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Abstract
With the increase of available storage bandwidth, CPUs can not keep up with the compute throughput
needed to process this amount of incoming data. GPUs and FPGAs are generally better suited for such
tasks. To assist FPGAs in their functions, some boards are equipped with one or more high bandwidth
memory (HBM) stacks, with a bandwidth of 230 GB/s each. This thesis presents a hardware design for
the Alveo U280 FPGA board with HBM. Each HBM stack provides multiple interfaces to the full range
of memory within HBM. Utilizing these multiple interfaces, a hardware decompressor for the Snappy
compression algorithm is placed in parallel to achieve a higher end-to-end throughput. Additionally a
design is created to perform benchmarks on HBM where varying sizes of data are transported between
HBM and logic within the FPGA.

The hardware decompressor and component that interfaces to memory within HBM were found to
be incompatible and required additional logic to become able to transport data between them. To ease
the parallelization of the decompressor a custom Snappy framing format is implemented. Using this
format a softcore processor on the FPGA is able to buffer the locations of compressed data within HBM
and divide these over available decompressors. The design is successfully synthesized into a kernel
that can be loaded by the FPGA.

From themoment compressed data is sitting in HBMuntil it is decompressed, a single decompressor
reaches a maximum end-to-end throughput of 4.0 GB/s. When eight or more decompressors are
activated, they reach a throughput between 20.0 to 26.2 GB/s. The hardware decompressor designs
uses less than 10% of the resources of the U280 with little power usage. Compared to a software
implementation, using multithreading, the hardware solution is 1.5-2.5x faster on a set of files that is
used for benchmarks on decompression speed with varying compression ratios.
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1
Introduction

1.1. Context

The year 2020 changed the world drastically, forcing many people to work from home until some form of
vaccination is released to the general public. This led to more digital traffic and data being generated
than ever before. For example, every minute over 200.000 people are in a Zoom-meeting and 500
hours of video is uploaded to YouTube [8]. These numbers are likely to become even larger in coming
years as the amount of data created and transferred is expected to grow by at least 40% between 2019
and 2024 [9].

At the same time, companies want to make decisions based on their huge amount of recorded
interactions [10], which are in a raw form when obtained (Big Data). A data analyst can, after applying
their tools and techniques, shape some statistic from this data on which a decision can be based.
However, an analyst may have to wait long for a query on their database to complete. This long waiting
period has a client wait even longer until they can make their decision based on the result, which might
make them miss out of a potential business opportunity. So there may be great importance of analytic
tools being able to parse huge amounts of data in an efficient way.

In addition, storing data is not free and being able to reduce the amount of data stored through
compression can save a company a lot of money and energy over time. When at a later moment the
stored data is required, the extra step of decompression has to be performed making the delay between
query and result even longer.

Along with Moore’s Law [11], stating that the number of transistors on an integrated chip double
every two years, the available bandwidth for transferring data has kept growing, as can be seen in
Figure 1.1. With a CPU being able to obtain data from RAM at a bandwidth of 100+ GB/s, it is not
always capable of processing the data at such speeds. For example, an extremely fast decompression
algorithm, LZ4 reaches at most a throughput of 5 GB/s per thread [12], meaning 20+ threads would
have to be running in parallel to saturate the bandwidth. Other decompression algorithms may reach a
throughput of 500 MB/s - 1 GB/s, requiring over 100 parallel threads to be active to saturate the storage
bandwidth.
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2 1. Introduction

Figure 1.1: Bandwidth trend of different devices from [1].

Graphics processing units (GPUs) and field programmable gate arrays (FPGAs) can be used to re-
lieve the CPU of the decompression task allowing it to work on the decompressed data or other tasks.
FPGAs, even more so than GPUs, are able to use more of the available storage bandwidth at a lower
power usage due to their low-level customization [13]. FPGAs are especially good at accelerating ap-
plications because of their capability of exploiting fine-grained parallelism for specific algorithms and
their parallel kernels. As accelerators they are commonly used to stream data through and immediately
perform calculations on the passing data, such as decompression using Snappy [14], image process-
ing [15], (neural) simulation [16] and many in-memory database acceleration [1] applications.

However, a general issue for FPGAs are memory accesses, which need to be fast and with a wide
bandwidth to prevent idle components. For example, a raw 1080p video consists of 1920∗1080∗3 = 6
MB per frame. Attempting to apply a blur using the average of three or more frames will require some
form of memory unit to buffer data as it quickly outgrows the amount of available storage using look-up
tables (LUTs) on an FPGA. For applications which are memory-bound supporting platforms have to be
developed [17] [18] to make benefiting from the parallelism of an FPGA easier.

To enable accelerators to temporarily store data there is a wide variety of options where on-chip
memory is only a few megabytes wide and off-chip DDR memory holds multiple gigabytes. For exam-
ple, the Alveo U200 has 64 GB of off-chip memory at a maximum bandwidth of 77 GB/s [19]. GPUs
had a memory bandwidth one magnitude higher than the U200, the GeForce RTX 2080 Ti has 11 GB
of GDDR6 at 616 GB/s and the Nvidia Tesla P100 has 16GB of High Bandwidth Memory (HBM) at 732
GB/s. To pull FPGAs into these ranges of bandwidth, vendors have started adding HBM to their FPGA
which, for Xilinx, resulted in the U50 (8GB at 316 GB/s) and the U280 (8GB at 460 GB/s) for their Alveo
Ultrascale+ family.

For simple applications, such as calculating the average of some raw video frames, the whole
amount of bandwidth of the HBM can be easily used through parallelization, but when the frames are
compressed, the decompression step can make it hard to parallelize. A way to still use this high amount
of bandwidth for decompression would be to place smaller decompressing engines in parallel that per-
form a decompression on a part of the video stream. In much the same way this thesis will attempt
to design an architecture that takes a compressed Snappy file and decompresses it directly on the
FPGA and keep the result in memory for further calculations. The CPU on the host will only manage
the transfer of data from storage to the FPGA so the host does not need to see the data by loading it
in its own memory.

With the use of a hardware Snappy decompressor [20], the throughput of HBM will be measured
when multiple engines are working on the same stream of data. As well the benefits of adding a pro-
cessor to the architecture on an FPGA to aid the processing of data will be explored.
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1.2. Challenges
Even a high-performance FPGA implementation for an application will often not be able to saturate
the available bandwidth when using a single instance. One way of solving this would be to place
multiple of these applications as independent hardware modules in parallel. This creates the problem
of distributing the single input stream over the many placed modules and reconstructing their output. To
manage this, the CPU of the host that contains the storage could, before starting the stream, go through
the data itself and chop it up in chunks which can then be send to the individual modules. However this
requires the data to pass from storage into the memory of the host before going to the FPGA. It would
be more efficient, and now possible with HBM, to let the FPGA itself perform the parsing while a part
of the data remains buffered in HBM.

Some FPGAs are currently capable of hosting their own processor in the reconfigurable fabric in the
form of a softcore. This softcore can perform the same basic tasks as any usual processor, although
at a much lower clock frequency. If data is being parsed by modules at such a high throughput that
the softcore does not have enough time to manage the next packet, it may create stalls resulting in a
lower overall throughput. Therefore, the program executed by the softcore should be able to process
the content of such packet while the rest of the FPGA circuit processes another packet at the same
time.

Finally, the addition of HBM to FPGAs is a very recent development so some benchmarks have to
be performed to identify how the documented throughput can be achieved on an actual device.

1.3. Research questions
This thesis is concerned with addressing the challenges mentioned in Section 1.2. In order to do so
the thesis will answer the following question:

What are the advantages of using HBM for accelerating decompression algorithms in big data applications?

To aid in the answering of the research question, it can be divided in the following sub-questions:

• What are the computational needs of incoming data streams to enable parallelization of applica-
tions?

• Is HBM able to mitigate challenges caused by limitations of on-chip memory resources?

• How can HBM aid in handling variable computation on variable sizes of data?

1.4. Thesis outline
Chapter 2 will provide all the required background information for understanding the design and im-
plementation choices discussed in Chapter 4 and Chapter 3. The content discussed in Chapter 2 is
focused on the parts that are relevant for the designs in this thesis. Chapter 3 states the requirements
of the design and discusses some of the important choices made for its architecture. In the chapter
also some other designs are briefly discussed on their strategy to benchmark HBM. In Chapter 4 the
implementation and the challenges that had to be overcome are described. The general layout of a
kernel is introduced and the configuration of its internal components is explained. Using the kernel
from Chapter 4 results are obtained through benchmarks and discussed in Chapter 5. Concluding in
Chapter 6 a summary of the thesis is provided and an evaluation of the research questions from Section
1.3. Also possible improvements and future work are given in this chapter.





2
Background

2.1. FPGAs as a compute platform
A field-programmable gate array (FPGA) is a device that allows a developer to program it’s internal
logic-circuitry after it has been manufactured into a chip. Internally, a basic FPGA mainly consists
of configurable logic blocks (CLBs) that are interconnected and routed with switch matrices to other
CLBs or input/output cells. A schematic overview of an FPGA is shown in Figure 2.1. Manufactures
can choose to replace a number of CLBs for certain modules such as digital signal processing slices,
memory blocks, transceivers for a certain external connection or integrate a whole processor.

Input/Output
Cell

Configurable
Logic Cell

Switch Matrix

Interconnect
Wires

Figure 2.1: Schematic overview of a basic FPGA.

The programmed circuitry on an FPGA, once started, processes its inputs to its outputs in parallel
where intermediate steps are synced by a global clock. This means that adding tasks does not affect
the completion time of other tasks. If, for example, an addition of two inputs happen at one place, a
division can take place on two inputs at another place at the same time. A very basic processor, with a
single core, would first calculate the addition and then the division, consecutively. The FPGA, however,
has a much lower clock frequency, generally in the order of a few hundred megahertz. A CPU has fre-
quencies at a few gigahertz and some parallelism capabilities through the addition of multiple cores.
So to achieve an identical throughput as the CPU, an FPGA would have to do at least 10 additions in
parallel per clock cycle.

Apart from parallelism, the FPGA has another strength in its reconfigurability. The fact that FP-
GAs are reconfigurable is useful for prototyping circuitry that would later be baked into a chip or ASIC

5
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(application-specific integrated circuit). Their reconfigurability also makes it possible to quickly switch
from one specifically applied algorithm to another. Their highly parallel execution proofs useful when
many identical calculations have to be made, which occurs in fields such as image processing [15],
(neural) simulation [16] and many in-memory database acceleration [1] applications.

2.2. AXI-bus interface
The Advanced eXtensible Interface (AXI) is an open-source specification [21] which is part of the Ad-
vanced Microcontroller Bus Architecture (AMBA) released by ARM. AXI was first released in AMBA
3 as AXI3 in 2003. In 2010 ARM released AMBA 4 that introduced AXI4 along with AXI4-lite and an
AXI4-stream protocol. The designs used in this thesis contain many components that use these proto-
cols for configuration or data transportation, so they are briefly discussed.

The term packet will be used to describe an element of data on a bus. In Figure 2.2 the single byte
0xDE is an example of a packet. The term transaction describes the full transfer of data a component
has requested. For example, in Figure 2.3 a transaction takes place between clockpulse 1 to 13.

2.2.1. AXI3 & AXI4
The AXI protocol describes a design for communication between any amount of master and slave
components. Communication takes place using five independent channels. Each channel handles its
transactions using a handshake mechanism. This handshake allows both the master and the slave to
control the rate at which data moves between them. In this mechanism the source generates a valid
signal to indicate that it has a new and stable packet for the destination. The destination asserts a
ready signal when it can consume the next packet. A transfer then occurs during the rising edge of a
clock cycle when both the valid and ready signal are asserted.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

clk

data 0xDE 0xC0 0xAD 0xDE

valid

ready

sl
v

m
st

r

Figure 2.2: Four single byte transfers using handshaking mechanism.

In Figure 2.2 four packets containing one byte each are transferred using handshakes on a single
channel. At the rising edge of clock cycle 2, indicated by the 2 above the clk signal, both the master
is ready and the slave contains valid data so a packet is transferred. Now the master might need some
time to clear a buffer and the slave might stall on retrieving some data so their lines go low. Once both
the master and slave are ready again, which is the figure occurs at clock cycle 5, their next transfer
takes place. The final two packet are transferred at at cycles 7 and 8.

An AXI-bus consists of the following five channels, each using this handshake protocol:

1. Read address and control
2. Read data
3. Write address and control
4. Write data
5. Write response

The address and control channels are used by the master component to tell the slave components
information about the incoming data. Information such as the size of a single transfer, the amount of
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transfers, the address of the component it should reach and how the address changes between each
transfer. The read data channel consists of signals from the slave such as the data that the master
requested, a response signal indicating the status of the transfers and a signal that is asserted when
the current packet is the last packet of this transaction. The write data channel consists of mostly the
same signals as the read data channel, however they are generated by the master and received by the
slave. The write response channel lets the slave indicate to the master that a write has completed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Figure 2.3: Example of AXI3/AXI4 protocol retrieving data at specified address.

Figure 2.3 shows an example of a master reading 0x04 bytes from a slave at address 0x2000 using
the read address and read data channels. The master supplies the address it wants to read from, the
amount of bytes it wants to read and asserts valid. Once the slave is ready to read the address, it
asserts its ready signal. In the figure, at clock cycle 3, the transfer of the address packet is considered
completed and the master can deassert valid as no extra address will be transferred. In the read data
channel the slave can now start pushing the data found at the received address. Data transfers are
consequently performed until the last signal is asserted, indicating the full transaction has completed.
In a practical transaction more settings are negotiated by the master and slave, such as the size of a
packet (one byte here), so the slave knows how to increase the address.

2.2.2. AXI-Lite
Not every communication between two components needs all the sophisticated options that the full AXI
protocol facilitates. When only a single value has to be written or set, such as during configuration, a
subset of the AXI protocol will suffice. This is implemented as AXI-Lite and consists of the 5 channels
that AXI has but only implements the signals required to transfer a single packet per transaction. For
example the last signal used in the transaction in Figure 2.3 is not present in AXI-Lite as a transaction
consists of a single packet anyway.

2.2.3. AXI-Stream
When data is supposed to flow in one direction without any requirements of an address an AXI-Stream
is more suitable, specified separately from AXI in [22]. For example, if a component reads data from
memory this data can be transferred as a stream to a component that sums up all values that are read.
The summing component does not care where the data comes from or goes and the direction of the
flow of data stays the same. The AXI-Stream protocol, in contrast to AXI and AXI-Lite, consists of a
single channel going in one direction. The basic signals implemented in the channel are the same as
the signals of the read data channel in the example of Figure 2.3. It, like the AXI protocol, has some
optional signals that can be added.

Of the optional signals the keep signal is used in some streams used in the designs for this thesis.
This signal indicates which bytes from a packet should be processed as data and which bytes can be
ignored. This is useful when a data element does not fill the width of the bus. For example on a bus
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that has a width of four bytes and the actual value to be transferred is three bytes, one byte can be
ignored by the receiving component. The sending component indicates this by having the keep signal
consist of three 1’s and one 0 where the location of the 0 correspond to the location of the byte that can
be ignored. Usually the keep bus is filled with 1’s since only for the last packet some bytes will have to
be ignored, as the full length of a transaction doesn’t have to be divisible by the size of the data-bus.

0 1 2 3 4 5

0 1 2 3 4 5

clk

data 0x01234567 0x89AB4567

valid

keep 0xF 0xC

last

ready

m
st

r
s
lv

Figure 2.4: AXI-Stream example using keep signal.

In Figure 2.4 an AXI-Stream is displayed where a transaction of six bytes is completed. As six bytes
cannot be equally divided by the width of the data-bus, which is four bytes, one of the packets must
contain partial data. In the figure all the bytes of the first packet are to be kept as data, and as such the
keep signal is set to 0b1111 or 0xF in hexadecimal. The second packet however has a value of 0xC
or 0b1100, so only the first two bytes are kept: 0x89AB.

2.2.4. vhlib stream library
vhlib [23] is a library of components that can be used to create, manipulate and handle streams. It was
created as part of Fletcher [17] but became generic enough to become its own library. The hardware
Snappy decompressor used within the designs in this thesis implements vhlib to handle streams. AXI-
Streams and vhlib streams are not directly compatible (yet) but under certain circumstances can be
transformed to each other with some additional logic.

An important difference is that instead of a keep signal it uses a cnt signal that indicates how many
of the bytes in a packet are part of the data, starting from the most significant byte. As vhlib does not
support NULL-packets, where none of the bytes in a packet are to be kept as data, a cnt of 0x0 is not
used and can instead be used to indicate all the bytes are data.
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data 0x01234567 0x89ABCD67
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ready
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Figure 2.5: vhlib example using cnt signal.

Figure 2.5 shows the same data being transferred as in Figure 2.4, but with the vhlib protocol. As all
four of the bytes in the first packet are data, the cnt signal has a value of 0x00. In the second packet
only the first two bytes are data, so cnt is set to 0x3 or 0b11. Where an AXI-Stream needs four bits
to describe which bytes to keep, vhlib only requires two. However the cnt signal loses the option to
keep any byte within a packet, so the data bytes will always have to be shifted to the front of a packet.
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2.3. Microprocessor on FPGA
To aid in reducing the complexity of a design on an FPGA a (micro)processor may be integrated along
the reconfigurable logic. For FPGAs there are two varieties of embedded microprocessors: as a hard-
core processor or soft-core processor. A hard-core processor is preconfigured on a dedicated block,
which a manufacturer has placed directly inside the FPGA, replacing a few CLBs of Figure 2.1.

An example is the Xilinx Zynq 7000 series which includes ARM Cortex-A9 that can be configured
to a frequency of up to 1 GHz. A soft-core processor can optionally be added to the design and will
be synthesized along the rest of the design within the reconfigurable fabric. Even multiple soft-cores
can be implemented to create a multiprocessor system on a chip (MPSoC) which has been explored
extensively [24] [25]. Advantages of implementing soft-core processors within a design include the
flexibility (many processors can be embedded, limited only by the resources on the FPGA and each
can be configured independently) and the low time-to-market (programming and debugging the source
code is usually faster than implementing a hardware solution). However, soft-core processors are
limited to an operating frequency of 250-300 MHz.

The FPGA used for the designs of this thesis, the Xilinx Alveo U280, does not include a hard-
core processor but can implement the MicroBlaze soft-core developed by Xilinx. The MicroBlaze is a
reduced instruction set computer (RISC) that supports both 32-bit and 64-bit address configurations
with a clock frequency limited to 250 MHz. Once C-code is written it is compiled using its associated
compiler. These are then written to the (Block RAM) memory components of the FPGA which the
MicroBlaze has access to during execution. The maximum size of the program, including the stack
and heap, should be 128Kb for optimal performance.

2.4. High Bandwidth Memory
High BandwidthMemory (HBM) is an interface to synchronous dynamic random-accessmemory (SDRAM)
that are stacked in 3D. It’s main advantages are lower power consumption, less area usage and higher
bandwidth than other interfaces to SDRAM, such as DDR6. HBM however costs more in manufactur-
ing and needs more cooling due to being densely packed. In 2013 JEDEC standardized and specified
HBM as JESD235 [26] and in 2015 HBM2, as JESD235A [27], was announced. Since 2016 HBM2 is
being developed by Samsung and SK Hynix and has been used for GPUs, the first being the Nvidia
Tesla P100 (which wasn’t proving very useful at that point [28]). In 2018 Xilinx released the first FPGA
that had an HBM module added. with a 1024-bit interface over it’s multiple channels and being able to
reach a bandwidth of 256 GB/s per stack featuring 4GB of memory.

In Figure 2.6 a schematic cross section of HBM on a package is displayed. To reach the high band-
width multiple memory dies are stacked on top of each other with a controller/logic die on the bottom. A
vertical connection through the stacked dies is made with electrical connections named through-silicon
via (TSV) and connected via microbumps. An interposer layer, without logic, connects the logic die to
the processor/GPU/FPGA of the package. Further connections through the substrate of the package
are available for debugging purposes. Often this configuration is named 2.5D as the memory is stacked
in 3D but attaches to a processing unit horizontally.

Figure 2.6: Side view of HBM on a chip, figure from [2] and TSV zoomed in figure from [3].
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HBM IP
An overview of the interfaces of HBM, with two stacks, used in an architecture with an FPGA can be
seen in Figure 2.7. The HBM IP is the interface Xilinx provides to support the communication between
the FPGA logic and the HBM and specified in [29]. In a stack, each of its 16 banks of 256 MB is con-
nected to the IP through its own so-called pseudo-memory channels that have a width of 64 bits. The IP
features 8 memory controllers per stack that each manage two pseudo channels for a total of 16 pseudo
channels. The memory controllers upscale the width of the connection to 256 bit and are connected to
a crossbar. At the other end of the crossbar are an AXI3 for each pseudo-memory channel with which
the rest of the logic of the FPGA can communicate. The conversion from 64 bit to 256 allows the FPGA
to reach a high bandwidth while at a lower frequency. The crossbar allows any AXI3 port to reach any
memory location within the HBM. The crossbar, however, does not support reading the same bank us-
ing different channels at the same time. This means that reading two values from the same bank takes
twice as long as reading two values from two different banks as will be shown with later measurements.
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Figure 2.7: Overview of HBM on an FPGA, figure from [4].

In optimal conditions the throughput from the side of the IP can be calculated from the following con-
siderations. A stack contains 16 pseudo-memory channels with a width of 64 bit, 16 ∗ 64 = 1024 bit =
128 bytes. Within a channel a data bit toggles twice the rate of the HBM clock, which is maxed at 900
MHz. Per stack this means 2 ∗ 900 ∗ 10 ∗ 128 = 230.4 GB/s can be transferred. On a configuration
with two stacks, like in Figure 2.7, the throughput is doubled to 460.8 GB/s. To match this throughput
on the FPGA side the 16 AXI3 ports, with a width of 256 bit (32 bytes), have to be clocked at 450 MHz.
Then in the same way for one stack 16 ∗ 32 ∗ 450 ∗ 10 = 230.4 GB/s.

2.5. Snappy compression
Snappy (Github: [30]) is a lossless compression and decompression algorithm based on the scheme
algorithm named LZ77 [31]. LZ77 algorithm are dictionary coders, which achieve compression by
placing references to data that it has encountered earlier, rather than the data itself. This algorithm
therefore reaches the best ratio when a lot of identical data is compressed, however achieves barely
any compression if data is completely random.

It aims for very high speeds rather than compression ratio. On a single core of an i7 processor in
64-bit mode it can compress at a rate of 250 MB/sec and decompress at around 500 MB/sec. This
scheme is used to compress huge tables of data, most notably by Google. It is written in C++ but can
be used by many other programming languages through bindings from third parties.
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within the repository is a specification for Snappy that describes how data is compressed and de-
compressed. It also offers a framing format that allows the compressed data to be chunked in smaller
parts and written to a file, however using this framing is optional.

2.5.1. Compression format
Since Snappy (de)compression will be used to measure performance the format is described and an
example given. The first bytes indicate the total length of the original data as a little-endian varint.
Varints are an encoding used to represent integers using one or more bytes. This allows smaller
numbers to use less bytes while also supporting bigger numbers. All bytes in a varint have 7 of their 8
bits store a part of the two’s complement number it is encoding, the most significant bit (MSB) is set to
1 if more parts are following and set to 0 if it was the last byte.

An example of the decimal 333 being encoded as a varint is given in Figure 2.8. First the decimal
is encoded as binary number and, starting from the right, split at every 7 bits. Since the varint will be
in little-endian first the lower bits of the number are evaluated. As more bits are followed by the first
bits a ’1’ is placed as the MSB. For the second part (the 0b10), it is the last part of the number, so a ’0’
is placed as MSB. Converting these numbers to their hexadecimal representation and concatenating it
results in the varint 0xCD02.

333

0xCD 0x02

0xCD02

11001101 0000010

10 1001101
1001101 10

Figure 2.8: Example of decimal 333 being encoded as varint.

For a single Snappy compressed stream the maximum length is 2 −1, so a single stream consists
of a maximum of 4 GB and the size of the varint is at most four bytes. After the length the rest of the
bytes in the stream are encoded using four types of elements. Which type the next element has is
indicated by the lower two bits of the first byte of the element. This first byte is also named the tag
byte. The remaining, upper, six bits have an interpretation that is dependent on the element type. The
four elements are indicated by the two bits as follows:

• 00: Literal
• 01: Copy with 1-byte offset
• 10: Copy with 2-byte offset
• 11: Copy with 4-byte offset

A literal element means that no compression is performed so data can be read directly. This length of
the literal is stored depending on the size. If the length is 60 or less bytes the length is stored in the
remaining six bits of the tag byte. If the length of the literal is longer than 60 bytes, the length is found
in the bytes following the tag byte. The amount of bytes the length is written in described by the
same six bits of the tag byte where 60, 61, 62 or 63 mean a length of 1, 2, 3 or 4 bytes respectively.

A copy points back to previous decompressed data. A copy element consists of two parts: the
offset, how many bytes back the data can be found and length, how many bytes to insert. In the copy
with 1-byte offset, three bits from the tag byte are used for the length (+4), the remaining three and
the next byte together (for a length of 11 bits) describe the offset. In the other two copy elements the
six remaining bits of the tag byte store the length (+1) of the copy and the two or four bytes after the
tag byte indicate the offset of the copy, in little-endian.

An example of data that can benefit from Snappy’s compression technique are the lyrics to the
song ”Around the world”, made famous by the French electronic music duo Daft Punk. The lyrics are
the phrase ”Around the world, around the world” repeated 72 times. Even within the phrase already a
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repetition is present, except for the capitalization of the ’a’ character. An example of the decompression
of a Snappy compression applied to the first three lines of Daft Punk’s ”Around the world” is shown in
Equation 2.1.

694841726𝐹756𝐸642074686520776𝐹726𝐶642𝐶20613𝐴1200000𝐴𝐹𝐸23000923 (2.1)

0𝑥69 = 0𝑏01101001
= varint storing length of uncompressed data
= 105

0𝑥48 = 0𝑏1001000
= literal follows, length = 18 + 1 bytes

0𝑥4172 − 0𝑥2061 = ”Around the world, a”
0𝑥3𝐴1200 = 0𝑏111010, 0𝑏10010, 0𝑏0

= copy with 2-byte offset, length = 14 + 1,offset = 18
= ”round the world”

0𝑥00 = 0𝑏000
= literal follows, length = 0 + 1 byte

0𝑥0𝐴 = ’newline character’
0𝑥𝐹𝐸2300 = 0𝑏11111110, 0𝑏100011, 0𝑏0

= copy with 2-byte offset, length = 63 + 1,offset = 35
= ”Around the world, around the world” + (newline)

”Around the world, around the ”
0𝑥0923 = 0𝑏1001, 0𝑏100011, 0𝑏0

= copy with 1-byte offset, length = 2 + 4,offset = 35
= ”world”+ ’newline character’

The first line in Equation 2.1 shows the compressed stream of bytes as hexadecimal numbers. The
bytes are parsed from left to right. In red is the varint describing the length of the decompressed data is
decoded as 105. Blue bytes describe literals. black bytes represent uncompressed data, indicated by
the literals. The violet bytes are copy elements. Converting all the decompressed bytes to their ASCII
character the first three lines of ”Around the world” are retrieved. Each line, consists of 35 characters,
including the newline character. The total amount of decompressed bytes is 35 ∗ 3 = 105, which is the
same as the varint, indicating the full stream is decompressed.

2.5.2. Custom framing format

In Equation 2.1 a byte stream is given which could directly be written to storage. However when in-
put data becomes large compression and decompression can benefit from chopping up the data into
chunks of smaller sizes. These smaller chunks can be compressed or decompressed in parallel since
no data dependency exists between them. Indicating the start and length of a chunk is done through
a framing format. A framing format is provided in the Snappy Github at [30]. It describes a file header,
checksums and how chunks lie back-to-back, each chunk starting with a chunk header followed by the
raw data.

For the design in this thesis a custom framing format is created. This is done to ease complexity
of parsing chunk headers inside the FPGA. As the design is more proof-of-concept then a product this
suffices for the measurements. In the future the Snappy framing format as described on the Github
could be implemented.
The custom framing format adds 64 bits to each chunk of a Snappy compressed byte stream. The 64
bits are two (little-endian) 32 bit unsigned integers. The first integer is the size of the compressed data,
the second the size of the uncompressed data in the chunk. The end of a file is indicated by a header
consisting of 64 0-bits, or 8 empty bytes.
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2.5.3. Hardware Snappy decompressor
The Accelerated Big Data Systems group of the Quantum & Computer Engineering department of Delft
University of Technology has created an open-source hardware version of a Snappy decompressor
named vhsnunzip (VHdl SNappy unzip) at [20]. It is targeted at the Xilinx UltraScale+ FPGA family. It
has two versions, a buffered and unbuffered one both with a maximum frequency of about 250 MHz.
The unbuffered version can decompress Snappy compressed data at a rate of 1.5 GB/s, can take
chunks of sizes larger than 64 KB and has an input width of 64 bits. The buffered version supports
multiple cores of decompressors in parallel, allowing decompression at a throughput of 8.0 GB/s, when
8 cores run in parallel. The buffered version only works for chunks of at most 64 KB but allows an input
width up to 256 bits.





3
Alternative solutions

The attachment of HBM to FPGAs has not gone unnoticed and the uncharted limits of HBM have
sparked some studies into applying benchmarks to it. In one paper [32] an open-source tool named
Shuhai is developed. This tool allows micro-benchmarks on HBM, exploring the latency of a channel
under certain conditions, such as changing the used AXI-port when accessing a specific bank. Their
tool also measures the impact other channels might have when used when a single bank is accessed,
which is something this thesis will also be much involved with. In another paper [33] the high-level
synthesis (HLS) tools, that are supposed to ease development on FPGA, are used for development
and benchmark the performance and overhead of their resulting kernels on three different boards.

The design in this thesis will go one step further by combining the ideas of both papers as will be
discussed in the following sections.

3.1. Requirements specification
In order to design an architecture that can find advantages and limitations of HBM on an FPGA some
requirements are specified using the MoSCow method. The summary of the design requirements are
shown in Table 3.1. The most important requirement is that the design should be synthesizable for
the Alveo U280 FPGA as it is the FPGA that is available to perform benchmarks on. The design itself
should be able to interact with HBM, via reading or writing to it and measure the time it takes to complete
such an interaction. Once a design is able to perform this action the measured time can be used to find
how different types of data changes the measured time. From a design that is able to perform such
transactions further steps can be taken. The design that is limited to just the reading and writing of data
can eventually be used as a baseline, to compare the other, more sophisticated, designs to.

The design should implement an engine in parallel that uses the data obtained from a transaction.
Additionally the result of this engine should be available for further processing. With this it may show
more of the limitations HBM may have when parallel operations are being applied to its memory banks.
The data being available proofs that the implementation could be used as part in a bigger chain of
processing elements. It also allows the result to be tested for correct and expected values through some
verification unit. The design should be able to measure both the full possible throughput achievable
from HBM as well as be able to apply a practical set of data that represents practical usage of the
FPGA.

The host to which the FPGA is attached should not have to interact with the data from the moment
the full processing of the data is started. This specifically means that the processor of the host should
only be concerned with setting up, starting and monitoring the processing of the kernel(s) on the FPGA.
The processor should not be required to parse headers or measure the amount of bytes of the data
for the design to work. The kernel should be able to work autonomously on the data. Through this
requirement the measurements and its results on HBM do not rely on the specifications of the CPU
on the host. At the same time it prevents any potential overhead experienced due to communication
between the FPGA and CPU.

A useful property of the design would be the ability to configure the amount of engines that are
operating at one time on the HBM. Ideally the host can configure a kernel to use a selected amount

15
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of engines such that it can be scripted as part of a benchmark. To proof further processing of data is
possible the design can be extended to implement an additional engine that applies a final reducing
function on the result of the first engine. Although it does not show more advantages or limitations of
HBM it may show the effect of total throughput when used in a practical use-case. Finally it would be
useful to implement an other engine to compare their individual throughput, as the results of a single
implementation may not be representative enough. Additionally, through the process of replacing the
engine it may remove any issues of implementing an other engine, such that the ease of replacing the
engine is increased.

Xilinx provides two types of engines for Data Base acceleration cards to perform Host to Card (H2C)
and Card to Host (C2H) operations: XDMA and the newer QDMA. The main difference between the
two is that QDMA uses queues and XDMA uses channels for it’s transfers. For the implementation
this means that QDMA allows data to be streamed in using AXI-Streams, directly into the kernel and
streamed back out again. XDMA on the other hand uses a channel to memory-map data from the
storage into a memory slot on the card (such as in HBM or DDR) using the standard AXI protocol. As
the available Alveo U280 card is programmed for XDMA the design is adjusted to expect memory to be
inside the FPGA once the kernel is activated, instead of being streamed in through a QDMA interface
as an AXI-Stream.

Must have Should have Could have Wont have

Synthesize on U280 Use parallel engines Process data after
first engine into result AXI-Stream as input

Interact with HBM
Processed data remain
available for further
processing

Implement other engine

Measure time of transaction
using a engine

Host should not have
to interact with data

Allow variable amount
of engines at runtime

Able to measure full
bandwidth and apply
practical engine

Make it easy to
replace engine
by any other engine

Table 3.1: Summary of MoSCoW method requirements

3.2. Architectural alternatives
3.2.1. Controlling engine
Within the kernel there will exist many elements that require some form of control: data has to be
routed, headers of data have to be parsed, the time of a transaction has to be measured, etc. Each of
these tasks can be performed by some unit that manages the single task or a central component can
be used that handles everything. A central component may create more overhead than when each
task has its own monitoring unit. But it allows most tunable parameters to remain in one place at which
a developer may configure or the host may communicate its settings to. Through the use of AXI-Lite
connections these parameters can then be passed forward to the other components in the design.

This single controlling unit can be designed with a few architectures as well. Either it could be an
in logic created finite-state machine (FSM), which is what was used done to parse headers in a the
hardware implementation of a parquet converter [34]. Or it can be setup using a processor. An FSM
should be able to perform all the controlling tasks within a lower amount of clock cycles than when a
processor is implemented. However the FSM will become very complex and may not even be possible
to synthesize once many parallel engines are added. Additionally it is expected that most of the time the
controlling engine will be idle. It will only be busy when parsing a header or setting up a new transaction.
Once those tasks are completed it will have to wait for some engine to finish its transaction, which may
take many times as much cycles to complete. So with the overhead likely not impacting the overall
throughput of the full transaction, when the transaction transfers a big amount of data, the processor is
the least complex option. Another advantage of using a processor is that an update on the specification
of the headers or management of modules can easily be adapted in code without having to dive deep
into HDL logic.

As the processor has the most advantages, it will be used as the controlling engine in the design.
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The Alveo U280 does not have hard-core processor component, but the MicroBlaze is available as
a soft-core processor, described in Section 2.3. The MicroBlaze can connect to other components
through an AXI-Lite interconnect. The interconnect allows a 1-to-N connection that routes data from a
single input to another components based on it’s address, much like a router. Additionally it is connected
to its own local memory bank to retrieve instructions and perform transactions with the stack and heap.
Lastly it has the ability to output and read data to and from AXI-Streams.

Alternatively the CPU on a host can be used as the processor. However, as discussed in the
previous section, Section 3.1, it is beneficial if the data does not have to pass the host before processing.
For the implementation of the design a soft-core processor will be used as the controlling engine.

3.2.2. Functional engine
As the functional engine that is used within the design there are many options. To make use of the fact
that there is a HBM the application should be memory-bound. Within the paper [33] that uses HLS with
HBM, a bucket and merge sort, a matrix-vector multiplication and a stencil application is used. The
other paper [32], using Shuhai, does not embed an application and measure the achieved bandwidth
by queuing reads and writes.

Within this thesis a design will be used that allows measuring both the full bandwidth as performed
by Shuhai and implements a application as the paper using HLS. The full bandwidth will be achieved
in the same way as Shuhai, by adding a component that constantly tries to read and write from HBM.
Where these values are written to in HBM will be controlled by the controlling engine.

For the functional engine that applies some computation, the TU Delft has some application al-
ready created. In order to explore the added benefit of implementing a MicroBlaze, a application that
requires the parsing of headers would be the best fit. One such application is the Snappy hardware
decompressor described in Section 2.5.3, in which the framing format headers are used. Another is
a hardware Parquet-to-Arrow converter [34] which uses pages as its input that use a header to store
the specific compression used for that page. Both will not immediately fit within the design as they
do not use AXI-Streams as their protocol for streaming data through the engine. The specifications of
the hardware Snappy decompressor are better known and the vhlib streams are only a slight deviation
from AXI-Streams so it will be used as the functional engine for the first design. Once it is shown to
work, it the Parquet-to-Arrow may additionally be implement to use for comparison.

3.2.3. Design environment
When creating a kernel for an FPGA there are a few alternative strategies with which a design can be
described that allows synthesizing it into a kernel for an FPGA. Generally used strategies are describing
the kernel using high-level synthesis (HLS) tools or register-transfer level (RTL) abstraction. Usually
HLS tools let a developer use C/C++ as their ”high-level” language which the tools then translate to an
RTL abstraction. Such an abstraction is usually written using a hardware description language (HDL)
such as Verilog or VHDL. Using a HDL allows a developer to tell the synthesizer exactly what kind of
connections and functions should exist to other functions and peripherals.

Within the Xilinx Vivado Design Suite, that is generally used to develop kernels for FPGAs made
by Xilinx, an extra strategy is provided. Vivado allows a kernel to be designed using a block design
or block diagram. A block design is the visual representation of a kernel. In the block design a block,
named IP (Intellectual Property) by Xilinx, can be linked to other IPs to form a kernel. Xilinx provides
many pre-made IPs through its library such as adders, counters and a MicroBlaze softcore. A devel-
oper can add these IPs to their block diagram and configure them to their need within Vivado through
a provided graphical user interface (GUI). If the available IPs does not suffice a developer can create
their own by packaging a HDL description into an IP. The provided IPs by Xilinx can not be configured
more than through the provided GUI as the HDL of the IPs are encrypted.

As mentioned in the paper [33] using HLS to benchmark HBM, currently HLS is limited in its cus-
tomization of the connections an engine can make to HBM channels. Additionally the hardware Snappy
decompressor discussed in the previous section, Section 3.2.2, is fully implemented in HDL. Therefore
either an RTL design or block design would be the safest approach to accomplish a fully working kernel.
With the block design the focus can remain on getting a working kernel rather than a fully custom made
kernel. The HDL from the hardware Snappy decompressor can be packaged as an IP within the block
design to attach to other IPs. During development a testbench can be created to monitor the flow of
data for any errors, issues or crashes. Block designs will be created to eventually synthesize into the
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kernels for the Alveo U280 using the Vivado design suite.

3.2.4. Multiple bank accesses
Although 16 banks are available per HBM stack on the FPGA, a single compressed file can not be
easily decompressed by reading from two banks at the same time. Before a decompression can be
started, the processor has to find the location of a chunk of data by parsing a header. From the contents
of that header the next header can be found. This continues until the end of the file is found. If two
banks are to be used, at least one location of a chunk in the second bank should be known. However
with the limitation of the host not interacting with the data the only way to find a header in the second
bank would be to traverse the whole link of headers until passing the pointer to the header crosses the
size of bank. Before starting this journey, it is unknown what the sizes of each header is and if the total
data would even be larger than a single bank. With the size of a HBM bank being 256 MB and the
default chunksize being 64 KB, it may be possible that 4000 headers will have to be parsed before the
header in a new bank is found. One could argue that these headers will have to be parsed at some
point anyway and some may even be stored in memory so they will not have to be parsed anymore.
Doing so may create a long stall before starting decompression, and if the file is smaller than the size
of a bank even a stall that does not provide any throughput as well.

Once such an implementation is created, it would be an extension of the results obtained from
accessing a single bank. Therefore it is not attempted within this thesis, but may be performed in the
future.

3.3. Relevant characteristics
3.3.1. Expected speedup from parallel decompressors
Shown in Section 2.4 a single HBM stack has a bandwidth of 230 GB/s divided over 16 banks, each
accessible using an AXI3 port. As stated in Section 3.2.4 most of the time during a decompression
a single bank will be used to read from. A different bank can be used to write to. When a single
decompressor is used for decompression it will not be able to use the whole 14.4 GB/s bandwidth of
the bank, as the decompressor can handle a maximum of about 1.5 GB/s [20]. Additionally the actual
throughput will include the time it takes the processor on the FPGA to parse the header of each chunk.
With a single decompressor, it may have to be idle while the processor is parsing the header before
being able to start the next transaction.

With multiple decompressor active in parallel the actual speedup mostly depends on the ratio of
time spent parsing headers and the time spent streaming data through the decompressors. This can
be observed in Amdahl’s law, shown in Equation 3.1. When the ratio, 𝑃, gets close to one, meaning
most of the time is spent on streaming data compared to the parsing of headers, the speedup nears
𝑁, the amount of parallel processing elements. However when the parsing of a header takes long,
compared to the time of a transaction and 𝑃 goes to zero, no speedup will be observed when adding
more decompressors.

Speedup(𝑁) = 1
1 − 𝑃 +

(3.1)

When ten decompressors are placed in parallel and 𝑃 is close to one, the calculated throughput would
become 1.5 GB/s * 10 = 15 GB/s. However a bank can only provide 14.4 GB/s and may not even
be able to handle the many different decompressors trying to access the bank. Using the size of a
chunk the ratio 𝑃 can be slightly changed for different measurements. The design will try to find the
actual throughput measured when multiple decompressors try to access a bank and where the optimal
amount lies. These measurements will show the actual speedup obtained from the parallelization.

3.3.2. Other memory types
Xilinx provides a wide range of memory structures on most of their FPGAs: Distributed RAM, Block
RAM and UltraRAM. Distributed RAM is created by using LUT (lookup table) resources of an FPGA to
store up to 64 bits. To store bigger portions of data Block RAM (BRAM) may be used to store up to
36 Kb (4.5 KB) of data. These can be cascaded to form bigger blocks of memory. There is a limit to
the amount of memory that can be obtained through cascading as there are a finite amount of them
available. Additionally they are not all placed in the same location on the FPGA, requiring resources to
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fully cascade them together and a lower operating frequency as data is transported. For bigger mem-
ory blocks UltraRAM (URAM) is available. Their blocks are 288 Kb (36 KB) in size and also support
cascading. They are dual-ported meaning two memory operations can take place during a single clock
cycle.

Memory specification
Distributed RAM size 64 bit
Distributed RAM capacity range 1.2 Mb – 48.3 Mb
Block RAM size 36 Kb
Block RAM capacity range 5.3 Mb – 94.5 Mb
UltraRAM size 288 Kb
UltraRAM capacity range 90 Mb – 360 Mb
HBM size 4 GB – 8 GB
HBM capacity range 4 GB – 16 GB

Table 3.2: Specification of different memory types available for the Ultrascale+ family as provided on [6].

In Table the available internal memory capacity ranges are shown for the Virtex Ultrascale+ FPGA
cards, of which the Alveo U280 is part, with HBM added. URAM at 360 Mb or 45 MB may be enough
to operate in parallel on a few chunks of 1 MB of data. However to allow bigger data files to be decom-
pressed in parallel a bigger amount of memory will be required.

HBM lets data up to 256 MB in size be placed within a single bank and provides multiple interfaces
to the whole available range of banks. As off-chip memory 32 GB of DDR, divided over two banks, is
available for the Alveo U280. This can easily be used by single decompressor where is being read from
one bank and the result is written back to the other bank. However when multiple decompressor are to
be attached, not enough interfaces are present. This may be possible through an efficient interconnect
in the same way the HBM IP allows 16 AXI interfaces to a single stack of HBM. Additionally, it will not
be possible to extend to the use of multiple kernels as all available banks are in use. Finally it will also
no be possible to use multiple banks within one design as described in Section 3.2.4.





4
Implementation

4.1. System level design
As specified in Section 3.1, in the end the goal is to have a host be able to perform some operation
on data within a Snappy compressed file, sitting in storage. The compressed data should flow from
storage directly into an FPGA, through decompressors and afterwards have the data sit ready for an
operation in global memory. The host should not have to see the data or interact with it in any way for the
decompression to succeed. For measurement purposes the FPGA should be timed on how long it takes
to completely decompressing the data, from the moment the compressed data is in global memory until
the moment the decompressed data is available in global memory. In Figure 4.1 a schematic overview
of the design, is shown. The CPU on a host can control both the storage and FPGA, for starting and
monitoring an operation. Through OpenCL bindings written in C++ the host can program a kernel on
the FPGA, read and write data to global memory, set arguments used by the kernel and monitor its
status.

Global Memory

FPGA

HOST

CPU

Kernel

DDR

Figure 4.1: Basic overview of system design implementing an FPGA attached to a host.

In Figure 4.1 as well as following schematic designs the thick white arrows represent interfaces that
perform transactions with data, like AXI-Streams and AXI4. The smaller black arrows indicate a single
signal or an AXI-Lite interface.
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4.1.1. Execution model
In the UML-diagram shown in Figure 4.2, the order of operations when performing a benchmark are
shown. Before the start of ameasurement, compressed data will bememorymapped from hostmemory
to global memory through the available OpenCL binding. With the kernel created and the compressed
data ready in HBM, the kernel can be started. The processor within the kernel starts parsing headers
and decompressors are started to work on the compressed data until the end of the data is encoun-
tered. Once the kernel signals it is done decompressing, the data inside the FPGA is copied back to
the host. The uncompressed (file before compression) and decompressed file (from the FPGA) are
compared for equality. When everything is found to be correct, a report is setup including the configu-
rations and amount of cycles the processor on the FPGA counted for the whole process to complete.

The execution of this script performs a single measurement and can be included in a bigger bench-
mark script that executes multiple measurements with different configurations. As the host does not
perform any necessary operations on the data, except for issuing transfers, the data could easily come
directly out of storage instead of being loaded into memory before a transfer.

User
CPU

FPGA
HBM

start script

compr. data Kernel

Host
DDR

done

decompr. data

 compare()

compr. data

decompr. data

looped

action/message

Snappy_
compress()

create_kernel()

start_kernel()

decompr. data

report

data transfer

unzip

Figure 4.2: UML sequence diagram of toplevel design.

4.1.2. FPGA kernel
A kernel, in the context of FPGAs, is a piece of preconfigured logic that can be loaded on the FPGA
and executed as a program. It is the result of the synthesis performed on a design that describes the
logic the FPGA should implement. A kernel can be connected to other kernels or the interfaces of the
FPGA, such as AXI ports or memory. Kernels can be scheduled for execution by the host and can be
placed in parallel, as long as there are interfaces and resources available on the FPGA. A basic kernel
would be the synthesis of an adder and a more complex kernel would be a full neural network.

A kernel can relatively easily be set up using the Vivado RTL kernel generation wizard. The wizard
lets you set initialization parameters, such as scalar variables which the host might provide to the kernel
and parameters that indicate how many connections and individual pointers to the global memory the
host and kernel should share. It also allows you to set the type of description you will provide for the
kernel, having the option between RTL and block design. As discussed in Section 3.2.3 the block
design option will be selected here.



4.2. Module design 23

For the measurements many different kernels will have to be created. All the kernels will consist of
three modules, shown in Figure 4.3:

1. One or more DMAs, for reading and writing to global memory (HBM)
2. One or more engines, performing operations on the data
3. A MicroBlaze, to monitor and control components

HBM

FPGA

HOST

CPU

DMA

MicroBlaze

Processing
engine

duplicated

Kernel

DDR

Data

Figure 4.3: Basic overview with the toplevel used modules inside kernel.

Each component will be discussed in more detail in the next section, Section 4.2. A kernel will
get at least one reset and clk (clock) signal externally. More clk signals can be created when
components need to run asynchronous on higher or lower frequencies. However the DMA, MicroBlaze
and vhsnunzip all share a maximum frequency of about 250 MHz and will therefore be connected to
the same external clk signal.

4.2. Module design
4.2.1. Direct memory access
For any decompression to take place data has to be retrieved from memory. Once decompressed it
can be directly fed to an application, like a filter, but can also be stored in memory for later use. Since
the results of decompressed data has to be tested for equality on the host it is directly written back to
global memory. To perform these read and write transaction without much overhead from a processor
Xilinx provides a Direct Memory Access (DMA) IP.

AXI DMA

S2MM

AXI4-Lite

MM2S

clk
reset

AXI-Stream AXI4

Figure 4.4: Schematic view of AXI DMA block
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The DMA IP uses the different AXI protocols for its in and outputs. Through an AXI-Lite port its
internal registers can be accessed to monitor the status of the DMA and set up transactions. It grabs
data from memory with an AXI interface outputs data as an AXI-Stream. When the length and starting
address of a block of data is provided the DMA starts reading data at consecutive addresses from the
address. For a write it expects data as an AXI-Stream at its input. Again with a provided length and
destination address it start writing data on consecutive address in memory. A very simple application
for a DMA using both channels would be a memory-copy where the stream of data produced from a
read is directly fed to the input channel of the write. In this the length of both transactions would be the
same and the destination address the address the data is to be copied to.

Since essentially a read transforms the data from being memory-mapped to a stream the channel is
often abbreviated toMM2S. In the same way a write transaction is performed through a S2MM channel.
When the configuration of the S2MM and MM2S channels, such as the bus width, are identical the AXI
interface connected to the global memory can be merged to a single AXI interface. This is because
a single AXI interface has independent read and write channels in its specification, as explained in
Section 2.2. In Figure 4.4 a DMA block is shown where on the right memory would be attached on the
AXI interface. Figure 4.6 shows the block as an IP as it appears in Vivado. A DMA can be configured
using polling or interrupt mode. As the MicroBlaze will not be computing anything intensively and most
of the time will be waiting for a DMA to go idle, it will be configured for polling mode.

To perform a transfer the DMA needs to know an address to read from/write to and the amount of
data that is transferred. Once the length of the transfer is written to the specific register it starts the
transfer. Once a read transfer is completed the DMA asserts the last signal of the stream and goes
idle. For the write channel it keeps writing until the last signal of the input stream is asserted. Once
the number of bytes written exceeds the number of bytes it was configured to write without the last
signal being asserted by the input, it goes into an error state.

The DMA can additionally be configured to allow unaligned transfers. In an unaligned transfer the
address being read from does not align with the width of the data stream. Since the length of a Snappy
chunk can be any number of bytes, the start of the second or later chunk, could be on any unaligned
address. In the same way the decompressed data needs to be able to be written to any unaligned
address. To allow these unaligned chunks to be easily read without additional logic, the DMAs in the
design will be allowed to perform unaligned transfers.

The DMA IP is a wrapper of multiple components that together allow easy transportation of data,
see page 5 of [35]. One of these components is the AXI Datamover. It is the main component of the
DMA IP, but uses commands in the form of AXI-Streams to schedule transfers instead of reading from
a register. The DMA IP allows registers to be used instead of AXI-Streams by converting between the
two internally. A control unit can write to these registers through the AXI-Lite port.

4.2.2. Processor configuration
As discussed in Section 3.2.1 a softcore processor, which Xilinx provides and is named MicroBlaze, will
be implemented to perform the controlling parts of the design. The code executed on the MicroBlaze
is written in C and compiled using Xilinx’s Vitis Software design platform. The fact that can easily be
reprogrammed is its main advantage, at the cost of possibly taking a few more cycles to complete some
operation. The reprogrammability is especially useful when, for example, the headers of some engine
would be updated in their specification, the code for the MicroBlaze can be relatively fast updated ac-
cordingly, as compared to an HDL implementation. Through this platform the block design is synced
to the software project by generating header files with settings such as AXI-addresses and including
certain drivers for IPs.

In Listing 1 the important parts of C-code compiled to run on the MicroBlaze is displayed as pseudo-
code. The first thing the MicroBlaze should perform, once it boots up (which occurs when the reset
signal of the kernel is deasserted), is to poll the control registry for the start bit which the host sets to
signal that the kernel can start. Before giving the start signal the host will set the scalar and pointer
variables for the kernel in the control registry. Once the start signal is given, the MicroBlaze can read
those and perform the operations that depend on those. Before receiving the start signal, the MicroB-
laze can set up some internal arguments and initialize peripheral components that do not depend on
these arguments, such as a timer.
Once the host has written the necessary arguments and signaled that the kernel can be executed the
MicroBlaze can read and parse the arguments, performed on Line 5. Now that the MicroBlaze knows
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1 init_controlRegister_timer_AXIStreamSwitch_DMAs();
2

3 while(1) {
4 wait_for_start_signal(); // blocking
5 get_kernel_args();
6 startTimeFull = reset_timer();
7

8 for (loopCount = 0; loopCount < krnlArgsLoop; loopCount++) {
9 reset_DMAs();
10 startTimeLoop = get_Time();
11

12 set_switch_mblaze();
13 headerList = get_chunk_headers(krnlArgsBuffersize);
14 set_switch_vhsnunzip();
15

16 headerData = get_next_header(headerList);
17 while(headerData != 0) {
18 DMAPtr = get_idle_dma(); // blocking
19 start_DMA(DMAPtr, headerData);
20

21 advance_header_list(headerList);
22 if(headerList->tail == NULL) {
23 headerList = get_chunk_headers(krnlArgsBuffersize);
24 }
25 headerData = get_next_header(headerList);
26 }
27 wait_dmas_done(); //blocking
28 }
29

30 endTimeLoop = get_time() - startTimeLoop;
31 endTimeFull = get_time() - startTimeFull;
32 write_times();
33 signal_done();
34 }

Listing 1: Pseudo-C-code executed by MicroBlaze.

where in global memory the compressed data is located it can begin a decompression. Before it can
configure the DMAs to stream data to the vhsnunzip modules it needs to know what the compressed
and decompressed length of each chunk is. For the MicroBlaze to retrieve this information it has to use
a DMA for itself to transfer data from global memory into its own local memory. Since the DMAs that
are connected to the decompressors are not doing anything yet one of them can be ”borrowed” by in-
serting a switch in the stream and temporarily setting the switch to flow to the MicroBlaze. This process
is further explained in Section 4.2.7. With the size of a Snappy header fixed at 64 bits, as described in
Section 2.5.2, The MicroBlaze can now set up a request for a header through a DMA. From this header
it parses the location of a chunk and its compressed and decompressed size. With this information it
can set up a DMA to read data into a decompressor and write the decompressed data back to global
memory. This process continues until it finds a header that indicates the end of a file at which point it
waits until all DMAs are done transferring their data. Once completed, the MicroBlaze calculates the
amount of cycles the whole process took and writes it to global memory for the host to retrieve. At the
end, the done signal is asserted so the host knows it can start using the decompressed data.
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4.2.3. Buffer containing parsed headers

From a parsed header the location of the next header is known. Once header is parsed a decompressor
can be started. To be able to immediately start a decompressor once it completes multiple headers
should be parsed. If a header is only retrieved from HBM and parsed once a compressor finishes, a
decompressor would have to remain idle until a header is successfully parsed. Although it is possible
that all headers can be read in one go and stored in the local memory of the MicroBlaze this may cause
an overflow when the chunk size is small and the file itself is very big. If, for example, a parsed header
would require 16 bytes of local memory and the compressed file is 64 MiB in total, consisting of chunks
of 1 KiB in size this would require 16∗64∗1024∗1024/1024 = 16∗64∗1024 = 1 MiB of local storage.
Since the MicroBlaze has a maximum of 128 KB of local storage, the kernel would crash somewhere
during parsing. So instead of parsing all headers in one go a maximum buffer size (configurable by the
host) is set. The MicroBlaze will parse as many headers until this buffer is full and start parsing new
headers once the buffer is empty.

As this buffer has to be dynamic to support the configurable buffer size, a linked list is implemented.
A node in this list stores the parsed header information. The head indicates the most recent chunk
that has been parsed. The tail points to the node that should be decompressed next. Each time a
node is used to configure a DMA, the tail can be advanced. Once the tail points to a node that is
uninitialized (NULL in C) the buffer is known to be empty.

Now that the location and size of chunks is known the DMAs can be configured. The MicroBlaze
can now enter a loop, at Line 17, where the following happens sequentially: First it waits until it can
find an idle DMA. It will configure it and start using the information in the node the tail of the linked
list points to. It will advance the tail pointer and check if the next tail pointer points to a valid (non-
NULL) pointer. If it is NULL it will retrieve the next batch of headers. Otherwise it continues with the
next loop until a node indicating the end of the file is retrieved. It then waits for all DMAs to finish their
jobs, indicating that the decompressed data is written to the global memory.

4.2.4. Hardware Snappy decompressor

As mentioned in the background section on the vhsnunzip module, Section 2.5.3, there are two types:
the unbuffered and buffered version. The main difference are the throughput, stream width and ability
to parse chunks larger than 64 KB. For the purpose of measuring the effect of parallelization of an ap-
plication, it is import to have the ability to parse long chunks to see how scaling from small to large data
influences the throughput. The base throughput matters less since it is the effect, rather than the final
throughput that is of importance. The stream width does matter for saturating the available bandwidth.
However when placing multiple unbuffered modules the same stream width can be achieved as using
the buffered version. As such for the measurements the decompressor is chosen to be the unbuffered
version of the vhsnunzip module. Through Vivado the HDL files within the library of [23] are compiled
into an IP that can be added to the block design of the kernel. The resulting block from the packaging
is shown in Figure 4.5.
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Figure 4.5: Hardware Snappy decompressor, vhsnunzip, as seen in Vivado block design.

Once a DMA is started it will output data over an AXI-Stream and expects data to flow in as an AXI-
Stream as well. The vhsnunzip module however uses vhlib-streams, which are not compatible (yet).
In most cases all the bytes of the compressed stream easily flow into the decompressor and come out
decompressed a few cycles later, except for the bytes in the last packet. When the total amount of
bytes cannot be equally divided over the width of the data stream, a packet will consist of bytes that
are part of the data and bytes that should be ignored. Such a packet is named a sparse packet. The
vhsnunzip module uses a stream from vhlib (using cnt), which handles this in a different way from
the DMA that streams AXI-Streams (using keep), as explained in the background on vhlib in Section
2.2.4. The difference can be seen by comparing the stream signals shown in Figure 4.5 and Figure
4.6. Normally, the outgoing stream of the DMA named M_AXIS_MM2S would connect to the input of the
vhsnunzip module at AXIS_compressed. However the output signal s_axis_mm2s_tkeep[7:0]
from M_AXIS_MM2S does not have an input signal on AXIS_compressed. Instead the co_cnt[2:0]
is available, with a different width of 3 as opposed to the width of 8 at the side of the DMA. To convert this
part of the streams from keep to cnt at the input of the vhsnunzip and from cnt to keep additional
logic has to be created and implemented. For this a mix between the available IPs from Xilinx and
self-written VHDL converted to IPs are used. The individual components that enable the conversion
between keep-to-cnt and the other way around are described in the next sections.

4.2.5. Custom keep-to-cnt conversion
In order to convert the AXI-Stream from a DMA to the vhlib steam of a decompressor, the keep signal
has to be converted to a cnt signal. Under the condition that the data-bytes from the DMA are always
consecutive, meaning no to-be-ignored bytes are between bytes representing data, this conversion can
be achieved. As mentioned in Section 4.2.1 the AXI Datamover is the main component of the DMA IP.
On page 44 of the Datamover manual [36] it says: ”... the read data is aligned such that the first byte
read is the first valid byte out on the AXI4-Stream.” This means that always the first byte will be a valid
byte. There is no statement about the bytes that follow it, but after examination it shows that the DMA
will always produce consecutive valid bytes, meaning this condition holds.

With these consecutive data-bytes the keep signal should always be a sequence of 1’s followed by
a sequence of 0’s. For example, in Figure 4.7, for the second packet the keep signal 0b1110 means
the first 3 bytes (0x89, 0xAB and 0x45) are data bytes and the last (0x67) can be ignored. In this
example the cnt equivalent would be 0b11 or 0x3, to indicate the first 3 bytes are data. This encoding
is named thermometer code or unary coding and is implemented in a custom IP named keep_to_cnt,
abbreviated to k2c in Figure 4.7.

Since a NULL-packet, where the whole content of a packet should be ignored, is not supported by
both the DMA (page 34 AXI Datamover manual [36]) and vhsnunzip (uses alternative signal) the cnt
signal for 0x0 is used to indicate all bytes are a data byte. With this the width of the cnt bus can remain
3.
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Figure 4.6: AXI DMA as seen in Vivado block design with AXI-Stream signals expanded.
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Figure 4.7: Waveform of keep from DMA being converted to cnt going to vhsnunzip.

4.2.6. Custom cnt-to-keep conversion

The conversion between the stream from a DMA to a hardware decompressor is more complex. As
can be seen in Figure 4.5 the module has an additional signal named dvalid at the output. When
dvalid is asserted the contents of the package should be considered data. If it is deasserted during
a transaction it is a NULL-package. The fact that the output stream contains NULL-packages is an
issue, since the datamover component of the DMA does not support them and will ignore the packet
when encountered. From simulation it is found that vhsnunzip uses NULL-packages to carry the last
signal of a transfer, since a last signal has to be accompanied with a packet. This is useful when the
vhsnunzip realizes the transfer has completed after already having sent its last packet. An example
of such a transaction is shown in Figure 4.8. When at clock-cycle 4 a packet arrives where keep is
0b0000 the DMA ignores it and waits for a last signal it will never get. So ready is never deasserted
and the DMA never goes idle. A few solutions are available and attempted.
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Figure 4.8: Waveform of cnt from vhsnunzip being converted to cnt going to DMA resulting in a crash.

A naive solution is to transform the NULL-packet into a regular packet. In the example the 0b000 of
keep could be set to 0b1111. This would result in an additional packet to be written to global memory
with garbage data. When chunks are written sequentially this garbage data would be overwritten by
the first package of the next chunk, effectively cleaning the garbage data. Unfortunately this is not
the case since chunks are to be parsed and written in parallel instead of sequential. Therefore the
garbage-package will overwrite the start of a chunk, corrupting it.

The implemented solution makes use of a AXI-Stream Register Slice IP as shown in Figure 4.10.
This IP can be considered a mini FIFO (first-in first-out) buffer, that can hold a maximum of two stream
packages. The idea is that if the NULL-packet, at cycle 4 in Figure 4.8 can be identified before the
packet, at cycle 2, has been fed to the DMA, the last signal can be added to the earlier packet. The
NULL-packet, which now serves no purpose anymore, can be discarded before it reaches the DMA.
The last packet in the register slice now has the last signal that the DMA expects. The addition of the
register slice enables this as the sparse packet and the packet that receives the last signal and the
NULL-packet can both be seen before they are processed by the DMA. In the example of Figure 4.8
this would mean that when the packet at clock-cycle 4 would be at the output of the vhsnunzip while
packet at clock-cycle 2 is in the register slice. The last signal will be added at the output of the register
slice and the packet at the output of the vhsnunzip may not enter the register slice. Using the register
slice makes a transaction require a few more cycles, which is negligible with the thousands of packets
being sent per transaction.

Identifying a NULL-packet is achieved by reversing the keep_to_cntmodule and extending it with the
dvalid and last signals on the input. To make able to specifically identify the moment a transaction
will take place it will additionally be extended with the ready and valid signals of the stream. Now
when a cnt of 0x0, a dvalid of 0, a last of 1, a valid of 1 and a ready of 1 is found, the packet
is a NULL-packet and a null_pkt signal can be asserted. Figure 4.9 shows a NULL-packet being
detected and the assertion of the null_pkt signal when the conditions are met. This detector, along
with a conversion of cnt to keep is combined in a cnt_to_keep IP.
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Figure 4.9: Extended version of Figure 4.8 adding the null_pkt signal

With the null_pkt signal available the NULL-packet can be discarded by deasserting the valid
signal from the vhsnunzip to the register slice. When a regular packet is transferred the valid signal
should behave as normal. This leads to the following logic, implemented with IPs in the block diagram
at the input of the register slice:

valid_RegSlice = null_pkt ∧ valid_vhsnunzip (4.1)

With the NULL-packet found and discarded, the last signal now has to be added to the packet
that was before the NULL-packet. The packet that should have an asserted last signal is either in the
register slice (waiting on an other packet) or being outputted by the register slice. The easiest way to
figure out which of the two packets in the register slice is the actual last one is through counting the
packets that left the vhsnunzip and the packets that left the registers slice. If the difference between
these one or less, there are no packets buffered up in the register slice. Combining this with the fact
null_pkt has been asserted, the current packet should have it’s last asserted.

To implement this in the block diagram some logic is required. For the counting of the packets
two counters of width 2 are added. For checking the requirement of the difference being one or less
the difference between the two counters is calculated and the MSB is inspected. The null_pkt,
once encountered, has to be kept asserted until the last packet has been fed to the DMA. This can be
achieved by a counter with width 1. Finally, at the start of a new transaction all the counters have to be
reset, this can be done using the last signal when it is asserted for the last packet.

Combining everything the cnt and dvalid signals have successfully been converted to a keep
signal and removed the NULL-packet. The block diagram implementing the two custom IPs can be seen
schematically in Figure 4.10 and implemented in Vivado in Figure A.2 in the Appendix. The contents
of the cnt_to_keep block contain too many IPs and connections to be shown on a single page and
is therefore not included but can be viewed using Vivado.
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Figure 4.10: Schematic diagram of the cnt_to_keep and keep_to_cnt blocks added between a vhsnunzip and a DMA
within a kernel.

4.2.7. Transferring data between HBM and MicroBlaze local memory

The MicroBlaze needs to be able to read headers from global memory and write the measured cycle
amount back for the host to retrieve. The MicroBlaze can initially only interact with its own local memory
within SRAM. In order to enable the MicroBlaze to interact with HBM one of the already placed DMAs
can be used while it is idle. To make this possible AXI-Stream switch IPs from Xilinx’s library are added
to the one of the DMAs. In Figure 4.11 is the addition of switches to Figure 4.10 shown.

A switch is added from the DMA to the decompressor since an any-cast configuration using an
interconnect will not work as header data would be grabbed by the decompressor because it will grab
any packet it can (has ready asserted). Broadcasting the stream to both modules could work but
then some logic is needed that would prevent the vhsnunzip from accepting a header as potential
compressed data.

The AXI-Stream Switch IP can be configured with a table and logic before synthesis or using control
registers during execution. The table routing uses arbitration such as Round-Robin or fixed-priority to
select which slave gets a packet at which time. This is mostly useful when you want to distribute
individual packets over multiple components. In the case of the MicroBlaze and vhsnunzip having to
share a stream, the easiest option is to use the control register routing. This is because the MicroBlaze
already knows when it wants to get headers and the vhsnunzip is not using the DMA anyway. For this
an AXI-Lite connection is used between the MicroBlaze and switch.

Another case of having to share a stream occurs when the MicroBlaze wants to write the timings it
measured to global memory. Unlike the previous case, the sharing of this channel concerns a 2-to-1
connection. Once decompression has completed no data will flow from the vhsnunzip anymore. The
only data the DMA can now expect is that from the MicroBlaze and the only way it can flow is into the
DMA. Therefore the Switch can be kept in a table-routing configuration without any specific table.
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Figure 4.11: Architecture of Figure 4.10 with added switches.

In the final design, one implementation as shown in Figure 4.11 should be placed and multiple blocks
containing the part within the box annotated by duplicated in Figure 4.10 should be included. In the Vi-
vado block diagram shown in Figure A.1 for example, one DMA including the streams to the MicroBlaze
are placed and three modules without.

4.3. Vivado block diagram
In Figure A.1 a configuration with four decompressors is shown. In this the DMA and vhsnunzipmodules
are combined in one package. One of the DMAs is shared with the MicroBlaze to let it read and write to
a bank of HBM. When compared to the other DMA blocks, this DMA has an extra AXI-Stream flowing
in and out to the control block. Between the control block and the DMAs an interconnect block, named
Smartconnect, allows the MicroBlaze to use a single AXI-Lite interface to interact with each DMA.

In the configuration used for measurements sixteen DMAs are placed in parallel, instead of the
shown four. Only four are shown, as a design with more blocks becomes hard to read on a single
page. The design can easily be extended to include more DMAs by copying a block and adding an
AXI-Lite interface to the interconnect, for each extra DMA. The address of the DMA has to be added
to the code executed on the MicroBlaze as well, so it knows where to sent AXI-Lite transactions to.

In Figure A.2 the contents of a package with a DMA and vhsnunzip module are shown, without the
added AXI-Stream switches. In this diagram the pink line shows the path of the keep and cnt signals.
An inverting block is placed before the reset signal of the vhsnunzip block since its reset is triggered
by an assertion whereas the rest of the IPs have their reset triggered by a deassertion. Under the
inverting block the keep_to_cnt block is placed where its signal is placed between the output of the
DMA and the input of the vhsnunzip block. The cnt_to_keep block is placed between the output of
the vhsnunzip block and the input of the DMA.

4.4. Baseline configuration
4.4.1. Baseline kernel
To compare the resulting throughput from the implementation of the Snappy decompressor a baseline
measurements has been constructed. A useful baseline measurement is the throughput of an HBM
bank when one or many parallel accesses are performed on the same or different banks. In this base-
line measurement, data should always be present to be written to HBM or ready to be read from HBM
such that only the throughput of the combination of the HBM, DMA and MicroBlaze is measured not the
generation or accepting of data. Additionally the reading of data should be independent of the writing
of data so possible differences in the throughput of storing or retrieving from HBM can be observed.

The baseline kernel is almost identical to the architecture in Figure 4.3 but with replacement parts
for the vhsnunzip module. The stream of data being read from HBM and outputted by the DMA will be
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left unconnected except for the ready signal, which will be kept asserted to implement a data sink. At
the input of the DMA a traffic generator is placed that, at every clock cycle, has a stream of constant
data available and asserts a last signal as configured by the MicroBlaze.

A schematic overview of the baseline implementation can be seen in Figure 4.12. The implemented
Vivado block diagram can be seen in Figure A.3. In the configuration in Figure 4.12 the throughput of
writing and reading to a bank within HBM is influenced by many factors such as the kernel frequency,
the width of the AXI-bus, amount of parallel read/write requests and the properties of the HBM IP. Most
of those factors can be configured or are known before execution.

With one DMA being connected to one AXI-ports of the HBM IP and 16 AXI-ports available per
stack, at most 32 DMAs can be implemented in this configuration. However, between the two stacks
a relatively small interconnect is available, as sketched in Figure 2.7. Through this smaller intercon-
nection data can still be retrieved or stored from an other stack than the stack of which an interface
to HBM is used. Within the specification of the HBM IP [29] it is stated: ”The shared connections limit
the maximum throughput laterally to 50% of the full bandwidth, but enables global addressing from any
AXI port to any portion of the HBM.”. Therefore a single kernel will be limited to use banks from one
stack, limiting the DMAs to 16. Since the vhsnunzip module works with AXI-Streams with a width of
8 bytes the baseline will implement that as well. The kernel frequency will be left at 250 MHz as this
is suitable for the DMA and MicroBlaze as well as the maximum frequency of the hardware Snappy
decompressor.

Originally a traffic generator IP created by Xilinx was used. However the driver for the MicroBlaze
required a lot of local memory per IP added to the design. Presumably the driver tried to allocate space
on the stack to store a preconfigurable stream of data. With 16 such IPs the compiled program would
not fit on the MicroBlaze anymore. As the data itself did not matter a custom traffic generator was
created that outputted a single constant (0xABCD).

HBM

FPGA

DMA

MicroBlaze

Traffic Generator

duplicated

Kernel

Data Sink

HOST

CPU
DDR

Data

Figure 4.12: Overview of baseline configuration

4.4.2. DMA to HBM configurations
The duplication of the DMA module of Figure 4.13 means that many DMAs will be connected to HBM.
With each DMA making two connection to HBM, even more distinct configurations can be created. Of
all possible configurations, three configurations are used, shown in Section 4.4.1. In each configuration
shown in the figure only the first few banks and DMAs are shown. In Configuration 1 each channel of
a DMA is connected to an individual bank in HBM. In Configuration 2 both channels of a DMA are
connected to the same bank, making the bank perform both read and writes. In Configuration 3 the
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read and write channels of multiple DMAs are connected to a single port for reading or writing. In
this configuration only two banks are used per kernel. Each configuration has its advantages and
disadvantages and those will be discussed with the results of their measurements in Section 5.2.
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Figure 4.13: Three strategies for connecting DMA channels to HBM banks

4.4.3. MicroBlaze code
The code executed by the MicroBlaze performs almost the same steps as the code shown in Listing
1. The for-loop on line 8 of Listing 1 is replaced with the pseudo-code shown in Listing 2. It supports
starting a variable amount of DMAs that can either read, write or read and write.

Before the DMAs are started a 32 bit signal is sent to all traffic generators telling it how many bytes
it has to generate before asserting a last signal. It is also used to reset a counter that monitors how
many packages it has sent.

1 for (loopCount = 0; loopCount < krnlArgsLoop; loopCount++) {
2 start_TrafficGenerator();
3 for (indexDMA = 0; indexDMA < krnlArgsActiveDMAs; indexDMA++) {
4 switch(transferMode) {
5 case READ_ONLY:
6 start_DMA_channel(indexDMA, S2MM, krnlArgsTransSize);
7 break;
8 case READ_WRITE: //Fallthrough!
9 start_DMA_channel(indexDMA, S2MM, krnlArgsTransSize);
10 case WRITE_ONLY:
11 start_DMA_channel(indexDMA, MM2S, krnlArgsTransSize);
12 break;
13 }
14 }
15 wait_dmas_done(); //blocking
16 }

Listing 2: Pseudo-C-code executed by MicroBlaze for baseline measurements.

4.5. Vivado block diagram
Figure A.3 shows a kernel implementing four DMAs and peripherals. It is nearly identical to Figure A.1,
discussed in the previous section. The only difference is a small 32 bit wide signal flowing out of the
control block into each DMA block. This signal is used to tell the custom traffic generators inside each
block how many bytes they should generate before asserting the last signal.



4.5. Vivado block diagram 35

In Figure A.2 the internals are shown which contain the custom traffic generator and a single con-
stant value asserting the ready signal on the output of the DMA.





5
Measurement results

5.1. Experimental setup
5.1.1. Hardware
The goal is to measure the time it takes for a certain compressed file to be fully decompressed inside
HBM. Additionally the decompressed file has to be compared on the host for correct decompression.
To perform the hardware decompression of data in HBM the Xilinx Alveo U280 Data Center FPGA,
shown in Figure 5.1 is available for testing and measurement purposes on a server provided by the
TU Delft. This card is built with the 16 nm Ultrascale+ architecture and contains an HBM2 module
with two stacks totaling 8GB of HBM. Additionally 32 GB of DDR is available for a total of 40 GB of
global memory. As calculated in Section 2.4 the theoretical maximum bandwidth of the HBM2 global
memory is 460.8 GB/s. These and more resources are shown in Table 5.1. For the implementation and
measurements this card will be used while it is hooked up at a server. Consequently physical cables,
such as JTAG or USB, can not be attached for debugging purposes. Vivado 2020.1 along with Vitis
2020.1 are used for designing, simulating and synthesis of FPGA components. Interaction of the host
with the FPGA is performed through C++ code using the OpenCL API to flash a kernel on the FPGA
and transfer data to and from the FPGA.

The server itself uses a dual-socket configuration with two Intel Xeon Silver 4114 CPUs that have a
maximum clock frequency of 3.0 GHz. Each CPU has 10 cores that provide 2 threads each for a total
of 40 threads available on the server. The CPU has a 13.75 MB L3 cache. For memory the server
holds 6 DIMMs of 16 GB each for a total of 96 GB. They operate at 2666 MHz and a 64 bit bus-width,
making their (theoretical) maximum read/write bandwidth ∗ 2666 ∗ 10 = 21.33 GB/s per DIMM.

The created scripts and designs are made available on Github at [37].

Figure 5.1: The Alveo U280 card that is plugged in the server
at TU Delft. Picture from [5]

Component Specification
HBM2 total capacity 8 GB
HBM2 total bandwidth 460 GB/s
Look-up tables (LUTs) 1,304K
Registers 2,607K
DSP slices 9,024
Block RAMs 2,016
UltraRAMs 960
DDR total capacity 32 GB
DDR maximum data rate 2400 MT/s
DDR total bandwidth 38 GB/s

Table 5.1: The hardware specification of the U280
as written in [7]

37
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5.1.2. Compressed data
Throughput can be measured at only the output of the decompressors or as a combination of the input
data and output data. As mentioned in Section 2.5, Snappy is a dictionary-based compression algo-
rithm. When a lot of data is identical within a chunk a high compression ratio can be achieved. This
results in a lower end-to-end throughput as a bottleneck will be on the output side of decompressors,
as more data is flowing out than in. The maximum throughput will be reached when data with a com-
pression ratio near 1.0 is decompressed with the size of the input data being near the size of the output
data. So the compression ratio of a compressed file will matter for the measured throughput.

Another important parameter is the chosen size of uncompressed data chunks. Some data file be-
ing split in smaller chunks allows for more parallel tasks to be available. However each chunk has a
header that has to be parsed, creating additional overhead.

To generate Snappy files with configurable input data such as files from storage or debugging se-
quences, and allow variable chunk sizes, a Python script is developed. The script generates a Snappy
compressed file using custom chunk headers as described in Section 2.5.2. Additionally the uncom-
pressed data is stored as a file, which can be used for verifying the output of a decompression.

As concluded in [38] it is difficult to reliably evaluate performance of a certain compression algo-
rithm. To get somewhat of a good indication of the performance a set of files is proposed that should
be used for compression and decompression, available at [39]. These data sets, named the Canter-
bury Corpus after the University they were developed at, were developed in 1997 and are not the best
representation of currently compressed data. The biggest file in ”The Large Corpus” is only 4.6 MB
in size. A more recent corpus is The Silesia Corpus, released by Sebastian Deorowicz as part of his
dissertation [40]. This corpus is used as a data set for benchmarks on modern compression algorithms
[41] due to its bigger file size. A brief description of the contents of the corpus are displayed in Table
5.2 and the actual contents are available at [42]. The compressed size is from compressing the file
using the custom Snappy framing format with a chunk size of 2 .

For measurements both random data (with a compression ratio near 1.0) and files of varying com-
pression ratios will be used. The random data will show the maximum throughput supported by a con-
figuration whereas the files with varying sizes will give amore practical representation of the throughput.
Both the Silesia Corpus and 128 MB data files with a custom repetition of bytes will be used to measure
throughput on different compression ratios.

Filename Type Raw size [B] Compressed size [B] Ratio
dickens English text 10.192.446 6.339.554 1,61
mozilla exe 51.220.480 26.470.530 1,94
mr picture 9.970.564 5.421.517 1,84
nci database 33.553.445 6.152.480 5,45
ooffice exe 6.152.192 4.272.188 1,44
osdb database 10.085.684 5.331.019 1,89
reymont Polish pdf 6.627.202 3.234.912 2,05
samba src 21.606.400 8.012.408 2,70
sao bin data 7.251.944 6.436.491 1,13
webster html 41.458.703 20.213.433 2,05
xml html 5.345.280 1.309.280 4,08
x-ray raw data 8.474.240 8.210.614 1,03
Total 211.938.580 101.404.426 2,09
Average 17.661.548 8.450.369 2,27

Table 5.2: Contents of Silesia Corpus

In the framing format supplied in the Snappy Github [30] a default of 64 KB as the maximum size
of a compressed chunk is specified, allowing for small fixed-size buffers within a decompressor. The
hardware decompressor, vhsnunzip, supports bigger chunks and the only difference is a slight increase
in resource usage. Therefore, as the size of a chunk can be easily adjusted and will show the ratio
of overhead between the parsing of a header and the actual decompression, it will be kept variable
and iterated over in measurements. With the custom framing format described in Section 2.5.2 the
theoretical maximum size of a chunk is the same as the maximum value of an unsigned 32-bit integer.
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Each measurement is performed on a file that has been chopped in chunks of equal size. Except
for the last chunk, since a data file does not necessarily have to be divisible by the selected size of a
chunk. For measurements the chunk sizes are increasingly multiplied by 2, starting at a size of 1 KB,
until but not including the chunk size becomes larger than the size of the uncompressed file.

5.1.3. Measurements
To get the most reliable results, a measurement should not be performed once. In the code executed
on the MicroBlaze a loop has been placed around the decompression of a file. The host communicates
to the kernel the amount of loops should be performed and, with that, the amount of times the file
is decompressed. It is expected that between each loop the deviation in measured time should be
very small because the only non-deterministic influence will be the access time of data from HBM. So
additional measurements should not result in very different amounts of measured cycles. However, as
a single vhsnunzip can decompress at a speed of at least 1 GB/s a single decompression of a file of
128 MB takes less than a second. Performing 100 such measurements would take around 13 seconds
to complete. These measurement will only go faster once the size of chunks increase and multiple
decompressors are placed in parallel. As it is a reasonable time to wait for measurements to complete
multiple amounts of loops, it is set at 100. The total amount of cycles it took to complete 100 loops is
averaged to resemble the time for a single decompression to complete.

Each kernel on the FPGA is configured such that it returns the total amount of clock pulses it took
the kernel to complete a certain task. In the case of the baseline measurements this is the amount of
pulses it took to pull data from HBM and/or write data to HBM. In the case of Snappy decompression
it is the amount of pulses it took to pull data from HBM, parse headers, decompress chunks and place
decompressed data back in HBM. From the known amount of cycles, the known size of transferred
data and the set clock frequency the throughput can be calculated using the equation:

throughput [GB/s] = data size [B] × amount of loops
measured cycles × 10 × clock frequency [Hz] (5.1)

First, measurements will be performed on the HBM of the Alveo U280 FPGA using the kernels created
from the configurations described in Section 4.4.1. The results are the throughput the HBM IP can
support when the banks are connected using different configurations and with a different bus-width.
Another set of measurements are performed using the kernel described in Section 4.1.2. Finally a
similar application is measured that is executed on a processor on the host.

5.2. Baseline FPGA measurements
Using the baseline kernel described in Section 4.4.1 many measurements can be performed. Each
DMA can be connected to a different HBM bank or all to the same. Each DMA can have both its
reading and writing channel connected to a different bank or both to the same bank. Additionally,
one DMA can be used or many DMAs in parallel can be enabled at the same time. Some of these
configurations are shown in Figure 4.13. In the following sections each configuration strategy will be
measured and discussed. First the kernel will use a 256 bit AXI-bus as this is the maximum width
the HBM IP supports. From those measurements the maximum bandwidth of a stack of HBM can
be found. However, the hardware Snappy decompressor supports a narrower bus-width of 64 bit.
Therefore additional measurements will be made with a 64 bit bus as they are better comparable to the
results from the parallel Snappy decompressor.

5.2.1. Results from 256-bit AXI-bus to HBM
From the specifications of the HBM IP discussed in Section 2.4 a single HBM stack is expected to have
a throughput of 230.4 GB/s. In the used setup with the Alveo U280 the HBM module consists of two
stacks and would be capable of having a theoretical bandwidth of 460.8 GB/s. However, as mentioned
in the design of the kernel at Section 4.4.1 the kernel will limit itself to a single stack. Additionally,
the design runs at 250 MHz instead of the maximum supported 450 MHz. For a single bank being
connected through a single channel with a 256 bit AXI-bus the expected throughput would then become
250∗10 ∗ ∗10 = 8.0 GB/s per bank. The pseudo channel of the bank will be idle for a few cycles
during such transaction as it can support a frequency up to 450 MHz for a maximum throughput of
450 ∗ 10 ∗ ∗ 10 = 14.4 GB/s per bank.
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Figure 5.2: Baseline 256 bit AXI-bus results of multiple DMAs reading and writing to HBM banks. Top: each DMA channel own
HBM bank. Bottom: Each DMA own HBM bank.

In Figure 5.2 the results of the measurements performed using Configuration 1 and Configuration
2 are shown. The throughput is calculated using Equation 5.1 where the data size is the same as the
used transaction size. So it will show the throughput a single bank can provide.

In Configuration 1, each bank is connected to only the read or write channel from a DMA. The
amount of banks is now twice the amount of DMAs. Since at most 16 banks are used, there is no
measurement with 16 DMAs. In both of the graphs in Figure 5.2, three regions can be distinguished.
In the bottom left, from 2 to 2 each transaction is small enough that it is finished in a few hundreds
of cycles. In this region the number of cycles the MicroBlaze is busy starting a transaction and polling
the state of a DMA is relatively big compared to the amount of cycles a transaction takes. At its worst,
for one DMA and a transaction size of 2 the throughput becomes 126.3 MB/s. Also, when 8 DMAs
are active the overhead is almost 8 times as much and results in a throughput of 19.0 MB/s per DMA,
or 151.8 MB/s in total.

In the center of the graph, between 2 and 2 , the difference in throughput between active number
of DMAs becomes more obvious. At a transaction size of 2 a single bank reaches a throughput of
slightly over 5 GB/s while 8 DMAs reach less than 2 GB/s per bank. Although it looks like the ratio of
overhead in the center is bigger than in the bottom left, the ratio is becoming less as the transaction
size increases. It is only more distinct in this part.

At the top right part, there is nearly no difference between the measured throughput with a differ-
ent number of DMAs. The MicroBlaze has more than enough time to start a transaction and wait for
another DMA to finish its transaction. The dotted line represents the highest measured throughput out
of the performed benchmark, which is when one DMA is connected to two banks and the transaction
size is 2 bytes. When 8 DMAs are connected to 16 banks, a throughput of 7.986 GB/s is measured
per bank, for a total of 127.8 GB/s from the whole stack. Each of the 8 banks are very close to the
expected maximum of 8.0 GB/s where the slight decrease is a result of the overhead incurred on the
MicroBlaze.
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Configuration 2 has both the read and write channel of a DMA attached to the same bank. The HBM
IP now has to switch between reading from and writing to a bank frequently. The same characteristic
overhead is seen as discussed from Configuration 1. The main difference is that the maximum through-
put has dropped to roughly 75% of the throughput found using the setup of Configuration 1. Important
to note about this measurement is that although the bank is now accessed twice as often as in Con-
figuration 1 the throughput is not reduced by half. As mentioned earlier, the pseudo-memory channel
of each bank can support a frequency up to 450 MHz with a bus of 256 bit. From this measurement
a throughput of 2 ∗ 6.143 = 12.286 GB/s per bank is found. In this configuration two connections (one
reading and one writing) are made, requesting 512 bits being transferred at a rate of 250 MHz from a
bank for throughput of 250∗10 ∗ ∗10 = 16.0 GB/s which is just over the 14.4 GB/s per bank that
would be supported at 450 MHz. This will result in some stalls, reducing the throughput significantly.
At the same time switches have to be made between reading to a bank and writing from a bank, further
decreasing performance.
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Figure 5.3: Baseline 256 bit AXI-bus results of multiple DMAs reading and writing to single HBM bank. Left: shows throughput
per channel. Right shows total throughput (left graph multiplied by amount of active DMAs)

Configuration 3 uses only two of the sixteen available banks but connects all DMAs to those two. One
bank is use for reading while the other is used for writing. In this configuration the amount of simulta-
neous operations a bank can perform is measured and the results are plotted in Figure 5.3. Because
an HBM bank can only hold 256 MB of data and 16 DMAs require their own part to write data to and a
small portion is required to store the amount of cycles from each measurement, the total size is limited
to 2 in contrast to the 2 from the measurement in Figure 5.2. In the plot on the left the throughput
for the read/write channel of a DMA is plotted and on the right these are multiplied by the amount of
DMAs resulting in the throughput for each of the two HBM banks.

The result for a single DMA is much the same as the result from Configuration 1, which is expected
as its configuration is identical. The maximum throughput of 7.971 GB/s from the measurement is
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slightly lower than the 7.986 GB/s displayed in Figure 5.2 because the transaction size for 2 is not
included. An important result from this measurement is that when two DMAs are connected the through-
put, 6.585 GB/s, is not identical to the maximum throughput measured in Configuration 2, 6.143 GB/s.
Although in both measurements two DMAs are connected to two banks, in Configuration 3 a bank is
now used for only writing or reading. This results in a slightly higher throughput as now no switching
between reading and writing has to be made within HBM.

In the plot on the right it shows that the utilization of a single bank does not depend significantly on
the amount of parallel accesses that are attempted. With two DMAs the throughput of each bank is
nearly the same as when sixteen DMAs are connected to a bank. With 16 parallel DMAs each DMA
has a throughput of 0.804 GB/s at its maximum so each bank has a throughput of 16 ∗ 0.804 = 12.864
GB/s. This is slightly lower than the maximum of 13.171 GB/s measured from using two DMAs, which
is because of the additional overhead incurred from using multiple DMAs.

From these results it is clear that a single bank can be accessed in parallel by multiple instances
without having a significant decrease in throughput. Additionally, it is slightly inefficient to perform reads
and writes on the same bank. The best throughput is obtained when each bank is accessed through
only one channel, however this does not allow any parallelization on the data within that bank.

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 [G

B/
s] 1.999 GB/s

HBM baseline - read+write - 64 bit AXI-bus
Configuration 1

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
log2(transaction size) [bytes]

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 [G

B/
s] 1.999 GB/s

Configuration 2

Active DMA
1
2
4
8
16

Figure 5.4: Baseline 64 bit AXI-bus results of multiple DMAs reading and writing HBM banks. Top: each DMA channel own
HBM bank. Bottom: Each DMA own HBM bank.

5.2.2. Results from 64-bit AXI-bus to HBM
Although the 256-bit AXI-bus measurements show some of the limits and characteristics of the HBM
IP, the Snappy decompressor will use a 64-bit AXI-bus. Therefore to compare those results the same
measurements are performed on the same configurations as the in the previous section, with the nar-
rower bus.

The results from the baseline measurement from Configuration 1 and Configuration 2 are plotted
in Figure 5.4. The curves are much the same as the curves from the measurement found using the
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same configurations on a 256 bit AXI-bus, shown in Figure 5.2. However, these result show a much
lower throughput. The results from Configuration 1 are a fourth of the results from the results from the
256 bit measurement, which is as expected as the bus is a fourth of the width as well. The expected
throughput would be 250∗10 ∗ ∗10 = 2.0 GB/s per bank and twice as much, 4.0 GB/s, per DMA.

In this case there is no difference between the two configurations since the channel can easily
support it when two channels of a DMA are both reading and writing on a single bank. The available
bandwidth of a bank is still theoretically 14.4 GB/s and the reading or writing 64 bit values at 250 MHz
only reaches 2.0 GB/s, which is not near this limit.
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Figure 5.5: Baseline 64 bit AXI-bus results of multiple DMAs reading and writing to single HBM bank. Left: shows throughput
per channel. Right shows total throughput (left graph multiplied by amount of active DMAs)

More interesting are the results from the benchmark performed on Configuration 3, shown in Figure
5.5. When up to two 64 bit channels are performing transfers on a bank they can reach their maximum
bandwidth.

Once more are added the throughput seems to drop by nearly 33%. While a drop in throughput
is expected, as it was observed in the 256-bit measurements as well, that it already occurs at three
parallel DMAs is strange. What seems to be the case is that only twice every three cycles a transaction
is completed. This would result in the observed ∗ 250 ∗ 10 ∗ ∗ 10 = 1.33 GB/s. With three
DMAs having one read and write channel each an expected combined bandwidth of approximately
3∗2∗2.0 ≈ 12.0GB/s should be obtained. Instead it gives 3∗2∗1.33 = 7.44GB/s for both the read and
write bank. The cause of this stall can be found in the HBM IP [29]. In it, smaller blocks of 4x4 internal
switch connections are named within the larger interconnect. Between these switches the following is
stated: ”However, for write cycles, there is a single dead cycle when switching between masters on the
lateral channel.” So when switching from a write on one of the connections to another on a different
4x4 block this extra cycle is stalled.
Much the same as the results from the right plot of Figure 5.3 the utilization of a bank is maximized
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while multiple DMAs perform transfers on it. For the highest throughput twelve DMAs seems to be
optimal.

5.3. Snappy decompressor measurements
In Section 4.1.2 a kernel implementing multiple hardware Snappy decompressors in parallel is pre-
sented. As mentioned in Section 5.1 the decompressor will be benchmarked using both random data
as well as the Silesia Corpus. Expected from the benchmarks performed on the vhsnunzip module [20]
is a throughput of between 1 to 2 GB/s per module, where the data is the sum of the in and outgoing
data.

5.3.1. Hardware Snappy decompressor results
The results of a benchmark performed when multiple decompressors are activate are shown in Figure
5.6. The throughput is calculated here with the sum of the size of data being retrieved from and stored
into HBM as the data size for Equation 5.1. For a set of random data where the decompression ratio
is near 1.0 this means that the individual channels reach half of the throughput.

From the benchmark it is clear that a single hardware decompressor reaches the near maximum
throughput for a single 64 bit AXI-bus channel of 2.0 GB/s. As the maximum throughput measured
is 3.988 GB/s where both the read and write data are used to calculate the throughput, in contrast to
the throughput in Figure 5.5 where it shows the throughput for either read or write. So the throughput
should be approximately doubled. This measurement shows that the decompressor is capable of fully
saturating the bandwidth of a single AXI bus.

When multiple decompressor are activated the throughput quickly rises. Until a chunk size of 2
not a lot of speedup is achieved. Once the chunk size is about 2 or higher it shows that additional
decompressors are able to reach higher throughput than when less decompressors are activated. With
a chunk size of 2 eight decompressors reach a throughput of more than 20 GB/s.
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Figure 5.6: Snappy decompression performed on random data with multiple vhsnunzip modules in parallel

Although expected from Amdahl’s Law, discussed in Section 3.3.1, in this measurement shows no
difference for some results when an additional decompressor is added. For example the maximum
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obtained throughput for two and three parallel decompressors are nearly the same. This was also ob-
served in Figure 5.5 where the maximum throughput of two and three DMAs are the same.

Curiously, some results are higher than those measured in the baseline measurement. For example
when four decompressors are in parallel a maximum throughput of 11.617 GB/s is found, however in
Figure 5.5 the maximum throughput of four DMAs on a single bank is 5.325 GB/s which is less than
half. The same is also the case for twelve parallel decompressors with a maximum of 26.191 GB/s
here and 12.483 GB/s in Figure 5.5. This is likely because of the mentioned issue where a cycle is
stalled between writes. Within this design sometimes a DMA is idle as it has to wait for some headers
to be parsed. During this time the stalling may be removed allowing a slightly higher throughput.

In Figure 5.7 the results are shown where each Silesia Corpus file is decompressed. One bench-
mark is plotted where the chunk size is set to 2 which is the default for the Snappy framing format
specified by Google. For the other benchmark chunk sizes of 2 are used as they show the reachable
throughput while still splitting the file in enough chunks of the parallel hardware decompressors. The
maximum throughput measured for each file is given in Table 5.3.
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Especially in the left plot no increase in throughput is achieved when more than eight parallel DMAs
are in use. The maximum throughput of 9.221 GB/s occurs for the file named x-ray because its ratio
is very close to 1.0 and as such shows a throughput close to the measurement with random bytes.
When a file has a higher compression ratio the end-to-end throughput drops significantly as the input
stream has to be stalled to let decompressed data being streamed out. In the right plot, with a larger
chunk size, the results are less predictive but in most cases seem to maximize with twelve parallel
decompressors. For a chunk size of 1 MiB (2 bytes) some of the files are too small to really benefit
from the parallelization such as the xml that has the lowest throughput.
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Filename Type File size [B] Ratio Max throughput [GB/s]
Raw Compressed chunk=2 chunk=2

dickens English text 10,192,446 6,339,554 1.61 7.35 11.56
mozilla exe 51,220,480 26,470,530 1.94 7.20 14.95
mr picture 9,970,564 5,421,517 1.84 7.07 11.87
nci database 33,553,445 6,152,480 5.45 5.67 13.86
ooffice exe 6,152,192 4,272,188 1.44 7.64 11.58
osdb database 10,085,684 5,331,019 1.89 7.13 13.39
reymont Polish pdf 6,627,202 3,234,912 2.05 6.64 9.62
samba src 21,606,400 8,012,408 2.70 6.47 12.35
sao bin data 7,251,944 6,436,491 1.13 8.64 11.81
webster html 41,458,703 20,213,433 2.05 6.98 13.78
xml html 5,345,280 1,309,280 4.08 5.63 7.54
x-ray raw data 8,474,240 8,210,614 1.03 9.22 15.49
Total 211,938,580 101,404,426 2.09
Average 17,661,548 8,450,369 2.27 7.14 12.32

Table 5.3: Throughput results of decompressing Silesia Corpus using hardware Snappy decompressor.

To show the throughput of larger files a benchmark is performed on 128 MiB files with a chunk size
of 2 that have a varying compression ratio. Within the benchmark ratios are used that are comparable
to the range of ratios found in the Silesia Corpus. The results of this benchmark is shown in Figure
5.8. From these measurements can be concluded that for big files the parallel decompressor design
reaches an end-to-end throughput in the range of 11-25 GB/s when twelve or more decompressors are
active in parallel.
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5.3.2. Software Snappy decompressor results
To compare the results from the hardware design on an FPGA an implementation in software has been
developed. Using C++ as a programming language and the std::thread class, a multithreading
application has been created where each thread on the multiple cores of a CPU can be used as a
decompressor. In the same way as the hardware implementation has a pool of DMAs available to
decompress chunks, the software implementation uses a pool of threads.

The application is executed on the same server that has the Alveo Card installed. As stated in
Section 5.1.1, this server has 40 threads available. Measurements are performed on both random data
and the Silesia Corpus, using an increasing number of threads. For the measurements on random data
the chunk size is increased in by the power of 2 for each measurements. The throughput is calculated
using Equation 2.1 where the processed data is the sum of the read and written data.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
log2(chunk size) [bytes]

0

2

4

6

8

Th
ro

ug
hp

ut
 [G

B/
s]

2.072 GB/s

3.513 GB/s

5.539 GB/s

8.980 GB/s
CPU Snappy decompression - random data of size 227 bytes

Active
threads [N]

1
2
4
6
8
12
16
32
40

Figure 5.9: Snappy decompression performed on a CPU using random data

In Figure 5.9 the results of the benchmark on a CPU using random data of size 2 bytes are shown.
Because the server is used for multiple applications, a thread might be stalled for higher priority tasks,
making measurements occasionally be faster or slower depending on the other applications. The effect
of this can be seen in the results for a single decompressing thread going up and down when the
chunk size is larger than 2 bytes, although the limit of a single thread is reached. Therefore the
measurements should be used as an estimation of the throughput. Some of the measurements are left
out where there were less chunks in the file than threads that were being used. During multiple loops
of decompression the CPU was likely caching data for a threads resulting in very high throughput as
memory was not read from DDR anymore.

A single decompressing thread reaches a throughput of around 2 GB/s. Doubling the amount of
threads does not linearly increase the measured maximum throughput. When six or more threads are
active, the throughput is between 6 to 9 GB/s for this software application.
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Figure 5.10: Multithreaded Snappy decompression performed on a CPU using the Silesia Corpus with different chunk sizes.

Filename Type File size [B] Ratio Max throughput [GB/s]
Raw Compressed chunk=2 chunk=2

dickens English text 10,192,446 6,339,554 1.61 4.42 1.81
mozilla exe 51,220,480 26,470,530 1.94 5.16 4.56
mr picture 9,970,564 5,421,517 1.84 4.43 2.34
nci database 33,553,445 6,152,480 5.45 4.16 3.58
ooffice exe 6,152,192 4,272,188 1.44 4.55 1.46
osdb database 10,085,684 5,331,019 1.89 4.64 2.42
reymont Polish pdf 6,627,202 3,234,912 2.05 3.75 1.38
samba src 21,606,400 8,012,408 2.70 4.36 3.14
sao bin data 7,251,944 6,436,491 1.13 5.00 2.05
webster html 41,458,703 20,213,433 2.05 4.90 3.77
xml html 5,345,280 1,309,280 4.08 3.21 1.16
x-ray raw data 8,474,240 8,210,614 1.03 6.19 3.10
Total 211,938,580 101,404,426 2.09
Average 17,661,548 8,450,369 2.27 4.56 2.57

Table 5.4: Throughput results of decompressing Silesia Corpus using software Snappy decompressor

In Figure 5.10 the results of the benchmark on the files in the Silesia Corpus are plotted. In Table 5.4
the maximum measured throughput for each file are shown. An increase of threads shows that quickly
the throughput rises. However, from 12-16 active threads in parallel the throughput does not seem to
increase any further and for some even drop. Where the hardware decompressor showed an increase
in throughput on bigger chunks, the software implementation seems to show a lower throughput. Likely
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this is because the file consists of less chunks that are parallizable, making additional threads not being
used.
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Figure 5.11: Software Snappy decompression performed on files of varying decompression ratios.

As was done for the hardware implementation an additional benchmark is performed on 128 MiB
of data with varying compression ratios. These results are shown in Figure 5.11. In the figure a much
more stable throughput is found than was obtained through the Silesia Corpus files. With the ratio near
1.0 the throughput is about the same as found in Figure 5.9. The other ratios show a throughput in the
range of 4.3 to 6.6 GB/s when the number of threads is at least 12.

Comparing the throughput of the hardware to the software implementation where a 64 KB chunk
size is used the hardware shows an average maximum throughput of 7.14 in Table 5.3 and the software
shows 4.56 GB/s in Table 5.4. So for chunks of 64 KB in size a speedup of 1.5x is achieved on the
FPGA.

When a chunk size of 1 MB is used the hardware shows, for more than 12 active parallel decom-
pressors, a throughput between 11.4 and 25.0 GB/s in Figure 5.8 and for software, with 12 of more
parallel threads, between 4.3 and 8.5 GB/s in Figure 5.11. Comparing these to the throughput of 4.3 to
8.5 GB/s to the 11.4 and 25 GB/s range the hardware parallel compressor architecture accomplishes
an additional throughput of 2.5x for varying compression ratios with a chunk size of 1 MiB.

5.4. Resource usage
5.4.1. Hardware utilization
The resource utilization of a kernel on the Alveo U280 FPGA are shown in Table 5.5. The utilization
of the vhsnunzip block are split up between the block that has additional AXI-Stream switches and the
”regular” vhsnunzip blocks. In this kernel the MicroBlaze is a very lightweight component, mostly using
17 BRAMs. Of the registers almost 25%are used by the Smartconnect IP, likely because it implements a
1-to-16 connectionmeaningmany components are placed 16 times. The total implementation uses less
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than 9% of the available resources which leaves more than enough room for any possible extensions
that may be added to the kernel.

From the 16 AXI-interfaces available per stack all 16 are used in this design, so no other connections
will be possible to be made to the same stack. However the Alveo U280 has a second stack that may
be used to make addition connections through a second kernel.

The C-code for the MicroBlaze is compiled using the Debug property (optimization flag -O0) in
Vitis 2020.1. From compilation an ELF file is obtained which is almost 64 KB in size at 63200 bytes.
Vitis does provide a Release option (with optimization flag -O2 which should compile away redundant
parts and perform optimization, however currently it ”optimizes” away everything, leaving an empty
executable. So for the design the results of a Debug compilation are used, as it fits easily in the 128
KB of the MicroBlaze anyway.

Component LUT Registers BRAM URAM
vhsnunzip single 4804 4772 3 2
vhsnunzip x15 72060 71580 45 30
vhsnunzip with switches 8357 10398 3 2
vhsnunzip total 80417 81978 48 32
MicroBlaze 7145 9570 17 0
Smartconnect 19868 25910 0 0
Total 107430 117458 65 32
Available 1303680 2607360 2016 960
Percentage used 8.24% 4.50% 3.22% 3.33%

Table 5.5: Resource utilization of kernel implementing 16 Snappy decompressors

In Table 5.6 the sizes of the different components in the executable for the MicroBlaze are shown. In
this .text is mainly filled with the code to be executed. .data contains the initialized global variables.
The .bss part contains the uninitialized parts including the stack and heap. The stack and heap are
manually set to 0x1500 which are big enough for the program to successfully execute while keeping
the total size just below 64 KB.

Part Size [Bytes]
.text 18900
.data 2412
.bss 41888
stack 5376
heap 5376

full size 63200

Table 5.6: Size of components in .ELF file compiled for the MicroBlaze processor by Vitis 2020.1.

5.4.2. Power consumption
Using a tool provided by Xilinx named xbutil the kernel running on the FPGA may be monitored
during operation. But the current state of the tool shows some weird behavior. When the U280 has
completed a reset the Card Power(W) reads 29 W. When an operation is started using 16 parallel
decompressors on random data with chunks of 1 KB size, this number does not change and remains at
29 W. During operation the FPGA should show at least some increase in energy consumption. Using
the power estimation within Vivado an estimated static usage of 3.2 W and dynamic usage of 2.3 W is
calculated for a total usage of 5.5 W. While this is an estimation, the actual usage should be within this
amount.

For the processors on the host a tool named RAPL [43] is used to measure the energy usage. As
mentioned in Section 5.1.1 the host has two processors in a dual-socket configuration. From ”idle”,
measurements a usage of 15-20 W is observed per processor. For the decompression, using the
same configuration as for the FPGA and 16 parallel threads, each processor uses between 35-40 W.
This is about half the maximum power of 85 W [44] this processor would use under full load. As the
16 active threads are divided over the two processors which have 20 threads available, this usage is
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expected (85 ∗ = 34). This shows an increase of about 20 W per processor or 40 W for the whole
configuration to perform the decompression.





6
Conclusions and recommendations

6.1. Conclusions
The main research question of this thesis was formulated in Section 1.3 as ”What are the advantages
of using HBM for accelerating decompression algorithms in big data applications”. To answer this a
hardware design is designed for and executed on the Alveo U280 FPGA board with HBM utilizing mul-
tiple hardware decompressors. In order for multiple decompressors to work, a parallel decompressor
configuration in combination with a softcore processor for control and managing purposes is presented.
Before decompression is performed, a compressed file is placed in HBM. During compression an un-
compressed file is chopped in many chunks of data, usually between 64 KiB and 1 MiB in size, which
are accompanied by a header. With chunks of compressed data stored in HBM, the softcore processor
is used to find and parse headers of these chunks. Using the parsed information of the headers, the
softcore processor starts decompression through assigning parallel decompressors individual chunks
of compressed data. Through the many available interfaces to HBM the multiple hardware decom-
pressors are connected and able to retrieve compressed data and store compressed data back. The
conventional on-chip memory available on FPGAs would not be able to provide enough memory at
high frequencies for large chunks of data to be processed in parallel. Through implementation of the
design, HBM shows that it allows processing of chunks of variable size while remaining at a very high
throughput by providing a high storage size at a high bandwidth.

The used hardware decompressor, vhsnunzip, performs decompression of a compression scheme
named Snappy. To formalizes chunks of Snappy compressed data within a file a custom framing format
has been created. This format specifies the contents of the headers of chunks. These chunks can be
decompressed in parallel by individual decompressing engines. Using vhsnunzip as the decompressor
a design has been presented where each decompressor is accompanied by a DMA that provides ac-
cess to HBM. As the vhsnunzip and DMA were using different streaming specification, additional logic
has been designed to make them compatible. In the design up to sixteen decompressors are placed
in parallel.

A softcore processor, provided by Xilinx under the name MicroBlaze, is added to the design as a
controlling unit. This processor is used to manage the many parallel decompressors and their DMAs.
It additionally is used to parse the headers of chunks and measure the amount of cycles each decom-
pression takes. By first processing a portion of the headers and storing these in a local buffer multiple
decompressors can be quickly activated in succession.

Before implementing the sixteen decompressors a baseline design has been designed using an
almost identical architecture. This design attempts to fully saturate the available bandwidth of the HBM
interfaces. In the baseline implementation the decompressor is removed and the maximum throughput
of HBM is measured using different configurations to connect to the banks of HBM. From these mea-
surements it became clear that placing multiple parallel connections to a single bank does not result in
a high loss of maximum throughput. A maximum of 12.5 GB/s is measured on a single HBM bank using
twelve DMAs in parallel on a 64-bit wide AXI-interface and 13.2 GB/s on a 256-bit wide AXI-interface
when at least two DMAs are used in parallel.

From benchmarks performed using sixteen Snappy decompressor in parallel comparable results
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are obtained. As the chunk size of a compressed file does not have to be the same for each file,
benchmarks are performed iterating over different chunk sizes. Using a 128 MB file of random bytes,
where the compression ratio is near one, multiple decompressors achieve a higher throughput. At
larger chunk sizes larger than 64 KiB the throughput of parallel decompressors quickly rises over the
throughput of a single decompressor. From a chunk size of at least 1 MB no significant rise of through-
put is seen anymore. At this point eight or more decompressors can achieve a combined throughput
of 20 GB/s per decompressor or 10 GB/s per HBM bank.

As a more practical data set some files with varying compression ratios are also used for two bench-
marks with different chunk sizes on both hardware and software. For the benchmark a chunk size of
64 KiB is used and shows an average throughput of 7.1 GB/s. In an other benchmark using chunks of
1 MiB an average throughput of 12.3 GB/s is found. To compare these results an additional implemen-
tation in software for execution on the host is made. These measurements show a throughput of 4.56
GB/s and 2.57 GB/s for chunk sizes of 64 KiB and 1 MiB respectively. This shows that mostly for files
using bigger chunks, but also for files compressed into smaller chunks a quicker decompression can be
achieved on an FPGA using the HBM. When 128 MB files with chunks of 1 MiB are used, the parallel
decompressor shows about a 2.5x speedup as compared to a software implementation. A speedup of
1.5x is found for chunks of 64 KiB in size.

Next to the increased throughput a big advantage of the implemented design is the ability to parse
variable headers and transactions sizes. With other formats, such as parquet, where the size of a
chunk is variable the processor in combination with the DMA can easily handle this.

In terms of resource usage it uses only a slight percentage of available resources on the FPGA. The
most usage is seen in the amount of used LUTs, being 8.3% of the total available. This leaves more
than enough room for any additional applications or engines to be placed on the FPGA that might use
the decompressed data in the HBM.

From the work it can be concluded that HBM is very capable in being used to parallelize an appli-
cation. Using HBM in combination with a processor and DMA within the FPGA allows for applications
that are usually memory-bound to be parallelized. The processor on the host does not have to imme-
diately interact with any of the data as the headers can be parsed directly on the FPGA. The softcore
processor is fast enough to allow the end-to-end parsing of some data split in chunks with headers to
reach a throughput in the range of 20 GB/s. On the FPGA four such kernels can be enabled in parallel
for an even higher throughput to work on multiple files at the same time.

6.2. Recommendations
Use decompressed data: The current design ends with decompressed data remaining in HBM. While
these can be pulled from the FPGA to the host it would be more useful to immediately perform some
computation on the result of the decompression. As mentioned in Section 3.1 this would not immedi-
ately show an advantage of HBM but would proof that HBM is useful in an actual use-case. Once the
compressed data is within HBM another kernel could be loaded that performs an operation such as a
sum or map/reduce on the data to generate a result of some use-case scenario.

Use more of the available HBM banks: Currently the design uses only two of the sixteen available
HBM banks on one of the two stacks. Discussed in Section 3.2.4 is the option to enable multiple banks
to be used during a decompression. This would require the softcore processor to parse headers until
it has reached the next bank so it can start assigning chunks located in an other bank. Files that are
larger than the size of a single bank, 256 MB, would see an even bigger benefit of the parallel decom-
pression. With this the total required bandwidth is spread out over more banks so the limit of a single
bank may not be reached.

Stream in compressed data: Before starting the kernel compressed data is copied to an HBM bank
on the FPGA. This is done because the Alveo U280, available on a server for testing, is not configured
to use streaming input. Once the so called QDMA option has been enabled data can be streamed in.
The design would need a slight modification where one or more DMAs take this stream to place the
compressed data on an available place in memory. For this task the MicroBlaze is available to point
these DMA(s) into the correct direction.
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Optimize softcore performance: Within the software on the MicroBlaze some performance increase
may be achievable as well. The limits of the local buffer for storing headers are not well defined. It
may be possible to find this limit through a trial-and-error strategy or by closely inspecting the usage of
the stack during a simulation. Another point of interest may be changing the double use of one of the
DMAs. The one DMA that is performing both decompression and retrieving headers from HBM to the
local memory of the MicroBlaze may create stalls during execution. It may be more beneficial to use
this DMA to only retrieve headers, so the header buffer remains as full as possible.

Compare to DDR architecture: To get a better idea of how much faster HBM is than the currently
attached DDR a similar application for DDR should be created. DDR however has less AXI-interfaces
to connect to so some interconnect like the HBM IP contains should be added.





A
Appendix

Vivado block diagrams
In Figure A.1 four blocks each containing a DMA and Snappy decompressor are shown in parallel.
From a control block on the left an AXI interface connects to an interconnect IP which routs commands
to the DMAs in each block.
The internals of a block is shown in A.2. In this figure the pink signal shows the conversion from a cnt
signal to a keep signal and the other way around. The contents of the cnt_to_keep block contain too
many IPs and connections to be any useful in this document. To view them the block diagram should
be opened in Vivado.
In Figure A.3 a kernel with four traffic generators and DMAs are shown. The architecture inside each
block is shown in Figure A.2.
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Figure A.1: Vivado block diagram showing a kernel implementing four decompressors and DMAs.
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Figure A.2: Vivado block diagram internal of decompressor block.
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Figure A.4: Vivado block diagram internal of decompressor block.





Bibliography
[1] Jian Fang, Yvo T. B. Mulder, Jan Hidders, Jinho Lee, and H. Peter Hofstee. In-memory

database acceleration on fpgas: a survey. The VLDB Journal, 29(1):33–59, Jan 2020. ISSN
0949-877X. doi: 10.1007/s00778-019-00581-w. URL https://doi.org/10.1007/
s00778-019-00581-w.

[2] Amd high bandwidth memory, [url]. https://www.amd.com/en/technologies/hbm. Ac-
cessed: 18-12-2020.

[3] [White paper] Supercharge Your AI and Database Applications with Xilinx’s HBM-Enabled Ultra-
Scale+ Devices Featuring Samsung HBM2. Xilinx, 7 2019. WP508 (v1.1.2).

[4] Kaan Kara, Christoph Hagleitner, Dionysios Diamantopoulos, Dimitris Syrivelis, and Gustavo
Alonso. High bandwidth memory on fpgas: A data analytics perspective. 4 2020.

[5] Alveo U280 Data Center Accelerator Card User Guide. Xilinx, 2 2020. UG1314 (v1.3).

[6] Xilinx - integrated hbm and ram, [url]. https://www.xilinx.com/products/technology/
memory.html#internalMemory. Accessed: 15-02-2021.

[7] Alveo U280 Data Center Accelerator Card Data Sheet. Xilinx, 5 2020. DS963 (v1.3).

[8] DOMO. Domo (11-08-2020) - data never sleeps 8.0, [url]. https://www.domo.com/learn/
data-never-sleeps-8. Accessed: 03-12-2020.

[9] Hamlata J. Bhat. Investigate the implication of “self-service business intelligence (ssbi)”, a big
data trend in today’s business world. Current Trends in Information Technology, 10:17–22, 2020.

[10] Rohit Kulkarni at Forbes. Forbes big data (07-02-2019), [url]. https://www.forbes.com/
sites/rkulkarni/2019/02/07/big-data-goes-big. Accessed: 03-12-2020.

[11] G. E. Moore. Cramming more components onto integrated circuits, reprinted from electronics,
volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society Newsletter, 11
(3):33–35, 2006. doi: 10.1109/N-SSC.2006.4785860.

[12] Lz4 - extremely fast compression, [url]. http://lz4.github.io/lz4/. Accessed: 29-01-
2021.

[13] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones. Comparing energy
efficiency of cpu, gpu and fpga implementations for vision kernels. In 2019 IEEE International
Conference on Embedded Software and Systems (ICESS), pages 1–8, 2019. doi: 10.1109/
ICESS.2019.8782524.

[14] Jian Fang, Jianyu Chen, Jinho Lee, Zaid Al-Ars, and H. Peter Hofstee. An efficient high-throughput
lz77-based decompressor in reconfigurable logic. Journal of Signal Processing Systems, 92(9):
931–947, Sep 2020. ISSN 1939-8115. doi: 10.1007/s11265-020-01547-w. URL https:
//doi.org/10.1007/s11265-020-01547-w.

[15] Joost Hoozemans, Rob de Jong, Steven van der Vlugt, Jeroen Van Straten, Uttam Kumar
Elango, and Zaid Al-Ars. Frame-based programming, stream-based processing for medical im-
age processing applications. Journal of Signal Processing Systems, 91(1):47–59, Jan 2019.
ISSN 1939-8115. doi: 10.1007/s11265-018-1422-3. URL https://doi.org/10.1007/
s11265-018-1422-3.

[16] R. Miedema, G. Smaragdos, M. Negrello, Z. Al-Ars, M. Möller, and C. Strydis. flexhh: A flexible
hardware library for hodgkin-huxley-based neural simulations. IEEE Access, 8:121905–121919,
2020. doi: 10.1109/ACCESS.2020.3007019.

63

https://doi.org/10.1007/s00778-019-00581-w
https://doi.org/10.1007/s00778-019-00581-w
https://www.amd.com/en/technologies/hbm
https://www.xilinx.com/products/technology/memory.html#internalMemory
https://www.xilinx.com/products/technology/memory.html#internalMemory
https://www.domo.com/learn/data-never-sleeps-8
https://www.domo.com/learn/data-never-sleeps-8
https://www.forbes.com/sites/rkulkarni/2019/02/07/big-data-goes-big
https://www.forbes.com/sites/rkulkarni/2019/02/07/big-data-goes-big
http://lz4.github.io/lz4/
https://doi.org/10.1007/s11265-020-01547-w
https://doi.org/10.1007/s11265-020-01547-w
https://doi.org/10.1007/s11265-018-1422-3
https://doi.org/10.1007/s11265-018-1422-3


64 Bibliography

[17] Johan Peltenburg, Jeroen van Straten, Matthijs Brobbel, H. Peter Hofstee, and Zaid Al-Ars. Sup-
porting columnar in-memory formats on fpga: The hardware design of fletcher for apache arrow.
In Christian Hochberger, Brent Nelson, Andreas Koch, Roger Woods, and Pedro Diniz, editors,
Applied Reconfigurable Computing, pages 32–47, Cham, 2019. Springer International Publishing.
ISBN 978-3-030-17227-5.

[18] J. Peltenburg, J. Van Straten, M. Brobbel, Z. Al-Ars, and H. P. Hofstee. Tydi: An open specification
for complex data structures over hardware streams. IEEE Micro, 40(4):120–130, 2020. doi: 10.
1109/MM.2020.2996373.

[19] Alveo U200 and U250 Data Center Accelerator Cards Data Sheet. Xilinx, 5 2020. DS962 (v1.3.1).

[20] Hardware snappy decompressor, [url]. https://github.com/abs-tudelft/vhsnunzip.
Accessed: 18-12-2020.

[21] AMBA AXI and ACE Protocol Specification. ARM, 3 2020. Issue H.

[22] AMBA 4 AXI4-Stream Protocol. ARM, 3 2010. Issue A.

[23] vhlib: a vendor-agnostic vhdl ip library, [url]. https://github.com/abs-tudelft/vhlib.
Accessed: 18-12-2020.

[24] Mouna Baklouti and Mohamed Abid. Multi-softcore architecture on fpga. International Journal of
Reconfigurable Computing, 2014, 11 2014. doi: 10.1155/2014/979327.

[25] Dorta Taho, Jaime Jimenez, José Martín, Bidarte Unai, and Armando Astarloa. Reconfigurable
multiprocessor systems: A review. International Journal of Reconfigurable Computing, 2010, 10
2010. doi: 10.1155/2010/570279.

[26] High Bandwidth Memory (HBM) DRAM. JEDEC, 10 2013. JESD235.

[27] High Bandwidth Memory (HBM) DRAM. JEDEC, 11 2015. JESD235A.

[28] Grzegorz Korpala. Data management in cuda programming for high bandwidth memory in gpu
accelerators. Computer Methods in Materials Science, 16:121–126, 01 2016.

[29] AXI High Bandwidth Memory Controller. Xilinx, 7 2020. PG276 (v1.0).

[30] Snappy, a fast compressor/decompressor, [url]. https://github.com/google/snappy. Ac-
cessed: 18-12-2020.

[31] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions
on Information Theory, 23(3):337–343, 1977. doi: 10.1109/TIT.1977.1055714.

[32] Z. Wang, H. Huang, J. Zhang, and G. Alonso. Shuhai: Benchmarking high bandwidth memory
on fpgas. In 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 111–119, 2020. doi: 10.1109/FCCM48280.2020.00024.

[33] Young kyu Choi, Yuze Chi, Jie Wang, Licheng Guo, and Jason Cong. When hls meets fpga hbm:
Benchmarking and bandwidth optimization, 2020.

[34] J. Peltenburg, J. van Straten, L. Wijtemans, L. van Leeuwen, Z. Al-Ars, and P. Hofstee. Fletcher: A
framework to efficiently integrate fpga accelerators with apache arrow. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL), pages 270–277, 2019. doi:
10.1109/FPL.2019.00051.

[35] AXI DMA v7.1. Xilinx, 6 2019. PG021 (v7.1).

[36] AXI DataMover v5.1. Xilinx, 4 2017. PG022 (v5.1).

[37] Github xorjoep hbm, [url]. https://github.com/XorJoep/HBM, 2021. Accessed: 15-02-
2021.

https://github.com/abs-tudelft/vhsnunzip
https://github.com/abs-tudelft/vhlib
https://github.com/google/snappy
https://github.com/XorJoep/HBM


Bibliography 65

[38] R. Arnold and T. Bell. A corpus for the evaluation of lossless compression algorithms. In Pro-
ceedings DCC ’97. Data Compression Conference, pages 201–210, 1997. doi: 10.1109/DCC.
1997.582019.

[39] The canterbury corpus, [url]. https://corpus.canterbury.ac.nz/descriptions/, 1997.
Accessed: 18-12-2020.

[40] Sebastian Deorowicz. Universal lossless data compression algorithms. PhD thesis, Silesian Uni-
versity of Technology, 2003.

[41] A. Gupta, A. Bansal, and V. Khanduja. Modern lossless compression techniques: Review, com-
parison and analysis. In 2017 Second International Conference on Electrical, Computer and Com-
munication Technologies (ICECCT), pages 1–8, 2017. doi: 10.1109/ICECCT.2017.8117850.

[42] Silesia compression corpus, [url]. http://sun.aei.polsl.pl/~sdeor/index.php?page=
silesia, 2013. Accessed: 18-12-2020.

[43] Reading rapl energy measurements from linux., [url]. http://web.eece.maine.edu/
~vweaver/projects/rapl/. Accessed: 12-02-2020.

[44] Intel® xeon® silver 4114 processor specifications, [url]. https:
//ark.intel.com/content/www/us/en/ark/products/123550/
intel-xeon-silver-4114-processor-13-75m-cache-2-20-ghz.html. Accessed:
16-02-2020.

https://corpus.canterbury.ac.nz/descriptions/
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://web.eece.maine.edu/~vweaver/projects/rapl/
http://web.eece.maine.edu/~vweaver/projects/rapl/
https://ark.intel.com/content/www/us/en/ark/products/123550/intel-xeon-silver-4114-processor-13-75m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123550/intel-xeon-silver-4114-processor-13-75m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123550/intel-xeon-silver-4114-processor-13-75m-cache-2-20-ghz.html

	Preface
	List of Figures
	List of Tables
	Introduction
	Context
	Challenges
	Research questions
	Thesis outline

	Background
	FPGAs as a compute platform
	AXI-bus interface
	AXI3 & AXI4
	AXI-Lite
	AXI-Stream
	vhlib stream library

	Microprocessor on FPGA
	High Bandwidth Memory
	Snappy compression
	Compression format
	Custom framing format
	Hardware Snappy decompressor


	Alternative solutions
	Requirements specification
	Architectural alternatives
	Controlling engine
	Functional engine
	Design environment
	Multiple bank accesses

	Relevant characteristics
	Expected speedup from parallel decompressors
	Other memory types


	Implementation
	System level design
	Execution model
	FPGA kernel

	Module design
	Direct memory access
	Processor configuration
	Buffer containing parsed headers
	Hardware Snappy decompressor
	Custom keep-to-cnt conversion
	Custom cnt-to-keep conversion
	Transferring data between HBM and MicroBlaze local memory

	Vivado block diagram
	Baseline configuration
	Baseline kernel
	DMA to HBM configurations
	MicroBlaze code

	Vivado block diagram

	Measurement results
	Experimental setup
	Hardware
	Compressed data
	Measurements

	Baseline FPGA measurements
	Results from 256-bit AXI-bus to HBM
	Results from 64-bit AXI-bus to HBM

	Snappy decompressor measurements
	Hardware Snappy decompressor results
	Software Snappy decompressor results

	Resource usage
	Hardware utilization
	Power consumption


	Conclusions and recommendations
	Conclusions
	Recommendations

	Appendix
	Bibliography

