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SUMMARY  

Anaerobic membrane bioreactor (AnMBR) technology is increasingly researched for 
wastewater treatment in a circular economy scenario to recover nutrients, water, and biogas. 
AnMBR couples the advantages of anaerobic digestion, such as low sludge production, no 
aeration requirement and biogas production, with the benefits of membrane technology, that 
is, complete solids removal and a high removal degree of pathogenic organisms. Nevertheless, 
membrane fouling remains the major operational challenge, limiting the economic feasibility 
and applicability of AnMBRs. Membrane fouling is responsible for lower flux, higher 
transmembrane pressure, the need for intensive biogas sparging or increased crossflow 
velocities for membrane scouring, and increased frequency of membrane cleaning and 
membrane replacement; consequently, increasing energy and operational costs. 

Researchers extensively studied the causes and mitigation of membrane fouling in both 
aerobic and anaerobic membrane bioreactors. Membrane fouling mitigation strategies have 
focused on optimisation of membrane operational variables, such as: gas sparging, crossflow 
velocity, filtration-relaxation cycle, permeate flux and frequency and intensity of chemical 
cleaning. Although optimisation of operational variables might be suitable when the sludge 
has good or moderate filterability, it may not be adequate or sufficient when fouling is caused 
by a sludge with poor filterability. The application of flux enhancers for fouling control has 
been extensively investigated. Flux enhancers are adsorbents, coagulants and flocculants that 
decrease fouling by changing the sludge characteristics, thereby improving sludge 
filterability. Particularly, cationic polymers have been successfully applied as flux enhancers 
in short-term tests on large-scale aerobic membrane bioreactors (MBRs), whereas in AnMBRs 
research is scarce, and so far, only done at lab-scale. Results from MBRs cannot be directly 
translated to AnMBRs because the extent and nature of membrane fouling under anaerobic 
and aerobic conditions are different.  

This thesis studies the feasibility of dosing cationic polymers into large-scale AnMBRs 
for fouling mitigation, focusing on long-term effects, possible side effects, optimal dosing 
strategy and variation of required dosage. Dosing the cationic polymer Adifloc KD451 was a 
suitable strategy for fouling mitigation in a pilot-scale AnMBR, because it had a long-term 
improvement of filtration performance and sludge filterability, while having no significant 
adverse effects on permeate quality and COD removal efficiency. 

Scarce, and contradictory reports are published on the effect of cationic polymers on the 
microbial community. This thesis analyses the inhibitory effect of the cationic polymer 
Adifloc KD451 on the biological activity of anaerobic sludge. Batch tests showed that the 
cationic polymer presented a significant inhibitory effect on the specific methanogenic 
activity of the sludge. Mathematical modelling was used as a tool to reveal the underlying 
inhibition mechanism. The inhibition was successfully predicted by the non-competitive and 
un-competitive inhibition models. These models describe a biostatic inhibition, namely a 
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reversible process. Accordingly, dosing the cationic polymer to a pilot-scale AnMBR had an 
immediate negative effect on the specific methanogenic activity, but this was a reversible 
process that had no adverse effect on permeate quality or chemical oxygen demand (COD) 
removal efficiency.  

In large-scale membrane bioreactors, the sludge characteristics are constantly changing 
due to variations in the membrane and reactor operational conditions. These variations can 
affect the required optimal dosage of flux enhancer. Previous research revealed a high 
variability of the required optimal dosage of cationic polymers as flux enhancers for different 
types of sludge; however, studies analysing the causes for such variability are lacking. This 
thesis identifies the main factors affecting the optimal required dosage of cationic polymer 
for sludge filterability improvement in AnMBRs. Guidelines for adequate continuous 
application of cationic polymers in full-scale AnMBRs for fouling control are provided.  

Researchers have suggested the possible application of in-situ and online measurement 
of sludge filtration characteristics (such as filterability) for automatic flux enhancer dosing 
control in membrane bioreactors. However, this has not been further studied or tested. In this 
thesis, in-situ sludge filterability measurements allowed to identify the cause of filtration 
performance deterioration and improvement in a pilot-scale AnMBR, and thus provided an 
appropriate input variable for manipulating flux enhancer dosage for fouling control in 
AnMBRs. The sludge filterability was measured with a dedicated installation, — the anaerobic 
Delft filtration characterisation method (AnDFCm) — connected on-line to a pilot-scale 
AnMBR. 

Flux enhancer has been mostly added to membrane bioreactors using an initial 
pulse-dosage that is followed by periodic dosing to compensate for the flux enhancer loss by 
biodegradation and sludge withdrawal. However, this dosing strategy does not consider 
possible disturbances and is based on assumptions that might lead to flux enhancer underdose 
or overdose. This thesis proposes and compares three feedback and two feedforward control 
tools to manipulate flux enhancer dosing into AnMBRs. The comparison was done in a 
simulation environment with an integrated model that predicted the effect of cationic 
polymer dosing on sludge filterability and membrane fouling rate. The integrated model 
coupled filtration, flocculation, and biochemical processes and it was developed, calibrated, 
and validated in this thesis. The most appropriate control tool was a feedback sludge 
filterability controller that dosed cationic polymer continuously. This strategy achieved more 
stable sludge filterability and fouling rate by rejecting disturbances. 
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SAMENVATTING 

De anaerobe membraanbioreactor (AnMBR) technologie biedt interessante mogelijkheden 
voor waterzuivering in een circulaire economie om zo voedingstoffen, water en biogas terug 
te winnen. AnMBR koppelt de voordelen van anaerobe gisting, zoals lage slibproductie, geen 
noodzaak voor beluchting, en biogasproductie, aan de voordelen van membraantechnologie. 
Deze voordelen zijn de volledige verwijdering van deeltjes en een hoge verwijdering van 
pathogene organismen. Desondanks blijft membraanvervuiling (fouling) de belangrijkste 
operationele uitdaging die de economische haalbaarheid en toepasbaarheid van AnMBRs 
beperkt. Het optreden van membraanvervuiling leidt tot een lagere flux, hogere 
transmembraandruk, en vereist aanpassingen in de bedrijfsvoering om deze vervuiling te 
beheersen, zoals recirculatie van biogas of opvoeren van de vloeistof snelheid langs het 
membraan. Daarnaast leidt deze vervuiling tot een verhoogde reinigingsfrequentie en het 
vroegtijdig vervangen van de membranen, wat vervolgens de energie- en operationele kosten 
verhoogt. 

Diverse onderzoekers hebben uitgebreid onderzoek verricht naar de oorzaken en 
mogelijkheden tot vermindering van membraanvervuiling in zowel aerobe als anaerobe 
MBRs. De meest toegepaste strategieën om membraanvervuiling tegen te gaan zijn gericht op 
het optimaliseren van membraan-gerelateerd operationele variabelen zoals: opvoeren van de 
biogas recirculatie en vloeistofsnelheid langs het membraan, aanpassen van de 
filtratie-relaxatie cyclus en de permeaatflux, en de frequentie en intensiteit van het chemisch 
reinigen. Hoewel de optimalisatie van deze operationele variabelen wellicht zeer geschikt zijn 
indien het slib wordt gekarakteriseerd door een goede of middelmatige filtreerbaarheid, zijn 
ze wellicht minder of niet geschikt indien de membraanvervuiling juist wordt veroorzaakt 
door slib met een slechte filtreerbaarheid. Om verlies van een goede membraanflux te 
voorkomen, is de toevoeging van fluxverbeteraars uitgebreid in de literatuur bestudeerd. 
Fluxverbeteraars zijn adsorbentiemiddelen, coagulatiemiddelen en vlokmiddelen die de 
membraanvervuiling verminderen doordat ze de karakteristieken van het slib zodanig 
aanpassen dat ze de filtreerbaarheid van het slib verbeteren. Met name kationische polymeren 
worden met succes toegepast als fluxverbeteraars in aerobe membraanbioreactoren (MBRs) 
op praktijkschaal, terwijl het onderzoek in AnMBRs zich beperkt tot labschaal reactoren. 
Daarbij kunnen de resultaten behaald in aerobe MBRs niet direct worden vertaald naar 
AnMBRs, omdat zowel de mate en aard van de membraanvervuiling anders zijn onder aerobe 
en anaerobe omstandigheden. 

Dit proefschrift bestudeert de haalbaarheid van dosering van kationische polymeren in 
AnMBRs op praktijkschaal om membraanvervuiling te verminderen, waarbij het onderzoek 
is toegespitst op de langetermijneffecten, mogelijke neveneffecten, optimale doseerstrategie, 
en de variatie in de benodigde dosis. Het doseren van het kationische polymeer Adifloc KD451 
bleek een geschikte strategie om membraanvervuiling te verminderen in een AnMBR op 
pilootschaal. Behaalde resultaten lieten een verbetering zien van de membraanfiltratiestap en 
de filtreerbaarheid van het slib op de lange termijn, terwijl er geen significante bijwerkingen 
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waren op de kwaliteit van het permeaat en het verwijderingsrendement van het chemisch 
zuurstofverbruik (CZV). 

Er is slechts weinig gepubliceerd, terwijl resultaten zich soms tegenspreken wat betreft 
de effecten van kationische polymeren op de biologische activiteit en microbiële 
samenstelling van het slib. Dit proefschrift analyseert het remmende effect van het 
kationische polymeer Adifloc KD451 op de biologische activiteit van het anaerobe slib. 
Batchtesten laten zien dat kationische polymeren een significant remmend effect hebben op 
de specifieke methanogene activiteit van het slib. Met behulp van wiskundige 
niet-competitieve (non-competitive en un-competitive) modellen werd aangetoond dat de 
remming door polymeren biostatisch is, dat wil zeggen een omkeerbaar proces. In 
overeenstemming hiermee had de toevoeging van het kationische polymeer aan de AnMBR 
op pilootschaal in eerste instantie een negatief effect op de specifieke methanogene activiteit, 
echter dit bleek ook hier omkeerbaar en de toevoeging had geen bijwerkingen op de 
permeaatkwaliteit of de verwijderingsefficiëntie van CZV op de langere termijn.  

In membraanbioreactoren op praktijk- en pilootschaal, zijn de slibkarakteristieken 
voortdurend aan veranderingen onderhevig vanwege wijzigingen in de operationele 
bedrijfsvoering van de membraan-unit en de bioreactor zelf. Deze wijzigingen kunnen tevens 
van invloed zijn op de optimale dosis van de toe te passen fluxverbeteraar. Eerder onderzoek 
liet een grote variatie zien van de benodigde optimale dosis van kationische polymeren als 
fluxverbeteraar voor verschillende soorten slib. Echter, tot dusver ontbreken verdergaande 
studies die de oorzaken van deze variabiliteit analyseren. Dit proefschrift identificeert de 
belangrijkste factoren die de optimale dosis van kationische polymeren voor de verbetering 
van de slibfiltreerbaarheid in AnMBRs beïnvloeden. Er zijn tevens richtlijnen ontwikkeld ten 
behoeve van de juiste en continue toepassing van kationische polymeren om 
membraanvervuiling in AnMBRs op praktijkschaal te beheersen. 

Diverse onderzoekers hebben gesuggereerd dat in-situ en online metingen van 
slibfiltratiekarakteristieken (zoals de slibfiltreerbaarheid) een mogelijkheid kan zijn om de 
dosering van fluxverbeteraars in membraanbioreactoren te kunnen automatiseren met behulp 
van een regeling. Echter, dit is tot dusver nog niet verder onderzocht of getest. In dit 
proefschrift, zijn in-situ slibfiltreerbaarheidsmetingen toegepast om de oorzaak van de 
verslechtering dan wel verbetering van de filtratieprestatie in een AnMBR op pilootschaal te 
kunnen vaststellen. De verkregen resultaten laten zien dat in AnMBRs de slibfiltreerbaarheid 
inderdaad een geschikte ingangsvariabele is om de dosering van fluxverbeteraars te kunnen 
sturen met als doel de membraanvervuiling te kunnen regelen. De slibfiltreerbaarheid is 
gemeten met een speciaal hiervoor ontwikkelde installatie - the anaerobic Delft filtration 
characterisation method (AnDFCm) – die online werd verbonden met de AnMBR op 
pilootschaal.  

Fluxverbeteraars worden meestal door middel van een pulsdosering toegevoegd aan 
membraanbioreactoren, gevolgd door een periodieke dosering om te compenseren voor het 
verlies van fluxverbeteraars door biologische afbraak en door verwijdering middels spuislib. 
Echter, deze doseerstrategie houdt geen rekening met mogelijke verstoringen en is gebaseerd 
op aannames die er wellicht toe leiden dat fluxverbeteraars worden over- of ondergedoseerd. 
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Dit proefschrift presenteert en vergelijkt drie regelstrategieën gebaseerd op een 
teruggekoppeling en twee regelstrategieën gebaseerd op een voorwaartse koppeling om de 
dosis fluxverbeteraars in AnMBRs te manipuleren. Deze vergelijking is gedaan in een 
simulatieomgeving met een geïntegreerd model dat het effect beschrijft van kationische 
polymeerdosering op slibfiltreerbaarheid en membraanvervuilingssnelheid. Het 
geïntegreerde model koppelt filtratie, flocculatie en biochemische processen. De 
ontwikkeling, kalibratie en validatie van dit model is in dit proefschrift in detail beschreven. 
Resultaten laten zien dat de meest geschikte regelstrategie een slibfiltreerbaarheidregeling 
met terugkoppeling betreft, die het kationische polymeer continu doseert. Met behulp van 
deze strategie kon mede op basis van storingsonderdrukking een stabielere 
slibfiltreerbaarheid en membraanvervuilingssnelheid worden behaald. 
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RESUMEN  

La tecnología de biorreactores anaerobios de membrana (AnMBR, por sus siglas en inglés) 
está siendo crecientemente investigada para el tratamiento de aguas residuales en un marco 
de economía circular para recuperar nutrientes, agua y biogás. AnMBR acopla las ventajas de 
la digestión anaerobia, como ser la baja producción de lodos, ausencia de aireación y 
producción de biogás, con los beneficios de la tecnología de membranas, a saber, remoción 
completa de sólidos y alto grado de remoción de organismos patógenos. Sin embargo, el 
ensuciamiento de la membrana, referido como fouling en inglés, es aún el mayor desafío 
operacional que limita la viabilidad económica y aplicabilidad de los AnMBRs. El 
ensuciamiento reduce el flujo transmembrana y aumenta la presión transmembrana, la 
demanda del efecto abrasivo por burbujeo de biogás o velocidad de flujo cruzado, y las 
frecuencias de limpieza y reemplazo de las membranas; elevando así los costos operacionales 
y de energía.   

Las causas del ensuciamiento y estrategias para mitigarlo han sido extensamente 
investigadas tanto en biorreactores de membranas aerobios como anaerobios. Las estrategias 
de mitigación se han enfocado en la optimización de la operación de la membrana, como ser: 
intensidad de burbujeo de gas, velocidad de flojo cruzado, ciclos de filtración y relajación, 
flujo de permeado y frecuencia e intensidad de limpieza química. La optimización de variables 
operacionales puede ser apropiada cuando el lodo tiene una capacidad a ser filtrado (referida 
como filtrabilidad) buena o moderada, no obstante, esta estrategia puede resultar inadecuada 
o insuficiente cuando el ensuciamiento es causado por lodos con baja filtrabilidad. El uso de 
mejoradores de flujo ha sido extensamente investigado. Los mejoradores de flujo son 
adsorbentes, coagulantes o floculantes capaces de atenuar el ensuciamiento de la membrana 
mejorando la filtrabilidad mediante cambios en las características del lodo. Particularmente, 
polímeros catiónicos han sido utilizados como mejoradores de flujo en ensayos de corto plazo 
en biorreactores aerobios de membrana (MBR, por sus siglas en inglés) de escala real y piloto, 
mientras que la investigación en AnMBRs es escasa, y hasta la fecha únicamente realizada en 
escala laboratorio. Los resultados obtenidos en MBRs no pueden ser directamente traducidos 
a AnMBRs dado que la magnitud y naturaleza del ensuciamiento bajo condiciones aerobias y 
anaerobias es diferente.  

Esta tesis estudia la viabilidad de dosificar polímeros catiónicos para mitigar el 
ensuciamiento en AnMBRs de escala piloto, enfocándose en los efectos a largo plazo, los 
posibles efectos secundarios, la estrategia de dosificación optima y la variación de la dosis 
requerida. El polímero catiónico Adifloc KD451 resultó apropiado para mitigar el 
ensuciamiento en un reactor AnMBR escala piloto dado que sostuvo una mejora en el 
desempeño de la filtración y la filtrabilidad de lodo por un largo plazo. A su vez, dicho 
polímero no produjo efectos adversos significativos en la calidad del permeado y en la 
eficiencia de remoción de la demanda química de oxígeno (DQO). 

Las publicaciones que estudian el efecto de polímeros catiónicos sobre la comunidad 
microbiana son escasas y presentan resultados contradictorios. Esta tesis analiza el efecto 
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inhibitorio del polímero catiónico Adifloc KD451 sobre la actividad biológica de lodos 
anaerobios. En ensayos en discontinuo, el polímero inhibió significativamente la actividad 
metanogénica específica del lodo. Con el uso de modelos matemáticos, se reveló que la 
inhibición del polímero es bioestática, es decir, un proceso reversible, evidenciado por 
modelos de inhibición no competitivos, referidos en inglés como non-competitive y 
un-competitive. En concordancia, la dosificación del polímero en un reactor AnMBR escala 
piloto tuvo un efecto negativo inmediato sobre la actividad metanogénica específica, pero el 
efecto fue reversible, y no afectó la calidad del permeado ni la eficiencia de remoción de DQO.  

En biorreactores de membrana de escala real y piloto, las características del lodo cambian 
constantemente debido a variaciones en las condiciones de operación de la membrana y del 
reactor. Dichas variaciones pueden alterar la dosis optima requerida de mejoradores de flujo. 
Particularmente, investigaciones previas revelaron una alta variabilidad en la dosis optima de 
polímeros catiónicos, al ser usados como mejorador de flujo, en diferentes tipos de lodos. Sin 
embargo, hacen falta estudios que analicen las causas de dicha variabilidad. Esta tesis 
identifica los factores principales que afectan la variabilidad de la dosis optima de polímero 
catiónico requerida para mejorar la filtrabilidad de lodos provenientes de AnMBRs. A su vez, 
en esta tesis se brindan pautas para el uso continuo de polímeros catiónico para mitigar el 
ensuciamiento en AnMBRs de escala piloto y real. 

Investigaciones previas han sugerido el posible uso de mediciones en línea e in situ de 
características de filtración del lodo (como ser la filtrabilidad) para controlar la dosificación 
de mejoradores de flujo en biorreactores de membrana. No obstante, esta estrategia no ha sido 
probada ni estudiada. En esta tesis, mediciones de filtrabilidad del lodo in situ permitieron 
identificar las causas de deterioro y mejora de la filtración en un AnMBR escala piloto y, por 
lo tanto, estas mediciones resultaron ser una variable adecuada para un sistema de control 
que manipule la dosis de mejoradores de flujo en AnMBRs. Las medidas de filtrabilidad del 
lodo se realizaron usando el instrumento de caracterización de la filtración de Delft (AnDFCm, 
por sus siglas en inglés) conectado en línea a un reactor AnMBR de escala piloto. 

La adición de mejoradores de flujo en biorreactores de membrana se realiza usualmente 
mediante un pulso, seguido de adiciones periódicas para compensar la presunta perdida del 
mejorador de flujo por biodegradación o causada por la purga de lodos. Sin embargo, esta 
estrategia no toma en consideración posibles perturbaciones, y se basa en supuestos que 
podrían causar una sobredosis o una dosis insuficiente del mejorador de flujo. Esta tesis 
propone y compara distintos sistemas de control, tres de retroalimentación y dos 
anticipativos, para manipular la dosificación de mejoradores de flujo en AnMBRs. La 
comparación se realizó en un entorno de simulación con un modelo capaz de predecir el efecto 
de la adición de un polímero catiónico sobre la filtrabilidad del lodo y sobre la tasa de 
ensuciamiento de la membrana. El modelo acopla procesos de filtración, floculación y 
bioquímicos, y fue desarrollado, calibrado y validado en esta tesis. El sistema de control de 
filtrabilidad por retroalimentación fue el más apropiado. Este sistema proporcionó una 
dosificación continua del polímero al AnMBR, lo que resultó en una filtrabilidad del lodo y 
una tasa de ensuciamiento de la membrana más estable comparado con los resultados 
alcanzados con los restantes sistemas de control.      
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1 
1 GENERAL INTRODUCTION 

GENERAL INTRODUCTION * 
  

 
* This chapter is partially based on:  
Odriozola, M., Lousada-Ferreira, M., Spanjers, H., and van Lier, J. B. (2021). Effect of sludge characteristics 

on optimal required dosage of flux enhancer in anaerobic membrane bioreactors. J. Memb. Sci. 619, 118776. 
doi:10.1016/j.memsci.2020.118776. 

Odriozola, M., Abraham, E., Lousada-Ferreira, M., Spanjers, H., and van Lier, J. B. (2019). Identification of 
the Methanogenesis Inhibition Mechanism Using Comparative Analysis of Mathematical Models. Front. Bioeng. 
Biotechnol. 7, 93. doi:10.3389/fbioe.2019.00093. 

Odriozola, M., Morales, N., Vázquez-Padín, J. R., Lousada-Ferreira, M., Spanjers, H., and van Lier, J. B. (2020). 
Fouling Mitigation by Cationic Polymer Addition into a Pilot-Scale Anaerobic Membrane Bioreactor Fed with 
Blackwater. Polymers (Basel). 12, 2383. doi:10.3390/polym12102383. 

Odriozola, M., van Lier, J. B., and Spanjers, H. (2022). Optimising the flux enhancer dosing strategy in a 
pilot-scale anaerobic membrane bioreactor by mathematical modelling. Membranes 12, 151. 
doi.org/10.3390/membranes12020151. 
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1.1 ANAEROBIC MEMBRANE BIOREACTOR (ANMBR) TECHNOLOGY  

Anaerobic digestion has become a competitive technology for wastewater treatment in the 
last decades (van Lier et al., 2020). The degradation of organic matter under anaerobic 
conditions yields biogas (mainly composed of methane and carbon dioxide) that can be used 
to e.g., generate heat and electric power. Anaerobic digestion does not require oxygen supply 
and consequently the energy consumption is significantly reduced. Additionally, anaerobic 
digestion has a lower sludge production than degradation under aerobic conditions.  

The development of anaerobic digestion was driven by decoupling the hydraulic and 
solids retention times, HRT and SRT, which was achieved by sedimentation, granulation, or 
immobilization in fixed or moving beds. In AnMBRs the microorganisms are retained inside 
the bioreactor by membranes, which provides a perfect SRT control, enabling the design of 
smaller reactors operating at high SRT. The membranes keep all the microorganisms inside 
the reactor, regardless of whether they are forming flocs or granules, allowing the retention 
of species that would be washed-out from bioreactors with gravity separation technique (Ben 
Aim and Semmens, 2002). This complete retention enables the application of anaerobic 
technologies for high diversity wastewater types, including wastewaters containing slowly 
biodegradables or persistent pollutants, which require the acclimation and growth of specific 
microorganisms. Therefore, AnMBR couples the advantages of anaerobic digestion, that is: 
low sludge production, no aeration requirement and biogas production, with the benefits of 
membrane technology, that is, retention of microorganisms, complete solids removal and a 
high degree of removal of pathogenic organisms (Skouteris et al., 2012).  

AnMBR is an innovative technology for municipal wastewater treatment (Hu et al., 2020; 
Smith et al., 2012) and an established technology for industrial wastewater treatment with 
several full-scale AnMBRs treating wastewater from food processing industries (Dereli et al., 
2012; Dvořák et al., 2016). AnMBR has been increasingly researched for wastewater treatment 
in a circular economy scenario to recover nutrients, water and biogas.  

1.2 MEMBRANE FOULING 

Membrane fouling remains the major operational challenge limiting applicability and 
economic feasibility of AnMBRs (Ozgun et al., 2013). Fouling is the coverage of the membrane 
surface, external and internal, by deposits that adsorb or simply accumulate during filtration. 
It can occur by several mechanisms: pore blocking, adsorption and cake layer formation and 
concentration polarisation. The latter is negligible in membrane bioreactors when compared 
to the other fouling mechanisms. During AnMBR operation, fouling is responsible for 
decreased fluxes and increased transmembrane pressure (TMP), and the need of more 
intensive biogas sparging, increased crossflow velocities, more frequent membrane cleaning 
and membrane replacement (Ozgun et al., 2013), and thus increasing energy and operational 
costs.  
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Membrane fouling in membrane bioreactors has been quantified by different process state 
variables and is expressed using different indicators, such as permeability, TMP development, 
filtration resistance, specific resistance and fouling rate (de La Torre, 2013).  

Membrane fouling can be classified into reversible, irreversible, and irrecoverable fouling 
according to the required type of cleaning to remove it. Reversible fouling can be removed by 
physical cleaning, such as back-flushing or relaxation, irreversible fouling can be removed by 
chemical cleaning but not by physical cleaning, and irrecoverable fouling cannot be removed 
by either physical or chemical cleaning. The fouling rate for each type of fouling is 
significantly different: 0.1-1, 0.001-0.1 and 0.0001-0.001 mbar min-1 for reversible, irreversible 
and irrecoverable fouling, respectively (Kraume et al., 2009). Therefore, different time 
intervals should be considered to study each type of fouling, for example, reversible fouling 
can be assessed in a few minutes, whereas irreversible fouling needs weeks or months, and 
irrecoverable several years (Kraume et al., 2009). Figure 1.1 shows a schematic representation 
of TMP during constant flux operation in a membrane bioreactor and presents the different 
types of fouling that will develop during membrane filtration. Maintenance cleanings are 
regular chemical cleanings performed in-situ to reduce irreversible fouling. Main cleanings 
are intensive chemical cleanings performed once or twice a year. 

Factors impacting membrane fouling have been widely studied (Choo et al., 2000; Deng 
et al., 2016; Dereli et al., 2012; Drews, 2010; Judd and Judd, 2011; Meng et al., 2017; Stuckey, 
2012; Wang et al., 2013). Literature shows that fouling is sensitive to sludge characteristics, 
membrane operation and membrane properties, as shown in Figure 1.2. Membrane operation 
refers to the operational variables, such as imposed flux or TMP, frequency and characteristics 
of mechanical and chemical cleaning, crossflow velocity and gas sparging rate. The sludge 
characteristics are determined by the bioreactor operation conditions, such as solids and 
hydraulic retention times, and substrate type, that is the concentration and characteristics of 
the organic and inorganic materials in the influent. Additionally, certain sludge 
characteristics, such as particle size distribution and floc structure, can be affected by the 
shear rate caused by crossflow velocity or gas sparging rate. The concentration of soluble and 

  
Figure 1.1. Scheme of different fouling mechanisms during long-term operation at constant flux 
(Kraume et al., 2009). 
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colloidal organic matter plays a major role in membrane fouling (Christensen et al., 2018; Judd 
and Judd, 2011; Shi et al., 2018); high concentrations increase fouling by pore blocking, cake 
layer formation, and decrease in cake layer porosity. 

1.3 SLUDGE FOULING POTENTIAL QUANTIFICATION 

The fouling potential is a sludge characteristic that reflects the propensity of the sludge to 
cause fouling under reference operational conditions and membrane properties. Several 
methods have been developed to quantify, and sometimes qualify fouling potential of 
activated sludge using different indicators, such as filterability, critical flux and resistance to 
filtration (de La Torre, 2013; Lousada-Ferreira et al., 2014). These methods can be divided in 
dead-end filtration and filtration test cells methods.  

Dead-end filtration methods include: time to filter test, capillary suction time test, sludge 
volume index test and stirred test cell (de La Torre, 2013). Membrane bioreactors use crossflow 
filtration, therefore, the fouling mechanisms expected from dead-end filtration methods are 
not truly representative of those occurring in membrane bioreactors. 

Filtration test cell methods, using crossflow filtration, include the Delft filtration 
characterization method (DFCm) (Evenblij et al., 2005) developed at the TU Delft, the 
MBR VITO fouling measurement (MBR-VFM) (Huyskens et al., 2008), the Berlin filtration 
method (BFM) (de La Torre et al., 2010) and the critical flux determination by the flux-step 
method (Le Clech et al., 2003). The main output is the sludge quality filtration parameter, 
∆𝑅20 and cake compressibility factor in the DFCm, reversible and irreversible fouling 
resistances in the MBR-VFM and critical flux in both the BFM and the flux-step method. The 

   
Figure 1.2. Factors affecting membrane fouling in AnMBRs (adapted from Deng et al. (2016), Dereli 
et al. (2012) and Stuckey (2012)). 
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∆𝑅20 is the additional resistance when 20 L of permeate per m2 of membrane surface are 
obtained during filtration at constant flux and crossflow velocity in the DFCm installation, 
and it is inversely proportional to sludge filterability. 

The filtration test cell methods have been applied in-situ and ex-situ and they are 
developed and implemented in lab-, pilot- and full-scale MBRs. In a pilot MBR, the MBR-VFM 
was able to detect an increase in the fouling potential of the mixed liquor approximately two 
days before it became apparent in  the online TMP measurements (Huyskens et al., 2008).  

The DFCm was developed at the TU Delft and it has been researched in several PhD 
theses, which show results from activated sludge samples of pilot and full-scale MBRs 
(Evenblij, 2006; Geilvoet, 2010; Lousada-Ferreira, 2011; Moreau, 2010). In the framework of 
the Bio-Water-Methanisation project, the TU Delft modified the DFCm for anaerobic sludge 
filterability assessment (Lousada-Ferreira et al., 2017). The anaerobic DFCm (AnDFCm) has 
been used to measure anaerobic sludge filterability both in-situ and ex-situ. The AnDFCm 
uses a dedicated set-up that comprises a tubular side-stream ultrafiltration membrane, 
combined with a well-defined measurement and cleaning protocol, allowing comparison of 
the filterability of sludge samples. 

The use of in-situ methods to quantify fouling potential has been mainly applied to 
characterise and monitor fouling potential. Furthermore, researchers had suggested its 
potential applicability as measured variable for fouling control in membrane bioreactors 
(Brauns et al., 2011; de La Torre et al., 2010; Huyskens et al., 2008). Nevertheless, to the 
authors’ best knowledge, there is only one published research that used fouling potential 
quantification in a control tool. In a pilot MBR, Huyskens et al. (2011a) applied a membrane 
permeability control tool that used the MBR-VITO reversible fouling potential as measured 
variable to manipulate the aeration flow and relaxation duration. The control tool was unable 
to correct the membrane permeability when the sludge fouling potential was elevated, 
because the manipulated variables (aeration flow and relaxation duration) did not have an 
unambiguous effect on the sludge characteristics. Therefore, the use of fouling potential 
quantification for fouling control tools should be further researched, particularly by coupling 
the fouling potential measurements with a manipulated variable that has a direct effect on 
membrane fouling and sludge fouling potential. 

1.4 STRATEGIES TO MITIGATE MEMBRANE FOULING  

Researchers have extensively studied the causes and mitigation of membrane fouling in both 
aerobic and anaerobic membrane bioreactors (Bérubé et al., 2006; Bouhabila et al., 2001; 
Drews, 2010; Hamedi et al., 2019; Judd and Judd, 2011; Lin et al., 2013; Meng et al., 2017; Wang 
et al., 2013).  

The most implemented strategies to mitigate fouling in AnMBRs are (Robles et al., 2018; 
Shin and Bae, 2018): (1) high shear stress near the membrane surface, (2) increased frequency 
and duration of backwashing and relaxation, (3) reduced permeate flux, and (4) increased 
frequency of chemical cleaning. The first strategy is achieved through increased biogas 
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sparging or crossflow velocity, which are energy intensive processes causing an increased 
energy demand. Additionally, these processes may promote the production of extracellular 
polymeric substances, floc breakage and detachment of soluble and colloidal material (Judd 
and Judd, 2011) which exacerbates fouling. The second and third strategies decrease the 
treatment capacity, namely the daily volume of wastewater treated. The fourth strategy 
reduces the lifespan of the membranes.  

Furthermore, although these four strategies are usually suitable during stable operation 
of the membrane bioreactor, they may not be adequate or sufficient when the fouling is caused 
by sludge with a high fouling potential (Huyskens et al., 2011a). The application of flux 
enhancers for fouling mitigation by changing sludge characteristics and decreasing the sludge 
fouling potential has been extensively investigated and it is further discussed in the next 
section. 

1.5 FLUX ENHANCERS FOR MEMBRANE FOULING MITIGATION 

1.5.1 Definition, application, and mechanisms 

Flux enhancers (FE) are adsorbents, coagulants and flocculants that mitigate membrane 
fouling by modifying the sludge characteristics. Over the last two decades, extensive research 
has been done on the application of FE in membrane bioreactors.  

One of the most comprehensive studies with FE was performed by Iversen, Koseoglu and 
collaborators (Iversen, 2010; Iversen et al., 2009b; Koseoglu et al., 2008). The research started 
with batch experiments using 30 different FE and culminated in the application of three of 
them into a pilot‐scale aerobic membrane bioreactor (MBR): the starch Mylbond168, and the 
synthetic cationic polymers MPE50 and Adifloc KD452. The cationic polymers improved the 
filtration performance in the MBR, whereas starch had a detrimental effect. Nevertheless, in 
short‐term lab experiments performed with a crossflow filtration test cell, the filtration 
performance was improved with the three chemicals, and the improvement obtained with the 
cationic polymers was higher than in subsequent studies in the pilot. The authors postulated 
that the different results in lab-scale and pilot-scale experiments might have been due to the 
hydrodynamic differences between the installations (test cell and MBR). Moreover, the 
authors emphasized the need for more research on FE addition in long‐term and large‐scale 
trials (i.e., pilot and full scale), which was also addressed by other authors (Kulesha et al., 2018; 
Ozgun et al., 2013). Ozgun et al. (2013) reviewed the AnMBR applications for municipal 
wastewater treatment and indicated the need for assessing the feasibility of continuous 
addition of FE during long-term operation. 

Table 1.1 summarises the published applications of FE in large‐scale (i.e., pilot- and 
full-scale) membrane bioreactors. MPE50 was the most commonly employed FE, mostly used 
by researchers at Nalco, the supplier of the polymer (Collins et al., 2006; Wozniak, 2010; Yoon 
and Collins, 2006). In all the studies that applied cationic polymers, namely MPE50 and KD452, 
membrane filtration was improved, which was shown by a TMP decrease or flux increase. 
Therefore, it can be concluded that cationic polymers are suitable FE for fouling mitigation. 



14 | CHAPTER 1  

 

T
ab

le
 1

.1
. L

it
er

at
ur

e 
re

vi
ew

 o
f f

lu
x 

en
ha

nc
er

s 
(F

E)
 a

pp
lie

d 
to

 p
ilo

t a
nd

 fu
ll-

sc
al

e 
M

B
R

s 
an

d 
A

nM
B

R
s 

fe
d 

w
it

h 
re

al
 w

as
te

w
at

er
. 

R
ef

er
en

ce
 

D
on

g 
et

 a
l. 

(2
01

5)
 

D
on

g 
et

 a
l. 

(2
01

8)
 

T
el

i e
t a

l. 
(2

01
2)

 

Iv
er

se
n 

et
 

al
. (

20
09

) 

Iv
er

se
n 

et
 

al
. (

20
09

) 

Iv
er

se
n 

et
 

al
. (

20
09

) 

A
lk

m
im

 e
t 

al
. (

20
16

) 

C
ol

lin
s 

et
 

al
. (

20
06

) 

W
oz

ni
ak

 
(2

01
0)

 

(c
on

ti
nu

ed
)  

  

M
ai

n 
ef

fe
ct

s 
of

 F
E 

pr
es

en
ce

 g
 

↓
fo

ul
in

g,
 ↑

th
ic

kn
es

s 
an

d 
po

ro
si

ty
 fo

ul
in

g 
la

ye
r,

 ↓
PR

 
an

d 
C

H
 o

n 
m

em
br

an
e 

su
rf

ac
e,

 ↑
C

O
D

 r
em

ov
al

s,
 

↓
co

llo
id

al
 C

O
D

 ↓
so

lu
bl

e 
C

O
D

, ↑
pa

rt
ic

le
 s

iz
e.

 

↓
re

ve
rs

ib
le

 fo
ul

in
g,

 ↓
co

llo
id

al
 C

O
D

, 
↓
V

SS
 b

io
de

gr
ad

ab
ili

ty
. 

↓
fo

ul
in

g 
ra

te
, ↓

ca
ke

 r
es

is
ta

nc
e,

 ↑
fi

lt
ra

ti
on

 s
ta

bi
lit

y,
 

↕
SM

P-
PR

, ↕
SM

P-
C

H
,↓

ex
tr

ac
te

d 
EP

S-
PR

 a
nd

 
EP

S-
C

H
. 

↑
T

M
P,

 w
as

he
d 

ou
t w

it
h 

pe
rm

ea
te

, ↑
flo

c 
si

ze
, ↓

C
ST

. 

↓
T

M
P,

 r
et

ar
de

d 
fo

ul
in

g,
 ↕

nu
tr

ie
nt

 r
em

ov
al

, ↓
SM

P,
 

↑
flo

c 
si

ze
, ↓

bi
op

ol
ym

er
s.

 

↓
T

M
P,

 r
et

ar
de

d 
fo

ul
in

g,
 ↕

nu
tr

ie
nt

 r
em

ov
al

, ↓
SM

P,
 

↑
 fl

oc
 s

iz
e,

 ↓
C

ST
. 

↓
fo

ul
in

g 
re

si
st

an
ce

, ↓
T

T
F,

 ↑
PS

D
, ↓

co
llo

id
al

 T
O

C
, 

↓
SM

P,
 ↓

EP
S.

 

↑
flu

x,
 ↓

T
M

P,
 ↓

fo
am

. 

↓
T

M
P,

 ↑
pe

rm
ea

bi
lit

y,
 ↑

flo
w

, ↓
pe

rm
ea

te
 C

O
D

, 
↓

ch
em

ic
al

 c
le

an
in

g 
fr

eq
ue

nc
y,

 ↓
fo

am
. 

t (
d)

 

90
 

70
 

65
 

50
 

63
 

74
 

22
0 

20
 

30
 

W
as

te
w

at
er

 
fe

d 

M
un

ic
ip

al
 

M
un

ic
ip

al
 

D
om

es
ti

c 
an

d 
te

xt
ile

 

M
un

ic
ip

al
 

M
un

ic
ip

al
 

M
un

ic
ip

al
 

R
ef

in
er

y 
ef

flu
en

t 

M
un

ic
ip

al
 

Le
ac

ha
te

 

𝐴
m

 
(m

2 )
 

5.
4 

5.
4 1 22
 

22
 

22
 

0.
9 

60
 

10
00

 

V
 

(m
3 )

 

0.
55

 

0.
55

 

- 1 1 1 

0.
12

 

10
.2

 

- 

R
ea

ct
or

 
ty

pe
 

A
nM

B
R

 

A
nM

B
R

 

M
B

R
 

M
B

R
 

M
B

R
 

M
B

R
 

M
B

R
 

M
B

R
 

M
B

R
 

D
os

in
g 

st
ra

te
gy

 c  

St
ep

 in
 

in
flu

en
t 

St
ep

 in
 

in
flu

en
t 

P+
C

(W
) 

P+
C

 (W
) 

P+
C

 (W
) 

P+
C

 (W
) 

P+
C

 (W
 &

 
B

); 
Pu

ls
es

 

P+
C

(B
) 

P+
C

 (-
) 

D
os

in
g 

co
nt

ro
l b

 

FF
 

FF
 

FF
 

FF
 

FF
 

FF
 

FF
; F

B
 

FF
 

FF
 

FE
 ty

pe
 a
, 

do
sa

ge
 

(m
g 

L-
1 )

 

Fe
C

l 3
, 2

6 

Fe
C

l 3
, 1

2-
21

, 
43

 

PA
C

l, 
12

.5
 m

g 
gT

S
S-

1  

M
yl

bo
nd

16
8,

 
1,

50
0-

2,
00

0 

K
D

45
2,

 7
0 

M
PE

50
, 5

00
 

M
PE

50
, 2

50
 

M
PE

50
, 4

00
 

M
PE

50
, 4

00
 

R
ea

ct
or

 
re

fe
re

nc
e 

R
1 

R
2 

R
3 

R
4 

R
4 

R
4 

R
5 

R
6 

R
7 

 



GENERAL INTRODUCTION | 15 

 

T
ab

le
 1

.1
. c

on
ti

n
u

ed
.  

Li
te

ra
tu

re
 r

ev
ie

w
 o

f f
lu

x 
en

ha
nc

er
s 

(F
E)

 a
pp

lie
d 

to
 p

ilo
t a

nd
 fu

ll-
sc

al
e 

M
B

R
s 

an
d 

A
nM

B
R

s 
fe

d 
w

it
h 

re
al

 w
as

te
w

at
er

. 
R

ef
er

en
ce

 

W
oz

ni
ak

 
(2

01
0)

 

Y
oo

n 
an

d 
C

ol
lin

s 
(2

00
6)

 
Y

oo
n 

an
d 

C
ol

lin
s 

(2
00

6)
 

(Y
oo

n 
an

d 
C

ol
lin

s 
(2

00
6)

 
Y

oo
n 

an
d 

C
ol

lin
s 

(2
00

6)
 

M
un

z 
et

 a
l. 

(2
00

7)
 

R
em

y 
(2

01
2)

 

a  M
PE

50
 a

nd
 K

D
45

2 
ar

e 
ca

ti
on

ic
 p

ol
ym

er
s;

 P
A

C
l i

s 
po

ly
al

um
in

um
 c

hl
or

id
e;

 a
nd

 M
yl

bo
nd

16
8 

is
 a

 s
ta

rc
h.

 
b  

FF
: f

ee
df

or
w

ar
d 

do
si

ng
, w

he
re

 F
E 

is
 d

os
ed

 to
 a

ch
ie

ve
 a

 ta
rg

et
 c

on
ce

nt
ra

ti
on

. F
B

: f
ee

db
ac

k 
do

si
ng

, w
he

re
 F

E 
is

 a
dd

ed
 b

as
ed

 o
n 

th
e 

va
lu

e 
of

 a
n 

in
pu

t v
ar

ia
bl

e.
 

c  
P,

 p
ul

se
-d

os
ag

e:
 r

ea
ct

or
 s

pi
ke

d 
w

it
h 

FE
; P

+C
, p

ul
se

 a
nd

 c
om

pe
ns

at
io

n:
 in

it
ia

l p
ul

se
 d

os
ag

e 
th

at
 is

 f
ol

lo
w

ed
 b

y 
pe

ri
od

ic
 a

dd
it

io
ns

 t
o 

co
m

pe
ns

at
e 

lo
ss

 o
f 

FE
 

w
it

h 
sl

ud
ge

 w
it

hd
ra

w
al

 (W
) a

nd
 1

%
 b

io
de

gr
ad

ab
le

 fr
ac

ti
on

 (B
), 

or
 th

e 
ca

us
e 

w
as

 n
ot

 s
pe

ci
fi

ed
 b

y 
th

e 
au

th
or

s 
(-

). 
 

d  
T

ot
al

 b
io

re
ac

to
r 

vo
lu

m
e 

ca
lc

ul
at

ed
 b

as
ed

 o
n 

to
ta

l M
PE

50
 a

dd
ed

 (3
00

 k
g)

 a
nd

 ta
rg

et
 c

on
ce

nt
ra

ti
on

 (4
00

 m
g 

L-
1 )

.  
e  D

es
ig

n 
op

er
at

io
na

l v
ol

um
e 

50
 m

3  d
-1

. 
f  R

ep
or

te
d 

re
su

lt
s 

fo
r 

1 
da

y,
 b

ut
 M

PE
50

 r
em

ai
ne

d 
in

 th
e 

sy
st

em
.  

g  N
om

en
cl

at
ur

e:
 ↑

, i
nc

re
as

e;
 ↓

, d
ec

re
as

e;
 ↕

, n
o 

si
gn

if
ic

an
t c

ha
ng

e.
 A

bb
re

vi
at

io
ns

: C
O

D
, c

he
m

ic
al

 o
xy

ge
n 

de
m

an
d;

 C
ST

, c
ap

ill
ar

y 
su

ct
io

n 
ti

m
e;

 E
PS

, e
xt

ra
ce

llu
la

r 
po

ly
m

er
ic

 s
ub

st
an

ce
s;

 P
R

, p
ro

te
in

s;
 C

H
, c

ar
bo

hy
dr

at
es

; 
PS

D
, p

ar
ti

cl
e 

si
ze

 d
is

tr
ib

ut
io

n;
 S

M
P,

 s
ol

ub
le

 m
ic

ro
bi

al
 p

ro
du

ct
s;

 T
M

P,
 t

ra
ns

m
em

br
an

e 
pr

es
su

re
; 

T
T

F,
 ti

m
e-

to
-f

ilt
er

; V
SS

, v
ol

at
ile

 s
us

pe
nd

ed
 s

ol
id

s.
 

 

M
ai

n 
ef

fe
ct

s 
of

 F
E 

pr
es

en
ce

 g
 

↓
T

M
P,

 ↑
pe

rm
ea

bi
lit

y,
 ↓

 p
er

m
ea

te
 C

O
D

, ↓
ch

em
ic

al
 

cl
ea

ni
ng

 fr
eq

ue
nc

y,
 ↓

fo
am

. 

↑
cr

it
ic

al
 fl

ux
. 

↑
pe

rm
ea

bi
lit

y,
 ↑

on
e-

da
y 

pe
ak

 fl
ux

. 

↑
flu

x,
 ↓

pe
rm

ea
te

 C
O

D
. 

↑
flu

x,
 ↓

sh
ut

s 
do

w
n 

tr
ig

ge
re

d 
by

 h
ig

h 
T

M
P,

 ↑
on

e-
da

y 
pe

ak
 fl

ux
. 

↓
fo

ul
in

g 
ra

te
, ↓

ch
em

ic
al

 c
le

an
in

gs
, C

O
D

 r
em

ov
al

 
st

ab
ili

sa
ti

on
. 

↑
cr

it
ic

al
 fl

ux
, ↑

su
st

ai
na

bl
e 

fi
lt

ra
ti

on
 p

er
io

d,
 ↓

ge
l-

ca
ke

 
de

po
si

ti
on

, ↑
re

m
ov

ab
ili

ty
 o

f g
el

-c
ak

e,
 ↑

pe
rm

ea
te

 
qu

al
it

y.
 

t (
d)

 

12
 

14
 

>1
 f  

35
 

35
 

13
9 

14
0 

W
as

te
w

at
er

 
fe

d 

Fo
od

 
In

du
st

ry
 

M
un

ic
ip

al
 

M
un

ic
ip

al
 

M
un

ic
ip

al
 

M
un

ic
ip

al
 

w
it

h 
w

ax
es

 

T
an

ne
ry

 
In

du
st

ry
 

M
un

ic
ip

al
 

𝐴
m

 
(m

2 )
 

- 0.
5 - 6.
4 - 6 0.
1 

V
 

(m
3 )

 

12
5 

0.
2 

75
0 

d  

- - 
e  

0.
52

 

0.
08

5 

R
ea

ct
or

 
ty

pe
 

M
B

R
 

M
B

R
 

M
B

R
 

M
B

R
 

M
B

R
 

M
B

R
 

M
B

R
 

D
os

in
g 

st
ra

te
gy

 c  

P+
C

 (-
) 

P+
C

 (-
) 

P+
C

 (-
) 

P 

P+
C

 (W
) 

P+
C

 (-
) 

R
am

p 
up

 

D
os

in
g 

co
nt

ro
l b

 

FF
 

FF
 

FF
 

FF
 

FF
 

FF
 

FF
 

FE
 ty

pe
 a
, 

do
sa

ge
 

(m
g 

L-
1 )

 

M
PE

50
, 6

00
 

M
PE

50
, 5

00
 

M
PE

50
, 4

00
 

M
PE

50
, 2

00
 

M
PE

50
, 3

00
 

PA
C

, 1
,5

00
, 

3,
00

0 

PA
C

, 5
00

 

R
ea

ct
or

 
re

fe
re

nc
e 

R
8 

R
9 

R
10

 

R
11

 

R
12

 

R
13

 

R
14

 

 



16 | CHAPTER 1  

 

However, all those studies were performed in (aerobic) MBRs. The extent and nature of the 
membrane fouling mechanisms in MBRs and AnMBRs can be very different because of the 
very different biomass developments and the different characteristics of the potential foulants 
under aerobic and anaerobic conditions (Judd and Judd, 2011; Xiong et al., 2016). Particularly, 
under anaerobic conditions, higher concentrations of colloidal organic matter are reported 
compared to aerobic conditions, which might result in higher fouling rates (Judd and Judd, 
2011). Therefore, the results from aerobic MBRs cannot be directly translated to AnMBRs, and 
it is important to study the feasibility of using cationic polymers for fouling mitigation in 
AnMBRs. 

To the authors’ best knowledge, to date there are only two publications about the 
application of cationic polymers in AnMBRs, both performed at lab scale—Diaz et al. (2014) 
achieved a flux increase by dosing 1.5 g L−1 of MPE50 to a 4.5 L AnMBR fed with synthetic 
wastewater, and Kooijman et al. (2017) obtained a decrease in the specific resistance to 
filtration (SRF) by applying 10 g kg−1 of the cationic polymer Calfloc P1502, combined with 
40% FeCl3, to an anaerobic dynamic membrane bioreactor (AnDMBR) fed with waste activated 
sludge. Furthermore, cationic polymers have been studied in batch tests with anaerobic sludge 
samples, leading to improved filtration characteristics in dead‐end filtration tests (Braguglia 
et al., 2006; Díaz et al., 2014; Kooijman et al., 2017b) and cross‐flow filtration tests (Díaz et al., 
2014; Zhang et al., 2017). Therefore, cationic polymers are suitable FE for fouling mitigation 
in lab-scale AnMBRs and large-scale MBRs (Table 1.1). However, these FE should be further 
studied in long-term large-scale AnMBRs. 

Figure 1.3 illustrates the interaction between cationic polymers and colloidal particles. 
Electrostatic repulsion between the negatively charged colloidal particles prevent them from 
agglomerating, whereas the intermolecular attraction promotes bonding. Cationic polymers 
promote colloidal agglomeration by bridge flocculation or electrostatic patch mechanisms 
(Bratby, 2016). In bridge flocculation, the polymer segments are adsorbed onto the surface of 
different colloid particles linking them together. In electrostatic patch mechanisms, the 
polymer is adsorbed onto the particle surface creating positively charged patches that 
interact, upon collision, with the negative surface of other colloidal particles to form flocs. 

 
Figure 1.3. Schematic representation of mechanisms of destabilization and re-dispersion of 
negatively charged colloidal particles by cationic polymers. 

Colloidal particles in

 stable suspension

Cationic

polymer
Patch mechansim

Bridging mechanism

Re-dispersed

colloidal particles

L



GENERAL INTRODUCTION | 17 

 

Moreover, excessive cationic polymer dosages can cause particle redispersion, also designated 
as deflocculation or re-stabilisation, by saturation of bridging sites or charge reversal due to 
complete surface coverage (Bratby, 2016). 

1.5.2 Optimal dosage  

Researchers have determined the optimal required dosage of different cationic polymers in a 
variety of sludge samples and obtained significantly different results. For aerobic sludge 
samples, reported dosages of Adiflocs range from 10 (Gkotsis et al., 2017) to 70 mg L-1 (Iversen 
et al., 2009b; Koseoglu et al., 2008), and of MPE50 from 100 (Collins et al., 2006) to 600 mg L-1 

(Wozniak, 2010). For anaerobic sludge, dosages of MPE50 from 300 to 1500 mg L-1 have been 
applied. Wozniak (2010) has recommended to evaluate weekly the optimal dosage for a 
continuous application of FE to an MBR, to adapt the dosage to the variable conditions. Díaz 
et al. (2014) determined the optimal dosage of MPE50 based on specific resistance to filtration 
(SRF) measurements during biodegradability tests of waste activated sludge. The latter 
authors obtained different values for the optimal dosage during the biodegradation test due 
to an increase in protein concentration in the soluble fraction. Despite the variability of the 
optimal dosage required for different sludge samples that has been reported in literature, there 
are no studies analysing the cause for such variability.  

In large-scale membrane bioreactors the sludge characteristics are constantly changing 
due to variations in the membrane and reactor operational conditions, for example by 
fluctuations in organic loading rate or in the air/gas sparging rate, or even due to shock loads 
and seasonal changes (Drews, 2010). For example, Koseoglu et al. (2008) reported fluctuations 
in permeability between 844 and 2077 L m-2 h-1 bar-1 under constant operational conditions in 
a pilot MBR within a 2-week period. The authors also indicate the importance of long-term 
studies to assess the irreversible fouling. The former aforementioned variations can impact 
the required dosage of FE (Iversen et al., 2009b). 

The required FE dosage would be ideally determined by adding FE directly to membrane 
bioreactors and quantifying membrane fouling. However, this approach is not feasible 
because if the FE is applied at high dosages, adverse effects on the membrane filtration 
performance, biological activity and permeate quality may arise (Section 1.5.4). Alternatively, 
quantifying the sludge fouling potential of sludge samples might be a more appropriate 
method to determine optimal dosage. In previous research, optimal dosages were mostly 
determined based on soluble or colloidal organic matter removal, or using dead-end filtration 
measurements such as: time-to-filter, specific resistance to filtration, capillary suction time 
and volume of filtrate collected after a defined filtration time. However, crossflow filtration 
mode methods, as mostly applied in full-scale membrane bioreactors, are expected to 
represent more accurately the fouling mechanisms occurring in membrane bioreactors than 
dead-end filtration methods.  
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1.5.3 Dosing strategies 

The most common strategy of dosing FE to membrane bioreactors, as presented in Table 1.1, 
is to establish and sustain a desired concentration of FE inside the reactor based on different 
assumptions, such as FE biodegradability and optimal dosage. The term “feedforward dosing” 
is introduced to describe this strategy, which was previously referred to as preventive FE use 
(Alkmim et al., 2016). Feedforward dosing has been applied by performing an initial pulse of 
FE to achieve the desired concentration, followed by periodic additions to compensate for the 
loss of FE due to sludge withdrawal and possible FE biodegradation. The desired 
concentrations have been estimated in batch tests with sludge samples from the reactor before 
FE addition or based on reported values. FE biodegradation has been considered negligible or 
based on supplier’s recommendation; for example, Nalco suggests that 1% of the MPE50 is 
biodegraded daily (Alkmim et al., 2016). Furthermore, all researchers in Table 1.1 who 
performed feedforward dosing, did not explicitly consider the possible FE loss in the permeate 
and used a unique target FE dosage that did not change over the reactor’s operation. 
Moreover, feedforward dosing does not consider possible unmeasured disturbances, such as 
fluctuations in the influent characteristics, which can be present in full-scale plants even 
when operating under design conditions. Therefore, despite being the most used dosing 
strategy, feedforward dosing is based on assumptions that might lead to under- or overdose 
of FE. Overdosing FE can have detrimental effects on filtration performance, permeate quality 
and biological activity (Section 1.5.4), whereas underdosing FE may result in insufficient 
improvement of the sludge filtration performance. 

An alternative FE dosing strategy is to adjust the dosage of FE based on an input variable 
that quantifies the sludge fouling potential, such as filterability. The term “feedback dosing” 
is introduced for this strategy, which was previously referred to as corrective FE use (Alkmim 
et al., 2016). In feedback dosing, a pulse of FE is applied to the reactor only when the sludge 
filterability is deteriorated. Feedback dosing does not require the assumptions made in 
feedforward dosing and it can reject possible unmeasured disturbances on the sludge filtration 
characteristics, and thus avoid under- or overdosing of FE. Nevertheless, the major challenge 
in feedback dosing is to identify an appropriate variable to quantify sludge fouling potential 
that could be measured at an appropriate frequency, preferably in-situ and online. Various 
researchers suggested the possible application of the online measurement of sludge fouling 
potential for automatic FE dosing control in membrane bioreactors (Brauns et al., 2011; 
Iversen, 2010). However, this has never been further studied or tested. 

1.5.4 Side effects  

Dosing inorganic coagulants, such as polyaluminium chloride, FeCl3, Al2(SO4)3 and polymeric 
ferric sulphate may decrease pH when increasing their dosage, when no pH correction is 
applied, whereas organic polymers and adsorbents do not affect pH (Bratby, 2016; Song et al., 
2008; Zhang et al., 2017).  

Powdered activated carbon (PAC) is the most widely applied adsorbent for fouling control 
in lab-scale experiments. The PAC with adsorbed sludge has reduced adsorbent capacity and 
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needs regular replacement (Skouteris et al., 2015); consequently, the sludge adsorbed to the 
PAC is lost during replacement. Avoiding sludge loss is crucial in anaerobic processes because 
the biomass has a low growth rate and a low sludge yield. Moreover, Iversen (2010) reported 
adverse effects of the residuals from chemical activation of PAC on biomass activity.  

Excess dosage of FE could lead to adverse effects (Drews, 2010). Several researchers have 
observed an adverse effect at FE dosages higher than the optimal dosage on different response 
variables (Braguglia et al., 2006; Collins et al., 2006; Díaz et al., 2014; Koseoglu et al., 2008; 
Wozniak, 2010; Zhang et al., 2017), such as filtration performance. Particularly, for cationic 
polymers, an excessive dosage can cause colloidal particle deflocculation (Figure 1.3) resulting 
in deteriorated sludge filtration characteristics. Moreover, when overdosing FE, a fraction of 
FE remains unbonded in the bulk liquid and can cause intense fouling by FE adsorption on 
the membrane surface and inside the pores (Iversen et al., 2008) or potentially contaminate 
the permeate by passing through the membrane.  

Iversen et al. (2008) studied the biological inhibition of 12 FE on aerobic sludge, namely 
one polyaluminium chloride, two chitosans, two activated carbons, five polymers and two 
starches. Their results showed no or only slightly inhibitory effect on the endogenous oxygen 
uptake rate with all the FE tested. For the exogenous oxygen uptake rate, six FE were shown 
to present no inhibitory effect, four had a slightly inhibitory effect and two polymers (i.e., 
Adiflocs KD451 and KD452) had a considerable inhibitory effect (50-70% inhibition). 
Polydiallyldimethylammonium chloride (polyDADMAC) is the component of several cationic 
polymers used as FE, such as Adifloc KD451, Adifloc KD452, and MPE50. In different research 
fields, polyDADMAC has been reported as an anti-microbial agent (Tran et al., 2017; Wang 
et al., 2017; Zhao et al., 2016) that can physically disrupt the prokaryotic cell wall. Therefore, 
scarce, and contradictory reports are published on the effect of FE on the microbial 
community. Another possible effect of FE on the sludge biological activity is the decrease in 
substrate availability caused by mass transfer limitation inside the formed larger aggregates 
(Kooijman et al., 2017b). The increased particle size caused by some FE may decrease the 
surface to volume ratio and a diffusion limitation inside the aggregate could be observed.  

1.6 MEMBRANE FOULING CONTROL TOOLS  

The main goal of a control tool is to maintain the controlled variable at a desired value despite 
the disturbances that may arise from other inputs. The elements of the control tool are a 
sensor (measuring device), a controller and an actuator (final control element). The controlled 
variable is the variable to be regulated, the setpoint is the desired value of the controlled 
variable, the manipulated variable is an input variable that can be adjusted by the controller, 
disturbances are input variables that influence the controlled variable and can be measured 
or unmeasured, and the measured variable is the value of the controlled variable (feedback 
control) or disturbances (feedforward control) to be used by the controller to take a control 
action. Basic or advanced controllers can be used, basic controllers are on-off or PID 
(proportional integral derivative), and advanced controllers are fuzzy logic, neural network, 
hybrid systems and model predictive control. 
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Figure 1.4 illustrates three basic control configurations, that is: feedback control (also 
called closed-loop control), feedforward control, and open-loop control. Feedback and 
feedforward control also can be used in combination. Feedback control is the most widely 
used configuration, it measures the controlled variable and takes a control action based on 
the difference between the measured value and the desired value. Feedforward control 
measures the disturbances and takes a control action to reduce or eliminate the effect of 
disturbances on the controlled variable. Feedforward control requires a mathematical model 
of the effect of disturbances and manipulated variables on the controlled variable. Open-loop 
control sets the manipulated variable to a given value with the expectation that it will result 
in the desired value of the controlled variable.  Open-loop cannot reject any disturbance and 
feedforward cannot reject unmeasured disturbances, and both configurations are sensitive to 
modelling errors and parameter changes in the process. The main advantages of feedback 
control are that it does not require a mathematical model and it can reject all the disturbances 
without requiring identification and measurement of any disturbance. However, feedback 
control can only be applied when the controlled variable can be measured with a sensor suited 
for or adapted to in-, on- or at-line measurement, able to transmit that measurement as an 
electrical signal back to the controller, and to generate data at a higher frequency than that 
at which changes in the controlled variable occur. 

The first step to design a control tool is to formulate the control objective based on 
operational requirements; then input and output variables must be identified and classified 
into controlled, manipulated, disturbance, and measured variables; followed by identification 
of constrains, operating characteristics, and environmental, safety and economic 
considerations; and finally, determine the best control configuration (Bequette, 2003). 
Furthermore, the actuator must be able to receive the controller output signal and trigger a 
corrective action (manipulated variable) that impacts the process quickly and significantly. 
The sensor must have the characteristics previously mentioned. Thus, it is essential to know 
the dynamics of the control elements. 

Researchers have published various control tools for energy savings and improvement of 
permeate quality successfully applied in pilot and full-scale MBRs (Krzeminski et al., 2017). 
These strategies include open- and closed-loop applications and focus on energy savings by 
different aeration strategies. In closed-loop control strategies the measured and controlled 
variables are usually TMP change in time, resistance, permeability and permeate flux. The 
manipulated variables are: duration of aeration cycle, aeration flow rate, permeate flux, 
filtration cycle (duration and initiation) and frequency of chemical and mechanical cleaning 
(Ferrero et al., 2012). Although these controlled variables provide information about the 
consequence of fouling, they are not strong variables for fouling control tools because they 
do not provide information about the cause of fouling (Ferrero et al., 2012) and cannot 
discriminate between fouling and clogging (Drews, 2010). For example, a sudden increase in 
the TMP development could be caused either by a currently high sludge fouling potential or 
by the cumulative effect of past fouling events (Huyskens et al., 2011a). 
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Relating the sludge fouling potential measurements with the membrane filtration process 
state variables, such as flux and TMP development, allows to identify the cause of the problem 
when the membrane performance is deteriorated (Kraume et al., 2009), that is, identify 
whether the problem is caused by a high sludge fouling potential or by inadequate setting of 
membrane operational parameters, such as low gas sparging rate, high flux, insufficient 
mechanical or chemical cleaning frequency. Therefore, a control tool that couples fouling rate 
measurements with membrane filtration performance could identify the cause of the problem 
and decide on the appropriate intervention, namely manipulate either the sludge 
characteristics or the membrane operation. 

Brauns et al. (2011) presented an advanced control tool based on fuzzy set logic, which 
uses the MBR-VFM in-situ fouling measurement tool as measured variable and manipulates 
the setpoint of 17 different variables, each setpoint having an individual fuzzy set logic control 
block. The control tool uses the typical manipulated variables in an MBR, such as 
backwash/aeration/relaxation frequency and duration, and dosage and dosing frequency of 
FEs. This control tool was validated in a pilot-scale MBR fed with municipal wastewater, using 

   
Figure 1.4. Block flow diagrams (A) feedback (close-loop) control, (B) feedforward control, and 
(C) open-loop control. 
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aeration flow and relaxation duration as manipulated variables (Huyskens et al., 2011a). They 
observed a correlation between in-situ permeability and reversible fouling potential, 
indicating that the in-situ reversible fouling potential measured by MBR-VFM is an 
appropriate input variable for the control tool. However, the control tool was not able to 
correct the membrane permeability when the sludge fouling potential was elevated, because 
the manipulated variable (aeration flow) did not have an unambiguous effect on the sludge 
characteristics.  

Although several control strategies have been presented for aerobic MBRs only a few 
have been developed for AnMBR. Jeison and van Lier (2006) presented an online control of 
cake layer formation by manipulating gas sparging and backflush frequency based on TMP 
measurements in a lab-scale AnMBR fed with synthetic wastewater. The control tool was able 
to keep the pressure increase below 20 mbar and resulted in an efficient tool for cake layer 
formation control.  

Robles et al. (2013) developed and validated a fuzzy logic and knowledge-based advanced 
control tool to optimise the filtration process (maintaining sub-critical filtration conditions 
and minimising operational costs) in a submerged pilot AnMBR fed with municipal 
wastewater. The control tool controls the fouling rate (measured online as changes in TMP) 
by manipulating gas sparging and mechanical cleaning frequency (backwash and ventilation). 
Results showed low fouling rates and reduction in mechanical cleaning downtimes achieved 
by control actions. In a later work the authors integrated this control tool with a model-based 
supervisory controller for minimising operational costs by automatic tuning of the controller 
parameters and set points (Robles et al., 2014a). With this real-time optimisation strategy, a 
25 % energy saving was achieved during membrane scouring.  
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1.7 SCOPE AND OUTLINE OF THE THESIS 

Membrane fouling is a major challenge for the economic feasibility and applicability of 
AnMBRs. For the last two decades, extensive research has been done on the application of 
flux enhancers (FE) to improve sludge filtration properties and mitigate fouling by modifying 
sludge characteristics. The main objective of this thesis is to develop a fouling control tool for 
AnMBRs that manipulates the flux enhancer dosing. To achieve this objective the following 
knowledge gaps were addressed in the thesis:   

• feasibility of FE dosing in long‐term and large‐scale AnMBRs; 

• effect of FE on biological activity under anaerobic conditions; 

• causes of optimal FE dosage variation; 

• feasibility of using in-situ fouling potential measurements (such as ∆𝑅20) for FE 
dosage control; 

• identification of best control configuration. 

Chapter 2 analyses the effect of sludge characteristics on the optimal required dosage of 
FE for sludge filterability improvement in AnMBRs. Experiments using sludge samples from 
five municipal and industrial pilot and full-scale AnMBRs were performed, located in four 
different countries in Europe and Africa. The optimal dosage was measured using the 
AnDFCm installation shown in Figure 1.5. The main factors affecting the required dosage of 
FE for different sludges were identified, and empirical models were provided to potentially 
estimate the optimal dosage of cationic polymer in new sludge samples by a simple sludge 
characterisation. Furthermore, this chapter provides guidelines for adequate continuous 
application of FE in full-scale AnMBR for fouling control. 

Chapter 3 studies the inhibitory effect of FE on the biological activity of anaerobic sludge. 
Mathematical modelling was used as a tool to reveal the underlying inhibition mechanism 
which allows to understand the long-term implications of FE dosing in a continuous reactor. 
The chapter presents a critical assessment of various inhibition models widely used in 
literature.  

Chapter 4 studies the long-term effect of dosing FE to the pilot AnMBR in Figure 1.6, that 
was fed with source-separated domestic blackwater. The chapter analyses the effects on 
permeate quality, sludge characteristics, biological activity and AnMBR filtration 
performance. Additionally, this chapter discusses the applicability of in-situ measurements of 
sludge filterability as an input variable in an FE feedback dosing control tool. 

Chapter 5 compares three feedback and two feedforward control tools to manipulate FE 
dosing to an AnMBR. The comparison was done in a simulation environment with an 
integrated model that predicts the effect of FE dosing on sludge filterability and membrane 
fouling rate. The integrated model couples filtration, flocculation, and biochemical processes 
and it was developed, calibrated, and validated.  

Chapter 6 summarises the main conclusions of this thesis and presents recommendations 
for future research and applications. 
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Figure 1.5. AnDFCm installation at the TU Delft waterlab. Left and right are pictures taken form 
different angles. 

 
Figure 1.6. Pilot AnMBR plant (FCC-Aqualia) including the AnDFCm installation connected in bypass 
for in-situ sludge filterability measurements. The pilot was located at the Business Centre Porto do 
Molle, Nigrán, Pontevedra, Spain. Left and right are pictures taken form opposite sides. 
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2 OPTIMAL DOSAGE OF FLUX ENHANCERS FOR FILTERABILITY IMPROVEMENT IN MUNICIPAL AND INDUSTRIAL ANAEROBIC MEMBRANE BIOREACTORS 
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* This chapter is an adapted version of: Odriozola, M., Lousada-Ferreira, M., Spanjers, H., and van Lier, J. B. 

(2021). Effect of sludge characteristics on optimal required dosage of flux enhancer in anaerobic membrane 
bioreactors. J. Memb. Sci. 619, 118776. doi:10.1016/j.memsci.2020.118776. 
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ABSTRACT 

Fouling is a major challenge for the economic feasibility and applicability of membrane 
bioreactors. Several strategies have been proposed for fouling control, and among them, 
addition of flux enhancers (FE) have shown promising results. Previous research revealed a 
high variability of the required optimal dosage of FE for different types of sludge; however, 
studies analysing the causes for such variability are lacking. Therefore, this research examines 
the effect of sludge characteristics on the optimal FE dosage required for sludge filterability 

improvement (𝐷opt). The cationic polymer Adifloc KD451 was applied as FE, and determined 

𝐷opt with short-term cross-flow filtration tests. Sludge samples were obtained from five 

different pilot and full-scale anaerobic membrane bioreactors (AnMBRs) treating municipal 

or industrial wastewater. Results showed that 𝐷opt was significantly correlated with colloidal 

organic matter concentration, sludge filterability, capillary suction time, and concentration of 

soluble polysaccharides. Furthermore, empirical models to predict 𝐷opt were derived based 

on the significantly correlated sludge characteristics as input variables. This research 
identifies the factors affecting the required dosage of FE for different sludges and provides 
guidelines for safe continuous dosing of FE in AnMBR for fouling control. 
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2.1 INTRODUCTION 

Researchers have determined the optimal required dosage of different cationic polymers in a 
variety of sludge samples and obtained significantly different results. Knowing the optimal 
dosage is crucial to avoid (accidental) deterioration of the filtration performance and permeate 
quality. For aerobic sludge samples, reported dosages of Adiflocs range from 10 (Gkotsis et 
al., 2017) to 70 mg L-1 (Iversen et al., 2009b; Koseoglu et al., 2008), and of MPE50 from 100 
(Collins et al., 2006) to 600 mg L-1 (Wozniak, 2010). For anaerobic sludge, dosages of MPE50 
from 300 to 1500 mg L-1 have been applied. Wozniak (2010) has recommended to evaluate 
weekly the optimal dosage for a continuous application of FE to an MBR, to adapt the dosage 
to the variable conditions. Díaz et al. (2014) obtained different optimal MPE50 dosage values 
during the biodegradability tests of waste activated sludge due to an increase in protein 
concentration in the soluble fraction. Despite the variability of the optimal dosage required 
for different sludge samples that has been reported in literature, there are no studies analysing 
the cause for such variability.  

The goal of this research is to study the effect of sludge characteristics on the optimal 

required dosage of FE for sludge filterability improvement (𝐷opt) and to provide guidelines 

for dosing FE to AnMBRs. 𝐷opt was determined based on sludge filterability measurements 

applying the AnDFCm, on seven sludge samples collected from five pilot and full-scale 
AnMBRs treating municipal or industrial wastewater.  

2.2 MATERIALS AND METHODS 

2.2.1 Flux enhancer selection 

In a previous study (results not shown here, manuscript in preparation), six potential FEs 
were compared for their effect on the filterability of sludge obtained from a full-scale 
anaerobic digester at a local sewage treatment plant, including powder-activated carbon 
(PAC), polyaluminium chloride PAX14, polyaluminium chloride PAX18, and the cationic 
polymers Adifloc KD352, Adifloc KD451 and MPE50. Optimal dosages were determined as the 
concentration at which the maximum soluble COD removal was achieved, through jar-test 
experiments. Afterwards, the sludge filterability in the sludge samples, without FE addition 
and with FE addition at its optimal dosage, was measured, applying the AnDFCm. Except for 
PAC, the remaining FEs considerably improved the sludge filterability, with improvements 
ranging from 72% to 96%. Particularly, Adifloc KD451 improved filterability by 96%, and its 
optimal dosage was between 1/44 and 1/3 of the optimal dosages for the remaining FEs. 
Therefore, Adifloc KD451 (Adipap SA, France) was selected as the FE for this research. 

Adifloc KD451 is a cationic polymer with low molecular weight and high charge density. 
The concentration of the FE stock solution was 30 g L-1, and it was prepared by mixing the 
polymer with demineralised water for at least 2 hours and prepared one day before use to 
provide enough time for chain opening. 
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2.2.2 Sludge samples  

Sludge samples were collected from five different AnMBRs, as summarised in Table 2.1. 
Sludges Bwa, BWb and BWc were collected from one AnMBR at different operational periods, 
as follows. The AnMBR was spiked (pulse-addition) with the FE Adifloc KD451; Bwa and BWb 
were collected before and three weeks after dosing FE, respectively. BWc was collected one 
year after BWb, assuming that the FE had been removed with the excess sludge. When 
samples Bwa and BWb were collected, the AnMBR was operated without sludge withdrawal, 
implying an infinite sludge retention time (SRT), whereas when BWc was collected, 30 L d-1 
of sludge was withdrawn, resulting in an SRT of 70-80 days. 

2.2.3 Analytical methods 

Chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN) and 
ammonium-nitrogen (NH4-N) were measured with Hach Lange test kits. Because no oxidised 
N compounds were present, the total organic nitrogen (TON) was calculated as the difference 
between TN and NH4-N. COD was measured in different fractions of the sample, obtained by 
consecutive filtration steps (Zhang et al., 2017). The COD measured in the unfiltered sample 
was designated as total COD (tCOD). The submicron COD (csCOD), which includes both 
colloidal and soluble COD, and soluble COD (sCOD) were measured in fractions below 1 µm 
and 0.45 µm, respectively. The supracolloidal COD (scCOD) is the fraction above 1 µm and it 
was calculated by subtracting csCOD from tCOD. The colloidal COD (cCOD) is the fraction 
between 0.45 and 1 µm and was calculated as the difference between csCOD and sCOD. To 

obtain the csCOD fraction the unfiltered sludge sample was centrifuged at 6,500𝑔 for 10 
minutes, and the supernatant filtrated through a 1 µm paper filter Whatman GF/B (GE 

Table 2.1. Sludge samples details. 

Sludge name Reactor (configuration, 
membrane surface area) Fed Location 

Time between 
sludge collection 
and testing (d) 

LiqOFMSW Pilot-scale AnMBR 
(sidestream, 20.5 m2) 

Liquid fraction of 
OFMSW digestate b 

Spain 7 

BWa, BWb, 
BWc a 

Pilot-scale AnMBR 
(submerged, 6.25 m2) 

Source separated 
blackwater 

Spain 0 c 

Food1 Full-scale AnMBR 
(sidestream, 1,452 m2) 

Wastewater from 
confectionery factory 

the Netherlands 0.5 

Food2 Full-scale AnMBR 
(sidestream, 1,584 m2) 

Wastewater and 
waste from 

confectionery and pet 
food factory 

Poland 7, 8 

Food3 Full-scale AnMBR 
(sidestream, 3,432 m2) 

Whey and wash water South Africa 14, 15 

a BWa, BWb and BWc were collected from one AnMBR at different operational conditions. 
b OFMSW is the organic fraction of municipal solid waste.  
c Tests performed at the AnMBR site immediately after sampling. 
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Healthcare, USA). A second filtration was made through a 0.45 µm syringe filter 
CHROMAFIL® Xtra PES-45/25 (MACHEREY-NAGEL, Germany) to obtain the sCOD.  

Soluble microbial products (SMP) were measured in the soluble fraction, obtained by 

centrifuging the sludge sample at 15,772𝑔 for 15 minutes and filtering the supernatant 
through a 0.45 μm pore syringe filter. SMP were characterised as carbohydrates (SMP-CH), 
proteins (SMP-PR) and humic substances (SMP-HS). Carbohydrates were determined with the 
phenol-sulphuric acid method (Dubois et al., 1956), using D-Glucose monohydrate as 
standard. Proteins and humic substance were determined with the modified Lowry method 
(Frølund et al., 1995), using bovine serum albumin and humic acid sodium salt as standards.  

Particle size distribution (PSD) was measured in the range 0.01-2000 µm with a Microtrac 
Bluewave diffraction analyser (Malvern Instruments Ltd., UK). This analyser uses a light 
scattering technique providing results as volume-based PSD and, in samples with multiple 
particle sizes together, volume-based distributions neglecting the smallest particles even 
when they are present in large numbers. For example, assuming spherically shaped particles, 
the volume distribution of a sample with equal number of particles with diameters of 1, 10 
and 100 µm is 0.0001%, 0.0999% and 99.9%, respectively. Thus, it was assumed that the PSD 
represents the size of the larger particles, which are the flocs, and not of the submicron 

particles. PSD was reported as percentiles 𝐷10, 𝐷50 and 𝐷90, where 𝐷50 is the median 
diameter. 

Electrical conductivity and pH were measured with a benchtop multi-meter WTW Multi 
9620 IDS (Xylem Analytics, Germany). Sludge dewaterability was measured as CST with a 
Type 304M CST apparatus and filter paper (Triton Electronics Ltd, UK) at 21℃ following 
Standard Methods (APHA, 1999). The concentrations of total suspended solids (TSS) and 
volatile suspended solids (VSS) were measured following Standard Methods (APHA, 1999), 
applying a 0.7 µm pore size filter (AP4007000, Merck Millipore Ltd., Ireland).  

2.2.4 Sludge filterability 

Sludge filterability was measured with the AnDFCm in the side-stream ultrafiltration 
crossflow filtration unit (AnDFCm installation) shown in Figure 2.1. The AnDFCm consists 

of three steps: (1) filtering water to determine the resistance to water filtration (𝑅𝑇,𝑤𝑎𝑡𝑒𝑟), 

(2) sludge filtration to estimate the additional resistance obtained when 20 L of permeate per 

m2 of membrane area are produced (∆𝑅20), and (3) mechanical membrane cleaning. 𝑅𝑇,𝑤𝑎𝑡𝑒𝑟 
includes the membrane intrinsic resistance and the irreversible and irrecoverable fouling 

resistances. Sludge filterability is inversely related to ∆𝑅20.  

Moreover, ∆𝑅20 values can only be directly compared when the AnDFCm sludge filtration 
operational conditions (flux and crossflow velocities) are the same. In this study, two different 
operational conditions were applied for different sludge samples, which are explicitly shown 

in the output measurement. The ∆𝑅20(1.5,60) and ∆𝑅20(0.5,60) are ∆𝑅20 measured at 

60 L m-2 h-1 flux, with 1.5 m s-1 and 0.5 m s-1 crossflow velocities, respectively. Moreover, ∆𝑅20 

was used to refer to ∆𝑅20(0.5,60) and ∆𝑅20(1.5,60) simultaneously. 
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Figure 2.1. Scheme of the anaerobic Delft filtration characterisation method (AnDFCm) installation 
used for sludge filterability assessment. The ultrafiltration (UF) membrane was an X-Flow (Pentair, 
the Netherlands): tubular, 30 nm pore size, 8 mm internal diameter, and 95 cm length.  
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2.2.5 Flux enhancer dosage-step experiments 

Dosage-step tests were performed for all sludge samples shown in Table 2.1, to determine 

𝐷opt. To assess the reproducibility of 𝐷opt determination, the total volume of each sludge, i.e., 

BWc, Food2 and Food3, was divided in two samples of equal volume prior to performing the 
dosage-step tests; the resulting samples were further designated as: BWc, BWc-II, Food2, 

Food2-II, Food3 and Food3-II. 𝐷opt was individually determined in each resulting sample. 

 
Figure 2.2. Scheme of the flux enhancer dosage-step protocol performed in the AnDFCm installation. 
The centre figure represents the increasing stepwise FE dosage. The total number of cycles was not 
fixed. 
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The dosage-step test consisted of consecutive stepwise increasing additions of FE into a 
sludge sample. The protocol, shown in Figure 2.1, was an iterative process that comprised: 
(1) dosing FE, (2) mixing, (3) sampling for characterisation (PSD, csCOD, sCOD and CST), 

(4) ∆𝑅20(1.5,60) measurement, (5) mechanical cleaning, and (6) determination of resistance to 

water filtration (𝑅𝑇,𝑤𝑎𝑡𝑒𝑟); Step 1 to Step 6 were performed consecutively for each dosage. 

During Step 4, ∆𝑅20(1.5,60) was measured for all sludge samples except Food2, where 

∆𝑅20(0.5,60) was measured instead, because Food2 presented such good filtration quality that 

no cake build-up was obtained when a crossflow velocity of 1.5 m s-1 was applied. 

2.2.6 Unbonded flux enhancer filtration tests 

To study the effect of unbonded polymer on filtration performance and permeate quality, 
demineralised water with different concentrations of polymer were filtered in a crossflow 
filtration installation, the AnDFCm installation. The polymer Adifloc KD451 was used at three 
different concentrations: 0.1, 0.5, 1.0 g L-1 corresponding to 0.1, 0.6, 1.1 gCOD L-1, respectively. 

The filtration test comprises: (1) measurement of resistance to water filtration (𝑅𝑇,water) at 
1.5 m s-1 crossflow velocity and 60 L m-2 h-1 flux, (2) addition of polymer to the water vessel 
followed by 1-minute mixing with an external pallet mixer at 50 rpm while recirculating the 
mixture through the AnDFCm installation, without permeate extraction, (3) measurement of 

total filtration resistance of the polymer solution (𝑅𝑇) at 1.5 m s-1 crossflow velocity and 
60 L m-2 h-1 flux, while collecting permeate in a vessel, and (4) measurement of total COD in 
the collected permeate solution (𝐶p,meas).  

The membrane was mechanically and chemically cleaned between filtration tests at 
different polymer concentrations. Firstly, a flush forward at approximately 3 m s-1 crossflow 
velocity was performed during 5 minutes without permeate extraction. Secondly, the 
membrane was filled with 0.5 g L-1 NaOCl solution and left for 1 hour. Thirdly, a second flush 
forward was performed while extracting permeate for 5 minutes to clean the permeate side 
of the membrane. 

2.2.7 Data analysis 

2.2.7.1 Selection of optimal and critical dosages 

The optimal and critical dosages were calculated based on sludge filterability improvement 
as response variable. Filterability improvement was defined as ∆𝑅20 decrease, calculated as 
follows: 

𝑦 = 100
𝑥𝑟𝑎𝑤 − 𝑥

𝑥𝑟𝑎𝑤
 , (2.1) 

where 𝑦 is the response variable ∆𝑅20 decrease, 𝑥𝑟𝑎𝑤 is ∆𝑅20 of the raw sludge (without FE), 

and 𝑥 is ∆𝑅20 measured after each FE dosage; ∆𝑅20 is ∆𝑅20(0.5,60) for Food2 and ∆𝑅20(1.5,60) 

for the other sludge samples. 
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Several researchers defined optimal dosage as the dosage which provides the highest 
improvement in the response variable (Braguglia et al., 2006; Díaz et al., 2014; Koseoglu et al., 
2008; Lee et al., 2007; Malamis et al., 2014; Wang et al., 2014; Wozniak, 2010; Zhang et al., 

2017); for further discussion, this dosage was referred to as critical dosage (𝐷crit). All these 

authors observed an adverse effect on the response variable at dosages higher than 𝐷crit; thus, 

applying a dosage below 𝐷crit is advisable to avoid (accidental) deterioration of the filtration 
performance. Furthermore, as observed in the same publications, the rate of improvement of 
response variables decreases when the dosage approaches 𝐷crit. Ideally, optimal dosage 
should be calculated by minimising the cost of operation of a continuous AnMBR, but this is 
a challenging approach and varies between installations.  

Moreover, 𝐷opt has been also defined as the dosage at which the improvement of the 

response variable reaches a plateau (saturation behaviour), above which no further significant 
improvement is observed with higher dosages (Alkmim et al., 2016; Díaz et al., 2014; Fan et 
al., 2007; Koseoglu et al., 2008; Wang et al., 2016; Zhou et al., 2019). By applying this definition, 
the authors minimised the required dosage while achieving an improvement similar to the 

maximum. Therefore, this approach was applied to calculate the 𝐷opt.  

Most authors select the 𝐷opt manually by looking at the plotted response variables as a 

function of dosage, but this approach is subjective. Therefore, a mathematical approach was 

used to determine the 𝐷opt objectively. The hyperbolic response curve, of ∆𝑅20 decrease as a 

function of dosage, was approximated by two lines with the following model:  

𝑦 = {
𝐾1𝐷, 𝐷 < 𝐾2 𝐾1⁄

𝐾2, 𝐷 ≥ 𝐾2 𝐾1⁄
 , (2.2) 

where 𝑦 is the response variable ∆𝑅20 decrease (%), 𝐷 is the FE dosage (g L-1), and 𝐾1 (% L g-1) 

and 𝐾2 (%) are empirical coefficients. The first line in the model (𝑦 = 𝐾1𝐷) represents the 
linear increase at lower dosages that have been typically observed in the literature. The 

second line (𝑦 = 𝐾2) represent the previously observed saturation behaviour. 𝐷opt was 

defined as the dosage corresponding to the intersection of both lines (𝐷opt = 𝐾2 𝐾1⁄ ). 

The parameters of the model (𝐾1 and 𝐾2) were estimated to fit the experimental data for 
each dosage-step test, by minimising the residual sum of squares (RSS):  

𝑅𝑆𝑆 =∑(𝑦𝑒,𝑖 − 𝑦𝑚,𝑖)
2

 𝑖 

 , (2.3) 

where 𝑦𝑒,𝑖 is the experimental observation 𝑖, and 𝑦𝑚,𝑖 the corresponding model prediction. 

RSS was minimised with a nonlinear constrained optimisation function, fmincon, in 
Matlab® R2019b. The upper limit for 𝐾2 was set to 100, because ∆𝑅20 decrease should be 
below 100%. 

𝐷opt was determined with a crossflow filtration method; however, in previous research, 
optimal dosages were mostly determined based on soluble or colloidal organic matter removal 
and dead-end filtration measurements. Therefore, 𝐷opt was compared with 𝐷opt,csCOD, 
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𝐷opt,sCOD and 𝐷opt,CST, which are determined based on the response variables: csCOD 
removal, sCOD removal and CST decrease, respectively. The response variables were 
calculated with Equation (2.1), where 𝑦 is the response variable (CST decrease, sCOD removal 
or csCOD removal), 𝑥𝑟𝑎𝑤 is CST, sCOD or csCOD of the raw sludge (without FE), and 𝑥 is 
CST, sCOD or csCOD measured after each FE dosage.  

As mentioned above, previous research shows that high FE dosages can cause an adverse 

effect on the response variables. Accordingly, the critical dosage (𝐷crit) was defined as the 

dosage above which an adverse effect on filterability is observed; 𝐷crit was selected from the 

plotted ∆𝑅20 decrease versus dosage as the last experimental data before filterability started 

deteriorating. Moreover, 𝐷crit,csCOD, 𝐷crit,sCOD and 𝐷crit,CST were determined with csCOD 

removal, sCOD removal and CST decrease, respectively.   

2.2.7.2 Correlation and regression analyses 

Kendall’s correlation coefficient (𝜏) was used to identify which of the raw sludge 

characteristics, if any, had a statistically significant relationship with 𝐷opt. Field (Field, 2009) 

recommends using 𝜏, which is a non-parametric rank correlation, for small data sets such as 
the one in this study (10 points). The statistical significance was assessed by comparing the 

probability value (𝑝) with two levels of significance: 0.01 and 0.05. 𝜏 and 𝑝 were computed 
with corr function in Matlab® R2019b.  

Afterwards, the sludge characteristics that significantly correlated with 𝐷opt were used 

to derive empirical models: 𝐷opt = 𝑓(𝑥), where 𝑥 is a significantly correlated variable and 𝑓 

is the model (for example: linear or exponential); 𝑓 was selected based on the graphical 
representation of the results. The models were calibrated in Matlab® R2019b with fit function. 

The goodness-of-fit was assessed based on the coefficient of determination (𝑅2). The 
prediction bounds (or prediction interval) for new observations were obtained with fit, 
considering all predictor values (simultaneous bounds), and a 95% confidence level (The 
MathWorks, 2018). 
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2.3 RESULTS 

2.3.1 Raw sludge characteristics 

The physicochemical characteristics of the raw sludges are presented in Table 2.2 and the 
particle size distribution in Figure 2.3. The time lapses between collection and testing for 
LiqOFMSW, Food2, Food2-II, Food3 and Food3-II were sufficiently long to assume that sludge 
characteristics might have changed due to physicochemical and biochemical processes taking 
place during transportation and storage, such as degradation of substrates. Therefore, the 
physicochemical characteristics presented in Table 2.2 of the abovementioned samples might 
not be identical to the characteristics of the sludges at the moment of collection from the 

AnMBRs. Nevertheless, filterability was significantly worse (higher ∆𝑅20(1.5,60)) for 

LiqOFMSW and Food1 than for the remaining samples, which was in accordance with the 

deteriorated permeability (=Flux TMP⁄ ) observed by the plant operators at the moment of 
collection (data not shown).  

 LiqOFMSW was noticeably different from other sludges, that is: it had considerably 

higher ∆𝑅20(1.5,60), CST, cCOD, sCOD, NH4-N, conductivity, SMP-HS and SMP-CH. 

Moreover, in LiqOFMSW, SMP-PR was negligible compared to SMP-HS; thus, it was not 
possible to determine SMP-PR with the modified Lowry method because this method cannot 
measure proteins independently from humic substances. 

The median floc size, represented by the median diameter 𝐷50, was similar for all 
samples, except Food1. The volume fraction for particles below 1 µm was zero in all samples 
tested, Figure 2.3. Govoreanu et al. (2004) showed that when measuring particle size 
distribution of activated sludge with a light scattering technique, the distribution of small 
particles are likely to have errors. Therefore, the values measured below 1 µm were likely not 
realistic. Therefore, the fraction of organic material below 1 µm was characterised through 
cCOD. 

 

 

 
Figure 2.3. Volume-based particle size distribution of raw sludge samples. 
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2.3.2 Flux enhancer dosage-step experiments 

Figure 2.4 shows the effect of increasing FE dosage on ∆𝑅20 obtained during the dosage step 
experiments for each sludge sample. The FE improved filterability showing a saturation 
behaviour for all sludges. The required dosage of FE to improve filterability was noticeably 
different for each sludge: the ones with better filterability required less FE. Furthermore, high 

dosages caused an adverse effect, i.e., increased ∆𝑅20, in LiqOFMSW, BWc, BWc-II, Food1, 
Food2 and Food3; for a more detailed visualisation is shown in Figure 2.5. The dosages above 

which this adverse effect was observed, i.e., 𝐷crit, varied from 0.10 to 2.5 g L-1. Moreover, the 

observed ∆𝑅20 decrease that was achieved for LiqOFMSW (52%) and Food1 (82%) was smaller 
than for the other samples (> 90%). Therefore, sludges with worse filterability do not only 
require more FE, but also present a more limited improvement on filterability by FE addition. 

Figure 2.5 shows that FE decreased csCOD, sCOD and CST, and increased 𝐷50. 
Comparison between Figure 2.5A and Figure 2.4 shows that for most sludge samples, except 

for LiqOFMSW, the csCOD and ∆𝑅20 had a similar behaviour, that is: dosing FE decreased 
csCOD with a saturation behaviour and had an adverse effect at high dosages, which was 
observed in BWc, BWc-II, and Food3. Moreover, Figure 2.5B shows that sCOD presented a 
behaviour similar to ∆𝑅20 and csCOD, which was characterised as decrease-saturation-
increase. Nevertheless, in Food3, the sCOD increased at a lower dosage (0.5 g L-1) than the 

csCOD and ∆𝑅20 (1.0 g L-1).  

CST is a dead-end filtration method used to assess sludge dewaterability and has been 
previously used as an indicator of sludge filterability. In this study, CST (Figure 2.5C) 

 

Figure 2.4. ∆𝑅20 during FE dosage-step test in the AnDFCm installation for sludge samples from 
different sources. ∆𝑅20 was measured by applying a flux of 60 L m-2 h-1 and crossflow velocities of 
(A) 1.5 m s-1 and (B) 0.5 m s-1. 
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presented a similar saturation behaviour as ∆𝑅20 (Figure 2.4) for most sludges tested. 

However, the adverse effect on ∆𝑅20and csCOD at high dosages, was not reflected in the CST 
measurements. 

In the FE dosage ranges tested for each sample, the 𝐷50 versus dosage curve displayed 

the saturation behaviour, observed in ∆𝑅20, CST and csCOD, only in Food1. Moreover, the 
adverse effect at high dosages was only present in LiqOFMSW and BWc (Figure 2.5D). 
Therefore, floc size, as quantified in this research, might not be a direct indication of 
filterability improvement and deterioration.  

𝑅T,water was measured in each cycle of the dosage-step test, after filtering sludge with 

different dosages of FE and cleaning the membrane, see protocol in Figure 2.2. In Figure 2.6, 

the 𝑅T,water increased after filtering sludges with high FE dosages. For most sludges, the 

 
Figure 2.5. Sludge characteristics during FE dosage-step test in the AnDFCm installation for sludge 
samples from different sources: (A) submicron organic matter concentration, (B) soluble organic 
matter concentration, (C) capillary suction time, and (D) floc size expressed as median diameter. The 
csCOD of Food1, CST of BWa, and sCOD of BWa and Food1 were not measured. 
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dosage above which 𝑅T,water rapidly increased was similar to 𝐷crit (Table 2.3) of each sludge 

sample. However, in Food3-II, 𝑅T,water rapidly increased at dosages above 0.08 g L-1 while no 

adverse effect was observed on ∆𝑅20 in the whole range tested, 0.04 – 0.90 g L-1. The 
membrane was chemically cleaned after measuring Food3-II with 0.20 g L-1 of FE, causing a 

slight decrease in 𝑅T,water at the next dosage step (0.25 g L-1 of FE). Surprisingly, at dosages 

above 0.25 g L-1, 𝑅T,water continuously decreased with increasing dosages. This observation 
could not be explained and the cause should be further investigated. Nevertheless, this 
behaviour was not observed in other sludges, including Food3 that originated from the same 
sample as Food3-II. 

2.3.3 Optimal and critical dosages 

Figure 2.7 to Figure 2.10 show the graphical representation of optimal and critical dosages 

determination based on ∆𝑅20 decrease, sCOD removal, csCOD removal and CST decrease, 
respectively. The optimal and critical dosages values are summarised in Table 2.3.  

The dosages differed considerably between samples; particularly 𝐷opt ranged from 0.02 to 

1.16 g L-1 and 𝐷crit from 0.10 to 2.5 g L-1, which were determined based on ∆𝑅20 decrease.  

𝐷opt was compared with 𝐷opt,csCOD, 𝐷opt,sCOD and 𝐷opt,CST, that were determined with 

csCOD, sCOD and CST, respectively. The average relative differences of 𝐷opt,csCOD, 𝐷opt,sCOD 

and 𝐷opt,CST with 𝐷opt were 47%, 52% and 78%, respectively; where the relative difference is 

the absolute value of the difference between the correspondent optimal dosage and 𝐷opt, 

divided by 𝐷opt.  

𝐷crit was determined in 6 out of 10 performed dosage-step tests, because for Bwa, BWb, 
Food2-II and Food3-II no adverse effect on filterability was observed. Apparently, with the 

latter 4 sludges, the charge-saturation level of the applied FE was not reached and hence 𝐷crit 

 
Figure 2.6. Resistance to water filtration after each step (𝑅T,water) during FE dosage-step test in the 
AnDFCm installation for sludges from different sources. The 𝑅T,water was normalised by resistance 
to water filtration before starting each test (𝑅T,water.0). For Food3-II, the membrane was chemically 
cleaned with 2 g L-1 of citric acid during 1 hour between the FE dosages 0.2 g L-1 and 0.25 g L-1. 
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could not be identified. However, for Food2-II and Food3-II the maximum dosages tested were 
possibly too low to achieve an adverse effect, moreover these maximum dosages were lower 

than 𝐷crit obtained with Food2 and Food3, respectively. Accordingly, for BWb the filterability 

improvement was below saturation at the maximum dosage tested (0.10 g L-1); thus, the 𝐷crit 
might be above 0.10 g L-1. Surprisingly, for Bwa the adverse effect was not observed despite 

applying a dosage 5-folds above 𝐷opt. Therefore, Bwa might be the only sludge that did not 

present an adverse effect at high dosages of FE. 

𝐷crit was compared with their corresponding 𝐷crit,csCOD, 𝐷crit,sCOD and 𝐷crit,CST, 

presented in Table 2.3. 𝐷crit,csCOD was equal to 𝐷crit for 3 sludges (BWc, BWc-II and Food3) 

and differed for 2 sludges (LiqOFMSW and Food2); whereas 𝐷crit,sCOD was equal to 𝐷crit for 2 
sludges (BWc and Food2) and differed for 5 sludges (LiqOFMSW, BWc-II, Food2-II, Food3 and 

Food3-II). Furthermore, 𝐷crit,CST was not detected in any sample because there was no adverse 

effect on CST.  

 

 

Table 2.3. Optimal and critical FE dosages for: ∆𝑅20 decrease (𝐷opt and 𝐷crit), csCOD removal 
(𝐷opt,csCOD and 𝐷crit,csCOD), sCOD removal (𝐷opt,sCOD and 𝐷crit,sCOD), and CST decrease (𝐷opt,CST and 
𝐷crit,CST). All dosages are in g L-1. 

Sludge name Dosage 
range  

𝐷opt 𝐷opt,csCOD 𝐷opt,sCOD 𝐷opt,CST 𝐷crit 𝐷crit,csCOD 𝐷crit,sCOD 𝐷crit,CST 

BWa 0.01 - 0.30 0.06 0.03 ND c ND c NA d NA d ND c ND c 

BWb 0.01 - 0.10 0.03 0.02 0.09 0.03 NA d NA d NA d NA d 

BWc 0.01 - 0.30 0.03 0.02 0.03 0.06 0.12 0.12 0.12 NA d 

BWc-II 0.01 - 0.20 0.02 0.02 0.03 0.05 0.10 0.10 0.05 NA d 

LiqOFMSW 0.2 – 3.0 1.16 1.88 0.76 3.00 2.5 NA d NA d NA d 

Food1 0.11 - 1.00 0.38 ND c ND c 0.40 0.68 ND c ND c NA d 

Food2 0.02 - 0.20 0.03 a 0.06 0.06 0.09 0.10 NA d 0.10 NA d 

Food2-II 0.02 - 0.10 NA b 0.06 0.06 0.10 NA d NA d 0.08 NA d 

Food3 0.05 - 1.50 0.15 0.21 0.30 0.07 1.0 1.0 0.5 NA d 

Food3-II 0.04 - 0.90 0.23 0.17 0.29 0.06 NA d NA d 0.5 NA d 

Abbreviations: ND, not determined; NA, not applicable. 
a Optimal dosage determined using ∆𝑅20 = ∆𝑅20(0.5,60) instead of ∆𝑅20 = ∆𝑅20(1.5,60).  
b Optimal dosage was not estimated because  ∆𝑅20 decrease was 100% immediately after the lower 

dosage tested.  
c The corresponding characteristic was not measured during this dosage-step test.  
d Critical dosage could not be estimated because no adverse effect was observed. 
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Figure 2.7. Sludge filterability improvement, expressed as ∆𝑅20 decrease, during FE dosage-step test 
in the AnDFCm installation for sludge samples from different sources. The optimal dosage (𝐷opt) was 
determined with the model in Equation (2.2); and the critical dosage (𝐷crit), if existent, was selected 
as the last experimental dosage before an adverse effect on filterability was observed. 

 

 

 

 
Figure 2.8. Removal of soluble COD during FE dosage-step test in the AnDFCm installation for sludge 
samples from different sources. The optimal dosage (𝐷opt) was determined with the model in Equation 
(2.2); and the critical dosage (𝐷crit), if existent, was selected as the last experimental dosage before an 
adverse effect on sCOD was observed. 
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Figure 2.9. Removal of submicron COD, which includes colloidal and soluble COD, during FE dosage-
step test in the AnDFCm installation for sludge samples from different sources. The optimal dosage 
(𝐷opt) was determined with the model in Equation (2.2); and the critical dosage (𝐷crit), if existent, was 
selected as the last experimental dosage before an adverse effect on csCOD was observed. 

 

 

 

 

 
Figure 2.10. Capillary suction time (CST) decrease during FE dosage-step test in the AnDFCm 
installation for sludge samples from different sources. The optimal dosage (𝐷opt) was determined with 
the model in Equation (2.2). 
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2.3.4 Correlation analysis 

Kendall’s correlation (Table 2.4) revealed that 𝐷opt had a statistically high significant 

correlation (𝑝 < 0.01) with: ∆R20,(1.5,60), CST and cCOD. These correlations were all positive 

(𝜏 > 0), indicating that a sample with higher ∆R20,(1.5,60) (lower filterability), CST or cCOD 

required higher FE dosages to mitigate fouling.  

Moreover, 𝐷opt was statistically significantly correlated with SMP-CH, contrary to SMP-

PR and SMP-HS. Furthermore, 𝐷opt had a non-significant correlation with NH4-N, TON, TP, 

conductivity, pH and 𝐷50. In addition, there was a significant correlation between 𝐷opt and 

TSS (>0.7 µm) but not between 𝐷opt and scCOD (<1 µm); the correlation with TSS could be 

caused by the fraction of colloidal organic matter in the range of 0.7 and 1 µm, which is 

retained in the filter during the measurement. Consequently, the variables selected for 

empirical models were ∆R20,(1.5,60), CST, cCOD and SMP-CH.  

Table 2.4. Kendall correlation coefficient (𝜏) and probability value (𝑝) between raw sludge 
characteristics and optimal dosage of flux enhancer for filterability improvement (𝐷opt) including and 
excluding LiqOFMSW from the analysis. Significant correlation at levels 0.01 (**) and 0.05 (*). 

Variable 
Including LiqOFMSW in analysis  Excluding LiqOFMSW from analysis 

𝜏 𝑝  𝜏 𝑝 

∆𝑅20(1.5,60) 0.89** 0.0002  0.86** 0.002 

CST 0.79** 0.006  0.71* 0.030 

scCOD 0.43 0.179  0.33 0.381 

cCOD 0.86** 0.002  0.81* 0.011 

sCOD 0.57 0.061  0.43 0.239 

TP 0.20 0.540  0.55 0.080 

TON 0.44 0.119  0.43 0.179 

NH4-N 0.50 0.075  0.36 0.275 

pH 0.31 0.304  0.11 0.810 

Conductivity 0.55 0.080  0.39 0.300 

TSS 0.56* 0.045  0.57 0.061 

SMP-PR 0.62 0.069  0.62 0.069 

SMP-HS -0.08 0.839  -0.40 0.220 

SMP-CH 0.61* 0.025  0.50 0.109 

𝐷10 0.22 0.477  0.57 0.061 

𝐷50 0.28 0.358  0.57 0.061 

𝐷90 0.17 0.612  0.29 0.399 
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2.3.5 Empirical models 

The scatterplots, presented in Odriozola et al. (2021), suggest that the empirical model for 

∆R20,(1.5,60) was exponential: 𝐷opt = 𝑎 exp(𝑏 ∆R20,(1.5,60)), where 𝑎 and 𝑏 are parameters; 

whereas for CST, cCOD and SMP-CH linear models were adopted: 𝐷opt = 𝑎 𝑦 + 𝑏, where 𝑦 

represents CST, cCOD or SMP-CH variables.  

Figure 2.11 displays the experimental data, the empirical models, and the prediction 
interval for new observations; on the left are the models calibrated including all the sludges 
and on the right the models calibrated excluding LiqOFMSW. Results shows that LiqOFMSW 
considerably influenced the calibration of the empirical models. Table 2.5 compares the 
predicted dosages with the models calibrated including and excluding LiqOFMSW.  

The predictions using different empirical models slightly differed. However, all predicted 
optimal dosages are in the same order of magnitude as the measured 𝐷opt and below the 

measured critical dosages 𝐷crit. Therefore, all models showed their suitability for predicting 
the dosage required for filterability improvement of new sludge samples, especially as a 
reference dosage to avoid overdosing. Nevertheless, further research with sludges 
characterised by a poor filterability could improve the predictive value of the models. 

2.3.6 Filtration of unbonded flux enhancer  

Figure 2.12 shows that the two higher concentrations tested of Adifloc KD451, namely 0.5 and 

1.0 g L-1, significantly increased the filtration resistance 𝑅𝑇, whereas 0.1 g L-1 had no effect on 

𝑅𝑇. Compared with optimal dosages required for filterability improvement in the tested 
sludges (Table 2.3), the concentrations tested in this experiment (0.1, 0.5 and 1.0 g L-1) are 
considerably high, and thus unexpected as unbonded polymer concentrations in AnMBRs. 
From the 10 samples tested only 4 had an optimal dosage above 0.1 g L-1, as follows: 
LiqOFMSW (1.16 g L-1), Food1 (0.38 g L-1), Food3 (0.15 g L-1), and Food3-II (0.23 g L-1). 
Moreover, assuming that 5% of the polymer added to the sludge remains unbonded, which 
Iversen et al. (2008) have already argued as being an overestimation, then the concentration 
of unbonded polymer is below 0.1 g L-1 even for the sludge with highest optimal dosage, 
which is LiqOFMSW. Therefore, the polymer can deteriorate the filtration performance when 
it remains unbonded in the bulk liquid, but only at high concentrations, which are unlikely 
to occur when in a polymer dosed AnMBR. 

The COD measured in the permeate samples obtained in the AnDFCm installation, 𝑐fe,𝑃, 

is presented in Table 2.6. Results show that a fraction of the polymer passed through the 
membrane pores and contaminated the permeate, indicated by an increase of 𝑐fe,𝑃 with 

increasing polymer concentration in the bulk (𝑐fe); 𝑐fe is the initial concentration of the 
polymer solution.  

During Step 3 of the filtration test protocols (Figure 2.2), where the polymer solution was 

filtered in the AnDFCm installation, all the permeate produced was collected in a vessel; 𝑐fe,𝑃 
represents the concentration in the produced permeate vessel. Thus, the permeate sample was 
diluted with the demineralised water, that remained in the permeate side inside the membrane 
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Figure 2.11. Experimental data and fitted model of the optimal FE dosage versus raw sludge 
characteristics including (left) and excluding (right) the sample LiqOFMSW during model calibration: 
(A, B) filterability expressed as ∆𝑅20(1.5,60), (C, D) capillary suction time, (E, F) concentration of 
colloidal organic matter, and (G, H) concentration of soluble carbohydrates. The grey-dashed lines 
represent the prediction interval for new observations; and 𝑅2 is the coefficient of determination of 
the fitted model. 
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module when the filtration started. The volume of the permeate side of the membrane module 

was 0.208 L, which is comparable to the volumes of permeate collected (𝑉P), shown in Table 

2.6. Consequently, the considerably smaller 𝑐fe,𝑃 compared to 𝑐fe is partially due to the 

dilution during the filtration protocol step. Another cause for the reduced 𝑐fe,𝑃 can be that the 

polymer was retained inside the membrane or rejected by the membrane, further in the paper 
both processes are referred to as “retention by the membrane”. The increasing 𝑅𝑇 with 𝑐fe, 
shown Figure 2.12, is an additional indication of the polymer interacting with the membrane, 
possibly being retained inside the membrane pores or in the membrane surface creating a 
cake-gel-type layer. 

To estimate the amount of polymer that might have been retained by the membrane, the 

theoretical polymer concentration in the permeate vessel (𝑐fe,P,theo) was calculated assuming 
that all the polymer passed thorough the membrane. The permeate side of the membrane 
module was assumed to behave as a plug flow reactor (PFR) and the concentration drop in 
the membrane was considered negligible. The dynamic behaviour of a PFR with a step input 
in the inlet concentration is as follows:  the concentration at the outlet, which is the permeate, 
is zero at times below the hydraulic retention time (HRT) and equal to the inlet concentration, 

which is 𝑐fe, at time above or equal to HRT. Thus, the𝑐fe,perm,theo was calculated as follows: 

𝑐fe,P,theo =
(𝑡𝐹 −HRT)

𝑡𝐹
𝑐fe , (2.4) 

where 𝑡𝐹 is the final filtration time. HRT was calculated with the volume of the permeate side 
of the membrane module, 0.208 L, and the flow rate through the membrane, this is the flux 

(60 L m-2 h-1) multiplied by the membrane surface area (𝐴m =  0.0239 m2); thus, HRT = 0.145 

hours or 8.7 minutes.  

The results in Table 2.6 show that the 𝑐fe,P,theo was significantly higher than 𝑐fe,P, 
indicating that the membrane might have retained part of the polymer. The theoretical 

fraction of polymer retained by the membrane increased with 𝑐fe, this might be caused by 

 
Figure 2.12. Total filtration resistance during filtration of flux enhancer (Adifloc KD451) solutions 
with different concentration (𝑐fe) in the AnDFCm installation at 60 L m-2 h-1 flux and 1.5 m s-1 
crossflow velocity. 
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charge repulsion between the membrane with adsorbed polymer and the polymer in the bulk 
liquid.  

Therefore, a fraction of Adifloc KD451 was able to pass through the membrane pores and 

the concentration of the polymer in the permeate increases with 𝑐fe. However, the retention 

in the membrane also increased with 𝑐fe, and thus the concentration of polymer in the 
permeate remained relatively low.  

2.4 DISCUSSION 

This chapter analysed the effect of polymer dosage on the various sludge characteristics and 

water matrix parameters. The terminology ‘optimal required dosage’ or 𝐷opt was introduced 

for the minimum required polymer dosage to exert a maximum improvement in sludge 

filterability; a dosage beyond 𝐷opt had only a marginal additional effect. Moreover, a further 

increase in polymer dosage negatively impacted the sludge filterability. The dosage at which 
this occurred was defined as 𝐷crit or the ‘critical flux enhancer dosage’. The applied FE 
dosages exerted a different impact on the specific sludge characteristics and water matrix 
parameters of the various investigated sludges. As such, correlations were identified between 

𝐷opt and 𝐷crit of the various sludges and some of these characteristics and parameters.  

2.4.1 Effect of sludge characteristics on optimal FE dosage 

2.4.1.1 Colloidal and soluble organic matter 

The concentration of soluble and colloidal organic matter play a major role in fouling of 
membrane bioreactors (Christensen et al., 2018; Judd and Judd, 2011; Shi et al., 2018); high 
concentrations increase fouling by pore blocking, cake layer formation, and decrease in cake 
layer porosity. Electrostatic repulsion between the negatively charged colloidal particles 
prevents them from agglomerating, whereas the intermolecular attraction promotes bonding. 
Cationic polymers promote colloidal agglomeration by bridge flocculation, where polymer 

Table 2.6. Characteristics of permeate obtained while filtering flux enhancer solutions with different 
concentration (𝑐fe) in the AnDFCm installation, operated at 60 L m-2 h-1 flux and 1.5 m s-1 crossflow 
velocity. 

𝑐fe Permeate 
volume 

collected, 
𝑉P (L) 

Permeate concentration (gCOD L-1) a 

Membrane retention (%) b 
(g L-1) (gCOD L-1) 𝑐fe,P 𝑐fe,P,theo 

0.1 0.1 0.33 0.018 0.037 50% 

0.5 0.6 0.46 0.025 0.322 92% 

1.0 1.1 0.47 0.046 0.670 93% 
a COD concentration in the cumulative permeate collected during the filtration of Adifloc KD45 

solution. 𝑐fe,P is the measured value with COD Kits, and 𝑐fe,P,theo is the value calculated assuming 
that the permeate side of the membrane module behaves as a plug flow reactor with an HRT of 8.7 
min and without concentration polarization and polymer retention in the membrane.  

b Theoretical fraction of polymer retained by the membrane, calculated as (𝑐fe,P,theo − 𝑐fe,P) 𝑐fe,P,theo⁄ . 
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segments are adsorbed onto the surface of different colloid particles linking them together. 
Alternatively, agglomeration is promoted by electrostatic patch mechanisms, where the 
polymer is adsorbed onto the particle surface creating positively charged patches that 
interact, upon collision, with the negative surface of other colloidal particles to form flocs. 
Moreover, excessive cationic polymer dosages can cause particle redispersion, also designated 
as deflocculation or restabilisation, by saturation of bridging sites or charge reversal due to 
complete surface coverage (Bratby, 2016). 

Accordingly, in Figure 2.5A, csCOD decreased with increasing dosages of FE with a 
saturation behaviour which corresponds to complete colloidal surface coverage. The csCOD 

increased at dosages above 𝐷crit due to redispersion of colloidal particles. The dosage at which 
complete coverage is attained depends on the colloidal surface area available. Regarding 

sludge filterability, 𝐷opt was defined as the dosage at which the sludge filterability reaches 

saturation. Since the available colloidal surface is directly related to cCOD, 𝐷opt was positively 

correlated with cCOD (𝜏 = 0.86, 𝑝 < 0.01). Therefore, samples with higher concentrations 
of colloidal organic matter require higher FE dosages to mitigate fouling.  

Soluble organic matter can be positively or negatively charged or can be neutral, namely: 
the overall charge of a protein depends on the pH and its isoelectric point; carbohydrates can 
be negatively charged (containing carboxylic groups or sulphuric ester groups), positively 
charged (with protonated free amino groups) or neutral; humic substances are negatively 
charged (containing carboxylic and phenolic groups). Therefore, the interaction with the 
cationic polymer is not straightforward, as it is for the exclusively colloidal organic matter. 

Consequently, sCOD did not correlate significantly with 𝐷opt (𝑝 > 0.05). 

A linear correlation between the optimum cationic polymer concentration and 
concentration of humic substances has been reported (Bratby, 2016). In this research, the 

SMP-HS was not significantly correlated with 𝐷opt (𝑝 > 0.05), but the variation of SMP-HS 

between samples was small (Table 2.2), except for LiqOFMSW. The high optimal dosage 
required for LiqOFMSW was possibly due to the high concentration of SMP-HS that bind with 
the FE, thus decreasing the availability of FE to flocculate the colloidal material. 

2.4.1.2 Supracolloidal organic matter concentration and size 

Supracolloidal organic matter in sludge matrices, further referred to as flocs, usually present 
an overall negative surface charge (Braguglia et al., 2006; Jia et al., 1996). Thus, cationic FE 
may adsorb onto the flocs, thereby decreasing FE availability for flocculation of colloidal 
material. Consequently, bigger quantities of FE would be required at higher flocs 
concentrations. Nevertheless, colloidal material can be incorporated into flocs by interaction 
with the FE adsorbed or by entrapment between aggregated flocs. Therefore, flocs present 
opposite effects on the flocculation of colloidal material, and thus on filterability 
improvement. Consequently, no significant correlation was observed between scCOD and 

𝐷opt.  

For suspensions with uniform particle size, higher optimal dosages are required for 
smaller particles due to its larger specific surface. Nevertheless, good flocculation 
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performance can be obtained at different dosages for samples with various particles sizes 
(Bratby, 2016). Therefore, the samples used in this research, which had flocs of a wide range 

of sizes (~1-1000 µm, Figure 2.3), had no significant correlation between the 𝐷opt and the floc 

size distribution, represented by 𝐷10, 𝐷50 and 𝐷90 in Table 2.4. 

2.4.1.3 pH and electrical conductivity 

When using coagulants as FE, pH is a crucial variable. However, cationic polymers can be 
used within a wide pH range, without the need for pH adjustment. Research has shown an 
effect of pH on the optimal required dosage, which was mainly attributed to changes in the 
surface charge of the material to be flocculated (Bratby, 2016). Contrarily, relationship 

between pH and 𝐷opt was observed; however, the pH range of the samples was narrow: 

6.9 – 8.1 (Table 2.2). Similar pH values are observed in most membrane bioreactors where 
approximately neutral pH is required to favour biological processes. Therefore, pH is not 
expected to influence the required dosage of cationic polymer.  

Electrical conductivity is correlated with ionic strength and it is a fast measurement to 
estimate the concentration of ions in solution. High ionic strength could positively influence 
aggregation of colloidal material by reducing the electrostatic repulsion of particles of the 
same charge. However,  it might also harm  flocculation by reducing the extension of the 
polymer chains; the size of polymer chains are very important for effectively bridging 
colloidal material (Bratby, 2016). Additionally, the adsorption of FE onto the negatively 
charged material can be reduced by polymer neutralisation by anions, or by decreased 
available adsorption sites due to adsorption of cations onto the colloidal material (Kasper, 
1971). Therefore, ionic strength has opposite effects on flocculation of colloidal material. 

Accordingly, no correlation between conductivity and 𝐷opt was observed.  

2.4.2 Side effects of FE and the risk of overdosing 

Dosages of FE above the 𝐷crit caused an adverse effect on filterability, csCOD and sCOD in 
several sludges. Various researchers have observed this negative effect on different response 
variables (Braguglia et al., 2006; Collins et al., 2006; Díaz et al., 2014; Koseoglu et al., 2008; 
Wozniak, 2010; Zhang et al., 2017). Excessive FE dosage can impair filtration performance due 
to increased concentration of colloidal and soluble organic matter by deflocculation. 
Additionally, the interaction between the cationic FE, that remains unbonded in the bulk 
liquid, and the membrane may result in intense fouling, by FE adsorption over the membrane 
surface and inside the pores (Iversen et al., 2008). This was shown in Figure 2.6 by high 

𝑅T,water after filtering sludge with excessive dosages of FE and in Figure 2.12 where the 

unbonded FE deteriorated the filtration performance, measured as an increase in 𝑅𝑇, upon 
contact with the membrane but only at high concentrations, which are unlikely to be present 
in AnMBRs dosed with FE. 

The high 𝑅T,water measured after filtering sludge with excessive dosages of FE, suggests 

that the excess polymer caused irreversible fouling, which refers to the fouling that needs to 
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be removed by chemical cleaning. Irreversible fouling increases the frequency of chemical 
cleaning, decreasing the lifespan of the membranes. Therefore, it is crucial to avoid 
overdosing FE to the AnMBR.  

Furthermore, Section 2.3.6 shows that a fraction of the unbonded Adifloc KD451 passed 
through the membrane and contaminated the permeate. Research had shown that 
polydiallyldimethylammonium chloride (polyDADMAC), which is the chemical compound in 
Adifloc KD451, can be a precursor of N-nitrosodimethylamine (NDMA), which is a suspected 
human carcinogen produced during chloramination or ozonation (Padhye et al., 2011; Tan et 

al., 2018). Therefore, determining the 𝐷opt and 𝐷crit for each sludge individually is crucial to 

avoid adverse effects on filterability and permeate contamination by unbonded FE.  

2.4.3 Comparison of optimal and critical FE dosages determined with 
different response variables 

The optimal and critical dosages determined in terms of filterability improvement (∆𝑅20 
decrease) were compared with those obtained based on csCOD removal, sCOD removal and 

CST decrease. The CST showed the worst results: 𝐷opt,CST was most different from 𝐷opt, and 

CST decrease proved unable to detect critical dosages (𝐷crit,CST). For most samples 𝐷opt,CST 

was higher than 𝐷opt, probably because the FE increases scCOD which deteriorates 

dewaterability, here measured as CST, but does not have a direct effect on filterability. Thus, 
more FE is needed to compensate for the increased formation of scCOD increasing CST. 
Furthermore, during dead-end filtration, which is the principle of CST measurements, a 
sludge cake is deposited on top of the filter and can act as a first filtration step. At high FE 
dosages, exceeding saturation, this sludge cake might adsorb both the unbonded FE and the 
positively charged organic matter saturated with FE, and thereby protecting the filter. Such 
protective layer is not likely to be critical in crossflow filtration mode systems, such as in the 
AnDFCm installation and membrane bioreactors, due to the shearing effect of the cross flow. 
Therefore, high FE dosages caused a detrimental effect on filterability and not in CST. 
Consequently, required FE dosages which are assessed using CST measurements may lead to 
overdosing, with possible adverse effects in fouling and permeate quality. 

Better results, compared to CST decrease, were obtained with sCOD removal as response 

variable: the difference with 𝐷opt was lower and the adverse effect for determining 𝐷crit,sCOD 

was observed in several sludges. Nevertheless, the 𝐷crit,sCOD was only equal to 𝐷crit in 3 

samples (and differed in 5), and 𝐷opt,sCOD was generally higher than 𝐷opt. This overestimation 

of the optimal required dosage might be attributed to possibility that part of the soluble 
material that is removed by the FE remains as colloidal material, which could have a similar 
adverse effect on filterability as the original soluble material. Similarly, Koseoglu et al. (2008) 
found that SMP removal, where SMP was measured as SMP-CH plus SMP-PR, and 
improvement in filtration performance do not always correlate.  

The variable csCOD removal exhibited the best results in terms of optimal and critical 
dosages, likely because csCOD comprised both soluble and colloidal material, which 
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interacted with the FE and affect filterability. However, the difference between 𝐷opt and 

𝐷opt,csCOD, which was on average 47%, remained significant.  

Therefore, the use of crossflow filtration modes is recommended, such as the one applied 
in the AnDFCm installation, to determine the optimal dosage of FE. If such methods are not 
available, as is the case in most full-scale AnMBR and MBR plants, the use of csCOD removal 
as an alternative variable is recommended, instead of measurements based on dead-end 
filtration mode or based on soluble organic matter removal. 

2.4.4 Guidelines for dosing FE in a continuous AnMBR 

When using Adifloc KD451 as FE in a new sludge sample, 𝐷opt can be estimated with the 

empirical models in Figure 2.11 by measuring any of the following sludge characteristics: 

∆R20,(1.5,60), CST, cCOD or SMP-CH. Furthermore, the estimated 𝐷opt, further called 

𝐷opt,simulated, could be used to design an experiment to determine 𝐷opt more precisely for 

each specific sludge. The following dosages should be used in the experiment: 0, 0.2, 0.4, 0.6, 

0.8, 1, 1 ,1 ,1.5, 2 ,2.5 and 3-folds 𝐷opt,simulated, where the triplicates at 𝐷opt,simulated are applied 

to estimate the variability of the test. After each dosage, the sludge filterability should be 
determined or, alternatively, the csCOD.  

For the application of FE to a full-scale AnMBR, avoiding FE overdose is important since 
it can cause: i) reversible fouling increase caused by deteriorated sludge filterability, 
ii) irreversible fouling increase caused by the interaction of unbonded FE with the membrane, 
and iii) permeate contamination by part of the unbonded FE that can pass through the 

membrane. Thus, 𝐷crit should be used as a limiting dosage, meaning that the concentration 

of FE in the reactor should be below 𝐷crit during the entire operational period. Different 
dosing strategies can be applied, for example: continuously dosing FE to the reactor to sustain 

a concentration equal to 𝐷opt while compensating for FE losses with the sludge wastage; or 

in a fed-batch mode, where the FE is dosed as a pulse to achieve 𝐷opt, whenever the sludge 

has poor filterability, or high cCOD, CST or SMP-CH.  

Moreover, the effectiveness of the FE can be largely affected by the degree of mixing 
during flocculation, which is governed by velocity gradients and time of flocculation (Bratby, 
2016). Therefore, when applying FE to a full-scale AnMBR, special attention should be given 
to the mixing conditions. 

The annual cost of dosing FE for fouling control in membrane bioreactors is subject to 
the volume of mixed liquor, price of FE, optimal required dosage, and frequency of dosage. 
As an example, the cost was estimated for the AnMBRs where the sludges with highest and 

lowest 𝐷opt (i.e., LiqOFMSW and BWc-II) were collected. A dosing strategy where the 

frequency of dosage is adjusted to compensate for sludge wastage was assumed, resulting in 
a frequency of 1/SRT. The price of the Adifloc KD451 depends on the purchase amount and 
location. Nevertheless, the price used here was 6 € kg-1, which was given by the supplier as a 
base price. The AnMBR where BWc-II was collected operated at 70 d SRT, 2.35 m3 mixed 

liquor volume, and 𝐷opt was 0.02 g L-1, and thus the FE cost would be 1.5 € y-1 or 0.63 € m-3 y-1, 
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which is negligible. However, the AnMBR where LiqOFMSW was collected operated at 8 d 

SRT, 42 m3 mixed liquor volume, and 𝐷opt was 1.16 g L-1, and thus the FE cost would be 

13,337 € y-1 or 318 € m-3 y-1. Therefore, the costs of FE dosing can vary considerable for 
different AnMBRs and should be considered in the economic evaluation of each treatment 
plant. 

2.5 CONCLUSIONS 

The main findings are summarised as follows: 

• The optimal and critical dosages differed considerably between the various AnMBR 

sludge samples: 𝐷opt ranged from 0.02 to 1.16 g L-1 and 𝐷crit from 0.10 to 2.5 g L-1. 

• 𝐷opt presented a linear relationship with CST (𝑅2 = 0.975), cCOD (𝑅2 = 0.983), and 

SMP-CH (𝑅2 = 0.936); and 𝐷opt had an exponential relationship with ∆𝑅20 (𝑅2 =

0.950), which is inversely related to sludge filterability. The empirical models derived 

can be potentially used to predict  𝐷opt in new sludge samples, or as guidance for 

experimental design for 𝐷opt determination. 

• 𝐷opt had non-significant correlations with supracolloidal COD (scCOD, above 1 µm), floc 

size, TP, TON, NH4-N, SMP-PR and SMP-HS. 

• Excessive FE dosages had an adverse effect on sludge filterability, increased irreversible 
fouling in the AnDFCm installation and possibly promoted permeate contamination by 
the unbonded FE. Therefore, overdosing must be avoided when applying FE to full-scale 
AnMBRs.  

• The ∆𝑅20, measured following the AnDFCm protocol, was a reliable variable to 
determine the optimal and critical FE dosages. If the AnDFCm or an alternative crossflow 
filtration measurement is not available, csCOD removal could be used as an alternative 
variable to estimate the optimal FE dosage, since it provided better results than sCOD 
removal and CST decrease.  
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ABSTRACT 

The application of cationic polymers to enhance membrane fluxes in anaerobic membrane 
bioreactors has been proposed by several authors. However, literature shows contradictory 
results on the influence of those chemicals on the biological activity. In this research, the 
effect of a cationic polymer on the production of methane from acetate by acetoclastic 
methanogens was studied. The effect of polymer concentration on the accumulated methane 
production (AMP) and the specific methanogenic activity (SMA) was assessed in batch tests. 
Batch tests results showed lower SMA values at higher concentrations of polymer and no 
effect on the final AMP. Different inhibition models were calibrated and compared to find the 
best fit and to hypothesize the prevailing inhibition mechanisms. The assessed inhibition 
models were: competitive (M1a), non-competitive (M2a), un-competitive (M3a), biocide-linear 
(M4a) and biocide-exponential (M5a). The parameters in the model related to the polymer 
characteristics were adjusted to fit the experimental data. M2a and M3a were the only models 
that fitted both experimental SMA and AMP. Although M1a and M4a adequately fitted the 
experimental SMA, M1a simulations slightly deviated from the experimental AMP, and M4a 
considerably underpredicted the AMP at concentrations of polymer above 0.23 gCOD L-1. 
M5a did not adequately fit either experimental SMA and AMP results. Models a (M1a to M5a) 
were compared with models b (M1b to M5b), where moldes a consider the inhibition by the 
concentration of polymer in the bulk liquid, and models b consider the inhibition being caused 
by the total concentration of polymer in the reactor. Results showed that the difference 
between a and b models’ simulations were negligible for all kinetic models considered (M1, 
M2, M3, M4 and M5). Therefore, the models that better predicted the experimental data were 
the non-competitive (M2a and M2b) and un-competitive (M3a and M3b) inhibition models, 
which are biostatic inhibition models. Consequently, the decreased methanogenic activity 
caused by polymer additions is presumably a reversible process. 
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3.1 INTRODUCTION 

As shown in Chapter 1, cationic polymers composed of polydiallyldimethylammonium 
chloride (polyDADMAC), such as MPE50 and Adifloc KD451 and KD452, have been 
successfully used as flux enhancers (FE) in membrane bioreactors. However, scarce, and 
contradictory reports are published on the effect of these polymers on the microbial 
community. Consequently, prior to the application of a FE in an AnMBR, the possible effect 
on biomass activity needs to be studied. 

Iversen et al. (2008) studied the biological inhibition of four polyDADMAC based FE on 
aerobic sludge. Their results showed no inhibitory effects on the endogenous oxygen uptake 
rate (OUR), however, two of the polymers had a 50-70% inhibitory effect on the exogenous 
OUR. In anaerobic digestion, to the authors’ best knowledge, only two reports assessing the 
impact of polyDADMAC cationic polymers on the microbial activity are available. These 
reports showed no change on the COD removal (Díaz et al., 2014) and on the biogas 
production (Zhang et al., 2017) after polymer addition. However, in different research fields, 
polyDADMAC has been reported as an anti-microbial agent (Tran et al., 2017; Wang et al., 
2017; Zhao et al., 2016) that can physically disrupt the prokaryotic cell wall.  

The biochemical conversion processes of anaerobic digestion are hydrolysis, 
acidogenesis, acetogenesis and methanogenesis. These processes are carried out by complex 
microbial communities. Methanogenesis is carried out by acetoclastic and hydrogenotrophic 
methanogens. In a conventional mesophilic digester, the slow-growing acetoclastic 
methanogens are responsible for approximately 70 % of the methane produced, and are 
generally considered the most sensitive to the presence of inhibitors (Astals et al., 2015). 
Therefore, the classical approach to study the inhibitory effect of a specific compound on the 
biomass activity is by studying its effect on the acetoclastic methanogens.  

Models are a powerful tool to reveal insight into the processes and interactions in a given 
system. The most common approach to model biological inhibition in anaerobic digestion, 
including weak acid/base, hydrogen, pH and cation inhibition, is the biostatic inhibition that 
considers the effect on growth and substrate uptake kinetics, and which is included in the 
Anaerobic Digestion Model No. 1 (Batstone et al., 2002). Furthermore, the disruption of the 
cells caused by a substance is considered a reactive irreversible toxicity and it is defined as 
biocidal inhibition (Batstone et al., 2002). Knowing the underlying inhibition mechanisms 
allows understanding of the long-term implications in a continuous reactor. For example, if 
the polymer exerts a biocidal effect on the microorganisms, then cell lysis will likely occur 
resulting in a release of soluble polymeric substances. The latter compounds are reported to 
deteriorate the sludge filterability (Krzeminski et al., 2012), leading to the need for more 
polymer addition to counteract the effect. A biocidal effect is irrecoverable, therefore 
continuously dosing of polymers can lead to severe biomass death and the need for re-
inoculation. However, if the polymer will exert biostatic inhibition, it will not have a direct 
impact on filterability, and the effect on the biology will immediately recover when the 
polymer concentration decreases in the system. Additionally, depending on the dosage of the 
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polymer and the microbial growth rate, the overall microbial activity might be recovered by 
an increase in the biomass content. 

This research assessed the effect of a cationic polymer concentration on the biological 
activity of anaerobic sludge. Modelling was used as a tool to study the inhibition mechanism 
of the polymer on the acetoclastic methanogenesis. This research compared biostatic and 
biocidal inhibition models based on their capacity to predict the dynamic methane production 
in batch experiments. The models were calibrated to fit the experimental data, namely the 
specific methanogenic activity (SMA) and the accumulated methane production (AMP) 
obtained in batch tests at different concentrations of polymer. 

3.2 MATERIALS AND METHODS 

3.2.1 Analytical methods 

Chemical oxygen demand (COD) was measured using Hach Lange test kits, the total 
suspended solids (TSS) and volatile suspended solids (VSS) concentration following Standard 
Methods (APHA, 1999). Particle size distribution (PSD) was measured with a Microtrac 
Bluewave diffraction analyser (Malvern Instruments Ltd., UK), and reported as the 50th 

percentile of the volume-based particle size distribution, or median diameter, 𝐷50, which is 
the diameter at which 50 % of the sample’s mass is comprised of particles with a diameter less 
than this value. All variables were measured in triplicate, immediately before and after the 
batch tests experiments. Reported results are averages of the triplicates. 

3.2.2 Batch reactor tests 

The effect of increasing polymer concentration on the SMA was assessed using Adifloc KD451 
(Adipap, France). As explained in Chapter 2, the polymer was selected based on its capacity 
to significantly enhance the sludge filterability of municipal and industrial sludge samples 
when applied at very low concentrations, while no effect on pH was observed. 

The inhibition tests were performed in 250 mL Schott glass bottles (200 mL filled with 
liquid and 50 mL as headspace) under mesophilic conditions using sodium acetate as carbon 
source. The inoculum was collected at an anaerobic digester of a near-by sewage treatment 
plant (Harnaschpolder, Den Hoorn, The Netherlands). The characteristics of the inoculum 
were as follows: 29.3 gTSS L-1, 21.0 gVSS L-1 and D50 of 50 nm. The polymer was pre-mixed 
with the inoculum, in 1 L jars of a jar-test apparatus by mixing at 90 rpm during 30 minutes. 
Each SMA bottle was filled with 2.5 gCOD L-1 of sodium acetate, inoculum-polymer mixture, 
0.6 mL L-1 micro and 6 mL L-1 macro nutrients solutions (Muñoz Sierra et al., 2018), 10 mM 
phosphate buffer solution at pH 7.0 (Spanjers and Vanrolleghem, 2016) and demineralised 
water, and then flushed the bottles with nitrogen gas for 1 min. The inoculum concentration 
in the bottles was 4 gVSS L-1 (corresponding to 6 gTSS L-1), and the following concentrations 
of polymer were used: 0, 0.06, 0.11, 0.17, 0.23, 0.28, 0.34, 0.40 and 0.46 gCOD L-1. The maximum 
concentration of polymer tested was approximately ten times the concentration of KD451 
applied to a pilot AnMBR for fouling control in Chapter 4 (Odriozola et al., 2020), namely 
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0.05 gCOD L-1. The SMA tests were performed in triplicate and placed the bottles inside an 
orbital shaker at 130 rpm with temperature control at 35 °C and over a 10-day period. 

Methane production was measured using an “automated methane potential test system” 
(AMPTS from Bioprocess Control, Sweden). The AMPTS generates a digital pulse after a fixed 
volume of gas (~10 mL) has flowed through the gas cells, and measures the temperature and 
pressure in the water bath containing the gas cells. The AMPTS calculates and records the 
volume of gas under normal conditions (N-mL, 0 °C, 1 bar). The AMP, expressed in 
kgCOD kgVSS-1, was calculated by dividing the data recorded in the AMPTS by the mass of 
VSS inoculated and by the stoichiometric methane production per kg COD, i.e., 
3.5×105 N-mL kgCOD-1. The SMA was calculated following Spanjers and Vanrolleghem 
(2016).  

3.2.3 Mathematical models description 

This research, compares the results from five different models, predicting the methane 
production from acetate in batch reactors in the presence of an inhibitory compound (the 
polymer). The first three models, M1a to M3a, describe the biostatic inhibition of acetate 
degradation by the concentration of inhibitor in the bulk liquid. The biostatic models assume 
that the inhibitor binds to the enzyme or the complex enzyme-substrate and does not allow 
the product formation. The kinetic models considered were as follows: competitive (M1a) 
where the inhibitor attaches to the enzyme in the same place as the substrate, non-
competitive (M2a) where the inhibitor attaches to the enzyme in a different place changing 
the structure of the enzyme, and un-competitive (M3a) where the inhibitor attaches to the 
complex enzyme-substrate (Garcia Orozco, 2008). The fourth (M4a) and fifth (M5a) models 
describe the biocidal effect of the inhibitor concentration in the bulk liquid on the microbial 
decay. M4a was a linear model describing the decay rate change with the inhibitor 
concentration, and M5a an exponential model.  

The model considered the following soluble components: total acetate (ac), methane gas 

(ch4), inorganic carbon (IC), carbon dioxide gas (co2), nitrogen gas (n2) and inhibitor 

(polymer) (I); and particulate components as follows: acetate degraders and adsorbed 
polymer. The model included the following processes: adsorption of the polymer (inhibitor) 
into the biomass, uptake of acetate by methanogens, liquid-gas transfer of nitrogen, carbon 
dioxide and methane, acid-base equilibria for inorganic carbon and biomass decay. The uptake 
of acetate was assumed to be performed by the dispersed biomass in the bulk liquid. 

3.2.3.1 Polymer adsorption 

Equilibrium conditions for polymer adsorption were assumed to be achieved after 30 minutes 
mixing the inoculum with the polymer, as shown by other authors for the absorption of 
polyDADMAC onto waste activated sludge (Zhao et al., 2016) and onto cellulosic fibres 
(Horvath et al., 2006). The Langmuir adsorption isotherm was used to describe the equilibrium 
conditions as follows: 
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𝑋fe,𝑒 = 𝑞𝑚,ads 𝑐X
𝐾𝐿,ads 𝑆fe,𝑒

1 + 𝐾𝐿,ads 𝑆fe,e
 , (3.1) 

where 𝑋fe,𝑒 (kgCOD m-3) is the adsorbed polymer concentration after equilibrium, 

𝑞𝑚,ads (kgCOD kgTSS-1) the maximum adsorption capacity corresponding to monolayer 

coverage, 𝐾𝐿,ads (m3 kgCOD-1) the Langmuir affinity coefficient, 𝑐X (kgTSS m-3) the 

concentration of adsorbent (or total solid concentration) inside the reactor, 𝑆fe,𝑒 (kgCOD m-3) 
is the polymer concentration in the bulk liquid after equilibrium.  

The mass balance of polymer inside the reactor was as follows: 

𝑆fe,𝑒 = (𝑐fe − 𝑋fe,𝑒) , (3.2) 

where 𝑐fe (kgCOD m-3) is the total concentration in the bulk liquid. Therefore, the equilibrium 

concentrations 𝑆fe,𝑒 and 𝑋fe,𝑒 were estimated by combining Equations (3.1) and (3.2). 𝑐fe and 

𝑐X were determined experimentally and 𝑞𝑚,ads and 𝐾𝐿,ads were estimated by fitting the model 

to the experimental data. The concentration of polymer in the bulk liquid (𝑆fe, kgCOD m-3) 

was assumed as equal to the equilibrium concentrations, namely 𝑆fe = 𝑆fe,𝑒. 

3.2.3.2 Kinetic processes 

The models included the conversion of acetate to methane and inorganic carbon by 
acetoclastic methanogenic archaea, and the biomass decay processes in the kinetic models, as 
summarised in Table 3.1. Models M1a, M2a and M3a considered the biostatic inhibition 
(competitive, non-competitive, and un-competitive) of the acetate degradation rate 

Table 3.1. Description of kinetic process used in the evaluated models. 

Model Inhibition type Uptake of acetate (𝜌1) a 
Decay of acetate degraders 

(𝜌5) b 

M0 No inhibition 𝑘𝑚,ac
𝑆ac

𝐾𝑠.ac+𝑆ac
𝑋ac 𝑏ac𝑋ac 

M1a Biostatic, 
competitive 

𝑘𝑚,ac
𝑆ac

𝐾𝑠.ac (1 +
𝑆fe

𝐾𝐼,fe,ac
)+𝑆ac

𝑋ac 𝑏ac𝑋ac 

M2a Biostatic,  
non-competitive 

𝑘𝑚,ac
𝑆ac

(𝐾𝑠.ac+𝑆ac) (1 +
𝑆fe

𝐾𝐼,fe,ac
)
𝑋ac 𝑏ac𝑋ac 

M3a Biostatic,  
un-competitive 

𝑘𝑚,ac
𝑆ac

𝐾𝑠.ac+𝑆ac (1 +
𝑆fe

𝐾𝐼,fe,ac
)
𝑋ac 𝑏ac𝑋ac 

M4a Biocide, linear 𝑘𝑚,ac
𝑆ac

𝐾𝑠.ac+𝑆ac
𝑋ac 

𝑆fe
𝐾𝐼,fe,ac

𝑏ac𝑋ac 

M5a 
Biocide, 

exponential 𝑘𝑚,ac
𝑆ac

𝐾𝑠.ac+𝑆ac
𝑋ac 10𝑆fe 𝐾𝐼,fe,ac⁄ 𝑏ac𝑋ac 

a 𝑆ac (kgCOD m-3) is the total acetate concentration, 𝑋ac (kgCOD m-3) the concentration of acetate 
degraders, 𝐾𝑆,ac the Monod half saturation constant (kgCOD m-3), 𝑘𝑚,ac (d-1) the Monod maximum 
specific uptake rate and 𝐾𝐼,fe,ac (kgCOD m-3) the concentration of inhibitor giving 50% inhibition.  

 b 𝑏ac (d-1) is the first order decay rate for acetate degraders. 
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(𝜌1, kgCOD m-3 d-1) by the concentration of inhibitor in the bulk liquid. 

The biomass decay rate (𝜌5, kgCOD m 3 d-1) was described by first order kinetic in all 
models. Additionally, models M4a and M5a described the biocidal inhibition by relating the 
concentration of inhibitor with the first order decay rate. Therefore, as shown in Table 3.1, a 
simple linear model between the first order decay rate and the concentration of inhibitor in 
the bulk liquid 𝑆fe was proposed in M4a, and an exponential term in M5a. The latter was 
analogous to the microbial inactivation kinetics by chemical compounds (Casolari, 1988). 

3.2.3.3 Liquid-gas mass transfer 

The specific liquid-gas mass transfer rates for methane (𝜌2, kgCOD m-3 d-1), carbon dioxide 

(𝜌3 kmol m-3 d-1) and nitrogen (𝜌4, kmol m-3 d-1) was calculated as follows (Batstone et al., 
2002): 

𝜌2 = 𝑘𝐿𝑎(𝑆ch4 − 𝐾𝐻,ch4𝑝ch4,G) , (3.3) 

𝜌3 = 𝑘𝐿𝑎(𝑆co2 − 𝐾𝐻,co2𝑝co2,G),  (3.4) 

𝜌4 = 𝑘𝐿𝑎(𝑆n2 −𝐾𝐻,n2𝑝n2,G) , (3.5) 

where 𝑘𝐿𝑎 is the dynamic gas–liquid transfer coefficient, 𝐾𝐻,n2 (kmol m-3 bar-1), 𝐾𝐻,co2 

(kmol m-3 bar-1) and 𝐾𝐻,ch4 (kgCOD m-3 bar-1) are the Henry’s law coefficients, 𝑝ch4,G, 𝑝co2,G  

and 𝑝n2,G (bar) the partial pressures of gases, and 𝑆ch4 (kgCOD m-3), 𝑆co2 (kmol m-3) and 𝑆n2 
(kmol m-3) the concentrations of methane, carbon dioxide and nitrogen in the liquid phase, 

respectively. The same 𝑘𝐿𝑎 value was assumed for all gaseous components. 

The gas phase composition was calculated assuming that gas-liquid equilibrium was 

reached for all gaseous components in accordance with Henry’s law, and thus, 𝑝𝑖,G was as 
follows: 

𝑝𝑖,G = 𝑝G
𝑆𝑖 𝐾𝐻,𝑖⁄

∑ 𝑆𝑖 𝐾𝐻,𝑖⁄𝑖
 , (3.6) 

where 𝑝G (bar) is the total gas pressure. 𝑆co2 was calculated from the concentration of 

inorganic carbon in the liquid phase (𝑆IC) using the acid-base equilibrium equation for 
inorganic carbon (CO2,ac/HCO3-):  

𝑆co2 = 𝑆IC (1 −
𝐾𝑎,co2

𝐾𝑎,co2 + 10
−𝑝𝐻) , (3.7) 

where 𝐾𝑎,co2 is the acid-base equilibrium coefficient and 𝑝𝐻 (-) is the pH of the solution. 
Constant pH was assumed because a pH-buffer was added into the bottles in the batch-tests 
experiments. 
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3.2.3.4 Mass balances 

The accumulated methane production, AMP (kgCOD kgVSS-1), was calculated with Equation 
(3.8) using the specific liquid-gas mass transfer rate for methane (𝜌2). 

𝑑AMP

𝑑𝑡
=

𝜌2
𝑡conv𝑐VSS(0)

 , (3.8) 

where 𝑐VSS(0) (kgVSS m-3) is the initial concentration of VSS in the reactor, experimentally 

determined, and 𝑡conv (86,400 s d-1) is a time conversion factor. 

The mass balance equation for component 𝑖 in the bulk liquid was as follows: 

𝑑𝑐𝑖
𝑑𝑡

=
1

𝑡conv
∑ 𝜈𝑖𝑗𝜌𝑗

𝑗=[1−6]

 , (3.9) 

where 𝑐𝑖 is the concentration of the soluble (𝑆𝑖) or particulate (𝑋𝑖) component 𝑖 in the bulk 

liquid,  𝑡 (s) the time, 𝜌𝑗 (kgCOD m-3 d-1 or kmol m-3 d-1) the rate of process 𝑗, and 𝜈𝑖𝑗 the 

stoichiometric coefficients of component 𝑖 on process 𝑗, presented in Table 3.2. 

3.2.4 Model implementation 

3.2.4.1 Computational implementation 

All computations were performed in Matlab® R2018a, and the built-in ordinary differential 
equations (ODE) solver ode15s was used to integrate the ordinary differential equations 
system. The initial conditions and parameters of the experiments needed for model resolution 
were: 𝑝G, 𝑝𝐻, 𝑐X, 𝑐fe, 𝑆𝑖(0) and 𝑋ac(0).  

The modelled SMA (kgCOD kgVSS-1 d-1) was the maximum methane production rate 
calculated with Equation (3.10). The goodness of fit was assessed with the residual sum of 

squares in Equation (3.11), where 𝑦𝑒,𝑖 is the experimental observation 𝑖 and 𝑦𝑚,𝑖 the 

corresponding model prediction.  

Table 3.2. Stoichiometric coefficients (𝜐𝑖,𝑗). 

Component i → 1 2 3 4 5 

j Process ↓ 𝑆ac 𝑆ch4 𝑆IC 𝑆n2 𝑋ac 

1 Uptake of acetate −1 1 − 𝑌𝑎𝑐 a  
−∑ 𝑖C,𝑖𝜈𝑖,1𝑖≠3  

b 
 𝑌ac  

2 Liquid-gas transfer of ch4  −1    

3 Liquid-gas transfer of co2   −1   

4 Liquid-gas transfer of n2    −1  

5 Decay of 𝑋ac     −1 
a 𝑌ac is the yield coefficient.  
 b 𝑖C,𝑖 (kmole kgCOD-1) is the carbon content of component 𝑖. 
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SMA prediction = max(
∆AMPT

∆𝑡
𝑡conv) , (3.10) 

RSS𝑘 =∑(𝑦𝑒,𝑘,𝑖 − 𝑦𝑚,𝑘,𝑖)
2

 𝑖 

 , (3.11) 

where RSS𝑗 is the residual sum of squares for the output variable 𝑘, 𝑦𝑒,𝑘,𝑖 the 𝑖th experimental 

value of the output variable 𝑘, 𝑦𝑚,𝑘,𝑖 the 𝑖th predicted value of the output variable 𝑘. RSSSMA 

and RSSAMP were calculated using SMA and AMP as the output variables, respectively. RSS𝑘 

was calculated for each polymer concentrations 𝑐fe tested (shown in Section 3.2.2) by solving 

the models (M1a to M5a) individually for each 𝑐fe. 

As described in Section 3.2.2, the AMPTS generates a digital pulse after a fixed volume of 
gas has flowed through the gas cells; consequently, the time at which each data point was 
measured was different for each bottle, even for the triplicates of the same SMA test. 

Therefore, to estimate the RSSAMP, the models needed to predict the methane production at 
the exact experimental time instant. To achieve this, the models were solved with a 

sufficiently small time-step (that is ∆𝑡 = 1000 s), and the AMP prediction values were linearly 
interpolated at the exact experimental time instants for each SMA bottle. 

3.2.4.2 Nominal values of parameters  

The values of most parameters were obtained from literature and are summarised in Table 

3.3. The values of parameters related to the polymer characteristics, namely 𝑞𝑚,ads, 𝐾𝐿,ads and 

𝐾𝐼,fe,ac, were selected based on specific assumptions, and the most influential ones estimated 

to fit the experimental data.  

There are several commercial cationic polymers with similar compositions but each of 
them with different charges and molecular weights. To the authors’ best knowledge, there 
were no specific values for the parameters related to the polymer characteristics reported in 

literature. The Langmuir adsorption model parameters, 𝑞𝑚,ads and 𝐾𝐿,ads, are conditioned to 

the type of adsorbent and adsorbate. The values of 𝑞𝑚,ads and 𝐾𝐿,ads were estimated using 

experimental data for the adsorption of polyDADMAC onto different adsorbents from 

previous reports. The estimated values of 𝑞𝑚,ads were 0.032, 0.450 and 0.035 kg kg-1 for 
adsorption onto silica gel of 6 nm pore size (Hubbe et al., 2011), activated sludge (Zhao et al., 

2016) and cellulosic fibers (Horvath et al., 2006), respectively,  and those for 𝐾𝐿,ads were 2.0, 

7.6 and 1960 m3 kg-1, respectively. 𝑞𝑚,ads and 𝐾𝐿,ads results were highly dispersed; therefore, 

the values proposed for adsorption onto activated sludge were used as an initial guess. 

 The 𝐾𝐼,fe,ac was assumed equal to the 𝑆fe calculated using Equations (3.1) and (3.2) by 

substituting for the values for 𝑞𝑚,ads and 𝐾𝐿,ads from activated sludge and for the value for 

𝑐fe equal to the experimental concentration of polymer at which the SMA value was 50% 

smaller than the SMA without polymer. Therefore, the 𝐾𝐼,fe,ac was 0.014 kgCOD m-3.  
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3.2.4.3 Initial conditions and experimental parameters 

The solids concentration inside the reactor, 𝑐X, was the initial concentration of TSS in the 

reactor, which was experimentally determined. 𝑐fe was the concentration of polymer added 
to the SMA bottles.  

The total gas pressure 𝑝G was assumed constant and equal to the mean experimentally 
measured pressure, which was 1.01 bar. The ratio between partial pressure and total gas 
pressure at time zero was introduced as an initial condition in each model, and the soluble 

components concentrations (𝑆ch4(0), 𝑆IC(0) and 𝑆co2(0)) was estimated using Equations (3.6) 
and (3.7), assuming that the system starts at gas-liquid equilibrium. Since the bottles were 

initially flushed with nitrogen gas, the initial 𝑝𝑖,G 𝑝G⁄  were 0, 0 and 1 for methane, carbon 
dioxide and nitrogen, respectively.  

The initial concentration of acetate degraders was calculated as follows 𝑋ac(0) =

𝑖Xac,VSS,0 VSS(0), where 𝑖Xac,VSS,0 (kgCOD kgVSS-1) is the initial content of acetate degraders 

in the VSS. 𝑖Xac,VSS,0 to was estimated fit the model M0 to the experimental AMP when no 

polymer was added to the SMA bottles. Here, the adsorption model was not included since no 

polymer was present in the reactor. The initial guess for 𝑖Xac,VSS,0 was estimated with 
Equation (3.12) which assumes that all the methane produced from acetate left the bottles and 

𝑆ac ≫ 𝐾𝑠,ac. 

𝑖Xac,VSS,0 =
SMA

𝑘𝑚,ac(1 − 𝑌ac)
 . (3.12) 

3.2.5 Model calibration 

As described in Sections 3.2.4, the parameters 𝑞𝑚,ads, 𝐾𝐿,ads, 𝐾𝐼,fe,ac and 𝑖Xac,VSS,0 were 
estimated to fit the experimental data. The AMP without polymer addition was used as the 

Table 3.3. Nominal parameter values at 35 °C 

Component 𝑖 → 1 2 3 4 5 
Reference 

Parameter Units 𝑆ac 𝑆ch4 𝑆IC 𝑆n2 𝑋ac 

𝐾𝐻,𝑖 kmol m-3 bar-1 a   0.108 0.027b  5.5×10-4   Sander (2015) 

𝐾𝑎,co2 ×10-7    4.94   Batstone et al. (2002) 

𝑖C,𝑖 kmol kgCOD-1 0.0313 0.0156   0 0.0313 Batstone et al. (2002) 

𝑘𝑚,ac d-1 8     Batstone et al. (2002) 

𝐾𝑠,ac kgCOD m-3 0.15     Batstone et al. (2002) 

𝑌ac - 0.05     Batstone et al. (2002) 

𝑏ac d-1 0.1     Batstone et al. (2004) 

𝑘𝐿𝑎 d-1  178 178b 178  Metcalf et al. (2002) 
a 𝐾𝐻,𝑖 units for methane: kgCOD m-3 bar-1

 
b
 for CO2 
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model output (𝑦) to estimate 𝑖Xac,VSS,0; and for the remaining parameters, SMA for different 

total polymer concentrations 𝑐fe was used as model output. 

The model calibration procedure was as follows: (1) identification of a parameter subset 

(𝜃) containing only the influential parameters based on the standardised regression 

coefficients (𝛽𝑖) from the linear regression model built using the MC simulations; (2) 
definition of the boundaries for the parameters based on the behaviour of the RSS with respect 

to uncertain model parameters; (3) parameter estimation (PE) with 𝜃 and evaluation of the 

quality of the estimators; (4) (when needed) identification of the 𝜃 that can be reliably 
estimated from the given experimental data, by modification of the model structure, 
identifiability analysis or both; and (5) PE with new θ and model. Additionally, model 
prediction uncertainty analysis (UA) was performed using the MC method with the parameter 
uncertainty obtained from PE.  

3.2.5.1 Monte Carlo and linear regression 

Global sensitivity analysis was performed to identify the effect of the parameters on the model 
output. The analysis was implemented based on linear regression models built from MC 
simulations. Input uncertainty was a uniform distribution with 99.9 % variability, 99.9 % 
instead of 100 % was used to avoid null values; zero values for some parameters would cause 

numerical problems, for example, if 𝐾𝐻,𝑖 is zero (for any 𝑖) then there is a division by zero in 
Equation (3.6). Consequently, the minimum and maximum value of the distributions were 

0.001𝜃° and 1.999𝜃°, respectively, where 𝜃° is the initial/nominal parameter vector. The 

notation 𝜃~𝑈(0.001𝜃°, 1.999𝜃°) is further used in this document. The 𝜃 included all 
parameters in each model. Latin hypercube sampling (Iman and Conover, 1982) with 500 

samples (Sin et al., 2009) was used; 𝛽𝑖 was computed using the mean-centred sigma-scaling 

(Helton and Davis, 2003), and 𝛽𝑖 was estimated using the constrained linear least square 
minimisation function lsqlin with -1 and 1 as lower and upper bound, respectively. The 

estimation of 𝛽𝑖 requires a scalar input; therefore, 𝛽𝑖 was computed individually for each 𝑐fe 

in M1a to M5a and for each time (𝑡) in M0. The coefficient of determination (𝑅2) was applied 
to evaluate the quality of the regression model, that is: the model was considered sufficiently 

linear when 𝑅2 ≥ 0.7 (Sin et al., 2011). The mean, minimum and maximum 𝑅2 were calculated 

with the 𝛽𝑖 obtained for each parameter in the range of 𝑐fe or 𝑡 were 𝑅2 ≥ 0.7. The parameters 

with a mean abs(𝛽𝑖)  ≥ 0.10 were considered influential (Sin et al., 2011). 

3.2.5.2 Parameter estimation 

The behaviour of RSS𝑘 with the parameter values in the subset 𝜃 varying in a wide range 
was studied to research the existence of local minimums and determine the boundaries and 
initial guess for the PE. MC simulations were performed with Latin hypercube sampling with 
500 samples, using a uniform distribution with 99.9% variability for the parameter subset 

defined in Section 3.2.5.1, and RSS𝑘 was calculated for each simulation. The range of the 

parameters based on the behaviour of RSS𝑘 with respect to uncertain model parameters. 
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Subsequently, the parameters were estimated using the non-linear least squares solver 
lsqnonlin in Matlab® R2018a, with the trust region reflective algorithm and applying the 
lower and upper bounds previously identified. The input function for the lsqnonlin solver was 

an array with the residuals, where Residuals =  𝑦𝑒 − 𝑦𝑚. Afterwards, the solver found the 

optimal value (𝜃) that minimises the sum of squares of the input function, consequently, it 

minimises the RSS𝑘 in Equation (3.11). The standard deviation (𝜎𝜃) and 95 % confidence 
interval (CI) of the estimators were calculated in accordance to Sin and Gernaey (2016). 

The normality of the residuals needs to be evaluated since it is an underlying hypothesis 
for the implementation of least square method for parameter estimation. The distribution of 
the residuals was assessed graphically and Shapiro-Wilk test was applied to test the 
hypothesis of normality using the function swtest © (BenSaïda, 2009). When the null 
hypothesis of normality was rejected at a significance level 0.05, the parameters were 
estimated using bootstrap method, implemented as described in Sin and Gernaey (2016). 

The quality of the estimators was assessed based on the uncertainty of the estimators and 
the pairwise linear correlation between the parameters and considered a good estimation 

when the relative error, namely 𝜎𝜃 𝜃⁄ , was below 10 % and a poor estimation when it was 
above 50 % (Sin and Gernaey, 2016). Additionally, if the correlation coefficient between any 
pair of parameters was above 0.5, then the PE problem was considered ill conditioned. Then, 
identifiability analysis was used to select the parameter subset that can be identified uniquely 

from the experimental data. The collinearity index of the parameter subset 𝑘 (𝛾𝑘) were 
calculated in accordance with Sin and Gernaey (2016). The threshold to select a uniquely 
parameter subset is reported between 5 and 15 (Sin and Gernaey, 2016); the parameter subset 

with 𝛾𝑘 below 10 was selected for the PE. 

3.2.6 Modelling scenarios 

Two different scenarios were studied. The first scenario (models a: M1a, M2a, M3a, M4a and 
M5a), considered that the inhibition is caused by the polymer (inhibitor) present in the bulk 
liquid. As described in Section 3.2.3.1, when a polymer is added to a sludge sample a fraction 
of the polymer is adsorbed onto the sludge and a fraction remains in the bulk liquid. The 

concentration of polymer in the bulk liquid after the adsorption reaching equilibrium is 𝑆fe,𝑒, 
which was considered as the concentration of polymer responsible for the inhibition in the 

first scenario, namely 𝑆fe = 𝑆fe,𝑒. 

In the second scenario (models b: M1b, M2b, M3b, M4b and M5b), the inhibition was 
assumed to be caused by the total amount of polymer added to the SMA bottles. The inhibition 
is caused by both the fraction of polymer adsorbed onto the sludge and the fraction remaining 
in the bulk liquid. Consequently, the adsorption model was not needed to describe the 

inhibition and it was removed from the model structure in models b and 𝑆fe was set equal to 

the total concentration of polymer added to the SMA bottles (𝑐fe), namely 𝑆fe = 𝑐fe.  
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3.2.7 Model prediction uncertainty 

The most suitable models were selected based on the model capacity to predict the 
experimental data (goodness of fit), which was assessed graphically and with the RSSSMA and 

RSSAMP. For the selected models, the model prediction uncertainty caused by the uncertainty 
in the estimators was studied using the MC method with Latin hypercube sampling. The 
uncertainty in the parameters was defined using the results from the PE, as a normal 

distribution with mean 𝜃 and standard deviation 𝜎𝜃 , namely 𝜃~𝑁(𝜃, 𝜎𝜃
2), and represented 

the uncertainty propagation graphically.  

3.3 RESULTS 

3.3.1 Experimental results 

Figure 3.1 shows that the polymer presented an inhibitory effect on the SMA. The SMA 
inhibition were 24, 27, 40, 44, 53, 54, 65, and 69 % at 0.06, 0.11, 0.17, 0.23, 0.29, 0.34, 0.40, and 
0.46 gCOD L-1 of polymer concentration, respectively. A 50 % SMA inhibition was obtained 
at 0.27 gCOD L-1 of polymer, the value was obtained by linear interpolation between the 
experimental results at 0.23 and 0.29 gCOD L-1. 

The one-way ANOVA test was used to study if there is a difference in the final AMP 
between batch tests performed at different polymer concentrations. The batch tests performed 
at concentrations of 0.40 and 0.46 g L-1 were not considered in the test because the methane 
was still being produced when the experiment were stopped (Odriozola et al., 2019). The F-test 

was 2.10 with a probability value (𝑝) of 0.114; thus, 𝑝 was above the α-level of 0.05. Therefore, 
the difference between the AMP final values is not statistically significant. Therefore, no 
significant effect of the polymer was observed in the AMP achieved at the end of the tests. 

 
Figure 3.1. Specific methanogenic activity (SMA) and final accumulated methane production (AMP) 
obtained from batch test experiments using different concentrations of polymer (𝑐fe). 
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3.3.2 Modelling AMP without polymer addition (M0) 

The linear regression models built using the MC simulations of M0 resulted in 𝑅2 above 0.7 

between 2 and 79 hours. The mean, minimum and maximum 𝛽𝑖 values for the range with 

𝑅2 > 0.70 are presented in Table 3.4. The RSSAMP was calculated for each MC simulation and 

the results are presented in Figure 3.2A-C. The behaviour of the RSSAMP with 𝑖Xac,VSS,0 for 

uncertainty only in 𝑖Xac,VSS,0 is shown in Figure 3.2C.  

The initial guess for 𝑖Xac,VSS,0 estimation was 0.02, and the lower and upper bounds were 
0.01 and 0.03, respectively. The PE results were as follows: 0.0198 kgCOD kgVSS-1 optimal 

value (𝜃), 1.9×10-4 standard deviation (𝜎𝜃), 3.8×10-4 95 % confidence interval (CI) and relative 

error 𝜎𝜃 𝜃⁄  of 1 %. PE varying the initial guess was performed and the same results were 
obtained. The null hypothesis of normality was rejected at a significance level 0.05 using the 

Shapiro-Wilky test with a 𝑝 of 2×10-7. The optimal value obtained using Bootstrap was equal 

 
Figure 3.2. GSA and simulation results for batch model in the absence of polymer (M0). Correlations 
between the residual sum of squares for AMP as output variable (RSSAMP) and uncertain parameters 
with 𝜃~𝑈(0.001𝜃°, 1.999𝜃°): (A) correlation of RSSAMP with 𝑖Xac,VSS,0  and (B) RSSAMP with 
𝑖Xac,VSS,0 𝑘𝑚,ac, using MC simulations performed with uncertainty in all parameters; (C) correlation 
of RSSAMP with 𝑖Xac,VSS,0 using MC simulations performed with uncertainty only in the 𝑖Xac,VSS,0. (D) 
Experimental and simulated AMP performed with the optimum value obtained from parameter 
estimation, namely 𝑖Xac,VSS,0 = 0.0198 kgCOD kgVSS-1

. 
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to the one obtained with least squares method, namely 0.0198 kgCOD kgVSS-1. Figure 3.2D 
displays the experimental AMP and the model predictions at the optimal values obtained with 
estimated parameters. Although the experimental data was collected over a 10-day period, 
not enough biogas to generate a new pulse in the AMPTS was produced in the bottles after 
80 hours, the volume of the AMPTS cells was ~10 mL. 

3.3.3 Modelling methanogenesis inhibition by polymer 

The results from the linear models performed with the MC simulations with parameter 

uncertainty 𝜃~𝑈(0.001𝜃°, 1.999𝜃°) are summarised in Table 3.5. From the parameters 

present in the initial subsets 𝜃, the ones with mean 𝛽𝑖 ≥ 0.10 were: {𝐾𝐼,fe,ac, 𝐾𝐿,ads, 𝑞𝑚,ads} in 

M1a to M4a and {𝐾𝐼,fe,ac, 𝐾𝐿,ads} in M5a.  

The results from the PE in M1a to M5a are shown in Table 3.6. Figure 3.3 shows the 
comparison between the best-fit results of the five models and the experimental data. The 
correlation coefficients and collinearity index for all the possible combinations of parameters 
are summarised in Table 3.7. Based on the results, a new parameter subset was defined 

containing only 𝐾𝐼,fe,ac, and the values of 𝐾𝐿,ads and 𝑞𝑚,ads were set at their nominal values 

(defined in Section 3.2.4.2). Figure 3.4A and Figure 3.4B display the behaviour of the RSSSMA 

with 𝐾𝐼,fe,ac~𝑈(0.001𝜃°, 1.999𝜃°) for models a (M1a, M2a, M3a, M4a and M5a) and b (M1b, 

M2b, M3b, M4b and M5b), respectively. The results from the PE estimation are summarised 
in Table 3.8. Figure 3.5 compare between the best-fit results of the models with the 
experimental data.  

Table 3.4. Sensitivity analysis results for M0: mean, minimum and maximum of the standardised 
regression coefficients (𝛽𝑖) of linear models with 𝑅2 > 0.7 of AMP as a function of time. 

Parameter 
M0 (mean 𝑅2 = 0.81) 

mean minimum maximum 

𝑖Xac,VSS,0 0.52 0.43 0.60 

𝑘𝑚,ac 0.71 0.56 0.75 

𝐾𝑠,ac -0.05 -0.06 0.01 

𝑌ac 0.05 -0.05 0.07 

𝑏ac -0.03 -0.05 -0.02 

𝑘𝐿𝑎 0.03 0.02 0.10 

𝐾𝐻,ch4 -0.09 -0.30 -0.07 

𝐾𝐻,co2 0.00 -0.02 0.02 

𝐾𝐻,n2 0.03 0.02 0.04 

𝐾𝑎,co2 0.02 -0.04 0.06 

𝑖C,Xac -0.01 -0.02 0.01 
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Table 3.5. Sensitivity analysis results for M1a to M5a: mean of the standardised regression coefficients 
(𝛽𝑖) and mean 𝑅2 (𝑅2̅̅̅̅ ) of linear models with 𝑅2 > 0.7 of the SMA with different concentrations of 
polymer. 

Parameter↓ 
𝑅2̅̅̅̅  → 

M1a M2a M3a M4a M5a 

0.80 0.80 0.80 0.83 0.80 

𝐾𝐼,fe,ac 0.17 0.19 0.20 0.18 0.15 

𝐾𝐿,ads 0.12 0.15 0.17 0.11 0.10 

𝑞𝑚,ads 0.13 0.17 0.20 0.16 0.08 

𝑘𝑚,ac 0.76 0.78 0.69 0.77 0.79 

𝐾𝑠,ac -0.24 -0.14 -0.14 -0.15 -0.13 

𝑌ac 0.28 0.30 0.30 0.31 0.32 

𝑏ac -0.09 -0.11 -0.08 -0.12 -0.12 

𝑘𝐿𝑎 0.02 0.03 0.00 -0.02 -0.01 

𝐾𝐻,ch4 -0.01 0.00 -0.01 -0.05 -0.02 

𝐾𝐻,co2 0.01 -0.01 0.00 -0.01 0.01 

𝐾𝐻,n2 -0.01 0.01 -0.02 -0.03 0.02 

𝐾𝑎,co2 0.00 -0.01 0.05 -0.01 -0.02 

𝑖C,Xac 0.03 0.02 0.01 0.01 0.00 

 

Table 3.6. Parameter estimation results for the SMA inhibition for M1a to M4a with parameter subset 
𝜃 = {𝐾𝐼,fe,ac, 𝐾𝐿,ads, 𝑞𝑚,ads} and M5a with 𝜃 = {𝐾𝐼,fe,ac, 𝐾𝐿,ads}: optimal values (𝜃), standard deviation 
(𝜎𝜃) and 95% confidence intervals (𝐶𝐼); and sum of square errors for SMA (RSSSMA) and AMP (RSSAMP) 
of the models. 

Parameter Model 𝜃 𝜎𝜃 95% 𝐶𝐼 𝜎𝜃 𝜃⁄ × 100 RSSSMA RSSAMP 

𝐾𝐼,fe,ac 1 0.001 0.029 0.060 2529 % 0.0021 0.67 

 2 0.014 0.031 0.065 231 % 0.0027 0.48 

 3 0.014 0.021 0.044 152 % 0.0027 0.57 

 4 0.005 0.076 0.158 1400 % 0.0122 7.26 

 5 0.016 0.112 0.231 689 % 0.0101 7.81 

𝐾𝐿,ads 1 11.1 12.2 24.0 110 %   

 2 152.6 1025.6 2014.9 672 %   

 3 61.9 383.6 753.7 620 %   

 4 2.0 4.2 8.3 211 %   

 5 6.4 22.6 44.4 351 %   

𝑞𝑚,ads 1 0.17 0.05 0.10 29 %   

 2 0.24 0.03 0.06 13 %   

 3 0.24 0.04 0.08 18 %   

 4 0.45 0.47 0.92 104 %   
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Table 3.7. Correlation and collinearity index for M1a to M5a for different parameter combinations 𝑘. 
Subset 𝑘 → 

Model↓ 
{𝐾𝐼,fe,ac, 𝐾𝐿,ads} {𝐾𝐼,fe,ac, 𝑞𝑚,ads} {𝐾𝐿,ads, 𝑞𝑚,ads} {𝐾𝐼,fe,ac, 𝐾𝐿,ads, 𝑞𝑚,ads} 

Collinearity index (𝛾𝑘) 

 1 93 15 13 1828 

 2 135 18 16 2143 

 3 134 19 16 2139 

 4 116 19 16 2131 

 5 283 36 32 7631 

Correlation coefficient 

 1 -0.9999 -0.99 0.98 NA 

 2 -0.92 0.35 -0.70 NA 

 3 -0.74 -0.98 0.60 NA 

 4 -0.98 -0.94 0.87 NA 

 5 -0.99 -0.64 0.55 NA 

 

Table 3.8. Parameter estimation results for the SMA inhibition process with parameter subset 𝜃 for 
M1a to M5a (with 𝑆fe = 𝑆fe,𝑒) and M1b to M5b (with 𝑆fe = 𝑐fe). 

Model 𝜃 𝜃 𝜎𝜃 95% 𝐶𝐼 𝜎𝜃 𝜃⁄ × 100 RSSSMA RSSAMP 

1 {𝐾𝐼,fe,ac} 0.0017 4.4×10-5 0.0001 2.6 % 0.0024 0.73 

1b {𝐾𝐼,fe,ac} 0.0338 9.8 10-4 0.0019 2.9 % 0.0030 0.83 

2 {𝐾𝐼,fe,ac} 0.0168 3.610-4 0.0007 2.2 % 0.0025 0.53 

2b {𝐾𝐼,fe,ac} 0.3341 7.5×10-3 0.0149 2.2 % 0.0028 0.63 

3 {𝐾𝐼,fe,ac} 0.0143 3.1×10-4 0.0006 2.1 % 0.0026 0.61 

3b {𝐾𝐼,fe,ac} 0.2840 6.1×10-3 0.0122 2.2 % 0.0028 0.69 

4 {𝐾𝐼,fe,ac} 0.0016 7.3×10-5 0.0001 4.5 % 0.0106 6.91 

4b {𝐾𝐼,fe,ac} 0.0321 1.5×10-3 0.0030 4.7 % 0.0109 6.60 

5 {𝐾𝐼,fe,ac} 0.0165 4.4×10-4 0.0009 2.7 % 0.0090 7.69 

5b {𝐾𝐼,fe,ac} 0.3234 7.9×10-3 0.0158 2.4 % 0.0076 7.36 
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Figure 3.3. Simulations with parameter estimation results for the SMA inhibition for M1a to M4a 
with parameter subset 𝜃 = {𝐾𝐼,fe,ac, 𝐾𝐿,ads, 𝑞𝑚,ads} and M5a with parameter subset 𝜃 =
{𝐾𝐼,fe,ac, 𝐾𝐿,ads}: (A) experimental and simulated SMA, (B) RSSAMP, (C) experimental and simulated 
AMP at 0.11 gCOD L-1 of polymer and (D) experimental and simulated AMP at 0.28 gCOD L-1. 

 

 

 
Figure 3.4. Correlations between the RSSSMA and uncertain parameters using MC simulations with 
uncertainty 𝜃~𝑈(0.001𝜃°, 1.999𝜃°) only in 𝐾𝐼𝐾𝐼,fe,ac. Results using (A) M1a to M5a and (B) M1b to 
M5b. 
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Figure 3.5. Simulations with parameter estimation results for the SMA inhibition, with parameter 
subset 𝜃 = {𝐾𝐼,fe,ac}: experimental and simulated SMA for (A) M1a to M5a and (B) M1b to M5b, 
RSSAMP for (C) M1a to M5a and (D) M1b to M5b, experimental and simulated AMP at 0.11 gCOD L-1 
of polymer for (E) M1a to M5a and (F) M1b to M5b and experimental and simulated AMP at 0.28 
gCOD L-1 for (G) M1a to M5a and (H) M1b to M5b. 
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3.3.4 Model prediction uncertainty 

The uncertainty in the M2a and M2b predictions caused by the uncertainty in 𝐾𝐼,fe,ac, with 

𝜃~𝑁(𝜃, 𝜎𝜃
2), are compared with the experimental data in Figure 3.6. 

 
Figure 3.6. Monte Carlo simulations with uncertainty 𝜃~𝑁(𝜃, 𝜎𝜃

2) and subset 𝜃 = {𝐾𝐼,fe,ac} for M2a 
and M2b. Experimental data, MC simulations (MC sim.) and mean MC simulations for: SMA for 
(A) M2a and (B) M2b, AMP at 0.11 gCOD L-1 of polymer for (C) M2a and (D) M2b and AMP at 0.28 
gCOD L-1 for (E) M2a and (F) M2b 
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3.4 DISCUSSION  

This research assessed the inhibition of SMA and AMP caused by cationic polymer addition 
to anaerobic sludge. The results showed that the polymer inhibited the SMA but did not 
influence the final AMP achieved.  

To the authors best knowledge, two reports are available that use Adipap polymers for 
fouling control in membrane bioreactors. Significant fouling decrease was achieved by adding 
0.05 gCOD L-1 of Adifloc KD451 to a pilot AnMBR (Odriozola et al., 2020) and 70 mg L-1 
(0.077 gCOD L-1) of Adifloc  KD452 to a pilot MBR (Iversen et al., 2009b). These concentrations 
are considerably below the 50 % SMA inhibition concentration, namely 0.27 gCOD L-1. 
However, 24 and 27 % SMA inhibitions was obtained at 0.06 and 0.11 gCOD L-1 of polymer 
concentration, respectively. Consequently, in a continuous AnMBR reactor, adding polymer 
might decrease the methane production rate, increase the acetate concentration, and decrease 
the organic matter removal when organic loading rates remain at the same level. The effect 
would start immediately after addition and it can be compensated by a decrease in the organic 
volumetric loading rate. Additionally, if the inhibition is reversible (biostatic) the overall 
conversion capacity of the bioreactor could be recovered by an increase in the biomass 
content. If the methanogenic microorganisms are in excess when adding the polymer to the 
AnMBR then the methane production, acetate concentration and organic matter removal 
might not be affected by small dosages of polymer. 

3.4.1 Validity of nominal parameter values 

The results from the global sensitivity analysis showed that a 99.9% variability on the gas-

liquid transfer (𝑘𝐿𝑎, 𝐾𝐻,i) and carbon content (𝑖C,Xac) parameters had a negligible effect (𝛽𝑖 < 
0.10) on the SMA inhibition (Table 3.5) and on the AMP without polymer (Table 3.4). 
Consequently, for those parameters, the selection of the exact (true) parameter values was 
not crucial, and thus, the nominal parameter values from literature were used, presented in 
Section 3.2.4.2. 

Contrarily, the kinetic and stoichiometric parameters related to acetate degradation and 
biomass decay presented a significant effect on the model output. Particularly, the Monod 
maximum specific uptake rate 𝑘𝑚,ac was the most influential parameter in all considered 

models. The 𝑖Xac,VSS,0 was highly correlated with 𝑘𝑚,ac, meaning that the optimal value for 

𝑖Xac,VSS,0 is determined by the value of 𝑘𝑚,ac used (Figure 3.2B). Although, good model fits 

could be obtained with different combinations of 𝑖Xac,VSS,0 and 𝑘𝑚,ac, this was outside the 
scope of this research. This chapter focused on modelling the SMA inhibition and comparing 
different inhibition models and not on the acetoclastic methanogenesis kinetics itself. 

Therefore, widely applied values for 𝑘𝑚,ac, 𝑌ac, 𝐾𝑠,ac and 𝑏ac were used, presented in 
Section 3.2.4.2.   
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3.4.2 Modelling AMP without polymer addition (M0) 

The initial content of acetate degraders in the VSS (𝑖Xac,VSS,0) showed a significant effect on 

the AMP model output (Table 3.4): 28 % (𝛽𝑖
2 × 100) of the output variability could be 

explained by the variability on 𝑖Xac,VSS,0. Therefore, 𝑖Xac,VSS,0 could be estimated to predict 
the methane production obtained experimentally. Results did not show a clear pattern of the 

behaviour of RSSAMP with 𝑖Xac,VSS,0 with uncertainty in all parameters (Figure 3.2A). 

However, the RSSAMP with 𝑖Xac,VSS,0 with uncertainty only in 𝑖Xac,VSS,0 (Figure 3.2C) showed 

a unique (global) minimum value at 𝑖Xac,VSS,0 around 0.02 gCOD gVSS-1. Parameter estimation 
results showed that the quality of the estimator is good since the relative error was small and 
the model predictions fit the experimental data (Figure 3.2D). 

3.4.3 Ill conditions SMA inhibition models 

The influential unknown parameters, for PE, were identified using the results from the 

sensitivity analysis (Table 3.5). The subsets identified, with a threshold value of the mean 𝛽𝑖 

≥ 0.10, are as follows: 𝜃 = {𝐾𝐼,fe,ac, 𝐾𝐿,ads, 𝑞𝑚,ads} in M1a to M4a and 𝜃 = {𝐾𝐼,fe,ac, 𝐾𝐿,ads} in 

M5a.  

The SMA simulations, at the optimal values obtained with PE, showed a good fit to the 
experimental data for the biostatic models (M1a, M2a and M3a) and the biocide-lineal model 
(M4a), as observed in Figure 3.3A. Accordingly, Figure 3.3C shows a good fit to the 
experimental AMP with M1a to M4a for a polymer concentration of 0.11 gCOD L-1. However, 
for higher concentrations (Figure 3.3D) the M1a simulations slightly deviated from the 
experimental data, and the M4a simulations were considerably below the experimental data 

after 50 hours. The previous deviations are reflected by the RSSAMP in Figure 3.3B. The 
accelerated biomass decay predicted in M4a caused a noticeably low concentration of 
microorganisms resulting in an extremely low methane production rate after 50 hours. 
Similarly, in M5a the AMP was underpredicted for high concentrations of polymer. 
Additionally, the biocide-exponential model (M5a) overpredicted and underpredicted the 

SMA at polymer concentrations 𝑐fe below and above 0.3 gCOD L-1, respectively.  

Models a (M1a to M5a) considered the inhibition caused by the concentration of inhibitor 

in the bulk liquid 𝑆fe, where 𝑆fe as determined by the Langmuir isotherm adsorption model. 
Consequently, as expected, high pairwise correlation coefficients were obtained for all 
parameter combinations (Table 3.7). As a result, the relative errors obtained with PE were 
considerably high (Table 3.6). Therefore, although some of the models were able to predict 
the experimental data, the quality of the estimators was considered poor, namely the relative 
error was above 50 % (Sin and Gernaey, 2016). 

From the collinearity indexes presented in Table 3.7, no combination of parameters could 

be used to achieve unique estimators from the experimental data, namely 𝛾𝑘 > 10 for all 𝑘. 
Therefore, a new PE was performed with a subset containing only one parameter. The 
inhibition coefficient 𝐾𝐼,fe,ac was selected for the PE because it presented a slightly higher 

effect on the simulated SMA (higher mean 𝛽𝑖, Table 3.5) compared to 𝑞𝑚,ads and 𝐾𝐿,ads, and 
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the nominal 𝑞𝑚,ads and 𝐾𝐿,ads values were used. The simulation results with the optimal 
values obtained with PE (Figure 3.5, on the left) were very similar to the ones obtained at the 

optimal values from PE using 𝜃 = {𝐾𝐼,fe,ac, 𝐾𝐿,ads, 𝑞𝑚,ads} (or 𝜃 = {𝐾𝐼,fe,ac, 𝐾𝐿,ads} in M5a), 

Figure 3.3. 

Additionally, a different inhibition approach was considered, where the inhibition was 
assumed to be caused by the total amount of polymer added to the SMA bottles, namely 

𝑆fe = 𝑐fe. Therefore, the models b (M1b to M5b) were defined and compared with the original 

models a (M1a to M5a), where 𝑆fe = 𝑆fe,𝑒. In Figure 3.5 the simulation results for models a and 
b are displayed on the left and right graphs, respectively; the results are further discussed in 
Section 3.4.5. 

3.4.4 Biostatic and biocidal SMA inhibition models 

As discussed in Section 3.4.3, biocide models (M4a and M5a) underpredicted the experimental 
methane production at high polymer concentrations due to the accelerated biomass decay. 
Therefore, the biocide models M4a and M5a were not appropriate models to describe the 
inhibition of methanogenesis by the polymer. Contrarily, predictions with biostatic models 
(M1a, M2a and M3a) showed satisfactory fit to the experimental SMA and AMP (Figure 3.5). 
Therefore, it is likely that the polymer inhibition on the SMA is a reversible process (biostatic 
inhibition), instead of a reactive irreversible toxicity (biocidal inhibition). Consequently, in a 
continuous reactor, the inhibitory effect will be eliminated when the polymer concentration 
decreases. Additionally, based on the dosage of the polymer and the microbial growth rate, 
the overall microbial activity could be recovered by an increase in the biomass content. 

Figure 3.5A shows that the simulations using the un-competitive (M3) and 
non-competitive (M2) inhibition models successfully fitted all the experimental SMA, while 
the competitive inhibition model (M1a) simulations slightly deviate from the SMA at the 
higher concentrations of polymer tested, namely 0.40 and 0.46 gCOD L-1. Additionally, Figure 
3.5G shows that the M5a overpredicted the AMP between 40 and 100 hours at 0.28 gCOD L-1, 
while the M2a and M3a model simulations fitted the AMP remarkably well.  

Therefore, although the M1a fitted the experimental data significantly well, the process 
was better described by M2a and M3a. Additionally, as a competitive inhibition model (M1) 
considers that the inhibitor binds to the same place as the substrate (Garcia Orozco, 2008), 
and because the polymer (inhibitor) and the acetate (substrate) are different molecules, the 
latter result was not unexpected. 

The difference between the un-competitive and non-competitive models could only be 
observed in the AMP predictions at high concentration of polymer (Figure 3.5G). Based on 
the RSS presented in Table 3.8 the M2a seems to predict slightly better the experimental data. 
However, the difference was not considered sufficient to select one model over the other and 
both models were considered appropriate to describe the methanogenesis inhibition process. 
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3.4.5 Bulk liquid vs total polymer concentration inhibition 

The behaviour of the RSSSMA with 𝐾𝐼,fe,ac revealed a unique (global) minimum for all models. 

Figure 3.4 displays the RSSSMA as a function of 𝐾𝐼,fe,ac for models with inhibition by the 
concentrations of polymer in the bulk liquid (Figure 3.4A) and by the total amount of polymer 
added to the system (Figure 3.4B). Results presented a similar behaviour for both inhibition 

models, however, the 𝐾𝐼,fe,ac values that minimise the RSSSMA are 20 times larger for the 

models with 𝑆fe = 𝑐fe, which corresponds to the ratio between the 𝑐fe and 𝑆fe,𝑒 obtained by 

applying the adsorption model with the nominal parameter values and experimental 
conditions.  

Parameter estimation results showed that the models a (with 𝑆fe = 𝑆fe,𝑒) presented a 

slightly smaller RSSSMA and RSSAMP for each biostatic inhibition model considered with 

respect to the models b (with 𝑆fe = 𝑐fe), as shown in Table 3.8.  However, the difference in 
the simulations with the models a (left plots) and models b (right plots) was negligible for 
each kinetic inhibition model used, as observed in Figure 3.5. The similarity between models 

a and b was due to the approximately linear relationship between 𝑐fe and 𝑆fe,𝑒 obtained using 
the polymer adsorption model (results not shown). This approximately linear behaviour was 

obtained using the experimental conditions tested (𝑐fe and 𝑐X) and with the Langmuir 

parameter values obtained by parameter estimation (𝐾𝐿,ads and 𝑞𝑚,ads).  

Therefore, both modelling approaches (bulk liquid or total polymer concentration 
inhibition) were considered appropriate to describe the methanogenesis inhibition caused by 
the polymer in the range of concentrations studied. Additionally, the uncertainty in the 
estimated parameters did not cause a considerable uncertainty on the model prediction for 
M2a and M2b, Figure 3.6. 
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3.5 CONCLUSIONS 

The cationic polymer showed a negative effect on the biological activity of the anaerobic 
sludge. A 50 % SMA inhibition was obtained at 0.27 gCOD L-1 of polymer whereas no 
significant effect on the final AMP was observed.  

Different models were presented and calibrated to fit the experimental data. The Monte 
Carlo method was successfully applied to study the sensitivity of the model outputs to the 
parameters and identify the parameter subsets for parameter estimation. The collinearity 

indexes and pairwise correlation coefficients showed that the parameters 𝐾𝐿,ads, 𝑞𝑚,ads and 

𝐾𝐼,fe,ac are all highly correlated. Based on the Monte Carlo results and collinearity indexes the 

parameter subsets selected for parameter estimation was θ = {𝐾𝐼,fe,ac} for all the models 

considered. 

An alternative modelling approach was studied, that is models M1b to M5b, where the 
inhibition was caused by the total amount of polymer added to the reactor (𝑆fe = 𝑐fe), and not 

by the concentration that remains in the bulk liquid after adsorption (𝑆fe = 𝑆fe,𝑒, M1a to M5a). 

The difference in the models’ simulations with both approaches, namely 𝑆fe = 𝑆fe,𝑒 and  𝑆fe =

𝑐fe, was negligible for each kinetic inhibition model used. 

The simulated AMP values obtained with the biocide models, namely M4a and M5a, were 
below the experimental AMP at high concentrations of polymer, which was caused by a rapid 
decay of the acetate degraders simulated. The only models that adequately fitted the 
experimental SMA and AMP were the non-competitive (M2a and M2b) and un-competitive 
(M3a and M3b) inhibition models. Therefore, it is likely that the polymer inhibition on the 
SMA is reversible, instead of toxic and irreversible. 

The concentrations of polymer (inhibitor) in the bulk liquid giving 50 % inhibition were 
0.014 and 0.017 gCOD L-1 for M2a and M3a, respectively; and the total concentrations of 
inhibitor in the reactor giving 50 % inhibition were 0.334 and 0.284 gCOD L-1 for M2b and 
M3b, respectively.  

The simulated SMA obtained with M1a and M4a adequately fitted the experimental SMA. 
However, the simulated AMP was below the experimental AMP for those models. Therefore, 
it is crucial to analyse both outputs, SMA and AMP, during model calibration.  
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ABSTRACT 

Cationic polymers have proven to be suitable flux enhancers (FEs) in large-scale aerobic 
membrane bioreactors (MBRs), whereas in anaerobic membrane bioreactors (AnMBRs) 
research is scarce, and so far, only done at lab-scale. Results from MBRs cannot be directly 
translated to AnMBRs because the extent and nature of membrane fouling under anaerobic 
and aerobic conditions are different. This research focused on the long-term effect of dosing 
the cationic polymer Adifloc KD451 to a pilot AnMBR, fed with source-separated domestic 
blackwater. A single dosage of Adifloc KD451 at 50 mg L−1 significantly enhanced the 
filtration performance in the AnMBR, revealed by a decrease in both fouling rate and total 
filtration resistance. Nevertheless, FE addition had an immediate negative effect on the 
specific methanogenic activity (SMA), but this was a reversible process that had no adverse 
effect on permeate quality or chemical oxygen demand (COD) removal in the AnMBR. 
Moreover, the FE had a long-term positive effect on AnMBR filtration performance and sludge 
filterability. These findings indicate that dosing Adifloc KD451 is a suitable strategy for 
fouling mitigation in AnMBRs because it led to a long-term improvement in filtration 
performance, while having no significant adverse effects on permeate quality or COD 
removal. 
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4.1 INTRODUCTION 

Researchers have emphasized the need for more research on flux enhancer (FE) dosing to 
membrane bioreactors in long‐term and large‐scale trials (Iversen, 2010; Iversen et al., 2009b; 
Koseoglu et al., 2008; Kulesha et al., 2018; Ozgun et al., 2013). As presented in Chapter 1, 
cationic polymers have proven to be suitable FE in large-scale MBRs, whereas in AnMBRs 
research is scarce, and so far, only done at lab-scale. Results from MBRs cannot be directly 
translated to AnMBRs because the extent and nature of membrane fouling under anaerobic 
and aerobic conditions are different.  

Various researchers suggested the possible application of the online measurement of 
sludge filtration characteristics for automatic FE dosing control in membrane bioreactors 
(Brauns et al., 2011; Iversen, 2010). However, this has not been further studied or tested. 

The aim of this research is to analyse the long-term effect of dosing the cationic polymer 
Adifloc KD451 to a pilot AnMBR fed with source-separated domestic blackwater. This work 
studies the effects on permeate quality, sludge characteristics, biological activity (i.e., COD 
removal and specific methanogenic activity, SMA) and AnMBR filtration performance (i.e., 
fouling rate and filtration resistance). Additionally, the applicability of in-situ measurements 
of sludge filterability as an input variable in a feedback control tool for FE dosage was 
determined. 

4.2 MATERIALS AND METHODS 

4.2.1 Pilot AnMBR plant description 

The pilot AnMBR plant was located at the Business Centre Porto do Molle, Nigrán, 
Pontevedra, Spain. The reactor was fed with blackwater collected in segregated pipes in the 
main office building, where approximately 200 persons worked. The toilets in the building 
were conventional gravity flush toilets (3.0–4.5 L of water per flush). 

Figure 4.1 shows the scheme of the pilot plant, including the AnDFCm installation 
connected to the AnMBR. The blackwater was stored in a 3–4 m3 septic tank followed by a 1 
m3 equalisation tank. The AnMBR was composed of a 2.8 m3 anaerobic stirred reactor 
connected to a 1.0 m3 membrane tank. The membrane tank had one submerged ultrafiltration 
flat-sheet membrane module (Martins System, Berlin, Germany), made of polyethersulfone, 
with a 6.25 m2 surface area and a 35 nm nominal pore size. 

The pilot plant was coupled with a supervisory control and data acquisition (SCADA) 
system and several sensors. The following variables were measured and recorded once per 
minute by the SCADA: TMP, permeate flow rate, operational phase (i.e., filtration, relaxation 
or stand‐by), accumulated permeate volume, motor frequency of B-1, P-2 and P-4, gas pressure 
in the headspace in the anaerobic reactor, liquid levels in the equalization tank, anaerobic 
reactor and membrane tank, and the temperature, pH and redox potential of the sludge in the 
anaerobic reactor. The lower detection limit of the biogas discharge flowmeter was usually 
higher than the flow, and thus the biogas discharge flow could not be detected accurately by 
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the instrument. Moreover, the biogas recirculation flow rate (𝑄𝐺) was not measured online 
but manually recorded by the operators with a rotameter placed after B-1. These data were 

used to derive and calibrate an empirical model to calculate the specific gas demand (SGDm), 

based on the liquid level in the membrane tank (𝐻MT) and the motor frequency of the blower 

(𝑣B); further details are given in Section 2.2. 

Blackwater was homogenised in the equalization tank and pumped into the anaerobic 
reactor. The sludge was continuously recirculated through the anaerobic reactor and 
membrane tank, where the permeate was extracted under suction with a peristaltic pump 
(P-4). The blower and all pumps operated at constant motor input frequencies fixed by the 
operator. Under normal operational conditions, the membrane presented filtration and 
relaxation cycles of 300 and 90 s, respectively. The total liquid volume was ~2.8 m3 (membrane 
tank + anaerobic reactor), the hydraulic retention time (HRT) was ~2 days, the periodic sludge 
wastage was negligible (only sampling) and the reactor operated at room temperature. The 

headspace biogas was sparged below the membrane module at a 𝑄𝐺 of 6–8 Nm3 h−1, which 

corresponds with an SGDm of 0.96–1.28 Nm3 h−1 m−2, to provide suitable shear on the 
membrane surface. 

4.2.2 Specific gas demand (𝑆𝐺𝐷𝑚) model 

In addition to the use of FE, research has proven that biogas or air sparging substantially 
affects fouling (Judd and Judd, 2011; Meng et al., 2017). Therefore, in this research, quantifying 
SGDm continuously was important to account for the effect of biogas sparging on fouling, 

both before and after FE addition. SGDm is calculated by dividing 𝑄G by the membrane surface 

area (𝐴m, m2). However, as above-mentioned, 𝑄G was not measured online, but manually 
recorded by the operators with a rotameter placed after the blower B-1. 

 
Figure 4.1. Scheme of the pilot AnMBR plant including the AnDFCm installation connected in bypass 
for in situ sludge filterability measurements. 
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The experimental SGDm, which was calculated with the manually recorded 𝑄G, was used 

to derive and calibrate an empirical model to calculate SGDm continuously, as in Equation 

(4.1, with the following online monitored variables: 𝐻MT and 𝑣B. 

SGDm =
𝛾0 + 𝛾1 𝐻MT + 𝛾2 𝑣B

𝐴m
 , (4.1) 

where 𝛾0 (Nm3 h−1), 𝛾1 (Nm3 h−1 m−1), and 𝛾2 (Nm3 h−1 Hz−1) are the model parameters. These 

parameters were estimated to fit the experimental SGDm, using the linear least squares 
optimisation function lsqlin in Matlab® R2019b. 

4.2.3 Flux enhancer dosing 

As explained in Chapter 2, the cationic polymer Adifloc KD451 (Adipap SA, France) was used 
as FE. A single dose of FE, i.e., pulse-dosage, was added to the AnMBR on day 16.. A 138.5 g 
pulse input of Adifloc KD451 was introduced to the bypass line of the AnMBR with an 
injection time of 45 min. This bypass line was also use for the AnDFCm installation (see Figure 
1). The dosed mass was added to achieve a final concentration of Adifloc KD451 in the mixed 
liquor of 50 mg L-1. This concentration was based on Table 2.3, and was an intermediate 
dosage between the optimal dosages for sludge filterability improvement and for csCOD 
removal of the sludge that was collected from the pilot-scale AnMBR fed with 
source-separated blackwater before the reactor was spiked with FE. 

4.2.4 Monitoring phases 

The AnMBR was inoculated with 500 L of sludge from the mesophilic anaerobic digester of 
the Guillarei municipal wastewater treatment plant and was operated for a 5-month 
acclimation period before Phase I, which is defined below. The AnMBR membrane was 
chemically cleaned with sodium hypochlorite prior to Phase I, and no further chemical 
cleanings were performed. On day 123, 0.84 m3 of sludge were withdrawn from the AnMBR 
because of a too-high accumulation of solids, and the removed volume was replaced with 
blackwater. 

The three operational phases, relevant for this work, were defined as follows: Phase I 
(Period: 0–16 d) is the control phase before FE addition; Phase II (Period: 16–123 d) is the 
period following FE addition and before sludge withdrawal; and Phase III (Period: 123–154 d) 
is the period after sludge withdrawal. 

To study the effect of biogas sparging on filtration performance, the AnMBR was operated 

with a reduced 𝑄𝐺 of 2–4 Nm3 h−1, that is, an SGDm of 0.32–0.64 Nm3 h−1 m−2, by decreasing 

the 𝑣B over 2 days (Period: 37–39 d). 

4.2.5 Physicochemical characterization 

Hach Lange test kits were used to measure chemical oxygen demand (COD), ammonium–
nitrogen (NH4-N), total nitrogen (TN), and total phosphorous (TP). The organic matter was 
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measured as COD in different fractions, as described in Section 2.2.3, Chapter 2 — total COD 
(tCOD), supracolloidal COD (scCOD, above 1 µm) and colloidal + soluble COD, named 
submicron COD (csCOD, below 1 µm). 

Total suspended solids (TSS), volatile suspended solids (VSS), fixed suspended solids (FSS), 
total solids (TS), volatile solids (VS) and fixed solids (FS) were measured following the 
Standard Methods (APHA, 1999). Alkalinity was measured using potentiometric titration to 
the end-point pH of 3.7 (APHA, 1999). Particle size distribution (PSD) was measured with a 
Microtrac Bluewave diffraction analyser (Malvern Instruments Ltd., UK), and reported as the 
50th percentile of the volume-based particle size distribution, or median diameter, 𝐷50. PSD 
was assumed to represent floc size, as explained in Section 2.2.3, Chapter 2. 

 Grab Samples of Sludge, Blackwater and Permeate Were Taken from the AnMBR for 
Characterization. Suspended Solids, csCOD, Alkalinity, pH and PSD Were Measured in the 
Sludge; tCOD, TP, TN and NH4-N in Both the Blackwater and the Permeate, and csCOD, 
scCOD, Alkalinity, pH and Total Solids in the Blackwater.  

Sludge filterability was measured with short-term crossflow filtration tests, employing 
the anaerobic Delft filtration characterization method (AnDFCm) installation, connected in 
bypass to the AnMBR, as shown in Figure 1. During the in-situ filterability measurements, 
sludge flowed continuously from the membrane tank to the anaerobic reactor, passing 
through the AnDFCm installation, which contained an X‐Flow membrane (Pentair, Enschede, 
the Netherlands), and had the following characteristics: tubular, 30 nm pore size, 8 mm 
internal diameter, and 95 cm length. The AnDFCm measured the additional resistance 
obtained when 20 L of permeate per m2 of membrane surface area are produced, denominated 

as the ∆𝑅20; the sludge filterability is inversely related to ∆𝑅20. ∆𝑅20 was measured by 
applying a flux of 60 L m−2 h−1 and a crossflow velocity of 1.5 m s−1. The scheme of the 
AnDFCm installation in Figure 1 is simplified, and a more detailed representation of the 
installation and a description of the measuring protocol is presented in Section 2.2.4, 
Chapter 2. 

4.2.6 Specific methanogenic activity (SMA) 

The SMA was measured in Schott glass bottles with 400 mL liquid and 208 mL headspace, 
under mesophilic conditions using sodium acetate as carbon source and sludge samples from 
the AnMBR as inoculum. The sludge samples were placed at 4 °C before the SMA test, and 
thus a pre-activation period was included. 

For the pre-activation period, all the SMA bottles, including blanks, were filled with 
1.0 gCOD L-1 of sodium acetate, 2 gVSS L−1 of inoculum, 0.6 mL L-1 micro and 6 mL L-1 macro 
nutrients solutions (Muñoz Sierra et al., 2018), 10 mM phosphate buffer solution at pH 7.0 
(Spanjers and Vanrolleghem, 2016) and demineralised water. The bottles were flushed with 
nitrogen gas for 1 min and placed inside an orbital shaker at 130 rpm with temperature set 
at 34 °C. 

For the SMA determination, after all the substrate was converted into methane, a new 
addition of sodium acetate, to reach 2 gCOD L-1, was performed for all the bottles except the 
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blanks. The SMA was calculated from the methane production rate after the second addition 
of sodium acetate and following the protocol of Spanjers and Vanrolleghem (Spanjers and 
Vanrolleghem, 2016). The methane production rate was measured with an “automated 
methane potential test system” (AMPTS, Bioprocess Control, Sweden). 

To study the adaptability of the biomass to the FE, SMA was measured in two sludge 
samples taken from the AnMBR as inoculums: one collected during Phase I immediately 
before FE addition, on day 16, and the other during Phase II, 3 weeks after FE addition, on day 
37. The concentration of sludge (inoculum) in the SMA bottles was 2 gVSS L-1, and no extra 
Adifloc KD451 was added to these bottles. Furthermore, with the sludge collected on day 16, 
an additional SMA test was performed by pre-mixing the sludge with Adifloc KD451, in 1 L 
jars at 90 rpm for 30 min and using the mix as inoculum. In the additional SMA test, the 
concentrations of sludge and Adifloc KD451 in the SMA bottles were 2 gVSS L−1 and 50 mg 
L−1, respectively. 

4.2.7 AnMBR filtration performance indices 

The AnMBR filtration performance indices were total filtration resistance (𝑅T, m-1) and 

fouling rate (FR, Pa s−1). 𝑅T was calculated with Darcy’s law, as follows:  

𝑅𝑇 =
𝑇𝑀𝑃

𝜇 𝐽
 , (4.2) 

where 𝜇 is the dynamic viscosity of the permeate (Pa s), and 𝐽 is the transmembrane flux 
(m s-1), which is calculated by dividing the online monitored permeate flow by the membrane 
surface area. The permeate viscosity was assumed to be equal to pure water viscosity, and 

was calculated at the measured temperature (𝑇, K) with the following empirical relationship 
(Janssen and Warmoeskerken, 1997): 

𝜇 = 0.001𝑒𝑥𝑝(0.580 − 2.520 𝜃 + 0.909 𝜃2 − 0.264 𝜃3), 

𝑤𝑖𝑡ℎ 𝜃 =
3.661 (𝑇 − 273.1)

273.1
 . 

(4.3) 

Fouling rate, FR, was measured as the change in TMP over time during each filtration 

cycle (𝑑𝑇𝑀𝑃 𝑑𝑡⁄ , Pa s−1), and calculated it with the linear regression equation presented in 
Equation (4.4). 

𝐹𝑅 =
𝑑𝑇𝑀𝑃

𝑑𝑡
≈
𝑛∑ (𝑇𝑀𝑃𝑖 𝑡𝑖)

𝑛
𝑖=1 − ∑ 𝑇𝑀𝑃𝑖

𝑛
𝑖=1  ∑ 𝑡𝑖

𝑛
𝑖=1

𝑛∑ 𝑡𝑖
2𝑛

𝑖=1 − (∑ 𝑡𝑖
𝑛
𝑖=1 )

2  , (4.4) 

where 𝑡𝑖 and TMP𝑖 are the times and corresponding TMP during one filtration cycle, and n is 
the number of observations. 
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4.2.8 Statistical analysis 

The mean values from the SMA tests were compared using a Student’s independent t-test 
assuming equal variances and parametric data. The 𝑝 was calculated with the ttest2 function 
in Matlab® R2019b. 

The correlations between sludge characteristics, membrane performance indices and 
sludge filterability were studied. For the membrane performance indices, averaged values 
from a 2‐hour period around the sludge sampling time were calculated. 

Research has proven that biogas or air sparging substantially affects fouling (Judd and 
Judd, 2011; Meng et al., 2017). Thus, to eliminate the influence of biogas sparging on 
membrane performance, only the values of the membrane performance indices when the 
AnMBR operated under normal biogas sparging were used, that is, when the modelled SGDm, 
as calculated with Equation (4.1), was between 0.96 and 1.28 Nm3 h-1 m-2. 

Since the data were not independent for most of the measured variables, the 
independence of the time-series was tested using a Ljung–Box test, with the function lbqtest 
in Matlab® R2019b (results are not shown). Independence is one of the assumptions of 

parametric tests; therefore, the non-parametric test Spearman’s rank coefficient (𝑟𝑠) was used. 

The statistical significance was assessed by comparing the probability values (𝑝) with a 0.01 

level of significance. 𝑟𝑠 and 𝑝 were computed with the corr function in Matlab® R2019b using 
“complete” rows, this is only rows of the input with no missing values. 

4.3 RESULTS 

4.3.1 Blackwater and permeate characteristics 

Figure 4.2 compares the characteristics of the blackwater and the permeate during all the 
operational phases; Figure 4.3 displays the remaining blackwater characterization. 

The organic matter concentration in the blackwater, measured as tCOD, was highly 
variable, ranging from 0.7 to 3.3 g L-1, and tCOD decreased over time. Because the toilets in 
the building were conventional gravity flush toilets, as opposed to vacuum toilets, the 
blackwater tCOD concentration was lower than in other research studies, which reported 
tCOD values of 8.7 ± 4.0 g L−1 (Wendland et al., 2007), 9.8 ± 2.6 and 7.7 ± 2.2 g L−1 (De Graaff 
et al., 2010). High COD removal efficiencies between 89% and 98% were achieved during the 
entire operational period. 

The blackwater characteristics, presented in Figure 4.2 and Figure 4.3, were highly 
variable throughout the operational period. This variation may be caused by the small and 
diverse group of persons generating the blackwater and the lack of external mixing in the 
septic tank. Approximately 200 persons worked in the building, however the number and 
specific persons that attended the office varied throughout the week due to the co‐working 
spaces and new companies being installed. Furthermore, the characteristics of the blackwater 
that was being pumped into the equalization tank were likely affected by the time-of-day and 
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time‐of‐week that the pumping occurred. For example, the blackwater characteristics may 
have been different if the equalization tank was filled during office hours, when blackwater 
was entering the septic tank and thus promoting mixing, as opposed to out‐of‐office hours, 
when the septic tank was not mixed and sedimentation was likely to take place. 

The concentrations of TN, TP and NH4–N in the permeate were similar to those of the 
blackwater during most of the operational period, because these nutrients are not removed in 
anaerobic digestion, except for the fraction that is used for biomass growth. Moreover, owing 
to organic matter mineralization, the NH4–N and ortho-phosphate concentrations may even 
increase in the AnMBR. Nevertheless, during the period of 51 to 72 days, the nutrient 
concentrations in the permeate were considerably below those of the blackwater, which was 
possibly caused by increased biomass growth and/or precipitate formation, such as of struvite 
and calcium phosphate species (Cax(PO4)y). The increase in blackwater tCOD load in the 
mentioned period might have led to increased biomass growth, agreeing with the observed 
increase in VSS concentration of the sludge shown in Figure 4.4E. The concomitant nutrient 
requirements for biomass growth would then result in decreased NH4–N and TP 
concentrations in the permeate, as was shown in Figure 4.2. The estimated requirements of 
nitrogen and phosphorous for biomass growth when the blackwater tCOD increased to 

 
Figure 4.2. Blackwater and permeate characteristics during the operational period of pilot AnMBR 
dosed with flux enhancer: (A) total COD concentration and COD removal, (B) total phosphorous 
concentration, (C) total nitrogen concentration, and (D) ammonium–nitrogen concentration. A pulse‐
dosage of Adifloc KD451 achieving 50 mg L−1 was performed on day 16 (black continuous line), and 
sludge was withdrawn on day 123 (black dotted line). I, II and III are the operational phases described 
as follows: (I) control phase, (II) period following FE addition, and (III) period following sludge 
withdrawal. 
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2.7 gCOD L-1 were 14–19 mgN and 1–4 mgP per liter of influent, respectively. These values 
were calculated assuming a biomass yield of 0.10, a COD conversion of 92%, a biomass COD 
to VSS conversion of 1.42 gCOD gVSS-1, and a nitrogen and phosphorous requirement based 
on the elemental composition of biomass, namely 80.8-108.8 mgN gVSS−1 and 
4.3-23.8 mgP gVSS−1 (Hendriks et al., 2018). However, the observed decrease in NH4–N and 
TP from blackwater to permeate largely exceeded the calculated biomass growth-related 
values, and amounted to 92–142 mgN L-1 and 10–13 mgP L-1, respectively. Therefore, the 
decreased NH4–N and TP concentrations in the permeate were likely caused by precipitate 
formation, which is influenced by the environmental conditions in the reactor, such as pH 
and the concentrations of different ions. Particularly, the precipitation of Cax(PO4)y has been 
observed in reactors treating blackwater (Cunha et al., 2018; Tervahauta et al., 2014). 

During the 10‐day periods before and after FE addition, the mean COD removals were 
94.8% and 94.2%, and the mean permeate tCOD values were 94.8 and 94.2 mg L−1, respectively. 
Therefore, COD removal and permeate tCOD were seemingly not affected by dosing FE. 
Furthermore, around the moment of FE addition, the TN, TP and NH4–N levels were 

 
Figure 4.3. Blackwater characteristics during operational period of pilot AnMBR plant dosed with 
flux enhancer: (A) supracolloidal COD, (B) submicron COD, (C) total solids, (D) volatile solids, (E) pH, 
and (F) alkalinity. 
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increasing in the blackwater, and consequently in the permeate, because these nutrients are 
not removed during anaerobic digestion. Therefore, the increased concentrations in the 
permeate were very likely caused by their increase in blackwater, and not by FE addition. 

On day 123, the VSS concentration in the mixed liquor dropped by 64% due to a 
considerable sludge withdrawal. However, this huge drop in VSS concentration did not 
impact COD removal or permeate quality in terms of COD concentration. Apparently, the 
potential organic loading or volumetric conversion capacity of the AnMBR was not fully 
utilised. 

4.3.2 Sludge characteristics 

Figure 4.4 shows the sludge characteristics during the operational period. During days 13 to 
18, the sludge recirculation pump (P-3 in Figure 4.1) malfunctioned and caused an 
accumulation of solids in the membrane tank, shown by the increased TSS and VSS. The pump 
was repaired on day 18, and the TSS returned to its original value.  

Furthermore, as explained in Section 4.3.1, a rapid increase in VSS was observed from 
days 39 to 51, which was attributed to an increased blackwater tCOD that promoted biomass 
growth and the accumulation of un-degraded particulate organic matter. Figure 4.4E shows a 
similar rapid VSS increase on day 94; however, on this occasion, the sudden increase cannot 
be explained by a high blackwater tCOD. Instead, the increased VSS was possibly caused by 
the accumulation of un‐degraded particulate or colloidal organic matter from the blackwater, 
as a result of a change in blackwater composition, which was not notice when using the 
applied physicochemical characterization. Additionally, the lower temperature, shown in 
Figure 4.4I, could have reduced the hydrolysis rate, concomitantly explaining the slight 
decrease in COD removal efficiency observed in Figure 4.2A. 

During the 10‐day periods before and after FE addition, the mean ∆𝑅20 values were 

16.7×1012 and 7.8×1012 m−1, the mean 𝐷50 values were 20.2 and 35.7 µm and the mean csCOD 
values were 740 and 391 mg L−1, respectively. Therefore, on average, FE addition decreased 

the ∆𝑅20 value by 53% (i.e., improved sludge filterability), increased 𝐷50 by 77% and 
decreased csCOD by 47%. 

During Phase II, the effect of FE on filterability decreased slowly — the ∆𝑅20 value 
increased on average 0.1×1012 m−1 per day. The filterability stayed below the lowest registered 
value in Phase I (i.e., 10.8×1012 m−1) for a 50‐day period, and achieved values similar to the 

mean ∆𝑅20 in Phase I (i.e., 14.2×1012 m−1) after 85 days. Furthermore, the increase in ∆𝑅20 

was simultaneous with the csCOD increase and 𝐷50 decrease. 

The sludge withdrawal from the AnMBR, whereby 31% of the liquid volume was removed 
on day 123, caused a 62% decrease in TSS and only a 7% decrease in csCOD, and a 4% decrease 

in ∆𝑅20. The high decrease in TSS and low decrease in csCOD likely can be attributed to the 
fact that the purge was done from the bottom of the membrane tank, where particulate 
material is deposited by sedimentation, while colloidal material remains suspended. 
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Figure 4.4. Sludge characteristics during operational period of pilot AnMBR plant dosed with flux 
enhancer: (A) sludge filterability expressed as ∆𝑅20 (which is inversely related with filterability), 
(B) submicron COD, (C) floc size expressed as 50th percentiles of volume-based particle size 
distribution, (D) total suspended solids, (E) volatile suspended solids, (F) fixed suspended solids, (G) 
alkalinity, (H) pH, and (I) temperature. 
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4.3.3 Specific methanogenic activity 

The effect of Adifloc KD451 on the biological activity was assessed with SMA tests, and the 
results are summarised in Figure 4.5. For Inoculum I, the mean SMA with 50 mg L−1 of 
Adifloc KD451 added to the bottle was 18% lower than the SMA without FE addition; this 

difference was statistically significant, with 𝑝 = 0.012. Moreover, the mean SMA of 

Inoculum II did not present a statistically significant difference, 𝑝 = 0.76, from the mean 
SMA of Inoculum I. 

 
Figure 4.5. Specific methanogenic activity (SMA) of sludge samples collected from the pilot AnMBR 
immediately before (Phase I) and 3 weeks after (Phase II) FE addition. The values between brackets 
are the concentrations of Adifloc KD451 added to the SMA bottles, pre-mixed with inoculum. The 
error bars are the 95% confidence intervals. 

4.3.4 𝑆𝐺𝐷𝑚 model calibration 

The estimated parameters of the SGDm model in Equation (4.1), to evaluate the required gas 

sparging demand, were as follows: 𝛾0=−3.43 Nm3 h−1; 𝛾1=−14.57 Nm3 h−1 m−1; and 

𝛾2=0.52 Nm3 h−1 Hz−1. Figure 4.6 shows the experimental and simulated SGDm. The Pearson 
correlation coefficient between the experimental and simulated results was 0.906. Thus, the 

proposed model satisfactorily predicted SGDm, and therefore, the simulated SGDm could be 

used as a continuous estimation of SGDm in the pilot AnMBR. 

As described in Section 4.2.2, the continuous simulated SGDm was used to eliminate the 
influence of biogas sparging on membrane fouling when studying the correlation between 
sludge characteristics, membrane performance indices and sludge filterability. 
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Figure 4.6. Simulated and experimental specific gas demand (SGDm), level of liquid in the membrane 
tank (𝐻MT) and motor frequency of the blower (𝑣B) during the operational period of the AnMBR dosed 
with flux enhancer. 

4.3.5 AnMBR filtration performance 

The filtration performance of the AnMBR was assessed based on FR and 𝑅T, as shown in 
Figure 4.7. The TMP could not be measured after day 58 due to technical difficulties with the 
online measurement of permeate pressure, that could not be resolved; thus the 𝑅𝑇 and FR 
could not be calculated after day 58. 

During the 10‐day periods before and after FE addition, the mean 𝑅T values were 6.6×1012 
and 1.2×1012 m−1 and the mean FR values were 15.3 and 1.7 mbar min-1, respectively. 
Therefore, FE addition improved the filtration performance of the AnMBR, clearly indicated 

by an 82% mean 𝑅T decrease and an 89% mean FE decrease. Furthermore, during the 42‐day 

 
Figure 4.7. Pilot AnMBR mean hourly membrane performance state variables during operational 
period of pilot AnMBR plant dosed with flux enhancer: (A) mean TMP during one filtration cycle, and 
(B) transmembrane flux. 
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period recorded by the SCADA in Phase II, the FR and 𝑅T values remained below the ones 
registered during Phase I. 

The biogas blower did not have an automatic control, but instead was operated at a fixed 

motor frequency set by the operator. Thus, the SGDm varied with the pressure in the 

membrane tank, which was determined by 𝐻MT. Since the AnMBR was fed with blackwater 
generated in an office building, mostly empty outside working hours, there were weekends 
when there was less blackwater production (mainly during Phase I) and the reactor was not 
fed, resulting in decreased 𝐻MT and increased SGDm, as seen in Figure 4.6. Consequently, 

during these periods of low 𝐻MT, the resulting FR and 𝑅T values were low. Accordingly, FR 

and 𝑅T considerably increased with decreasing SGDm in Phase II (Period: 37–39 d). Therefore, 
as expected, the filtration performance on the AnMBR improved (in the short‐term) with the 
higher biogas sparging rate, and conversely, it deteriorated with the low sparging rate. 

4.3.6 Correlation analysis 

Table 4.1 shows that the csCOD and 𝐷50 had statistically significant correlations with the 

∆𝑅20, 𝑅T and FR. The correlation coefficients were negative for 𝐷50 and positive for csCOD, 

suggesting that a sludge with a higher 𝐷50 and lower csCOD had better filterability and 

created less fouling. The results show that the 𝐷50 and csCOD were statistically significantly 
correlated. 

  

Table 4.1. Spearman correlation half matrix between sludge characteristics, total filtration resistance 
(𝑅T), fouling rate (FR) and sludge filterability (expressed as ∆𝑅20). Significant correlation at level 0.01 
(*); probability value (𝑝) given between brackets. 

Variable 𝑅T FR ∆𝑅20 csCOD 𝐷50 

𝑅T 1     

FR 0.96*  (8×10-12) 1    

∆𝑅20 0.64* (8×10-5) 0.75* (8×10-5) 1   

csCOD 0.75* (9×10-5) 0.82* (5×10-6) 0.82* (5×10-6) 1  

𝐷50 –0.89* (8×10-8) –0.84* (2×10-6) –0.58* (6×10-3) –0.74* (1×10-4) 1 
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4.4 DISCUSSION 

4.4.1 Potential foulants and the role of flux enhancers 

4.4.1.1 Soluble and colloidal organic matter 

When added to a sludge sample, cationic polymers such as Adifloc KD451 are adsorbed onto 
the negatively charged surface of the suspended organic matter, such as colloidal material 
and flocs, promoting their agglomeration upon collision, consequently decreasing the 
concentration of colloidal material and increasing particle size. Moreover, colloidal and 
soluble material could be incorporated into the flocs by interaction with the cationic polymer 
adsorbed, or by entrapment between aggregated flocs. Accordingly, the addition of Adifloc 
KD451 to the AnMBR considerably decreased csCOD, which comprises colloidal and soluble 
material, and increased floc size. 

The correlation analysis, in Section 4.3.6, showed that although both csCOD and 𝐷50 

correlated with ∆R20, FR and 𝑅T, it was not possible to elucidate the individual effect of 𝐷50 

and csCOD on fouling and filterability. Nevertheless, in Chapter 2, ∆R20 statistically 

significantly correlated with csCOD, cCOD and sCOD, but not with 𝐷50. Accordingly, in 
Iversen (2010), four of the tested FEs had no significant effect on mean floc size, while they 
decreased SMP and improved critical flux. Zhang et al. (2017) dosed 100 mg L−1 
polyaluminium chloride or 400 mg L-1 PAC‐SAE‐Super, which reduced the TMP in a cross‐
flow filtration cell, while the mean floc size did not change significantly, and both colloidal 
and soluble organic matter decreased. Therefore, the results from previous research suggest 
that colloidal and soluble organic matter removal might have a higher impact on fouling 
mitigation than increasing floc size. Accordingly, researchers have consistently identified 
colloidal material as a major factor in reversible fouling in membrane bioreactors (Christensen 
et al., 2018; Gil et al., 2011; Huang et al., 2017; Judd and Judd, 2011; Lim et al., 2020; Remy, 
2012). High colloidal concentrations increase the fouling rate by cake layer formation, pore 
blocking, and decreasing cake layer porosity. 

4.4.1.2 Floc size 

The addition of Adifloc KD451 to the AnMBR considerably increased median floc size, 

measured as 𝐷50. The effect of floc size on fouling has been addressed by several authors. 
Larger flocs can form more porous cakes, reduce the adhesion of the flocs to the membrane, 
increase the back-transport of flocs from the membrane surface to the bulk liquid, and reduce 
cake layer thickness by surface erosion or increased shear near the membrane surface (Belfort 
et al., 1994; Christensen et al., 2018; Hamedi et al., 2019; Shen et al., 2015), consequently 
decreasing membrane fouling. 

Accordingly, the correlation analysis suggested that a higher 𝐷50 increased the sludge 

filterability and created less fouling. However, in Figure 4.4, the changes in 𝐷50 were 
simultaneous with, and opposite to, the changes in csCOD. Similarly, different researchers 
observed a decrease in fouling rate when simultaneously increasing the mean floc size and 
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decreasing the SMP or the concentration of submicron particles (De Temmerman et al., 2015; 
Huyskens et al., 2011b; Iversen, 2010; Koseoglu et al., 2012; Krzeminski et al., 2012; Wu et al., 
2006; Zhang et al., 2010). To the authors’ best knowledge, Zhang et al. (2017) is the only study 
wherein the fouling rate decreases with an increasing floc size, while no removal, or even a 
slight increase, of colloidal particles or SMP was observed. Therefore, from these studies and 
the results in this research, it is challenging to elucidate to what extent, if any, floc size 
affected fouling, or if the fouling improvement was simply caused by soluble and colloidal 
organic matter removal. Furthermore, some studies suggest that floc size had no effect on 
fouling mitigation, or even had a negative effect, which the author attributed to a decrease in 
the extracellular polymeric substances (EPS) (Chae et al., 2006) and to changes in the structure 
of the flocs (Remy, 2012). Nevertheless, the Carman–Kozeny equation and thermodynamic 
approaches suggest that floc size directly affects membrane fouling, and that small flocs have 
a stronger effect than large flocs (Belfort et al., 1994; Hamedi et al., 2019). Therefore, floc size 
might have a significant effect on membrane fouling for small flocs, whereas further 
increasing the size of already large particles might have a negligible effect on fouling 
mitigation. 

The stronger correlation between 𝐷50 and filtration performance in the AnMBR (i.e., FR 

and 𝑅𝑇) than between 𝐷50 and filterability (Table 4.1) might be due to the different membrane 
configuration and operational conditions in the AnMBR compared to the AnDFCm 
installation, such as hydrodynamic conditions, membrane type, filtration and relaxation 
cycles, and mechanical cleaning (gas sparging vs. liquid cross‐flow). Particularly, the AnMBR 
operates with filtration and relaxation cycles, whereas the AnDFCm installation operates with 
continuous filtration during filterability measurements. A recent study has demonstrated that 
under laminar conditions and without applying a membrane flux, large particles tend to move 
in larger numbers to the membrane than smaller particles, and with a membrane flux, large 
and small particles move in similar numbers (Naessens, 2018). Considering this, during 
relaxation in the AnMBR, the migration of larger particles to the membrane could create a 
cake layer with a high number of large particles, contributing to a highly permeable cake that 
can act as a protective layer during the filtration phase. Contrarily, the AnDFCm installation 
worked continuously in the filtration mode, and consequently this hypothetical protective 
cake layer formed by large particles was not formed, and thus the size of the large particles 
was less relevant. 

4.4.2 Extent of flux enhancer effect 

The flux enhancer had a long-term effect on sludge filterability and filtration performance; 

nevertheless, those effects slowly deteriorated over time, as shown by the ∆𝑅20 returning to 
similar values as in Phase I, 85 days after FE addition. Similarly, after a pulse-dosage of MPE50 
to a pilot MBR, R11 in Table 1.1, the MBR operated with a higher flux and a slightly lower 
TMP compared to the control phase during a 30‐day period, after which sludge was 
withdrawn and the filtration performance deteriorated (Yoon and Collins, 2006). Moreover, 
Diaz et al. (2014) achieved a higher flux during a 4‐week operating period compared to the 
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control phase, after dosing MPE50 to a lab-scale AnMBR fed with synthetic wastewater. 
During this period, no sludge was withdrawn. 

Therefore, despite operating without sludge wastage, the effect of the FE can be lost over 
time due to several reasons, such as the following: biomass and colloidal material 
accumulation in the reactor due to microbial growth, floc breakage or the detachment of 
particulate material from flocs caused by shear; the loss of FE in the permeate or by FE 
biodegradation; and changes in sludge characteristics caused by fluctuations in the 
operational conditions or substrate characteristics. 

4.4.3 Flux enhancer effect on permeate quality 

When FE is added to sludge, a fraction of FE can remain unbonded in the bulk liquid, 
depending on the relevant physicochemical equilibria. Chapter 2 showed that Adifloc KD451 
can pass through the membrane pores of the AnDFCm and contaminate the permeate. The 
membrane in the AnMBR had similar nominal pore size to the AnDFCm installation, that is, 
35 and 30 nm, respectively. Thus, if the FE remains unbonded it can contaminate the AnMBR 
permeate. The AnMBR was dosed with 50 mg L-1 of Adifloc KD451, and thus assuming that 
5% of the added FE remained unbonded (Iversen et al., 2008) and reached the permeate, that 
is 2.5 mg L−1 or 2.8 mgCOD L-1. If this had been the case in the experiment in this research, 
and considering that the AnMBR permeate COD was between 90 and 110 mg L-1, the 
contribution of FE to the permeate COD would have been negligible. Accordingly, the results 
in Section 3.1 show that the permeate COD was not affected by FE addition.  

Furthermore, the permeate nutrient concentrations, namely TP, TN and NH4–N, were 
apparently not affected by FE addition. Therefore, the addition of Adifloc KD451 to the 
AnMBR had seemingly no effect on permeate quality. Accordingly, MPE50 had no detrimental 
effect, or even slightly improved the permeate quality and nutrient removal (Alkmim et al., 
2016; Iversen et al., 2009b; Wozniak, 2010; Yoon and Collins, 2006). Therefore, dosing FE, 
particularly cationic polymers, to MBRs and AnMBRs has no significant adverse effect on 
permeate quality. 

4.4.4 Flux enhancer effect on biological activity 

Under anaerobic conditions, results showed that Adifloc KD451 had an immediate inhibitory 
effect on the biological activity in the SMA test, which was in accordance with previous 
observations (Odriozola et al., 2019). Contrarily, under aerobic conditions, different cationic 
polymers, including Adifloc KD451, had no or slightly detrimental effect on the endogenous 
oxygen uptake rate  (Iversen et al., 2009a; Yoon et al., 2005). 

The SMA of sludge collected 3 weeks after FE addition to the AnMBR did not present a 
statistically significant difference from the sludge collected immediately before FE addition. 
Therefore, as proposed in previous research (Odriozola et al., 2019), although Adifloc KD451 
had an immediate inhibitory effect on SMA, this was regarded as a reversible process. 
Moreover, the applied organic sludge loading rates to the AnMBR were relatively low, i.e., 
0.01-0.18 gCOD gVSS−1 d−1, meaning that a reduction of 18% in SMA does not harm the 
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process. It should be noted that in addition to the observed effect on SMA, FE may also 
irreversibly bind organic matter, reducing the biomethane potential of the substrate 
(Kooijman et al., 2017a) and thus the overall biogas production rate. Unfortunately, the daily 
biogas production could not be measured in the pilot experiment. 

The results clearly show that FE addition had no adverse effect on COD removal in the 
AnMBR, as presented in Section 4.3.1, which is in accordance with previous research 
performed with MPE50 (Alkmim et al., 2016; Díaz et al., 2014). Therefore, this research 
suggests that dosing FE, particularly cationic polymers, has no significant adverse effect on 
COD removal efficiencies. 

4.4.5 Sludge withdrawal as an alternative strategy for fouling control 

As shown in Section 4.3.2, the sludge withdrawal performed on day 123 caused a high 
decrease in TSS (62% decrease), while it only slightly decreased csCOD (7% decrease), which 
was likely attributable to the location of the purge (in the bottom of the membrane tank) and 
the amount of withdrawn reactor broth. The low decrease in csCOD caused a small 

improvement in sludge filterability (∆𝑅20 decreased 4%). The results indicate that sludge 
withdrawal is not a very effective fouling control strategy, as the major part of csCOD 
remains suspended in the bulk of the liquid. Likely, only very large volume exchange ratios 
will impact the bulk liquid csCOD concentrations and thus the total membrane resistance. No 
further experiments were performed to prove this hypothesis since it was outside the scope 
of this research. 

4.4.6 Filterability as input variable for fouling control and flux enhancer 
dosing 

Under the normal operational biogas sparging conditions defined in Section 4.2.1, i.e., 
SGDm= 0.96–1.28 Nm3 h-1 m-2, the sludge filterability was statistically correlated with the 

AnMBR filtration performance indices (i.e., FR and 𝑅𝑇), and thus the observed improvement 
in AnMBR filtration performance was possibly due to the improved sludge filterability. 
However, during the period of 37–39 days, the AnMBR filtration performance deteriorated, 
while sludge filterability slightly improved, and conversely, the AnMBR filtration 
performance improved while sludge filterability deteriorated during the periods of day 6–7 

and day 13–14. These behaviours were attributed to changes in SGDm; see Section 3.5. 
Therefore, relating sludge filterability to AnMBR filtration performance indices allowed us to 
identify the cause of filtration performance deterioration or improvement in the AnMBR. 

Consequently, a fouling control tool that uses sludge filterability and AnMBR filtration 
performance indices as input variables could help decide on the appropriate intervention 
(Kraume et al., 2009), that is, manipulate either the sludge characteristics, for example by 
dosing FE, or the membrane operational conditions, for example by decreasing flux or 
increasing biogas sparging. Furthermore, the AnDFCm takes 20 min to determine filterability, 
and this time is negligible compared to the rate of change of filtration performance and sludge 
filterability observed in membrane bioreactors, as shown in Section 4.4.2. This means that the 
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dynamic of the measuring sensor is considerably faster than the dynamics in the process 
parameters, which is an indispensable property in a successful control tool. Therefore, in-situ 
filterability measurements with the AnDFCm proved to be an appropriate input variable for 
manipulating FE dosage for fouling control in AnMBRs. 

4.5 CONCLUSIONS 

This research evaluated the long-term effect on filtration performance, sludge characteristics, 
biological activity and permeate quality following a pulse‐dosage of Adifloc KD451 as FE to a 
concentration of 50 mg L−1 in a pilot AnMBR. The main findings can be summarised as 
follows: 

• FE addition improved the filtration performance of the AnMBR, as indicated by the 82% 
𝑅T and 89% FR reductions, without significantly affecting COD removal and permeate 

quality. The improvement was sustained in the long term—the FR and 𝑅T values stayed 
below the ones registered during the control phase (i.e., Phase I) for at least 42 days, and 
after this period the SCADA system failed to measure FR and 𝑅T. 

• The improved filtration performance was attributed to increased floc size and reduced 
csCOD (i.e., colloidal + soluble organic matter concentration), thereby improving sludge 
filterability. The filterability returned to similar values as in the control phase 85 days 
after FE addition. 

• The SMA values of the sludge samples collected immediately before and 3 weeks after FE 
addition were statistically similar; however, in batch tests, 50 mg L−1 of Adifloc KD451 
caused an 18% SMA inhibition. Thus, the FE had a modest immediate effect on the SMA, 
which, however, had no significant impact on the AnMBR performance. Moreover, the 
drop in SMA was reversible. 

• Relating in-situ measurements of sludge filterability with AnMBR filtration performance 
indices, i.e., FR and 𝑅𝑇, allowed us to identify the prevailing gas sparging rate as being 
the cause of filtration performance deterioration or improvement in the AnMBR. 

• In-situ measurements of sludge filterability with the AnDFCm proved an appropriate 
input variable for manipulating FE dosage for fouling control in AnMBRs. 
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ABSTRACT 

Flux enhancers (FE) have been successfully applied for fouling mitigation in membrane 
bioreactors. However, more research is needed to compare and optimise different dosing 
strategies to improve the filtration performance, while minimising the use of FE and 
preventing overdosing. Therefore, the goal of this research is to develop a simulation 
environment with an integrated comprehensive model that predicts the effect of FE dosing 
on sludge filterability and membrane fouling rate; and to use the developed simulation 
environment to compare five control tools to manipulate the FE dosing to an AnMBR. The 
integrated model coupled filtration, flocculation, and biochemical processes. The biochemical 
model was the ADM1 modified to include FE and colloidal material. We developed an 
empirical model for the FE induced flocculation of colloidal material. Various alternate 
filtration models from literature and empirical models proposed in this research were 
implemented, calibrated, validated, and compared. The best integrated model was successfully 
applied in the simulation environment to compare three feedback and two feedforward 
control tools to manipulate FE dosing to an AnMBR. The most appropriate control tool was a 
feedback sludge filterability controller that dosed FE continuously. This controller achieved 
more stable sludge filterability and fouling rate under specific disturbances than the other 
control tools. The simulation environment developed in this research provides a tool to test 
strategies for dosing flux enhancer dosing strategies into AnMBRs. 
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5.1 INTRODUCTION 

Flux enhancer dosage to membrane bioreactors has been mostly done using an initial 
pulse-dosage, followed by periodic FE dosing to compensate for the FE loss by biodegradation 
and sludge withdrawal. However, this dosing strategy does not consider possible disturbances 
and is based on assumptions that might lead to FE underdose or overdose. Therefore, more 
research is needed that compares and optimises different dosing strategies to improve the 
filtration performance while minimising the use of FE and avoiding overdosing. 

Comparing various FE dosing strategies using experiments, independent of the scale, is 
expensive and time-consuming. Additionally, dosing strategies should ideally be compared 
under identical operational conditions, which is challenging to achieve in different reactors 
in parallel or in the same reactor at different moments. A simulation environment is regarded 
as an effective tool to test various FE dosing strategies for fouling control, provided the model 
structure is commonly accepted. The simulation environment should have a comprehensive 
model able to predict the effect of FE dosing on membrane fouling rate and sludge filterability. 
However, thus far, such a comprehensive model has never been presented in the literature. 
Nevertheless, multiple models with diverse complexity have been discussed for the different 
processes involved in membrane bioreactors, including filtration, biochemical, 
hydrodynamic, and flocculation models (Naessens et al., 2012a, 2012b; Robles et al., 2018). 
These models can be adapted and coupled into a comprehensive integrated model that 
describes an AnMBR under FE dosage. The first step towards developing such an integrated 
model is to identify the variables that are affected by FE dosage and influence the filtration 
performance. 

Colloidal material has been consistently identified as a major factor affecting sludge 
filterability (Odriozola et al., 2021) and reversible fouling in membrane bioreactors 
(Christensen et al., 2018; Gil et al., 2011; Huang et al., 2017; Judd and Judd, 2011; Lim et al., 
2020; Odriozola et al., 2020; Remy, 2012). Colloidal material deposited in the cake layer can 
decrease cake porosity by filling the void space of the cake. The concentration of colloidal 
material decreases after dosing cationic polymers as FE, while the floc size increases, as 
discussed in Chapters 2 and 4. Regarding floc size, larger flocs can form more porous cakes, 
reduce the adhesion of the flocs to the membrane, increase the back-transport of flocs from 
the membrane surface to the bulk liquid, and reduce cake layer thickness by surface erosion 
(Belfort et al., 1994; Christensen et al., 2018; Hamedi et al., 2019; Shen et al., 2015), thus 
decreasing membrane fouling. However, as discussed in Chapter 4, the effect of floc size on 
membrane fouling is controversial. Floc size can have a substantial effect on membrane 
fouling for small flocs, whereas further increasing the size of already large particles might 
have a negligible effect on fouling mitigation. Considering the above, the colloidal material 
concentration is likely an appropriate state variable to describe the effect of FE dosing on the 
membrane fouling rate and sludge filterability, whereas floc size may not be an appropriate 
variable. The concentration of particulate material is a poor indicator of sludge fouling 
propensity by itself (Judd and Judd, 2011). However, it is a crucial input variable in filtration 
models because it affects cake layer formation by particle deposition over the membrane 
surface and may play a role in scavenging colloidal material (Lousada-Ferreira et al., 2015). 
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The concentration of particulate material is affected by biochemical processes (such as 
bioconversion, biomass growth and decay), influent characteristics, and flocculation of 
colloidal material. Therefore, to predict the effect of FE dosing on membrane fouling rate and 
sludge filterability, an integrated model including filtration with colloidal material deposition, 
(FE induced) flocculation, and biochemical processes is needed.  

The IWA anaerobic digestion model No. 1 (ADM1) (Batstone et al., 2002) has been widely 
applied to simulate the biochemical processes occurring in anaerobic reactors (Batstone et al., 
2015; Donoso-Bravo et al., 2011; Robles et al., 2018), including AnMBRs. Other biochemical 
models applied in AnMBR include the biological nutrient removal model No. 2 (BNRM2) 
(Barat et al., 2013) and the simple anaerobic model AM2b that incorporates the kinetics of 
soluble microbial products (SMP) (Benyahia et al., 2013). Although anaerobic digestion 
modelling is a relatively mature field, the kinetics of colloidal material has not yet been 
incorporated. Moreover, the FE could have a detrimental effect on the biological activity 
(Chapter 3). Therefore, to model a FE dosed AnMBR, the biochemical models should be 
extended to incorporate colloidal material and FE.    

The filtration process in membrane bioreactors mostly has been modelled with grey box 
models,  particularly by applying the resistance-in-series model, Darcy’s Law, drag and lift 
forces, and the Carman-Kozeny equation to predict the membrane performance (such as 
fouling rate, transmembrane pressure, flux) based on sludge characteristics and operating 
conditions (Naessens et al., 2012a, 2012b; Robles et al., 2018). Researchers have modelled the 
reduction in cake layer porosity, and consequently the increase in the specific cake resistance 
(SCR), caused by the entrapment of colloidal material (Wu et al., 2012), extracellular polymeric 
substances (EPS) (Cho et al., 2005), SMP (Charfi et al., 2017; Zarragoitia-González et al., 2008) 
and submicron material (Zuthi et al., 2013). This could be an appropriate approach to 
incorporate the effect of FE dosing on membrane fouling and sludge filterability through 
changes in the concentration of colloidal material.  

To model the flocculation process, population balance models (PBM) have been widely 
applied in chemical engineering to predict the particle size distribution (Jeldres et al., 2018). 
PBM divide the particles into populations each with a different particle size, and describe the 
dynamic of the number of particles present in each population. To incorporate PBM in an 
AnMBR integrated model, the equations describing the filtration and biochemical processes, 
for example, must be applied to each population, resulting in an extremely complex model 
with many state variables. Alternatively, a simpler flocculation model that describes the 
dynamics of floc size (i.e., mean particle size) can be useful and sufficient to assess the 
necessity of floc size as a linking variable between biochemical-flocculation models and 
filtration models. 

The objective of this research is to develop and validate a comprehensive integrated 
model to be use as simulation environment and to test five control tools to manipulate the FE 
dosing to an AnMBR. The integrated model included flocculation, filtration, and biochemical 
processes to predict the effect of FE dosing on sludge filterability (as measured with the 
AnDFCm) and membrane fouling rate in an AnMBR. The tested control tools were: two 
feedback sludge filterability controllers, and two feedforward and one feedback FE 
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concentration controllers. 

5.2 MATERIALS AND METHODS 

5.2.1 Experimental data 

5.2.1.1 Physicochemical characterization 

Total suspended solids (TSS) and alkalinity were measured following the Standard Methods 
(APHA, 1999), using potentiometric titration to end-point pH of 3.7 for alkalinity. Particle size 
distribution (PSD) was measured with a Microtrac Bluewave diffraction analyser (Malvern 

Instruments Ltd., UK), and incorporated in the model as the geometric mean diameter (𝑑𝑝) 

calculated as follows (Merkus, 2009): 

𝑑𝑝 = 𝑒𝑥𝑝 (∑ (𝑃𝑖 𝑙𝑛 𝑑𝑝,𝑖)
𝑖

∑𝑃𝑖
𝑖

⁄ ) , (5.1) 

where 𝑃𝑖 is the volume fraction and 𝑑𝑝,𝑖 is the diameter of the 𝑖-th particle. 

Chemical oxygen demand (COD) and ammonium-nitrogen (NH4-N) were measured with 
Hach Lange test kits. The total COD (tCOD) was measured in the unfiltered sample, and the 
submicron COD (csCOD) in the fraction below 1 µm (Odriozola et al., 2021). The permeate 
COD (pCOD) was measured in the permeate collected from the pilot AnMBR. 

5.2.1.2 Sludge filterability with the AnDFCm 

Sludge filterability was measured with the anaerobic Delft filtration characterisation method 
(AnDFCm), described in short as follow, further detailed in Chapter 2. During filterability 
measurements, sludge flows continuously in crossflow mode, at 1.5 m s-1 velocity, through an 
X-Flow membrane (Pentair, the Netherlands) while permeate is extracted at 60 L m-2 h-1 flux. 
The membrane characteristics are as follows: ultrafiltration, tubular, 30 nm pore size, 8 mm 
internal diameter, 95 cm length, and 0.0239 m2 surface area. 

The output of the AnDFCm is the additional resistance obtained when 20 L of permeate 

per m2 of membrane surface area are produced, denominated as ∆𝑅20; the sludge filterability 

is inversely proportional to ∆𝑅20.  

5.2.1.3 Pilot AnMBR description and monitoring  

The models were partially calibrated and validated using monitoring data from a pilot AnMBR 
plant treating blackwater from the main office building of the Business Centre Porto do Molle, 
Nigrán, Pontevedra, Spain. The AnMBR consisted of an anaerobic stirred reactor connected 
to a membrane tank with one submerged ultrafiltration flat-sheet membrane module (Martins 
System, Germany). The reactor was operated under alternating filtration-relaxation cycles, at 
room temperature, and with biogas sparging below the membrane module. The pilot plant 
was coupled with a supervisory control and data acquisition (SCADA) system and various 
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sensors. Table A1 summarises the characteristics and operational conditions of the pilot 
AnMBR plant. Further details of the pilot AnMBR are described in Chapter 4.   

Grab samples of sludge, blackwater and permeate were regularly taken from the AnMBR 
for characterisation. Table A2 and Figure A1 show the physicochemical characteristics used 
for calibration of the biochemical-flocculation model. During days 13 to 18, TSS accumulated 
in the membrane tank due to malfunctioning of the sludge recirculation pump, this period 
was not included in the calibration of the biochemical-flocculation model.  

The fouling rate (FR) in the pilot AnMBR was measured as the change in transmembrane 
pressure (TMP) over time during each filtration cycle (𝑑TMP 𝑑𝑡⁄ ), calculated with the 
following linear regression equation:   

𝐹𝑅 =
𝑑TMP

𝑑𝑡
≈
𝑛∑ (TMP𝑖 𝑡𝑖)

𝑛
𝑖=1 − ∑ TMP𝑖

𝑛
𝑖=1  ∑ 𝑡𝑖

𝑛
𝑖=1

𝑛∑ 𝑡𝑖
2𝑛

𝑖=1 − (∑ 𝑡𝑖
𝑛
𝑖=1 )

2  , (5.2) 

where 𝑡𝑖 and TMP𝑖 are the time and corresponding TMP during one filtration cycle, and 𝑛 is 
the number of observations. The fouling rate measured in the pilot AnMBR, displayed in 
Figure A2A, was used as model output during calibration and validation of the AnMBR 

filtration models (described in Section 5.2.4). The sludge characteristics, 𝑐C, 𝑐X, 𝑇 and 𝑑𝑝 

shown in Figure A1, and gas sparging intensity (Figure A2B) were used as inputs during 
model calibration and validation. The total concentration of colloidal and particulate material 

in the mixed liquor expressed as suspended solids, 𝑐C and 𝑐X, respectively, were calculated as 
follows: 

𝑐C =
csCOD − pCOD

𝑖COD,CI
 , (5.3) 

𝑐X = TSS − 𝑐C , (5.4) 

where 𝑖COD,CI the theoretical COD of inert colloidal material, which was considered equal to 
the theoretical COD of biomass, that is 1.42 gCOD g-1 (Mara et al., 2003). The values for 
csCOD, pCOD and TSS are the linearly interpolated values between measured values of each 
variable.  

During the operation of the pilot, filterability was measured in-situ by connecting the 
AnDFCm installation in bypass to the pilot AnMBR, details are given in Chapter 4. The ∆𝑅20 
ranged from 5×1012 m-1 to 21×1012 m-1 during the operational period, with a mean value of 

12×1012 m-1, Figure A3. The ∆𝑅20 was the output of the AnDFCm filtration models (described 
in Section 5.2.6), and the sludge characteristics shown in Figure A1 were used as inputs during 
model calibration. 

Flux enhancer was added to the pilot as follows: 138.5 g pulse input (𝑀fe = 0.1385 kgCOD) 
of the cationic polymer Adifloc KD451 (Adipap SA, France), was introduced to the bypass line 
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of the pilot AnMBR on day 16 (𝑡fe0 = 1,379,754 s) with an injection time (∆𝑡fe) of 2,700 s. 

Therefore, in the model, the FE mass flow rate (�̇�fe) was as follows: 

�̇�fe = {

0, 𝑡 < 𝑡fe0
𝑀fe
∆𝑡fe

, 𝑡fe0 ≤ 𝑡 ≤ 𝑡fe0 + ∆𝑡fe

0, 𝑡 > 𝑡fe0 + ∆𝑡fe

 . (5.5) 

5.2.1.4 Flux enhancer dosage-step experiments 

Flocculation stoichiometry was assessed with FE dosage-step experiments using grab sludge 
samples from different AnMBRs. The relevant characteristics of the samples are summarised 
in Table A3. The dosage-step test consisted of consecutive stepwise increasing additions of 
Adifloc KD451 into a 40 L grab sludge sample. The experimental procedure and sample 

description are detailed in Chapter 2. The PSD, ∆𝑅20, and csCOD were measured 30 minutes 
after each dosage; the sludge was mixed throughout the experiment with an external stirrer.  

5.2.2 General model description and approach 

The proposed modelling approach is outlined in Figure 5.1. The main outputs of the integrated 

model are the AnMBR membrane fouling rate and the sludge filterability expressed as ∆𝑅20. 
The integrated model couples a biochemical-flocculation model with two filtration models: 
one for the AnMBR membrane module and one for AnDFCm installation membrane. The 
biochemical-flocculation model predicts the sludge characteristics that are used as input in 
both filtration models. For the AnMBR and AnDFCm filtration models, several alternate 
models were compared to select the best-fitting ones.  

The AnMBR filtration process was modelled using two alternate approaches: (1) FR_RIS 
model and (2) empirical FR model. In the FR_RIS model the fouling rate (FR) is calculated as 

the change in TMP over time during each filtration cycle (𝑑TMP 𝑑𝑡⁄ ). The TMP is calculated 
by combining three submodels: resistance-in-series (RIS), Deposition and SCR. Deposition 
submodel is an ordinary differential equation system to describe the deposition of colloidal 
and particulate material onto the membrane, SCR submodel is an equation to calculate the 
SCR based on the amount and characteristics of the material deposited onto the membrane. 
All possible combinations between four alternate deposition submodels (Section 5.2.4.3), 
seven alternate SCR submodels (Section 5.2.4.2), and one RIS submodel (Section 5.2.4.1) 
resulted in 28 alternate FR_RIS models, which were compared. The empirical FR model is an 
algebraic equation to calculate FR directly from the operational variables and mixed liquor 
properties, this research proposed six alternate empirical FR models (Section 5.2.5). Therefore, 
34 alternate AnMBR filtration models were compared, this is 28 FR_RIS and 6 empirical FR 
models.  

In the AnDFCm filtration model the ∆𝑅20 is the resistance of the cake layer (𝑅c) after 

1,200 s of continuous filtration under the operational conditions of the AnDFCm. 𝑅c is 
calculated by combining Deposition and SCR submodels. Twenty-one alternate AnDFCm 
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models (Section 5.2.6) were compared, that result from combinations of three Deposition and 
seven SCR alternate submodels. 

 

 

 
Figure 5.1. Modelling approach scheme. Between square brackets is the number of alternate models 
compared to select the most appropriate model. Abbreviations: ADM1, anaerobic digestion model No. 
1; AnDFCm, anaerobic Delft filtration characterization method; RIS, resistance-in-series; SCR, specific 
cake resistance; TMP, transmembrane pressure. D1a, D1b, D1c, D2 and D3 are alternate deposition 
submodels; 𝛼c,1, 𝛼c,1𝑝, 𝛼c,2, 𝛼c,2𝑝, 𝛼c,3, 𝛼c,3𝑝 and 𝛼c,4 are alternate SCR submodels; and FR1 to FR6 are 
alternate empirical FR models. 
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5.2.3 Biochemical-flocculation model 

The biochemical-flocculation model is an amended ADM1 (Batstone et al., 2002), modified to 
include the following processes caused by FE dosing: adsorption of FE onto particulate 
material, flocculation of colloidal material, and change in mean particle size as a result of 
flocculation. The model includes three new components as follows: inert colloidal material 

(𝐶I), FE in the bulk liquid (soluble, 𝑆fe) and adsorbed FE (𝑋fe). Figure 5.2 displays the scheme 
of the modified ADM1 and Table 5.1 shows the stoichiometric (Petersen) matrix for the new 
processes. Section A2 in Appendix A displays the full stoichiometric matrix and process rate 
equations. 

The modelled FE is a cationic polymer that interacts with the negatively charged surface 
of particulate and colloidal material. The adsorption of FE onto particulate material is 
described with the pseudo-first order model (El-Naas and Alhaija, 2011) in Equation (5.6), the 
FE adsorption onto particulate material promoted the flocculation of colloidal material as 
described in Equation (5.7).  

𝜌23 = 𝑘ads(𝑋fe,𝑒 − 𝑋fe) , (5.6) 

𝜌24 = 𝑌fe,C 𝑘ads(𝑋fe,𝑒 − 𝑋fe)
 𝐶I 𝑖COD,CI⁄

𝑐X + 𝑐C

𝑋I
𝑋I + 1 × 10

−6
 , (5.7) 

where 𝑘ads is the adsorption rate coefficient, 𝑋fe,𝑒 the adsorbed concentration of FE after 

equilibrium, 𝑋fe the concentration of FE adsorbed onto particulate material, 𝑌fe,C the yield of 

colloidal material flocculated per unit of FE adsorbed onto the particulate material, 𝐶I the 

concentration of colloidal inert, 𝑋I the concentration of particulate inert,  𝑖COD,CI the 

theoretical chemical oxygen demand for 𝐶I, and 𝑐C and 𝑐X are the total concentration of 
colloidal and particulate material, respectively, expressed as suspended solids, and calculated 
as follows:    

𝑐C =∑ 𝐶𝑖 𝑖COD,𝑖⁄
𝑖

 , (5.8) 

𝑐X =∑ 𝑋𝑖 𝑖COD,𝑖⁄
𝑖

 , (5.9) 

where 𝑖COD,𝑖 is the theoretical chemical oxygen demand for component 𝑖. Through 

Equation (5.7) the model considers the deflocculation of 𝑋I into 𝐶I when the concentration of 

FE decreased, and thus the last term in Equation (5.7) was introduced to avoid negative 𝐶I 

values when 𝑋I approaches zero and there is no material to be deflocculated. 

To calculate 𝑋fe,𝑒, the Langmuir adsorption isotherm in Equation (5.10), which describes 

the equilibrium conditions, is combined with Equation (5.11), which is the mass balance of FE 
inside the reactor at equilibrium conditions. 
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𝑋fe,𝑒 = 𝑞𝑚,ads 𝑐X
𝐾𝐿,ads 𝑆fe,𝑒

1 + 𝐾𝐿,ads 𝑆fe,e
 (5.10) 

𝑆fe,𝑒 = (𝑐fe − 𝑋fe,𝑒) (5.11) 

where 𝑞m,ads is the maximum adsorption capacity corresponding to monolayer coverage, 

𝐾𝐿,ads the Langmuir affinity coefficient, 𝑆fe,𝑒 the concentration of FE in the bulk liquid after 

equilibrium, and 𝑐fe is the total concentration of FE inside the reactor.  

 

Hydrolysis of decayed biomass has been reported as the slowest process in anaerobic 
digestion (Tugtas et al., 2006). Thus, the ADM1 approach was modified by decoupling the 
degradation rates of the decayed biomass and of the particulate material of the influent. For 
this, the model incorporates the disintegration of decayed biomass as the rate limiting process 
in biomass degradation, whereas the particulate material of the influent directly hydrolyses 
(without disintegration).  

The following additional modifications and assumptions in the ADM1 were mage: 
(1) removal of ammoniacal nitrogen inhibition of acetoclastic methanogenesis, because it is 
negligible in the pH range 7.0 - 7.5 and at total nitrogen concentrations in the permeate of 
80 – 200 mgN L-1, as measured in the pilot AnMBR (Astals et al., 2018); (2) inclusion of a 

non-competitive inhibition of acetoclastic methanogenesis by FE (𝐼fe,ac) (Odriozola et al., 
2019); and (3) inclusion of pH as an input of the model instead of performing the ion balance 
because pH was measured online by the SCADA. 

Our model assumes that all soluble components pass through the membrane and reach 
the permeate, whereas the colloidal and particulate components are retained by the 
membrane and remain inside the reactor. Equation (5.12) gives the mass balances of 

component 𝑖 in the liquid phase, and Equation (5.13) the mass balances of component 𝑖 in the 
gas phases.  

𝑑𝑐𝑖
𝑑𝑡

= 𝐸𝑖 − 𝑓𝑖,WS
𝑐𝑖𝑄WS

𝑉L
− 𝑓𝑖,P

𝑐𝑖𝑄P
𝑉L

+
1

𝑡conv
∑ 𝜐𝑖,𝑗𝜌𝑗

𝑗=[1−23]

 (5.12) 

Table 5.1. Stoichiometric coefficients (𝜐𝑖,𝑗) for the flocculation processes caused by addition of flux 
enhancer (FE), for modified ADM1. 

Component 𝑖 → 
 

Process 𝑗 ↓ 

13 24 25 26 

𝑆fe: soluble FE  𝑋I: particulate 
inerts 

𝐶I: colloidal 
inerts 

𝑋fe: adsorbed 
FE 

23 Adsorption of FE onto 
particulate material -1   1 

24 
Flocculation of colloidal 
material  1 -1  
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𝑑𝑐𝑖,G
𝑑𝑡

= −
𝑐𝑖,G𝑄G
𝑉G

+
𝑉L

𝑡conv 𝑉G
∑ 𝜐𝑖,𝑗𝜌𝑗

𝑗=[19−21]

   
(5.13) 

where 𝐸𝑖 is the input function of component 𝑖, 𝑓𝑖,P the fraction of component 𝑖 that passes 

through the membrane and reaches the permeate (𝑓𝑖,P = 0 for colloidal and particulate 

components, and 𝑓𝑖,P = 1 for soluble components), 𝑓𝑖,WS the fraction of component 𝑖 that 

leaves the reactor with the sludge waste (𝑓𝑖,WS = 1 for all components), 𝜐𝑖,𝑗 the stoichiometric 

coefficient of component 𝑖 in process 𝑗, 𝜌𝑗 the rate of process 𝑗, 𝑡conv the time conversion 

factor (86,400 s d-1), 𝑐𝑖,G the concentration of component 𝑖 in the gas phase, and 𝑉G the volume 

of the gas phase in the reactor. 𝐸𝑖 was calculated with the concentration of component 𝑖 in 

the influent (𝑐𝑖,Inf), Equation (5.14). The FE was added to the reactor in a separate flow, which 

increased the concentration of FE in bulk liquid (𝑆fe ≡ 𝑆13).  

𝐸𝑖 =

{
 

 
𝑐𝑖,Inf 𝑄Inf
𝑉L

, 𝑖 = [1,12] ∪ [14,26]

�̇�fe

𝑉L
, 𝑖 = 13

 (5.14) 

In the pilot AnMBR described in Section 5.2.1.3, the mean particle diameter (𝑑𝑝) was 

almost constant throughout the operational period without dosing FE. This mean size was 

referred as the mean particle diameter at stable operation (𝑑𝑝,St). Moreover, immediately after 

dosing FE to the pilot, 𝑑𝑝 increased and then it decreased continuously until it reached 𝑑𝑝,St. 

Therefore, the empirical model in Equation (5.15) was proposed to describe the 𝑑𝑝 dynamic 

in the pilot AnMBR.  

𝑑𝑑𝑝
𝑑𝑡

=
1

𝑡conv
(𝑘floc,fe

𝑑𝑋fe
𝑑𝑡

+ (𝑑𝑝,St − 𝑑𝑝)𝑘floc) (5.15) 

where 𝑘floc is the empirical flocculation-deflocculation rate that represents aggregation and 

breakage, and 𝑘floc,fe the FE induced flocculation yield. The first term represents the 

immediate increase after FE dosing, where 𝑑𝑝 changes linearly with the adsorbed FE 

concentration, as experimentally observed in the dosage-step tests with grab sludge samples 

described in Section 5.2.1.4. The second term of the equation represents the tendency of 𝑑𝑝 to 

reach 𝑑𝑝,St in the pilot AnMBR.  

5.2.4 AnMBR filtration: alternate FR_RIS models 

The AnMBR FR_RIS filtration models predict the cake layer formation by attachment and 

detachment of particulate material onto the membrane, and the SCR (𝛼c) by entrapment of 
colloidal material in the cake layer. The model output is fouling rate (FR) calculated with 
Equation (5.2) using the simulated TMP. 
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5.2.4.1 Resistance-in-series (RIS) submodel 

The TMP was calculated by Darcy’s law, as follows: 

TMP = 𝐽𝜇𝑅t , (5.16) 

where 𝑅t is the total filtration resistance, 𝜇 is the dynamic viscosity of the permeate, and 𝐽 is 
the transmembrane flux. The permeate viscosity was assumed equal to pure water viscosity 
and calculated at the measured temperature (𝑇, K) with the following empirical relationship 
(Janssen and Warmoeskerken, 1997): 

𝜇 = 0.001 𝑒𝑥𝑝(0.580 − 2.520 𝜃 + 0.909 𝜃2 − 0.264 𝜃3) ,

𝑤𝑖𝑡ℎ 𝜃 =
3.661 (𝑇 − 273.1)

273.1
 . 

(5.17) 

Although no chemical cleaning was performed in the pilot AnMBR during 2 years of 
operation, no irreversible fouling was observed. Therefore, the irreversible fouling resistance 

was neglected, and 𝑅t was calculated with the following RIS submodel: 

𝑅t = 𝑅m + 𝑅c , (5.18) 

where 𝑅m is the intrinsic resistance of the membrane and 𝑅c is the resistance of the cake 

layer. 𝑅c was the product between the mass of particulate material deposited per membrane 

area (𝜔X) and the SCR (𝛼c), as follows: 

𝑅c = 𝜔X𝛼c . (5.19) 

5.2.4.2 Alternate specific cake resistance (SCR) submodels 

Seven alternate SCR submodels were compared. In the first submodel, referred to as 𝛼c,1, the 

SCR was calculated with Equation (5.20) which combines the Carman-Kozeny equation for 
flow through a bed of spheres (Carman, 1997) with Darcy’s Law and the thickness of the cake 

layer as 𝛿𝑐 = 𝜔X (𝜌X(1 − 𝜀c))⁄ . 

𝛼c,1 =
𝑘CK (1 − 𝜀c)

𝜌X 𝑑𝑝
2 𝜀c

3
 , (5.20) 

where 𝑘CK is the proportionality Carman-Kozeny coefficient (which includes the shape 

factor), 𝜀c the cake layer porosity, 𝜌X the density of particulate material deposited onto the 

membrane, and 𝑑𝑝 the mean diameter of the deposited particles which was assumed equal to 

the mean diameter of the particles in the bulk liquid. The latter assumption neglects the 
selectivity towards the deposition of smaller particles, which has been previously described 
(Naessens, 2018). However, this assumption was regarded as sufficient in this first modelling 
approach to assess the necessity of incorporating floc size as a linking variable between 
biochemical‑flocculation and filtration models. The effect of the smaller particles deposited 
onto the membrane was accounted for by incorporating colloidal material as a state variable. 
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The colloidal material entrapped in the cake layer decreases the cake layer porosity (𝜀c) 
as follows (Wu et al., 2012): 

𝜀c = 𝜀c0 − (1 − 𝜀c0)
𝜔C 𝜌X
𝜌C 𝜔X

 , (5.21) 

 where 𝜌C and 𝜔C are the density and mass per unit of area of colloidal material deposited on 
the membrane, respectively.  

Several authors reported the compression of the cake layer caused by TMP, which might 
cause deformation of soft sludge flocs and structural rearrangement of particles (Boyle-Gotla 
et al., 2014; Bugge et al., 2012; Jørgensen et al., 2014; Robles et al., 2013b; Sørensen and 

Sørensen, 1997). Therefore, the SCR submodels 𝛼c,1𝑝 were defined as the extended versions 

of 𝛼c,1 that includes cake compression. The SCR of the compressed cake layer at the operating 

pressure (𝛼c,1𝑝) is calculated using the SCR at zero pressure (𝛼c,1), the pressure drop over the 

cake (∆𝑃c), and the pressure needed to double the specific resistance (𝑃𝑎), as follows:  

𝛼c,𝑝 = 𝛼c (1 +
∆𝑃c
𝑃𝑎
) . (5.22) 

By Darcy’s law ∆𝑃c = 𝐽𝜇𝜔X𝛼c,𝑝, and thus, combining Darcy’s law with Equation (5.22) 

the following equation was derived:  

𝛼c,1𝑝 =
𝛼c,1

(1 −
𝐽𝜇𝜔X𝛼c,1

P𝑎
)
 . 

(5.23) 

The SCR submodel 𝛼c,2, was the model proposed by Wu et al. (2012), presented in 

Equation (5.24), which does not include the dependency of 𝑑𝑝. Analogous to 𝛼c,1, 𝛼c,2 was 

extended into 𝛼c,2𝑝, as shown in Table 5.2. 

𝛼c,2 =
𝑘c (1 − 𝜀c)

2

𝜌X 𝜀c
3(1 − 𝜀c0)

 , (5.24) 

where 𝑘c is a cake resistant coefficient, and 𝜀c0 the cake layer porosity without colloidal 
material.  

Moreover, Cho et al. (2005) developed an empirical equation to calculate SCR based the 
concentration of extracellular polymeric substances, total suspended solids, and TMP. Several 
researchers had successfully applied this equation or slightly modified versions in aerobic 
MBRs (Mannina et al., 2011; Suh et al., 2013; Zarragoitia-González et al., 2008; Zuthi et al., 
2013). Furthermore, Mannina, Suh and collaborators (Mannina et al., 2011; Suh et al., 2013) 

modified Cho’s model to exclude the TMP dependency by using the TMP coefficient P𝑏. The 

following three SCR submodels based on Cho’s equation were included: 𝛼c,3, 𝛼c,3𝑝 and 𝛼c,4𝑝. 

The former, 𝛼c,3, corresponds to the equation presented by Mannina, Suh and collaborators, 

Equation (5.25); and 𝛼c,3𝑝 is the compressible version of 𝛼c,3, presented in Table 5.2. Then, 

𝛼c,4𝑝 is an adapted version of Cho’s original equation, where the ratio EPS/TSS was 
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substituted by 𝜔C/𝜔X, presented in Equation (5.26). The model 𝛼c,4𝑝 already includes cake 

compression because it is TMP dependent.  

 

𝛼c,3 =
P𝑏
𝜇2
(𝜁

1
+ 𝜁

2
(1 − exp (−𝜁

3

𝜔C
𝜔X
))

𝜁
4

) , (5.25) 

𝛼c,4𝑝 =
TMP

𝜇2
(𝜁

1
+ 𝜁

2
(1 − exp (−𝜁

3

𝜔C
𝜔X
))

𝜁
4

) ,  (5.26) 

where 𝜁1, 𝜁2, 𝜁3 and 𝜁4 are empirical coefficients. In 𝛼c,4𝑝 the SCR was calculated combining 

equations (5.16), (5.18), (5.19) and (5.26), as follows: 

𝛼c,4𝑝 = 𝑅m(
𝜇

𝐽 (𝜁
1
+ 𝜁

2
(1 − exp (−𝜁

3

𝜔C
𝜔X
))

𝜁
4

)
− 𝜔X)

−1

. (5.27) 

 

Table 5.2. Specific cake resistance (SCR, 𝛼c) submodels and the effects accounted for in each 
submodel. 

SCR 
submodel Equation 

Effects considered 

Colloidal 
material 

Particle 
size 

Compression, 
TMP 

𝛼c,1 
𝑘CK (1 − 𝜀c)

𝜌X 𝑑𝑝
2 𝜀c

3
 x x  

𝛼c,1𝑝 
𝛼c,1

(1 −
𝐽𝜇𝜔X𝛼c,1

P𝑎
)
 

x x x 

𝛼c,2 
𝑘c (1 − 𝜀c)

2

𝜌X𝜀c
3(1 − 𝜀c0)

 x   

𝛼c,2𝑝 
𝛼c,2

(1 −
𝐽𝜇𝜔X𝛼c,2

P𝑎
)
 

x  x 

𝛼c,3 
P𝑏
𝜇2
(𝜁

1
+ 𝜁

2
(1 − exp (−𝜁

3

𝜔C
𝜔X
))

𝜁
4

) x   

𝛼c,3𝑝 
𝛼c,3

(1 −
𝐽𝜇𝜔X𝛼c,3

P𝑎
)
 

x  x 

𝛼c,4𝑝 𝑅m(
𝜇

𝐽 (𝜁
1
+ 𝜁

2
(1 − exp (−𝜁

3

𝜔C
𝜔X
))

𝜁
4

)
− 𝜔X)

−1

 x  x 
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5.2.4.3 Alternate deposition submodels 

Two modelling approaches were compared to describe the cake layer formation by deposition 
of particulate material on the membrane surface. The first approach, further called 
“Deposition submodel 1 (D1)”, was developed by Robles et al. (2013) to describe the filtration 
process in a submerged AnMBR. The second approach, “Deposition submodel 2 (D2)”, was 
developed by Li and Wang (2006) and applied by different researchers in aerobic MBRs (Boyle-
Gotla et al., 2014; Mannina et al., 2011; Nam et al., 2021; Suh et al., 2013; Wu et al., 2012; 
Zarragoitia-González et al., 2008). The deposition of colloidal material in the cake layer was 
based on the approach of Wu et al. (2012). Table 5.3 shows the stoichiometric coefficients and 
the kinetic expressions for both deposition submodels, and the extensions for colloidal 
material deposition.  

Deposition submodel 1 (D1) includes two processes related to particulate material, 
Process 1 is the attachment of particulate material onto the membrane promoted by the flow 
of permeate and as a function of the concentration of particulate material in the bulk liquid 
(𝑐X), Equation (5.28). Process 2 is the detachment of particulate material promoted by the shear 
stress caused near the membrane surface by biogas sparging in the membrane tank, 
Equation (5.30). Robles et al. (2013) also included the particulate material detachment during 
back-flushing which was not included in the model since the pilot AnMBR did not operate 
with back-flush.  

Robles et al. (2013) modelled Process 2 (detachment of particulate material) as a 

half-saturation switching function, Equation (5.30), where 𝑞𝑚,MS is the maximum membrane 

scouring velocity and 𝐾𝑆,c the half-saturation coefficient for cake mass during membrane 
scouring. Furthermore, based on experimental observation, they included a sigmoid inhibition 

function (𝐼MS) to account for the impact of filtering at conditions above and below critical 

levels, Equation (5.36) in Table 5.4, where 𝐾𝐹 is an adjustable parameter representing the 

fouling rate when 𝐽20 approaches zero, and 𝛾0, 𝛾1 and 𝛾2 are parameters representing the 
influence of filtering capacity, biogas sparging and particulate material on the fouling rate, 
respectively.  

Different equations to calculate 𝐼MS were developed, summarised in Table 5.4, to be 
include in Deposition submodel D1. The submodel D1a is the original model by Robles et al. 
(2013), D1b is an extension to account for the influence of colloidal material with the 

parameter 𝛾3. D1c is a simplified submodel that eliminates the impact of filtering at conditions 

above and below critical levels (i.e., 𝐼MS = 1). 

Robles’ model was extended to incorporate the deposition of colloidal material in the 
membrane surface. Analogous to the attachment of particulate material, the attachment of 
colloidal material to the membrane (Process 3) was promoted by the permeate flow and the 
concentration of colloidal material in the bulk liquid (𝑐C), Equation (5.32). The detachment of 
colloidal material from the membrane (Process 4), Equation (5.34), was caused by the 
detachment of the particulate material weighed by the ratio of colloidal to total material 
deposited. 
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Deposition submodel 2 (D2) describes the attachment of particulate material (Process 1) 
based on two competing forces, namely the attraction drag from the permeate flow and lifting 
force caused by the shear stress near the membrane surface. The kinetic expression of Process 

1 is in Equation (5.29), where 𝐶𝑑 is the drag coefficient and 𝐺 the apparent shear rate. The 

detachment of particulate material, Process 2, was calculated with Equation (5.31), where 𝛾 is 

the compression coefficient, 𝑉F the volume of permeate produced within the filtration time 𝑡F 

with 𝑉F = 𝐽𝑡F, and 𝛽ST is a lumped parameter with 𝛽ST = 𝛽(1 − 𝐾ST) where  𝛽 is the erosion 

rate coefficient of the cake layer and 𝐾ST the stickiness coefficient. 

The apparent shear rate (𝐺) was calculated based on the gas superficial velocity (𝑢G), and 

the density (𝜌L) and dynamic viscosity (𝜇L) of the mixed liquor, as follows: 

𝐺 = √
𝜌L 𝑔 𝑢G
𝜇L

 . (5.39) 

The density 𝜌L was assumed equal to the density of water (𝜌W) at the operational 

temperature 𝑇 (K), The parameters of the quadratic function in Equation (5.40) were optimised 

to fit the 𝜌W versus 𝑇 data (Perry and Green, 2008), with a coefficient of determination (R2) 
of 0.9997.  

𝜌W = −0.0033 𝑇2 − 0.1048 𝑇 + 1001.5 . (5.40) 

The viscosity 𝜇L was a function of the concentration of solids in the bulk liquid (TSS) and 

the viscosity of water at 𝑇 (Equation (5.17)), as follows (Krauth and Staab, 1993): 

𝜇L = 𝑎 𝜇W 𝑒
𝑏 TSS , (5.41) 

where 𝑎 and 𝑏 are parameters, with 𝑎 = 1.05 and 𝑏 = 0.08.  

In Deposition submodel 2, the attachment and detachment of colloidal material to the 
membrane was modelled following Wu et al. (2012). The attachment (Process 3) was 

calculated with Equation (5.33), where 𝑓C,c is the fraction of colloidal material entrapped in 
the cake layer. The detachment (Process 4) was caused by detachment of the cake layer, 
calculated with Equation (5.35). 

Table 5.4. Sigmoid inhibition function (𝐼MS) equations for alternate deposition submodels (D1a, D1b 
and D1c).  

Deposition submodel 𝐼MS equation 

D1a 𝐼MS = (1 + 𝐹𝑅)
−1  with 𝐹𝑅 = 𝐾𝐹𝑒

𝐽20(𝛾0−𝛾1
𝑢G
𝐻MT

+𝛾2𝑐X) (5.36) 

D1b 𝐼MS = (1 + 𝐹𝑅)
−1  with 𝐹𝑅 = 𝐾𝐹𝑒

𝐽20(𝛾0−𝛾1
𝑢G
𝐻MT

+𝛾2𝑐X+𝛾3𝑐C) (5.37) 

D1c 𝐼MS = 1  (5.38) 
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5.2.5 AnMBR filtration: alternate empirical FR models  

The empirical FR models are algebraic equations to calculate FR directly from the operational 
variables and mixed liquor properties, summarised in Table 5.5. The first FR model, FR1, is 

the one proposed by Robles et al. (2013) for 𝐼MS calculation and extended for colloidal material, 
presented in Equation (5.37). This model was further modified into FR2 by eliminating the 

effect of 𝑐X because the concentration of particulate material is a poor indicator of biomass 
fouling propensity by itself (Judd and Judd, 2011).  

Based on the gas-step experiments in the pilot AnMBR described in Section A1, Appendix 

A, the FR was proportional to 𝑢G
−𝛾𝐺 , where 𝛾𝐺 is a parameter, this was incorporated in FR3. 

The conversion factor 𝑓conv was introduced to achieve similar FR values as the model FR2 as 

follows: 𝑓conv  = 𝑢G̅̅̅̅
𝛾𝐺 , where 𝑢G̅̅̅̅  is the mean gas velocity in the pilot AnMBR, 𝑢G̅̅̅̅  = 0.003 m s-1. 

As discussed in Chapter 4, it is not clear if the floc size influences membrane fouling. 
Therefore, FR models including and excluding mean particle size, 𝑑𝑝, as an input variable 

were compared. The empirical models FR1, FR2 and FR3 were extended into FR4, FR5 and FR6, 
respectively, that include 𝑑𝑝.  

5.2.6 AnDFCm filtration: alternate models 

The ∆𝑅20, which is inversely related with sludge filterability, is the additional resistance 

obtained when a specific permeate volume (𝑉F) of 20 L per m2 of membrane area is produced 

in the AnDFCm installation. The ∆𝑅20 was measured at 60 L m-2 h-1 (1.67×10-5 m3 m-2 s-1) flux 

(𝐽AnDFCm) and 1.5 m s-1 crossflow velocity (𝑢L,AnDFCm). At 60 L m-2 h-1 flux the final filtration 
time to obtain 20 L m-2 of permeate is 1,200 s. Therefore, the AnDFCm filtration models 

predicted ∆𝑅20 as 𝑅c after 1,200 s of continuous filtration under the operational conditions of 

the AnDFCm starting with a clean membrane, meaning the initial conditions are 𝑤C = 0 and 

𝑤X = 0, thereby initial 𝑅c = 0.  

Table 5.5. Alternate empirical FR models.  

FR model 𝐼MS equation 

1 𝐹𝑅 = 𝐾𝐹𝑒
𝐽20(𝛾0−𝛾1

𝑢G
𝐻MT

+𝛾2𝑐X+𝛾3𝑐C) (5.37) 

2 𝐹𝑅 = 𝐾𝐹𝑒
𝐽20(𝛾0−𝛾1

𝑢G
𝐻MT

+𝛾3𝑐C) (5.42) 

3 𝐹𝑅 = 𝑓conv 𝐾𝐹 𝑢G
−𝛾G𝑒𝐽20(𝛾0+𝛾3𝑐C) (5.43) 

4 𝐹𝑅 = 𝐾𝐹𝑒
𝐽20(𝛾0−𝛾1

𝑢G
𝐻MT

+𝛾2𝑐X+𝛾3𝑐C−𝛾4𝑑𝑝)
 (5.44) 

5 𝐹𝑅 = 𝐾𝐹𝑒
𝐽20(𝛾0−𝛾1

𝑢G
𝐻MT

+𝛾3𝑐C−𝛾4𝑑𝑝)
 (5.45) 

6 𝐹𝑅 = 𝑓conv 𝐾𝐹 𝑢G
−𝛾G𝑒𝐽20(𝛾0+𝛾3𝑐C−𝛾4𝑑𝑝) (5.46) 
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The cake layer resistance, 𝑅c, was calculated with Equation (5.19), and combining the 
alternate SCR submodels described in Section 5.2.4.2 and the alternate deposition submodels 
in Section 5.2.4.3, with the following modifications: 

• the gas superficial velocity in the AnMBR membrane tank (𝑢G) was replaced by the 
crossflow velocity in the AnDFCm membrane tube (𝑢L,AnDFCm=1.5 m s-1); 

• the transmembrane flux was 𝐽=𝐽AnDFCm (1.67×10-5 m3 m-2 s-1) and 𝐽20=𝐽AnDFCm 𝜇 𝜇20⁄ ; 

• there were no relaxation cycles (continuous filtration); 

• the parameters of the mixed liquor viscosity model, 𝑎 and 𝑏 in Equation (5.41), were 
estimated based on the viscosity measurement performed in the AnDFCm installation 
with sludge samples with different TSS, presented in Section A1, Appendix A; 

• the deposition submodels D1a and D1b were not used because they were equal to D1c for 
the AnDFCm installations; the superficial velocity in the AnDFCm installation 

(𝑢L,AnDFCm=1.5 m s-1) was three orders of magnitude higher than in the AnMBR 

(0.5×10-3 < 𝑢G < 5.7×10-3 m s-1), and thus 𝐼MS ≅ 1 in equations (5.36) and (5.37). 

The AnDFCm installation operates in continuous filtration mode and at fixed flux and 
crossflow velocity. Thus, in addition to D2 and D1c, a simplified deposition submodel was 
proposed, referred to as “Deposition submodel 3” (D3), as follows:  

𝜔X = 𝑓X,c 𝑉F 𝑐X , (5.47) 

𝜔C = 𝑓C,c 𝑉F 𝑐C , (5.48) 

where 𝑓X,c and 𝑓C,c are the fractions of particulate and colloidal materials deposited onto the 
membrane, respectively. These fractions represent the balance between the different forces 

acting over the particles. When 𝑓X,c and 𝑓C,c both equal one, all the material is deposited in 
the membrane, analogous to dead-end filtration. Deposition submodel 3 consisted of algebraic 
equations instead of ordinary differential equations (ODE), which simplified the resolution 
and computational cost considerably. The deposition submodels D1c, D2 and D3 were coupled 
with the 7 alternate SCR submodels in Table 5.2, obtaining 21 alternate AnDFCm models to 
compare. 

5.2.7 Model implementation and parameter values 

5.2.7.1 Biochemical-flocculation model 

The ODE of the biochemical-flocculation model was solved with the built-in ODE solver 
ode15s in Matlab® R2019b, using a time-step of 0.01 d (864 s). Most parameter values were 
taken from literature. Most parameter values were taken from literature, the values used for 
the non-adjustable parameters are described in Section A3, Appendix A.  

Disintegration and hydrolysis are the rate limiting steps in anaerobic digestion and have 
a high variability and sensitivity (Batstone et al., 2002). Thus, the biomass disintegration 

(𝑘dis,bio) and hydrolysis rate coefficients were included in the model calibration. To simplify 
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the calibration, a unique hydrolysis rate coefficient (𝑘hyd) was considered for all hydrolysis 

processes, which seems to be warranted considering the low loading rates applied to the pilot 
AnMBR (Guo et al., 2021). Previous research reported rate limiting values for primary sludge 
or blackwater ranging from 0.0096 to 4.5 d-1 (Batstone et al., 2002; Elmitwalli et al., 2006; Feng, 
2004; Wendland, 2008). Therefore, the range for global sensitivity analysis (GSA) was set from 

0.0096 to 4.5 for 𝑘hyd and 𝑘dis,bio, as shown in Table 5.6. The nominal value for 𝑘hyd was the 

value for disintegration in the ADM1 which is rate limiting compared to the proposed 
hydrolysis rates. For 𝑘dis,bio the nominal value was the limiting rate for biomass degradation 

and hydrolysis (Tugtas et al., 2006).  

The yield of product 𝑝 on substrate 𝑖 (𝑓𝑝,𝑖), except 𝑓𝑝,bio, were given the values suggested 

in the ADM1 (not shown). The yield of product 𝑝 on biomass (𝑓𝑝,bio) during biomass decay 

were assumed as follows: 0.104 carbohydrates, 0.664 protein, 0.032 lipids, 0.1 soluble inert and 

Table 5.6. Nominal values and range for global sensitivity analysis (GSA) of the adjustable parameters 
in the biochemical-flocculation model. 

Parameter Units Nominal value Lower bound Upper bound 

𝑖C,CXI,bio kgCOD kgCOD-1 0.10 0 1 

𝑖CI,CSInf kgCOD kgCOD-1 0.03 0 1 

𝑖Saa,SInf kgCOD kgCOD-1 0.18 0 1 

𝑖Sfa,SInf kgCOD kgCOD-1 0.20 0 1 

𝑖SI,SInf kgCOD kgCOD-1 0.15 0 1 

𝑖Ssu,SInf kgCOD kgCOD-1 0.10 0 1 

𝑖Svfa,SInf kgCOD kgCOD-1 0.37 0 1 

𝑖Xch,XInf kgCOD kgCOD-1 0.17 0 1 

𝑖XI,XInf kgCOD kgCOD-1 0.19 0 1 

𝑖Xli,XInf kgCOD kgCOD-1 0.42 0 1 

𝑖Xpr,XInf kgCOD kgCOD-1 0.22 0 1 

𝑘ads d-1 48 16 144 

𝑘dis,bio d-1 0.15 0.0096 4.5 

𝑘floc d-1 0.02 0.01 0.05 

𝑘floc,fe m kgCOD-1 m3 4.2×10-4 1.6×10-5 1.0×10-3 

𝑘hyd d-1 0.50 0.0096 4.5 

𝐾𝐿,ads m3 kg-1 7.6 2 1960 

𝑞𝑚,ads kgCOD kg-1 0.45 0.032 0.45 

𝑌fe,C kg kg-1 363 0.3 815 
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0.1 suspended inert (Tugtas et al., 2006). The suspended inert material was composed of 
particulate and colloidal material individually calculate as follow:  

𝑓CI,bio = 𝑖C,CXI,bio(1 − 𝑓SI,bio − 𝑓Xch,bio − 𝑓Xpr,bio − 𝑓Xli,bio) , (5.49) 

𝑓XI,bio = (1 − 𝑖C,CXI,bio)(1 − 𝑓SI,bio − 𝑓Xch,bio − 𝑓Xpr,bio − 𝑓Xli,bio) , (5.50) 

where 𝑖C,CXI,bio is the colloidal fraction of the biomass suspended inert material, which was 
an adjustable parameter between 0 and 1, with an initial estimation of 0.1, that is: 10% of the 
suspended inter material release during biomass decay is colloidal and 90% is particulate. 

The exact composition of the blackwater that was used as influent in the 
biochemical-flocculation model was unknown. Therefore, the composition was estimated 
based on the blackwater characterisation in Table A2, literature values and adjustable 

parameters. The total concentration of soluble (𝑐S,Inf), colloidal (𝑐C,Inf) and particulate (𝑐X,Inf) 

materials in the influent were calculated as follows:  

𝑐S,Inf = csCODBW(1 − 𝑖C,CSInf) , (5.51) 

𝑐C,Inf = csCODBW 𝑖C,CSInf , (5.52) 

𝑐X,Inf = csCODBW − tCODBW , (5.53) 

where 𝑖C,CSInf is the content of colloidal material in the submicron material of the influent, 

which was an adjustable parameter between 0 and 1. The concentrations of hydrogen, 
methane, FE and biomass were assumed negligible in the influent. The concentration of each 

component 𝑖 in the influent (𝑐𝑖,Inf,) was calculated as follows: 

𝑐𝑖,Inf =

{
 
 
 

 
 
 
𝑖𝑖,SInf 𝑐S,Inf        , 𝑖 ∈ [1,2,3,4,5,6,7,12]

𝑖𝑖,XInf 𝑐X,Inf        , 𝑖 ∈ [14,15,16,24]

𝑐C,Inf                 , 𝑖 = 25

AlkBW
50.044
⁄ , 𝑖 = 10

NH4BW              , 𝑖 = 11

0                       , 𝑖 ∈ [8,9,13,26]
0                       , 17 ≤ 𝑖 ≤ 23 (biomass)

 , (5.54) 

where 𝑖𝑖,SInf and 𝑖𝑖,XInf are the content of component 𝑖 in the soluble and particulate fractions 
of the influent, respectively. The particulate fraction was composed of carbohydrates 

(𝑖Xch,XInf), proteins (𝑖Xpr,XInf), lipids (𝑖Xli,XInf) and interts (𝑖XI,XInf). The soluble fraction was 

composed of volatile fatty acids (VFA) (𝑖Svfa,SInf), monosaccharides (𝑖Ssu,SInf), amino acids 

(𝑖Saa,SInf), long chain fatty acids (𝑖Sfa,SInf) and interts (𝑖SI,SInf). These parameters were 
optimised during model calibration, the initial values were taken from literature (Gorini et al., 
2011; Wendland, 2008) and the range for GSA was set between 0 and 1. To reduce the amount 
of adjustable parameters, the total VFA content in the soluble material of the influent 

(𝑖Svfa,SInf) was optimised instead of the four individual acids in the model. The content of the 
individual VFA was as follows:  
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𝑖𝑖,SInf = 𝑖Svfa,SInf 𝑖𝑖,Svfa , (5.55) 

where 𝑖𝑖,Svfa is fraction of component 𝑖 in the total VFA fraction; 𝑖𝑖,Svfa was 0.05, 0.08, 0.24, 

0.63 for acetic, propionic, butyric and valeric acid, respectively (Wendland, 2008). For mass 
conservation ∑ 𝑖𝑖,XInf𝑖 = 1 and ∑ 𝑖𝑖,SInf𝑖 = 1, therefore, the model included the following 

equation to avoid values higher than 1 during model calibration: 

𝑖𝑖,XInf =
𝑖𝑖,XInf
∑ 𝑖𝑖,XInf𝑖

 , (5.56) 

𝑖𝑖,SInf =
𝑖𝑖,SInf
∑ 𝑖𝑖,SInf𝑖

 . (5.57) 

The flocculation related parameters were all adjustable parameters because they were 
first introduced in this research. The nominal values and ranges used for GSA are summarised 
in Table 5.6. As explained in Chapter 2, the nominal values and range for the Langmuir 
adsorption parameters, 𝑞𝑚,ads and 𝐾𝐿,ads, were based on previously reported values for the 

adsorption of polydiallyldimethylammonium chloride (polyDADMAC) onto different 
adsorbents (Horvath et al., 2006; Hubbe et al., 2011; Zhao et al., 2016). 

The nominal value of the empirical flocculation coefficient (𝑘floc) was the inverse of the 

50 days needed for 𝑑𝑝 to return to 𝑑𝑝,St in the pilot AnMBR after being spiked with FE. The 

range was the inverse of the period when 𝑑𝑝 approximates to 𝑑𝑝,St after the spike, which was 

between 20 and 100 days. The FE adsorption rate coefficient (𝑘ads) was estimated with the 
batch flocculation kinetic experiments described in Section A1, Appendix A.  

The yield of inert colloidal material flocculated per unit of FE adsorbed onto the 

particulate material (𝑌fe,C) and the FE induced flocculation coefficient (𝑘floc,fe) were calculated 
based on the FE dosage-step experiments described in Section 5.2.1.4 as follows: 

𝑌fe,C =
csCOD − csCOD0

𝑐fe
 
TSS

csCOD
 , (5.58) 

𝑘floc,fe =
𝑑𝑝 − 𝑑𝑝0
𝑐fe

 , (5.59) 

where csCOD0 and 𝑑𝑝0 are the csCOD and 𝑑𝑝 without FE (at the beginning of the experiment), 

respectively. 𝑌fe,C and 𝑘floc,fe were calculated for each test and at each FE dosage; the mean, 
minimum and maximum values were used as nominal, lower and upper bounds, respectively.  

5.2.7.2 AnMBR and AnDFCm filtration models 

The ODE of the deposition submodels was solved using ode45 in Matlab® R2019b to obtain 

𝜔C and 𝜔X as a function of time. The time-step was set sufficiently low, 10 s, to capture the 
operational stages (filtration and relaxation) in the pilot AnMBR and avoid numerical 
problems. Subsequently, the SCR was calculated applying the equations in Table 5.2.  
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Table 5.7. Nominal values of the adjustable parameters in the AnMBR and AnDFCm filtration models.  

Parameter Units Values Reference 

Deposition parameters  

𝐶𝑑 - 0.40 (Wu et al., 2012) 

𝑓C,c - 0.25 (Wu et al., 2012) 

𝑓X,c - 0.25 This research a 

𝐾𝐹 Pa s-1 5.6×10-4 (Robles et al., 2013b) 

𝐾𝑆,c kg 0.2 (Robles et al., 2013b) 

𝑞𝑚,MS  - 4.71  (Robles et al., 2014b) 

𝛽ST - 1.75×10-4 (Li and Wang, 2006) 

𝛾 kg m-3 2.0×10-5 (Li and Wang, 2006) 

𝛾0 s m-1 2.81×106 (Robles et al., 2013b) 

𝛾1 s2 m-1 2.48×108 (Robles et al., 2013b) 

𝛾2 s m-2 kg-1 5.1×104 (Robles et al., 2013b) 

𝛾3 s m-2 kg-1 1.28×106 This research b  

𝛾4 s m-2 1.75×1010 This research b  

𝛾𝐺 -  2.15 This research c  

Specific cake resistance parameters 

𝑘𝑐 m-2 1.0×1017 (Li and Wang, 2006) 

𝑘CK - 4.0×107 This research d 

𝑃a Pa  2.01×104  (Robles et al., 2014b) 

𝑃b Pa 4179.9 (Mannina et al., 2011) 

𝜀c0  - 0.66  (Wu et al., 2012) 

𝜁1 - 1.16×103 (Zarragoitia-González et al., 2008) 

𝜁2 - 1.36×104 (Zarragoitia-González et al., 2008) 

𝜁3 - 172.4 (Zarragoitia-González et al., 2008) 

𝜁4 - 150.9 (Zarragoitia-González et al., 2008) 

𝜌C kg m-3 4.98×103 (Wu et al., 2012) 

𝜌X kg m-3 1.24×103 (Wu et al., 2012) 

a Assumed equal to 𝑓C,c. 
b Estimated to achieve similar weights to particulate matter on 𝐹𝑅 as follow: 𝛾3=𝛾2 𝑐X̅ 𝑐C̅⁄  and 
𝛾4=𝛾2 𝑐X̅ 𝑑𝑝̅̅ ̅⁄ , where 𝑐X̅, 𝑐C̅ and 𝑑𝑝̅̅ ̅ are the mean values in the pilot AnMBR for particulate material,  
colloidal material and floc size, respectively. 

c Calculated with the experimental representative data iD6 and iD7 from the pilot AnMBR as follows: 
𝛾𝐺 = −(log(𝐹𝑅̅̅ ̅̅ |iD6) − log(𝐹𝑅̅̅ ̅̅ |iD7)) (log(𝑢G̅̅̅̅ |iD6) − log(𝑢G̅̅̅̅ |iD7))⁄ , where 𝐹𝑅̅̅ ̅̅ |iD6 and 𝐹𝑅̅̅ ̅̅ |iD7 are 
the mean fouling rate and 𝑢G̅̅̅̅ |iD6 and 𝑢G̅̅̅̅ |iD7 the mean superficial gas velocity in the datasets iD6 
and iD7, respectively. 

d Estimated to obtain 𝛼𝑐,1 ≈ 𝛼𝑐,2 as follows: 𝑘CK=𝑘𝑐𝑑𝑝
 2, assuming floc size of 2×10-5 m. 
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The intrinsic resistance of the membrane in the AnDFCm installation was 5×1011 m-1 
which was the resistance when filtering water after performing chemical cleaning. This value 
was assumed as the 𝑅m for both the AnMBR and the AnDFCm. 

The nominal values for the adjustable parameters in the filtration models are summarised 
in Table 5.7. Most parameters were taken from literature, and 𝐾𝑆,G, 𝛾3, and 𝑘CK were estimated 

based on experimental data and different assumptions. 

5.2.8 Model calibration and validation 

5.2.8.1 General calibration procedure 

The biochemical-flocculation model, the 34 alternate AnMBR filtration models and the 21 
alternate AnDFCm filtration models were calibrated separately. The calibration procedure 

was as follows: first, the subset containing only influential parameters (𝜃𝐼) was selected using 
global sensitivity analysis (GSA). The GSA was based on linear regression models built from 
Monte Carlo simulations using Latin hypercube sampling with N = 500, where N was selected 
by convergence analysis (Section A4, Appendix A). The input uncertainty was uniform. In the 
filtration modes, the variability was set to 20% around the initial or nominal parameter vector 

(𝜃°), this is 𝜃~𝑈(0.8𝜃°, 1.2𝜃°). In the biochemical-flocculation model the upper and lower 
limits for GSA were selected from literature or proposed based on experimental observations, 
as presented in Section 5.2.7.1.  

The standardised regression coefficients (SRC, 𝛽𝑘) for each parameter 𝑘 were computed 

using the objective function (𝑓objective) in Equation (5.60) as output. When 𝑅2 ≥ 0.7, 

influential parameters with |𝛽𝑘| ≥ 0.1 (Sin and Gernaey, 2016) were selected.  

𝑓objective = √∑ 𝑤𝑗
∑ (𝑦𝑒,𝑗,𝑖 − 𝑦𝑚,𝑗,𝑖)

2
𝑖

𝑛𝑗𝑗
 , (5.60) 

where 𝑤𝑗 is the weight, 𝑦𝑒,𝑗,𝑖 the i-th experimental value, 𝑦𝑚,𝑗,𝑖 the i-th predicted value, and 

𝑛𝑗  the number of experimental observations of the output variable 𝑗. For a unique output 

variable, 𝑤𝑗 = 1 and the objective function becomes the root-mean-square error (RMSE). For 

multiple output variables, 𝑓objective was calculated using normalised values by defining 𝑤𝑗 as 

the inverse of the mean experimental value as follows: 𝑤𝑗 = (∑ 𝑦𝑒,𝑗,𝑖𝑖 𝑛𝑗⁄ )
−1

. 

Alternatively, if 𝑅2 < 0.7, individual 𝛽𝑘(𝑡) were computed using the predicted values 

𝑦(𝑡) as model output for each operational time; then calculated the mean 𝛽𝑘̅̅ ̅ using the 𝛽𝑘(𝑡) 

values when 𝑅2 ≥ 0.7; then selected the influential parameters with |𝛽𝑘̅̅ ̅| ≥ 0.1. 

Subsequently, the parameters in 𝜃𝐼 were estimated using the nominal parameter values 

as initial guess (𝜃°), and by minimising 𝑓objective. Initially, an identifiability analysis from 𝜃𝐼 

was used to select a new subset 𝜃𝐼𝐼  that can be reliably estimated from the given experimental 

data; and the parameters in 𝜃𝐼𝐼 were estimated. Then, 𝜃𝐼𝐼𝐼 was defined with the parameters 

contained in 𝜃𝐼 and not in 𝜃𝐼𝐼, and the parameters in 𝜃𝐼𝐼𝐼 were estimated. The quality of the 
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estimators 𝜃 was evaluated based on the relative error (𝜎𝜃 𝜃⁄ ) as follows: below 0.1 good, 
above 0.5 poor (Sin and Gernaey, 2016), and between 0.1 and 0.5 moderate.   

The identifiability analysis was performed by computing the collinearity index of the 
parameter subset k (𝛾𝑘) (Sin and Gernaey, 2016). The parameter subset with 𝛾𝑘 below 10 
which contained the most influential parameter and had the highest number of parameters 
was selected. 

5.2.8.2 Biochemical-flocculation model  

The adjustable parameters of the biochemical-flocculation model are summarised in Table 5.6. 
Initially, the parameters related to the flocculation kinetic process in the 

biochemical-flocculation model, namely the subset 𝜃 = {𝑞𝑚,ads, 𝐾𝐿,ads, 𝑘ads, 𝑌fe,C, 𝑘floc,fe}, 

were optimised with the csCOD and 𝑑𝑝 measured in the dosage-step experiments described 

in Section 5.2.1.4. Calibration was done by using the samples from the reactor fed with 
blackwater, and validation with the remaining samples. 

Subsequently, the remaining parameters in the biochemical-flocculation model were 

optimised using the long-term measurements of cCOD, TSS and 𝑑𝑝 in the pilot AnMBR 

described in Section 5.2.1.3. The following experimentally measured variables were model 

inputs: 𝑄P, 𝑄WS, 𝑉L, 𝑇, 𝑝G, pH, �̇�fe, and blackwater characteristics (AlkBW, NH4BW, tCODBW, 
and csCODBW). The blackwater characteristics varied throughout the day and during the 
operation of the pilot, further explained in Chapter 4. The mean values, presented in Table 
A2, were used as model inputs for model implementation. The same dataset was used for 
calibration and validation of the long-term prediction, and thus the biochemical-flocculation 
model requires further validation with an independent dataset from a different operational 
period of the pilot or from another AnMBR.  

5.2.8.3 AnMBR filtration model  

The AnMBR filtration model was calibrated and validated using fouling rate data from the 
pilot AnMBR described in Section 5.2.1.3. The initial parameter subset is summarised in Table 

5.7. The following experimentally measured variables were model inputs: 𝐽, 𝑢G, 𝑇, 𝑐C, 𝑐X, and 

𝑑𝑝.  

The model was calibrated using eight datasets from the operation of the pilot AnMBR, 
shown in Figure A1 and Figure A2, whereby each dataset covered an 8-hour period. These 8 
calibration datasets were selected to capture changes in the following operational conditions: 
gas sparging, mean particle size, and concentration of colloidal and particulate material. The 
model was validated by predicting the entire operational period of the pilot. However, the 
validation should be improved by applying the model to a different operational period of the 
pilot or to another AnMBR, but this data was not available during this research. 
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5.2.8.4 AnDFCm filtration model  

The AnDFCm model was calibrated using in-situ ∆𝑅20 measurement in the pilot AnMBR 

immediately after FE dosing and ex-situ ∆𝑅20 measurement during the dosage-step tests BWa 
and BWb in Table A3 performed with grab samples from the pilot AnMBR. The model was 

validated using long-term in-situ measurements of ∆𝑅20 measured in the pilot AnMBR. The 
initial parameter subset is shown in Table 5.7. The following experimentally measured 

variables were model inputs: 𝑢L,AnDFCm, 𝐽AnDFCm, 𝑇, 𝑐C, 𝑐X, and 𝑑𝑝. 

5.2.9 Control tools for flux enhancer dosage 

Several feedforward and feedback control tools to manipulate the FE mass flow rate fed to the 
reactor (�̇�fe) were proposed and compared, as summarised in Table 5.8. The control tool 

FB_∆𝑅20_10 is a feedback loop to control ∆𝑅20 to a target setpoint (∆𝑅20,sp); ∆𝑅20,sp of 

10×1012 m-1 is an intermediate value between the pilot operation before and immediately after 

FE dosing (Figure A3). The control tool FB_∆𝑅20_8-12 is similar to the latter, but ∆𝑅20 is 

maintained inside a target range instead of to a specific value. FB_∆𝑅20_8-12 starts dosing FE 

(on) when ∆𝑅20 is above 12×1012 m-1 and stops (off) when ∆𝑅20 is below 8×1012 m-1, thereby 

causing periodic FE pulses instead of a continuous dosage (as in FB_∆𝑅20_10).   

The feedforward control tool FF_𝑄WS is analogous to the mostly applied FE dosing 

strategy reported in literature, that is: an initial FE pulse dosage that is followed by periodic 
additions to compensate for the loss of FE with sludge withdrawal and biodegradation 
(Chapter 4), with the objective to maintain a certain concentration of FE inside the reactor. 
The FE is not biodegradable in the proposed model, therefore, FF_𝑄WS does not compensate 

for FE loss by biodegradation. Furthermore, an alternative dosing strategy used in literature 
is a step of FE on the influent (Dong et al., 2015, 2018), which was implemented in the control 
tool FF_𝑄Inf.  

The simulation without FE dosing, No_FE, was included to assess the improvement 

achieved when FE is added to the reactor by the control tools. Moreover, the feedback 𝑐fe 

control tool FB_𝑐fe was included to compare with FF_𝑄WS and FF_𝑄Inf, whose controlled 

variable is also 𝑐fe. Nevertheless, to apply FB_𝑐fe in practice a method to measure 𝑐fe should 
be developed. 

The feedback control tools were manually tuned to achieve a slow response (low �̇�fe) to 

avoid overdosing. The FE concentration setpoint (𝑐fe,sp) was 8.7×10-3 kgCOD m-3, which is 

equal to the concentration needed to achieve a ∆𝑅20 of 10×1012 m-1 at the beginning of the 

simulated operational period. For FF_𝑄Inf, the ratio of FE to influent flow (𝑌fe,Inf) was 
7.23×10-4 kgCOD m-3, calculated as the ratio between the cumulative masses of FE and 

influent fed to the reactor during the first 100-day period simulated with FB_∆𝑅20_10.  

The control tools were implemented and tested in Simulink, Matlab® 2019b, by using the 
integrated model composed by the calibrated biochemical-flocculation model, and the best 
alternates of the calibrated AnMBR and AnDFCm filtration models. The implementation 
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included a feedback TSS controller which manipulated 𝑄WS to sustain the TSS at a fixed 

setpoint (TSSsp). A constant mixed liquor volume was assumed, whereby 𝑄Inf was calculated 

with the mass balance in Equation (A.5) with ∆𝑉L=0; and 𝑄fe=�̇�fe 𝑐fe,stock⁄ , where 𝑐fe,stock is 

the concentration of the stock solution fed to the reactor (30 kgCOD m-3). 

The model inputs 𝑇, pH, 𝐽20, NH4BW, AlkBW, and 𝑢G were assumed constant and equal to 
the mean values in the pilot AnMBR (Table A1 and Table A2). The total and submicron 
blackwater COD fluctuated inside the range of the pilot; the input shown in Figure A7 was 
generated with the “uniform random number” block from Simulink, with the minimum and 
maximum values from Table A2, seed of 30 days (the pattern is repeated every 30 days) and 
sample time of 12 min (changes every 12 minutes). 

The fraction of component in the waste sludge, 𝑓𝑖,WS, were estimated based on the sludge 
withdrawal made on day 123, where 31% of the mixed liquor volume was removed causing a 

62% decrease in TSS and 7% decrease in csCOD. Therefore, 𝑓𝑖,WS was assumed as 2.0 for all 

particulate material (𝑓X,WS), and 0.22 for colloidal material (𝑓C,WS).  

Table 5.8. Control tools to manipulate the mass flow rate of flux enhancer (�̇�fe) to an AnMBR. 

Reference Type of control Measured 
variable 

Controlled 
variable �̇�fe calculation 

FB_∆𝑅20_10 
Feedback, 

proportional ∆𝑅20 ∆𝑅20 1.6×10-7(∆𝑅20 − ∆𝑅20,sp) 

FB_∆𝑅20_8-12 Feedback, on-off ∆𝑅20 ∆𝑅20 5×10-6 

FB_𝑐fe 
Feedback, 

proportional 𝑐fe  𝑐fe 1×10-3 (𝑐fe,sp − 𝑐fe) 

FF_𝑄WS 
Feedforward, pulse + 

proportional a 𝑄WS 𝑐fe 𝑄WS 𝑓Xfe,WS 𝑐fe,sp 

FF_𝑄Inf 
Feedforward, 
proportional 𝑄Inf 𝑐fe 𝑌fe,Inf 𝑄Inf 

No_FE No control NA NA 0 
a Initial pulse dosage to achieve the setpoint 𝑐fe,sp followed by continuous additions to compensate 

for the loss of flux enhancer with sludge withdrawal. 

 
Figure 5.3. Applied disturbances to test the robustness of the control tools: (A) total suspended solids 
setpoint, and (B) fraction of colloidal material in the waste sludge. 



MODELLING AND CONTROL OF ANMBR DOSED WITH FLUX ENHANCER | 127 

 

Furthermore, the robustness of the control tools was tested by applying step disturbances 

in TSSsp and 𝑓C,WS, displayed in Figure 5.3. The TSSsp were 9.6, 5.5 and 16.0 kg m-3 

corresponding to the mean, minimum and maximum TSS in the pilot. The initial 𝑓C,WS was 

0.22 and increased to 1 on day 300, owing to a better mix before wastage. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Experimental data 

The experimental results of the pilot AnMBR and batch tests are summarised in Section A1, 
Appendix A. 

5.3.2 Biochemical-flocculation model 

5.3.2.1 Calibration of fast processes 

The influential parameters, selected with GSA, in the subset 𝜃 =

{𝑞𝑚,ads, 𝐾𝐿,ads, 𝑘ads, 𝑌fe,C, 𝑘floc,fe} were estimated to fit the experimental csCOD and 𝑑𝑝 

measured in the dosage-step experiments using sludge samples from a reactor fed with 
blackwater.  

The linear models built using 𝑓objective had 𝑅2 of 0.63 and 0.06 for the variables csCOD 

and 𝑑𝑝, respectively; and 𝑅2 was 0.52 when both csCOD and 𝑑𝑝 were used together in 

𝑓objective. Consequently, because 𝑅2 were below 0.7, these models built with 𝑓objective were 

not used for sensitivity evaluation. Instead, as described in Section 5.2.8, the sensitivity was 

evaluated with the mean SRC (𝛽𝑘̅̅ ̅) of the linear models that had 𝑅2 > 0.7, the models were 

built with the predicted csCOD or 𝑑𝑝 at each operational time instant. The mean 𝑅2 were 0.90 

and 0.98 for csCOD and 𝑑𝑝, respectively. Results in Table A10 show that 𝑌fe,C was the only 

  
Figure 5.4. Short-term biochemical-flocculation model calibration. Sludge characteristics during flux 
enhancer dosage-step test with sludge samples from a pilot AnMBR fed with blackwater: 
(A) submicron COD, and (B) mean geometric particle diameter. 
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influential parameter (with |𝛽𝑘̅̅ ̅| ≥ 0.1) on csCOD, and 𝑘floc,fe on 𝑑𝑝. Therefore, the 

parameters were estimated separately for each output variable as follows: 𝑘floc,fe was 

estimated to fit the experimental 𝑑𝑝, and 𝑌fe,C to fit the experimental csCOD.  

Results in Table A10 show that the optimal values (�̂�) had good quality because the 

relative error, 𝜎𝜃 𝜃⁄ , was below 0.1 (Sin and Gernaey, 2016). Figure 5.4 compares the 
experimental observations with the simulated values for the calibrated parameters. The model 
satisfactorily predicted the csCOD in the batch tests; however, the model overestimated or 
underestimated the floc size for a considerable number of observations. Therefore, the model 
in Equation (5.15) could be further developed to improve the prediction of floc size changes 
caused by FE dosing.  

5.3.2.2 Calibration of slow processes 

Table A11 summarises the SRC of the linear models built using 𝑓objective with different output 

variables. The linear model with TSS had an 𝑅2 below 0.7, and thus the sensitivity on TSS 

was evaluated with the 𝛽𝑘̅̅ ̅ of the linear models that had 𝑅2 > 0.7, results in Table A11.  

Based on the GSA results, 𝑘floc was estimated with 𝑑𝑝 as a unique output variable because 

𝑘floc was the only influential parameter on 𝑑𝑝 and had a negligible influence on TSS and 

cCOD. Then, 𝑖CI,CSInf and 𝑖Xli,XInf were estimated with cCOD and TSS as output variables 

because they were the only influential parameter on cCOD and the most influential 

parameters on TSS. The subset {𝑖Xch,XInf, 𝑖Xli,XInf, 𝑖Xpr,XInf} was also influential on TSS, 

however, the model did not improve further by optimising this subset with TSS as output 
variable, the optimal values were almost identical to the initial guess, thus, the initial 

(nominal) values were used for 𝑖Xch,XInf, 𝑖Xli,XInf and 𝑖Xpr,XInf. Table A12 summarises the 

estimated parameters. The parameters 𝑖CI,CSInf and 𝑖Xli,XInf had good quality, whereas 𝑘floc 
had medium quality.  

Figure 5.5 shows the experimental data and model predictions with the estimated 

parameters. The model predicted a sharp cCOD decrease and 𝑑𝑝 increase caused by FE dosing 

on day 16. Then cCOD slowly increased over time due to the accumulation of colloidal inerts 
coming from the influent, decayed biomass, and deflocculation. The latter was caused by the 

loss of unbonded FE (𝑆fe) with the permeate flow that lowered the equilibrium concentration 

𝑋fe,𝑒 causing desorption of FE from the particulate material (i.e., 𝜌23 < 0), displayed in Figure 

A8B,  and concomitantly deflocculation (i.e., 𝜌24 < 0).  

The predicted 𝑑𝑝 decrease, after the sharp increase on day 16, was overpronounced 

compared to the experimental observations. To improve the prediction capacity, Equation 
(5.15) was substituted with the modified Equation (5.61):  

𝑑𝑑𝑝
𝑑𝑡

=
1

𝑡conv
(𝑘floc,fe

𝑑𝑋fe
𝑑𝑡

+ (𝑌floc,fe (
𝑐fe

𝑐X + 𝑐C
)𝑑𝑝,St − 𝑑𝑝) 𝑘floc) , (5.61) 
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where the stable mean particle size was proportional to the ratio between 𝑐fe and the total 

concentration of suspended material (𝑐X+𝑐C) inside the reactor, with a proportionality 

parameter 𝑌floc,fe.  

The parameters 𝑘floc and 𝑌floc,fe were optimised to fit the experimental floc size; the 

optimal values for 𝑘floc and 𝑌floc,fe were 0.34 d-1 and 46.9 kg kgCOD-1 with 𝜎𝜃 𝜃⁄  of 0.28 and 
0.35, respectively. Figure 5.5A shows that the modified model in Equation (5.61) adjusted 
better to the experimental values than the original model in Equation (5.15). 

The model predicted a continuous TSS increase, shown in Figure 5.5A, caused by the 
accumulation of inert material (Figure A8B) coming from the influent and decaying biomass 
because the reactor was operated without sludge wastage. Because the model considered 
constant influent composition, the fluctuations in TSS were caused by fluctuations of the 
influent flow rate and of the temperature and pH of the mixed liquor (which affect the 
conversion rates). However, in the pilot AnMBR the fluctuations in the solids content was 
affected by variations in the blackwater composition, which was highly variable throughout 

      
Figure 5.5. Long-term biochemical-flocculation model calibration. Sludge characteristics during 
operational period of pilot AnMBR plant dosed with flux enhancer on day 16: (A) mean particle 
diameter, (B) total suspended solids, and (C) colloidal COD.  
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the operational period (Chapter 4). Therefore, the predicted TSS deviated from the 
experimental values likely due to the lack of an exact characterisation of the influent. 
Additionally, the applied physicochemical characterization was not sufficient to detect all the 
fluctuations in the exact blackwater composition. Therefore, a more comprehensive and 
frequent blackwater characterization using flow-proportional sampling should be done to 
predict the exact TSS dynamics.  

5.3.2.3 Interaction of flux enhancer with soluble microbial products 

The sample LiqOFMSW had a substantially high concentration of humic substances (HS), 
5.16 g L-1 (Table A3). Humic substances have negatively charged carboxylic and phenolic 
groups that bind to cationic polymers (Bratby, 2016). Particularly, polyDADMAC, which is 
the chemical compound in Adifloc KD451, has been used for titration of HS due to their high 
interaction (Ishiguro et al., 2007; Kam and Gregory, 2001; Tan et al., 2011). Therefore, the 
biochemical-flocculation model described in Section 5.2.3, which did not include FE-HS 
binding, was extended to include the interaction between FE and HS. The FE-HS binding was 
implemented as a linear model (Chianese et al., 2020) and assuming equilibrium conditions, 
meaning that the adsorption of FE onto HS was assumed considerably faster than the 

adsorption of FE onto particulate material. The concentration of FE bonded to HS (𝑐fe,hs) was 

calculated with Equation (5.62), where 𝐾𝑒𝑞,fe,hs is the equilibrium coefficient and 𝑆hs the 

concentration of HS. The mass balance of FE in Equation (5.63) substituted Equation (5.11). 

𝑐fe,hs = 
𝐾𝑒𝑞,fe,hs 𝑆hs 𝑆fe

𝐾𝑒𝑞,fe,hs 𝑆hs + 1 
 , (5.62) 

𝑆fe,𝑒 = 𝑐fe − 𝑋fe,𝑒 − 𝑐fe,hs . (5.63) 

The equilibrium coefficient, 𝐾𝑒𝑞,fe,hs, was optimised to fit the experimental csCOD and 

𝑑𝑝 measured in the dosage-step experiments using the samples from the reactor fed with 

blackwater and LiqOFMSW.  

A similar approach could be followed for the interaction of the FE with carbohydrates 
and proteins. The overall charge of proteins is negative when the pH is above their isoelectric 
point (pI); and carbohydrates are negatively charged when they contain carboxylic groups or 
sulphuric ester groups. To incorporate the interaction of the FE with humic substances, 
proteins or carbohydrates the overall charge of these components should be measured, for 
example by titration, but this was outside the scope of this research. In Chapter 2, a strong 
correlation was found between the SMP-CH and the optimal FE dosage needed for filterability 
improvement. Thus, the model was further extended to incorporate FE-CH binding, with the 

equilibrium coefficient 𝐾𝑒𝑞,fe,ch and using the same modelling and calibration approach as for 

FE-HS binding.  

Figure 5.6 and Figure 5.7 compare the experimental csCOD and 𝑑𝑝 with the predicted 

values of models including and excluding FE binding to HS and CH. The predicted csCOD 

and 𝑑𝑝 in LiqOFMSW with the models without FE binding (onto HS, CH and proteins) and 
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including only FE-CH binding greatly deviated from the experimental data, whereas the 
predictions with both models including FE-HS binding approximated the experimental data. 
Therefore, the models suggest that limited flocculation observed in LiqOFMSW was likely 
caused by the interaction of the FE with the humic substances in the sample. Furthermore, 
the models including only FE-HS deviated more in the remaining samples than the model that 
included both FE-CH and FE-HS binding. This suggested that the interaction between FE and 
carbohydrates might also limit flocculation. 

The samples Food3 and Food3-II were collected from a reactor fed with whey and 
wash-water. Alpha-lactoglobulin (pI=4.2) and beta-lactoglobulin (pI=5.2) are the two major 

 

 
Figure 5.6. Experimental and simulated submicron COD during flux enhancer dosage-step test with 
sludge samples from different sources. Comparison of predictions with models including and 
excluding the interaction of the flux enhancer (FE) with soluble humic substances (HS) and 
carbohydrates (CH). 
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whey proteins, which at the pH of the samples (pH=7.2) have an overall negative charge. 
Thus, in Food3 and Food3-II the overpredicted flocculation (Figure 5.6F,G and Figure 5.7F,G) 
could be caused by the limited availability of FE for colloidal flocculation due to its interaction 
with the negatively charged proteins in the samples. 

 

 

 

 

 
Figure 5.7. Experimental and simulated mean particle diameter during flux enhancer dosage-step test 
with sludge samples from different sources. Comparison of predictions with models including and 
excluding the interaction of the flux enhancer (FE) with soluble humic substances (HS) and 
carbohydrates (CH).  
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5.3.3 AnMBR filtration model  

5.3.3.1 Calibration of alternate empirical FR models  

The GSA results, in Table A13, showed that almost all parameters, except 𝛾𝐺 , were influential 
in the empirical FR models and were therefore optimised. The parameters were estimated 
using the representative dataset from the pilot AnMBR (shown in Figure A2A), the optimal 
values and quality of the estimators are summarised in Table A16. Figure A9 compares the 
experimental FR in the representative dataset with the predicted values using the optimised 
parameters for each empirical FR model. The calibrated models were unable to predict 
accurately each specific FR values, nevertheless, the FR trend was well predicted.  

In Table A16, most estimators presented good (𝜎𝜃 𝜃⁄  ≤ 0.1) or moderate (0.1 < 

𝜎𝜃 𝜃⁄  ≤ 0.5) quality, except 𝛾2 which had poor quality (𝜎𝜃 𝜃⁄  > 0.5). The parameter 𝛾2 

represents the influence of 𝑐X on FR, and thus the high relative error of 𝛾2 agreed with 
previous research that reported that the concentration of particulate material is a poor 
indicator of biomass fouling propensity by itself (Judd and Judd, 2011). Accordingly, in Figure 
5.8 the empirical models FR1 and FR2 had identical predictions during the entire operation of 
the pilot AnMBR; the only difference between these models is that FR1 included 𝑐X and FR2 

did not. Apparently, 𝑐X had no influence on FR prediction in this research and could therefore 
be removed from the model. The same conclusion was derived after comparing FR4 and FR5.  

5.3.3.2 Calibration of alternate FR_RIS models 

Table A14 summarises the GSA results for the RIS AnMBR filtration models. The parameters 

𝐶𝑑, 𝛽ST, 𝑘𝑐, 𝑘CK, 𝜀c0, 𝜌X, and 𝑃b were influential in all models, and 𝛾0, 𝜁2 and 𝜁3 were 

influential in most models; whereas 𝑓C,c, 𝛾, 𝐾𝐹, 𝛾3, and 𝜌C were none-influential in all models, 

and 𝐾𝑆,c, 𝑞𝑚,MS, 𝛾1, 𝛾2, 𝑃a, 𝜁1, and 𝜁4 were only influential in a few models. Particularly, 𝜀c0 
was the most influential parameter in all the models that included it, presenting SRC between 
0.77 and 0.93. 

The parameters were estimated using the representative dataset from the pilot AnMBR. 
The optimal values and quality of the estimators are summarised in Table A17. Figure A10 to 
Figure A13 compare the experimental FR with the predicted values using the optimised 
parameters for each model.  

The majority of the models that included a SCR submodel based on the empirical equation 

by Cho et al. (2005), namely 𝛼c,3, 𝛼c,3𝑝 and 𝛼c,4𝑝, had at least one estimator with poor quality 

(𝜎𝜃 𝜃⁄  > 0.50). Additionally, these models were unable to predict the experimental FR in the 

representative dataset used for calibration. The models D1a 𝛼c,3𝑝 and D1c 𝛼c,4 considerably 

underpredicted the FR when 𝑐C was high (iD1 and iD2). The models D1b 𝛼c,3𝑝 and D1c 𝛼c,3𝑝 

predicted FR well at high 𝑐C but underpredicted the FR when 𝑐C was low (iD4 to iD8). The 
remaining models had considerably poor FR predictions for all the representative datasets. 
Therefore, the models that included 𝛼c,3, 𝛼c,3𝑝 or 𝛼c,4 could not be satisfactorily calibrated 

with the procedure described in Section 5.2.8.  
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Conversely, all the models that included a SCR submodel that is based on the 

Carman-Kozeny equation (i.e., 𝛼c,1, 𝛼c,1𝑝, 𝛼c,2 and 𝛼c,2𝑝) presented good estimators’ quality 

(𝜎𝜃 𝜃⁄  ≤ 0.1) and FR at high and low 𝑐C in the representative dataset was well predicted. 
However, all these models considerably underpredicted FR when the reactor operated at low 

𝑢G (dataset iD6); and most models, except D1c 𝛼c,1 and D1c 𝛼c,2, slightly overpredicted FR 

when 𝑐X was high (dataset iD3). 

5.3.3.3 Long-term model validation  

The prediction capacity of the calibrated models was assessed by analysing the prediction 
during the entire operation of the pilot AnMBR, shown in Figure 5.8 for the empirical FR 
models and in Figure 5.9 for the FR_RIS models that included Carman-Kozeny based SCR 
submodels. The y-axis was limited between 0-60 for better visualization and discussion; Figure 
A14 to Figure A22 display the individual plots for each model without imposed limits. The 

models that included the SCR submodels 𝛼c,3, 𝛼c,3𝑝 or 𝛼c,4 were not further analysed because 

they could not be satisfactorily calibrated with the procedure described in Section 5.2.8, and 
thus were unable to predict the representative data used for calibration.  

In general terms, all the FR_RIS models in Figure 5.9 and empirical FR models in Figure 

5.8 predicted satisfactorily the effect of 𝑐C on the fouling rate. During the period without FE 
(0-16 d) the experimental and predicted FR values were considerably higher than the FR after 
FE dosing (after day 16). Nevertheless, during the initial period (0-16 d), the empirical FR 

 
Figure 5.8. Validation of the AnMBR empirical fouling rate (FR) models which (A) exclude and 
(B) include floc size as input variable. The grey vertical areas represent the representative dataset (iD1 
to iD8 from left to right) used for model calibration. Imposed limits between 0-60 in y-axis. 
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Figure 5.9. Validation of the alternate FR_RIS AnMBR filtration models combining the different 
deposition submodels (D1a, D1b, D1c and D2) with the Carman-Kozeny based specific cake resistance 
submodels: (A) 𝛼c,1, (B) 𝛼c,1𝑝, (C) 𝛼c,2 and (D) 𝛼c,2𝑝. The grey-vertical areas represent the 
representative dataset (iD1 to iD8 from left to right) used for model calibration. Imposed limits 
between 0-60 in y-axis 
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models considerably underpredicted the FR at high 𝑢G (periods 4.5-7 and 12-15 days), this is 
further explained below. The deposition submodels based on Robles et al. (2013), that is D1a, 

D1b and D1c, presented similar behaviour, and D1b was slightly more sensitive to 𝑐C than 

D1a and D1c because in D1b 𝑐C affects the deposition of particulate material through 𝐼MS. 

The lack of online gas flow measurements was a limitation for model calibration and 

validation, especially for the empirical FR models that are highly sensitive to 𝑢G. For example, 
the biggest deviation between the experimental data and the predicted values was between 

days 12 and 15 where the reactor operated at a low liquid level in the membrane tank (𝐻MT) 

causing a high simulated 𝑢G, calculated with Equation (A.1). However, the simulated 𝑢G 
during this period could not be confirmed with experimental data, therefore, it could not be 

confirmed that the input variable 𝑢G was correct or if the actual values were lower, and the 
model could have predicted the FR accurately. Similarly, in the period 34.8-36.8 d the 
simulated 𝑢G was 8 to 36% lower than the experimental (manually recorded) 𝑢G which caused 
the overpredicted FR values. Therefore, to improve model calibration and validation the 
biogas should be monitored online to provide a reliable input variable.  

Similarly, the use of grab samples for determining the as input variables for sludge 
characterization limited model calibration and validation. This was particularly true for the 

fluctuating sludge characteristics that were highly influential in the model, such as 𝑐C, which 
was calculated as the difference between the measured csCOD and pCOD. The pCOD was 
relatively stable during the reactor operation, however, csCOD fluctuated considerably 
(particularly before FE dosing on day 16) and had only few datapoints. For model 
implementation, linear interpolation between measurements were applied resulting in 𝑐C 
with sharp fluctuations and peaks that caused fluctuations in the simulated FR, but the true 

values of 𝑐C between grab samples could not be confirmed, hampering proper model 
validation.  

The FR_RIS models overpredicted the fouling rate at high 𝑐C (> 0.5 kgCOD m-3), and the 
overprediction was higher for D2. From the Robles et al. (2013) based FR_RIS models, 

D1c 𝛼c,1𝑝 and D1c 𝛼c,1 had the lowest fouling rate overpredictions, and D1c 𝛼c,1𝑝 was slightly 

better than D1c 𝛼c,1. The models that combined the submodel D2 with a Carman-Kozeny 

based SCR submodel (i.e., 𝛼c,1, 𝛼c,1𝑝, 𝛼c,2 and 𝛼c,2𝑝) presented instabilities or pronounced 

peaks at high 𝑐C (shown in Figure A1D), which was attributed to the considerably low 

estimated 𝜀c0 of 0.12 - 0.17 (Table A17). When colloidal material accumulated in the cake, the 

porosity (𝜀c) was reduced below 𝜀c0, resulting in values close to zero causing an 

overpronounced increase in SCR because of the term: 𝛼c ∝ 𝜀c−3 (Table 5.2). The low 𝜀c0 value 
in D2 was estimated because this deposition submodel predicted approximately 200 times less 
material deposition onto the membrane surface than the deposition submodels based on 
Robles et al. (2013), and thus the SCR increased (by decreasing the  porosity) to reach similar 

𝑅c values. To elucidate which modelling approach was more accurate the amount of 
particulate and colloidal material deposited should be measured, which was unfortunately not 
possible in the current research.  
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The models that included floc size as input variable (Figure 5.8B, Figure 5.9A and Figure 
5.9B) improved the FR prediction at large floc size (i.e., operational period 17-30 days) 
compared to the models that did not include floc size (Figure 5.8A, Figure 5.9C and Figure 
5.9D). These results suggest that floc size had a direct impact on FR and should be included 
as state variable in a model that predicts the effect of FE on FR. 

During days 37-39, the reactor was operated at considerably low 𝑢G causing a sharp 

fouling rate increase despite the low 𝑐C. The empirical FR models predicted this behaviour 
satisfactorily and only slightly underestimated the fouling rate. Additionally, the empirical 

FR models predicted adequately the fouling rate increase caused by the 𝑢G decrease during 

the day 1 in which 𝑐C was high. Contrarily, all FR_RIS models predicted only a slight or no 
increase in fouling rate during 37-39 d, thus substantially underestimating the fouling rate. 

Nevertheless, some FR_RIS models (namely the ones with 𝛼c,1𝑝, 𝛼c,2𝑝 or D2) could predict the 

fouling rate increase during day 1. The deposition submodel D2, that considered drag and lift 

forces, was slightly more sensitive to 𝑢G than the submodels that considered only drag forces 

(D1a, D1b and D1c) because in D2 𝑢G affects the attachment and detachment of particulate 

material (through 𝐺), whereas in the other submodels only the detachment is affected by 𝑢G. 

In summary, at high 𝑐C, the effect of low 𝑢G on fouling rate was satisfactorily predicted by all 
the empirical FR models and by the FR_RIS models that include either the SCR submodels 

with cake compression (𝛼c,1𝑝 and 𝛼c,2𝑝) or the deposition submodel D2; whereas at low 𝑐C, 

only the empirical FR models could predict the effect of low 𝑢G on fouling rate. 

The reactor was not intentionally operated at high 𝑢G; however, during some periods 

𝐻MT decreased due to influent shortage which increased the simulated 𝑢G calculated with 

Equation (A.1). However, the experimental 𝑢G was measured few times during those periods: 

the experimental 𝑢G on day 14 was 8% lower than the calculated value; on day 7 the calculated 

and experimental values were equal. Thus, the prediction at high 𝑢G was analysed on day 7. 
All the empirical FR models and the FR_RIS models that combined the deposition submodels 

D1a, D1b or D1c with SCR submodels with cake compression (𝛼c,1p or 𝛼c,2p) predicted 

satisfactorily the fouling rate at high 𝑢G, whereas the models that included SCR submodels 

without cake compression (𝛼c,1 or 𝛼c,2) or the deposition submodel D2, overpredicted the 

fouling rate. Particularly for D2, the fouling rate was substantially high, because the 𝑐C was 
elevated and caused instabilities in the model, as explained above.   

5.3.4 AnDFCm filtration model  

5.3.4.1 Calibration of alternate model  

Table A4 summarises the GSA results for all alternate AnDFCm filtration models. Analogous 

to the GSA results for the alternate AnMBR filtration models, the parameters 𝐶𝑑, 𝛽ST, 𝑘𝑐, 𝑘CK, 

𝜀c0, 𝜌X, 𝑃b, 𝜁2 and 𝜁3 were influential in all or most models; ℎ𝑡 , 𝛾, 𝜌C, 𝜁1, and 𝜁4 were 

none-influential in all or most models; and 𝜀c0 was the most influential parameter in all the 

models. Opposite to the GSA results for the alternate AnMBR filtration models, 𝐾𝑆,c and 𝑞𝑚,MS 

(which are associated with the detachment processes) were only influential in some AnMBR 
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models, whereas they were influential in most AnDFCm models. This might be caused by the 

higher superficial velocity in the AnDFCm installation (𝑢L,AnDFCm=1.5 m s-1) compared to the 

AnMBR (0.5×10-3 < 𝑢G < 5.7×10-3 m s-1) which increases the detachment. 

The influential parameters were estimated using in-situ ∆𝑅20 measurement in the pilot 

AnMBR immediately after FE dosing and ex-situ ∆𝑅20 measurement during the dosage-step 
tests BWa and BWb. Table A19 summarises the parameter estimation procedure and Table 
A20 the optimal values and quality of the estimators. The quality of the parameters was worse 
than for the AnMBR models, especially for the deposition related parameters, that is: 74% of 
the deposition related and 40% SCR related parameters had poor quality. This was partially 
caused by the high pairwise correlation between parameters (>0.50) producing an 
ill-conditioned optimisation problem (Sin and Gernaey, 2016). The parameter 𝜀c0 was of good 

quality because it was estimated separately for most models, namely 𝜃𝐼𝐼 = {𝜀c0}, except for 

D2 𝛼2,𝑝 and D2 𝛼2 where 𝜃𝐼𝐼 = {𝜀c0, 𝐶𝑑}. 𝜀c0 was estimated separately because it was the most 

influential parameter in each model and most subsets containing 𝜀c0 had a collinearity index 
above the threshold of 10.  

The calibration procedure can be improved by adding identifiability steps or improving 

the dataset used for calibration. For example, adding a second identifiability step with 𝜃𝐼𝐼𝐼, 
decreased the parameters with poor quality from 74% to 38% for the deposition parameters 
and from 40% to 17% for the SCR parameters (results not shown) and identical or similar 
predictions of the validation data was obtained with one and two identifiability steps, Figure 
A27. The only models, of which predictions with one and two identifiability steps differed, 

were D1c 𝛼𝑐,1, D2 𝛼𝑐,1, D3 𝛼𝑐,1, D3c 𝛼𝑐,3, and D3c 𝛼𝑐,3𝑝; where for D1c 𝛼𝑐,1 the prediction 

was considerably improved by adding a second identifiability analysis, whereas for the 
remaining models the prediction was only slightly worsen. Therefore, the calibration 
procedure was improved by adding a second identifiability step because it decreased the 
relative error of the parameters without deteriorating the model prediction capacity 
substantially or even improving it. Further adding extra identifiability steps was not analysed 
in this research.  

Figure A24 and Figure A25 compare the experimental ∆𝑅20 with the predicted values 
using the optimal parameters for each model, which were obtained with the original 
calibration procedure with one identifiability step. Most of the models that included a SCR 

submodel with cake compression (𝛼c,𝑗𝑝) could not be calibrated to satisfactorily predict the 

experimental data. The exceptions were D1c 𝛼c,2𝑝 and D3 with 𝛼c,1𝑝, 𝛼c,2𝑝, and 𝛼c,3𝑝. 

Although D1c 𝛼c,2𝑝 approximated the experimental ∆𝑅20 used for calibration, the model 

failed at high 𝑐X during model validation (Figure A26B). For models with D3, the predictions 

with the compression submodels 𝛼c,𝑖𝑝 were identical to the corresponding non-compressed 

submodel 𝛼c,𝑖 for 𝑖 = [1,2,3]. This was because the estimated 𝑓X,𝑐 was considerably low, 

causing negligible deposition of particulate material (𝜔X), thereby the compressed SCR 
approximated the SCR without compression. Therefore, the models that coupled D3 with 

𝛼c,1𝑝, 𝛼c,2𝑝, or 𝛼c,3𝑝 in fact, did not describe a compressible cake.  
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Regarding the alternate AnDFCm models that included a non-compressible SCR 

submodel different observations were found. The models that included 𝛼c,1 predicted the 

experimental ∆𝑅20 reasonably for the three datasets used during calibration, these models 

behaved similar for all deposition submodels (i.e., D1c, D2 and D3). For models including 𝛼c,2 

or 𝛼c,3, D1c 𝛼c,2 and D3 𝛼c,2 behaved similarly whereas D2 𝛼c,2 differed; and analogous D1c 

𝛼c,3 and D3 𝛼c,3 behaved similarly and D2 𝛼c,3 differed. D2 𝛼c,2 predicted the experimental 

∆𝑅20 better than D1c 𝛼c,2 and D3 𝛼c,2;  whereas D2 𝛼c,3 predicted the experimental ∆𝑅20 

worse for D1c 𝛼c,3 and D3 𝛼c,3. The models are further discussed using the long-term 
predictions in the following section. 

5.3.4.2 Long-term validation  

Figure 5.10 compares the experimental and predicted long-term ∆𝑅20 of the pilot AnMBR 
sludge for the alternate models without cake compression; and Figure A26 shows the 
predictions of the alternate models with cake compression.  

Figure A26 suggested that the model with D3 could predict the experimental ∆𝑅20 when 
combined with cake compresion SCR submodels. However, as explained above, the models 

combining D3 with 𝛼c,1𝑝, 𝛼c,2𝑝, or 𝛼c,3𝑝, in fact did not describe a compressible cake. 

Therefore, all the models that included cake compression were unable to predict the 

experimental ∆𝑅20. Accordingly, the shape of the filtration curve obtained when filtering 
different anaerobic sludge samples in the AnDFCm installation suggested that the cake layer 
formed was mostly non-compressible. This is further discussed in Section A11, Appendix A. 

The alternate AnDFCm filtration models without cake compression in Figure 5.10, 

satisfactorily predicted the filterability improvement (i.e., ∆𝑅20 decrease) caused by dosing FE 

on day 16. During the period without FE (0-16 d) the experimental and predicted ∆𝑅20 values 

were considerably higher than the ∆𝑅20 after FE dosing (after day 16) for the models with 

𝛼c,1 or 𝛼c,2. However, for the models with 𝛼c,3, the difference between these periods was less 

clear because the models predicted relatively high ∆𝑅20 in the period 20-35 d, which was 

caused by small fluctuations in 𝑐C and 𝑐X.   

Figure A28 illustrates the sensitivity of the models to 𝑐X and 𝑐C inside the operational 

range of the pilot.  Sludge was withdrawn from the pilot on day 123 causing a drop in 𝑐X from 

14 to 5.5 kg m-3, whereas 𝑐C and ∆𝑅20 were almost unaltered. Figure 5.10 shows that D3 𝛼c,2 

was the only model that accurately predicted this behaviour because it had only moderate 
sensitivity to 𝑐X, as illustrated in Figure A28F. The models including 𝛼c,1, 𝛼c,3 or D2 

overpredicted the ∆𝑅20 drop after sludge withdrawal because models with 𝛼c,1 or D2 were 

too sensitive to 𝑐X and with 𝛼c,3 too sensitive to 𝑐C 𝑐X⁄ . The high sensitivity of 𝛼c,1 and D2 to 

𝑐X also caused the overprediction when 𝑐X was high (85-125 d). Similarly, D1c 𝛼c,2 had an 

elevated sensitivity to 𝑐X but with an opposite effect on ∆𝑅20, that is: a higher 𝑐X caused a 

lower ∆𝑅20, consequently D1c 𝛼c,2 overpredicted ∆𝑅20 at low 𝑐X (after sludge withdrawal) 

and underpredicted ∆𝑅20 at high 𝑐X (85-125 d).  
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Opposite to the AnMBR filtration models, the incorporation of 𝑑𝑝 as input variable in the 

AnDFCm filtration models worsened the ∆𝑅20 prediction. During the operational period at 

large floc size (17-25 days) the models with 𝛼c,2 (without 𝑑𝑝) accurately predicted the 

experimental ∆𝑅20 whereas the models with 𝛼c,1 (with 𝑑𝑝) underpredicted ∆𝑅20. 

Additionally, the models with 𝛼c,1 predicted peaks in ∆𝑅20 around days 60, 94 and 120, caused 

by small 𝑑𝑝 reductions, these ∆𝑅20 peaks were not observed experimentally. These results 

suggested that floc size might not have a direct impact on sludge filterability and could be 
excluded as state variable in the AnDFCm filtration models for ∆𝑅20 prediction. The 
negligible effect of floc size on sludge filterability might be caused by the absence of relaxation 
cycles in the AnDFCm as previously proposed in Section 4.4.1.2, Chapter 4.  

 
Figure 5.10. Validation of the alternate AnDFCm filtration models that combine the different 
deposition submodels (D1c, D2 and D3) with the non-compressible specific cake resistance submodels: 
(A) 𝛼c,1, (B) 𝛼c,2, and (C) 𝛼c,3. The grey area represent the in-situ data used for model calibration.  
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5.3.5 Model limitation, applicability and further development 

The calibrated biochemical-flocculation model satisfactorily predicted the dynamics of 𝑑𝑝 and 

cCOD in the pilot AnMBR dosed with FE. Nevertheless, a more frequent and comprehensive 
influent characterization is needed to improve model calibration and validation to accurately 

predict the fluctuations in TSS, 𝑐X and 𝑐C. Additionally, the same dataset was used for 
calibration and validation, and thus the model requires further validation with an independent 
dataset from a different operational period of the pilot or from another AnMBR.  

The extended biochemical-flocculation model presented in Section 5.3.2.3, which 
incorporated the interaction of FE with soluble humic substances, carbohydrates and proteins, 
should be employed for reactors with high concentrations of any of these components. 

The biochemical-flocculation model included only inert colloidal material, the model 
could be further extended to incorporate biodegradable colloidal components consisting of 
proteins, carbohydrates, lipids, humic substances, etc. Furthermore, particle size prediction 
could be improved, for example by incorporating a population balance model in the 
biochemical-flocculation model to predict the particle size distribution (Jeldres et al., 2018). 
This would increase the complexity of the model by increasing the amount of state variables 
and parameters, but it might also increase the accuracy of the model.  

From the alternate AnMBR filtration models, the FR_RIS that included Carman-Kozeny 
based SCR submodels and all the proposed empirical FR models predicted satisfactorily the 

effect of 𝑐C on fouling rate. Nevertheless, the empirical FR models might have underpredicted 

and the FR_RIS overpredicted FR at high 𝑐C. Furthermore, all the empirical FR models and 

none of the FR_RIS models predicted the effect of the low 𝑢G on the fouling rate when the 

reactor was operated at low 𝑐C. Therefore, one empirical and one FR_RIS model were selected 
for the simulation environment to cover a predicted fouling rate range. Nevertheless, the 
calibration of the alternate AnMBR filtration models should be further improved by online 
gas monitoring and more intensive grab samples monitoring, particularly for csCOD which 
fluctuated and highly affected the model. Additionally, the validation should be improved by 
applying the alternate models to an independent dataset. 

The empirical FR model FR6 was selected because it included 𝑑𝑝 as input variable, which 

improved the prediction, and better predicted FR at high 𝑢G compared with FR4 and FR5. 

From the FR_RIS models, D1c 𝛼c,1𝑝 and D1c 𝛼c,1 had the lowest FR overpredictions at high 

𝑐C; and in Figure A23, D1c 𝛼c,1𝑝 was more sensitive to 𝑢G and less sensitive to 𝑐X than 

D1c 𝛼c,1, as experimentally observed; therefore, the model D1c 𝛼c,1𝑝 was selected for the 

simulation environment.  

From the AnDFCm filtration models, the best alternate model to predict sludge 
filterability was D3 𝛼c,2 because it had limited sensitivity to 𝑐X as experimentally observed 

and predicted satisfactorily the experimental ∆𝑅20, including the ∆𝑅20 decrease after FE 

dosing and the small change in ∆𝑅20 value after sludge withdrawal.  
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5.3.6 Control tools for dosing flux enhancer 

The integrated model was used as a simulation environment to test the various control tools 
presented in Table 5.8, for manipulating FE dosing to the pilot AnMBR. The simulation 
environment included the biochemical-flocculation model with no binding between FE and 
soluble humic substances, carbohydrates, and proteins because the reactor did not present 
high values of any of these variables. Therefore, the original biochemical-flocculation model 
described in Section 5.2.3 was used, but with the mean particle size dynamics from Equation 
(5.61). As previously explained, the sludge filterability was predicted as ∆𝑅20 with the 

AnDFCm filtration model D3 𝛼c,2; and the fouling rate was predicted with the empirical FR 

model FR6 and the FR_RIS model D1c 𝛼c,1𝑝. 

Results in Figure 5.11 show that all control tools substantially improved reactor 

performance by decreasing ∆𝑅20 and membrane fouling compared to the reactor without FE 
dosing (No_FE). The decrease was caused by FE induced flocculation which reduced the 
concentration of colloidal material and increased the floc size.  

The total mass of FE added in the 400-day simulated period varied between the different 

control tools, the lowest and highest amounts were 0.25 and 0.46 kg for FF_𝑄WS and 

FB_∆𝑅20_8-12, respectively. Considering the base FE price given by the supplier of 
Adifloc KD451 of 6 € kg-1, the FE cost was between 1.37 and 2.50 € y-1, or 0.49 and 
0.89 € m-3 y-1, which is negligible. Nevertheless, as discussed in Chapter 2, the costs of FE 
dosing can vary considerable for different AnMBRs. 

The feedback ∆𝑅20 control tool FB_∆𝑅20_8-12 was the tool that required most FE due to 
the higher loss of FE with the permeate, shown in Figure 5.11I. This was because high amounts 

of FE were dosed in a short period, elevating the concentration of unbonded FE (𝑆fe) which 
passed through the membrane and left the reactor with the permeate flow. Additionally, as 

expected, FB_∆𝑅20_8-12 caused less stable filterability and fouling rate than FB_∆𝑅20_10. 
Accordingly, continuous dosing the FE MPE50 to a pilot MBR caused a more stable 
time-to-filter and used less FE than applying periodic pulses when the time-to-filter reached 

200 s-1 (Alkmim et al., 2016), these strategies were analogous to FF_𝑄WS and FB_∆𝑅20_8-12, 
respectively. 

The 𝑐fe for FB_∆𝑅20_10 in Figure 5.11G was assumed as the optimal FE dosage required 

to sustain an adequate and stable sludge filterability inside the reactor (𝐷opt). This dosage 

varied between 1 and 27 mgCOD L-1 during the simulated period due to changes in sludge 

characteristics. Consequently, the 𝑐fe control tool (namely FB_𝑐fe, FF_𝑄WS, and FF_𝑄Inf), 

which targeted a specific 𝑐fe,sp of 8.7 mgCOD L-1, under or overdosed FE during certain 

periods. For example, at high 𝑐X (250-400 d) more FE was required to achieve similar 𝑐C 
reductions because the FE was adsorbed onto the particulate material, thereby decreasing its 

availability for colloidal material flocculation. Here, the 𝑐fe control tools underdosed FE 

causing an increased ∆𝑅20 and fouling rate, compared to FB_∆𝑅20_10. Conversely, at low 𝑐X 

(100-200 d), the FE required was lowered, and the 𝑐fe control tools overdosed FE increasing 
the FE concentration in the permeate and using unnecessary FE.  
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Figure 5.11. Simulated pilot AnMBR behaviour with different feedback (FB) and feedforward (FF) 
control tools for manipulating the flux enhancer (FE) dosage. Compared variables: (A) fouling rate 
with empirical model FR6, (B) fouling rate with RIS model D1c 𝛼c,1𝑝, (C) sludge filterability expressed 
as ∆𝑅20, (D) mean particle diameter, (E) colloidal material concentration, (F) particulate material 
concentration, (G) total FE concentration inside the reactor, (H) cumulative mass of FE dosed, and 
(I) cumulative mass of FE removed with permeate flow. The vertical lines indicate applied disturbances 
on: TSS setpoint (dotted) and 𝑓C,WS (continuous).  
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5.4 CONCLUSIONS 

The main findings are summarised as follows: 

• The proposed biochemical-flocculation model predicted satisfactorily the dynamics of 
mean particle diameter and colloidal material concentration. Nevertheless, the long-term 
model prediction requires further validation.  

• Soluble humic substances, carbohydrates and proteins might bind to the cationic polymer 
used as flux enhancer and reduce its availability for colloidal material flocculation. 

• The concentration of colloidal material was an appropriate linking variable between 
biochemical-flocculation and filtration models for fouling rate and ∆𝑅20 prediction. 
Whereas mean particle diameter was only appropriate for fouling rate prediction, but it 

worsen ∆𝑅20 prediction. 

• From the 34 alternate AnMBR filtration models tested, the 28 FR_RIS models, which 
predicted fouling rate based on TMP (FR=𝑑TMP 𝑑𝑡⁄ ), were unable to predict the effect of 
low gas superficial velocity on fouling rate when the concentration of colloidal material 
was low. Contrarily, the six empirical FR models proposed in this research succeeded on 
capturing this effect. 

• The alternate AnDFCm filtration models without cake layer compression predicted ∆𝑅20 
better than the alternate models with compressible cake. 

• For model calibration and validation, better and extra input data was required, 
particularly online gas flow measurements and intensive and comprehensive monitoring 
of sludge and blackwater characteristics. 

• The integrated calibrated model was used as a simulation environment to test different 
control tools to manipulate the flux enhancer dosing to the pilot AnMBR. The feedback 

∆𝑅20 proportional control tool, referred to as ∆𝑅20_10, was the preferred controller.  

• The simulated optimal dosage to control sludge filterability varied during the operational 
period due to changes in sludge characteristics. 

• Compared to periodically dosing flux enhancer in the form of pulses, continuous flux 
enhancer dosing decreased permeate contamination by flux enhancer, required less flux 
enhancer, and achieved more stable sludge filterability and fouling rate. 
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Membrane fouling is a major challenge limiting economic feasibility and applicability of 
AnMBRs. This thesis studied the feasibility of implementing a fouling control tool for 
AnMBRs that manipulates the flux enhancer dosing based on sludge filterability 
measurements. This work focused on the use of cationic polymers as flux enhancers and used 
the cationic polymer Adifloc KD451 in all experimental phases. Chapters 2 to 4 analysed the 
feasibility of dosing flux enhancers in long-term and large‐scale AnMBRs, the possible side 
effects of flux enhancers, the causes of variation in optimal dosage, and the feasibility of using 

in-situ sludge filterability measurements (such as ∆𝑅20) as an input variable in the fouling 
control tool. Furthermore, in Chapter 5 a simulation environment with an integrated model 
that predicts the effect of flux enhancer dosing on sludge filterability and membrane fouling 
rate was developed. This simulation environment was used to compare five control tools to 
manipulate the flux enhancer dosing to a pilot AnMBR.  

This chapter summarises the conclusions obtained throughout this thesis. Moreover, this 
chapter provides recommendations for the application of flux enhancers for fouling 
mitigation in AnMBRs, and for using the simulation environment developed in this thesis. 

6.1 CONCLUSIONS 

Overall, it can be concluded that dosing cationic polymers (such as Adifloc KD451) as flux 
enhancers is a suitable strategy for fouling mitigation in large-scale AnMBR because it 
showed a long-term improvement of filtration performance and sludge filterability, while 
having no significant adverse effects on permeate quality and chemical oxygen demand 
removal efficiency. Nevertheless, determining the optimal dosage and using an appropriate 
dosing strategy is crucial to avoid overdosing that can cause adverse effects on filterability 
and permeate contamination by unbonded flux enhancer. The main additional conclusions of 
this thesis are summarised as follows: 

The flux enhancer Adifloc KD451 significantly enhances the sludge filterability of 
municipal and industrial sludge samples when applied below the critical dosage. In 
Chapter 2, the cationic polymer Adifloc KD451 improved sludge filterability of all sludge 
samples tested which were collected from five large-scale AnMBRs treating industrial or 
municipal wastewater. Nevertheless, excessive flux enhancer dosages had an adverse effect 
on sludge filterability, increased irreversible fouling in the AnDFCm installation and 
promoted permeate contamination by the unbonded flux enhancer (Chapters 2 and 5). 
Therefore, overdosing must be avoided when applying flux enhancers to large-scale AnMBRs.  

The optimal required dosage of flux enhancer varies due to changes in sludge 
characteristics. In large-scale membrane bioreactors, the sludge characteristics are 
constantly changing due to variations in the membrane and reactor operational conditions, 
these variations affect the required optimal dosage of flux enhancer. In Chapter 5, the 
simulated optimal flux enhancer dosage required to sustain an adequate and stable sludge 
filterability in a pilot AnMBR varied between 0.001 and 0.027 g L-1 during the simulated 
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400-day period. In Chapter 2, the optimal and critical dosages differed considerably between 
sludge samples from various AnMBRs, the optimal dosage ranged from 0.02 to 1.16 g L-1 and 
critical dosage from 0.10 to 2.5 g L-1. The main factors affecting these dosages were the 
concentrations of colloidal material and soluble microbial products (carbohydrates, proteins 
and humic substances), capillary suction time and sludge filterability (Chapters 2 and 5).  

Floc size has a significant effect on the AnMBR membrane fouling rate and a 

negligible effect on sludge filterability (measured as ∆𝑹𝟐𝟎 with the AnDFCm). In 
Chapter 4, the correlation between mean particle size (i.e., floc size) and the AnMBR filtration 
performance indices (i.e., fouling rate and total filtration resistance) was stronger than 
between floc size and sludge filterability (expressed as ∆𝑅20). Accordingly, in Chapter 5, the 

inclusion of floc size as input variable in the AnDFCm filtration models worsened the ∆𝑅20 
predictions whereas including floc size in the AnMBR filtration models improved the fouling 
rate predictions. The negligible effect of floc size on ∆𝑅20 might be caused by the absence of 
relaxation cycles in the AnDFCm (Chapter 4). 

The flux enhancer that remains unbonded in the bulk liquid can pass through the 
membrane pores and contaminate the permeate. When flux enhancer is added to sludge, 
a fraction of flux enhancer can remain unbonded in the bulk liquid, depending on the relevant 
physicochemical equilibria. Chapter 2 showed that a fraction of unbonded Adifloc KD451 can 
pass through the membrane pores and contaminate the permeate. The contribution of flux 
enhancer to the permeate COD is negligible (Chapter 4 and 5). However, 
polydiallyldimethylammonium chloride (polyDADMAC), the chemical compound in several 
cationic polymers used as flux enhancers, can be a precursor of N-nitrosodimethylamine, 
which is a suspected human carcinogen produced during chloramination or ozonation. 
Therefore, minimising permeate contamination by flux enhancer is crucial. 

The flux enhancer Adifloc KD451 has a reversible inhibitory effect on the biological 
activity. In Chapter 3, batch tests showed that the cationic polymer Adifloc KD451 presented 
a significant inhibitory effect on the specific methanogenic activity of the sludge. This 
inhibition was successfully described by a reversible process using biostatic non-competitive 
and un-competitive inhibition models. Accordingly, in Chapter 4, dosing the cationic polymer 
to a pilot-scale AnMBR had a modest immediate inhibitory effect on the specific 
methanogenic activity, but this was a reversible process that had no adverse effect on 
permeate quality or chemical oxygen demand removal efficiency. 

The costs of flux enhancer dosing varies considerably for different AnMBRs and 
should be considered in the economic evaluation of each treatment plant. The annual 
cost of dosing flux enhancer is subject to the volume of mixed liquor, price of flux enhancer, 
and required dosage. In Chapter 2 the annual cost varied from 1.5 € y-1 to 13,337 € y-1 for 
different AnMBRs. 
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In-situ sludge filterability measurement, performed with the AnDFCm, is a suitable 
input variable to manipulate flux enhancer dosing into an AnMBR. In Chapter 4, 
relating in-situ measurements of sludge filterability with AnMBR filtration performance 
indices (i.e., fouling rate and total filtration resistance) allowed to identify the cause of 
filtration performance deterioration and improvement in the AnMBR. Furthermore, the 
interval of change in filtration performance and sludge filterability observed in membrane 
bioreactors (~days) was negligible compared to the interval of sludge filterability 
measurements allowed by the AnDFCm (~20 minutes per measurement). Nevertheless, the 
AnDFCm installation requires further automation to become a stand-alone device able to 
operate automatically and in-situ. Chapter 5 shows, in a simulation environment, the 
applicability of the AnDFCm installation as a sensor in fouling control tools for AnMBRs.    

Flux enhancer dosage is unsuitable as input variable to manipulate flux enhancer 
dosing into an AnMBR. The most applied flux enhancer dosing strategy in membrane 
bioreactors reported in literature targets to maintain a certain dosage of flux enhancer, i.e., a 
concentration of flux enhancer inside the reactor, by performing a single pulse-dosage or an 
initial pulse-dosage that is followed by periodic flux enhancer dosing to compensate for the 
loss by biodegradation and sludge withdrawal. However, in Chapter 5, the required flux 
enhancer dosage varied during the operational period of membrane bioreactors due to 
changes in sludge characteristics. Consequently, the control tools that target to maintain a 
certain flux enhancer concentration inside the reactor caused under and overdosing of flux 
enhancer during certain simulated periods.  

Continuously dosing small quantities of flux enhancer is a preferred dosing strategy 
compared to periodically dosing higher quantities of flux enhancer in the form of 
pulses. In Chapter 5, two feedback filterability controllers to manipulate flux enhancer 
dosing to a pilot AnMBR were compared in a simulation environment. The first was a 

proportional controller that dosed flux enhancer continuously (referred to as FB_∆𝑅20_10), 
and the second an on-off controller that dosed periodic pulses of flux enhancer (referred to as 

FB_∆𝑅20_8-12). Compared to FB_∆𝑅20_8-12, FB_∆𝑅20_10 decreased permeate contamination 
by flux enhancer, required less flux enhancer, and achieved more stable sludge filterability 
and fouling rate. 

6.2 RECOMMENDATIONS AND OUTLOOK 

Following the conclusions of this thesis, when dosing flux enhancer to membrane bioreactors 
it is important to avoid flux enhancer overdosing. The following consequences can arise from 
flux enhancer overdosing: deteriorated sludge filterability resulting in increased reversible 
fouling, increased irreversible fouling caused by the interaction of unbonded flux enhancer 
with the membrane, and permeate contamination by part of the unbonded flux enhancer that 
passes through the membrane.  
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To avoid overdosing, the flux enhancer should be dosed in small quantities, the required 
dosage should be monitored, and the dosing should be corrected based on the required dosage. 
To implement this manually, the operators need to perform regular dosage-step tests to 
determine the required flux enhancer dosage, and adjust the dosing based on the results. This 
could be costly in terms of material and labour, and susceptible to human error. To overcome 
these disadvantages, an automatic control tool should be implemented. For example, using an 
online in-situ sludge fouling potential sensor (such as the AnDFCm installation) to 
manipulate the flux enhancer dosing. This control tool is more robust because the monitoring 
is continuous and does not require an operator.  

The feedback ∆𝑅20 proportional control tool proposed in this thesis, referred to as 

∆𝑅20_10, should be further tested in a real AnMBR, since it was only tested in a simulation 
environment. The controller should be tested in a pilot-scale AnMBR by imposing defined 

disturbances, such as ramps and pulses. The control tool ∆𝑅20_10 was the preferred controller 
to manipulate flux enhancer dosing. Moreover, to implement this control tool in a real 
AnMBR, the AnDFCm installation requires further automation to become a stand-alone 
device able to operate automatically and online.  

Calibration and validation of the integrated AnMBR model, developed in Chapter 5, 
should be further improved by gas monitoring and intensive and comprehensive monitoring 
of sludge and influent characteristics. Furthermore, model validation should be improved by 
using an independent dataset from a different operational period of the pilot AnMBR. 

The simulation environment developed in this thesis provides a tool to test flux enhancer 
dosing strategies into AnMBRs. The integrated AnMBR model used in the simulation 
environment was developed, calibrated, and validated under specific conditions, that is using 
the flux enhancer Adifloc KD451 in the pilot AnMBR described in Chapter 5. To use the 
simulation environment under different conditions, the integrated model should be initially 
validated under those conditions. 

For reactors with high concentrations of soluble microbial products, the extended 
biochemical-flocculation model presented in Section 5.3.2.3 should be used. This model 
incorporates the interaction of flux enhancer with soluble microbial products. 

The biochemical-flocculation model includes only inert colloidal material, the model 
could be further extended to incorporate other colloidal components, such proteins, 
carbohydrates, lipids, humic substances, etc. This would increase the complexity of the model 
by increasing the amount of state variables and parameters, but it might also increase the 
accuracy of the model. Furthermore, particle size prediction should be improved, for example 
by incorporating a population balance model in the biochemical flocculation to predict the 
particle size distribution (Jeldres et al., 2018). 

This thesis focuses on one flux enhancer (i.e., Adifloc KD451), and its dosing into one 
pilot-scale AnMBR and into grab sludge samples from a limited number (five) of AnMBRs. 
The methods applied in this thesis are nevertheless applicable to test other flux enhancers 
and other large-scale AnMBRs. 
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A1. EXPERIMENTAL DATA  

Pilot AnMBR supplementary experimental data 

Table A1 summarises the characteristics and operational conditions of the pilot AnMBR plant. 
The gas superficial velocity in the membrane tank was calculated based on the specific gas 
demand model developed in Odriozola et al (2020), as follows: 

𝑢G =
−3.43 − 14.57 𝐻MT + 0.52 𝑣B

3600 𝐴MT
 ,  (A.1) 

where 𝑣B is the motor frequency of the blower, 𝐻MT the liquid level and 𝐴MT the 
cross-sectional area of the membrane tank.  

The 20℃-normalised transmembrane flux (𝐽20) was calculated with the motor frequency 

of the permeate pump (𝑣P), using Equation (A.2) based on a flux-step experiment performed 
in the pilot AnMBR. 

𝐽20 =
(0.154 𝑣𝑃 + 0.733)

3.6𝑒6⁄  .  (A.2) 

The transmembrane flux (𝐽) was calculated to reflect the permeate viscosity dependence 

on temperature with Equation (A.3), where 𝜇20 is the permeate viscosity at 20℃ and 𝜇 the 
permeate viscosity at the operational temperature.  

𝐽 = 𝐽20
𝜇20
𝜇
 .  (A.3) 

The flow rates of blackwater (𝑄Inf) and permeate (𝑄P), which were used in the 
biochemical-flocculation model (described in Section 5.2.3), were calculated with a time-step 
(∆𝑡) of 864 s (0.01 days). 𝑄P was the ratio between the volume of permeate produced during 

one time-step (∆𝑉P) and ∆𝑡, and 𝑄Inf is calculated applying a mass balance in the liquid phase 
of the pilot AnMBR, as follows: 

𝑄P =
∆𝑉P
∆𝑡
 , (A.4) 

𝑄Inf = 𝑄P + 𝑄WS − 𝑄fe +
∆𝑉L
∆𝑡
 , (A.5) 

where 𝑄WS and 𝑄fe are the flow rates of wasted sludge and flux enhancer, respectively, and 

∆𝑉L the difference in 𝑉L between time-steps. 
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Table A1. Characteristics of the pilot AnMBR and operational conditions relevant for model 
calibration and validation. 

Description Nomenclature  Units Mean value Range 

Cross-sectional area MT 𝐴MT m2 0.68 NA 

Gas pressure in AR headspace 𝑝G bar 1.03 [1.00, 1.06] 

Gas superficial velocity in MT 𝑢G ×10-3 m s-1 3.0 [0.5,5.7] 

Liquid level in MT 𝐻MT m 1.42 [1.22, 1.56] 

Membrane surface area 𝐴m m2 6.25 NA 

Mixed liquor pH pH - 7.1 [6.8, 7.5] 

Mixed liquor temperature 𝑇 K 296 [292, 301] 

Motor frequency blower 𝑣B s-1 59 [50, 60] 

Motor frequency permeate pump 𝑣P s-1 60 [30, 60] 

Flow rate influent 𝑄Inf ×10-5 m3 s-1 2.0 [0.9, 38] 

Flow rate permeate 𝑄P ×10-5 m3 s-1 2.0 [0.9, 2.6] 

Flow rate wasted sludge a 𝑄WS ×10-5 m3 s-1 ~ 0 [0, 38] 

Total filtration time in one cycle 𝜃F s 300 NA 

Total relaxation time in one cycle 𝜃R s 90 NA 

Total mixed liquor volume 𝑉L m3 2.7 [2.0, 2.9] 

Transmembrane 
flux, 20°C-normalised 𝐽20 ×10-6 m3 m2 s-1 2.7 [1.5, 2.8] 

Transmembrane flux 𝐽 ×10-6 m3 m2 s-1 3.2 [1.7, 3.3] 

Transmembrane pressure TMP ×103 Pa 0.82 [0, 2.8] 

Abbreviations: AR: anaerobic reactor; COD: chemical oxygen demand; MT: membrane tank; NA: not 
applicable. 

a Sludge waste negligible during normal operation, except for a one-time sludge withdrawal of 31% of 
the mixed liquor performed on day 123. 

Table A2. Blackwater, permeate and mixed liquor characteristics during pilot AnMBR operation. 
Sample Parameter Nomenclature  

(for model) 
Units Mean 

value 
Range 

Blackwater Alkalinity  AlkBW kgCaCO3 m-3 0.69 [0.50, 0.82] 

 Ammonium  NH4BW kgN m-3 0.15 [0.10, 0.20] 

 Submicron COD  csCODBW kg m-3 0.34 [0.12, 0.63] 

 Total COD  tCODBW kg m-3 1.62 [0.7, 3.3] 

Mixed liquor Colloidal COD a cCOD kg m-3 0.50 [0.20, 0.87] 

Mean particle diameter 𝑑𝑝 ×105 m 2.7 [2.1, 4.5] 

Submicron COD csCOD kg m-3 0.59 [0.30, 0.96] 

Total suspended solids TSS kg m-3 9.6 [5.5, 16.0] 

Permeate Total COD pCOD kg m-3 0.09 [0.05, 0.11] 
a Calculated as the difference between the mixed liquor csCOD and the total permeate COD.  
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Figure A1. Pilot AnMBR mixed liquor characteristics used as inputs in the AnMBR and AnDFCm 
filtration models: (A) temperature measured by SCADA, (B) measured and interpolated mean particle 
diameter, (C) measured (markers) and interpolated (dotted lines) submicron COD, permeate COD and 
total suspended solids concentrations, and (D) calculated colloidal and particulate material 
concentrations. The grey-vertical areas represent the representative dataset, iD1 to iD8 from left to 
right, used for calibration of the filtration models. 
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Figure A2. Pilot AnMBR operational variables used during AnMBR filtration model calibration and 
validation: (A) fouling rate, and (B) gas superficial velocity in the membrane tank. The grey-vertical 
areas represent the representative dataset, iD1 to iD8 from left to right, used for calibration of the 
AnMBR filtration models. 

 

   
Figure A3. ∆𝑅20 measured in-situ in the pilot AnMBR. The grey area represent the data used for 
AnDFCm filtration model calibration 
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Batch flocculation kinetic experiments  

Flocculation kinetics were assessed in batch assays by intensive monitoring the PSD as a 
function of time after FE dosing into a grab sludge sample. The sludge samples were collected 
from a full-scale anaerobic digester treating primary and secondary sludge of a sewage 
treatment plant (Harnaschpolder, Den Hoorn, the Netherlands). The tests were performed in 
a jar-test apparatus with a mixing speed of 90 rpm and under dosing of 0.1, 0.2 and 0.3 g L-1 
of Adifloc KD451, with two replicates per dosage. The sludge was premixed for 10 minutes to 
homogenise the sample before FE dosing.  

The FE caused a rapid increase in the median particle size followed by a gradual decrease 
reaching a steady value, Figure A4. The time to reach steady values was higher at higher FE 
concentrations, varying from 10 to 90 minutes.  

The FE adsorption rate coefficient (𝑘ads) was estimated as the inverse of the flocculation 

time, thus, 𝑘ads was between 16 and 144 d-1, and a nominal value of 48 d-1 was assumed 
(equivalent to 30 minutes). Similarly, researchers achieved equilibrium conditions after 
mixing for 30 minutes for the absorption of polyDADMAC onto waste activated sludge (Zhao 
et al., 2016) and onto cellulosic fibres (Horvath et al., 2006). 

 
Figure A4. Median particle diameter immediately after flux enhancer addition at different 
concentrations into a sludge grab sample from full-scale digester. The experiments were performed in 
a jar test apparatus continuously mixed at 90 rpm. Duplicate measurements have the same colour. 
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Batch flux enhancer dosage-step supplementary data  

Table A3. Grab sludge samples characteristics used in flocculation tests collected from four different 
large-scale AnMBRs. 

AnMBR  
No. 

AnMBR fed Sample  
name 

pH TSS  
(g L-1) 

SMP-HS  
(mg L-1) 

SMP-PR  
(mg L-1) 

SMP-CH  
(mg L-1) 

1 Liquid fraction of 
OFMSW digestate a 

LiqOFMSW 8.1 12.4 5,164 NA b 339 

2 Source separated 
blackwater 

BWa 7.2 8.6 80 50 14 

 BWb 7.2 8.7 71 15 7 

 BWc 7.5 4.2 89 74 19 

 BWc-II 6.9 3.9 83 71 19 

3 Confectionery factory 
wastewater 

Food2 7.2 14.4 32 0 16 
 

Food2-II 7.2 17.8 33 0 16 

4 Whey and wash-
water 

Food3 7.2 9.5 0 109 20 
 

Food3-II 7.2 10.7 0 117 22 
a OFMSW, organic fraction municipal solid waste. 
b SMP-PR could not be determined because SMP-HS was too high, and the sample had to be diluted 

20 times. 
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Global sensitivity analysis results 

Table A4. Sensitivity analysis of alternate AnDFCm filtration models: standardised regression 
coefficients (𝛽𝑘) and mean of the standardised regression coefficients with 𝑅2>0.7 (𝛽𝑘̅̅ ̅). Influential 
parameters with absolute 𝛽𝑘 or 𝛽𝑘̅̅ ̅ value above 0.10 (*). 

Model 𝑅2 𝑅2̅̅̅̅  
𝛽𝑘 (𝛽𝑘̅̅ ̅) 

𝐶𝑑 𝑓C,c 𝑓X,c ℎ𝑡 𝐾𝑆,c 𝑞𝑚,MS 𝛽ST 𝛾 

D1c 𝛼c,1 0.92 0.92     -0.09 0.10*   

D1c 𝛼c,1𝑝 0.06 0.84     0.02 (0.12*) 0.004 (-0.12*)   

D1c 𝛼c,2 0.95 0.92     -0.11* 0.07   

D1c 𝛼c,2𝑝 0.02 ND a     ND a ND a   

D1c 𝛼c,3 0.98 0.98     -0.27* 0.25*   

D1c 𝛼c,3𝑝 0.02 0.93     0.04 (0.27*) -0.06 (-0.28*)   

D1c 𝛼c,4𝑝 0.00 0.98     0.01 (0.40*) -0.05 (-0.41*)   
a Cannot be determined because all 𝑅2<0.7. The subset used for parameter estimation 

was the one from D1c 𝛼c,2. 
(continued) 

 

Table A4 continued. Sensitivity analysis of alternate AnDFCm filtration models: standardised 
regression coefficients (𝛽𝑘) and mean of the standardised regression coefficients with 𝑅2>0.7 (𝛽𝑘̅̅ ̅). 
Influential parameters with absolute 𝛽𝑘 or 𝛽𝑘̅̅ ̅ value above 0.10 (*). 

Model 𝑅2 𝑅2̅̅̅̅  
𝛽𝑘 (𝛽𝑘̅̅ ̅) 

𝐶𝑑 𝑓C,c 𝑓X,c ℎ𝑡 𝐾𝑆,c 𝑞𝑚,MS 𝛽ST 𝛾 

D2 𝛼c,1 0.90 0.91 0.14* -0.03  -0.02   0.14* 0.01 

D2 𝛼c,1𝑝 0.89 0.89 0.12* -0.06  -0.02   0.18* -0.01 

D2 𝛼c,2 0.90 0.90 0.13* -0.06  -0.002   0.18* -0.005 

D2 𝛼c,2𝑝 0.89 0.90 0.12* -0.05  0.04   0.23* 0.02 

D2 𝛼c,3 0.98 0.95 0.48* -0.01  0.01   0.50* 0.0001 

D2 𝛼c,3𝑝 0.97 0.95 0.49* -0.01  -0.01   0.52* 0.01 

D2 𝛼c,4𝑝 0.98 0.95 0.58* -0.02  0.01   0.62* 0.01 

D3 𝛼c,1 0.93 0.91  0.004 -0.18*      

D3 𝛼c,1𝑝 0.93 0.91  -0.01 -0.19*      

D3 𝛼c,2 0.11 0.92  0.02 (0.01) 0.08 (0.20*)      

D3 𝛼c,2𝑝 0.21 0.92  -0.06 (-0.01) -0.03 (0.18*)      

D3 𝛼c,3 0.97 0.96  -0.56* 0.09      

D3 𝛼c,3𝑝 0.97 0.96  -0.55* 0.10*      

D3 𝛼c,4𝑝 0.01 0.91  0.03 (0.12*) 0.06 (0.62*)      

(continued) 
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Table A4 continued. Sensitivity analysis of alternate AnDFCm filtration models: standardised 
regression coefficients (𝛽𝑘) and mean of the standardised regression coefficients with 𝑅2>0.7 (𝛽𝑘̅̅ ̅). 
Influential parameters with absolute 𝛽𝑘 or 𝛽𝑘̅̅ ̅ value above 0.10 (*). 

Model 
𝛽𝑘 (𝛽𝑘̅̅ ̅)  

𝑘𝑐 𝑘CK 𝜀c0 𝜌C 𝜌X 𝑃𝑎 

D1c 𝛼c,1  -0.19* 0.93* 0.01 0.18*  

D1c 𝛼c,1𝑝  0.07 (0.19*) -0.26* (-0.87*) -0.001 (0.02) 0.03 (-0.20*) 0.01 (-0.03) 

D1c 𝛼c,2 -0.18*  0.92* 0.03 0.19*  

D2 𝛼c,1  -0.16* 0.88* 0.05 0.13*  

D2 𝛼c,1𝑝  -0.19* 0.87* 0.03 0.15*  

D2 𝛼c,2 -0.18*  0.89* 0.04 0.14* -0.18* 

D2 𝛼c,2𝑝 -0.18*  0.89* 0.04 0.17* -0.18* 

D3 𝛼c,1  -0.18* 0.92* 0.02 0.18*  

D3 𝛼c,1𝑝  -0.17* 0.90* 0.01 0.18* -0.003 

D3 𝛼c,2 -0.01 (0.17*)  0.31* (-0.89*) 0.01 (-0.01) -0.12* (-0.22*)  

D3 𝛼c,2𝑝 -0.05 (0.18*)  0.46* (-0.92*) 0.04 (0.005) 0.03 (-0.18*) 0.02 (0.01) 

(continued) 

Table A4 continued. Sensitivity analysis of alternate AnDFCm filtration models: standardised 
regression coefficients (𝛽𝑘) and mean of the standardised regression coefficients with 𝑅2>0.7 (𝛽𝑘̅̅ ̅). 
Influential parameters with absolute 𝛽𝑘 or 𝛽𝑘̅̅ ̅ value above 0.10 (*). 

Model 
𝛽𝑘 (𝛽𝑘̅̅ ̅)  

𝑃𝑎 𝑃b 𝜁1 𝜁2 𝜁3 𝜁4 

D1c 𝛼c,3  -0.52* -0.08 -0.44* -0.61* 0.11* 

D1c 𝛼c,3𝑝 -0.07 (-0.04) 0.07 (0.54*) -0.03 (0.50*) 0.12* (0.04) -1×10-5 (0.23*) 0.01 (-0.07) 

D1c 𝛼c,4𝑝   -0.04 (0.64*) -0.06 (0.15*) 0.01 (0.06) -0.02 (-0.01) 

D2 𝛼c,3  -0.49* -0.04 -0.46* -0.01 0.004 

D2 𝛼c,3𝑝 -0.003 -0.52* -0.04 -0.48* -0.003 -0.003 

D2 𝛼c,4𝑝   -0.05 -0.56* -0.01 -0.002 

D3 𝛼c,3  -0.48* -0.08 -0.39* -0.56* 0.10* 

D3 𝛼c,3𝑝 -0.02 -0.44* -0.06 -0.37* -0.57* 0.11* 

D3 𝛼c,4𝑝   -0.03 (0.08) -0.07 (0.67*) 0.002 (0.11*) 0.06 (-0.03) 
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Gas-step test in the pilot AnMBR 

The effect of gas sparging on the fouling rate was assessed with gas-step experiments in the 

pilot AnMBR. The gas superficial velocity in the membrane tank (𝑢G) was stepwise decreased 
at the beginning of each relaxation cycle. The step height was -0.4×10-3 m s-1, the maximum 

and minimum 𝑢G were 2.7×10-3 and 0.6×10-4 m s-1, respectively. The duration of the filtration 
and relaxation were 15 minutes. 

The FR models in Table 5.5 were optimised to fit the experimental fouling rate measured 
during the gas-step test in the pilot AnMBR. The gas-step test was performed at constant 𝐽20, 

𝐻MT, 𝑐X and 𝑐C; therefore, Equation (5.37) becomes 𝐹𝑅 = 𝐾𝐹𝑒
(𝑎0−𝑎1𝑢G), where 𝑎0 and 𝑎1 are 

parameters, with 𝑎1 = −𝛾1 𝐽20 𝐻MT⁄  and 𝑎0 = 𝐽20(𝛾0 + 𝛾2𝑐X); and Equation (5.43) becomes 

𝐹𝑅 = 𝑎0 𝑢G
−𝛾𝐺 with 𝑎0 = 𝑓conv𝐾𝐹𝑒

𝐽20(𝛾0+𝛾3𝑐C). The parameters were optimised to fit the 

experimental data using the function fit in Matlab®, the experimental and simulated results 
are displayed in Figure A5.  

 
Figure A5. Experimental and simulated fouling rate during the gas-step experiment in the pilot 
AnMBR.  
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Sludge viscosity in the AnDFCm installation 

The dynamic viscosity of sludge samples at different sludge concentrations was determined 
using the AnDFCm installation operated at 1.5 m s-1 crossflow velocity. Five sludge samples 
were collected from three different AnMBRs and one anerobic digester, the TSS of the samples 
ranged from 3 to 30 g L-1. 

The dynamic viscosity of the mixed liquor (𝜇L) was calculated using the experimentally 

measured pressure drop along membrane in the AnDFCm installation (∆𝑝) (Geilvoet, 2010; 

Moreau et al., 2009). 𝜇L was calculated with Equation (A.6) which combines Euler’s and 
Darcy-Weisbach equations for energy loss in a pipe and the empirical formula that relates the 
Darcy-Weisbach friction factor with the Reynold’s number (𝑅𝑒) for laminar flow (Re<2300).  

𝜇L =
𝐷m
2

32𝑢L
(−𝜌L 𝑔 +

∆𝑝

∆𝐿
) , (A.6) 

where 𝐷m is the membrane internal diameter (0.008 m), 𝑢L the fluid crossflow velocity 

(1.5 m s-1), 𝜌L the fluid density, 𝑔 the gravitational acceleration, and ∆𝐿 the height difference 

(0.95 m, membrane length). The density 𝜌L was assumed equal to the density of water (𝜌W) 

at the operational temperature 𝑇, calculated as follows: 

𝜌W = −0.0033 𝑇2 − 0.1048 𝑇 + 1001.5 . (A.7) 

The 𝑅𝑒 was calculated with Equation (A.8) to assess the rheological conditions, where 

laminar flow corresponds to 𝑅𝑒 <2300, and turbulent to 𝑅𝑒 > 4000. 

𝑅𝑒 =
𝜌L𝑢L𝐷m
𝜇L

 . (A.8) 

The viscosity of sludge sample with different TSS was measured in the AnDFCm 

installation, results are show in Table A5. All sludges presented laminar flow (𝑅𝑒<2300), 
which was assumed during viscosity calculation in Equation (A.6).  

The parameters of the mixed liquor viscosity model, 𝑎 and 𝑏 in Equation (5.41), were 
estimated with the function fit in Matlab®. The calibrated model was as follows:  

𝜇L
 𝜇W

= 9.35 𝑒0.047 TSS . (A.9) 

The water viscosity (𝜇W) was calculated at each sludge temperature with Equation (A.7). 
Figure A6 displays the experimental and simulated data. 
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Table A5. Sludge characteristics and viscosity calculations. 

Sludge  TSS (g L-1) 𝑇 (°C) 𝛥𝑝 (Pa) 𝑅𝑒 𝜇L (Pa s) 

1 3 17.3 18,334 1,047 0.0113 

2 5 21.5 17,902 1,104 0.0108 

3 10 24.3 19,693 978 0.0127 

4 15 30.2 22,198 728 0.0165 

5 30 29.5 33,202 400 0.0305 

 

 

 
Figure A6. Model calibration of the mixed liquor apparent viscosity (𝜇L), normalised by water 
viscosity (𝜇W), in the AnDFCm installation for sludges with different concentrations of total 
suspended solids (TSS).  
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A2. PETERSEN MATRIX  

Table A6. Process rate equations (𝜌𝑗) of the biochemical-flocculation model. 

𝑗 Process ↓ Units Rate 𝜌𝑗 

1 Hydrolysis of carbohydrates kgCOD m-3 d-1 𝑘ℎ𝑦𝑑,ch𝑋ch 
2 Hydrolysis of proteins kgCOD m-3 d-1 𝑘ℎ𝑦𝑑,pr𝑋pr 
3 Hydrolysis of lipids kgCOD m-3 d-1 𝑘ℎ𝑦𝑑,li𝑋li 

4 Uptake of sugars kgCOD m-3 d-1 𝑘𝑚,su
𝑆su

𝐾s,su+𝑆su
𝑋su𝐼1,su 

5 Uptake of amino acids kgCOD m-3 d-1 𝑘𝑚,aa
𝑆aa

𝐾𝑠,aa+𝑆aa
𝑋aa𝐼1,aa 

6 Uptake of LCFA kgCOD m-3 d-1 𝑘𝑚,fa
𝑆fa

𝐾𝑠,fa+𝑆fa
𝑋fa𝐼2,fa 

7 Uptake of valerate kgCOD m-3 d-1 𝑘𝑚,c4
𝑆va

𝐾𝑠,c4+𝑆va
𝑋c4

1

1 + 𝑆bu 𝑆va⁄
𝐼2,c4 

8 Uptake of butyrate kgCOD m-3 d-1 𝑘𝑚,c4
𝑆bu

𝐾𝑠,c4+𝑆bu
𝑋c4

1

1 + 𝑆va 𝑆bu⁄
𝐼2,c4 

9 Uptake of propionate kgCOD m-3 d-1 𝑘𝑚,pro
𝑆pro

𝐾𝑠,pro+𝑆pro
𝑋pro𝐼2,pro 

10 Uptake of acetate kgCOD m-3 d-1 𝑘𝑚,ac
𝑆ac

𝐾𝑠,ac+𝑆ac
𝑋ac𝐼3,ac 

11 Uptake of hydrogen kgCOD m-3 d-1 𝑘𝑚,h2
𝑆h2

𝐾𝑠,h2+𝑆h2
𝑋h2𝐼1,h2 

12 Decay of 𝑋su kgCOD m-3 d-1 𝑏su𝑋su 
13 Decay of 𝑋aa kgCOD m-3 d-1 𝑏aa𝑋aa 
14 Decay of 𝑋fa kgCOD m-3 d-1 𝑏fa𝑋fa 
15 Decay of 𝑋c4 kgCOD m-3 d-1 𝑏c4𝑋c4 
16 Decay of 𝑋pro kgCOD m-3 d-1 𝑏pro𝑋pro 
17 Decay of 𝑋ac kgCOD m-3 d-1 𝑏ac𝑋ac 
18 Decay of 𝑋h2 kgCOD m-3 d-1 𝑏h2𝑋h2 
19 Disintegration of biomass kgCOD m-3 d-1 𝑘dis,bio𝑋bio 
20 Liquid-gas transfer of H2 kmol m-3 d-1 𝑘𝐿𝑎(𝑆h2 − 𝐾𝐻,h2 𝑐h2,G𝑅𝑇) 
21 Liquid-gas transfer of CH4 kmol m-3 d-1 𝑘𝐿𝑎(𝑆ch4 − 𝐾𝐻,ch4 𝑐ch4,G𝑅𝑇) 
22 Liquid-gas transfer of CO2 kmol m-3 d-1 𝑘𝐿𝑎(𝑆co2 − 𝐾𝐻,ch4𝑐co2,G𝑅𝑇) 

23 
Adsorption of flux enhancer 
onto particulate material kgCOD m-3 d-1 𝑘ads(𝑋fe,𝑒 − 𝑋fe) 

24 Flocculation of colloidal 
material kgCOD m-3 d-1 𝑌fe,C 𝑘ads(𝑋fe,𝑒 − 𝑋fe)

 𝐶I 𝑖COD,CI⁄

𝑐X + 𝑐C

𝑋I
𝑋I + 1 × 10

−6
  

Inhibition factors: 
𝐼1,𝑗 = 𝐼ph,𝑗  𝐼IN,lim 

𝐼2,𝑗 = 𝐼ph,𝑗  𝐼IN,lim 𝐼h2,𝑗 

𝐼3,𝑗 = 𝐼ph,𝑗  𝐼IN,lim 𝐼fe 

𝐼ph,𝑗 =
1 + 2 × 100.5(pHLL,𝑗−pHUL,𝑗)

1 + 10(pH−pHUL,𝑗) + 10(pHLL,𝑗−pH)
 

𝐼IN,lim =
𝑆IN

𝐾𝑠,IN+𝑆IN
 

𝐼h2,𝑗 =
1

1 + 𝑆h2 𝐾𝐼,h2,𝑗⁄
 

𝐼fe =
1

1 + 𝑆fe 𝐾𝐼,fe⁄
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Table A7. Stoichiometric coefficients (𝜐𝑖,𝑗) of the biochemical-flocculation model. 

Component → 𝑖 1 2 3 4 

𝑗 Process ↓ 𝑆su 𝑆aa 𝑆fa 𝑆va 

1 Hydrolysis of carbohydrates 1    

2 Hydrolysis of proteins  1   

3 Hydrolysis of lipids 1 -𝑓fa,li  𝑓fa,li  

4 Uptake of sugars -1    

5 Uptake of amino acids  -1  
(1
− 𝑌aa)𝑓va,aa 

6 Uptake of LCFA   -1  

7 Uptake of valerate    -1 

8 Uptake of butyrate     

9 Uptake of propionate     

10 Uptake of acetate     

11 Uptake of hydrogen     

12 Decay of Xsu     

13 Decay of Xaa     

14 Decay of Xfa     

15 Decay of Xc4     

16 Decay of Xpro     

17 Decay of Xac     

18 Decay of Xh2     

19 Disintegration of biomass     

20 Liquid-gas transfer of H2     

21 Liquid-gas transfer of CH4     

22 Liquid-gas transfer of CO2     

23 Adsorption of flux enhancer 
onto particulate material     

24 Flocculation of colloidal material     

 Component → 
(kgCOD m-3) 
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Table A7 continued. Stoichiometric coefficients (𝜐𝑖,𝑗) of the biochemical-flocculation model. 

𝑖  
𝑗 

5 6 7 8 9 10 

𝑆bu 𝑆pro 𝑆ac 𝑆h2 𝑆ch4 𝑆IC 

1       

2       

3       

4 
(1
− 𝑌su)𝑓bu,su 

(1
− 𝑌su)𝑓pro,su 

(1
− 𝑌su)𝑓ac,su 

(1
− 𝑌su)𝑓h2,su 

 −∑ 𝑖C,𝑖𝜈𝑖,su
𝑖≠10

 

5 
(1
− 𝑌aa)𝑓bu,aa 

(1
− 𝑌aa)𝑓pro,aa 

(1
− 𝑌aa)𝑓ac,aa 

(1
− 𝑌aa)𝑓h2,aa 

 − ∑ 𝑖C,𝑖𝜈𝑖,aa
𝑖≠10

 

6   (1 − 𝑌fa)0.7 (1 − 𝑌fa)0.3   

7  (1 − 𝑌c4)0.54 (1 − 𝑌c4)0.31 (1 − 𝑌c4)0.15   

8 -1  (1 − 𝑌c4)0.8 (1 − 𝑌c4)0.2   

9  -1 
(1

− 𝑌pro)0.57 
(1

− 𝑌pro)0.43 
 − ∑ 𝑖C,𝑖𝜈𝑖,pro

𝑖≠10

 

10   -1  1 − 𝑌ac −∑ 𝑖C,𝑖𝜈𝑖,ac
𝑖≠10

 

11    -1 1 − 𝑌h2 −∑ 𝑖C,𝑖𝜈𝑖,h2
𝑖≠10

 

12       

13       

14       

15       

16       

17       

18       

19       

20    -1   

21     -1  

22      -1 

23       

24       

C
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Table A7 continued. Stoichiometric coefficients (𝜐𝑖,𝑗) of the biochemical-flocculation model. 

𝑖  
𝑗 

11 12 13 14 15 16 

𝑆IN 𝑆I 𝑆fe 𝑋ch 𝑋pr 𝑋li 

1    -1   

2     -1  

3      -1 

4 −𝑌𝑠𝑢𝑖N,su      

5 −𝑌aa𝑖N,aa      

6 −𝑌fa𝑖N,fa      

7 −𝑌c4𝑖N,c4      

8 −𝑌c4𝑖N,c4      

9 −𝑌pro𝑖N,pro      

10 −𝑌ac𝑖N,ac      

11 −𝑌h2𝑖N,h2      

12       

13       

14       

15       

16       

17       

18       

19  𝑓SI,bio  𝑓ch,bio 𝑓pr,bio 𝑓li,bio 

20       

21       

22       

23   -1    

24       
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Table A7 continued. Stoichiometric coefficients (𝜐𝑖,𝑗) of the biochemical-flocculation model. 

𝑖  
𝑗 

17 18 19 20 21 22 23 

𝑋su 𝑋aa 𝑋fa 𝑋c4 𝑋pro 𝑋ac 𝑋h2 

1        

2        

3        

4 𝑌su       

5  𝑌aa      

6   𝑌fa     

7    Yc4    

8    𝑌c4    

9     𝑌pro   

10      𝑌ac  

11       𝑌h2 

12 -1       

13  -1      

14   -1     

15    -1    

16     -1   

17      -1  

18       -1 

19        

20        

21        

22        

23        

24        
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Table A7 continued. Stoichiometric coefficients (𝜐𝑖,𝑗) of the biochemical-flocculation model. 

𝑖  
𝑗 

24 25 26 27 28 29 30 

𝑋I 𝐶I 𝑋fe 𝑋bio 𝑐h2,G 𝑐ch4,G 𝑐co2,G 

1        

2        

3        

4        

5        

6        

7        

8        

9        

10        

11        

12    1    

13    1    

14    1    

15    1    

16    1    

17    1    

18    1    

19 𝑓XI,bio 𝑓CI,bio  -1    

20     1/16   

21      1/64  

22       1 

23   1     

24 1 -1      
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A3. PARAMETER VALUES 

Most parameter values were taken from literature. The reaction rate for process 𝑗 (𝑘𝑗) was 

calculated at the operational temperature as follows (Durán, 2013): 

𝑘𝑗|𝑇
= 𝑘𝑗|𝑇ref

 𝜃𝑗
(𝑇−𝑇ref) , (A.10) 

where 𝜃𝑗  is the temperature correction factor for 𝑘𝑗 , and 𝑇ref the reference temperature. The 

reaction rate 𝑘𝑗 is: the first order reaction rate coefficient for hydrolysis (𝑘hyd,𝑗) for 𝑗 ∈ [1,3], 

the Monod maximum specific uptake rate (𝑘𝑚,𝑗) for 𝑗 ∈ [4,11], the first order decay rate of 

microorganism (𝑏𝑗) for 𝑗 ∈ [12,18], and the first order reaction rate coefficient for biomass 

disintegration (𝑘dis,bio) for 𝑗 = 19. Table A8 summarises the values for 𝑘𝑗 at 𝑇ref =308.15 K 

and 𝜃𝑗 . 

Table A8 shows the values of the following stoichiometric and inhibitions parameters: 

Monod half saturation coefficient for process 𝑗 (𝐾𝑆,𝑗), Monod half saturation coefficient for 

inorganic nitrogen (𝐾𝑆,IN), concentration of inhibitor 𝑖 giving 50% inhibition on process 𝑗 

(𝐾𝐼,𝑖,𝑗), empirical upper (pHUL,𝑗) and lower (pHLL,𝑗) pH inhibition coefficients, and yield 

coefficient of biomass on substrate for process 𝑗 (𝑌𝑗).  

Table A9 shows the carbon and nitrogen content in the different components and the 
theoretical chemical oxygen demand used to calculate the total concentration of particulate 
and colloidal material expressed as suspended solids.   

The gas-liquid transfer coefficient (𝑘𝐿𝑎) for oxygen, 178 d-1 (Metcalf et al., 2002), was used 
for all gases. Henry’s law coefficients were calculated at the operational temperature with 

Equation (A.11) using the values at 𝑇ref. The 𝐾𝐻,𝑖 at 308.15 K were 0.012 kgCOD m-3 bar-1, 

0.108 kgCOD m-3 bar-1, and 0.027 kmol m-3 bar-1, and 𝜃𝐻,𝑖 were 525, 1744, 2405 for hydrogen, 

methane and carbon dioxide, respectively (Sander, 2015). 

𝐾𝐻,𝑖|𝑇 = 𝐾𝐻,𝑖|𝑇ref
  𝑒
𝜃𝐻,𝑖(

1
𝑇
 − 

1
𝑇ref

)
 . (A.11) 
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Table A8. Kinetic and stoichiometric parameter values for biochemical reactions at 35°C. 

𝑗 
𝑘𝑗 a 
(d-1) 

𝜃𝑗  
(-) 

𝐾𝑆,𝑗  
(kgCOD m-3) 

𝐾𝑆,IN  
(M) 

𝐾𝐼,h2,𝑗  
(kgCOD m-3) 

𝐾𝐼,fe,𝑗 
(kgCOD m-3) 

pHUL,𝑗  
(-) 

pHLL,𝑗  
(-) 

𝑌𝑗  
(-) 

1 0.5 b 1.066        

2 0.5 b 1.066        

3 0.5 b 1.066        

4 30 1.033 0.5 1×10-4   5.5 4 0.1 

5 50 1.033 0.3 1×10-4   5.5 4 0.08 

6 6 1.033 0.4 1×10-4 5×10-6  5.5 4 0.06 

7 20 1.043 0.2 1×10-4 1×10-5  5.5 4 0.06 

8 20 1.043 0.2 1×10-4 1×10-5  5.5 4 0.06 

9 13 1.043 0.1 1×10-4 3.5×10-6  5.5 4 0.04 

10 8 1.031 0.15 1×10-4  0.02 7 6 0.05 

11 35 1.030 7×10-6 1×10-4   6 5 0.06 

12-18 0.1 1.066        

19 0.15 
b 1.066               

Note: most values are the ones suggested for mesophilic solids in the ADM1 (Batstone et al., 2002), 
except: 𝑏𝑗 (Batstone et al., 2004), 𝜃𝑗 (Durán, 2013), 𝐾𝐼,fe (Odriozola et al., 2019) and 𝑘dis,bio (Tugtas et 
al., 2006).  
a 𝑘𝑗 is 𝑘hyd,𝑗 for 𝑗 ∈ [1,3], 𝑘𝑚,𝑗 for 𝑗 ∈ [4,11], 𝑏𝑗 for 𝑗 ∈ [12,18], and 𝑘dis,bio for 𝑗 = 19. 
b Initial guess for parameter estimation.  
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Table A9. Composition matrix: nitrogen content (𝑖N,𝑖), carbon content (𝑖C,𝑖) and theoretical chemical 
oxygen demand (𝑖COD,𝑖) for the component 𝑖. 

Component 𝑖 
𝑖N,𝑖  

(kmol kgCOD-1) 
𝑖C,𝑖  

(kmol kgCOD-1) 
𝑖COD,𝑖   

(kgCOD kg-1) 

1 𝑆su Monosaccharides  0 0.0313   

2 𝑆aa Amino Acids 0.007 0.0054 c   

3 𝑆fa Long chain fatty acids (LCFA) 0 0.0217   

4 𝑆va Total Valerate 0 0.0240   

5 𝑆bu Total Butyrate 0 0.0250   

6 𝑆pro Total Propionate 0 0.0268   

7 𝑆ac Total Acetate 0 0.0313   

8 𝑆h2 Hydrogen gas 0 0   

9 𝑆ch4 Methane gas 0 0.0156   

10 𝑆IC Inorganic Carbon 0 1   

11 𝑆IN Inorganic Nitrogen  1 0   

12 𝑆I Soluble inerts a  0.00625 0.0313    

13 𝑆fe Flux enhancer in bulk liquid  0.0045 b 0.0357 b   

14 𝑋ch Carbohydrates  0 0.0313 1.19 d 

15 𝑋pr Proteins 0.007 0.0054 c 1.42 d 

16 𝑋li Lipids 0 0.0220 2.90 d 

17 𝑋su Sugar degraders 0.00625 0.0313 1.42 e 

18 𝑋aa Amino acid degraders 0.00625 0.0313 1.42 e 

19 𝑋fa LCFA degraders 0.00625 0.0313 1.42 e 

20 𝑋c4 Valerate and butyrate degraders 0.00625 0.0313 1.42 e 

21 𝑋pro Propionate degraders 0.00625 0.0313 1.42 e 

22 𝑋ac Acetate degraders 0.00625 0.0313 1.42 e 

23 𝑋h2 Hydrogen degraders 0.00625 0.0313 1.42 e 

24 𝑋I Particulate inerts a 0.00625 0.0313 1.42 e 

25 𝐶I Colloidal Inerts a 0.00625 0.0313 1.42 e 

26 𝑋fe Flux enhancer adsorbed 0.0045 b 0.0357 b 1.14 
f 

27 𝑋bio Decayed biomass 0.00625 0.0313 1.42 e 

Note: unless otherwise stated the reference is the ADM1 (Batstone et al., 2002). 
a Biomass values assumed for inert material. 
b Calculated from the chemical formula of polydiallyldimethylammonium chloride, (C8H16NCl)n. 
c Mean value of inorganic carbon content in different amino acids presented in the ADM1.  
d Reference Lidholm and Ossiansson (2008). 
e Reference Mara et al. (2003). 
f Experimentally measured in Adifloc KD451.  
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A4. GSA CONVERGENCE ANALYSIS  

The sample size, 𝑁, used for GSA was determined by convergence analysis based on the 
stability in parameter selection. The convergence analysis was as follows (Benedetti et al., 

2011): 30 batches (𝑘=30) of Monte Carlo simulations using Latin hypercube sampling with 100 

samples (𝑛=100) per batch were performed. The SRC were calculated after each batch with 

the cumulative number of output files, where 𝛽𝑖,𝑘 was the SRC of the i-th parameter in the k-

th batch. The convergence criterion was the stability in the parameter selection, with 𝑁=100𝑘 

when the parameters with |𝛽𝑖,𝑘| ≥ 0.1 in the k-th batch remain the same for five consecutive 

batches. 

A5. SIMULATED INFLUENT CHARACTERISTICS 

 
Figure A7. Simulated blackwater characteristics used in the simulation environment: (A) total COD, 
and (B) submicron COD. 
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A6. CALIBRATION AND VALIDATION OF BIOCHEMICAL-FLOCCULATION MODEL 

Fast processes calibration results  

Table A10. Flocculation model calibration results: mean of the standardised regression coefficients 
with 𝑅2>0.7 (𝛽𝑘̅̅ ̅) for different output variables, and values (𝜃), standard deviation (𝜎𝜃), and relative 
error (𝜎𝜃 𝜃⁄ ) of the estimated parameters.  

 Parameter Units 𝛽𝑘̅̅ ̅ for csCOD 𝛽𝑘̅̅ ̅ for 𝑑𝑝 𝜃 𝜎𝜃 𝜎𝜃 𝜃⁄  

𝑘ads d-1 -0.07 0.07    

𝑘floc,fe m kgCOD-1 m3 -0.02 0.98 6.00×10-4 0.43×10-4 0.07 

𝐾𝐿,ads m3 kg-1 -0.03 0.003    

𝑞𝑚,ads kgCOD kg-1 -0.03 0.02    

𝑌fe,C kg kg-1 -0.95 0.0004 649.8 0.34 0.001 

 

Slow processes calibration results  

Table A11. Sensitivity analysis of the biochemical-flocculation model: standardised regression 
coefficients (𝛽𝑘) and mean of the standardised regression coefficients with 𝑅2>0.7 (𝛽𝑘̅̅ ̅) for different 
output variables. Influential parameters with absolute value above 0.1 (*). 

Parameter Units 
𝛽𝑘 for TSS, 
cCOD & 𝑑𝑝 

𝛽𝑘 for 
TSS & 
cCOD 

𝛽𝑘 for 
TSS 

𝛽𝑘 for 
𝑑𝑝 

𝛽𝑘 for 
cCOD 

𝛽𝑘̅̅ ̅ for 
TSS 

 𝑅2 → 0.97 0.97 0.45 0.95 0.97 𝑅2̅̅̅̅ =0.77 

𝑖C,CXI,bio kgCOD kgCOD-1 0.05 0.05 -0.01 -0.01 0.05 -0.01 

𝑖CI,CSInf kgCOD kgCOD-1 0.96* 0.96* 0.32* 0.06 0.95* 0.46* 

𝑖Saa,SInf kgCOD kgCOD-1 0.01 0.01 -0.05 -0.01 0.01 -0.02 

𝑖Sfa,SInf kgCOD kgCOD-1 0.01 0.01 0.03 0.01 0.01 0.01 

𝑖SI,SInf kgCOD kgCOD-1 -0.001 -0.001 0.002 -0.01 -0.001 -0.01 

𝑖Ssu,SInf kgCOD kgCOD-1 -0.01 -0.01 0.01 -0.01 -0.01 -0.003 

𝑖Svfa,SInf kgCOD kgCOD-1 -0.001 -0.001 -0.01 0.02 -0.0003 0.001 

𝑖Xch,XInf kgCOD kgCOD-1 0.04 0.04 -0.25* -0.05 0.06 -0.25* 

𝑖XI,XInf kgCOD kgCOD-1 -0.17* -0.17* 0.44* 0.09 -0.20* 0.62* 

𝑖Xli,XInf kgCOD kgCOD-1 0.04 0.04 -0.22* -0.05 0.06 -0.24* 

𝑖Xpr,XInf kgCOD kgCOD-1 0.04 0.04 -0.15* -0.02 0.05 -0.21* 

𝑘dis,bio d-1 0.001 0.001 -0.01 -0.01 0.002 -0.003 

𝑘floc d-1 -0.02 -0.01 0.00 -0.95* -0.01 0.004 

𝑘hyd d-1 0.002 0.002 -0.11* -0.01 0.01 -0.05 
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Table A12. Parameter estimation of the biochemical-flocculation model: values (𝜃), standard 
deviation (𝜎𝜃), and relative error (𝜎𝜃 𝜃⁄ ) of the estimated parameters, and output variable used for 
parameter estimation.  

Parameter Units 𝜃 𝜎𝜃 𝜎𝜃 𝜃⁄  Output variable 

𝑖CI,CSInf kgCOD kgCOD-1 0.0287 6×10-6 2×10-4 cCOD & TSS 

𝑖XI,XInf kgCOD kgCOD-1 0.189 9×10-6 5×10-5 cCOD & TSS 

𝑘floc d-1 0.16 0.02 0.128 𝑑𝑝 

 

Prediction with calibrated model  

 
 

 
Figure A8. Simulated concentrations inside the reactor during operational period of pilot AnMBR 
dosed with flux enhancer (FE) on day 16: (A) particulate and colloidal materials, and (B) FE 
components. 
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A7. CALIBRATION AND VALIDATION OF ALTERNATE ANMBR FILTRATION 

MODELS 

Global sensitivity analysis results 

Table A13. Sensitivity analysis of the alternate AnMBR empirical fouling rate (FR) models: 
standardised regression coefficients (𝛽𝑘) and mean of the standardised regression coefficients with 
𝑅2>0.7 (𝛽𝑘̅̅ ̅). Influential parameters with absolute 𝛽𝑘 or 𝛽𝑘̅̅ ̅ value above 0.10 (*).  

Model 𝑅2 𝑅2̅̅̅̅  
𝛽𝑘 (𝛽𝑘̅̅ ̅) 

𝐾𝐹 𝛾0 𝛾1 𝛾2 𝛾3 𝛾4 𝛾𝐺 

FR1 0.13 0.81 0.05 
(0.12*) 

-0.28* 
(0.86*) 

-0.10 
(-0.14*) 

0.15* 
(0.19*) 

0.09 
(0.15*) 

  

FR2 0.85 0.83 -0.13* -0.88* 0.12* 
 

-0.17*   

FR3 0.02 0.85 0.10 
(0.15*) 

0.04 
(0.90*) 

  
0.08 

(0.13*) 
 0.07 

(0.06) 
FR4 0.88 0.81 -0.12* -0.90* 0.11* -0.13* -0.14* 0.13*  

FR5 0.82 0.82 -0.15* -0.84* 0.11* 
 

-0.18* 0.16*  

FR6 0.88 0.83 -0.11* -0.91* 
  

-0.15* 0.17* -0.10 
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Table A14. Sensitivity analysis of the alternate AnMBR filtration models: standardised regression 
coefficients (𝛽𝑘) and mean of the standardised regression coefficients with 𝑅2>0.7 (𝛽𝑘̅̅ ̅). Influential 
parameters with absolute 𝛽𝑘 or 𝛽𝑘̅̅ ̅ value above 0.10 (*).  

Model 𝑅2 𝑅2̅̅̅̅  
𝛽𝑘 (𝛽𝑘̅̅ ̅) 

𝐶𝑑 𝑓C,c 𝐾𝑆,c 𝑞𝑚,MS 𝛽ST 𝛾 

D1a 𝛼c,1 0.92 0.89   -0.01 0.02   

D1a 𝛼c,1𝑝 0.03 0.80   -0.02 (0.001) -0.09(-0.002)   

D1a 𝛼c,2 0.95 0.89   -0.01 -0.004   

D1a 𝛼c,2𝑝 0.07 0.83   -0.02 (-0.03) -0.09 (-0.02)   

D1a 𝛼c,3 0.98 0.92   0.003 0.001   

D1a 𝛼c,3𝑝 0.96 0.88   -0.06 0.08   

D1a 𝛼c,4𝑝 0.05 0.79   0.11* (0.06) -0.03 (-0.05)   

D1b 𝛼c,1 0.94 0.91   -0.004 -0.01   

D1b 𝛼c,1𝑝 0.04 0.79   0.04 (0.02) 0.05 (-0.03)   

D1b 𝛼c,2 0.97 0.91   0.01 -0.002   

D1b 𝛼c,2𝑝 0.03 0.84   -0.02(-0.001) -0.02 (-0.03)   

D1b 𝛼c,3 0.97 0.91   -0.01 0.01   

D1b 𝛼c,3𝑝 0.96 0.88   -0.08 0.12*   

D1b 𝛼c,4𝑝 0.03 0.87   -0.04 (0.04) -0.10 (-0.08)   

D1c 𝛼c,1 0.93 0.92   -0.02 -0.01   

D1c 𝛼c,1𝑝 0.84 0.85   0.01 0.03   

D1c 𝛼c,2 0.94 0.93   -0.02 0.02   

D1c 𝛼c,2𝑝 0.74 0.73   -0.01 0.02   

D1c 𝛼c,3 0.99 0.92   -0.04 0.06   

D1c 𝛼c,3𝑝 0.98 0.91   -0.07 0.10*   

D1c 𝛼c,4𝑝 0.92 0.86   -0.27* 0.37*   

D2 𝛼c,1 0.90 0.90 0.14* -0.03   0.21* 0.01 

D2 𝛼c,1𝑝 0.91 0.90 0.16* 0.01   0.20* 0.02 

D2 𝛼c,2 0.90 0.90 0.16* -0.04   0.21* -0.005 

D2 𝛼c,2𝑝 0.89 0.89 0.14* -0.02   0.17* -0.01 

D2 𝛼c,3 0.98 0.97 0.39* -0.07   0.56* -0.01 

D2 𝛼c,3𝑝 0.98 0.97 0.42* -0.05   0.59* 0.003 

D2 𝛼c,4𝑝 0.98 0.97 0.47* -0.08   0.67* -0.004 

(continued)  
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Table A14 continued. Sensitivity analysis of the alternate AnMBR filtration models: standardised 
regression coefficients (𝛽𝑘) and mean of the standardised regression coefficients with 𝑅2>0.7 (𝛽𝑘̅̅ ̅). 
Influential parameters with absolute 𝛽𝑘 or 𝛽𝑘̅̅ ̅ value above 0.10 (*). 

Model 
𝛽𝑘 (𝛽𝑘̅̅ ̅) 

𝐾𝐹 𝛾0 𝛾1 𝛾2 𝛾3 

D1a 𝛼c,1 -0.02 -0.32* 0.04 -0.03  

D1a 𝛼c,1𝑝 0.02 (0.04) -0.004 (0.28*) -0.01 (-0.07) 0.03 (0.05)  

D1a 𝛼c,2 -0.04 -0.31* 0.03 -0.03  

D1a 𝛼c,2𝑝 0.04 (0.03) -0.02 (0.02) -0.004 (-0.02) 0.06 (0.02)  

D1a 𝛼c,3 -0.09 -0.78* 0.11* -0.11*  

D1a 𝛼c,3𝑝 -0.10 -0.69* 0.10* -0.09  

D1a 𝛼c,4𝑝 -0.06 (0.05) 0.11* (0.48*) -0.02 (-0.08) 0.11* (0.05)  

D1b 𝛼c,1 -0.03 -0.16* 0.02 -0.02 -0.03 

D1b 𝛼c,1𝑝 0.04 (0.02) 0.05 (0.23*) -0.01 (-0.03) 0.04 (0.02) 0.06 (0.01) 

D1b 𝛼c,2 -0.01 -0.14* 0.02 -0.03 -0.03 

D1b 𝛼c,2𝑝 0.06 (0.01) 0.01 (0.01) -0.06 (-0.02) -0.01 (-0.01) -0.03 (0.005) 

D1b 𝛼c,3 -0.07 -0.49* 0.09 -0.07 -0.10 

D1b 𝛼c,3𝑝 -0.03 -0.40* 0.07 -0.06 -0.08 

D1b 𝛼c,4𝑝 0.05 (0.07) 0.06 (0.51*) -0.03 (-0.03) -0.06 (0.05) -0.02 (0.03) 

(continued) 
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Table A14 continued. Sensitivity analysis of the alternate AnMBR filtration models: standardised 
regression coefficients (𝛽𝑘) and mean of the standardised regression coefficients with 𝑅2>0.7 (𝛽𝑘̅̅ ̅). 
Influential parameters with absolute 𝛽𝑘 or 𝛽𝑘̅̅ ̅ value above 0.10 (*). 

Model 
𝛽𝑘 (𝛽𝑘̅̅ ̅) 

𝑘𝑐 𝑘CK 𝜀c0 𝜌C 𝜌X 𝑃a 

D1a 𝛼c,1  -0.18* 0.85* 0.003 0.18*  

D1a 𝛼c,1𝑝  0.04 (0.18*) -0.07 (-0.77*) -0.04 (0.01) -0.08 (-0.18*) -0.08 (-0.04) 

D1a 𝛼c,2 -0.18*  0.89* 0.01 0.17*  

D1a 𝛼c,2𝑝 0.09 (0.22*)  -0.2* (-0.86*) 0.005 (-0.03) -0.1 (-0.21*) -0.06 (-0.07) 

D1b 𝛼c,1  -0.19* 0.91* -0.001 0.18*  

D1b 𝛼c,1𝑝  0.08 (0.2*) -0.09 (-0.81*) 0.05 (0.02) -0.05 (-0.18*) -0.06 (-0.07) 

D1b 𝛼c,2 -0.19*  0.93* 0.01 0.17*  

D1b 𝛼c,2𝑝 -0.03 (0.2*)  -0.09 (-0.86*) 0.0004 (-0.03) -0.08 (-0.18*) -0.08 (-0.06) 

D1c 𝛼c,1  -0.18* 0.91* 0.03 0.21*  

D1c 𝛼c,1𝑝  -0.19* 0.87* -0.01 0.17* 0.05 

D1c 𝛼c,2 -0.20*  0.93* 0.01 0.19*  

D1c 𝛼c,2𝑝 -0.18*  0.81* 0.02 0.19* 0.08 

D2 𝛼c,1  -0.17* 0.86* 0.02 0.16*  

D2 𝛼c,1𝑝  -0.17* 0.88* 0.04 0.17* 0.02 

D2 𝛼c,2 -0.16*  0.89* 0.03 0.17*  

D2 𝛼c,2𝑝 -0.18*  0.88* -0.01 0.17* -0.01 

(continued) 
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Table A14 continued. Sensitivity analysis of the alternate AnMBR filtration models: standardised 
regression coefficients (𝛽𝑘) and mean of the standardised regression coefficients with 𝑅2>0.7 (𝛽𝑘̅̅ ̅). 
Influential parameters with absolute 𝛽𝑘 or 𝛽𝑘̅̅ ̅ value above 0.10 (*). 

Model 
𝛽𝑘 (𝛽𝑘̅̅ ̅) 

𝑃𝑎 𝑃b 𝜁1 𝜁2 𝜁3 𝜁4 

D1a 𝛼c,3  -0.43* -0.07 -0.37* -0.19* 0.04 

D1a 𝛼c,3𝑝 0.14* -0.42* -0.05 -0.38* -0.15* 0.04 

D1a 𝛼c,4𝑝   0.02 (0.24*) -0.03 (0.1) -0.06 (0.57*) -0.05 (-0.20*) 

D1b 𝛼c,3  -0.64* -0.08 -0.54* -0.26* 0.04 

D1b 𝛼c,3𝑝 0.20* -0.59* -0.06 -0.52* -0.2* 0.04 

D1b 𝛼c,4𝑝   -0.05 (0.49*) 0.05 (0.12*) 0.03 (0.35*) 0.06 (-0.13*) 

D1c 𝛼c,3  -0.70* -0.10* -0.61* -0.28* 0.06 

D1c 𝛼c,3𝑝 0.12* -0.68* -0.09 -0.60* -0.25* 0.05 

D1c 𝛼c,4𝑝   -0.05 -0.81* -0.31* 0.05 

D2 𝛼c,3  -0.48* -0.04 -0.44* -0.06 0.01 

D2 𝛼c,3𝑝 -0.001 -0.50* -0.04 -0.47* -0.08 0.01 

D2 𝛼c,4𝑝   -0.04 -0.52* -0.08 0.01 
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Parameter estimation results 

Table A15. Parameter estimation procedure for the alternate AnMBR filtration models. Parameters 
contained in subset 𝜃𝐼𝐼 and 𝜃𝐼𝐼, number of pairwise correlations above 0.50 (nCorr) and root mean 
square error (RMSE) at optimal parameter values. 

Mode 
Subset 𝜃𝐼𝐼  Subset 𝜃𝐼𝐼𝐼 

Parameters nCorr RMSE  Parameters nCorr RMSE 
D1a 𝛼c,1 {𝜀c0, 𝛾0} 0 10.3  {𝑘CK, 𝜌X} 1 8.0 
D1a 𝛼c,1𝑝 {𝜀c0, 𝛾0} 0 10.4  {𝑘CK, 𝜌X} 0 8.4 
D1a 𝛼c,2 {𝜀c0, 𝛾0} 0 11.1  {𝑘𝑐 , 𝜌X} 1 7.9 
D1a 𝛼c,2𝑝 {𝜀c0} NA 10.9  {𝑘𝑐 , 𝜌X} 0 7.7 
D1a 𝛼c,3 {𝛾0, 𝜁2, 𝜁3, 𝛾2} NDa 10.6  {𝛾1, 𝑃b} NDa 10.6 
D1a 𝛼c,3𝑝 {𝛾0, 𝜁3, 𝑃a} 1 11.1  {𝛾1, 𝑃b, 𝜁2} 1 11.0 
D1a 𝛼c,4𝑝 {𝛾0, 𝜁2, 𝜁1} 1 57.6  {𝜁4} NA 57.6 
D1b 𝛼c,1 {𝜀c0, 𝛾0} 0 10.1  {𝑘CK, 𝜌X} 1 8.3 
D1b 𝛼c,1𝑝 {𝜀c0, 𝛾0} 0 10.4  {𝑘CK, 𝜌X} 0 8.4 
D1b 𝛼c,2 {𝜀c0, 𝛾0} 0 10.8  {𝑘𝑐 , 𝜌X} 1 8.2 
D1b 𝛼c,2𝑝 {𝜀c0} NA 10.9  {𝑘𝑐 , 𝜌X} 1 8.2 
D1b 𝛼c,3 {𝛾0, 𝜁3, 𝑃b} NDa 7.6  {𝜁2} NA 7.6 
D1b 𝛼c,3𝑝 {𝛾0, 𝜁3, 𝑃b, 𝑞𝑚,MS} 1 9.3  {𝑃a, 𝜁2} NDa 9.3 
D1b 𝛼c,4𝑝 {𝛾0, 𝜁1, 𝜁2, 𝜁3, 𝜁4} 6 157.3  NA NA NA 
D1c 𝛼c,1 {𝜀c0} NA 10.9  {𝑘CK, 𝜌X} 1 9.5 
D1c 𝛼c,1𝑝 {𝜀c0} NA 9.0  {𝑘CK, 𝜌X} 1 7.7 
D1c 𝛼c,2 {𝜀c0} NA 11.8  {𝑘𝑐 , 𝜌X} 1 9.5 
D1c 𝛼c,2𝑝 {𝜀c0} NA 10.1  {𝑘𝑐 , 𝜌X} 1 7.0 
D1c 𝛼c,3 {𝜁1, 𝜁2, 𝑃b} NDa 12.0  {𝜁2} NA 12.0 
D1c 𝛼c,3𝑝 {𝜁2, 𝑃b, 𝑃𝑎 , 𝑞𝑚,MS} 3 10.5  {𝜁2} NA 10.5 
D1c 𝛼c,4𝑝 {𝜁2, 𝜁3} 1 11.7  {𝑞𝑚,MS, 𝐾𝑆,c} 0 11.7 
D2 𝛼c,1 {𝜀c0, 𝛽ST, 𝐶𝑑} 0 7.1  {𝑘CK, 𝜌X} 0 7.1 
D2 𝛼c,1𝑝 {𝜀c0, 𝛽ST, 𝐶𝑑} 1 8.1  {𝑘CK, 𝜌X} 1 8.1 
D2 𝛼c,2 {𝜀c0, 𝛽ST, 𝐶𝑑} 0 7.0  {𝑘𝑐 , 𝜌X} 1 7.0 
D2 𝛼c,2𝑝 {𝜀c0, 𝛽ST, 𝐶𝑑} 0 7.8  {𝑘𝑐 , 𝜌X} 1 7.8 
D2 𝛼c,3 {𝛽ST, 𝐶𝑑 , 𝑃b} 0 16.4  {𝜁2} NA 10.8 
D2 𝛼c,3𝑝 {𝛽ST, 𝐶𝑑 , 𝑃b} 1 15.4  {𝜁2} NA 15.4 
D2 𝛼c,4𝑝 {𝛽ST, 𝐶𝑑 , 𝜁2} 1 15.6  NA NA NA 
FR1 {𝛾0, 𝛾1, 𝛾2, 𝛾3} 4 3.8  {𝐾𝐹} NA 3.8 
FR2 {𝛾0, 𝛾1, 𝛾3} 2 3.8  {𝐾𝐹} NA 3.8 
FR3 {𝛾0, 𝛾3} 1 3.5  {𝐾𝐹} NA 3.5 
FR4 {𝛾0, 𝛾1, 𝛾2, 𝛾3} 4 3.7  {𝐾𝐹 , 𝛾4} 1 3.7 
FR5 {𝛾0, 𝛾1, 𝛾3} 2 3.7  {𝐾𝐹 , 𝛾4} 1 3.7 
FR6 {𝛾0, 𝛾3} 1 3.4  {𝐾𝐹 , 𝛾4} 1 3.4 
NA: not applicable 
a Could not be determined due to numerical error: the Jacobian was zero for all values in at least one 

parameter resulting in division by zero when calculating the covariance matrix. 
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Table A16. Optimised parameter values (𝜃) for the alternate AnMBR empirical fouling rate (FR) 
models. Relative error 𝜎𝜃 𝜃⁄  shown between brackets. 𝜃𝑜 is the initial guess (nominal values). 

↓Model 

Units→ 

𝜃𝑜→ 

𝐾𝐹 𝛾0 𝛾1 𝛾2 𝛾3 𝛾4 

×10-4 Pa s-1 ×106 s m-1 ×108 s2 m-1 ×104 s m-2 kg-1 ×106 s m-2 kg-1 ×1010 s m-2 

5.6 2.81 2.48 5.1 1.28 1.75 

FR1 5.60 [0.01] 4.19 [0.004] 5.44 [0.03] 3.92 [5.93] 1.10 [0.03]  

FR2 5.60 [0.01] 4.19 [0.003] 5.42 [0.02]  1.09 [0.03]  

FR3 5.60 [0.01] 3.08 [0.003]   1.12 [0.02]  

FR4 6.39 [0.11] 4.65 [0.004] 5.19 [0.03] 38.11 [0.60] 0.83 [0.04] 1.94 [0.08] 

FR5 6.21 [0.11] 4.67 [0.003] 5.03 [0.02]  0.80 [0.04] 1.90 [0.08] 

FR6 5.75 [0.10] 3.60 [0.002]   0.88 [0.02] 1.79 [0.08] 

 

Table A17. Optimised parameter values (𝜃) for the alternate AnMBR filtration models. Relative error 
𝜎𝜃 𝜃⁄  shown between brackets. 𝜃𝑜 is the initial guess (nominal values). 

↓Model 𝐶𝑑 𝐾𝑆,c 𝑞𝑚,MS 𝛽ST 

Units→ - kg - - 

𝜃𝑜→ 0.40 0.2 4.71 1.75×104 

D1b 𝛼c,3𝑝   1.4×104 [3×10-5]  

D1c 𝛼c,3𝑝   3.04 [1×10-5]  

D1c 𝛼c,4𝑝  0.32 [3×10-5] 6.93 [2×10-5]  

D2 𝛼c,1 0.31 [7×10-7]   2.28×10-4 [6×10-4] 

D2 𝛼c,1𝑝 0.40 [6×10-7]   1.78×10-4 [0.001] 

D2 𝛼c,2 0.39 [4×10-7]   2.37×10-4 [6×10-4] 

D2 𝛼c,2𝑝 0.47 [4×10-7]   1.96×10-4 [9×10-4] 

D2 𝛼c,3 0.33 [0.01]   0.505 [0.01] 

D2 𝛼c,3𝑝 0.30 [1×10-4]   4.5×10-7 [1.40] 

D2 𝛼c,4𝑝 0.34 [1×10-5]   2.3×10-6 [0.57] 

(continued) 
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Table A17 continued. Optimised parameter values (𝜃) for the alternate AnMBR filtration models. 
Relative error 𝜎𝜃 𝜃⁄  shown between brackets. 𝜃𝑜 is the initial guess (nominal values). 

↓Model 𝛾0 𝛾1 𝛾2 

Units→ ×106 s m-1 ×108 s2 m-1 s m-2 kg-1 

𝜃𝑜→ 2.81 2.48 5.1×104  

D1a 𝛼c,1 2.52 [2×10-5]   

D1a 𝛼c,1𝑝 5.59 [1×10-8]   

D1a 𝛼c,2 2.47 [2×10-5]   

D1a 𝛼c,3 33.0 [∞a] 2.47 [∞a] 0.5 [∞a] 

D1a 𝛼c,3𝑝 3.03 [4×10-5] 3.59 [3×10-5]  

D1a 𝛼c,4𝑝 2.72 [8×10-8]   

D1b 𝛼c,1 2.46 [3×10-5]   

D1b 𝛼c,1𝑝 5.27 [1×10-9]   

D1b 𝛼c,2 2.26 [3×10-5]   

D1b 𝛼c,3 33.8 [∞a]   

D1b 𝛼c,3𝑝 3.69 [3×10-5]   

D1b 𝛼c,4𝑝 2.85 [7×10-8]   
a The Jacobian was zero for all values in at least one parameter resulting in division by 
zero when calculating the covariance matrix. 

(continued) 
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Table A17 continued. Optimised parameter values (𝜃) for the alternate AnMBR filtration models. 
Relative error 𝜎𝜃 𝜃⁄  shown between brackets. 𝜃𝑜 is the initial guess (nominal values). 

↓Model 𝑘𝑐 𝑘CK 𝜀c0 𝜌X 𝑃a 

Units→ ×1017 m-2 ×107 - ×103 kg m-3 ×104 Pa 

𝜃𝑜→ 1.0 4.0 0.66 1.24 2.01 

D1a 𝛼c,1  21 [0.04] 0.38 [0.01] 18.4 [0.03]  

D1a 𝛼c,1𝑝  35 [0.01] 0.57 [0.003] 20.6 [0.04]  

D1a 𝛼c,2 6.12 [0.04]  0.44 [0.01] 23.9 [0.03]  

D1a 𝛼c,2𝑝 9.53 [0.01]  0.61 [0.003] 22.8 [0.02]  

D1a 𝛼c,3𝑝    20.5 [0.04] 1.07 [0.03] 

D1b 𝛼c,1  21 [0.04] 0.41 [0.01] 20.6 [0.04]  

D1b 𝛼c,1𝑝  35 [0.01] 0.57 [0.003] 25.0 [0.03]  

D1b 𝛼c,2 5.60 [0.04]  0.46 [0.01] 25.0 [0.03]  

D1b 𝛼c,2𝑝 9.33 [0.01]  0.63 [0.003]   

D1b 𝛼c,3𝑝     7.8×1012[0.06] 

D1c 𝛼c,1  15.71 [0.04] 0.31 [0.01] 12.1 [0.05]  

D1c 𝛼c,1𝑝  17.11 [0.02] 0.43 [0.002] 7.29 [0.04]  

D1c 𝛼c,2 4.73 [0.05]  0.37 [0.01] 16.8 [0.04]  

D1c 𝛼c,2𝑝 5.94 [0.01]  0.49 [0.002] 10.6 [0.02]  

D1c 𝛼c,3𝑝     0.69 [0.20] 

D2 𝛼c,1  4 [0.02] 0.12 [0.004] 1.24 [0.03]  

D2 𝛼c,1𝑝  4 [0.01] 0.16 [0.002] 1.23 [0.02]  

D2 𝛼c,2 0.99 [0.02]  0.13 [0.004] 1.25 [0.02]  

D2 𝛼c,2𝑝 1.00 [0.01]  0.17 [0.002] 1.23 [0.02]  

(continued) 
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Table A17 continued. Optimised parameter values (𝜃) for the alternate AnMBR filtration models. 
Relative error 𝜎𝜃 𝜃⁄  shown between brackets. 𝜃𝑜 is the initial guess (nominal values). 

↓Model 𝑃b 𝜁1 𝜁2 𝜁3 𝜁4 

Units→ ×103 Pa ×103  ×104  -  -  

𝜃𝑜→ 4.1799 1.16 1.36 172.4 150.9 

D1a 𝛼c,3 4.22 [∞a]  14.9 [∞a] 111 [∞a]  

D1a 𝛼c,3𝑝 4.26 [1×105]  1.4 [1×105] 1037 [705]  

D1a 𝛼c,4𝑝  1.17 [0.001]  177 [2×10-4] 150.9 [5×10-4] 

D1b 𝛼c,3 137.6 [∞a]  1.36 [0.03] 66.7 [∞a]  

D1b 𝛼c,3𝑝 58.1 [0.02]  2.34 [∞a] 106.2 [0.02]  

D1b 𝛼c,4𝑝  1.13 [2.01] 1.38 [0.17] 173.5 [0.01] 156.9 [0.25] 

D1c 𝛼c,3 58.7 [∞a]  1.36 [0.04] 1752 [∞a]  

D1c 𝛼c,3𝑝 9.46 [0.18]  1.36 [0.005] 127.9 [0.01]  

D1c 𝛼c,4𝑝   1.98 [0.01] 381.1 [0.01]  

D2 𝛼c,3 7.23 [8×104]  2.04×106 [0.04]   

D2 𝛼c,3𝑝 8.1 [0.61]  1.36 [0.02]   

D2 𝛼c,4𝑝   2.52 [0.47]   
a The Jacobian was zero for all values in at least one parameter resulting in division by zero when 

calculating the covariance matrix. 
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Figure A9. Calibration of the alternate AnMBR empirical fouling rate models, FR1 to FR6, using the 
representative dataset from the pilot AnMBR, iD1 to iD8.  
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Figure A10. Calibration of the alternate AnMBR filtration models with deposition submodel D1a and 
different specific cake resistance submodels, 𝛼c,1 to 𝛼c,4𝑝; using the representative dataset from the 
pilot AnMBR, iD1 to iD8. 
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Figure A11. Calibration of the alternate AnMBR filtration models with deposition submodel D1b and 
different specific cake resistance submodels, 𝛼c,1 to 𝛼c,4𝑝; using the representative dataset from the 
pilot AnMBR, iD1 to iD8..  
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Figure A12. Calibration of the alternate AnMBR filtration models with deposition submodel D1c and 
different specific cake resistance submodels, 𝛼c,1 to 𝛼c,4𝑝; using the representative dataset from the 
pilot AnMBR, iD1 to iD8.. 
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Figure A13. Calibration of the alternate AnMBR filtration models with deposition submodel D2 and 
different specific cake resistance submodels, 𝛼c,1 to 𝛼c,4𝑝; using the representative dataset from the 
pilot AnMBR, iD1 to iD8. 
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Long-term prediction with calibrated model  

 

 
Figure A14. Validation of the alternate AnMBR empirical fouling rate (FR) models that excluded floc 
size as input variable: (A) FR1, (B) FR2, and (C) FR3. The grey vertical areas represent the 
representative dataset (iD1 to iD8 from left to right) used for model calibration. 
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Figure A15. Validation of the alternate AnMBR empirical fouling rate (FR) models that included floc 
size as input variable: (A) FR4, (B) FR5, and (C) FR6.  
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Figure A16. Validation of the alternate AnMBR filtration models that combine the specific cake 
resistance model 𝛼c,1 with the different deposition submodels: (A) D1a, (B) D1b, (C) D1c and (D) D2.  
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Figure A17. Validation of the alternate AnMBR filtration models that combine the specific cake 
resistance submodel 𝛼c,1𝑝 with the different deposition submodels: (A) D1a, (B) D1b, (C) D1c and 
(D) D2.  
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Figure A18. Validation of the alternate AnMBR filtration models that combine the specific cake 
resistance submodel 𝛼c,2 with the different deposition submodels: (A) D1a, (B) D1b, (C) D1c and 
(D) D2.  
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Figure A19. Validation of the alternate AnMBR filtration models that combine the specific cake 
resistance submodel 𝛼c,2𝑝 with the different deposition submodels: (A) D1a, (B) D1b, (C) D1c and 
(D) D2.  
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Figure A20. Validation of the alternate AnMBR filtration models that combine the specific cake 
resistance submodel 𝛼c,3 with the different deposition submodels: (A) D1a, (B) D1b, (C) D1c and 
(D) D2.  
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Figure A21. Validation of the alternate AnMBR filtration models that combine the specific cake 
resistance submodel 𝛼c,3𝑝 with the different deposition submodels: (A) D1a, (B) D1b, (C) D1c and 
(D) D2.  
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Figure A22. Validation of the alternate AnMBR filtration models that combine the specific cake 
resistance submodel 𝛼c,4𝑝 with the different deposition submodels: (A) D1a, (B) D1b, (C) D1c and 
(D) D2.  
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A8. EFFECT OF SLUDGE CHARACTERISTICS ON FOULING RATE PREDICTIONS  

Figure A23 show the effect of the sludge characteristics on the predicted fouling rate with 

three calibrated alternate AnMBR filtration models, namely FR6, D1c 𝛼1, and D1c 𝛼1,𝑝. The 

sludge characteristics were varied inside the simulation ranges in Figure A23, which were 
based on the observed ranges in the pilot AnMBR. The remaining variables were set to the 
nominal values presented in Table A1 and Table A18. 

Each sludge characteristics was divided in 50 values inside its range, creating a 50x50 
mesh for each plot in Figure A23, the value for each datapoint in the mesh was the predicted 
FR. For the empirical model, the corresponding equation to calculate FR was directly applied 
for each value in the mesh. For the FR_RIS models, the FR was obtained by solving the model 
at fixed sludge characteristics until steady state was reached, and the last FR value was used. 
Two hours was sufficient to reach steady state as verified by analysing the evolution of the 
model (results not shown). 

Table A18. Nominal values and simulation range of operational conditions and sludge characteristics. 

Variable Units Nominal 
value a 

Range in 
pilot AnMBR 

Simulation 
range 

𝑐C Concentration of colloidal material  Kg m-3 0.35 [0.14, 0.62] [0.10, 0.65] 

𝑐X 
Concentration of particulate 
material Kg m-3 9.25 [4.9, 15.9] [4.0, 16.0] 

𝑑𝑝 Mean particle diameter ×10-5 m 2.7 [2.1, 4.5] [2.0, 5.0] 

𝑢G Superficial gas velocity ×10-3 m s-1 3.0 [0.5, 5.7] [0.5 6.0] 
a Mean value during pilot AnMBR operation. 
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Figure A23. Effect of colloidal material concentration (𝑐C), particulate material concentration (𝑐X), 
mean particle diameter (𝑑𝑝), and superficial gas velocity in the membrane tank (𝑢G) on the predicted 
fouling rate (FR, mbar min-1) with different calibrated AnMBR filtration models: (left) D1c 𝛼1, 
(middle) D1c 𝛼1,𝑝, and (right) FR6. 
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A9. CALIBRATION AND VALIDATION OF ALTERNATE ANDFCM FILTRATION 

MODELS 

Parameter estimation results 

Table A19. Parameter estimation procedure for the alternate AnDFCm filtration models. Parameters 
contained in subset 𝜃𝐼𝐼 and 𝜃𝐼𝐼, number of pairwise correlations above 0.50 (nCorr) and root mean 
square error (RMSE) at optimal parameter values. 

Mode 
Subset 𝜃𝐼𝐼  Subset 𝜃𝐼𝐼𝐼 

Parameters nCorr RMSE  Parameters nCorr RMSE 

D1c 𝛼c,1 {𝜀c0} NA 2.8  {𝑘CK, 𝜌X, 𝑞𝑚,MS} 2 2.1 

D1c 𝛼c,1𝑝 {𝜀c0} NA 5.3  {𝑘CK, 𝜌X, 𝑞𝑚,MS, 𝐾𝑆,c} 4 4.9 

D1c 𝛼c,2 {𝜀c0} NA 5.6  {𝑘𝑐 , 𝜌X, 𝐾𝑆,c} 3 4.0 

D1c 𝛼c,2𝑝 {𝜀c0} NA 3.8  {𝑘𝑐 , 𝜌X, 𝐾𝑆,c} 3 2.4 

D1c 𝛼c,3 {𝜁3, 𝜁2, 𝑞𝑚,MS} 1 1.7  {𝐾𝑆,c, 𝑃b, 𝜁4} NDa 1.6 

D1c 𝛼c,3𝑝 {𝑃b, 𝜁1, 𝜁3} 3 3.6  {𝑞𝑚,MS, 𝐾𝑆,c} 1 3.6 

D1c 𝛼c,4𝑝 {𝜁1, 𝜁2} 1 8.4  {𝑞𝑚,MS, 𝐾𝑆,c} 1 8.4 

D2 𝛼c,1 {𝜀c0} NA 7.0  {𝛽ST, 𝐶𝑑 , 𝑘CK, 𝜌X} 6 1.9 

D2 𝛼c,1𝑝 {𝜀c0} NA 7.5  {𝛽ST, 𝐶𝑑 , 𝑘CK, 𝜌X} 6 5.5 

D2 𝛼c,2 {𝜀c0, 𝐶𝑑} 1 2.1  {𝛽ST, 𝑘𝑐 , 𝜌X} 1 2.1 

D2 𝛼c,2𝑝 {𝜀c0, 𝐶𝑑} 1 4.0  {𝛽ST, 𝑘𝑐 , 𝜌X} 2 4.0 

D2 𝛼c,3 {𝛽ST, 𝐶𝑑} 0 8.4  {𝑃b, 𝜁2} 1 8.4 

D2 𝛼c,3𝑝 {𝛽ST, 𝐶𝑑} 1 8.4  {𝑃b, 𝜁2} 1 6.3 

D2 𝛼c,4𝑝 {𝛽ST, 𝐶𝑑} 1 8.4  {𝜁2} NA 7.1 

D3 𝛼c,1 {𝜀c0} NA 2.4  {𝑘CK, 𝜌X, 𝑓X} 3 2.0 

D3 𝛼c,1𝑝 {𝜀c0} NA 2.4  {𝑘CK, 𝜌X, 𝑓X} 3 2.0 

D3 𝛼c,2 {𝜀c0} NA 5.3  {𝑘𝑐, 𝜌X, 𝑓X} 3 3.3 

D3 𝛼c,2𝑝 {𝜀c0} NA 5.3  {𝑘𝑐, 𝜌X, 𝑓X} 3 3.3 

D3 𝛼c,3 {𝑃b, 𝜁2, 𝜁3} 1 1.6  {𝑓C, 𝜁4} 1 1.3 

D3 𝛼c,3𝑝 {𝑃b, 𝜁2, 𝜁3} 1 1.6  {𝑓X, 𝑓C, 𝜁4} 3 1.2 

D3 𝛼c,4𝑝 {𝑓X, 𝜁2} 1 8.6  {𝑓C, 𝜁3} 1 8.6 

NA: not applicable 
a Could not be determined due to numerical error: the Jacobian was zero for all values in at least one 

parameter resulting in division by zero when calculating the covariance matrix. 
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Table A20. Optimised parameter values (𝜃) for the alternate AnDFCm filtration models. Relative error 
𝜎𝜃 𝜃⁄  shown between brackets. 𝜃𝑜 is the initial guess (nominal values). 

↓Model 𝐶𝑑 𝑓C,c 𝑓X,c 𝛽ST 𝐾𝑆,c 𝑞𝑚,MS 

Units→ - - - - kg - 

𝜃𝑜→ 0.40 0.25 0.25  1.75×10-4 0.2 4.71 

D1c 𝛼c,1      2.2×10-14 [1×1012] 

D1c 𝛼c,1𝑝     1.01 [1×104] 2.71 [8×103] 

D1c 𝛼c,2     0.08 [684]  

D1c 𝛼c,2𝑝     0.05 [0.001]  

D1c 𝛼c,3     0.21 [4×109] 3.3×10-12 [5×109] 

D1c 𝛼c,3𝑝     5.7×1010 [1×105] 1.6×1011 [1×105] 

D1c 𝛼c,4𝑝     6.8×10-4 [3.78] 0.02 [2.63] 

D2 𝛼c,1 0.003 [4.3]   1×10-5 [33.5]   

D2 𝛼c,1𝑝 0.48 [545]   1×10-4 [1.10]   

D2 𝛼c,2 0.10 [0.16]   2×10-4 [1.23]   

D2 𝛼c,2𝑝 0.19 [0.03]   2×10-4 [0.02]   

D2 𝛼c,3 0.05 [7.9×103]   0.50 [7.25]   

D2 𝛼c,3𝑝 9.46 [44.5]   0.02 [296]   

D2 𝛼c,4𝑝 4.59 [0.19]   0.39 [0.51]   

D3 𝛼c,1   0.06 [2×106]    

D3 𝛼c,1𝑝   0.06 [3×106]    

D3 𝛼c,2   0.04 [1×106]    

D3 𝛼c,2𝑝   0.04 [1×106]    

D3 𝛼c,3  0.13 [0.23]     

D3 𝛼c,3𝑝  0.12 [0.22] 0.28 [0.07]    

D3 𝛼c,4𝑝  0.24 [2×105] 0.21 [0.25]    

(continued) 
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Table A20 continued. Optimised parameter values (𝜃) for the alternate AnDFCm filtration models. 
Relative error 𝜎𝜃 𝜃⁄  shown between brackets. 𝜃𝑜 is the initial guess (nominal values).  

↓Model 𝑘𝑐 𝑘CK 𝜀c0 𝜌X 

Units→ ×1017 m-2 ×107 - ×103 kg m-3 

𝜃𝑜→ 1.0 4.0 0.66 1.24 

D1c 𝛼c,1  0.94 [0.32] 0.33 [0.02] 4.67 [0.38] 

D1c 𝛼c,1𝑝  4.81 [186] 0.62 [0.003] 4.83 [3.61] 

D1c 𝛼c,2 12.91 [342]  0.44 [0.05] 15.3 [0.26] 

D1c 𝛼c,2𝑝 8.05 [0.15]  0.66 [0.002] 5.63 [0.18] 

D2 𝛼c,1  0.69 [33.2] 0.15 [0.04] 6.7 [0.98] 

D2 𝛼c,1𝑝  5.7 [0.75] 0.21 [0.01] 0.54 [524] 

D2 𝛼c,2 1.01 [1.27]  0.11 [0.02] 1.22 [0.17] 

D2 𝛼c,2𝑝 1.00 [0.02]  0.19 [0.004] 1.24 [0.06] 

D3 𝛼c,1  21.1 [0.39] 0.47 [0.02] 2.05 [3×106] 

D3 𝛼c,1𝑝  21.1 [0.39] 0.47 [0.02] 2.05 [3×106] 

D3 𝛼c,2 13.7 [0.35]  0.60 [0.04] 4.57 [1×106] 

D3 𝛼c,2𝑝 13.7 [0.35]  0.60 [0.04] 4.57 [1×106] 

(continued) 

Table A20 continued. Optimised parameter values (𝜃) for the alternate AnDFCm filtration models. 
Relative error 𝜎𝜃 𝜃⁄  shown between brackets. 𝜃𝑜 is the initial guess (nominal values). 
↓Model 𝑃b 𝜁1 𝜁2 𝜁3 𝜁4 

Units→ ×103 Pa ×103  ×104  -  -  

𝜃𝑜→ 4.1799 1.16 1.36 172.4 150.9 

D1c 𝛼c,3 4.2 [∞a]  1.57 [0.23] 248.7 [0.04] 142.4 [∞a] 

D1c 𝛼c,3𝑝 0.85 [0.49] 73.4 [0.58]  169.6 [0.18]  

D1c 𝛼c,4𝑝  3.69 [0.09] 0.56 [0.51]   

D2 𝛼c,3 1.9×107 [0.87]  0.63 [1.05]   

D2 𝛼c,3𝑝 9401 [6×105]  570 [6×105]   

D2 𝛼c,4𝑝   7.7×105 [0.01]   

D3 𝛼c,3 27.9 [0.28]  0.77 [0.32] 236.9 [0.05] 12.4 [0.69] 

D3 𝛼c,3𝑝 27.9 [0.28]  0.77 [0.32] 236.9 [0.05] 7.60 [0.55] 

D3 𝛼c,4𝑝   1.72 [2.54] 178 [2×105]  
a The Jacobian was zero for all values in at least one parameter resulting in division by zero when 

calculating the covariance matrix. 
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Figure A24. Calibration of the alternate AnDFCm filtration models combining the different 
deposition submodels (D1c, D2 and D3) with the Carman-Kozeny based specific cake resistance 
submodels (𝛼c,1, 𝛼c,1p, 𝛼c,2 and 𝛼c,2p). Calibration performed using ∆𝑅20 measurement during in-situ 
and ex-situ flux enhancer additions to the reactor and to grab samples from the pilot AnMBR, 
respectively. 
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Figure A25. Calibration of the alternate AnDFCm filtration models combining the different 
deposition submodels (D1c, D2 and D3) with the specific cake resistance submodels based on the 
empirical equation by Cho et al. (2005) (𝛼c,3, 𝛼c,3p, and 𝛼c,4𝑝). Calibration performed using ∆𝑅20 
measurement during in-situ and ex-situ flux enhancer additions to the reactor and to grab samples 
from the pilot AnMBR, respectively. 
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Long-term prediction with calibrated model  

 
Figure A26. Validation of the alternate AnDFCm filtration models that combine the different 
deposition submodels (D1c, D2 and D3) with the compressible specific cake resistance submodels: 
(A) 𝛼1𝑝, (B) 𝛼2𝑝, (C) 𝛼3𝑝, and (D) 𝛼4𝑝. The grey area represent the in-situ data used for model 
calibration. 
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Figure A27. Comparison of alternate AnDFCm filtration models calibrated using one (1 IA) and two 
(2 IA) steps of identifiability analysis. Only the alternate models with different predictions for 1 IA 
and 2 IA are shown, as follows: (A) D1c 𝛼1, (B) D2 𝛼1, (C) D3 𝛼1, and (D) D3c 𝛼3 ≡ D3c 𝛼3𝑝. The 
remaining models combining the deposition submodels D1c, D2 and D3 with specific cake resistance 
submodels 𝛼1, 𝛼2, 𝛼3, 𝛼1𝑝, 𝛼2𝑝, 𝛼3𝑝 and 𝛼4𝑝 presented identical predictions for 1 IA and 2 IA. The 
grey area represent the in-situ data used for model calibration. 
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A10. EFFECT OF SLUDGE CHARACTERISTICS ON FILTERABILITY PREDICTIONS  

Figure A28 show the effect of the concentrations of colloidal and particulate material on the 
predicted ∆𝑅20 with the alternate calibrated AnDFCm filtration models. The sludge 
characteristics were varied inside the simulation ranges in Table A21, which were based on 
the observed ranges in the pilot AnMBR. The remaining variables were set to the nominal 
values presented in the table, for example, all the ∆𝑅20 simulations in Figure A28 were done 

at 𝑇 = 296 K and 𝑑𝑝 = 2.7×105 m. 

Table A21. Nominal values and simulation range of operational conditions and sludge characteristics. 

Variable Units Nominal 
value a 

Range in pilot 
AnMBR 

Simulation 
range 

𝑐C Concentration of colloidal material  Kg m-3 0.35 [0.14, 0.62] [0.10, 0.65] 

𝑐X Concentration of particulate material Kg m-3 9.25 [4.9, 15.9] [4.0, 16.0] 

𝑑𝑝 Mean particle diameter ×105 m 2.7 [2.1, 4.5] [2.0, 5.0] 

𝑇 Sludge temperature K 296 [292, 301] NA 
a Mean value during pilot AnMBR operation. 

 
Figure A28. Effect of the concentrations of colloidal material (𝑐C) and particulate material (𝑐X) on the 
predicted ∆𝑅20 (×10-12 m-1) with different calibrated AnDFCm filtration models: (A) D1c 𝛼c,1, 
(B) D2 𝛼c,1, (C) D3 𝛼c,1, (D) D1c 𝛼c,2, (E) D2 𝛼c,2, (F) D3 𝛼c,2, (G) D1c 𝛼c,3, (H) D2 𝛼c,3, and (I) D3 𝛼c,3.  
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A11. CAKE LAYER COMPRESSION 

Evenblij (2006) presented the three possible hypothetical filtration curves obtained with the 
Delft filtration characterization method, and Geilvoet (2010) related the filtration curves with 
a compressibility coefficient. The researchers qualified the cake layer by analysing the 

filtration curve ∆𝑅 versus ∆𝑉𝑆 obtained at constant flux, where ∆𝑅 is the additional resistance 

after production of a certain volume of permeate, and ∆𝑉𝑆 the volume of permeate produced 
per square meter of membrane surface area. Table A22 summarises the hypothetical filtration 
curves.  

Table A22. Hypothetical filtration curves obtained with the Delft filtration characterization method 
(Evenblij, 2006; Geilvoet, 2010). 

Cake layer type 
Exponential parameter 𝑏 Compressibility coefficient 𝑠 

∆𝑅 = 𝑎 ∆𝑉𝑆
𝑏 𝑠 =

𝑏 − 1

𝑏
 

Compressible > 1 > 0 
Linear 1 0 

Equilibrium < 1 < 0 
  

The experimental resistance-volume curves obtained with the AnDFCm were fitted to the 
power equation presented in Table A22 and analysed the cake layer type based on the 
compressibility coefficient calculated with the optimised parameter 𝑏. Figure A29 shows the 

histogram of compressibility coefficients obtained for the in-situ ∆𝑅20 measurement 
performed in the pilot AnMBR; the compressibility coefficient varied between -0.39 and 0.19. 
In accordance with Table A22, 34% of the filtration curves corresponded to a linear cake layer 

(𝑠 = 0), 48% to an equilibrium cake layer (𝑠 < 0), and 18% to a compressible cake layer (𝑠 > 0). 
Furthermore, the grab sludge samples from different AnMBRs displayed in Figure A30 
generated a linear or equilibrium cake layer. Therefore, results suggested that the cake layer 
formed with the AnDFCm when filtering anaerobic sludge samples from AnMBR is 
none-compressible or slightly compressible. 

For aerobic sludge samples, from MBRs, the cake layer formed using the DFCm was 
hardly compressible, the compression coefficient varied between 0-0.3 (Lousada-Ferreira et 
al., 2014). The DFCm (at 80 L m-2 h-1 and 1.0 m s-1) and AnDFCm (at 60 L m-2 h-1 and 1.5 m s-1) 
differed in the flux and crossflow velocities used during filtration; therefore, the numerical 
values of the compression coefficients cannot be directly compared. Nevertheless, the 
hypothetical filtration curves were valid for both measuring methods because they were 
performed at constant flux. 



SUPPLEMENTARY MATERIAL CHPATER 5 | 209 

 

 
Figure A29. Distribution of the compressibility coefficient of the cake layer formed with the AnDFCm 
during in-situ ∆𝑅20 measurements of the pilot AnMBR sludge. 

 

 
Figure A30. Added total resistance versus specific volume of permeate obtained when filtering grab 
sludge samples from different AnMBRs with the AnDFCm. Experimental data (markers) and fitted 
power curves (lines). 
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NOMENCLATURE 

Abbreviations 

 

  

AMP Accumulated methane production 
AnDFCm Anaerobic Delft filtration characterization method 
AnMBR Anaerobic membrane bioreactor 
COD Chemical oxygen demand 
CST Capillary suction time 
EPS Extracellular polymeric substances 
FE Flux enhancer 
FR Fouling rate 
HRT Hydraulic retention time 
HS Humic substances 
KD### Cationic polymers from Adipap 
MBR (aerobic) Membrane bioreactor  
MPE##  Cationic polymers from Nalco 
PAC Powdered activated carbon 
PBM Population balance models 
PSD Particle size distribution 
RIS Resistance in series 
RMSE Root mean square error 
RSS Residual sum of squares  
SCR Specific cake resistance 
SMA Specific methanogenic activity 
SMP Soluble microbial products 
SRC Standardised regression coefficient 
SRT Solids retention time 
TMP Transmembrane pressure 
TOC Total organic carbon 
TSS Total suspended solids 
VFA Volatile fatty acids 
VSS Volatile suspended solids 
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Symbols 

𝛼c Specific cake resistance (m kg-1) 

𝛼c,𝑗 Specific cake resistance calculated with submodel 𝑗 without cake compression 
(m kg-1) 

𝛼c,𝑗𝑝 Specific cake resistance calculated with submodel 𝑗 with cake compression (m kg-1) 

𝛽𝑘 Standardised regression coefficient for parameter 𝑘  
𝛽ST Lumped parameter 𝛽ST = 𝛽(1 − 𝐾ST);  𝛽 Erosion rate coefficient of the sludge cake; 

𝐾ST stickiness coefficient 
𝛾 Compression coefficient for the dynamic cake layer (kg m-3) 

𝛾𝑖 Empirical model parameter 𝑖 

𝛾𝑘 Collinearity index of the parameter subset 𝑘 
∆𝑅20 Additional resistance when 20 L of permeate per m2 of membrane surface are 

obtained during filtration at constant flux and crossflow velocity in the AnDFCm 
installation (m-1) 

∆𝑡fe Injection time of flux enhancer pulse-dosage (s) 

𝜀c Cake layer porosity (-) 

𝜀c0 Cake layer porosity without colloidal material (-) 

𝜁𝑖 Empirical model parameters 

𝜃 Parameter subset for estimation 

𝜃° Initial guess 

𝜃 Estimated parameters (optimal values) 

𝜃F Total filtration time in one cycle (s) 

𝜃R Total relaxation time in one cycle (s) 

𝜃𝐻,𝑖 Temperature correction factor for Henry’s law coefficient for component 𝑖 (-) 

𝜃𝑗 Temperature correction factor for the reaction rate of process 𝑗 (-) 

𝜇 Dynamic viscosity of the permeate at the operational temperature (Pa s) 

𝜇20 Dynamic viscosity of the permeate at 20°C (Pa s) 

𝜇𝑖 Dynamic viscosity of fluid 𝑖 (Pa s) 
𝑣B Motor frequency of the blower (Hz) 

𝑣P Motor frequency of the permeate pump (Hz) 

𝜐𝑖,𝑗 Stoichiometric coefficients of component 𝑖 in process 𝑗  

𝜌𝑗 Rate equations of process 𝑗 (kgCOD m-3 d-1 or kmol m-3 d-1) 

𝜌𝑖 Density of component or fluid 𝑖 (kg m-3) 
𝜎𝜃 Standard deviation of estimated parameters 

𝜏 Kendall correlation coefficient 

𝜏𝑤 Shear stress (Pa) 

𝜔𝑖 Mass of component 𝑖 deposited per membrane area (kg m-2) 
AlkBW Blackwater alkalinity (KgCaCO3 m-3) 
𝐴m Membrane surface area (m2) 

𝐴MT Membrane tank cross-sectional area (m2) 

𝑏𝑗 First order decay rate of microorganism in process 𝑗 (d-1) 

cCOD Colloidal COD concentration (kgCOD m-3) 
𝐶𝑑 Drag coefficient (-) 
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𝐶𝑖 Concentration of colloidal material 𝑖 in the bulk liquid (kgCOD m-3) 
𝑐𝑖 Concentrations of component 𝑖 in the liquid phase (kg m-3) 
𝑐𝑖,𝑗 Concentration of component 𝑖 in fluid 𝑗 (kgCOD m-3 or kmol m-3) 

𝑐fe Total concentration of flux enhancer inside the reactor (kgCOD m-3) 

𝑐fe,P,theo Theoretical concentration of component 𝑖 in the permeate (kg m-3) 
csCOD Submicron COD concentration (kgCOD m-3) 
csCODBW Submicron COD concentration in blackwater (kgCOD m-3) 
𝐷10 10 percentiles of the particle size distribution (µm) 

𝐷50 50 percentiles of the particle size distribution (µm) 

𝐷90 90 percentiles of the particle size distribution (µm) 

𝐷50 Effective dosage 50 (kg m-3)  

𝐷crit Critical flux enhancer dosage (kg m-3) 

𝐷opt Optimal flux enhancer dosage (kg m-3) 

𝑑𝑝 Mean particle diameter (m) 

𝑑𝑝,𝑖 Diameter of the i-th particle (m) 

𝑑𝑝,St Mean particle diameter at stable operation (m) 

𝐸𝑖 Input function of component 𝑖 (kgCOD m3 d-1) 
𝑓conv Conversion factor 

𝑓𝑖,c Fraction of material 𝑖 depositied onto the membrane (-) 

𝑓𝑖,P Fraction of component 𝑖 that passes through the membrane and reaches the 
permeate (-) 

𝑓𝑖,WS Fraction of component 𝑖 that leaves the reactor with waste sludge flow (-) 

𝑓objective Objective function for parameter estimation 

𝑓𝑝,𝑖 Yield of product 𝑝 on substrate 𝑖 (-) 

𝑔 Gravitational acceleration (m s-2) 

𝐺 Apparent shear rate (s-1) 

𝐻MT Liquid level in membrane tank (m) 

𝑖C,𝑖 Carbon content of component 𝑖 (kmole kgCOD-1) 

𝑖C,CXI,bio Colloidal fraction of the released suspended inert material upon biomass decay (-) 

𝑖COD,𝑖 Theoretical chemical oxygen demand for component 𝑖 (kgCOD kg-1) 

𝐼𝑖,𝑗 Inhibition factor of component 𝑖 in process 𝑗 (-) 

𝑖𝑖,CSInf Content of component 𝑖 in the submicron material of the influent (kgCOD kgCOD-1) 

𝑖𝑖,SInf Content of component 𝑖 in the soluble material of the influent (kgCOD kgCOD-1) 

𝑖𝑖,XInf Content of component 𝑖 in the particulate material of the influent (kgCOD kgCOD-1) 

𝐼MS Sigmoid inhibition function during membrane scouring (-) 

𝑖N,𝑖 Nitrogen content of component 𝑖 (kmole kgCOD-1) 

𝑖Xac,VSS,0 Initial content of acetate degraders in VSS (kgCOD kgVSS-1) 

𝐽 Transmembrane flux (m3 m-2 s-1) 

𝐽20 20°C-normalised transmembrane flux (m3 m-2 s-1) 

𝐽20,AnDFCm 20°C-normalised transmembrane flux applied in the AnDFCm installation 
(m3 m-2 s-1) 

𝐽AnDFCm Transmembrane flux applied in the AnDFCm installation (m3 m-2 s-1) 

𝐾𝑎,co2 Acid-base equilibrium coefficient (CO2,ac/HCO3-) 
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𝑘ads Pseudo-first order reaction rate coefficient for flux enhancer adsorption (d-1) 

𝑘𝑐 Cake resistance coefficient (m-2) 

𝑘CK Carman-Kozeny cake resistance coefficient (-) 

𝑘dis,bio First order reaction rate coefficient for biomass disintegration (d-1) 

𝐾𝑒𝑞,fe,𝑖 Equilibrium coefficient for flux enhancer and component 𝑖 binding (kgCOD kg-1) 

𝐾𝐹 Parameter representing the fouling rate when 𝐽20 tends to zero (Pa s-1) 
𝑘floc Empirical flocculation-deflocculation rate (d-1) 

𝑘floc,fe Flux enhancer induced flocculation yield (m kgCOD-1 m3) 

𝐾𝐻,𝑖 Henry’s law coefficient for component 𝑖 (kgCOD m-3 bar-1 or kmol m-3 bar-1)   

𝑘hyd Unique first order reaction rate coefficient for all hydrolysis processes (d-1) 

𝑘hyd,𝑗 First order reaction rate coefficient for hydrolysis of component 𝑗 (d-1) 

𝐾𝐼,𝑖,𝑗 Concentration of inhibitor 𝑖 giving 50% inhibition on process 𝑗 rate (kgCOD m-3) 

𝑘𝑗 Reaction rate for process 𝑗 (d-1) 

𝐾𝐿,ads Langmuir affinity coefficient (m3 kgCOD-1) 

𝑘𝐿𝑎 Dynamic gas-liquid transfer coefficient (d-1) 

𝑘𝑚,𝑗 Monod maximum specific uptake rate for process 𝑗 (d-1) 

𝐾𝑆,c Half-saturation coefficient for cake mass during membrane scouring (kg) 

𝐾𝑆,G Half-saturation coefficient for gas velocity during membrane scouring (m s-1) 

𝐾𝑆,IN Monod half saturation coefficient for inorganic nitrogen (kmol m-3) 

𝐾𝑆,𝑗 Monod half saturation coefficient for process 𝑗 (kgCOD m-3) 

𝑀fe Cumulative mass of flux enhancer (kgCOD)  

𝑀fe,P Cumulative mass of flux enhancer removed with the permeate flow (kgCOD)  

ṁfe Flux enhancer mass flow rate (kgCOD s-1) 
NH4BW Ammonium nitrogen in blackwater (KgN m-3) 
𝑛𝑗 Numer of experimental observatons of the ouput variable 𝑗 (-) 

𝑝 Probability value for statistical hypothesis testing 

𝑃a Pressure needed to double the specific resistance (Pa) 

𝑃b Transmembrane pressure coefficient (Pa) 
pCOD Permeate COD (kgCOD m-3) 
𝑝G Gas pressure in the headspace (bar) 

𝑃𝑖 Volume fraction (-) 

𝑝𝑖,G Partial pressure of gas 𝑖 (bar) 

pHLL,𝑗 Lower pH limit where the group of organisms in process 𝑗 is 50% inhibited. 

pHUL,𝑗 Upper pH limit where the group of organisms in process 𝑗 is 50% inhibited. 

𝑞𝑒,ads Adsorbent phase concentration of flux enhancer after equilibrium (kgCOD kg-1) 

𝑄𝑗 Volumetric flow rate of fluid 𝑗 (m3 s-1) 

𝑞𝑚,ads Maximum adsorption capacity corresponding to monolayer coverage (kgCOD kg-1) 

𝑞𝑚,MS Maximum membrane scouring velocity (-) 

𝑅 Gas constant (m3 bar kmol-1 K-1) 

𝑅2 Coefficient of determination (-) 

𝑅c Cake layer resistance (m-1) 

𝑅m Membrane intrinsic resistance (m-1) 

RSS𝑘 Residual sum of squares for the output variable 𝑘 
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𝑅t Total filtration resistance (m-1) 
sCOD Soluble COD concentration (< 0.45 µm) (kgCOD m-3) 
𝑆fe,𝑒 Concentration of soluble flux enhancer in the bulk liquid after equilibrium 

(kgCOD m-3) 
SGDm Specific gas demand (Nm3 h−1 m-2) 

𝑆𝑖 Concentration of soluble component 𝑖 in the bulk liquid (kgCOD m-3 or kmol m-3) 
𝑡 Time (s) 

𝑇 Temperature (K or °C) 

𝑡conv Time conversion factor (86,400 s d-1) 
tCOD Total COD concentration (kgCOD m-3)   
tCODBW Total COD concentration in blackwater (kgCOD m-3)   
𝑡F Continuous filtration time in a cycle (s) 

𝑡fe0 Initial time of flux enhancer pulse-dosage (s) 

TMP  Transmembrane pressure (Pa) 

𝑢L,AnDFCm Liquid crossflow velocity in the AnDFCm installation (m s-1) 

𝑢G Gas superficial velocity (in the AnMBR membrane tank) (m s-1) 

𝑉F Volume of permeate produced within the filtration time 𝑡F (m3 m-2) 
𝑉G Total gas volume (m3) 

𝑉L Total mixed liquor volume (m3) 

𝑉P Permeate volume produced (m3) 

𝑉T Total reactor volume (m3) 

𝑤𝑗 Weight of output variable 𝑗 (-) 

𝑋fe,𝑒 Adsorbed concentration of flux enhancer after equilibrium (kgCOD m-3) 

𝑋𝑖  Concentration of particulate component 𝑖 in the bulk liquid (kgCOD m-3) 
𝑌fe,C Yield of colloidal material flocculated per unit of flux enhancer adsorbed (kg kg-1) 

𝑌floc,fe Proportionality parameter between particle diameter and flux enhancer 
concentration (kg kgCOD-1) 

𝑌𝑗 Yield coefficient of biomass on substrate for process 𝑗. 

𝑦𝑒,𝑗,𝑖 i-th experimental value of the output variable 𝑗 

𝑦𝑚,𝑗,𝑖
 i-th predicted value of the output variable 𝑗  
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Subscripts 

 

 

aa Amino acids / Amino acids degraders 

ac Acetate /Acetate degraders 

bu Butyrate  

c Cake layer  

C Colloidal 

c4 Valerate and butyrate degraders 

ch4 Methane 

co2 Carbon dioxide 

ch Carbohydrates 

fa Long chain fatty acids (LCFA) / LCFA degraders 

fe Flux enhancer, cationic polymer 

G Gas 

h2 Hydrogen / Hydrogen degraders 

hs Humic substances 

I Inert 

IC Inorganic carbon 

IN Inorganic nitrogen 

Inf Influent 

L Mixed liquor 

li Lipids 

P Permeate 

pr Proteins 

pro Propionate / Propionate degraders 

S Soluble  

su Monosaccharides 

va Valerate 

W Water 

WS Waste sludge 

X Particulate 
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