, researchers started questioning the physical principles associated with
micro-organism locomotion and proposed several theoretical models [9, 10].

In the last decade, improvements in experimental techniques allowed a more accurate
visualization and characterization of the flow induced by swimming micro-organisms,
resulting in more detailed modelling of the physical principles ruling this phenomenon.
This chapter reviews the literature relevant to our study. After the details about the
structure of cilia and flagella in 2.1, we discuss the state of art of theoretical models
and experiments on microswimmers in 2.2, from G.I. Taylor's early work in 1951 until
nowadays. In section 2.3, we describe the behaviour of C. reinhardtii and the reasons why
it is now considered a model organism for cilia motility. In section 2.4, we highlight the
most recent findings and open questions on the role of mechanical forces in flagellar
synchronization. In section 2.5, we briefly discuss how our study challenges the current
state of art.

2.1 structure and function of cilia and flagella

Living organisms can be classified as Prokaryotes and Eukaryotes. The former are
simple and primitive organisms like bacteria, while the latter have a more complex
internal structure and include animals, plants and fungi [21]. Flagella are present in
both Eukaryotic and Prokaryotic organisms and are exploited for cell motility. These
flagella present very different biomolecular structure between Eukaryotic and
Prokaryotic cells, resulting in different propulsion mechanisms. Prokaryotic flagella
are semi-rigid helical structures rotated at their base by a rotary motor [22]. Instead,
Eukaryotic flagella are active structures displaying multiple bending modes (see figure
2.1).

Eukaryotic cilia and flagella share the same internal structure called ‘9 + 2 axoneme’.
This structure is composed by nine outer microtubule doublets surrounding a central
pair of singlet microtubules [23, 24]. Independently from the organism size or cell type,
the axoneme diameter is widely conserved and measures about 0.25 µm (see inset in
figure 2.2), while it varies significantly in length, from a few microns in cilia to more
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than 2 mm in flagella [25]. As shown in figure 2.2, a doublet is composed by a
complete A tubule with 13 protofilaments and an incomplete B tubule with 10

protofilaments. An inner and an outer row of dynein arms is attached to the A tubule
of each doublet, connected to the B tubule of the neighbouring doublet. The axoneme
deforms because of sliding between microtubule doublets relative to one another. The
active sliding develops all along the axoneme, resulting in bend propagation. The
generation of this movement relies on attachment and release of dynein arms at
different times [26]. The molecular activation of the axoneme leads to different
deformation and stroke patterns between flagella and cilia. A bending pattern is
observed in uniflagellated organisms such as sperm cells (see figure 2.1 (a)) and
consists of wave-like flagellar motion. This pattern is modelled as a sequence of
travelling waves propagating from the flagellar base with increasing amplitude [27].
On the other hand, multi-ciliated organisms and the biflagellated organism
C. reinhardtii display the beating pattern shown in figure 2.1 (b-d), that is modeled as a
two components stroke. These components are a power stroke, in which effective force
is imposed on the surrounding fluid and propulsion is generated, and a recovery
stoke, in which the flagella return to their initial configuration, as shown in figure 2.1
(d). Given the simplicity of the organism, a fundamental question arises regarding the
mechanisms leading to the coherent activation of dynein arms and the generation of
precise self-organized beats [28]. This work does not address the details of the
molecular structure of flagella but focuses on the generation of organized motion of
multiple flagella in a fluid. The physical principles ruling flagella and fluid interaction
are presented in the following section.

2.2 microswimmers hydrodynamics

We now consider how flagella deformations interact with the fluid environment to
generate motility.

2.2.1 the stokes equations

At the macroscopic length scale, an organism, like a fish or a man, swims by pushing
large volumes of water in one direction in order to effectively move in the opposite
one. This propulsion mechanism exploits inertia. Due to the size of the organism, the
stresses imposed on the fluid due to inertia are orders of magnitude larger than the
stresses due to viscous interaction between the swimmer and the fluid. This ratio of
forces is described by the Reynolds number:

Re =
ρLU

µ
, (2.1)

where L is the characteristic length of the body, U is the swimming velocity, ρ is the
fluid density and µ is the fluid dynamic viscosity. In the case of a swimming fish, the
Reynolds number is Re ∼ 103 [10]. However, the swimming of a C. reinhardtii cell at the
microscopic length scale is governed by completely different physical principles. Due
to the small size of the cell (approximately 10 µm), the magnitude of viscous forces
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(b)

(c)

25 μm
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(d)
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Figure 2.1: (a) Sequence displaying synchronization between two cells of bull spermatozoa.
Adapted from [29]. (b) Snapshots of cilia in epithelium of planarian Schmidtea mediterranea
synchronized in a metachronal wave. Adapted from [30]. (c) Frames displaying the breaststroke
synchronization between flagella of the same cell in C. reinhardtii. (d) Flagellar strokes in
C. reinhardtii during one beat cycle. The beating cycle is composed by a power stroke (purple)
and a recovery stroke (blue).

generated in the fluid is typically three orders of magnitude larger than inertial forces,
such that Re ∼ 10−3.

The dynamics of the fluid can be described by the Navier-Stokes equations:

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + µ∇2u, (2.2)

∇ · u = 0, (2.3)
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5 μm

eyespot

cis-

trans-

Figure 2.2: Left The eyespot is a light sensor. The flagellum close to the eyespot is named cis,
the one on the opposite side of the cell body is named trans. Top inset Transmission Electron
Micrography of C. reinhardtii flagella showing one flagellum. Image provided by Da Wei. Bottom
inset Internal structure of the Eukaryotic flagellum [31].

where p is the pressure and u is the velocity field. Given the swimmer length scale L
and the characteristic velocity U, equations 2.2 and 2.3 can be rewritten in
non-dimensional form:

Re
(

∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= −∇∗p∗ +∇∗2u∗, (2.4)

∇∗ · u∗ = 0, (2.5)

where ∇∗ = L∇, u∗ = u/U, p∗ = p/(µU/L) and t∗ = t/(L/U). At the length scale
typical of C. reinhardtii, the left term in equation 2.4 (representing inertial forces) can be
neglected and locomotion is governed by the Stokes equations:

0 = −∇p + µ∇2u, (2.6)

∇ · u = 0. (2.7)

The absence of all inertia terms on the left hand side of Eq. 2.6 results in linearity and
time independence and leads to kinematic reversibility [32].
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The linearity of Stokes equations allows solutions to be found by superposition of
fundamental solutions. This analytical property is exploited by numerical methods,
such as the Boundary Element Method (BEM), which is used in this thesis to compute
flow velocity fields and hydrodynamic forces relevant to flagellated microswimmers
(details in 5.1). A fundamental singular solution in low Reynolds flows is called the
Stokeslet [33]. It represents the flow field generated by a point force perturbation of
strength f. This solution is obtained by solving the Stokes equations for a point force
δ(x)f, where δ(x) is the three-dimensional Dirac-delta function centred at x = 0. Eq.
2.6 then becomes:

0 = −∇p + µ∇2u + δ(x)f. (2.8)

The solution to Eq. 2.7-2.8 yields the Stokeslet, Green's function for the Stokes
equations. The solution for velocity can be written as:

uS(r) =
1

8πµ

(
I
|r| +

rr
|r|3

)
f, (2.9)

where I is the identity matrix and r is the position vector from the origin, assuming
that the point force f is applied at the origin. The flow due to such a point force is long
ranged and decays as 1/r (see Eq. 2.9). The far field approximation of the flow generated
by a sphere translating under the influence of an external force is an application of the
Stokeslet. However, when modelling free swimming micro-organisms, the far field flow
cannot be represented by the Stokeslet, since the swimmer does not impose a net force
on the surrounding fluid. Higher order fundamental solutions can be derived from the
Stokeslet, one derivative of the Stokeslet is the Stokes dipole which decays as 1/r2 [34].
It can be separated in a symmetric part, the stresslet [35], and an anti-symmetric part,
the rotlet. Physically, the stresslet represents stretching of the fluid along the stresslet
principal axes. The rotlet corresponds to the flow due to a point torque. Several far-
fields around microswimmers can be described by superposition of singularities. As an
example, the sperm cell generates a positive force dipole and is therefore called pusher
while the algae C. reinhardtii creates a negative dipole, hence is modelled as a puller [34]
(see section 2.3).

2.2.2 theoretical models for microswimmers

In our study of flagellar synchronization, we also discuss the agreement between
experimental observations and theoretical model. Several models regarding cilia
motility and synchronization are available in the literature. The studies most relevant
to our work are presented in this section and grouped into early pioneering work on
flagella motility, models of propulsion at low Reynolds number, studies on cilia
swimming efficiency and models of cilia synchronization based on hydrodynamic
forces. The dynamics of ciliary synchronization is very complex and involves the
coordination of structures at multiple length scales, from the molecular level to the
continuum of the flow field. Therefore, models need to simplify certain aspects, based
on the specific question addressed [36].
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early works on flagella motility

Early studies of collective swimming date back to the middle of the 20th century. Since,
at low Reynolds numbers viscous forces are larger than inertial forces, how can a small
organism propel itself? This question, first addressed by Sir Geoffrey Taylor in 1951,
initiated the study of the hydrodynamics of microswimmers [9]. To gain insights into
the motion of the sperm flagellum, G.I. Taylor investigated the swimming of thin sheets
immersed in viscous fluid [34]. A few years before, James Gray observed that two sperm
cells in close contact tend to synchronize their flagella [37] (see figure 2.1 (a)). Taylor
investigated the consequence of such synchronization in terms of swimming efficiency.
He observed two adjacent waving sheets and found that, when the waves are in phase,
the viscous dissipation is minimized, resulting in more efficient propulsion.

propulsion at low reynolds number

The problem of characterizing swimming efficiency and the hydrodynamic forces at
the microscale initiated several studies on propulsion at low Reynolds number, based
on the observation of flagellated cells (mostly sperm cells). These models suggested
that an organism swimming at low Reynolds number can propel only by generating
an anisotropic movement. This property is indeed observed in the algae C. reinhardtii
that is the object of this investigation. This phenomenon was named ‘the Scallop
theorem’ by Purcell [10] (see figure 2.3). If a swimmer at low Reynolds number
deforms with a scallop-like time-reversible sequence of shapes, it will not experience a
net displacement. Consequently, the flagella in a microswimmer should undergo
anisotropic non-reciprocal deformations to generate propulsion [34].

From these early intuitions on cilia hydrodynamics, deciphering the physics behind
the activation of those tiny appendages has encouraged the development of many
theoretical models. Overall, two main approaches have emerged on modelling the
ciliary beating dynamics.

the stroke efficiency in cilia

The first approach focuses on the energetics of the ciliary stroke. Ciliary beating is a
two phase mechanism, composed by an effective stroke, in which the cilium moves as
a rod and pushes the fluid, and a recovery stroke, where the cilium folds and returns
to the initial position with low drag motion [38]. This mechanism has been studied
theoretically to show the different rate of work involved in the power and in the
recovery stroke and also to explain how the coordination of many cilia to form a
metachronal wave (shown in figure 2.1(b)), increases the drag efficiency [39, 40]. The
mechanism inducing this metachronal coordination is however largely debated; some
models supporting the necessity to have a strong hydrodynamic coupling between
cilia [41], others suggesting that synchronization can occur independently from the
strength of hydrodynamic coupling [42].
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synchronization through hydrodynamic forces

The second approach focuses on the role of hydrodynamic forces in mediating
synchrony among many cilia. In this group of models, cilia are coarse grained and
represented by spheres. Since in the far field the filament is visualized as a point, the
flow field generated is also considered analogous to the one generated by a moving
sphere [43]. The model by Lenz shows that synchronization can be achieved in arrays
of cilia via hydrodynamic interactions for any beating pattern. This model has been
improved by Niedermayer, Eckhardt and Lenz by treating each cilium as a separate
oscillator generating a certain flow field. The total velocity field is given by the
superposition of the separate flow fields generated by each cilium. As a result,
adjacent cilia interact hydrodynamically and adjust their radius of oscillation to
phase-lock [44]. This model has been extended to a variety of trajectory shapes,
showing that several beating patterns are efficient in inducing synchronization [45–47].
This variety of beating patterns includes also the breaststroke in C. reinhardtii, in which
flagella can be approximated by two spherical beads rotating in antiphase along
circular trajectories [48]. Regarding the ciliary beat representation, the first approach
based on power and recovery strokes is more accurate, however the second approach
provides useful insight into the role of hydrodynamic in cilia synchronization [8].

(a)

Figure 2.3: In absence of inertia the scallop is a non swimmer model.
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2.2.3 experiments on microswimmers

The first observation of micro-organisms swimming dates back to 1677, when Antoni
van Leeuwenhoek developed the first microscope. However, quantitative studies on
biological organisms and in particular on flagellated cells are more recent [20]. Here we
discuss relevant experimental studies on biological and artificial swimmers that present
flagellar and ciliary properties of interest in the context of this thesis.

biological swimmers

Among biological flagellated cells, the sperm cell has largely been investigated. In
1949, Rothschild measured the swimming velocity of bull sperm [49]. More recently,
studies on the collective behaviour of dense sperm cell suspensions have highlighted
that sperm cells are likely to aggregate in vortices. These vortices are arranged in
hexagonal patterns. Transition from random distribution of spermatozoa to hexagonal
clusters is based on the density of the suspension, indicating the primary role played
by hydrodynamic forces in clusters formation [50].

The algae C. reinhardtii is another biological organism widely investigated in the last
decades and it is the organism studied in this thesis. The large body of literature
available for C. reinhardtii is further discussed in section 2.3.

artificial swimmers

Research on micro-motility and synchronization has also focused on artificial
microswimmers. These swimmers represent a good reproduction of the behaviour of
biological ones. Studies on artificial swimmers allow to focus on specific aspects of
flagellar motility, such as flagellar actuation [51] and fluid transport [52]. Apart from
contributing to a better understanding of the behaviour of real flagella and cilia,
artificial swimmers hold promises in bio-robotic applications [53]. In 2005, Dreyfus et
al. created artificial flagella for the first time [54]. Moreover, artificial cilia have been
investigated for microfluidics applications. Examples include cilia embedded with
paramagnetic particles controlled via an external magnetic field [13] or light-actuated
cilia obtained by inkjet printing that bend when exposed to certain light wavelengths
[55]. Also computational studies were performed to characterize the hydrodynamics of
artificial cilia [56]. A recent application of artificial cilia is in the assembly of
micropumps and mixers [52].

The understanding of cilia synchronization mechanisms is another application of
artificial systems of swimmers. Optical tweezers were used to study colloids
interaction. The periodic motion of two beads can be synchronized through
hydrodynamic interactions if they are sufficiently close [57]. Similarly, two chiral
microrotors, actuated by optical tweezers, can be synchronized by hydrodynamic
interactions alone [58]. Carpets of actuated magnetic slender rods were used to study
collective behaviour showing that, while isolated cilia follow circular trajectories at
constant angular speed, the cilia in the carpet do synchronize at constant angular
speed, but with elliptic trajectories [59].
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All these experimental studies on the synchronization of many oscillators address
questions about the collective behaviour of active elements and highlight the
synchronization properties of large ciliary systems. Recently, studies of flagella
synchronization have focused mainly on a system with few biological flagella: the
algae C. reinhardtii. This unicellular organism constitutes an excellent model organism
for synchronization studies, as discussed in 2.3 [8, 36].

2.3 c . reinhardtii

One organism that has been of particular interest for motility studies and flagellar
hydrodynamics is the the unicellular algae C. reinhardtii, which is also object of the
present study. The structure of cilia and flagella is highly conserved within eukaryotes
[60]. Their properties and functioning are common to a variety of organisms.
C. reinhardtii is widely used in studies of flagellar dynamics as it is simple to grow and
visualize. Furthermore, a wide variety of mutants is available, allowing to investigate
cell properties related to motility, phototaxis, and photosynthesis.

structure and function of c . reinhardtii

C. reinhardtii is a unicellular species in the family of the volvocine green algae, as
shown in figure 2.4. The cell body has an oval shape with a major axis of
approximately 10 µm. At the anterior edge of the body grow two flagella, 12 µm long
and capable of beating in synchrony for long periods of time [61]. The two flagella,
named cis-flagellum and trans-flagellum, are distinguished according to their
proximity to the eyespot, a light sensor located on the cell body (see figure 2.2 (a)).
During cell division, flagella are retracted in the cell body. Each mother cell is divided
in two daughter cells and the basal bodies, tubular structures that anchor the flagella
to the cell body, duplicate. The trans-flagellum is grown from the mother basal body
(the basal body that was already present before cell division), while the cis-flagellum
originates from the daughter basal body, which is assembled during the division
[62–64]. The two basal bodies are mechanically connected by the distal striated fiber, a
contractile fiber ≈ 200 nm long, shown in figure 2.5 [65, 66]. C. reinhardtii performs
phototaxis, and this process requires light. Therefore the cell usually swims in a helical
path so that the eyespot can sense light in all directions [67].

2.3.1 early studies

Early works on C. reinhardtii motility have highlighted several important aspects and
properties of C. reinhardtii, such as the beating patterns, the response to light changes,
or the intrinsic frequency differences between cis- and trans-flagellum. Furthermore,
these early studies are at the origin of recent modelling based on non-linear oscillator
theory. The synchronous beating of flagella is called breaststroke, as it is reminiscent of
the breaststroke swimming in a human, shown in figure 2.1(c). This movement was first
observed in 1967 by Ringo along with the undulatory beating in which flagella move
with a pattern very similar to the sperm cell waveform, shown in figure 2.6(b) [69].
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Figure 2.4: Family of the volvocine green algae to which Chlamydomonas reinhardtii belongs.
Adapted from [68].

Distal Fiber

Basal 

Body

Figure 2.5: Longitudinal section of C. reinhardtii by electron micrography. Adapted from [66].

Rüffer and Nultsch performed the first high speed visualization on C. reinhardtii. They
recorded freely swimming cells at up to 500 fps and tracked the flagellar waveforms of
consecutive beats and the motion of the cell. They observed that flagella beat together at
a frequency of f0 = 40− 64 Hz, and the swimming velocity U0 varies between 100 and
200 µm.s−1. Furthermore, the cell swims along a helical path and, every 30− 36 beats,
a complete rotation is achieved, suggesting that the flagellar beating and position is not
planar but 3-dimensional, causing this rotation [61]. Kamiya and Hasegawa found that,
intrinsically, the trans-flagellum beats at frequency 30% higher than the cis-flagellum,
although in normal conditions the two flagella beat together at the frequency of the cis-.
Furthermore, they suggested that the dominance of cis- or trans-flagellum depends on
calcium concentration [70, 71].

The flagellar photoresponse has been investigated by performing cinematography
on a cell held with a micro-pipette and applying light changes. When subjected to a
sudden increase in light, 40% of cells have a transient decrease in beating frequency
for 10-20 beats, while the other cells display a slight increase in frequency that is
sustained for a longer time than the decrease. This frequency change is accompanied
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by a change in beating pattern [72, 73] that is later defined as slip [74], shown in figure
2.6 (a). Investigation on phototactic behaviours have reported the existence of other
beat patterns such as the shock response, shown in figure 2.6(b). This phenomenon is
triggered by a sudden exposure to high light intensities. It consists of a switch to an
undulatory beating followed by a change in swimming direction and often also a
tumble or circle. After the shock response, the beating frequency slows down. It also
happens that one flagellum or both become temporarily inactivated.

motility patterns

To summarize, three beating patterns have been observed in the wild-type (wt) strain of
C. reinhardtii: synchronous beating, asynchronous beating, and undulatory beating [75].
The breaststroke is composed of a power stroke, where flagella impose a higher force
on the fluid and the cell propels in direction opposite to flagella displacement, and of a
recovery stroke in which flagella are folded along the cell body to minimize drag (see
figure 2.1(d)) [34]. During breaststroke, both flagella beat at the same frequency in the
range f0=45-60 Hz [61]. The asynchronous beating is made of slips (shown in figure
2.6(a)). A slip is a sudden interruption of frequency locking between the flagella, where
the trans-flagellum beats at a frequency that is 30% higher than the cis-flagellum [71].
It causes a rotation of the cell body[76] and has been suggested to be at the origin of
sudden changes in swimming direction [61, 74]. At the origin of a slip, there is possibly
a differential response of the two flagella to modifications in calcium levels inside the
cell [60]. The cis-flagellum seems dominant at low calcium concentration (less than 10−8

M), while the trans-flagellum seems to prevail at higher calcium levels (10−7 − 10−6 M)
[70, 77]. The third type of beating pattern observed in C. reinhardtii is the undulatory
beating, shown in figure 2.6(b) [78]. This pattern resembles the sperm cell's waveform
and results in the cell swimming in the direction opposite to that of the breaststroke.
This behaviour is also called shock response and can be triggered by a sudden light flash
[79]. It is suggested to happen as consequence of a sudden influx of calcium ions in the
flagella. After the shock response is initiated, calcium in excess is gradually expelled
by the flagella. While the switch to undulatory beating is simultaneous in both flagella,
the recovery of the breaststroke takes a different time for each of them and is usually
faster in the cis-flagellum [79].

mutants

The study of mutants yields important insights into the properties of an organism [80].
A rich variety of C. reinhardtii mutants is available and many of them have mutations
that affect motility. We only discuss two types of mutants that are relevant to our study.
The mutant vfl3 has defects in the distal striated fiber. The role of the striated fibers in
regulating motility remains unclear. However, these fibers are present in most ciliated
cells, including the cilia in sensory organs [21]. Possible functions of these fibers
include coordination of flagellar movement, strong anchoring and proper positioning
of the basal body [81, 82]. The beating pattern in vfl3 is different than in wild-type (wt).
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(a)

(b)

Figure 2.6: (a) Snapshots showing a slip in wild-type (wt). (b)Sequence showing the undulatory
beating in wild-type.

Flagella do not perform breaststroke and do not synchronize with each other (see
figure 2.7(a)).

Another mutant investigated is ptx1. It does not have known structural defects as for
vfl3, but shows anomalous phototaxis [61, 77, 83], and performs a peculiar beating
pattern, later referred to as antiphase (AP) [83]. Ptx1 seems to lack the differential
response of the two flagella to calcium that mediates phototaxis. Therefore, the two
flagella are suggested to respond to calcium variations in analogous way and not
oppositely as in wt, with consequences on the beating pattern. In this mutant, two
synchronization modes are observed: an in-phase (IP) mode identical to the
synchronous breaststroke in wt and an antiphase (AP) synchronization mode in which
the two flagella beat at higher frequency, and one flagellum performs the power stroke,
while the other one performs the recovery stroke (see figure 2.7 (b)).

2.3.2 recent developments on motility

Thanks to a recent development in visualization tools, in particular high speed digital
recording and image processing, quantitative insight on flagellar behaviour became
apparent [84]. New biophysical studies on flagellar synchronization have focused on
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Figure 2.7: (a) Comparison between beating pattern in wild-type (wt)(top) and vfl3 mutant
(bottom). (b) Ptx1 mutant during in-phase (IP) beating (top) and during anti-phase (AP) beating
(bottom).

the green algae C. reinhardtii. These studies have provided insight into the flow field
generated by the algae swimming and the synchronization between flagella.

In our study, we focus on interflagellar synchronization and we also characterize
the flow field in experiments with C. reinhardtii held fixed at the tip of a micropipette.
Therefore, we discuss in this section the state of the art on velocity field computation in
C. reinhardtii. The findings on synchronization between flagella are discussed in 2.4.

The velocity field around a swimming flagellated organism has been characterized
experimentally for organisms like the sperm cell [85], the algae C. reinhardtii [86, 87],
and the algae Volvox carteri [86]. Volvox carteri is a multicellular species in the volvocine
algae (see figure 2.4), having a radius of about ≈ 200 µm, which propels thanks to
about 103 Chlamydomonas-like cells located on its surface [88]. The flow field around
C. reinhardtii freely swimming in solution has been measured [86, 87]. We are interested
in the flow field generated by a single C. reinhardtii cell. This flow field is quantified
numerically from our experimental data in section 5.2.

For C. reinhardtii, the puller-stresslet representation holds only in the far-field, at a
distance & 7R (with R the cell radius of about 5 µm) where the flow velocity is
. 1 µm.s−1 [86]. In proximity of the cell, the flow is well described by a three-Stokeslet
model, with one source corresponding to the cell body, and two located at the average
position of the flagella [86]. The full velocity field around a swimming C. reinhardtii
cell has also been characterized and the mechanical power dissipated by C. reinhardtii
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computed [87]. The flagellar motion, and hence flow field generated by flagella, is
mainly planar with small three dimensional components. The velocity field measured
in [87] is more than 4 times larger than predictive models of the mean velocity field.

2.4 do hydrodynamic forces mediate flagellar

synchronization?

In recent years, many studies have looked into the role of hydrodynamic forces in
flagellar synchronization. Several theoretical studies have suggested that groups of cilia
can be entrained by hydrodynamic interactions [44, 45, 89, 90] (see section 2.2.2). In 2009,
Polin et al. [74] characterized the synchronization and incidence of slips in a single
cell held at the tip of a micropipette. Flagella were modelled as two self-sustained
oscillators with different intrinsic frequencies. During breaststroke, these oscillators are
coupled together in phase at the frequency of the cis-flagellum [74, 91]. Estimation of the
coupling strength (ε) between the flagella was found to be in good agreement with the
idealized flagellar model from Niedermayer [44], hinting at the fact that hydrodynamic
coupling is a major contribution to flagella synchronization [74]. Additional work by
Goldstein et al. [91] addressed the dependence of flagellar coupling on their length, as
predicted in Niedermayer's model [44].

Synchronization was investigated during flagella regrowth following deflagellation
induced by a mechanical damage [60, 91]. This study brought new insights on the
mechanism leading to synchronization. The coupling strength ε between the flagella
was found to scale with the flagellar length, and the scaling is consistent with
Niedermayer's model [92]. The aforementioned studies reported in the literature
suggest that flagellar synchronization is mediated by hydrodynamic forces. Our study
is motivated by the need to quantify those forces and their role in flagellar
synchronization. In very recent years, Brumley et al. [12] investigated whether flagella
could synchronize through hydrodynamic interactions only. Two Volvox somatic cells,
each with one flagellum, were captured with two micropipettes. When flagella are
close enough, phase locking occurs, and the coupling strength ε scales inversely with
the distance between the two cells. These results are in agreement with Niedermayer's
model. Namely, when the power strokes are parallel, flagella synchronize in phase, as
it happens in cilia, while when the power strokes are in opposite direction, flagella
synchronize in antiphase, as in C. reinhardtii. This study provides experimental
evidence that hydrodynamic interactions alone can induce phase locking of otherwise
uncoupled flagella. It must be noted that the intrinsic frequency mismatch between
Volvox carteri somatic cells is about 10%, hence much smaller than in C. reinhardtii.

The work discussed so far highlights the putative role played by hydrodynamic
interactions in the mediation of flagellar synchronization. However, it has been long
discussed that hydrodynamic interaction between the flagella is not necessary to
achieve synchronization. Early work from Ringo [69] combined observation of motile
cells with microscope imaging of the flagellar apparatus, and hypothesised that the
distal fibers could play a role in flagellar coupling. Further observations that isolated
cell apparatus of C. reinhardtii can perform breaststroke like normal cells, suggest that
flagellar coordination is mediated internally to the flagellar apparatus and not due to
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hydrodynamic interactions [93]. More recently, Leptos et al. [83] studied the mutant
ptx1 by high speed visualization. Observations of the AP beating mode in ptx1
required a re-visitation of the elastohydrodynamic model, and suggested that AP
beating is the expected coupling mechanism predicted by Niedermayer's model.
According to the model, the AP coupling observed in cilia is sustained by
hydrodynamic interactions. As a consequence, Leptos et al. [83] suggested that the AP
synchronization in C. reinhardtii is sustained by hydrodynamic interaction forces, while
C. reinhardtii breaststroke is not.

Other studies by Friedrich et al. [48] and Geyer et al. [76] have challenged the view
that flagellar synchronization is mediated by hydrodynamic interactions. In this model
for C. reinhardtii swimming, flagellar synchronization is obtained through
hydrodynamic friction forces instead of hydrodynamic interactions [48, 76, 94].
According to this model, yawing of the cell body during swimming is due to flagella
beating. If flagella beat in phase, the cell swims straight, but when flagella lose
synchrony the imbalance in the torque imposed by left and right flagella is
compensated by the rotation of the cell [48, 76]. The model shows that hydrodynamic
interaction forces between the two flagella are negligible with respect to the forces due
to the cell yawing. The main conclusion of this work is that synchronization observed
in C. reinhardtii is a direct consequence of the cell's rocking motion rather than of the
hydrodynamic interactions between flagella. A limitation of this work is that it does
not account for the synchronization observed in cells held at the tip of a micropipette,
in which yawing is not possible.

Despite the fact that the extent to which hydrodynamic interactions influence flagellar
synchronization remains unclear, there is a consensus that hydrodynamic forces do
affect synchronization. Our study quantifies the extent of the role of hydrodynamic
forces in C. reinhardtii motility.

2.5 scientific approach

This thesis work is originally motivated by the need to shed light on the dominant
synchronization mechanism in cilia motility. As discussed above, several studies
support the hypothesis that hydrodynamic interactions are at the origin of
synchronization. Does this result imply that hydrodynamic interactions are the
mechanism behind cilia synchronization or should other contributions be considered?
As a model organism for our investigation we chose the algae C. reinhardtii. Then, we
addressed the following questions. In C. reinhardtii, do flagella synchronize via
hydrodynamic interactions [91], or via yawing motion of the organism [76], or via
mechanical stresses directly transmitted between the flagella through the basal bodies
[83]? Is it possible to actively control flagellar beating with an external periodic
oscillator? Early work on starfish sperm cells showed that it was possible to entrain the
flagellar beating frequency by vibrating a microneedle close to the flagellar base. This
is the first example of coupling between flagella and an external periodic oscillator
[95]. A sperm cell held at the tip of a micropipette was rhythmically vibrated, and the
cell frequency synchronized with the pipette vibration [96, 97]. Recently, mode-locking
of the hair cells has been investigated by attaching an elastic glass fiber to a
stereociliary bundle. A periodic sinusoidal displacement was imposed to the fiber to
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reproduce the mechanical stimulation imposed on the hair cells by sound in vivo. In
absence of any stimulation, the ciliary bundle displays spontaneous anharmonic noisy
oscillations. When the elastic fiber is attached and kept still, the oscillation becomes
more regular. Subsequently, a weak stimulus at increasing frequency is imposed on the
fiber and complete mode locking is observed for several periods in proximity of the
characteristic frequency of the hair cell(≈ 20 Hz) [98]. All these studies highlight that
flagella and cilia show some properties of ideal oscillators and respond to external
mechanical forcing. Despite the extensive research available on C. reinhardtii, no
evidence is available on the influence of external oscillatory perturbations on the
motility of this organism.

We developed an experimental method that allows to dynamically interact with
micro-organisms in real time. This is performed by imposing controlled mechanical
forces on the organism at the relevant length and time scales and within the relevant
force range. We investigate synchronization of flagella in C. reinhardtii with an external
periodic forcing in the form of a periodic background uniform flow. The flow mimics
the hydrodynamic forces experienced by a cell during swimming (details are
discussed in 4.1). Our results challenge the present understanding of flagellar motility
and set the ground for more accurate theoretical modelling of the collective dynamics
in active biological systems.
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E X P E R I M E N TA L M E T H O D O L O G Y A N D D ATA
A N A LY S I S

We want to address to what extent hydrodynamic forces are involved in flagellar
synchronization in C. reinhardtii. For this purpose, we developed a custom made
experimental setup that allows us to impose a periodic hydrodynamic forcing on a
single cell. This forcing of controlled frequency and amplitude mimics the background
flow generated by a freely swimming cell. The possibility of the cell to couple with this
external flow yields insights into the role of hydrodynamic forces in mediating
flagellar synchronization. In this chapter, we discuss in details the experimental setup
along with the experimental methodology. In section 3.1 we provide an accurate
description of the cell growth and monitoring procedure. In section 3.2 we describe all
the setup components, including the necessary calibration tests. In section 3.3 we
explain the experimental procedure and image acquisition.

3.1 cell culture

Our study focuses on the behaviour of C. reinhardtii, a model organism for studies on
synchronization and motility [99]. Established growth protocols have been followed for
cell culture. Quiescent cells are kept in solid agar slants (see figure 3.1) under constant
light with low intensity equivalent to ≈ 30 µE1.m−2.s−1. Cells are re-streaked monthly
on fresh agar to prevent ageing of the slants [101]. Cell cultures are initiated in liquid
medium by dispersing a sample of quiescent cells from the agar into a flask containing
cell growth medium. The flask is a 250 ml Erlenmeyer containing 100 ml of medium.
In this study, we have two different growth media: Tris-minimal medium [60] for wt
(strain CC125) and ptx1 (strain CC2894), and TAP medium for vfl3 (strain CC1686) [60].

We use two growth conditions in our study: phototrophic and photoheterotrophic.
Under phototrophic conditions, cell metabolism depends entirely on light. Cells reduce
carbon dioxide into nutrients (glucose) through photosynthesis. In photoheterotrophic
conditions, cells can grow and divide also in absence of light, thanks to an organic
carbon source present in the medium.

In Tris-minimal medium, the cells grow fully phototrophically. Under these
conditions, CO2 bubbling in the flask is needed to facilitate photosynthesis. In TAP
medium, on the other hand, the growth is photoheterotrophic. Under
photoheterotrophic conditions, acetic acid is present in solution as carbon source, and
CO2 bubbling is not necessary. In both growth media, we added air bubbling with a

1 An Einstein is defined as a mole of photons in studies of photosynthesis [100].

21
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(a) (b) (c)

Figure 3.1: (a) Tube containing agar slant on which are conserved quiescent cells. (b) 250 ml
Erlenmeyer flask containing a cell culture. A silicone tube allows air bubbling into the solution.
Air is filtered with sterile syringe filter (Whatman Puradisc, pore size 0.2 µm). The inlet is closed
to prevent contamination by a cotton foam covered by aluminium foil. (c) Custom-made growth
chamber with three light bulbs (Philips Green Power LED flowering dr/w).

commercial aquarium pump to facilitate mixing in the suspension. Given the small
volume of medium in the flask, bubbling air provides an amount of CO2 (5%) that is
sufficient for the phototrophic growth. The advantage of growing cells in phototrophic
conditions is that they tend to synchronize their division, and there is less variance in
cells size within one culture [60]. Therefore, phototrophic growth conditions using
Tris-minimal medium are favoured in studies of photosynthesis [102] and motility, as
flagellar beating is overall more consistent with less variance in the intrinsic beating
frequency of the cells [60]. For vfl3, the growth in Tris-minimal medium is almost three
times slower than for wt. For this reason, vfl3 are grown in TAP medium.

All cells transfers and handling are done in a sterile laminar flow hood to avoid
bacterial contamination. Before starting a new culture, empty flasks were autoclaved
with a silicon tube inside and a cotton foam with aluminium foil placed on top of
the flask inlet. After sterilization, the medium is introduced in the Erlenmeyer flask
under the hood, and a sterile syringe air filter (Whatman Puradisc, pore size 0.2 µm)
is placed at the end of the tube, connected to the air pump, as shown in figure 3.1(b).
The temperature in the growth chamber is monitored and regulated at 25 ◦C. The light
is provided by three light bulbs (Philips Green Power LED flowering dr/w). For both
growth conditions, the cells are subject to light:dark (14 : 10 hours) cycles with light
intensity of 230 µE.m−2.s−1.

The growth of wt cells in Tris-minimal medium has been monitored as shown in
figure 3.2. Cells were counted with a hemocytometer (Neubauer Chamber, Marienfeld).
Given that cells of C. reinhardtii are swimming, in order to count them, 100 µl of iodine
solution was mixed with 900 µl of cell suspension, and a few µl were injected by the
capillarity effect in the hemocytometer with a coverslip on top. For each single
experiment, cells were harvested when the culture reached a cell density of 106

cells.ml−1, corresponding to the midlog phase in the growth curve [91]. This
concentration is achieved the fourth day after the cells are suspended from solid agar
into fresh medium.
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Figure 3.2: Growth curve for two cultures of wt C. reinhardtii cells in Tris-minimal medium. After
four days (96 hours), cells reach the midlog phase, and they are harvested for the experiment.

3.2 the experimental setup

The goal in our experiments is to impose a controlled oscillatory flow of known velocity
and frequency on a single C. reinhardtii cell, corresponding to a periodic forcing. During
each experiment, the cell behaviour is recorded at high frame rate. To this purpose, we
implemented an experimental setup (see figure 3.3), composed as follows:

(a) Custom-made flow chamber.

(b) Inverted microscope (Nikon Eclipse Ti-U) with a 60× water-immersion objective.

(c) Piezoelectric stage and controller (Nano-Drive, Mad City Labs).

(d) Micropipette (Inner diameter 2 µm, Thin-Wall, without filament, World Precision
Instruments).

(e) Micromanipulator (SYS-HS6, World Precision Instruments).

(f) sCMOS camera (PCO.edge 5.5).

(g) LED light.

3.2.1 flow chamber fabrication and characterization

The flow chamber is custom-made by cutting a semi-circular shape of 15 mm diameter
out of a 1.5 mm thick plexiglass microscope slide, as shown in fig 3.5(a). The top and
bottom free surfaces were sealed with glass coverslips, leaving a 15mm × 1.5mm
rectangular opening on one side. Through this opening, the chamber is filled
completely with cell suspension. During a typical experiment, a micropipette is
inserted in the chamber, and one cell is suctioned, as explained in details in 3.3.
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Figure 3.3: Photographs of the experimental setup highlight the different components: flow
chamber (a), microscope (b), piezoelectric stage(c), micropipette (d), micromanipulator (e),
camera (f) and LED light (g).
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Figure 3.4: (a) Sketch of the experimental setup. (b) Sketch representing directions of the periodic
background flow. Axial flow is oriented parallel to the pipette axis (θ = 0), cross flow is
perpendicular to the pipette axis (θ = π/2).
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3.2.2 stage and flow calibration

The oscillatory flow around the cell is generated by imposing a displacement to the
flow chamber that in turn creates a bulk motion of the cell suspension. This results
in a uniform relative motion between the stationary pipette holding a cell and the
surrounding fluid. The movement of the chamber is achieved by placing the chamber
on a piezoelectric stage and by imposing to the stage a periodic motion of amplitude
AF and frequency fF. Details on the stage displacement can be found in Appendix A.

The stage motion generates a periodic background flow in the chamber of velocity
UF(t) = ±2AF fF. To characterize the flow in the chamber, we measured the flow
velocity at different heights z inside the chamber, by imposing a flow parallel to the
pipette axis (named axial flow) with frequency fF = 53 Hz and amplitude AF = 10 µm,
which corresponds to a flow velocity UF(t) = 1060 µm.s−1. We monitored the
displacement of a glass bead of 2 µm diameter, as shown in figure 3.5(d). The flow
chamber is visualized by fixing the piezoelectric stage on top of an inverted
microscope with a 60× water-immersion objective. A high speed camera is connected
to the microscope to record each experiment. Figure 3.5(e) represents the average
amplitude AR of the bead motion measured in the laboratory reference frame as a
function of z (red dots). At the bottom of the chamber, the bead is stuck to the surface,
and the amplitude of the motion directly corresponds to the amplitude of the piezo
motion A0. When moving upward inside the chamber, we find that AR decreases. This
is due to deformation of the free air/water interface that is accelerated by the stage
motion. Pinning the free interface, to inhibit surface deformation, suppresses any flow
inside the chamber. We pinned the surface by placing a layer of tape on the bottom
coverslip, as shown in figure 3.5(b). We found that this modification is sufficient to
obtain a bulk flow. As shown in figure 3.5(e)(black dots), for a pinned contact line, the
displacement of a bead in the bulk follows the displacements of the piezo and
AR = A0.

However, when imposing a flow perpendicular to the pipette axis (named cross flow),
deformation of the free air/water interface is still present (red dots in figure 3.5(f)). This
happens because the flow direction is parallel to the open side of the chamber and
the high shear stresses imposed on the free surface of the flow deform the air/water
interface. This issue was overcome by designing a flow chamber with a smaller opening,
shown in figure 3.5(c). In this chamber, the free surface of the flow is only 5 mm × 1.5
mm large; hence, surface deformation is very small, as highlighted by the average bead
displacement (see black dots in figure 3.5(f)).

The range of motion of the piezoelectric stage is 0 to 100 µm in 3 directions, and the
frequency of motion is 0− 100 Hz. In our experiments we impose planar stage motion
(x and y directions), since, considering the analogy between the oscillatory flow and
the flow generated by flagellar beating, the latter is mainly planar with small three
dimensional components [87]. We are interested in flow frequencies of 40 Hz to 80 Hz,
since the two flagella beat at 53 Hz and 70 Hz, while we impose velocities in the range
of 100 µm to 1600 µm, having in mind that the free swimming velocity of a cell is
≈ 100 µm.s−1 [60]. At such high speed and frequency of motion, the behaviour of the
stage is highly non-linear, and the piezoelectric stage movement can no longer follow
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accurately the movement imposed by LabView. Therefore, we need to perform separate
experiments to directly calibrate the response of the stage, discussed in Appendix A.
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Figure 3.5: (a) Sketch of the flow chamber with large opening. (b) Picture showing the air-water
interface pinned by a layer of tape (green). (c) Sketch of the flow chamber with narrow opening.
(d) Two frames taken during piezostage calibration show the displacement of a glass bead sticking
to the bottom of the flow chamber. (e) Calibration tests of the amplitude of displacement AR
at different heights in the chamber z. The amplitude of displacement at the bottom of the
flow chamber is A0. The imposed background flow is axial flow with frequency fF = 53 Hz
and amplitude AF = 10 µm. The red dots represent the flow chamber with large opening and
unpinned air-water interface. The black dots represent the same flow chamber, but with pinned
air-water interface. Error bars represent variation in the measurement. (f) Displacement of a bead
during cross flow with frequency fF = 53 Hz and amplitude AF = 10 µm. This shows that, for
this flow direction, pinning the air-water interface is not sufficient to avoid diffusion effects (red
dots). This necessitates a flow chamber with narrower air-water interface (black dots).

In our setup, the camera is controlled by the software Camware, which allows real-
time visualization and image acquisition, while the piezoelectric stage is controlled
with LabView. The time resolution of Labview stage controller is limited by the USB
connection with the computer that has a fluctuating latency of few milliseconds. This
uncertainty in the measurement does not allow an accurate assessment of the flagellar
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beating frequency, as one beating cycle in C. reinhardtii lasts approximately 20 ms. To
accurately determine the time at which the motion of the flow starts and stops, we
directly extract the stage position from the stage controller output signal. In this way,
we avoid the latency due to the USB connection. This output position signal needs to
be combined during post-processing with the information on the flagellar frequency, in
order to relate the flagellar beating cycle to the flow velocity and direction. Therefore,
the stage position signal from the controller is connected (via the Arduino interface) to
a LED light that is detected by the camera and is visible in the video. When the stage
is activated, the LED emits a light flash lasting 5 ms, and it emits a second flash when
the stage is stopped. These flashes are clearly visible in the video recording and, during
post-processing, information about the flash activation P(t) is combined with the stage
motion signal X(t) (as shown in figure 3.6). The LED activation has been calibrated by
recording the motion of a bead attached to the chamber.

2.32 2.34 2.36 2.38 2.4 2.42 2.44

Time (s)

2 4 6 8 10

Time (s)5ms

9.15 9.2 9.25 9.3 9.35

Time (s)

X(t)

P(t)

112ms

Figure 3.6: Signal of the stage displacement in time X(t) (blue line) and signal of the LED
activation P(t) (red line), obtained after processing the video recording. Left inset shows the
section in time when the stage is activated, the delay between stage start movement and light
pulse is 5± 1 ms. Right inset shows a section of the signals when the stage is arrested. After
112± 1 ms from the last peak in the stage displacement, the second light pulse occurs.

Figure 3.6 shows the signal of the bead displacement (blue) and the LED signal (red).
There is a constant 5 ± 1 ms delay between the activation of the stage and the start
of the light flash. This time is necessary to the algorithm in Arduino to detect the
initial displacement. The algorithm considers the piezoelectric stage to stop when its
position remains constant for 80 ms, and a second flash is emitted by the LED. The time
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between the last peak in X(t) and the second LED pulse is 112± 1 ms. The accuracy
in the LED stage detection is 1.1 ms, corresponding to 5% of the cell beating cycle.
This custom made detection procedure increases our accuracy in the flagellar frequency
measurement, as it bypasses the fluctuating latency in stage motion detection caused by
the USB connection. The LED must be clearly visible in the video, but cannot directly
illuminate the flow chamber. Therefore it is placed underneath the stage. As a matter of
fact, cells must receive a controlled amount of light during the experiment, otherwise
their motility and functioning are affected (the shock response was discussed in Chapter
2). For this reason, we record the motion of flagella under bright field illumination of
light intensity 160 µE.m−2.s−1 so the cells are exposed to a lower light intensity than in
the growth chamber. We use a sCMOS camera that is characterized by a high signal to
noise ratio and high dynamic range, allowing to record at 800 frames per second (fps)
with moderate light exposure.
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Figure 3.7: Pipette tip vibration as function of the forcing amplitude AF. For AF & 5 µm, pipette
tip vibration for fF = 45− 49 Hz becomes significant (≈ 1 µm).

3.3 experiment and preliminary image processing

To prepare the setup for a typical experiment, a diluted cell suspension is inserted in the
flow chamber. Subsequently, the chamber is mounted on top of the stage, and a glass
micropipette is inserted in the chamber opening with the aid of the micromanipulator.
Once the pipette is properly positioned inside the chamber, one cell is suctioned at the
tip of the micropipette and oriented to leave the flagella outside of the pipette and the
flagellar beating plane corresponding to the microscope focal plane (see figure 3.4(b)).
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(a)

(b)

Figure 3.8: (a) Snapshots recorded during an experiment without background flow. (b) Snapshots
after preprocessing.

It is crucial not to have direct contact between the micropipette and the chamber walls,
as we want to create a periodic background flow around the cell by varying the stage
position X(t), while keeping the cell fixed in the laboratory frame of reference. In all our
experiments, the cell's intrinsic beating frequency is in the range 52.0± 1.6 Hz. Once
the cell is properly placed and its intrinsic beating frequency has been characterized,
we observe the cell's response to periodic background flows. Between two consecutive
experiments where the cell is subjected to different flow conditions, there is a time
interval of at least one minute with no flow imposed. During this interval, the cell
beating frequency is restored, as discussed in 4.3. The recording of the experiment needs
some preliminary processing before performing image analysis and data extraction.

The first step is the correction for pipette motion. This effect is a consequence of the
oscillatory flow, and it adds unwanted noise to the detection of flagellar position. As
shown in figure 3.7, for flows with amplitudes AF ≥ 5 µm, the pipette motion caused by
the external flow is 0.4± 0.4 µm, with higher vibration for fF = 45− 49 Hz (see figure
3.7). We applied a correction algorithm, for flows with amplitude AF ≥ 5 µm, that
recenters all the frames in a recording in order to have the pipette aligned with respect
to the first frame. Subsequent steps in preprocessing are then performed: application
of a median filter, to reduce noise and enhance edges, and finally subtraction of the
background. During the video acquisition slight image intensity variations occur; a
running average of 10 images is subtracted from each frame to correct for this. Figure
3.8 shows a raw image and an image after preprocessing. Details of the experimental
observations and image processing are discussed in chapter 4.
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C . R E I N H A R D T I I A S A M O D E L S E L F - S U S TA I N E D
O S C I L L AT O R

As discussed in section 2.3, the unicellular organism C. reinhardtii has two flagella
capable of beating in synchrony for long periods of time, allowing the cell to propel in
fluid. The continuous synchronous beating of the two flagella at ≈ 53 Hz resembles
the behaviour of a self sustained oscillator. The dynamics of self-sustained oscillators
have been investigated theoretically, and the mathematical formalism describing
model oscillators is well established [104, 105]. These theoretical models are able to
predict the behaviour of periodic oscillators under the influence of external forces. A
general approach to study the periodic dynamics of an oscillator is to perturb it with
an external forcing [96–98]. We applied this general approach to study the beating of
eukaryotic flagella. On a single cell we imposed periodic hydrodynamic forcing of
controlled frequency and amplitude that reproduces the background flow generated
by a freely swimming cell. The possibility for the cell to couple with this external flow
yields insights into the role of hydrodynamic forces in mediating flagellar
synchronization. Forcing directions both parallel and perpendicular to the pipette axis
have been tested. Moreover, the response time of the organisms to external frequency
perturbations has been investigated. It is conceivable that long and/or strong
mechanical perturbations provoke alterations in the physiology of the cell, which
could persist even after the perturbation ceases. This phenomenon is named
adaptation. We address the possibility of permanent alterations in the physiology and
behaviour of the cell by investigating the influence of long and strong flows on the
intrinsic beating frequency.

Adaptation in C. reinhardtii has never been investigated previously. Therefore after
forcing the intrinsic frequency externally, we also quantify whether the intrinsic
frequency is permanently or temporarily affected by the forcing. Our results are
compared with established models for periodic oscillators, and we characterize how
closely the dynamics of beating flagella agrees with the one of an ideal self-sustained
oscillator. We begin our discussion in section 4.1 by describing the experiments
performed and how we extract the phase dynamics from our experimental data. In
section 4.2, we summarize the main theoretical results for the dynamics of self
sustained oscillators. In section 4.3, we present the obtained results that are relevant to
characterize the behaviour of C. reinhardtii as a self sustained oscillator perturbed by
hydrodynamic forcing. Finally, in section 4.4 we comment on the results and give an

The content of this chapter is published in G. Quaranta, M.-E. Aubin-Tam, and D. Tam, “Hydrodynamics
versus intracellular coupling in the synchronization of eukaryotic flagella,” Physical Review Letters, vol. 115,
no. 23, p. 238 101, 2015.

31
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interpretation of the role of hydrodynamic forces in C. reinhardtii interflagellar
synchronization.

4.1 experiments and data processing

A possible approach to study the dynamics of a self sustained oscillator is the
observation of its behaviour when perturbed by an external periodic forcing.
Experiments on the effect of a non-biological forcing on the beating of flagella and cilia
have been attempted previously [96–98], and results have been discussed in 2.5. In the
present study, we impose a hydrodynamic forcing on C. reinhardtii and measure the
cell response.

4.1.1 the experiments

Here we describe the experiments performed to characterize the dynamics of the
eukaryotic flagella, by using the model organism C. reinhardtii as case study. We use
the experimental setup described in section 3.2. The forcing that we impose is a
periodic oscillatory flow. We tested two flow directions on wt: a flow aligned with the
pipette axis (axial flow), and a flow perpendicular to the pipette axis (cross flow); see
figure 3.4(b) in section 3.2. In both flow directions, we varied forcing velocity UF in the
range 100 − 1200 µm.s−1 and frequency fF = 43 − 77 Hz. Regarding the range of
velocities, we started by imposing 100 µm.s−1 flows to reproduce the forces
experienced by the cell during free swimming (free swimming velocity discussed in
subsection 2.3.1) and then we increased the forcing velocity. The frequency range was
chosen to include the cis- and trans- intrinsic beating frequency (for details the reader
is referred to section 2.3).

All the experiments performed can be grouped into two types:

• Experiment type 1 We investigate the oscillatory steady state. We start the video
acquisition ≈ 5s after starting the forcing, and we stop the video acquisition ≈ 5s
before stopping the forcing. In the post processing, we extract from the video
information about the flagellar beating phase.

• Experiment type 2 We address the transient and in particular how the beating
frequency transitions from the intrinsic frequency f0 towards the forcing
frequency fF and vice-versa. Therefore, we start the video before starting the
forcing and stop the acquisition a few seconds after stopping the forcing. In the
post processing, we extract not only the flagellar dynamics, but also the
piezoelectric stage position in each frame, since in this experiment it is crucial to
know the phase of both the flagella and the piezoelectric stage in each single
video frame.

In the following subsection, we discuss how to extract the phase of flagella, and
compare it with the phase of the external forcing.
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4.1.2 extraction of the phase dynamics

After the preprocessing steps discussed in 3.3, we obtain images like the ones shown
in figure 4.1(a). From these images, we extract the phase dynamics of flagella,
following the method in [74]. The flagellar beating cycle is well described by a single
scalar phase angle φ(t), which is a function of time. At a given time t the phase angle
φ(t) parametrizes the location of the flagella in time along its limit cycle. φ(t) increases
by an angle 2π during each single beat period. We call φcis(t) and φtrans(t) the phase
angles determined separately for the cis- and trans- flagella. The phase angle φ(t) is
extracted from the videos following an approach similar to the one developed by Polin
et al. [74]. Two regions in the image, named ‘interrogation windows’ in [12, 74], are
selected in proximity of the cell body such that the flagellum swipes through the
interrogation window once per beating period; see figure 3.8(a). The average pixel
intensity I(t) in each interrogation window is computed for each frame, and leads to a
pseudo periodic signal, owing to the periodicity of the flagellar motion. Separate
signals are recorded for the cis-flagellum (Icis(t)) and for the trans-flagellum (Itrans(t)).
Larger values in the average pixel intensity Icis;trans(t) indicate the passage of the
flagellum through the interrogation window, while the value of Icis;trans(t) is lower
when the flagellum is not in the interrogation window. Figure 3.8 (b) represents a
typical signal obtained for Icis;trans(t) in our experiments. Each pseudo period delimits
one beating period of the flagella. The beating frequency of flagella can be inferred by
computing the discrete Fourier transform of Icis;trans(t) using the Fast Fourier
Transform (FFT) algorithm [106]. Figure 4.1 (c) shows the Fourier spectrum, a visual
representation of the FFT.

Frequency fluctuations in flagellar beating are visualized by computing the Short-
Time Fourier Transform (STFT) of Icis;trans(t) over short time intervals [107]. A visual
representation of the STFT is the spectrogram, shown in figure 3.8 (d). It represents
the frequency spectrum of Icis;trans(t) as a function of time. Since the intrinsic beating
frequency of C. reinhardtii displays frequency fluctuations, computing the STFT allows
to visualize these changes.

The phase of each flagellum in time φcis;trans(t) can be deduced from the intensity
signal I(t) by computing the Hilbert transform, similarly to [108]. The Hilbert transform
is a linear operation that shifts by π/2 the phase of the negative frequency components
of a signal, while it shifts by −π/2 the phase of the positive frequency components in
the same signal [109].

The Hilbert transform of Icis;trans(t) is computed as:

H = Îcis;trans(t) =
1
π

PV
∫ ∞

−∞

Icis;trans(τ)

t− τ
dτ, (4.1)

The real time signal Icis;trans(t) can be also expressed in the analytical form
ζcis;trans(t) = Icis;trans(t) + i Îcis;trans(t), where the imaginary part is the Hilbert
transform. The instantaneous phase angle φi

cis;trans(t) for each flagellum is then
computed as:

φi
cis;trans(t) = tan−1 Îcis;trans(t)

Icis;trans(t)
, (4.2)
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Figure 4.1: Experiment without background flow to monitor f0. (a) Snapshots after preprocessing
steps. In the right snapshot are sketched the interrogation windows used to extract the flagellar
beating cycle. (b) The flagellar signal Icis;trans represents the average pixel intensity inside the two
interrogation windows. Peaks in the signal indicate the passage of flagella through the window.
(c) Fast Fourier Transform (FFT) of Icis;trans. (d) Spectrogram of Icis displays intrinsic beating
frequency fluctuations in time.

Unwrapping the instantaneous phase angle yields the phase of each flagellum as
a monotonically increasing function of time (φcis;trans(t)). Figure 4.2(a) represents the
instantaneous wrapped phase angle φi

cis;trans(t), computed from the experiment without
forcing and using equation (4.2). Figure 4.2(b) represents the unwrapped flagellar phase
φcis;trans(t) for the same experiment discussed in figure 4.1. We normalize the phase
angle by 2π such that the phase φcis;trans/2π increases by 1 over each flagellum beating
period. Since we are interested in comparing the flagellar phase dynamics with respect
to the external periodic forcing, we consider φ(t) to represent the phase of both beating
flagella. This assumption is made possible by the fact that in our experiments, the
phase dynamics of the two flagella are nearly identical (φcis(t) ≈ φtrans(t)), with few
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interflagellar slips recorded. See Appendix B for a more detailed discussion. We deduce
the time-dependent phase difference ∆(t) between the flagella and the forcing:

∆(t) = φ(t)/2π − φF(t)/2π, (4.3)

where φF(t) denotes the phase of the periodic forcing. In Experiment type 1, the
external periodic forcing has a constant frequency fF. Therefore, the unwrapped phase
of the forcing is φF(t) = 2π fFt. The phase of forcing φF(t)/2π increases linearly by 1
every 1/ fF seconds, since we imposed a flow having a constant frequency. In
Experiment type 2, the forcing is zero at the beginning and at the end of the
experiment, and therefore, we deduce the phase angle φF(t) from the experimental
signal of the stage motion (details in subsection 3.2.2) by computing the Hilbert
transform analogously to the flagella signal.

20
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Figure 4.2: (a) Instantaneous phase angle φi
cis;trans(t) of the two flagella obtained by computing

the Hilbert transform of Icis;trans(t). Inset shows the fluctuations in flagella phase angle, due to the
fluctuations in flagellar beating frequency. (b) Flagella phase obtained by unwrapping φi

cis;trans(t).

4.2 theoretical model

We presented details about the performed experiments in section 4.1 and the
information extracted regarding the flagellar phase. Information about the phase
dynamics allows a comparison between flagella behaviour in C. reinhardtii and a self
sustained oscillator. Mechanical oscillators can be entrained by external forcing [104,
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105], and we explore experimentally this possibility of entraining flagella by a
hydrodynamic forcing. The concepts of non-linear dynamics theory that we adopted to
model the behaviour of C. reinhardtii are summarized in this section. Theoretical
models of C. reinhardtii as a self sustained oscillator have been proposed in several
studies discussing the role of hydrodynamics in inter-flagellar synchronization [48, 74,
75, 83, 91] and are based on the Adler equation [105] presented in 4.2.1. In this thesis,
our focus is not to compare the phase dynamics of the two flagella and model the
synchronization between them as in Polin et al. [74] or Friedrich et al. [48]. Instead, we
are interested in a comparison between the flagella phase dynamics and the one of the
external periodic forcing. In this section, we present the theoretical model applied to
our data to describe the behaviour of a self sustained oscillator synchronized with an
external periodic forcing. We first describe the formulation for the ideal situation in
which there is no external noise perturbing synchrony (subsection 4.2.1). In the next
subsection 4.2.2, we discuss the synchronization of a noisy oscillator, as it better
approximates the actual behaviour of C. reinhardtii captured in our experiments [104].

4.2.1 the synchronization region of an oscillator

We consider an oscillator that in the absence of external forcing has an intrinsic
frequency f0. We impose an external forcing that is periodic and has a frequency of fF.
The difference between the intrinsic frequency and the frequency of forcing is the
frequency detuning ν = fF − f0. The phase dynamics of the system can be modeled
with a first-order Ordinary Differential Equation (ODE) [74, 104, 105] for the phase
difference ∆(t) (introduced in equation 4.3) as:

d∆(t)
dt

= −ν + εQ(∆(t)), (4.4)

with Q a periodic function, and ε the amplitude of the external forcing. Q(∆(t)) has
in each period a maximum qmax and a minimum qmin. For Q(∆(t)) equal to
− sin(2π∆(t)), equation (4.4) is called the Adler equation [105]. The solution to
equation 4.4 depends on the values of ν and ε. We can distinguish 3 cases:

(i) ν < εqmin or ν > εqmax. The ODE (equation 4.4) has no fixed points, see figure
4.3(a,b).

(ii) ν = εqmax;min. For this value of the detuning parameters, fixed points are created
through a saddle-node bifurcation (see figure 4.3(c)) which corresponds to the
transition to synchronization.

(iii) εqmin < ν < εqmax. There is at least a pair of fixed points to equation 4.4. One is
a stable fixed point, while the other one is unstable; see figure 4.3(d-f). The stable
fixed point corresponds to the constant solution to equation 4.4. We call ∆0 the
steady state value of the phase difference ∆(t). In figure 4.3(d), ν is negative and
∆0 is positive. In figure 4.3(f), the opposite situation occurs, since ν is positive and
∆0 is negative. In figure 4.3(e), ν is 0 and the frequency of the external forcing fF
coincides with frequency of the self sustained oscillator f0.
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Figure 4.3: Graphic solutions for equation 4.4. Figures (a) to (f) represent the function −ν+ εQ(∆)
as a function of ∆ for increasing values of ν. (a,b)When fF is outside the synchronization region
(−ν > εqmax), there are no solutions. (c) If fF is at the border of the tongue (−ν = εqmax), a
saddle-node bifurcation is formed. Equation 4.4 has one solution ∆0. (d-f) When fF is inside the
Arnold tongue (−ν < εqmax), at least a pair of stationary solutions exists. ∆0 ranges from positive
in (d) to negative in (f) depending on the frequency detuning −ν.

synchronization region

In figure 4.4(a) we represent the synchronization phase diagram as a function of the
forcing amplitude ε and frequency of oscillation f . There is a range of forcing
frequencies fF, symmetric with respect to f0, in which frequency locking between the
self sustained oscillator and the external forcing occurs. This region has a triangular
shape as shown in figure 4.4(a). Frequencies of oscillation inside this region are within
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the frequency locking range (see figure 4.4(a) points 4, 5, 6). The size of this range
depends on the forcing amplitude ε: the larger the amplitude, the larger the range of
frequency detuning where synchronization occurs. This region in the ( f , ε) domain is
called Arnold tongue. The synchronization region of a given oscillator is characterized
by an Arnold tongue.

phase dynamics

(i) When −ν > εqmax (or −ν < εqmin) we can observe the situation shown in figure
4.3(a,b) and figure 4.4(a,b) points 1, 2. In this case, d∆(t)/dt > 0 (respectively
d∆(t)/dt < 0), and the phase difference between the self sustained oscillator and
the external forcing ∆(t) increases monotonically (see figure 4.3(a,b), point 1,
curve 1). Therefore, there can be no phase locking, and synchronization cannot
be established. In point 2, −ν is smaller as the external forcing frequency is
closer to the intrinsic frequency of the oscillator, and d∆(t)/dt can get closer to
zero (see figure 4.3(a,b) point 2, curve 2). Thought still monotonic, the growth of
∆(t) is not as uniform as in point 1 and ∆(t) is nearly constant for longer periods
of time.

(ii) When −ν ≈ εqmax;min, the oscillator is on the edge of the synchronization region
(see figure 4.3(a,b) point 3, curve 3 and figure 4.4(c)). As shown in figure 4.3(b)
curve 3, the phase ∆(t) alternates between long periods where the phase ∆(t)
is nearly constant and short jumps in phase corresponding to synchrony loss.
During these events, called phase slips, the phase of the oscillator gains or loses
one unit with respect to the forcing.

(iii) When εqmin < −ν < εqmax, for all initial conditions, the solutions to equation 4.4
are attracted to the stable fixed point. After a transient, the phase difference
reaches a constant steady state (see figure 4.3(a,b) points 4-6, curves 4-6 and
figure4.4(d-f)). In this range of ν, the phases of the oscillator and the forcing are
locked. This corresponds to synchronization. ∆(t) in the steady state is always
constant, as shown by curves 4,5,6 in figure 4.3(b).

The constant steady state phase ∆0 corresponds to the stable fixed point of equation
4.4 and is therefore defined by:

0 = −ν− εQ(∆0), (4.5)

The steady state phase difference ∆0 depends on ν. When fF < f0, ∆0 is positive, as
shown in figure 4.3(d), meaning that the self sustained oscillator is phase-locked with
the flow with a certain lag since it is forced to oscillate at a frequency lower than f0.
Instead, if fF > f0, the opposite situation occurs, namely ∆0 is negative because the
flow is forcing the flagella to beat at a higher frequency, as sketched in figure 4.3(f) [104,
110].
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The transient and its duration strongly depend on the initial phase difference at
the time the external forcing is first activated. One can get insights into the transient
behaviour close to the fixed point by linearizing equation 4.4 around the fixed point:

∆(t) = ∆0 + ∆̃(t), (4.6)

here ∆̃(t) is the transient solution and is assumed to be small. Equation 4.4 simplifies
into a first order linear ODE for ∆̃:

d∆̃(t)
dt

= −ε
dQ
d∆
|∆0 · ∆̃(t), (4.7)

The solution to this First-Order ODE is:

∆̃(t) = ∆0e+ε dQ
d∆ |∆0 t, (4.8)

From equation 4.8, the timescale associated with the transient phase difference between
the oscillator and the forcing is:

τ =
1

εdQ/d∆|∆0

. (4.9)
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Figure 4.4: Synchronization range and phase dynamics for a self-sustained oscillator with
intrinsic frequency f0. (a) The synchronization region of a given oscillator has the shape of
an Arnold tongue. (b) Phase difference between the oscillator and the external forcing ∆(t) as
a function of time. If the forcing frequency fF is outside the synchronization region (curves 1

and 2), the phase difference tends to grow uniformly. Right at the border of the Arnold tongue
(curve 3), the phase difference is characterized by periods of synchrony as well as periods of
linear growth. Inside the synchronization region (points 4,5 and 6), the phase difference is always
constant. Symmetric phase behaviour occurs at the right side of the Arnold tongue.
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frequency modulation of the self-sustained oscillator

We consider how the frequency of the oscillator is affected by the external forcing as
a function of ν and ε. For a given ε, it follows the trend shown in figure 4.5. Within
the synchronization range fF = f , as there is frequency locking. Outside of this range,
the frequency mismatch is too large, and synchronization does not occur. Hence, the
oscillator frequency f is different from f0, although it leans asymptotically towards
f = f0. Close to the synchronization transition, for fF − f0 ≈ εqmax, the behaviour of f
is approximated as:

fF − f ≈
√
( fF − f0 − εqmax), (4.10)

The trend of fF − f is typical of a saddle node bifurcation. If we consider fF − f0 ≥
εqmax there are two clear trends (see figure 4.5). For ν in a small surrounding of εqmax,
fF − f increases drastically. For larger values of ν, fF − f tends asymptotically to linear
[104, 105].

f
F
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0  

f
F
 − f

  

f=
f 0

�q
max

�q
min

 ν=

Figure 4.5: For a given amplitude of forcing, the oscillator frequency f depends on the frequency
detuning ν.

4.2.2 synchronization of a noisy oscillator

In 4.2.1 we discussed a model for the synchronization dynamics of an ideal oscillator.
Periodic oscillators in biology, however, display stochastic fluctuations in their phase
dynamics [5, 111]. An example of this fluctuations for C. reinhardtii is shown in figure
4.1(d). These fluctuations, or biological noise, are to be taken into account to model the
phase dynamics. Stochastic fluctuations of the phase difference ∆(t) can be modelled
by assuming a Langevin dynamics for the phase difference ∆(t). With this assumption
equation (4.4) can be rewritten as:

d∆(t)
dt

= −ν + εQ(∆(t)) + ξ(t), (4.11)
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where ξ(t) represents a random noise in the flagellar actuation. We can define a
potential V(∆) associated with the deterministic force driving ∆(t), such that
−dV(∆)/d∆ = −ν− εQ(∆(t)). Equation (4.11) can then be rewritten as:

d∆(t)
dt

= −dV(∆)
d∆

+ ξ(t). (4.12)

We assume ξ(t) to be a δ-correlated Gaussian noise of intensity Teff, such that
〈ξ(τ)ξ(τ + t)〉 = 2Teffδ(t). The probability density function P(∆, t) satisfies the
Fokker-Plank equation:

∂P
∂t

=
∂V(∆)

∂∆
+ Teff

∂2P
∂∆2 . (4.13)

The Fokker-Planck equation (4.13) has a time-independent solution

P̂(∆) =
1
C

∫ ∆+1

∆
exp

(
V(∆′)−V(∆)

Teff

)
d∆′, (4.14)

where C is a normalization constant [104]. The solution (4.14) only depends on three
parameters (ν, ε and Teff) and can be computed numerically using Gauss-Laguerre
quadrature. The steady state probability distribution can be inferred from the model
external coupling, Q(∆) = − sin(2π∆). For large |ν|, P̂(∆) is uniform. When |ν| is
decreased, the probability P̂(∆ = 0) of in-phase beating increases, while the probability
P̂(∆ = ±0.5) of anti-phase beating decreases. For small |ν|, the phase is locked. P̂(∆) is
Gaussian-like, with a zero probability to beat in anti-phase.

4.3 results

In this section we present the experimental results relative to the characterization of
C. reinhardtii as a self sustained oscillator. In subsection 4.3.1, we discuss the response
of the cell to an axial flow. In subsection 4.3.2, we discuss the analogy between the
experimental results and the theoretical model of a self sustained oscillator. In
subsection 4.3.3 we impose on C. reinhardtii a cross flow, and we define a
synchronization region similarly to the experiments with axial flow. In subsection 4.3.4
we focus on forcing frequencies inside the synchronization region for axial flow, and
we discuss the time evolution of the phase difference ∆(t). Finally, in subsection 4.3.5,
we analyse the presence of adaptation in the intrinsic frequency. As mentioned in the
introduction of this chapter, biological oscillators can adapt to the external
environment, and we address this possibility for C. reinhardtii.

4.3.1 the cell response to an external forcing

In order to characterize the range of synchronization in C. reinhardtii, we imposed axial
flow with UF in the range 100 − 1200 µm.s−1 on a single cell, and we characterized
separately the response of the cell to a forcing with constant amplitude and varying
frequency, as well as to a forcing with constant frequency and different amplitudes. We
measured the phase difference between the cell and the external forcing ∆(t) following
the definition in section 4.2.
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forcing with constant amplitude , varying frequency

We first describe the flagellar response to an external periodic flow of constant
amplitude AF = 5 µm. Since the intrinsic frequency of C. reinhardtii is ≈ 53 Hz (see
section 2.3), we chose a range of flow frequencies from fF = 49.9 to fF = 60.3 Hz.
Therefore, the imposed flow velocities are in the range UF = 499 − 603 µm.s−1. We
investigated these flow conditions on a single cell with intrinsic frequency
f0 = 53.6± 0.7 Hz. Figure 4.6(a), represents ∆(t) for this set of experiments.

The phase dynamics
When we compare the experimental results in figure 4.6(a) with the theoretical model

discussed in 4.2 and sketched in figure 4.4, we can identify several analogies for the
phase dynamics. For fF = 49.9 Hz, i.e. lower than the intrinsic frequency f0, the phase
difference ∆(t) increases uniformly with time, and the flagella do not synchronize with
the background flow. This behaviour in figure 4.6(a) is analogous to curves 1 and 2
in figure 4.4(b). When the forcing frequency increases to fF = 51.2 Hz, periods of
phase locking appear alternating with few occasional phase slips, in which the cell
performs one additional beat and ∆ rapidly increases by one unit. fF = 51.2 Hz is at
the edge of the Arnold tongue, in analogy with curve 3 in figure 4.4(b). By further
increasing the frequency, we observe that for fF = 53.4 − 55Hz, the phases remain
constant for the entire 30s of each recording. This constant phase is characteristic of
phase locking, and our experimental results show that, for AF = 5 µm, the two flagella
beat in synchrony with the external periodic flow. The range of forcing fF = 53.4− 55Hz
is inside the Arnold tongue, and the trend of ∆(t) resembles curves 4, 5 and 6 in figure
4.4(b). When fF increases again, the opposite transition to asynchronous behaviour takes
place. In detail, at fF = 55.8Hz, ∆(t) is archetypical of a synchronization transition
[104]. The phase difference ∆(t) decreases monotonically, and hence it is not locked
with the external forcing. However, the presence of the external forcing can be clearly
seen in the stepwise decrease of ∆(t). For a long time (up to 4s), the phase decreases
very slowly and remains nearly constant, nearly following the phase of the forcing.
Then, rapidly, ∆(t) decreases as φ(t) progressively slips compared to φF(t) . Finally, for
fF = 57.5− 60.3Hz, i.e. higher than the intrinsic frequency, the phase difference ∆(t)
decreases uniformly with time, and flagella do not synchronize with the background
flow.

The frequency dynamics
In figure 4.6(b) are shown the spectrograms for 3 different forcing frequencies fF that

represent well the frequency dynamics of the cell. The three experiments are:

1. Forcing frequency fF = 60.3Hz (see figure 4.6(b) top). In this experiment, the
beating frequency f remains close to f0 with variations that are within the long
range frequency fluctuations existing in wt [75]. This forcing frequency is outside
the synchronization region as in points 1 and 2 in figure 4.4(a).

2. Forcing frequency fF = 55.8 Hz (figure 4.6(b) center). The spectrogram for fF =
55.8Hz indicates a synchronization transition. The cell is forced to beat at the
border of its synchronization region and the intrinsic beating frequency switches
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Figure 4.6: Experimental data for one dataset. The same cell is subject to an external flow AF =
5 µm and fF = 49.9− 60.3 Hz. (a) Time variations of the phase difference between the flagella
and the external flow for separate recordings. Inset for fF = 57.5 Hz shows a stepwise decay
of ∆(t). Inset for fF = 51.2 Hz shows fluctuations during phase-locking. (b) Spectrograms of
flagellar motion for different fF. Black/white correspond to low/high amplitude in the frequency
spectrum. From top: no synchrony ( fF = 60.3 Hz), partial frequency locking ( fF = 55.8 Hz)
and complete frequency locking ( fF = 55.0 Hz). (c) fF − f as a function of fF − f0: (Symbols)
experimental data, (solid line) f is computed from equation (4.15) with the fitted values for f0, ε0
and T eff, (dotted line) f is computed from equation (4.15) in the limit of zero noise.
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in time between f0 and fF. In this experiment, the forcing frequency is at the edge
of the synchronization region, similar to point 3 in figure 4.4(a).

3. Forcing frequency fF = 55 Hz (see figure 4.6(b) bottom). In this experiment, the
frequency is equal to the forcing frequency ( f = fF). The spectrogram shows that
the frequency remains locked, since f = f0 for the entire 30s of recording. This
is possible when the oscillator frequency is close to the forcing frequency, and
during synchronization the two frequency become equal [104], similarly to points
4, 5, 6 in the theoretical model in figure 4.4(a).

Also, the dependence of the cell frequency f from the frequency detuning ν is in
very good agreement with the model. In figure 4.6(c), are shown the experimental data
for AF = 5 µm (symbols) and the theoretical model obtained by fitting equation 4.14

on P̂(∆), solid and dashed line. Details about the fitting parameters are discussed in
subsection 4.3.2.

synchronization of flagella with external periodic background flow

We also varied the amplitude of the axial flow. For each frequency within the same
range of frequencies fF = 49.9− 60.3, the flow amplitude was increased from AF =
2.5 µm to AF = 7.5 µm. Figure 4.7 (a) describes the experimental results for ∆(t). In
each frame of figure 4.7(a) the evolution of ∆(t) for varying AF is represented at the
same fF.

We first consider an external forcing with frequency fF = 49.9 Hz, lower than the
intrinsic beating frequency of the cell. For flows of low amplitude (AF = 2.5 µm and
AF = 5 µm), ∆(t) increases uniformly with time and flagella do not synchronize with
the background flow (red and blue curves in 4.7(a)). These trends are analogous to
curves 1 and 2 in figure 4.4(b). For a larger amplitude of AF = 7.5 µm, the influence of
the external forcing can be seen from the increase of ∆(t) in a stepwise fashion. This
trend indicates the proximity of a synchronization transition (black curve in 4.7(a)),
similar to curve 3 from figure 4.4(b).

For fF = 51.2 Hz, the experimental results are similar to our previous results for fF =
49.9 Hz, but the transition to synchronization occurs already at lower flow amplitude.
While AF = 2.5 µm is outside the synchronization region, AF = 5 µm and AF =
7 µm are already inside the synchronization region. At the forcing frequency fF = 54.2
Hz, phase locking occurs for long periods of time for all flow amplitudes AF = 2.5−
7.5 µm. Experiments for higher frequencies, fF = 55.8Hz and fF = 57.8 Hz, are similar
to experiments for fF = 49.9 Hz and provide evidence for the reverse transition to
asynchronous behaviour.

To summarize, for AF = 7.5 µm, the synchronization transition starts at fF = 49.9Hz
and ends at fF = 57.5 Hz, while for AF = 2.5 µm, the transition starts at fF = 54.2Hz
and ends at fF = 55.8. These results indicate a linear correlation between amplitude
of the external forcing and frequency range at which phase locking occurs. In the next
section, we fully characterize the synchronization region.
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Figure 4.7: Experimental data for the same cell experiencing an external flow AF = 2.5 µm
(black line), AF = 5 µm (red line), AF = 7.5 µm (blue line). (a) Time variations of the phase
difference between the flagella and the external flow during separate recordings. Each panel
represents the evolution of ∆(t) at a certain fF, where fF is in the range 49.9− 60.3 Hz. (b-d)
Histograms representing the distributions of phase difference ∆(t) at specific fF. (b) AF = 2.5 µm.
(c) AF = 5 µm. (d) AF = 7.5 µm. The red line indicates P̂(∆) obtained by fitting the parameters
f0 = 53.6Hz, Te f f / f0 = 0.0006, ε0/ f0 = 0.021 (b), ε0/ f0 = 0.042 (c), ε0/ f0 = 0.075 (d).

4.3.2 synchronization phase diagram

The same experiments as described in subsection 4.3.1 were repeated for a multitude
of cells; overall the range considered is AF = 1 − 10 µm and fF = 43 − 68 Hz,
equivalent to UF = 0 − 1360 µm.s−1. Experiments performed on several cells are
combined to fully characterize the synchronization region from each cell. By
combining the synchronization region where the flagella of C. reinhardtii synchronize
with the external flow. Furthermore, we compare our experimental results with the
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theoretical model discussed in 4.2.2. From this analysis we learn how well our
biological oscillator C. reinhardtii resembles a model self sustained oscillator.

the experimental arnold tongue

Figure 4.8(a,b) represents the experimental results for 41 data sets and 373 separate
recordings of experiments for the entire range of amplitude and frequency. Each dot
represents a separate experiment in the (ν,UF)-phase domain. In figure 4.8(a), the x-axis
indicates the frequency detuning ν = fF − f0 to take into account cells with different
intrinsic frequency f0. The y-axis represents the velocity of the forcing flow UF, non-
dimentionalized with the cell free swimming velocity U0 = 110 µm.s−1.

The colormap indicates the time fraction when flagellar beating is phase-locked with
the external forcing. When phase locking is observed for the entire recording time, the
time fraction is 1 (black). When phase locking never occurs, the time fraction is 0 (white).
Figure 4.8 (a) gives a clear representation of the synchronization region in the (ν,UF)-
phase domain, which is in agreement with the tongue-shaped synchronization region
(see figure 4.4(a)) predicted by the model system.

We also investigated frequency locking at fF, i.e. close to what has been reported to
be the intrinsic beating frequency of trans-flagellum. We imposed an axial flow with
UF = 100 − 1500 µm.s−1 and fF = 64.7 − 76.6 Hz. Experiments on 5 cells show no
events of synchrony with the external forcing; the cells keep beating normally at f0,
slip events are within statistics discussed in appendix B. This evidence suggests that in
C. reinhardtii wt, the trans-flagellum is strongly locked to the cis-flagellum and, hence,
even a strong external hydrodynamic forcing at ≈ 70 Hz is neither able to perturb the
intrinsic beating frequency of the cell, nor to increase slip occurrences.

fitting of the experimental arnold tongue

Since we are interested in modelling the behaviour of C. reinhardtii as a self-sustained
oscillator under the influence of an external forcing, we want to fit equation 4.14,
presented in section 4.2.2, to our experimental data. From equation 4.11, the phase
dynamics is determined for each experiment by three constant parameters: ν = fF − f0,
Teff, and ε. For each experiment we infer the values of ν, ε, and Teff by fitting the
solution for the steady probability distribution of the phase difference P̂(∆) to the
probability distribution (equation 4.14) measured in the experiment. The value for
ν = fF − f0 is known for each experiment, and we assume the noise level Teff to be a
cell-dependent constant, due to stochasticity in the flagellar actuation. Hydrodynamic
forces depend linearly on the flow velocity in the inertialess regime. The coupling
strength with the external forcing ε is assumed to scale directly with the
hydrodynamic force on the flagella, hence scaling linearly with the flow velocity
(ε ∼ UF). Within a dataset, AF is constant while fF is varied and we express ε as
ε0 fF/ f0 accordingly. Therefore P̂(∆) depends on f0, ε0, and Teff, whose values are
obtained for each AF by least-square fitting equation 4.14 to all experimental
probability distributions within the dataset. For each dataset Figure 4.7(b-d)
represents P̂(∆) with AF = 2.5 µm (Figure 4.7(b)), AF = 5 µm (Figure 4.7(c)) and
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Figure 4.8: (a,c). Synchronization region in ( fF, UF)-domain in presence of axial flow (a) and cross
flow (c). Each marker represents a separate recording. UF ranges from 86 µm.s−1 to 1300 µm.s−1

and is normalized with U0 = 110± 12 µm.s−1, i.e. the free swimming velocity of the cells. The
colormap represents the time fraction when flagellar beating is phase-locked with external flow.
It is equal to 1 (black) when phase-locking is observed for the entire time of recording, while it
is 0 (white) when phase-locking is never observed. (b,d). Coupling strength ε as a function of
external flow UF/U0, when the cell is experiencing axial flow (b) and cross flow (d).

AF = 7.5 µm (Figure 4.7(d)). We also estimated the average beating frequency
predicted by equation (4.12) as:

f =
∫ 1

0
−dV

d∆
P̂(∆)d∆. (4.15)

Figure 4.6(c) shows the agreement between measurements of f from experimental
data and the value predicted by the model of equation (4.15). The stochastic phase
dynamics is therefore well modelled with the three fitted parameters f0, Teff, and ε0.
For experiments with axial flow, these values are f0 = 52.6 ± 1.1 Hz and Teff/ f0 =
0.0008± 0.0003. We find a value for Teff, in agreement with previously reported values
[91, 112]. Figure 4.8(b) shows the values fitted for the coupling strengths ε as a function
of the nondimensional flow velocity UF/U0. We find ε to increase linearly with the flow
velocity UF, and we thus estimate ε directly as a function of the hydrodynamic forces
ε = αUF/U0 with α = 0.51 s−1 for axial flow.
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Overall, the experimental results in Figure 4.8(a,b) define a synchronization region
having the characteristic signature of the Arnold tongue presented in 4.2.1, suggesting
that the analogy between C. reinhardtii and a self sustained oscillator is robust.
Moreover, from figure 4.8(a), we observe that the synchronization ranges of different
cells are consistent with each other. The synchronization region is well defined by
fitting parameters f0, Teff and ε0.

4.3.3 synchronization region with cross flow

Additional experiments with cross flow, in the direction transverse to the cell axis,
have been performed on several cells (see figure 3.4(b)). The flow velocities imposed
are similar to the experiments with axial flow, namely AF = 1 − 10 µm and
fF = 47− 60 Hz, equivalent to UF = 0− 1150 µm.s−1. For cross flow, the theoretical
model has been fitted on the experimental phase distributions following the same
approach as for axial flow (section 4.3.2). Figure 4.8(c,d) shows the synchronization
region and coupling strength ε in this flow configuration. Overall, cross flow triggered
phase locking only in a small range of fF. When UF ≈ 100 µm.s−1, three experiments
have revealed a synchronization transition (see figure 4.8(c)). For stronger flows,
UF = 250 − 1150 µm.s−1, synchronization is observed systematically only in a very
narrow range of fF around f0, with the synchronization region increasing slightly with
forcing amplitude (see Figure 4.8 (d)). There is however large variation among
different cells, and phase locking with cross flow is less consistent than with axial flow.
This result confirms the importance of the direction along which an hydrodynamic
forcing is acting. For cross flow, we fitted the experimental phase distributions with
the solution 4.14 of equation 4.13, similarly as for the axial flow. For this set of cells, we
find f0 = 51.5± 1.1 Hz and Teff/ f0 = 0.0011± 0.0004. The coupling strength ε with
cross flow increases linearly with UF, and we find α = 0.38s−1 where ε = αUF/U0. For
comparison, the Arnold tongue for cross flows with α = 0.38s−1 is much narrower
than α = 0.51s−1 in presence of axial flow (see Figure 4.8(c)).

4.3.4 phase difference inside the arnold tongue

In this section, we discuss the time evolution of the phase difference ∆(t) when the
forcing frequency fF is within the synchronization range. Inside the synchronization
region, for ν 6= 0, the solution of equation 4.4 is the sum of a steady state solution ∆0
and a transient term ∆̃(t) (see equation 4.6 and subsection 4.2.1). The transient solution
of the oscillator, in this case C. reinhardtii, is expected to be strongly dependent on the
initial phase angle of the flagella at the moment when the forcing is activated [113], as
we discuss below. Both the transient and steady state solutions of the phase dynamics
provide insights into the coupling between flow and flagella, characterized by the
function Q(∆) in equation 4.11. In particular, the transient solution defines the
characteristic time response of C. reinhardtii, which has never been investigated before.

To study the transient and steady state solution, we executed the Experiment type 2

described in section 4.1. We imposed axial flow on 3 cells at velocities
UF = 680, 901, 1109, 1307 µm.s−1. At each velocity, we tested frequencies in the range
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fF = 50− 60Hz. As mentioned in subsection 4.2.1, phase locking is required to study
the transient and steady state solutions, and we therefore limit the discussion to
experiments where phase locking occurred. We extract the forcing phase angle φF(t)
and the flagella phase angle φ(t) in each experiment (details on the method are in
subsection 4.1.2). In each recording, the phase angle of the piezoelectric stage depends
on the starting position of the bead in the flow chamber, and the phase angle of
flagella depends on the position of the interrogation window. These two contributions
determine the steady state solution ∆0. We are interested in comparing ∆0 in different
experiments. Therefore we define a reference phase angle for both the piezoelectric
stage and the flagella. We define the phase reference for flagella φ = 0 when flagella
are at the start of the power stroke, as in the second snapshot in figure 4.10. Instead,
the phase reference for the piezo stage is the maximum in the stage displacement
signal X(t) (details on stage calibration in subsection 3.2.2). Then the phase difference
is zero, ∆ = 0 when flagella are initiating the power stroke precisely at the same time
that the stage displacement signal X(t) is maximal. This configuration is shown in the
video frames in figure 4.10 (a). The stage position in each frame has been
reconstructed during post processing, and it is shown by the red dot (details on the
method in 4.1.2 and in 3.2).

Once this reference configuration is defined, the transient and the steady state
solutions of ∆(t) in different experiments can be compared, as discussed in the
following two subsections.

the transient to synchronization

In this subsection, we discuss the transient response of C. reinhardtii when axial flow
is activated. Figure 4.9 shows an experiment with forcing velocity UF = 1071 µm.s−1

and forcing frequency fF = 55.6 Hz, resulting in ν = 2.3 Hz. Figure 4.9 (a,b) represent,
respectively, the running time spectrum of f and the two pulses indicating the stage
activation and arrest (see section 3.2.2 for details). Figure 4.9 (c) shows the evolution of
∆(t). In absence of forcing, the phase of the forcing remains constant and ∆(t) increases
linearly at a rate equal to f0. The insert at time t = 1 s shows in detail the variations
of ∆(t) when the forcing starts. Our recording shows the presence of a transient over a
finite period of time, in which the phase slowly decreases before ∆(t) reaches the steady
state solution ∆0.

From the phase difference ∆(t), recorded for each experiment within the
synchronization region, we fit the experimental decay of the phase difference
predicted by equation 4.8, in order to estimate the characteristic time scale of the
transient τ = (εdQ/d∆|∆0)

−1. For the experiment represented in figure 4.9, we find
the duration of the transient to be τ = 172 ms, corresponding to ≈ 9.5 periods of
forcing motion. τ has an uncertainty of 1.1 ms due to the piezoelectric stage activation
precision (details in section 3.2).

Fitting is, however, only possible when ∆(t) reaches the steady state towards an
exponential decay, as in figure 4.10(b,d). If the flagella and the forcing are already in
phase when the forcing starts, as in figure 4.10(c), we observe no transient and cannot
fit the exponential decay (equation 4.8). Also, in many experiments, the initial phase
difference ∆(t) is large and ∆(t) fluctuates before conveying to its steady state solution.
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Figure 4.9: (a) Spectrogram of flagellar motion for fF = 55.6 Hz and UF = 1071 µm.s−1.(b) Signal
extracted from the piezoelectric stage. The first peak indicates that the stage is activated, the
second peak indicates that it is arrested. (c) Time variations of the phase difference ∆(t). Insets
show respectively the time to reach constant phase τ∗ = 172 ms and the time to recover to f0,
τR = 20ms. Flagella are coupled with the forcing with a constant phase difference ∆̃(t) = −0.10.

In this case, the exponential decay of ∆(t) does not begin instantaneously when the
forcing is activated and cannot be fixed. Hence, we characterize the time scale of the
transient by computing the total time τ∗ between the beginning of the forcing and the
moment when phase locking is established. Phase locking is considered constant when
∆(t) shows fluctuations within ±0.05. Considering all the experiments at
UF = 670.3± 74.8 µm.s−1, the total time to reach the steady state is τ∗ = 202± 114 ms,
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equivalent to 11± 6 flagella beating cycles. τ∗ has a large standard deviation among
experiments, confirming that the flagellar phase angle φ(t) at the moment of forcing
activation affects the time to reach a steady state [113].

To investigate whether τ∗ is influenced by the forcing amplitude, we tested, on the
same cell, flows with a higher amplitude, i.e. UF = 680, 901, 1109, 1307 µm.s−1, and with
a forcing frequency in the range fF = 49.9− 58.5 Hz. Figure 4.11(a) shows the average
duration of the transient τ∗ at each of these forcing velocities. For each amplitude, the
variation measured in τ∗ can be explained by the strong dependence of τ∗ on the initial
phase difference. A key conclusion from figure 4.11(a) is that τ∗ significantly decreases
at higher forcing velocities. It bears emphasis that the variance in the measured τ∗ is
also significantly reduced. In detail, the median (τ∗)· f0 ≈ 10.7 at UF = 680− 901 µm.s−1

and decreases to (τ∗)· f0 ≈ 3.4 at UF = 1109− 1307 µm.s−1. Hence, for forcing velocities
above 1 mm.s−1, the cells synchronize with the external flow within 3− 4 oscillation
periods, as confirmed by the lower standard deviation of τ∗. This outcome is consistent
with the theoretical model of a self sustained oscillator forced externally, since, from
equation 4.8, the transient duration τ∗ is expected to scale inversely proportional with
the forcing strength ε.

the steady state solution

We now turn our attention to the constant steady state phase difference ∆0 reached
by ∆(t) after the transient. Regarding the steady state, as discussed in subsection 4.2.1,
if fF < f0, the theoretical model predicts ∆0 to be positive, while, if fF > f0, ∆0 is
predicted to be negative.

Figure 4.10(b-d) shows the phase differences ∆(t) for 3 separate experiments on the
same cell (with f0 = 54.4 ± 0.2 Hz) at constant forcing amplitude AF = 6.9 µm.
Experiments are performed for different values of the frequency detuning
ν = −1.6, 0.3, 2.3 Hz, and the corresponding phase dynamics are plotted in figure
4.10 (b, c, d), respectively. For all values ν, robust synchronization is established
between the flagella and the forcing. In figure 4.10(b), the frequency detuning is
ν = −1.6 Hz, since the intrinsic frequency of the flagella is higher than that of the
forcing. The inset of ∆(t) at center shows that the steady state phase ∆0 is 0.15,
corresponding to the flagella phase being ahead of the forcing. In figure 4.10(c), the
forcing frequency is close to the intrinsic frequency, ν is 0.3 Hz, and synchronization is
almost in phase with the steady state phase ∆0 = 0.05. Finally, when the intrinsic
frequency is lower than the forcing, ν = 2.3 Hz, and the phase of the flagella lags the
phase of the forcing, ∆0 = −0.12 (see figure 4.10(d)). The dependence of the steady
state phase difference on ν is clear from the images of the waveform; see right column
of figure 4.10(b,c,d). Our observations are in agreement with the theoretical model. In
fact, from the theoretical definition of the fixed point 0 = −ν− εQ(∆0) in equation 4.5,
we can directly infer the force of the coupling function Q(∆). To do this, we collected
results for the steady state solution for 20 experiments on 3 cells at
UF = 670.3± 74.8 µm.s−1 (see figure 4.10(e)). We observe that phase-locking does not
happen at every ∆0; all steady state phase difference recorded experimentally are in
the range (−0.15, 0.38). Given these results, it seems not possible to reach a steady
state solution where flagella are almost in anti-phase with the flow (∆0 ≈ 0.5).



52 c . reinhardtii as a model self-sustained oscillator

C
h

a
p
t
e
r

4

0 5 10
−100

−50

0

50

Time (s)

∆
(t
)

0 5 10
−0.5

0

0.5

Time (s)

∆
(t
)

0 5 10
−0.5

0

0.5

Time (s)

∆
(t
)

(a)

(b)

(e)

0 5 10
−100

−50

0

50

100

Time (s)

∆
(t
)

0 5 10
−0.5

0

0.5

Time (s)

∆
(t
)

0 5 10
−100

−50

0

50

100

Time (s)

∆
(t
)

Forcing starts

Forcing starts

Forcing starts

(c)

(d)

−0.5 0 0.5
−6

−4

−2

0

2

4

∆

Q

0.15

0.05

-0.12

Figure 4.10: (a) Snapshots of flagellar beating cycle in the case of phase locking with ∆(t) = 0.
The dot represents the position of the stage, the bar delimits the amplitude of the stage motion,
corresponding to AF = 6.9 µm. The time lapse between frames is 5 ms. (b) Left ∆(t) between
flagella and background flow with ν = −1.6 Hz and ∆0 = 0.15. Center Inset showing the steady
state solution ∆0 = 0.15. At this ∆0, flagella are coupled with the background flow moving slightly
ahead of the stage displacement, as confirmed by the snapshot (Right). (c)∆(t) for ν = 0.3 Hz. In
this experiment the steady state solution is ∆0 = 0.05, indicating that flagella are almost perfectly
in phase with the background flow. (d) When ν is 2.3 Hz, ∆0 is −0.12, suggesting that flagella are
phase locked, lagging slightly behind the stage displacement. (e) Results for ∆0 in (∆,ν)-domain,
different markers distinguish different cells. The solid lines on each marker represent dQ/d∆|∆0 .
The dashed line is the slope of Q(∆) = −α∆ with α = 1/0.042 = 23.8 from fitting.
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An example of anti-phase coupling would be if flagella were in the recovery stroke
while the stage displacement was at its maximum position. Figure 4.10(e) represents,
for each experiment, ν as a function of the ∆0 measured. From equation 4.5, ν = Q(∆0)
and figure 4.10(e) approximates the function Q(∆). We find that Q(∆) = −α∆ with
α = 23.8.

the transient out of synchronization

In the same experiments discussed above, we also characterized the relaxation time
(τR), defined as the time interval between when the forcing stops and the
re-establishment of flagellar beating at a constant intrinsic frequency. As soon as the
piezostage stops moving, the phase of the piezostage remains constant and no longer
increases. As shown by the inset in figure 4.9(c), the phase difference ∆(t) resumes a
linear increase, indicating that the intrinsic frequency has been restored. We estimate
the relaxation time and the intrinsic frequency by fitting a line to ∆(t) and computing
its intersection with the constant phase difference before synchronization is
interrupted (see figure 4.9(c)). In this example, the intrinsic frequency is restored in
less than one beating cycle (≈ 0.6 · f0).

We performed experiments at different forcing velocities on 7 cells (see figure 4.11

(c)). For UF = 680 − 1307 µm.s−1, we find τR · f0 within 0.16 and 0.61. In separate
experiments on different cells, we observe consistently that the intrinsic beating
frequency is re-established within less than one beating cycle. The median value of τR
is approximately constant among different velocities, suggesting that τR is
independent of the forcing velocity.

This subsection concludes the results on the behaviour of the phase difference
between flagella and forcing within the Arnold tongue. Our results show that the
phase dynamics of the flagella of C. reinhardtii is very well modelled as that of an ideal
self sustained oscillator subject to an external harmonic forcing. After a transient
response, flagella steadily lock to the forcing frequency, and when the forcing ceases,
they immediately re-establish their intrinsic frequency.

4.3.5 adaptation in flagellar beating frequency

Here we present results for experiments investigating changes to the intrinsic
frequency of C. reinhardtii due to the external perturbation. We imposed a periodic
background flow at UF = 1194± 2.5 µm.s−1 and fF = 56− 58 Hz; hence inside the
synchronization region, in order to achieve phase locking. We imposed the forcing for
long periods of time up to 608 s (equal to 10′8′′) without interruption. We then
measured the cell intrinsic frequency post forcing ( f post

0 ), and we compared it with the
cell intrinsic frequency pre forcing ( f pre

0 ). Both f pre
0 and f post

0 have been extracted by
computing the discrete Fourier transform as discussed in section 4.1.2. Figure 4.11(b)
presents the results for ( f post

0 − fF)/( f pre
0 − fF) as a function of forcing duration. We

observe that for the shorter experiments (≈ 7 s), the difference between the beating
frequency before and after the synchronization period is small, and f post

0 ≈ f pre
0 . When

the duration of the experiment increases significantly (experiments lasting 310 s and
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(a) (b)

(c)

Figure 4.11: (a) Boxplots showing the time τ∗ to reach the steady state as a function of forcing
velocity UF. Forcing frequencies are all inside the synchronization region ( fF = 49.9− 58.5 Hz).
At the two lower forcing velocities considered, τ∗ is higher, with median τ ∗ · f0 ≈ 10.7. At the
two higher flow velocities τ ∗ · f0 ≈ 3.4. (b) Relaxation time τR as a function of forcing velocity
UF. The median value of τR does not vary significantly when increasing UF. (c) Results for(

f post
0 − fF

)
/
(

f pre
0 − fF

)
as a function of forcing duration. When the forcing duration increases,

f post
0 is on average slightly higher than f pre

0 . However, this variation is within the limits of natural
long range fluctuations in f0 occurring in wt.

628 s) the difference between f post
0 and f pre

0 is on average larger. However, this
difference in frequency before and after the forcing is no greater than 3 Hz. From our
experiments, we find that C. reinhardtii wt show, over time, fluctuations in f0 of about 3
Hz [75, 103]. Therefore, this mismatch f pre

0 and f post
0 in long recordings could be a

natural adjustment of f0 independent of the imposition of an external forcing. Based
on this observation, there is no evidence that a forcing imposed for long times (i.e.
longer than 600 s) systematically affects the intrinsic frequency of the cell.

4.4 conclusions and discussion

The algae C. reinhardtii has been the object of several studies aiming at understanding
the details of its functioning and to clearly identify the mechanisms controlling
flagellar synchronization. Given the synchronous beating of the flagella at an
approximately constant frequency, C. reinhardtii is an example of biological oscillator.
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We explored the possibility to entrain the biological oscillator C. reinhardtii. In the
experiments described in this chapter, we imposed on a single cell periodic
hydrodynamic forcing in an attempt to control externally the intrinsic frequency of the
cell. The forcing imposed have controlled frequency and amplitude, and mimic the
background flow generated by a freely swimming cell. The possibility of the cell to
synchronize with this external flow yields insight not only on the nature of this
biological oscillator, but also on the role of hydrodynamic forces in mediating flagellar
synchronization.

4.4.1 c . reinhardtii as the ideal biological self sustained oscillator

The first important observation emerging from our experiments is that flagella from
C. reinhardtii can be forced to beat at a different frequency by imposing an external
hydrodynamic forcing. This consistent locking of C. reinhardtii to controlled external
forcing has never been observed experimentally before. However, temporary changes
in the intrinsic frequency have been reported in early studies by Rüffer and Nultsch
[72, 73]. We observed that the cell is able to synchronize with the external flow within
a certain range of forcing frequencies up to 6 Hz, and this frequency range is
consistent among different cells (subsection 4.3.1). We modelled this phenomenon and
compared our results with a model self-sustained oscillator coupled with an external
forcing in the presence of noise. Our experiments define a synchronization region for
C. reinhardtii having the shape of an Arnold tongue. By fitting the Adler equation [105]
on the experimental data (equation 4.14), we show that the synchronization region for
each cell can be modelled with three fitting parameters: the intrinsic frequency, the
coupling strength, and the intensity of the Gaussian noise. The synchronization region
was investigated for two forcing directions: axial flow (subsection 4.3.2), and cross flow
(subsection 4.3.3). The latter flow direction delineates a less consistent coupling
between flagella and external forcing. An explanation for this weak coupling of
flagella with cross flow could be in the lower forces imposed on the flagella. To this
purpose we provide, in the next chapter, a quantitative description of the forces
imposed on flagella by axial flow and cross flow of equal forcing amplitude and
frequency (see section 5.5). Within the synchronization region, we analysed the phase
dynamics to address the analogy between wt and an ideal self sustained oscillator in
more detail (subsection 4.3.4). Namely, we characterized the transient to
synchronization and the steady state solution. We found that the forcing strength
affects the transition time from intrinsic frequency f0 to forcing frequency fF. The
duration of the transient varies significantly among experiments, hinting that the
flagellar position when the forcing starts has an important role. Also, the forcing
strength affects the time to reach the steady state, since for flow velocities above 1
mm.s−1 the transition to synchronization is 3 times faster. This behaviour is in
agreement with the theoretical model described by the Adler equation.

The steady state solution is consistent with the theory of self-sustained oscillators:
the phase of the flagella lags the phase of the forcing when the frequency of the
forcing is higher than that of the flagella, while the phase of flagella is ahead of the
phase of the forcing when the forcing frequency is lower than the intrinsic frequently
(subsection 4.3.4). We also characterize the time interval between the arrest of the
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forcing and the restoring of a constant intrinsic frequency. We find this time interval to
be shorter than one beating cycle, showing that when the forcing is stopped, flagella
return immediately to beat at their own frequency. We conclude the analogy with an
ideal oscillator by considering the difference in cell beating frequency before and after
imposing a forcing for 1, 5, and 10 minutes (subsection 4.3.5). Results indicate that the
intrinsic beating frequency measured after imposing the forcing is always within 3 Hz
from the frequency measured before the experiment, hence within the frequency
fluctuations observed over time in wt.

The results presented in this chapter demonstrate that the behaviour of C. reinhardtii
is in agreement with that of an ideal self sustained oscillator under external harmonic
forcing.

4.4.2 synchronization and hydrodynamic forces

Above we discussed the analogy between the algae C. reinhardtii and a self sustained
oscillator. Here we draw conclusions on the limitations in the model oscillator and on
the implications of our study for the role of hydrodynamic interaction forces in
mediating synchronization between the flagella. Our experiments demonstrate that
eukaryotic flagella do respond to hydrodynamic forces and can be synchronized with
an external flow.

As discussed in section 2.3, interflagellar synchronization in C. reinhardtii requires
phase-locking between two flagella, whose intrinsic beating frequencies are reported to
differ by as much as 30%, hence requiring coupling strengths ε ≈ 15− 20Hz [114]. In
contrast, in our experiments with the highest flow amplitude, UF ≈ 10U0, the
hydrodynamic forces on the flagella are an order of magnitude larger than those
experienced for free-swimming cells, yet the flagella only synchronize to flows with
forcing frequencies within 5 Hz of f0. If the imposed frequency is more than 5 Hz
apart from the intrinsic frequency, imposing the external flow has no effect on the cell
behaviour. Based on our experimental results (see figure 4.8(a)), we can expect that in
order to achieve synchronization at 15− 20 Hz from f0, we should impose flows of
over 30U0 ≈ 3300 µm.s−1. However, at such high flow intensity, abrupt and permanent
changes in the cell have been reported, leading in some cases to deflagellation or cell
death [115]. Another aspect of flagellar synchronization that emerged in our
experiments is that only forcing at a frequency close to the cis-flagellum intrinsic
frequency (≈ 53 Hz) can trigger synchronization. A forcing at a frequency close to the
frequency of the trans-flagellum has no effect. This suggests that the trans-flagellum is
strongly locked to the cis-flagellum, since its dynamics is not affected by a strong
external hydrodynamic forcing close to its intrinsic frequency at about 70 Hz.

implications for the role of hydrodynamic forces

As stated in section 2.5, exploring the role of hydrodynamic forces on flagellar
synchronization is the primary goal of this thesis. A large number of theoretical and
experimental studies supported the dominant role of hydrodynamic interaction forces
in mediating interflagellar synchronization (see section 2.4 for details). As discussed in
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section 2.3.2, a recent experimental study provides evidence of established
synchronization through hydrodynamic interactions between two isolated flagella of
Volvox, whose intrinsic beating frequencies differ by ∼ 10% [12]. Volvox and
C. reinhardtii are different organisms, and the synchronization modes observed in [12]
are different from the symmetric breaststroke of wt C. reinhardtii investigated here. In
our experiments on C. reinhardtii, even at flows UF ≈ 10U0, flagella do not synchronize
to the background flow when fF is outside of the synchronization region. This means
that, although the velocity field around the cell due to the periodic background flow is
10 times larger than what would be expected in free swimming conditions, the flagella
still remain phase locked with each other, but do not couple with the external
hydrodynamic forcing. This observation warrants a thorough investigation into how
much hydrodynamic interactions contribute to interflagellar synchronization in wt
C. reinhardtii performing breaststrokes. A more accurate quantification of the
hydrodynamic forces at play is needed. In chapter 5 we describe a combined
experimental/numerical approach to quantify and compare the hydrodynamic force
applied on the flagella due to (1) the external background flow in our experiments,
and (2) the flow generated by one flagellum on the other one. In parallel, we seek to
characterize other potential synchronization mechanisms to explain the strong locking
observed between the two flagella. As discussed in section 2.3, preliminary studies on
C. reinhardtii suggested that the distal striated fiber, connecting mechanically the two
flagella [65], could mediate synchronization [69, 116]. Indeed, if we consider a force
balance on one flagellum, the total hydrodynamic force exerted by the flagellum on
the surrounding fluid is exactly balanced by the direct mechanical force the same
flagellum exerts on the basal apparatus. As a result, strong mechanical stress
concentration is expected in the region of the cell cortex around the basal apparatus of
the flagella, which by far exceeds the viscous stresses inside the fluid. Synchronization
is therefore more likely mediated by elastic stresses, which are conservative and act
over an interflagellar distance of only ∼ 200 nm in the distal fiber, rather than viscous
stresses, which are dissipative and act over an interflagellar distance of ∼ 10 µm in the
fluid. To address the role of the distal fiber in mediating flagellar coupling, we
performed additional experiments on mutants, presented in the following chapter.
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H Y D R O D Y N A M I C F O R C E S O N F L A G E L L A A N D
F L A G E L L A R C O U P L I N G

In chapter 4, we focused on the synchronization of flagella with an external flow. A
question of greater biological significance is related to the origin of the synchronization
between the flagella. Though these are two different problems, our results presented in
chapter 4 have implications regarding interflagellar synchronization. In chapter 5, we
present experimental results that shed new light on interflagellar synchronization and
hydrodynamic forces.

Following chapter 4, we first quantify the strength of the hydrodynamic forces
experienced by C. reinhardtii in our experiments. Namely, we are interested in
characterizing the strength of the viscous forces imposed by the external flow on the
flagella and how they compare with the viscous forces imposed by one flagellum onto
the other during free swimming. To this purpose, we tracked the waveforms of the
flagella and precisely computed numerically the flow velocity fields generated around
the cell as well as the hydrodynamic forces on the flagella during our experiments
(section 5.2).

We apply this methodology to both wt C. reinhardtii and mutant ptx1. In fact, recent
work has suggested that antiphase synchronization observed in the mutant ptx1 (see
figure 2.7) is caused by hydrodynamic interactions [83]. The flagella of ptx1 beat in
opposite directions, see sections 2.3.1 and 2.4. By imposing a hydrodynamic forcing on
wt and ptx1 cells and by quantifying the viscous forces involved in in-phase and
antiphase beating, we explore the role of hydrodynamics in mediating this beating
pattern (section 5.3). An alternative mechanism at the origin of flagellar
synchronization involves the mechanical coupling of the flagella inside the cell
membrane. It has been observed that wt basal bodies are connected via distal striated
fibers, and these structures have been suggested to play a role in flagellar
synchronization [81, 82] (for details see section 2.3.1). Further investigation of this
mechanism is needed. A mutant of C. reinhardtii lacking this structure is the vfl3
mutant (see section 2.3.1 for details). We investigate the behaviour of vfl3 under the
same experimental conditions as wt (see chapter 4), and we observe how the lack of
functioning distal fibers affects flagellar motility (section 5.4).

One final aspect of interflagellar synchronization often discussed in the literature is
the fundamental asymmetry in behaviour between the cis- and the trans- flagella. In this
chapter we attempt to probe separately the response of the cis- and the trans- flagella
to the effect of an external forcing, by selectively perturbing each of the two flagella
with different intensity. We achieve this by imposing an external flow that generates
asymmetric forces on the two flagella (section 5.5).

59
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Regarding the outline of this chapter, in section 5.1 we detail the image processing
method developed to track the deformations of the flagella during a beating cycle.
Afterwards, all the results are presented. In section 5.2, we characterize the viscous
forces acting on wt during breaststroke. In section 5.3, we present the experiments on
ptx1 mutants and discuss the role of hydrodynamics by computing the viscous forces
involved in antiphase beating. In section 5.4, we discuss experiments on the mutant
vfl3, that highlight the importance of intracellular coupling and the limits of
hydrodynamics in flagellar synchronization. Finally, in section 5.5, we analyse the
experiment used to selectively force one flagellum rather than the other and the
observations on the cis-trans coupling mechanism.

5.1 method for flagella tracking and flow field

computation

In this section, we detail the methodology used to track the flagellar motion in each
acquired video frame and the computational method used to evaluate the velocity
field around the cell as well as the forces on the flagella. The methodology described
in the previous chapter (section 4.1.2) and based on the ‘interrogation windows’ is not
adequate. In chapter 4, the phase dynamics of flagella is inferred from an image
analysis method relying on the periodic sweeping of flagella through an interrogation
window. This method provides no information regarding the details of the
deformation and stroke patterns of the flagella. In addition, phase fluctuations within
one beating cycle are not resolved either. To resolve the velocity field and compute the
viscous forces imposed on the flagella, we need to track accurately the motion of the
flagella during each beating cycle. Hence, we need to develop the tools to characterize
the whole flagellar waveform in each video frame. Other recent studies on cilia and
flagella motility adopted a similar tracking approach [75, 117, 118].

5.1.1 image processing algorithm

We implemented a custom made image processing method to detect the slope of the
flagella in each frame and a consistent description of flagellar waveforms allowing to
compare the strokes of different cells. The implementation is summarized hereafter
and includes details on: flagella discretization, image enhancement, and flagella shape
reconstruction.

Discretization of the flagellum
In order to compare shapes among different cells and datasets, we represent the

flagellar waveforms with the curvature of the centerline of the flagella κ(s) as a function
of the arc-length s, where s = 0 is at the base of the flagellum, as shown in figure
5.1. For each flagellum, the curvature κ(s) uniquely describes the flagellum shape to
the initial tangent angle θ0 at the base of the flagellum. The flagellum is discretized
in N elements of equal length ds, separated by N + 1 nodes located at the arclength
si = i · ds, for i = 0...N see figure 5.1. The curvature at the end of the flagellum is
κN+1 = 0, assuming a free end. The curvature is expressed in the dimensionless form
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κ̃i = κi · lf, where lf is the flagellum length in micron. For each frame, the flagellar
shape is therefore described by a shape vector k of dimension N + 1, where the first
entry is the initial tangent angle θ0 and the other N following are the curvatures at
nodes s0...sN−1, such that k=(θ0, κ0, ..., κN) at each node. The position vector along the
centerline of the flagella r(si) = (xi, yi) is reconstructed by numerical integration of
the curvature. The main aspects of the processing algorithm are outlined hereafter. For
details about the implementation, the reader is referred to [115].

cell body

+
-

l
f 

!agellar length

curvature radius

N=0

N+1

Figure 5.1: Flagella shapes are described by N (with N = 10) curvature values along the flagellum.
In the sketch are also shown the tangent angle at flagellum base and the Cartesian coordinates of
each node. Adapted from [115].

Image enhancement
The high level of noise in the recorded images (due to low light levels) requires to

extensively process the images before tracking the flagella. First, the pipette vibration
is suppressed as discussed in 3.3. Then, the contrast of the images is improved and
a Wiener filter is applied to remove Gaussian noise [119]. The image quality is hence
improved, and flagellar shapes can be extracted.

Flagella shape reconstruction A flagella shape detection based on the variation of
pixel intensity in grayscale proved not to be robust. This method was used to detect
the flagella beating frequency as discussed in subsection 4.1.2, but is not appropriate
to track accurately the entire flagellum shape. As shown in figure 5.2(a), for a typical
recording, one flagellum goes temporarily out of the focal plane during the beating
cycle. This causes the pixel intensity to abruptly invert along the flagellum. To overcome
this issue we derived a method that was more effective in cases where the grayscale of
the flagella varies from one video frame to the next. This method for flagellar tracking
is based on Gaussian background modeling [120]. It is a motion tracking algorithm
that extracts the moving foreground of each frame by approximating the stationary
background over a series of frames.

This assumes that the light intensity around each pixel in different frames can be
described as a Gaussian distribution with mean m and standard deviation σ [121]. Based
on the value of m and σ, a pixel is classified into either background or foreground.
The underlying assumption is that the background intensity remains constant among
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different frames. Since, in reality, the pixel intensities change among frames, m and
σ for the background pixels are updated between two consecutive frames based on a
learning rate factor empirically chosen [122]. In the original algorithm, the result of
this background modelling is a binary image where the foreground pixels are black
(I = 0), while the background pixels are white (I = 1). However, we experienced
that such binary classification causes loss of details about the probability that a pixel
would belong to the foreground or to the background. Hence, instead of this binary
segmentation, our classification is based on the scaled distance d̃ from the mean m,
defined as d̃ = |Ii − mi+1|/c, where c = 0.1 represents an empirically chosen scaling
factor. Pixels with larger d̃ are more likely to belong to the foreground. By inverting d̃,
we obtain an image with minimum cost for the foreground, as the one shown in figure
5.2(b).

I
j

I
1

I
26

(a)

(b) (c)

Figure 5.2: (a) Snapshots showing color inversion during flagellar beating cycle. At the begin
of the recovery stroke, both flagella are bright with respect to the background, but 4 frames
further, one flagellum becomes dark. (b) The top image shows the result of Gaussian background
representation. The foreground is shown in black corresponding to low pixel intensity. The red
line is the flagellar shape guess. The bottom image represents the original grayscale video frame.
(c) Image illustrates tracking of one flagellum with N equidistant nodes. In this case N = 26. The
pixel intensity of the image at each node Ij is used to compute the shape cost C.
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The shape of the flagella is extracted from this image by minimization of a cost
function C associated with a particular vector. The formulation for the cost function is
the following:

C = w1
1
N

N

∑
j=1

Ij + w2

∫ l f

0
κ̃2ds, (5.1)

where Ij represents the pixel intensity at the jth node and is computed by
interpolation of the foreground image at that node. w1 and w2 are two weighting
parameters. This cost function is the sum of two contributions. The first term is the
image intensity contribution 1/N ∑N

j=1 Ij. This term represents the average pixel
intensity over the N nodes of the shape (shown in figure 5.2(c)). The second term in

equation 5.1 (
∫ l f

0 κ̃2) is the bending energy of the shape guess. The shape cost function
C is minimal when the pixels delimiting the shape are black (Ij = 0) and the curvature
is low (low bending energy). Therefore, as shown in figure 5.2(c), the minimal cost
function is obtained in the darkest part of the image, while the bending energy term
penalizes high curvature shapes. This penalty on bending prevents the algorithm from
converging towards local optimal shapes characterized by kinks and loops. The
weighting factors w1 and w2 allow a correct balance between fitting the details of the
flagellum shape and obtaining a smooth flagellar shape. In addition, the following
constraints are imposed to avoid unlikely waveforms: (1) the smallest curvature radius
is set to 1/50 µm, (2) the tangent angle of each flagellum is constrained between π/6
and 3π/4 (this range includes all the flagellar shapes observed in experiments), and (3)
the flagellum is not allowed to intersect the cell body. An example of flagella shape
reconstruction over a beating cycle is shown in figure 5.3.

5.1.2 flow field computation

Once the flagella are tracked, the time dependant deformations of the flagella can be
deduced. Using these deformations as boundary conditions, the hydrodynamic forces
acting on the flagella during beating can be computed by numerical tools. To this
purpose, the flow field around the cell and the micropipette is computed by solving
the Stokes equations (2.4-2.5) subject to a no slip boundary condition at the surface of
the micropipette, the cell body, and the deformable flagella. Our numerical approach
combines a boundary element method (BEM) formulation for the pipette and the cell
body, together with slender body theory for the deformed flagella.

Cell body and pipette
To represent the cell body and the pipette, we use a boundary integral representation

derived from the Stokes equations [123]. Such formulation reduces the complexity of
the numerical approach. Instead of solving a three dimensional flow field, we compute a
singularity distribution on the boundary of the object. Our numerical approach uses the
completed double-layer boundary integral equation introduced by Power and Miranda
[123], which numerically solves an integral equation of the second kind (Keaveny and
Shelley [124]). In this approach, Stresslets are distributed over the surface of the cell and
the pipette.
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Figure 5.3: (a) Snapshots of one cell beating cycle where flagella shape was reconstructed with
the cost function minimization. (b) Superposition of several flagellar shapes and their tangent
angle at the flagellum base.
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The superposition of singularities results in a total surface velocity us equal to the
velocity prescribed at the boundary. Since a stresslet cannot produce a net force or
torque (as discussed in 2.2.1), Power and Miranda added a point Stokeslet and rotlet
at the center of the object, inside the closed boundary, to account for the net force
produced by an arbitrary flow over the object. In our case, the elongated geometry
of the pipette leads to poor conditioning of the numerical problem when using the
formulation from Power and Miranda with a point singularity inside the boundary. To
prevent this issue, we use instead a line distribution of Stokeslets and rotlets, along the
axis of axisymmetry of the object, following Keaveny and Shelley [124]. The surface
velocities and the stresslet distribution are related by the integral equation:

us
i (x) =

1
2µ

Ψi(x) + nk(x)
∫

D
Tijk(y− x)Ψj(y)dSy + νT

i [Ψ](x), (5.2)

where D represents the surface of the cell and the pipette, and x is on the surface D.
Here us is the known velocity on the boundary of the cell and the pipette, Ψ is the
double layer density, n is the surface normal vector, T is the stresslet tensor:

Tijk(x− y) =
3

4πµ

(xi − yi)(xj − yj)(xk − yk)

|x− y|5 . (5.3)

νT is the adjoint of the completion flow:

νT
i [Ψ](x) =

∫
D

Gij(y− X(y))Ψj(y)dSy + εijk(xk − Xk(x))
∫

D
Ψl(y)Rij(y− X(y))dSy,

(5.4)
where, for all y ∈ D, X(y) are points along the axis of axisymmetry in the interior of the
body over which the Stokeslets and rotlets are distributed [124]. Gij and Rij represent
the Stokeslet and rotlet kernels:

Gij(x) =
1

8πµ

(
δij

|x| +
xixj

|x|3

)
(5.5)

Rij(x) =
1

8πµ

(
εijkxk

|x|3

)
(5.6)

Flagellum
We use slender body theory to avoid the discretization of the slender flagella surface

which would require a large number of small discrete elements and would
significantly increase the computational cost. We model flagella with slender-body
theory [125]. This method is suited for long and slender geometries. We implement the
integral formulation from Keller & Rubinow [126]. In this formulation, Stokeslet and
Stokes doublets are distributed along the centerline of the flagella to satisfy the no-slip
boundary condition imposed on the surface of the flagella [127]. The integral equation
for the velocity U at the centerline is:

U(s) = Λ(s)f(s)−
∫ 2L

0
[Gij(r(s)− r(s̃))f(s̃)−

(
δi + ti(s̃)tj(s̃)
|s− s̃|

)
f(s̃)]ds̃, (5.7)
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where t(s) is the vector tangent to the flagellum centerline at arclength s, r(s) is the
position vector at s, U(s) = ṙ(s) the velocity at the centerline, and f(s) the distribution
of hydrodynamic forces per unit length acting on the flagellum. Λ(s) is a linear operator
defined as:

Λ(s) =
1

8πµ

(
ln(κ2 exp(1))[δij + 2ti(s)tj(s)]− 2[δij − ti(s)tj(s)]

)
. (5.8)

Discretization
The cell body and pipette are meshed as a whole by means of an unstructured

triangular mesh of about 1500 elements, with grid size refinement on the cell body, as
shown in figure 5.4(a). The pipette has the shape of a cone with a half angle of 5.5◦

corresponding to the geometry of the tip of the pipette. We truncated the pipette
80 µm away from the cell to decrease the computational cost. Flagella are discretized
in linear elements equally spaced along the arclength of the flagellum. We use the
same discretization as the one used for the shape tracking algorithm; see section 5.1.1.
A small gap of ≈ 1 micron is left between the cell body and the flagella, as shown in
figure 5.4(b). Leaving this small gap allows a better conditioning of the numerical
problem. The no-slip boundary condition is imposed on the surface of the cell body
and the pipette at collocation points. The collocation points are the centers of gravity
of each triangular element; see figure 5.4(a). Imposing the no-slip boundary condition
at the surface of the flagella requires knowledge of the displacement of the flagella and
in particular of the velocity U(s) at the centerline. Here, U(s) is obtained by our
experiments and the tracking of the flagella. The velocity U(s) is computed at the
center of each linear element of the flagellum. This velocity is computed by a
numerical differentiation of the time dependent position at each node on the flagellum
by means of a five point Savitzky-Golay Digital Differentiator [128, 129].

The discretization of the integral equation for the cell body and the pipette, equation
5.4, together with the integral equation for the flagellum, equation 5.7, leads to a linear
system that is solved for the surface distribution Ψ(x) of stresslet for x on D and the
line distribution f(s) of Stokeslet along the flagellum. The flow velocity field U can be
computed from the distribution of singularity Ψ and f at any location x in the bulk of
the flow by superposition.

An example of velocity field reconstruction from an experiment is shown in figure 5.4
(c). In this example there is no background flow. The colormap represents the amplitude
of the flow field generated by the motion of flagella.

5.1.3 force and power associated with flagellar bending

The numerical approach outlined in section 5.1.2 yields the distribution of Stokeslets
f(s) along the flagella, which represents the distribution of hydrodyanmic forces exerted
by the surrounding fluid on the flagella. This allows us to directly investigate forces
applied on the flagella. In particular, we compute the total force on a flagellum as:

F =
∫ lF

0
f(s)ds, (5.9)
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Figure 5.4: (a) Mesh of cell body and pipette obtained with Matlab mesh generator by Persson
and Strang [121]. (b) Gap between cell body and flagella to prevent numerical instability. Adapted
from [115]. (c) Frame sequence showing the velocity field in an experiment without external flow.
The vectors show the flow field generated by flagellar beating at different phases of the beating
cycle.

and call F = |F| the magnitude of the force. The non dimensional total force is obtained
as:

F̃ =
F
F0

=
F

6πµaU0
, (5.10)

where F0 is the Stokes drag on a sphere moving at the cell free swimming velocity
U0 = 110 ± 12 µm.s−1 and a = (amaj · amin)

0.5 is the cell radius, computed as the
geometric average of the major and minor cell radii.

The viscous power, namely the rate of work of the flagella against viscous forces, is
obtained as:

P =
∫ lF

0
f(s) ·U(s)ds, (5.11)
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where U(s) is the velocity of the centerline of the flagella. Similarly to the force, also
the magnitude of the viscous power is expressed in non dimensional form as:

P̃ =
P
P0

=
F

6πµaU2
0

. (5.12)

The elastic power is the rate of work of elastic stresses due to the deformation of the
flagella. It can be computed assuming classical Euler-Bernoulli beam theory as:

Pe =
EI
2

d
dt

∫ lF

0
κ(s)2ds, (5.13)

where E and I are respectively the Young's modulus and the area moment of inertia
of the flagellum, and determine the bending stiffness of the flagella. We used an oft-
quoted value for the eukaryotic flagella bending stiffness, equal to EI = 0.9 · 10−21

Nm−2 [130]. This stiffness was measured in sea urchin sperm in relaxed state. Similarly,
to the viscous power, the elastic power magnitude is expressed in nondimensional form:

P̃e =
Pe

P0
. (5.14)

5.2 hydrodynamic forces acting on the flagella of wt c .
reinhardtii

In this section, we quantify the effects of fluid flow on a flagellum of wt C. reinhardtii
during breaststroke, both in the absence and in the presence of an external
hydrodynamic forcing. The effects of hydrodynamic forces due to hydrodynamic
interactions between the flagella are compared with the forces due to the external flow
by looking at three different experiments:

1. wt C. reinhardtii motility in the absence of flow.

2. wt C. reinhardtii motility in the presence of a background flow right outside the
synchronization region ( fF = 58.2 Hz and AF = 10.3 µm).

3. wt C. reinhardtii motility in the presence of a background flow inside the
synchronization region (AF = 14 µm, fF = 58.2 Hz).

In each of these experiments, the effects of fluid flow are characterized by using the
experimental approach detailed in section 5.1. This approach is used to compute the
total hydrodynamic drag force F imposed on the flagellum (equation 5.9), the rate of
work of the drag force Pv (equation 5.11). Snapshots of the velocity field in the three
experiments are shown in figure 5.5. In our experiments, the total drag force on a
flagellum is due to the flow around the flagella. Here, the flow has three distinct
origins: first the motion of the flagellum itself, second the motion of the other
flagellum, and third the background flow. From the linearity of Stokes equations, the
flow velocity field can be computed as the superposition of the three components. As a
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(a)

(b)

(c)

Figure 5.5: Examples of numerical computation of the flow field. The blue vectors describe the
flow velocity field, while the red vectors indicate the distribution of singularities on the flagella.
(a) Snapshots of the flow field around a cell in absence of external flow. (b) Snapshots of the flow
field for a cell beating in antiphase with the flow. The flow imposed is axial flow at UF = 1.19
mm.s−1, AF = 10.3 µm, fF = 58.2 Hz. (c) Snapshots of the flow field during an experiment where
the flagella are synchronized in phase with the background flow. The imposed flow is axial flow
at UF = 1.63 mm.s−1, AF = 14 µm and fF = 58.2 Hz.

consequence, the total hydrodynamic drag force F on a flagellum can be written as the
linear superposition of three components:

F = Fmotion + Fint + Fflow (5.15)

where Fmotion is the force due to the flow generated by the motion of the flagella, Fint is
the hydrodynamic interaction force due to the motion of the other flagellum and Fflow
is the force due to the external background flow.

In addition, we compute the rate of work associated with each of the three
components of the drag force corresponding to the flagellar motion Pmotion, the
flagella hydrodynamic interaction Pint and the external flow Pflow.

5.2.1 no forcing

Forces and rates of work for an average beating cycle
We start by discussing an experiment performed in the absence of external forcing.

We tracked the shape of the flagella in each frame of the recording for over one second
corresponding to ≈ 1000 consecutive frames. We computed the distribution f(s) of
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hydrodynamic forces and deduced the total force F acting on the flagella and the rate
of work P of hydrodynamic forces. Furthermore, we also computed the elastic power
Pe. Figure 5.6 presents our results for the three quantities F = |F|, P , Pe for one
flagellum (black line). These results correspond to a single period averaged over 14
beating cycles. The total hydrodynamic force F (figure 5.6(a)) and the rate of work P
(figure 5.6(b)) present two local extrema. The first and largest one, when the flagellar
phase is ≈ π/4, corresponds to the power stroke. The second one, when the phase is
≈ 3π/4, corresponds to the recovery stroke. The maximum force magnitude is F =
5.1 F0. The maximum rate of work is P = 63 P0. The maximum value corresponds
to the power stroke, when the cell generates a net thrust on the surrounding fluid
and moves forward. The rate of work produced reaches its minimum at φ ≈ π and
φ ≈ 2π, which correspond to the end of the power and the end of the recovery stroke
respectively, when the direction of motion of the flagella changes. The elastic power
accounts for changes in stored elastic energy, as the flagella deform (figure 5.6(c)). It
is negative between the end of the recovery stroke and the begin of the power stroke
(φ ≈ 2π), when the flagella extend and the curvature along the flagella decreases to zero.
Instead, during the power stroke and the begin of the recovery stroke, Pe is positive,
which corresponds to the flagella actively bending through the action of molecular
motors. Flagellar bending in C. reinhardtii is the result of sliding among the microtubule
filaments composing the axoneme (as discussed in section 2.3).

Force and power across multiple beating cycles
We now consider force and rate of work over several beating cycles, and we write

these quantities as a function of the unwrapped flagella phase φ. Figure 5.5 (a)
represents the flow velocity field around the flagella in absence of external forcing. In
figure 5.7 (b), the black trace represents F/F0 on flagella during a typical experiment
in the absence of flow. F is clearly periodic, and the fluctuations between consecutive
strokes are small. The average value for the force is F/F0 = 3.5± 0.6. We decomposed
the hydrodynamic force into the three different contributions from equation 5.15.
Figure 5.7(d) represents Fmotion and figure 5.7(e) represents Fint. In experiments
without forcing there is no contribution of the external flow and Fflow = 0. We find
Fmotion to be one order of magnitude larger than Fint and hence, in absence of forcing,
the total hydrodynamic viscous force F only depends on the force generated by
flagellar active motion.

We also computed P in absence of forcing, shown in figure 5.8(a) (black trace), and
represent the different contributions separately . Our results are similar to those for F .
The rate of work of the force due to the motion of the flagellum is
Pmotion/P0 = −39.6± 9.8 on average. On the other hand, the average rate of work due
to the hydrodynamic interaction of one flagellum with the other one is 3 orders of
magnitude smaller: Pint/P0 = 0.03± 0.77. In experiments without external forcing, the
rate of work of the hydrodynamic forces is almost entirely due to the motion of the
flagellum. Furthermore, P remains negative all the time during the flagellar beat,
indicating that the eukaryotic flagella, when moving, are always working against
hydrodynamic forces.

From the experiments without external forcing, we learn that the rate of work and
viscous forces due to hydrodynamic interaction between the flagella are negligible with
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Figure 5.6: Comparison of viscous force F (a), rate of work P (b) and elastic power Pe (c) on
a flagellum averaged over one beating cycle. Comparison between experiment without external
forcing (black line) and with a forcing UF = 1.63 mm.s−1 causing phase locking (blue line).

respect to the forces and rate of work generated by the flagellum during its motion.
In the next two paragraphs we compare the force and rate of work in presence of an
external forcing.
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Figure 5.7: Computation of the total force imposed on one wt flagellum during three typical
experiments and separation of effects. (a) Phase difference between flagella and forcing as a
function of the unwrapped flagella phase φ. Comparison between the experiment with axial flow
at UF = 1.19 mm.s−1 (red line) and the experiment with axial flow at UF = 1.63 mm.s−1 (blue
line). At the lower flow velocity, the cell does not synchronize with the background flow and
the phase difference is constantly decreasing (red line). At the higher flow velocity, the cell is
always synchronized with the external flow. (b) Total non dimensional force F/F0 measured
on one flagellum as a function of the unwrapped phase φ. Comparison among an experiment
without forcing (black line), an experiment with non synchrony-inducing flow (red line) and an
experiment with synchrony inducing flow (blue line). (c) Contribution to the total force on one
flagellum due to the periodic background flow Fflow. (d) Force contribution on one flagellum
due the flagellar motion Fmotion. (e) Force contribution on one flagellum due to hydrodynamic
interaction between the two flagella Fint.

5.2.2 forcing with synchrony

We imposed on the same cell axial flow at UF = 1.63 mm.s−1 and fF = 58.2 Hz. This
frequency value is approximately in between what is thought to be the beating
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Figure 5.8: Computation of the total viscous power imposed on one wt flagellum during three
typical experiments and separation of the different contributions. (a) Magnitude of the total non
dimensional rate of work P/P0 measured on one flagellum as a function of the unwrapped
phase φ for an experiment without external flow (black line), an experiment with axial flow at
UF = 1.19 µm.s−1 (red line) and an experiment with axial flow at UF = 1.63 µm.s−1 (blue line).
(b) Rate of work on one flagellum due to the external forcing Pflow. (c) Rate of work generated
by the flagellum motion Pmotion. (d) Rate of work due to flagellar hydrodynamic interaction Pint.

frequency of the cis- and the trans- flagella, as discussed in section 2.3. At this flow
velocity, we observe frequency locking for the whole recording time, and the flagella
beat in phase with the flow (see flow field snapshots in figure 5.5(c)).

Force and power per beating cycle
Figure 5.6 shows the total force F (figure 5.6(a) blue line), the rate of work of

hydrodynamic forces P (figure 5.6(b) blue line), and the elastic power Pe (figure 5.6(c)
blue line) averaged over several beating cycles. The magnitude of the total
hydrodynamic force F reaches two extrema per beating cycle: one during the power
stroke and one during the recovery stroke. The maximum force is exerted for
φ ≈ 3π/2; hence, later in the beating cycle than when there is no flow. Under the
external forcing the cell is beating in phase with the flow; hence, the maximum force is
imposed on the flagella towards the end of the power stroke, when the flagella are
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more bent. Furthermore, the magnitude of the hydrodynamic force when the flagella
synchronize with the flow is lower than in the absence of flow throughout the entire
power-recovery stroke. The maximum force magnitude is 3.2F0, and therefore 37%
smaller than when there is no flow. Similarly, the viscous rate of work is maximum in
the same flagellar phase and equal to P = 47P0; therefore it is ≈ 25% smaller than in
the absence of flow. This lower force and rate of work, compared to those in absence of
flow, are a consequence of phase locking between the flagella and the forcing. The
flagella, by beating in phase with the forcing, exploit the drag generated by the
external flow to propel, and the force exerted by the fluid is smaller. In fact, in
figure 5.6(b), the area between the black line (rate of work in the absence of flow) and
the blue line (rate or work for a synchrony-triggering external flow) corresponds to the
positive work produced by the flow on the flagella during one beating period. The
elastic power does not differ significantly in the two cases (see figure 5.6(c)). This
indicates that the elastic deformations of flagella are not significantly affected by the
flow. In other words, the flagellar shape and waveforms in the two experiments are
approximately the same, as shown also in the snapshots in figure 5.5(a,c).

Force and power across multiple beating cycles
Figure 5.7 represents the hydrodynamic force as a function of the unwrapped phase

for a synchrony-inducing flow (blue trace). The magnitude of F is approximately
constant across subsequent beating cycles.

We decompose the hydrodynamic force into its three components. F is lower
compared to experiments without flow. This decrease of total force is a direct
consequence of the action of the external flow. Indeed, Fmotion remains mostly
unchanged (see figure 5.7(d)), although it is slightly larger than in the absence of flow.
This indicates that the waveform is mostly unaffected by the flow. The moderate
increase in Fmotion is due to the fact that the amplitude of the flagellar motion
increases slightly for a synchrony-inducing flow, which drags the flagella further in
their direction of motion during the power recovery stroke. Fflow, on the other hand,
becomes significant (see figure 5.7(c)). The highest value for Fflow is reached during
the power stroke, with a second lower peak recorded during the recovery stroke. The
significant amplitude of Fflow is the cause for the overall decrease in the amplitude of
the hydrodynamic force F . The role of the three components fflow, fmotion and fint is
clearer when considering the rate of work of each of them separately. The rate of work
of fmotion is always negative, indicating that the flagella always have to produce work
in order to move, both in the presence and in the absence of flow. In the presence of
synchrony-inducing flow, the rate of work of fflow is always positive. This confirms
that for synchrony-inducing flows, the background flow produces positive work (see
figure 5.8(c)). The figure highlights that positive work is produced both during the
power stroke (large peak) and during the recovery stroke (small peak). The rate of
work of fint is Pint/P0 = −0.02± 0.9, similar to the rate of work measured in absence
of flow (equal to Pint/P0 = 0.03± 0.77).
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5.2.3 forcing with no synchrony

We imposed, on the same cell discussed above, axial flow at UF = 1.19 mm.s−1 and fF =
58.2Hz. This flow velocity is at the edge of the Arnold tongue, and corresponds to point
3 in figure 4.4. The amplitude chosen AF = 10.22 µm is lower than the amplitude of
the synchrony-inducing flow, but it is the highest possible at this frequency without the
occurrence of frequency locking. Figure 5.7(a) shows the phase difference ∆(t) between
the flagella and the flow (red trace). In this experiment, ∆(t) has the typical trend of
a synchronization transition (for details see section 4.2.1). Periods where the phase is
almost constant indicate that flagella are approaching synchronization with the flow
(∆ ≡ 0 mod 1). This happens for example in figure 5.7(a) when φ is between 0 and 8π.
Instead when φ is between 16π and 22π, the phase difference is decreasing more rapidly,
and the flagella even beat at some point in antiphase with the flow (∆ ≡ 0.5 mod 1).

We compute the amplitude of F/F0 for this non synchrony-inducing external flow.
In this experiment, F shows changes in amplitude from one stroke to the other. The
hydrodynamic force has a higher amplitude for beating cycles in which flagella are in
antiphase with the flow (∆ ≡ 0.5 mod 1), as shown in the snapshots in figure 5.5(b).
Instead, F has a lower amplitude when the flagellar phase is very close to the phase of
flow (∆ ≡ 0 mod 1). We computed F/F0 = 2.7 ± 0.6 when ∆ ≡ 0 mod 1 and
F/F0 = 4.3± 0.7 when ∆ ≡ 0.5 mod 1. When the forcing is in phase with the flagellar
beating, it entrains the flagellar motion by reducing the total viscous force acting on
the flagellum. As a consequence, if we compare the amplitude of F when ∆ ≡ 0 mod 1
with that in absence of flow, we find it to be 23% smaller. In figure 5.7(b), the
modulations in the amplitude of F occur at a beat frequency of 2− 3 Hz, which agrees
with the difference in frequency between the two interacting oscillators: the external
flow and the flagella. The flagella beat briefly in antiphase 2 − 3 times per second.
During these time intervals, the maximum hydrodynamic force acting on the flagella
is reached, during the power stroke, at about F ≈ 6F0. If we consider the separate
contributions in F, we find Fmotion/F0 and Fint/F0 in the same range as in the
experiment with no flow. The difference in F/F0 is entirely due to the hydrodynamic
force imposed by the flow, Fflow/F0.

We also computed P (figure 5.8(a)), and separated the three contributions: Pflow
(figure 5.8(b)), Pmotion (figure 5.8(c)), and Pint (figure 5.8(d)). The same trend in
amplitude observed in F appears also in P . We focus on the rate of work of the force
due to the external flow Pflow. When the flagella are beating in phase with the flow
(∆ ≡ 0 mod 1), the rate of work Pflow is positive, meaning that the external flow is
promoting flagellar beating, by providing positive work to the flagella. This is similar
to what we discussed in section 5.2.2. When the flagella are in antiphase with the flow,
Pflow is negative, indicating that, in this case, the flagella have to provide additional
work to beat against the external flow. The average rate of work per period during in
phase beating is Pflow/P0 = 5.2± 11.0, while in antiphase is Pflow/P0 = −12± 15.3.
Instead, the average rate of work per period due to the motion of flagella is
Pmotion/P0 = −39.5± 12.3 during in phase beating and Pmotion/P0 = −36.6± 11.3
during antiphase beating. Similar to the other flow conditions discussed in sections
5.2.1 and 5.2.2, Fint is an order of magnitude smaller that Fflow and Fmotion.
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Additionally, the rate of work of the hydrodynamic interaction force
Pint/P0 = −0.02± 0.76 is three orders of magnitude smaller than Pflow and Pmotion.

5.2.4 discussion

In the present section, we quantified the strength of the viscous forces imposed by the
external flow on the flagella with respect to the viscous forces generated during flagellar
hydrodynamic interactions. The main results of this characterization are summarized
below.

Hydrodynamic interaction forces
We end this section with a discussion over the implications of our work on the

mechanism at the origin of synchronization between the flagella, and in particular on
the role of hydrodynamic interaction forces. To this purpose, we compare the results of
our experiments performed with an external background flow of frequency fF = 58.2
Hz. When the velocity of the background flow is UF = 1.19 µm.s−1, the hydrodynamic
force exerted by the flow is too low to induce synchronization. However, for a slightly
higher flow velocity of UF = 1.63 µm.s−1, the flagella do synchronize with the
background flow. From our data analysis, combining image processing and
computational fluid dynamics, we estimate the hydrodynamic force imposed by the
external flow. We find that, for the non synchrony-inducing weaker flow, the
hydrodynamic force exerted by the external flow is Fflow/F0 = 1.6 ± 0.8,
corresponding to Fflow = 10.6 ± 5.3 pN (see figure 5.7(c) red trace). At the same
frequency, synchronization is induced when the hydrodynamic force exerted by the
external flow is Fflow/F0 = 1.9± 1.0 = 12.6± 6.6 pN (see figure 5.7(c) blue trace). We
deduce that an average hydrodynamic force of magnitude ≈ 12 pN is required to
trigger synchronization. In addition, a hydrodynamic force of this amplitude is only
sufficient to trigger synchronization at a frequency relatively close to the intrinsic
beating frequency of the cell. Indeed, in our experiments, fF = 58.2 Hz, which is only a
few hertz different from the cell intrinsic frequency f0 = 53.2 Hz. For comparison, the
difference in intrinsic frequency between the two flagella is thought to be on the order
of ≈ 20 Hz (see section 2.3).

The hydrodynamic force due to the interaction between the flagella can also be
estimated from our procedure, and it is found to be orders of magnitude lower
(Fint = 0.6 ± 0.5 pN). Since the hydrodynamic force due to flagellar interaction is
orders of magnitude lower than the hydrodynamic force required for synchronization
in our experiments, we conclude that hydrodynamic interactions between flagella are
too small to be responsible for flagellar synchronization in wt C. reinhardtii. The
hydrodynamic forces generated by the ’cell-body rocking’ mechanism [76] (discussed
in section 2.4), are also significantly lower than the hydrodynamic forces generated by
the external flow and therefore are likely not at the origin of flagellar synchronization.

Similarly, we computed the rate of work against hydrodynamic forces in the
presence and in the absence of forcing. We consider the external forcing where
UF = 1.19 µm.s−1, and synchronization with the flagella is not triggered. As we have
just discussed, the hydrodynamic force due to the external flow is significant
(10.6 ± 5.3 pN). However, since the phase is not locked, the flagella will be
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alternatively in and out of phase. When flagella are in phase with the forcing, the rate
of work exerted by the flow is Pflow = 3.8 ± 8.0 fW, while in antiphase it is
Pflow = −8.8± 11.2 fW. The flagella do not synchronize with the external flow when
they receive work from the flow and they continue beating when they have to produce,
instead, rate of work against the flow. The rate of work of hydrodynamic interaction
force between the flagella is Pint = −0.01± 0.5 fW. It is much smaller than the rate of
work generated against the external flow. The negative sign also indicates that the
flagella have to produce work against the hydrodynamic interaction force. Our
quantitative results strongly suggest that hydrodynamic interactions are not at the
origin of interflagellar synchronization, which instead relies on a different, much
stronger, physical mechanism.

Maximum force and maximum power
Applying external hydrodynamic loads on the flagella under different flow

conditions allows us to estimate how much mechanical force the flagella can exert. The
maximum total hydrodynamic force in our experiments measures F = 44.2 pN in the
experiment with a non synchrony-inducing flow with velocity UF = 1.19 mm.s−1. In
that experiment, the maximum rate of work of the hydrodynamic force is P = 60.1 fW.
In comparison, in the experiment without external forcing we find the minimum and
maximum rate of work per beating cycle to be within 15.3 fW and 46.2 fW respectively.
The viscous swimming power generated by a free swimming cell has been computed
previously by Guasto et al. [87]. The maximum power found in their study is 15 fW.
This discrepancy can be explained by the fact that the measured rate of work is
estimated from viscous dissipation taking only into account the far-field flow
generated by the cell. The flow was measured using tracer particles with 1 µm
diameter. The flow field resolution was not sufficient to capture the flagella-body
interactions. By computing the flow field numerically, we resolve details of the flow
field around the cell body and the flagella, and we find this near field interactions to
be important for the total rate of work produced by flagella. Furthermore, the rate of
work that we compute is always significantly larger than zero, while in Guasto et al.'s
study, the viscous power approaches zero between the power and recovery stroke.
Even though the flow field around flagella is almost zero between the power and the
recovery stroke, the flagella remain in motion, and the power generated is larger than
zero. However, when the velocity of the free swimming organism approaches zero,
while the stroke transitions from power to recovery, the far-field flow is almost zero,
causing the rate of work to drop [87]. Finally, this study [87] focuses on a free
swimming cell while we considered a cell constrained at the tip of the micropipette. It
is possible that the oscillatory flows in this two different configurations are
fundamentally different, which would also affect the viscous forces measured on
flagella.

Energetics of flagellar bending
The total rate of work involved in flagellar bending is a combination of active

flagellar deformation, initiating bending and passive resistive deformation due to the
viscous forces imposed externally by the fluid. We computed the local moment along
flagella associated with these two components and found that the energy consumption
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required for flagellar bending is by far larger than the energy required to overcome
viscous dissipation in the beating of C. reinhardtii. Previous studies on wave
propagation in sperm cell flagella [131, 132] have shown that the largest amount of
power consumption is due to viscous dissipation and a small amount is involved in
elastic deformation, contrary to our observation. An explanation for this discrepancy
could be in the difference in motility between sperm cell and C. reinhardtii. The former
displays beating patterns with long waveforms and low curvature, which stores less
elastic energy compared to C. reinhardtii, which presents short waveforms instead with
higher curvature and requires an higher energy intake.

Given that the elastic rate of work is conservative, the total work of elastic forces is
zero over one period. On the other hand, the viscous forces are dissipative and require
net energy consumption. The energetic cost increases when the forcing is activated,
since the rate of work is on average 10% higher in presence of external flow during
antiphase beating. The fact that the rate of work increases when the cell beats in
antiphase with the flow, suggests that the cell does not normally beat at its maximum
power output. Studies on wt beating in medium of increasing viscosity reported a
similar finding: in a certain range of viscosity, the increase of medium viscosity leads
to an increased propulsive force by the cell [133]. Another recent study on wt reported
increased swimming speed for a certain range of increased external load [117]. But
when the external load is increased further, the speed decreases until it reaches a
stalling point. We did not observe stalling even when we explored waveforms with an
amplitude up to 3 mm.s−1. However, we observed reduced stroke for a flow velocity
above 2.5 mm.s−1. For details the reader is referred to [115].

5.3 hydrodynamic forces acting on flagella of ptx1 ,
mutant of c . reinhardtii

The mutant ptx1 displays a peculiar beating pattern, named AP, where flagella
synchronize in antiphase with each other. This beating pattern is named AP
(antiphase) mode after Leptos et al. [83]. The other beating pattern observed in ptx1 is
the in-phase (IP) beating analogous to breaststroke in wt. AP beating resembles the
wavelike beating observed in cilia [61, 77, 83], and several models suggest that ciliary
coupling is a consequence of hydrodynamic interactions [44, 83]. It has been suggested
that AP beating in ptx1 is generated by hydrodynamic interactions between flagella
[83, 84]. Further understanding of ptx1 beating dynamics is therefore needed. In this
section we investigate the effects of hydrodynamics on AP synchronization, at first by
characterizing the beating dynamics of ptx1 at the tip of a micropipette without
external flow, and subsequently by investigating the behaviour of ptx1 under external
hydrodynamic forcing. From both experiments we compute the hydrodynamic forces
similarly to the previous section 5.2.
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5.3.1 flagellar synchronization in ptx1

results in absence of flow

In the mutant ptx1, the switch between IP and AP beating mode is stochastic. The AP
stroke is shown in figure 5.9(a). The IP beating mode resembles the breaststroke in wt,
while the AP stroke has some features of the slip in wt [83]. In the AP beating, power
and recovery strokes are clearly distinguished for each flagellum as in the wt
breaststroke. The main difference is that, in the AP, one flagellum executes the power
stroke while the other one executes the recovery stroke. When the cell switches from
IP to AP, the phase difference ∆ between the two flagella increases by 0.5,
corresponding to a half flagellar beating cycle [83]. Instead, when the cell transitions
from AP to IP, the interflagellar phase difference decreases by 0.5. In the example
shown in figure 5.9(a-c), the cell beats normally at the frequency fIP = 49.6 ± 3 Hz,
while, during AP beating, flagella beat at fAP = 74.5± 1 Hz, in agreement with [83].
Here, we computed the interflagellar phase difference between the cis- and trans-
flagella as ∆f(t) = (φcis(t)− φtrans(t))/2π for ptx1 (similar analysis for wt is presented
in Appendix B). Transitions from IP to AP beating are recognizable in the spectrogram,
where the detected beating frequency suddenly jumps. In figure 5.9(b), such frequency
jump can be seen after 2 seconds and 8 seconds from the start of the experiment.
During the switch to AP, the interflagellar phase difference ∆f(t) increases by half
integer. This increment in ∆f(t) indicates that the AP beating is initiated by the
cis-flagellum (upper flagellum in Fig.5.13(a)) and immediately followed by the
trans-flagellum. Results on the interflagellar phase difference in absence of external
flow for 6 cells in 44 recordings show that the cells beat in IP 67± 30% of the time. The
large standard deviation implies that some ptx1 cells did not show AP beating at all in
some recordings. Overall there is a large fluctuation in transitions to AP, but most cells
beat their flagella in IP more frequently than in AP, in agreement with [83]. Moreover,
the ratio between the average frequency during AP and IP is ≈ 3/2, in agreement with
what is found in the literature. In our experiments, the cells were recorded under the
same light conditions used for wt experiments (discussed in 3.2.2) in order to avoid
triggering the photoresponse in the cell by changes in light conditions as in other
previous works [61, 77].

results with background flow

After monitoring ptx1 beating in absence of any external forcing, we imposed an axial
flow at frequency in the range fF = 45− 80 Hz and velocity UF = 100− 1600 µm.s−1.
Results were collected for 5 cells and a total of 221 recordings. In these experiments,
we measured the time fraction in which ptx1 is frequency locked with the external
forcing, and the results are shown in figure 5.9 (d), similarly to the characterization for
wt discussed in section 4.3.2. The behaviour of the mutant ptx1 is less consistent than
that of wt. For example, at UF = 900 µm.s−1 for wt we always observed phase locking
for a forcing frequency fF within ≈ 4.5Hz from f0 (results in figure 4.8(a)). For ptx1,
even at fF ≈ f0, we occasionally observe no phase locking or very short phase locking
events (see figure 5.9 (d)).
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Figure 5.9: (a) Snapshots showing AP beating in ptx1. (b) Spectrogram of flagellar beating
frequency during an experiment in absence of forcing. The higher frequency correspond to
AP beating. (c) Phase difference between flagella in the same experiment as (b). Switches to
AP correspond to increments in interflagellar phase difference ∆f by 0.5 corresponding to half
beating cycle. (d) Synchronization region in ( fF, UF)-domain for ptx1 under axial flow. Each
marker represents a separate recording. UF ranges from 100 µm.s−1 to 1600 µm.s−1. U0 =
110 ± 12 µm.s−1 is the free swimming velocity in wt. Colormap represents the time fraction
when flagellar beating is phase-locked with external flow. It is equal to 1 (black) when phase-
locking is observed for the entire time of recording, while it is 0 (white) when phase-locking is
never observed.
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One possible explanation for this lower incidence of synchronization with the
forcing is the stochastic switching between IP and AP. When beating in AP, the cell has
a frequency ≈ 20 Hz higher than the forcing. Therefore, it cannot synchronize with a
forcing in the range 45− 60 Hz. To investigate whether synchrony could occur during
AP stroke, we imposed a forcing frequency up to 80 Hz. As shown in figure 5.9 (d),
synchronization with the background flow during AP is a rare event. Only two
experiments at fF = 70 − 71 Hz and UF = 560 µm.s−1 show few periods of phase
locking. Apart from these 2 experiments, we also recorded phase locking in AP in 3
recordings where the forcing frequency was fF = 49, 54, 57 Hz. During these events,
AP beating occurred at frequencies in the range of IP beating. This suggests that the
frequency at which the AP stroke occurs can vary significantly (up to ≈ 20Hz) among
cells and also in different recordings of the same cell. The most important finding from
the experiments with external forcing is that phase locking between the flow and the
cell during AP is an extremely rare event (5 experiments out of 221). Therefore, it
seems that the cell during AP stroke is poorly influenced by hydrodynamic forces.
Further evidence on the effect of hydrodynamic forces on ptx1 is discussed in the next
paragraph.

5.3.2 hydrodynamic drag force with and without background flow

To gain insights about the strength of hydrodynamic interaction in AP stroke, we
consider an experiment on ptx1 without any forcing and compare it with an
experiment on the same cell with fF = 49 Hz and UF = 900 µm.s−1. From both
experiments we tracked 10 beating cycles of the AP stroke. Experiments were limited
to about 10 consecutive periods, because in the experiment with background flow the
flagella rarely beat in antiphase and only for short periods of time. In this experiment,
IP beating was observed for 95% of the recording, and during IP beating, flagella were
phase locked with the flow. The velocity of the flow field during one beating cycle in
AP is shown in the snapshots from figure 5.10(a). The reference phase φ = 0 is the
configuration in the first snapshot in figure 5.10(a).

Rate of work in AP beating in absence of forcing
We computed the total rate of work of cis-flagellum (P cis) and trans-flagellum

(P trans), during AP beating (see figure 5.10(b), black line). The rate of work of the
hydrodynamic force on the cis- flagellum is P cis/P0 = 23.3 ± 4.0. Similarly to the
characterization on wt (section 5.2), we separated the hydrodynamic force on the
flagella in different components. We find that the rate of work of the hydrodynamic
interaction force is P cis

int/P0 = 0.016 ± 0.2. This value is three orders of magnitude
smaller than P cis/P0. Therefore, in absence of forcing, the rate of work of the
hydrodynamic force is entirely due to the flagellar motion, and P cis

motion is equal to the
total rate of work. Comparing these results with our results from wt, we find that
Pmotion in ptx1 is 41% lower than in wt. The smaller rate of work can be explained by
the difference in waveform displayed during AP beating. AP beating is characterized
by a reduced stroke amplitude (as shown in figure 5.9(a) with respect to figure
2.1(c,d)). We also find the rate of work of the hydrodynamic interaction force P cis

int to be
approximately 33% smaller for AP beating in ptx1 compared to wt. The forces
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measured on the trans-flagellum have the same magnitude, but a lag in phase equal to
∆ ≡ 0.5 mod 1 and are shown for comparison in figure 5.10(b-d).
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Figure 5.10: Rate of work imposed on ptx1 flagella during AP beating. (a) Snapshots of the
computed velocity field for a cell in presence of axial flow at UF = 900 µm.s−1 and fF = 49Hz. (b-
e) Adimensional rate of work on the cis-flagellum (left) and trans-flagellum (right) as a function
of the unwrapped phase φ. Experiment without external flow (black line) is compared with
experiment with axial flow at UF = 900 µm.s−1 (red line). The total rate of work P cis/P0 and
P trans/P0 in (b) is the sum of three contributions: the rate of work due to the external flow (c),
the rate of work due to flagellar motion (d) and the rate of work due to flagella hydrodynamic
interactions (e).

Rate of work in AP beating in presence of forcing
We now consider experiments with an external flow to which ptx1 synchronizes in

the IP stroke. We focus on the time intervals when the AP stroke is established. We
find that the rate of work due to hydrodynamic interactions is equal to the experiment
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without flow and therefore negligible. The nondimensional rate of work of the
hydrodynamic force (P cis

flow/P0) ranges from −9.7 to 7.8. Similarly to wt, when the rate
of work is negative, the external flow works against the flagellar beating, whereas
when it is positive, the external flow provides useful work to the flagella. It must be
noted that the maximum rate of work due to hydrodynamic interaction between
flagella in AP is P cis

int/P0 = −0.02 ± 0.1. Therefore, its contribution appears to be
irrelevant to the total force.

5.3.3 discussion

In section 5.2, we showed that the symmetric breaststroke in C. reinhardtii is not a
consequence of hydrodynamic interaction between the flagella. Here, we investigated
whether the AP beating mode observed in the mutant ptx1 can instead be induced by
hydrodynamic interactions. By separating contributions, we computed the
hydrodynamic force applied on one flagellum due to the motion of the other one. In
AP stroke, this interaction force is even smaller than in wt due to the scarce interaction
between the flagella that are always at a different phase of the beating cycle.
Furthermore, in our experiment, the cell is synchronized in IP stroke with the
background flow for most of the time. In this experiment, during AP, the rate of work
of the hydrodynamic force due to the external flow is 3 orders of magnitude larger
than the rate of work of the hydrodynamic interaction force. The fact that the cell is
able to interrupt IP, phase locked with the external flow, and switch to AP implies that
AP synchrony is not sustained by hydrodynamic forces since the hydrodynamic force
imposed by the flow would induce the cell to continue IP in order to minimize viscous
drag. The observation that ptx1, regardless of the strong external forcing, can switch to
AP suggests that hydrodynamic forces have neither effect on the AP beating nor on the
switching between IP and AP, as suggested by Leptos et al. [83].

To conclude, the detailed quantitative investigation of the hydrodynamic forces and
the magnitude of the hydrodynamic interaction force in C. reinhardtii wt (section 5.2)
and ptx1 (this section) leads to the conclusion that, in C. reinhardtii, hydrodynamic
interaction between flagella plays no role in flagellar synchronization. The viscous
force imposed by the flow is one order of magnitude larger than the force due to
interflagella hydrodynamic interactions. The cell can overcome the hydrodynamic
viscous forces imposed by the flow by not synchronizing in the case of wt and by
switching to AP in the case of ptx1.

5.4 importance of intracellular coupling : experiments on

the vfl3 mutant

A possible synchronization mechanism, suggested in previous studies, is coupling
through elastic forces through the distal striated fiber, see section 2.3. The distal
striated fibers mechanically connect the basal bodies of the two flagella [65] (see sketch
in figure 5.11(a)). This mechanical connection could play a major role in the flagellar
synchronization for C. reinhardtii, also discussed in [69, 116]. Indeed, if we consider a
force balance on one flagellum, the total hydrodynamic force exerted by the flagellum
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on the surrounding fluid is exactly balanced by the direct mechanical force the same
flagellum exerts on the basal apparatus. As a result, strong mechanical stress
concentration is expected in the region of the cell cortex around the basal apparatus of
the flagella, which far exceeds the viscous stresses inside the fluid. Synchronization is
therefore more likely mediated by elastic stresses, which are conservative and act over
an interflagellar distance of only ∼ 200 nm in the distal fiber (see figure 2.5), rather
than viscous stresses due to hydrodynamic interactions, which are dissipative and act
over an interflagellar distance of ∼ 10 µm in the fluid.

To test this hypothesis, we first investigate flagellar beating in a cell with an
impaired distal fiber. Secondly, additional understanding on the role of coupling is
possible by studying synchronization properties of ’mechanically’ isolated flagella. In
order to characterize mechanically isolated flagella, we study the mutant vfl3, in which
the distal fiber is impaired (details in section 2.3.1). By comparing the results of these
experiments with those performed on wt in Chapter 4, we gain insights into the role of
the distal fiber in flagellar synchronization.

5.4.1 results in absence of flow

We observed the motility of 20 vfl3 cells at the tip of the micropipette. Each individual
flagellum of vfl3 beats actively with normal waveforms and frequencies. In vfl3, the
number of flagella varies from 0 to 3, and we considered only cells with 2 flagella. We
do not refer to the flagella as cis- and trans- since the morphology of the mutant often
does not allow a clear identification of the eyespot. Furthermore, some cells grow two
flagella of the same type, either cis- or trans-. From our experiments with biflagellated
vfl3 cells in absence of any forcing, we report the following observations: first, the two
flagella are always observed to beat in asynchronous fashion for the entire duration
of the recordings, with no frequency locking recorded in flagellar beating. Also, for
most cells, the two flagella beat in the same direction, in contrast with wt cells, whose
flagella beat in opposite directions when performing a breaststroke; see also [81]. For
all 20 cells considered, we found the slower flagellum to beat at 48.6 ± 8.8 Hz and the
faster one at 63.1 ± 6.9 Hz. These observations are consistent with a synchronization
mechanism relying on the distal striated fiber, since for the mutant vfl3 with an impaired
mechanical connection between the flagella, the cis- and the trans- flagellum beat at
their own intrinsic frequency. The beating frequency of each vfl3 flagellum presents
significant fluctuations from one cell to another. Also for the same cell, the intrinsic
beating frequency of each flagellum can vary up to 10 Hz over the course of a recording.

5.4.2 results with background flow

To investigate how an external forcing can affect the beating frequency in this mutant
and whether it can force the flagella to synchronize with each other, we performed the
Experiment type 1 described in section 4.1. We imposed axial flow on vfl3 at velocities
UF = 100− 1308 µm.s−1 and fF = 42− 77Hz on 7 cells. We collected 155 experiments
and we characterized the experimental Arnold tongue similarly to wt in section 4.3.2.
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Figure 5.11: (a) Snapshots representing the stroke patterns in C. reinhardtii wt (top) and in vfl3
mutant (bottom). The mutant has impaired distal fiber, resulting in absence of interflagellar
synchronization. (b, c) Synchronization region in ( fF, UF)-domain in presence of axial flow (a).
Separate representations for the slower flagellum (b) and for the faster flagellum (c). The x-axis
represents ν = f − fL in (b) and ν = f − fH in (c). Each marker represents a separate recording
with colormap based on the time fraction when flagella are synchronized with the external
forcing. This time is 1 (black) in case of full synchrony and is 0 (white) in case of no synchrony. (d)
Experiment where the faster flagellum phase locks with the background flow. (Left) Fast Fourier
Transform showing fL = 47.7 Hz (black line) and fH = 65.5 Hz (red line). (Right) The black line
shows the phase difference ∆(t) = φL(t)/2π − φF(t)/2π between forcing and flagellum beating
at lower frequency. The red line shows the phase difference ∆(t) = φH(t)/2π−φF(t)/2π between
forcing and flagellum beating at higher frequency.
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In figure 5.11(b) we represented the results for the slow flagellum in each cell in the
separate recordings in the (ν,UF)-domain. The frequency detuning is ν = f − fL, with fL
in the range fL = 51.2 ± 5.7 Hz. The forcing velocity has been normalized with respect
to the free swimming velocity of wt. For comparison, the plot shows the limits of the
Arnold tongue based on fitting parameters extracted for wt during axial flow. Regarding
the slower flagellum (figure 5.11(b)), we observe periods of synchronization in only 5
experiments. These events always occur within 5 Hz from the intrinsic frequency fL.
In the other experiments, no phase locking with the flow is detected, even when the
forcing frequency f is very close to fL.

The results for the fast flagellum are shown in figure 5.11(c). For the fast flagellum,
phase locking was detected in 7 experiments, in the range of 5 Hz from the intrinsic
frequency fH, with fH in the range fH = 61.6 ± 4.4 Hz. When the forcing is activated,
the difference in intrinsic frequency between the two flagella is not reduced, and we
never observed phase locking between the two flagella, even at high flow velocities
(UF = 1308 µm.s−1), and even in experiments where the intrinsic beating frequency
between the two flagella only differed by ≈ 5 Hz. Furthermore, in 12% of the
experiments, one of the two flagella has some periods of synchrony with the
background flow, as in the example in figure 5.11(d). In this experiment, the fast
flagellum (red line), whose intrinsic frequency is fF = 64.1 Hz, is phase locked with
the forcing for most of the recording at f = 65.5 Hz. The forcing velocity is
UF = 984 µm.s−1. The slower flagellum intrinsic frequency fL = 50.2 Hz, remains
unaffected by the external forcing. From the results on vfl3, we conclude that the two
flagella are never synchronized with each other, regardless of whether or not an
external hydrodynamic forcing is applied. In wt, with axial flow above 800 µm.s−1, we
observed consistent phase locking between the cell and the forcing in all the
experiments with forcing frequency fF within 5 Hz from the intrinsic frequency f0
(results for wt in section 4.3.2). Instead in vfl3 at similar velocity, phase locking
between one flagellum and the forcing is observed only in 8% of the experiments and
never for the entire recording time.

5.4.3 discussion

In vfl3, the two flagella behave as two independent self-sustaining oscillators. Each
flagellum beats at its own intrinsic frequency. Frequency locking happens indifferently
for the slow (figure 5.11 (b)) or for the fast flagellum (figure 5.11 (c)) as long as the
frequency detuning is within 5 Hz. In fact, phase locking could happen only if the
detuning parameter ν was smaller than the coupling strength ε, deduced from our
experiments with wt C. reinhardtii (see section 4.3.2). In most of the experiments,
however, neither of the flagella synchronizes with the background flow, even when the
forcing frequency was close to the intrinsic frequency (ν ≈ 0). Additionally, in our
experiments, the interflagellar frequency mismatch is never reduced by imposing the
external forcing, and it is not possible to induce the two flagella of vfl3 to beat in
synchrony by hydrodynamic forcing.

Our results for vfl3 in presence of axial flow are in agreement with the hypothesis
that impaired mechanical connection between the two flagella in C. reinhardtii prevents
robust frequency locking. Recently, similar conclusions were drawn by Wan et al. [134].
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Previous studies have suggested the dominance of the cis- over the trans- flagellum
[70–73]. We find no evidence supporting the view that one flagellum is more prone
to synchronization than the other one. In our experiments, both flagella responded to
external forcing in a similar way, despite a significant discrepancy in intrinsic frequency.
Any difference in synchronization affinity in the two flagella is likely mediated by the
mechanical connection between them.

Even though, in the present study, we focused on the organism C. reinhardtii, our
results on the importance of elastic stresses in the cell cortex for flagellar
synchronization have wide implications for other ciliated microorganisms. As a matter
of fact, contractile fibers connecting flagella and cilia are found across a variety of
organisms [135]. In particular, for multiciliated cells, the network of elastic actin fibers
connecting dozens of cilia was reported to play a role in coordination of ciliary
beating [136, 137]. Perturbing the bridges between the actin fibers resulted in loss of
metachronal synchrony of cilia beating [136]. Further investigation in other ciliated
organisms is needed to assess the prevalence of such intracellular coupling.

5.5 asymmetric loading of the cis- and trans- flagella of

wt c . reinhardtii

We confirmed the importance of intracellular coupling in mediating flagellar
synchronization. The strength of this coupling is unknown. We discussed in section
2.3, that cis- and trans- are intrinsically different; the trans- flagellum intrinsically beats
at a frequency 30% higher than the cis-, and in the breaststroke pattern observed in
C. reinhardtii the cis- flagellum is dominant [70–73]. In our experiments (section 4.3.2),
the flagella could be synchronized with a flow at a frequency close to that of the cis-
flagellum, but not to the trans- flagellum. This suggests that the coupling between the
two flagella is not symmetrical. However, further evidence is needed.

Here, we investigate the effect of an external load applied selectively to the cis- or
trans- flagellum. This characterization allows us to compare the different coupling
strength of cis- and trans- flagella with the flow and the interflagellar coupling
strength.

5.5.1 asymmetric loading

Given the short distance between the two flagella, it is difficult to hydrodynamically
isolate one flagellum from the other. Instead, with the same experimental setup
discussed in section 3.2, we performed experiments with flows oriented at an angle
θ = π/4 and θ = −π/4 with respect to the pipette axis. These flows are named
respectively ‘cis-flow’ and ‘trans-flow’. The cell is oriented as in figure 5.12(a), where
the upper flagellum is the cis-flagellum.
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Figure 5.12: (a) Sketch representing directions of the periodic background flow. Cis-flow and
trans-flow form, respectively, an angle θ = π/4 and θ = −π/4 with the pipette axis, assuming
the upper flagellum is the cis-flagellum. Axial flow is parallel to the pipette axis while cross
flow is perpendicular to the pipette axis. (b-d) Snapshots of flow field at UF = 47.6 µm.s−1 and
frequency fF = 47.6 Hz during respectively: axial flow (b), cross flow (c) and cis-flow (d). The red
arrows represent the force distribution exerted by the flagella on the flow.

Cis-flow and trans-flow were imposed on the cell at a constant velocity UF = 478.5±
36.4 µm.s−1. While axial and cross flow impose the same forcing on the two flagella,
the cis-flow and trans-flow do not generate the same force on the cis- and trans- flagella.
The tested frequencies were within the range fF = 47− 60 Hz, with a forcing amplitude
AF =4.5±0.2 µm. For each cell, both cis-flow and trans-flow were imposed successively
at each fF and recorded for 12 s. We also tested forcing frequencies close to the trans-
flagellum intrinsic beating frequency.
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Figure 5.13: Dimensionless force due to external forcing flow Fflow/F0 under axial flow (a), cross
flow (b) and cis-flow (c). Cis-flow imposes a larger load on the cis-flagellum (blue line) rather than
on the trans-flagellum (red line).

To quantify the difference in hydrodynamic force imposed by a cis-flow and a
trans-flow on the two flagella, we computed Fflow/F0 as described previously in
section 5.2. We considered cis-flow and trans-flow at frequency fF = 47.6 Hz. Under
the flow conditions considered, flagellar motion is not synchronized with the external
forcing in any of the flow directions. To show how the load imposed by cis-flow or
trans-flow compares with axial flow and cross flow, we resolved the velocity field in
these 4 flow directions for the same velocity and frequency (UF = 476 µm.s−1 and
fF = 47.6 Hz ). Snapshots of the flow field are shown in figure 5.12(b-d), while the
non-dimensional drag force imposed by the flow Fflow/F0 is shown in figure 5.13. The
force and flow field for trans-flow is not represented, since it is symmetrical with
respect to the cis-flow. If we consider the drag forces imposed by cis-flow on both cis-
and trans-flagellum, shown in figure 5.13(c), we find that the force amplitude varies
with ∆, i.e. the phase difference between flagella and flow, as discussed in section 5.2.3.
Fflow/F0 is the highest when the flagella are in antiphase with the flow (∆ ≈ 0.5). If
we consider the force imposed by cis-flow (figure 5.13(c)), there is a clear difference in
the magnitude of Fflow on the cis- (blue line) and on the trans-flagellum (red line). In
detail, the maximum force imposed by cis-flow on the cis-flagellum is 9.5 pN, while on
the trans-flagellum it is 4.9 pN. The force imposed by cis-flow on the cis-flagellum is
≈ 2 times larger than the force imposed by the same flow on the trans-flagellum.
Likewise, when considering instead the trans-flow, the viscous forces due to the
external flow are almost 2 times larger on trans-flagellum. For comparison, we also
showed the forces imposed by axial flow and cross flow for the same flow velocity and
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frequency. We observe that the maximum force imposed on cis-flagellum by cross flow
is 7.5 pN, while the maximum force imposed on cis-flagellum by axial flow is 9.2 pN.
These calculations show that the cis-flow and trans-flow impose asymmetric forcing on
the flagella. The cis-flow imposes a significantly larger force on the cis-flagellum than
on the trans-flagellum. Conversely, the trans-flow imposes on the trans-flagellum a
significantly larger force than on the cis-flagellum.
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Figure 5.14: Difference between Tcis (time fraction when flagellar beating is phase-locked with
the cis-flow) and Ttrans (time fraction when flagellar beating is phase-locked with the trans-flow).
Results are normalized by the total experiment time T = 12 s and are shown as a function of the
frequency detuning ν = fF− f0, with f0 = 53.1± 2.1 Hz. The dots are coloured to distinguish the
results for different cells.

5.5.2 experimental results

For each frequency imposed, we measured the time fraction when flagellar beating is
synchronized with the flow (see section 4.3.2). We report Tcis/T as the non dimensional
duration of synchronization measured under cis-flow conditions and Ttrans/T as the
one measured under trans-flow conditions. Figure 5.14 shows the normalized difference
between Tcis and Ttrans as a function of the frequency detuning f − f0 for each separate
experiment. Results were collected on 6 cells, represented by different colors of the dots.
The average intrinsic frequency is f0 = 53.1± 2.1 Hz. For each cell and each forcing
frequency, we report Tcis − Ttrans, i.e. the difference between the time that flagella spent
synchronized with cis-flow and the time they were synchronized with the symmetric
trans-flow. Hence, a positive value for Tcis−Ttrans represents a tendency of the flagella to
synchronize with a cis-flow more than with a trans-flow. Since the cis-flow and trans-flow
are equivalent in amplitude and frequency and differ only in the direction, we would
expect the distribution of our experimental results to be centered at zero. Indeed, when
for a given fF, the flagella synchronize for the entire duration of the experiment, then
Tcis − Ttrans ∼= 0. Likewise, when the flagella synchronize neither with cis-flow nor with
trans-flow, then Tcis− Ttrans ∼= 0 as well. We observe that, even though cis-flow and trans-
flow have the exact same velocity and frequency and differ only for the direction along
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which they are imposed (π/4 and −π/4 with respect to the pipette axis), they induce
very different responses from the cell. Indeed, we find that Tcis− Ttrans is almost always
positive (see figure 5.14). In fact, in 47% of the experiments, the cis-flow is triggering
phase locking, while the trans-flow does not. In addition, in almost all experiments
were the flagella were only synchronized with the flow for a fraction of the experiment,
they synchronized longer under cis-flow than under trans-flow. This trend is observed
consistently for each cell and in each separate experiment. It must be mentioned that, in
all the experiments, the two flagella are always coupled with each other and phase slips
between the two are within the slip occurrence observed in unperturbed cells, discussed
in Appendix B. Hence, even though the flow is imposing a higher load on one of the
two flagella the occurrence of slips between the two does not increase. Furthermore, we
investigated whether inducing synchronization with the trans-flagellum would allow
to control the cis-flagellum. For this purpose, we applied cis-flow and trans-flow at
frequency close to the trans-flagellum ( fF = 64− 76 Hz). We imposed a very high flow
velocity in the range UF = 1000− 1500 µm.s−1.
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Figure 5.15: Time fraction when flagellar beating is phase locked with the flow as a function of
ν = fF − f0. Results for cis-flow (a), axial flow (b), trans-flow (c) and cross flow (d). The black line
is the median value computed in different cells while the shaded area indicates the 20th and 80th

percentiles.

In the experiments with cis-flow and trans-flow at fF = 64− 76 Hz, we do not observe
phase locking of flagella with the background flow. Only in one experiment at UF = 1
mm.s−1 and fF = 68.7 Hz, the cell went through a few periods of slips, and the trans-
flagellum synchronized with the external forcing during slip. From these results we
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conclude that it is not possible to synchronize the flagella with a flow at high frequency.
Even when in one instance we synchronized the trans-flagellum with the flow, the cis-
flagellum did not follow.

We computed the coupling strength ε between flagella and forcing by fitting equation
4.14, presented in section 4.3.1, to the experimental results for cis-flow and trans-flow.
The average amplitude of the coupling strength is ε = 1.9± 0.9 Hz for the trans-flow
and ε = 3.4± 0.7 Hz for the cis-flow. In order to compare the cell behaviour for the four
flow directions discussed in this study, we show in figure 5.15 the time fraction TΦ/T
where flagella are phase locked with the flow as a function of the frequency detuning
ν = fF − f0. We considered approximately the same flow velocity in all directions.
Results for axial flow and cross flow at several velocities were discussed in sections
4.3.2 and 4.3.3, and here we represent UF = 541.4± 47 µm.s−1 for the axial flow and
UF = 498.2± 1.9 µm.s−1 for the cross flow (see figure 5.15(a,b)). We find the largest ε
for the cis-flow, followed by axial flow having the coupling strength ε = 2.5± 0.1 . The
smallest synchronization region is obtained with the cross flow, measuring ε = 1.8± 0.1.
The amplitude of the synchronization region is linear with the hydrodynamic load
imposed by the flow on the flagella. In fact, as discussed in section 5.5.1, the highest
load on cis-flagellum is imposed by cis-flow.

5.5.3 discussion

By imposing an asymmetric load on the two flagella, we observed that a load imposed
on the cis-flagellum has a higher coupling strength than a load imposed on the trans-
flagellum. This disparity in coupling strength indicates that the intrinsic frequency f0
is more likely to be perturbed by a forcing acting on the cis-flagellum. This outcome is
consistent with the hypothesis that the cis-flagellum has a dominant role in regulating
the beating frequency of the cell [71, 83]. Results for the forcing at high frequency
( fF ≥ 60 Hz) show that, even with a very strong forcing (up to 1500 µm.s−1), it is not
possible to shift the intrinsic beating frequency of the cell by forcing the trans-flagellum.

Our experimental results indicate that the flagellar beating frequency can be
externally modulated and controlled by imposing a forcing on the cis-flagellum. The
trans-flagellum, on the other hand, is less sensitive to external mechanical forcing. Our
observations suggest that the phase dynamics of the trans-flagellum is not influenced
directly by the external forcing, but instead follows that of the cis-flagellum. This
strong coupling of the trans-flagellum with the cis-flagellum is possibly due to the
mechanical connection between the two flagella.
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C O N C L U S I O N S A N D F U T U R E P E R S P E C T I V E S

This chapter summarizes the conclusions presented in chapters 4 and 5 and presents
future research perspectives on the topic. In chapter 5, we presented several different
experiments that are self-contained studies, therefore only the main conclusions of this
work are listed here.

6.1 conclusions

The objectives of this study were presented in section 2.5. We wanted to investigate
the dominant synchronization mechanism in cilia. Since it has been suggested that
flagella and cilia do respond to hydrodynamic perturbations [12, 44, 91], we developed
an experimental method that allowed us to actively interact with the living organism
by imposing an external hydrodynamic forcing. The main conclusions of this work are
twofold. On the one hand, we compare the behaviour of C. reinhardtii with an ideal
self-sustained oscillator and highlight the close analogy found (chapter 4). On the other
hand, we present arguments that highlight the limits of hydrodynamic interactions
in flagellar synchronization, and we provide evidence to support the importance of
intracellular coupling (chapter 5).

limits of hydrodynamics

Our results indicate that eukaryotic flagella respond to hydrodynamic forces and can be
synchronized with an external flow. However, in C. reinhardtii, synchronization between
the two flagella, having an intrinsic frequency mismatch of 30%, requires a coupling
strength of ≈ 15− 20 Hz [114]. In our experiments we observe that, even if we impose
hydrodynamic forces an order of magnitude larger than the forces experienced by free-
swimming cells, the flagella synchronize with the external forcing only in a range of 5
Hz; hence, only with a coupling strength of 5 Hz. We confirm this result by computing
numerically the flow field around the cell in a typical experiment. We find that the
hydrodynamic force imposed by the external flow is an order of magnitude larger than
the hydrodynamic interaction between flagella, yet the two flagella are coupled together
but are not coupled with the external flow. Therefore, while flagella can synchronize
with an external hydrodynamic forcing, in C. reinhardtii the coupled beating of the two
flagella, which intrinsically beat at different frequency, appears not to be a consequence
of hydrodynamic interactions.
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the model behaviour of c . reinhardtii

In our experiments, we imposed on a single cell a periodic background flow
mimicking the hydrodynamic forces imposed on the flagella of a freely swimming cell.
The cell couples with this external flow by shifting its intrinsic beating frequency to
lock with the frequency of the flow. With these experiments, we investigated the
similarity between wt and an ideal self sustained oscillator. Similar to an ideal self
sustained oscillator, C. reinhardtii can synchronize with an external hydrodynamic
forcing within a certain frequency range delimited by an Arnold tongue. This Arnold
tongue is consistent among several wt cells and delineates a very reproducible
behaviour. We also measured the transition time from the intrinsic frequency to the
forcing frequency, and we found that, although it varies significantly among
experiments, it is inversely proportional to the forcing strength. Similar to an ideal
self-sustained oscillator, once the forcing stops, the intrinsic beating frequency is
immediately restored. Furthermore, we observed that even a forcing imposed for long
time (up to 10 minutes) does not produce permanent modifications in the intrinsic
beating frequency of the cell.

importance of intracellular coupling

The limited role of hydrodynamic forces in flagellar synchronization in C. reinhardtii
suggests that another synchronization mechanism has to be involved. We investigate
as synchronization mechanism the intracellular coupling between flagella. In wt
flagella are mechanically coupled internally to the cell via the distal striated fiber [65].
We performed experiments on the vfl3 mutant of C. reinhardtii in which this connection
is impaired. We observed that the flagella in vfl3 are never synchronized. This result
confirms the hypothesis that the mechanical connection between the two flagella
through the distal fiber is responsible for the flagellar synchronization observed in wt.
Recently, similar conclusions have been drawn by Wan et al. [134].

6.2 future perspectives

As discussed above, synchronization between flagella in C. reinhardtii is due to a cell
internal mechanical coupling between the flagella. An open question is whether this
mechanism is a more general synchronization mechanism in ciliated organisms. This
possibility is discussed in this section together with suggestions on future investigations
on flagellar synchronization.

is intracellular coupling a general synchronization mechanism in

cilia?

We pointed out that intracellular coupling between flagella is likely at the origin of the
synchronous beating observed in C. reinhardtii. Given that contractile fibers connecting
flagella and cilia are present in a variety of organisms [135], is intracellular coupling a
general synchronization mechanism in cilia? A recent study by Wan and Goldstein
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discussed the role of intracellular coupling in algae with 4, 8, and 16 flagella [134].
Their results suggest that synchronization among multiple flagella is the consequence
of combined hydrodynamic interactions and intracellular coupling. Other studies on
multi-ciliated cells reported that damaging of the intracellular coupling in the ciliary
network resulted in loss of metachronal synchrony [136, 137], suggesting that
contractile fibers connecting cilia inside the cell cortex are essential for achieving cilia
coordination.

suggestions for future experiments with background flow

Suggestions on experimental characterizations involving hydrodynamic interactions are
discussed below.

Flagella ’stalling point’
The combination of experimental data with numerical flow computation have

allowed us to quantify several properties of C. reinhardtii, such as the work produced
during its typical limit cycle and the force and rate of work imposed on flagella by the
background flow. A completion of this quantitative analysis on flagellar kinematics
would be achieved by altering the flow viscosity and measuring the flagella ’stalling
point’. It has been reported that an increase in fluid viscosity up to a certain value (2
cP) caused C. rehinartdii cells to increase the propulsive force [133]. Another study on
free swimming C. reinhardtii cells in viscous and viscoelastic fluids points out that
altered viscosity causes modifications in flagellar waveform, frequency, and swimming
speed [138]. With the experimental method described in this thesis, a single cell can be
observed in conditions of altered flow viscosity and in presence of external
hydrodynamic forcing. This experiment would allow to characterize the stalling load
of flagella and the maximum rate of work produced in such condition. Comparison
with the rate of work produced in normal flow viscosity would indicate whether or
not C. reinhardtii is normally swimming at its maximum efficiency. Furthermore, the
effects of altered viscosity on interflagellar coupling could be directly quantified.

An alternative method to reach the stalling point for C. reinhardtii could be imposing
a strong unidirectional flow. In a recent study on C. reinhardtii, a unidirectional flow
parallel to the pipette axis was applied. The stalling velocity was 0.5 mm.s−1 [117]. In
our experiments with oscillatory flow, we never observed stalling, even at a flow
velocity up to 3 mm.s−1. A comparison of flagellar ’stalling load’ in experiments with
increased flow viscosity and oscillatory flow and in experiments with unidirectional
flow in normal fluid viscosity would provide insights on the different response of
flagella to static and dynamic loads.

Further investigation of the role of the distal fibers
The experiments that we performed on the vfl3 mutant of C. reinhardtii highlighted

the crucial role of the distal fiber in mediating flagellar synchronization. However, it
must be pointed out that the behaviour of mutant cells, in this case vfl3, is not as
consistent among different organisms as wt [60]. Indeed, as mentioned in section 5.4,
some vfl3 cells grow three flagella, and in cells with two flagella, the beating frequency
shows large fluctuations in time. Therefore, it would be indeed better to study the
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role of the distal fiber on wt by impairing this structure in normal wt cells, but it
does not seem possible nowadays. It is possible to mechanically remove one flagellum
without damaging the cell [92, 134]. However, since the distal fiber is internal to the cell,
damaging mechanically its structure would cause damage to the cell membrane, and
this would alter the cell motility and lead eventually to its death.

To conclude, the possibility to impair the connection of the distal fiber in healthy
living C. reinhardtii cells would constitute an absolute proof of the role played by distal
fibers in flagella synchronization. More generally, as intracellular coupling could be a
mechanism regulating synchronization in other multi-ciliated organisms, the
experimental approach presented in this manuscript could be applied to other
multi-flagellated cells to study the impact of both hydrodynamic forcing and
intracellular coupling in flagellar synchronization.
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The majority of the experiments performed in this study addresses the behaviour of
C. reinhardtii under external periodic hydrodynamic forcing. As discussed in section
3.2, we generate this forcing by a piezoelectric stage controlled via a LabView user
interface. We send to Labview a sequence of points as the one shown in figure A.1.
This sequence is then either looped infinitely, or for a limited number of periods. Each
point represents the stage position in time in X direction. The time interval between
two consecutive points is 0.266 ms, corresponding to the highest sampling frequency
possible in our piezoelectric stage. Calibration tests are performed by recording, at 900
fps, a glass bead sticking at the bottom of the flow chamber, which thereby directly
follows the motion of the stage. In figure A.1 is shown the imposed sequence of points
with amplitude Ai = 47.2 µm. The points sequence imposed approximates a triangular
waveform (black points). We chose this pattern in order to have a constant velocity
during the unidirectional displacement. However, given the high speed imposed to the
stage, the actual stage motion reconstructed from images is sinusoidal (red points). The
actual stage displacement has the same frequency of the imposed sequence of points
( fF = 59 Hz), but with a lower amplitude AF = 10 µm. We found that the piezoelectric
stage frequency of motion is always identical to the one imposed, but the amplitude
is different. The stage motion is highly non-linear in the frequency range considered
(40− 80 Hz), therefore we performed calibration experiments for each single forcing
frequency fF that we intended to impose on C. reinhardtii and for each flow direction. An
example of calibration curves for axial flow is shown in figure A.2. For each frequency,
we plot the measured stage motion AF as a function of the imposed motion Ai. On each
curve, we fitted a polynomial trend AF = c1 · A2

i + c2 · Ai + c3, with c1, c2, c3 polynomial
coefficients.
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Figure A.1: Stage motion as a function of time. The sequence of points imposed by Labview
interface resembles a triangular waveform with amplitude Ai = 47.2 µm and frequency fF =
59 Hz (black dots). The effective stage displacement measured by tracking a bead has instead
amplitude AF = 10 µm and same frequency (red dots).
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Figure A.2: Calibration curves of the piezoelectric stage for Axial flow. For each frequency fF, a
separate calibration curve is obtained. The x-axis represents the amplitude imposed to the stage
Ai, while the y-axis shows the measured amplitude of displacement in the stage, corresponding
to the effective amplitude of forcing AF.
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We monitored the occurrence of slips by recording cells held at the tip of a
micropipette in absence of external flow perturbations. We observed 23 cells and
performed 41 recordings in absence of flow for up to 80 seconds consecutively. We
measured the time between consecutive slip events and computed its occurrence.
Results are shown in figure B.1(a). In several experiments, no slips were observed
(white bars). Among the cells that experienced slips, the time between slip events is
well described by an exponential decay with time constant τslip = 3.4 s.
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Figure B.1: (a) Histograms of the time between slips in 31 experiments without flow. White bars
represent the experiments in which the cell never slips, while red bars are the cells that slip.
On the latter, an exponential decay has been fitted with time constant τslip = 3.4 s. (b) Phase
difference ∆f(t) between cis- and trans-flagellum in 7 cells shows the occurrence of slip events.

A more accurate description of the behaviour of flagella as self-sustained oscillators
relies on the phase dynamics.

The interflagellar phase difference is obtained as ∆f(t) = φcis(t) − φtrans(t)/2π.
Details about extraction of φcis(t) and φtrans(t) are in section 4.1.2. In figure B.1(b), the
phase difference between the two flagella ∆f(t) = θcis(t)− θtrans(t) is shown for 7 cells.
There are cells that never show slip events for up a to 1 minute recording.
Furthermore, slips are always negative, meaning that cis-flagellum is lagging behind
one beating cycle per slip event. Given that the phase dynamics of the two flagella are
nearly identical, with few interflagellar slips recorded, in the experiments with
external forcing, we consider φ(t) to represent the phase of both beating flagella and
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deduce the time-dependent phase difference ∆(t) between the flagella and the external
forcing flow ∆(t) = (φ(t)− φF(t))/2π, where φF(t) = 2π fFt.
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