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Abstract 
In the study of micro-scale biological flows, velocimetry methods based on passive tracers, such as micro-PIV and micro-
PTV, are well established to characterize steady flows. However, these methods become inappropriate for measuring unsteady 
flows of small amplitude, because, on these scales, the motion of passive tracers cannot be distinguished from Brownian 
motion. In this study, we use optical tweezers (OTs) in combination with Kalman filtering, to measure unsteady microscopic 
flows with high temporal accuracy. This method is referred to as optical tweezers-based velocimetry (OTV). The OTV method 
measures the nanometric displacements of a trapped bead, and predicts the instantaneous velocity of the flow by employing 
a Kalman filter. We discuss the accuracy of OTV in measuring unsteady flows with 1.5–70 μm s−1 amplitudes and 10–90 
Hz frequencies. We quantify how the bead size and the laser power affect the velocimetry accuracy, and specify the optimal 
choices for the bead size and laser power to measure different unsteady flows. OTV accurately measures unsteady flows with 
amplitudes as small as 3–6 μm s−1 . We compare the accuracy of OTV and micro-PTV, and characterize the flow regime for 
which OTV outperforms micro-PTV. We also demonstrate the robustness of OTV by measuring the unsteady flow created 
by the cilia of green alga Chlamydomonas reinhardtii, and comparing with numerical predictions based on Stokes equations. 
An open-source implementation of the OTV software in Matlab is available through the 4TU.Centre for Research Data.
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1  Introduction

Accurate flow velocimetry measurements are crucial in a 
range of applications from engineering to physics and biol-
ogy. Established velocimetry methods, developed to measure 
and visualize flows, include pitot tubes, hot-wire anemom-
etry as well as optical methods relying on passive tracer par-
ticles, Laser Doppler Anemometry (LDA), Particle Tracking 
Velocimetry (PTV) and Particle Image Velocimetry (PIV) 
(Adrian et al. 2011; Lindken et al. 2009). Determining the 
appropriate velocimetry method strongly depends on the 
flow: the characteristic length scale L, the velocity magni-
tude U, and the timescale of the velocity variations � . On the 
micron scale, flow velocity measurements are widely pre-
formed using methods based on passive tracer particles such 
as micro-PIV (Akbaridoust et al. 2018; Adhikari et al. 2016; 
Kowalczyk et al. 2007; Kondratieva et al. 2008; Yan et al. 
2007; Guasto et al. 2010; Drescher et al. 2010; Williams 
and Wereley 2009), micro-PTV (Chen et al. 2014; Park and 
Kihm 2006), and micro-holographic-PTV (Lee et al. 2016; 
Kim and Lee 2008), see Fig. 1. These methods have been 
successfully implemented to measure flows in engineering 
(Kiddy et al. 2000), and biological systems (Poelma et al. 
2008, 2010). In all of these velocimetry techniques, the flow 
velocity is deduced from the displacements of passive beads. 
On the micron scale, however, particle displacements are 
also affected by Brownian motion due to thermal fluctua-
tions. The Brownian motion of such tracer particles limits 
the range of flows that such velocimetry methods can accu-
rately measure.

Consider a flow with a characteristic velocity U, and with 
a characteristic timescale � or frequency of the velocity vari-
ation f ∼ 1∕�. The bead displacement due to the advection 
of the particle by the flow scales with �adv ∼ U� , and the 
bead displacement due to diffusion scales with �diff ∼

√
D� , 

where D is the diffusion coefficient of the tracer particle. 
The ratio of these timescales corresponds to the Péclet 
number Pe ∼ U

√
�∕D . The Péclet number is large when 

the magnitude of the flow is large or when the character-
istic timescale for velocity fluctuations � is large. In this 
limit, the displacements of passive tracers are dominated by 
flow advection, and velocimetry based on passive tracer is 
justified, see Fig. 1. However, tracer-based methods cannot 
accurately measure unsteady flows with low Péclet numbers, 
because the particle displacements due to the flow become 
comparable to the displacements due to thermal diffusion. 
This limit is reached when the velocity magnitude scales 
with U ∼

√
Df  , shown as the red line in Fig. 1. This limit is 

reached for measurements of biological flows, such as those 
created by ciliated organisms (Wei et al. 2019). Here, we 
present and fully characterize a velocimetry method using 
optical tweezers and Kalman filtering, which achieves accu-
rate velocimetry measurements below the diffusion limit.

Optical tweezers (OTs) trap beads in a focussed laser beam 
and are widely used to measure forces on the micrometric and 
nanometric scales (Marti and Hübner 2010). The high level of 
accuracy and temporal resolution achieved by OTs in measur-
ing small forces are ideal for velocimetry at small scales. In 
the presence of a flow, the hydrodynamic force on the trapped 
bead can be measured with OTs to deduce the flow velocity. 
In fact, on micron scales, the hydrodynamic force on the bead 
corresponds to the Stokes drag, which is directly proportional 
to the flow velocity. OTs can, therefore, be readily used for 
flow velocimetry purposes. Previous studies have used OTs 
as a positioning tool to facilitate flow measurements by trap-
ping a particle at a given location, before releasing it to use it 
as a passive tracer for micro-PTV (Di Leonardo et al. 2006; 
Leach et al. 2006; Knöner et al. 2005; Nève et al. 2008; Padgett 
and Di Leonardo 2011). This use of OTs enhances the spatial 
resolution of the measurements, but the accuracy and tempo-
ral resolution remain limited by the diffusion limit. OTs have 
also been used to measure the flow directly inside microflu-
idic devices (Eom et al. 2014; Almendarez-Rangel et al. 2018; 
Nemet and Cronin-Golomb 2002; Mushfique et al. 2008; Nedev 
et al. 2014). These studies have been limited to measuring the 
average flow velocity, when the timescale of the flow variations 
� is large and therefore Pe ≫ 1 . Recently, OTs have been used 
to measure unsteady oscillating flows. Harlepp et al. (2017) 
have measured the low frequency oscillating flows in a study 
of the cardiovascular flow of a zebrafish embryo. The pulsing 
blood flow (roughly 2–3 Hz) was measured by trapping a blood 
cell. Köhler et al. (2016) used OTs to measure oscillating radial 
flows at 1–4 Hz, generated by the nonaxisymmetric rotation of 

Fig. 1   Schematic frequency–amplitude diagram for the flow veloci-
metry studies done at micro-scale. The red curve shows the diffusion 
limit of a free tracer particle, Pe ∼ 1, and the green curve shows the 
signal-to-noise ratio limit, SNR�

∼ 1, for a trapped particle. For the 
definition of SNR′  , please see Sect. 4.1
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a microrotor. In both studies (Harlepp et al. 2017; Köhler et al. 
2016), the low frequencies and higher velocities correspond to 
Pe ≫ 1 , for which other techniques could be used.

However, in many biophysical studies, the timescale 
� associated with the unsteadiness can be very small � ∼

10–100 ms. One example is the quasi-periodic flows gener-
ated by cilia, which have frequencies ranging from 15 to 
100 Hz (see the shaded area in Fig. 1). Previous velocimetry 
measurements around ciliated micro-organisms have used 
micro-PTV and have reported the rate of spatial decay of the 
average flow velocity (Francis et al. 2009; Olstad et al. 2019; 
Reiten et al. 2017). Characterizing the unsteady component 
of the flow with micro-PIV requires to perform time stamped 
correlation averaging, which is not always possible.

Here, we discuss the performance of Optical Tweezers-
based Velocimetry (OTV) in measuring oscillatory flows of 
different magnitudes U and frequencies f. Our method uses 
an OT to trap a bead in the flow and uses Kalman filtering to 
deduce the instantaneous flow velocity from the bead posi-
tion. The accuracy of the velocity measurements is assessed 
by imposing a range of pre-calibrated flow fields and compar-
ing our velocimetry measurements with the pre-calibrated 
values. To do this, we use periodic oscillatory uniform flows 
of a wide range of U and f as pre-calibrated flow fields. The 
performance of OTV depends on the stiffness of the trap 
and the size of the trapped bead. We characterize both and 
discuss the optimal choices for the trap stiffness and the bead 
size depending on the flow characteristics (U, f). We quantify 
the accuracy of the OTV to measure unsteady flows with 
Pe > 1 and Pe ⩽ 1 . Our OTV method can accurately meas-
ure unsteady flows as small as 3–10 μm s−1 at frequencies 
of 10–100 Hz. It bears emphasis, that the OTV is versatile 
and robust in measuring any unsteady flows and is not lim-
ited to measuring strictly periodic flows. We demonstrate 
this through direct measurements of ciliary flows, which are 
pseudo-periodic flows with a broad frequency spectrum. This 
measurement also confirms the compatibility of OTV with 
biological flow measurements. This method has been used 
recently by Wei et al. (2019) to measure the unsteady flow 
around C. reinhardtii. The Matlab implementation of the 
Kalman filter by EKF/UKF toolbox (Hartikainen et al. 2011) 
is available online through the 4TU. Centre for Research 
Data (Ghoddoosi Dehnavi and Tam 2020).

2 � Experimental setup

2.1 � Optical tweezers setup

In optical tweezers, a particle with a refractive index different 
from the surrounding fluid can be trapped at the focal point of 
a highly focused laser beam (Keen et al. 2007; Neuman and 
Block 2004). Near the focal point, the trapping force increases 

linearly with the particle’s displacement from the focal point, 
following Hooke’s law, Ft = kx(t) , where Ft represents the 
force applied by the trap, k is the trapping stiffness, and x(t) is 
the time-varying displacement of the particle from the focal 
point (see Fig. 2). An accurate measurement of Ft relies on an 
accurate measurement of the position x(t). This requires the 
addition of an instrumentation to precisely detect the position 
of the bead. Here, we use back focal plane interferometry 
for positional detection (Gittes and Schmidt 1998; Lang et al. 
2002; Farré et al. 2012). In this technique, a separate detection 
laser, in combination with a position-sensitive detector (PSD), 
are used to measure the position x(t), see Fig. 2.

 A  schematic of our setup is presented in Fig.  2. A 
Nd:YAG ( � = 1064 nm) laser is focused by a water immer-
sion objective (NA=1.20, 60× ) mounted on an inverted 
bright field microscope (Nikon Eclipse Ti-U). Spherical 
polystyrene beads of radii a = 0.5–2.5 μ m are used for trap-
ping. Back focal plane interferometry is performed with a 
detection laser ( � = 880 nm). The detection laser is aligned 
to the trapping laser and focused by the same objective. 
The laser beam goes through the trapped bead, is focused 
again through the condenser on the back focal plane, and is 
detected by a position-sensitive detector (PSD, First Sen-
sor DL100-7). The experimentally acquired electrical sig-
nal is converted back into bead position following the same 
methodology as (Lang et al. 2002). In parallel, videos of 
the microscopy are synchronously recorded by an sCMOS 
camera (LaVision PCO.edge) at 100–1000 Hz.

Fig. 2   The simplified schematic of our experimental setup. The flow 
chamber is connected to a piezo stage, which is used to generate a 
known background flow. The inset shows two opposing forces acting 
on the trapped bead: the hydrodynamic force exerted by the flow, and 
the trapping force exerted by the OT on the bead
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2.2 � Generating an unsteady flow: piezo stage 
calibration

The flow chamber is fabricated by sticking a cover-slip of 
175 μ m thickness to a glass slide with double-sided tape, 
sealed with silicone grease after filling the sample. The 
height of the flow chamber is 180 μ m and the flow is meas-
ured in the middle of the flow chamber. For simplicity, we 
only impose flows along the x-axis. In this study, we char-
acterize oscillatory flows u(t) = U sin(2�ft) , where U is the 
amplitude of the flow and f the frequency. It bears emphasis 
that OTV is not limited to measuring purely periodic oscil-
latory flows, but these flows provide the simplest charac-
terization of the operational range of OTV. These uniform 
flows are generated through the controlled translation of the 
piezo stage on which the sealed flow chamber is fixed. The 
bulk motion of the flow chamber results in a uniform flow 
around the trapped bead. In this study, we generate flows 
with amplitudes ranging from U = 1.5 to 66 μm s−1 , and 
frequencies ranging from f = 10 to 90 Hz, corresponding 
to Péclet numbers ranging from Pe = 0.24 to 63. These flow 
velocities are measured independently with OTV, and com-
pared with the piezo displacements to characterize the accu-
racy of the method. This requires a high degree of precision 
for the calibration of the piezo displacements. This calibra-
tion is challenging for two reasons. First, in this range of (U, 
f), the motion of the piezo stage does not precisely follow 
the position input, and is non-linear. Therefore, the displace-
ments of the piezo stage cannot be assumed to correspond to 
the input displacements and require a separate calibration. 
Second, the oscillatory flows investigated here ( U = 1.5–66 
μm s−1 and f = 10–90 Hz) imply very small displacements 
of the stage. For example, the smallest flow velocity U = 1.5 
μm s−1 corresponds to a maximum displacement of the piezo 
stage of only �adv ≈ 50 nm at 10 Hz and is even smaller, 
�adv ≈ 5 nm, at 90 Hz. Such small displacements are below 
the camera resolution of our setup, for which the pixel size 
is of ∼ 100 nm.

To tackle this limitation, we developed a reliable cali-
bration method, which measures the piezo displacement 
with back focal plane interferometry. We manufactured 
sample surfaces with polystyrene beads imbedded inside a 
hard layer of NOA 81. For this purpose, we spin-coated a 
mixture of liquid polymer NOA 81 and micro-beads on the 
surface of a glass slide, and cured the mixture under UV 
light. The calibration surface was then placed on the piezo 
stage. The hard bonds between the beads and the substrate 
guarantees that the bead motion precisely follows the piezo 
stage motion. We then focussed a laser beam through the 
center of a bead imbedded in the hard NOA 81 layer and 
activated the piezo stage. The motion of the spherical bead 
causes a deflection of the laser beam, and back focal plane 
interferometry was used to deduce the position of the bead 

as a function of time. The accuracy of this technique is ∼ 1.2 
nm, and this allowed us to calibrated piezo-stage motions as 
small as 5 nm. This calibration was performed separately for 
N = 9 times for each velocity magnitude U and frequency f 
to verify the consistency of the piezo stage motion. In this 
paper, we denote the calibrated velocity of the piezo stage as 
u0(t) , and refer to it as the ground truth velocity.

2.3 � Stiffness calibration

Measuring the force exerted on the bead requires the accu-
rate calibration of the trap stiffness k. The stiffness k depends 
on the refractive index of the medium, the wavelength and 
power of the trapping laser, and the properties of the trapped 
bead such as refractive index, size, and shape.

In this study, we employ the drag force method for cali-
brating the stiffness, as it is the most accurate for measuring 
hydrodynamic forces exerted on the bead (Capitanio et al. 
2002; Jones et al. 2015). In this method, the trapped beads 
are subjected to known flows u(t), and hence known Stokes 
hydrodynamic drag forces Fh = 6��au(t) . We impose uni-
form flows of amplitudes U = 16–330 μm s−1 at a low fre-
quency of f = 4 Hz. For these flows, the Reynolds number 
is negligible ( ∼ 10−6 ), and the recovery force from the OT, 
Ft = kx(t) , is simply equal to Fh = 6��au(t) . The amplitude 
of the bead displacement is extracted by fitting the PSD sig-
nal with a sinusoid. The stiffness calibration is demonstrated 
in Fig. 3, where the measured amplitudes of the bead dis-
placements are plotted against the imposed hydrodynamic 
drag force, or equivalently the flow velocity. The linear trend 
(solid lines through the marker) indicates that Hooke’s law 
for the trap force holds true within this range of flow veloci-
ties. The stiffness k of the OT is obtained as the inverse of 
the slope, see Fig. 3. Within the focal plane, the trap stiffness 
in the x- and y-direction differ slightly ∼ 20% , and they are, 
therefore, calibrated individually, see Fig. 3.

3 � Methodology: optical tweezers‑based 
velocimetry

3.1 � Velocimetry measurements: working principle

The flow chamber is first filled with a buffer solution of 
suspended beads of radii a = 0.5–2.5 μ m at a low con-
centration. The flow chamber is subsequently sealed 
and placed on the piezo stage. A suspended bead is then 
trapped with the OT in the middle of the flow chamber, 
90 μ m away from the top and bottom walls, and the stiff-
ness of the trap is calibrated for this particular bead, see 
Sect. 2.3. We generate a uniform flow u(t) around the 
trapped bead, which we want to measure. This flow is cre-
ated by activating the oscillatory motion of the piezo stage 
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(U, f). The buffer solution in the sealed chamber follows 
the motion of the stage, thereby creating a uniform flow 
u(t) = U sin(2�ft) around the trapped bead. The bead expe-
riences two external forces: the force due to the optical 
tweezers Ft = k�x , and the hydrodynamic force due to the 
relative motion between the bead and the external flow 
Fh(t) . Hence, the dynamics of the bead is governed by the 
Boussinesq–Basset–Oseen equations:

where the hydrodynamic force Fh(t) includes the Stokes 
drag, the Basset history force, and the added mass force 
(Kim and Karrila 1991; Grimm et al. 2012). For a spherical 
bead in an oscillatory flow of frequency f, such as in our 
experiments, the expression for Fh(t) can be written with 
complex notations as, Fh(t) = −𝛾

(
1 + 𝜆 +

1

9
𝜆2
)
(ẋ − u(t)) , 

where �2 = −2�ifa2∕� , i represents the imaginary unit, and 
� = 6��a . The second term in Fh(t) represents the Basset 
history force and scales with ‖�‖ ∼ O ( 10−2–10−3 ), while the 
last term represents the added mass effect and scales with 
‖�2‖ ∼ O ( 10−3–10−6 ). Both are small and negligible com-
pared with the first term, which corresponds to the Stokes 
drag. Furthermore, the polystyrene beads have almost the 
same density as the surrounding water, and hence the accel-
eration term on the left side of Eq. (1) has the same order of 
magnitude as the added mass term and is also negligible in 

(1)mẍ = −kx + Fh(t),

our experiments. This reduces Eq. (1) to a first-order equa-
tion for the position x of the trapped bead:

where fc is the corner frequency of the OT fc = k∕(2��) , 
which characterizes its time of response. Our optical twee-
zers setup provides time resolved measurements of the bead 
position x, from which we can deduce the flow velocity u(t) 
using Eq. (2). Equation (2) is a first-order linear ordinary 
differential equation, characterized by the time constant 1∕fc . 
In the limit, when the timescale of the velocity fluctuations 
is larger than 1∕fc , ẋ in Eq. (2) becomes negligible, and the 
flow velocity u(t) is directly proportional to x(t). This is the 
case for a sinusoidal flow u(t) at a frequency lower than fc for 
example. In this case, the flow velocity u(t) can be directly 
deduced from the in-phase sinusoidal position of the bead 
x(t), such that u(t) = k∕� x(t) , see the bode diagram in Fig. 5. 
This highlights a fundamental aspect of OTV, namely that 
measuring the bead position x(t) provides a direct measure-
ment of the flow velocity u(t). This is different for veloci-
metry methods based on passive tracer particles such as PIV 
and PTV, for which measurements of particle displacements 
(i.e. the difference between successive particle positions) are 
required to infer the velocity. It bears emphasis that, when 
the timescale of the fluctuations is smaller than 1∕fc , such 
as for a sinusoidal flow of frequency larger than fc , the bead 
position will be phase-delayed and the amplitude of the 
oscillations in the bead position will decrease, see Fig. 5.

3.2 � Kalman filter

Using Eq. (2), we can in principle deduce the flow velocity 
u(t) from the measurements of x(t), but this operation involves 
computing the time derivative ẋ(t) . Our measurements of x(t) 
from OTV are affected by thermal fluctuations. The noise due 
to the Brownian motion of the bead can significantly affect the 
measurements of x(t) when the flow magnitude u is small. To 
accurately deduce the flow velocity u(t) from our noisy meas-
urements of x(t), we implement a Kalman filter. We consider 
the discrete-time dynamics of the system at uniform sampling 
intervals �t . The discrete-time state space model correspond-
ing to Eq. (2) can be written as:

where xn denotes the discrete-time bead position in the trap 
at time t = n�t , and yn denotes the measurement of the bead 
position obtained from our instrumentation. wn and vn rep-
resent, respectively, the process noise and the measurement 
noise (Pei et al. 2017), and un represents the flow velocity. 
It bears emphasis that, in our application of Kalman filter-
ing, we want to estimate the input, i.e. the velocity un . We, 

(2)ẋ + 2𝜋fc x = u(t),

(3)
xn = (1 − 2�fc�t)xn−1 + �t un−1 + wn−1,

yn = xn + vn,

Fig. 3   Trap stiffness calibration with the drag force method. Calibra-
tion for x- and y-direction are shown in blue and red, respectively. 
The insets show two examples of the recorded bead positions, x(t), 
inside the trap. Amplitudes of the bead displacements are obtained by 
fitting sine waves to the measured x(t)
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therefore, define a model that describes the velocity un as a 
dynamic phasor (Monti et al. 2016; de la Serna and Rodri-
guez-Maldonado 2011), see Eq. 5 in appendix A. Dynamic 
phasors, with the form of a(t) sin(2�f0t + �(t)) , allow us to 
approximate any unsteady flow with time varying amplitude, 

phase, and frequency. We model the input velocity u(t) as a 
summation of three different dynamic phasors with central 
frequencies f0 = [f − 1.2, f + 0.25, f + 1.2] , where f is the 
intrinsic frequency of the flow. We choose on purpose not to 
include the flow frequency f as one of the dynamic phasors, 
as f is not known a priori in practical applications. The full 
detail of the velocity model can be found in appendix A. A 
forward–backward Kalman filter is implemented to approxi-
mate the flow velocities based on state space model in Eq. 3. 
For more details, please see the appendix B, an open source 
implementation of the OTV software is available through 
the 4TU.center for research data (Ghoddoosi Dehnavi and 
Tam 2020).

3.3 � Velocimetry measurements

The working principle of our OTV method is demon-
strated by measuring the sinusoidal flow generated by the 
motion of the piezo stage described in Sect. 2.3. Figure 4 

Fig. 4   Three illustrative examples of measuring unsteady flows 
by OTV, as follow: b f =  10 Hz and U =  10 μm  s−1 , d f =  50 Hz 
and U =  20 μm s−1 , and f f =  90 Hz and U =  36 μm s−1 . The gray 
curves show the bead displacements, x(t), the blue curves present 
the flow velocities obtained from the OTV measurements and using 
the Kalman filter, and the red curves correspond to the ground truth 

velocities obtained from the piezo stage calibration. In all the exam-
ples, the corner frequency of the trap is fc = 44 Hz. a, c, and e rep-
resent  the Fourier spectrum of x(t) in (b), (d), (f), respectively. The 
green dash-lines are Lorentzian fits, which correspond to the Fourier 
spectrum of x(t) due to a pure Brownian motion of a trapped bead

Fig. 5   Theoretical a gain, and b phase of a first-order system related 
to Eq. (2). The red circles are the phase and gain deduced from OTV 
measurements, by comparing un , the predicted velocity from the 
Kalman filter, and 2�fcxn the measured displacements from the PSD. 
The corner frequency of the trap is fc = 44 Hz
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represents three different flow measurements correspond-
ing to flow magnitudes of U = 10, 20, 36 μm s−1 with 
respective frequencies of f = 10, 50, 90 Hz. In Fig. 4b, d 
and f, the raw measurements of x(t) related to each flow 
are represented in gray. The periodic motion of the bead 
inside the trap can be clearly seen from the periodicity in 
the raw signal for x(t). On the left side of Fig. 4, the fre-
quency spectrum of x(t) is shown. Each frequency spec-
trum of x has a peak that exactly corresponds to the char-
acteristic frequency of the flow (see Fig. 4a, c, e). For 
frequencies higher than the corner frequency of the trap 
fc , the magnitude of the spectrum decays with a slope of 
one. This behaviour is related to the response time of the 
trap 1∕fc . Theoretically, the Brownian motion of a trapped 
bead has a lorentzian frequency spectrum, expressed as 
F(x(t)) ∝ 1∕

√(
f 2
c
+ f 2

)
 (Gittes and Schmidt 1997), where 

F  denotes the Fourier transform (see the green-dashed 
curves in Fig. 4a–c). The relative values of the character-
istic timescale of the flow and the trap ( � and 1∕fc ) have 
significant implications in the accuracy of the flow meas-
urement, which will be discussed in the next sections.

The blue lines in Fig. 4b, d, f correspond to our flow 
measurements using the Kalman filter. Since Eq. 2 is a 
first-order system, the position of the bead k

�
x(t) will be 

modulated by a phase difference and an amplitude gain 
compared with the external flow u(t) (see the blue and 
gray lines in Fig. 4b, d, f). The ground truth unsteady 
flow velocity (calibrated piezo velocity) is represented in 
red in Fig. 4b, d, f. Our estimation of the unsteady veloc-
ity is in excellent agreement with the actual flow velocity 
with a maximum error of 4.2% in amplitude of the flow, 
and a maximum error of 0.7% in the phase of the velocity 
(see Sect. 4.2 for more details on the accuracy of OTV). 
Here, we want to emphasize again, that in all these exam-
ples, the exact flow frequency is not included as one of 
the three dynamic phasors in our model for the state rep-
resentation of the input uk , see Sect. 3.2.

To further validate the performance of our approach 
and the implementation of the Kalman filter, we extract 
the phase and the gain from the OTV experiments for a 
range of magnitudes U = 6–70 μm s−1 and frequencies 
f = 10–90 Hz, and compare it to the phase and gain pre-
dicted by Eq. 2. The results are presented in Fig. 5. The 
phase and the gain for each experiment are represented by 
the red circles in Fig. 5, and are obtained by comparing 
un and k

�
xn , computed by the Kalman filter. The phase and 

gain from the Kalman filter accurately match the theoreti-
cal phase and gain from the first-order system in Eq. (2). 
This indicates that the Kalman filter effectively recon-
struct the flow velocities with different intrinsic frequen-
cies from the noisy measurements of x(t).

4 � Assessment of the accuracy 
and characteristics of OTV

The performance of our velocimetry method depends on 
the characteristics of the optical tweezers and in particular 
on the trap stiffness and the properties of the trapped bead. 
In this section, we characterize the influence of these OT 
parameters to formulate guidelines to optimize the perfor-
mance of the OTV, for any given characteristics of the flow 
to measure. In addition, we determine the limits and the 
accuracy of the OTV.

4.1 � Influence of the trap stiffness and the bead size 
on the signal‑to‑noise ratio

The performance and accuracy of OTV can be character-
ized by the signal-to-noise ratio (SNR) of our measure-
ments of the bead displacements, x(t), inside of the trap. 
We estimate the SNR as ⟨Ax⟩∕�(vn) , where ⟨Ax⟩ is the aver-
age amplitude of xn obtained from the Kalman filtering, and 
�(vn) = �(yn − xn) is the standard deviation of noise in our 
measurements, as explained in the Eq. 3. As discussed in 
Sect. 3.3, the response time of the trap depends on the cor-
ner frequency fc = k∕(2��) . To determine the optimal OT 
parameters, we measured the same oscillatory flow for OTs 
with different corner frequencies, and report the SNR as a 
function of fc . The corner frequency is a function of both the 
stiffness of the trap, k, and the hydrodynamic drag coefficient 
of the trapped bead, � . In our experiments, k was varied by 
changing the power of the trapping laser, and � was varied 
using beads of different radii between 0.5 μ m and 2.5 μm.

Figure 6 presents the SNR for three different sinusoidal 
flows, all at the same frequency f = 50 Hz, and with velocity 
magnitudes U = 6, 10, 19 μm s−1 . We first consider measure-
ments performed using a bead of 2.5 μ m radius, see Fig. 6a. 
As expected, we find that the SNR increases with the magni-
tude of the external flow measured, regardless of fc . In addi-
tion, it is noteworthy that, for all velocity magnitudes, the 
SNR shows a clear maximum when the corner frequency of 
the trap is fc = f = 50 Hz. This indicates that, to maximize 
the SNR, the trap stiffness k should always be chosen, such 
that the corner frequency of the trap precisely coincides with 
the frequency of the sinusoidal flow.

The maximum SNR value can be rationalized by com-
paring the displacements of the bead due to the external 
flow with the Brownian displacements of the bead. First, 
the bead displacements x(t), measured with the PSD, scale 
with U∕2�

√
f 2 + f 2

c
 , see Fig. 5a. Second, our measure-

ments are affected by the displacements due to thermal 
fluctuations, which scale with 

√
kBT∕2�fc�  . Therefore, the 

theoretical prediction for the SNR can be defined as 
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SNR�
= U

√
�

2�kBT

√
fc

f 2+f 2
c

 . SNR ′  is represented in Fig. 6 

(see dashed lines), and agrees with the SNR values that we 
estimated from experiments. When the corner frequency 
of the trap is low ( fc < f  ), corresponding to a low trap 
stiffness, the bead displacements are significantly affected 
by thermal fluctuations. In addition, the response time of 
the trap is then high, leading to a low amplitude of the 
bead displacements, see Fig. 5a. Both effects lead to a low 
SNR for fc < f  . For fc > f  , on the other hand, the OT is 
stiffer, which decreases the noise amplitude due to thermal 
fluctuations. However, the amplitude of the signal (bead 
displacements due to the external flow) decreases as well, 
leading to an overall decrease in SNR for large fc . In 
between these two limits, the SNR reaches a theoretical 
maximum when the corner frequency of the trap coincides 
with the frequency of the external flow.

Next, to investigate the effect of the bead size, we repeat 
the same experiments with a 0.5 μ m bead radius and differ-
ent laser powers. Using smaller beads is advantageous when 
a high spatial resolution is required, e.g., measuring the flow 
very close to a boundary such as a solid wall. The use of a 
smaller bead, implies that the corner frequency, fc = k∕2�� , 
is much larger. In this case, the corner frequency cannot 
coincide with the frequency of the flow ( f ∼ 50 Hz), because 
it requires lowering the trap stiffness to very low values, for 
which it is no longer possible to trap the bead inside the OT. 
The minimum corner frequency which we are able to reach 
with a 0.5 μ m bead is around 169 Hz. It is important to con-
sider that at a given laser power, SNR′ for 0.5 μ m beads are 
smaller than for 2.5 � m beads, see Fig. 6b.

In Fig. 7a and d, we illustrate an example of OTV meas-
urement of the same flow ( U = 6.1 μm s−1 and f = 50 Hz), 
with beads of 0.5 and 2.5 μ m radii. The corner frequency 

of the trap for a 0.5 and a 2.5 μ m bead radius are fc = 169, 
50 Hz, respectively. The corresponding SNR ′  numbers 
for 0.5 and 2.5 μ m beads are 0.29 and 0.86, respectively. 
Unlike the measurements done with the 2.5 μ m bead, the 
0.5 μ m bead measurements fail to accurately capture the 
flow. It is evident that the low SNR of the measurements 
with 0.5 μ m beads leads to poor accuracy of the measure-
ment in Fig. 7d. This example illustrates how the choice of 
the bead size can affect the accuracy of the OTV. Smaller 
beads can be beneficial to measure flows with large charac-
teristic frequencies f; for instance, beads of 0.5 μ m radius 
can be used to measure flows with f > 169 Hz optimally.

4.2 � Accuracy of the measurements

The accuracy of the velocimetry method is quantified by 
comparing the experimental OTV measurements u(t) with 
the known flow velocities from the calibration experi-
ments u0(t) . Unsteady, oscillatory flows are characterized 
by the amplitude of the velocity and the phase of the oscil-
lations. Hence, we define two errors to quantify the accu-
racy of velocity measurements: the error in amplitude �u 
and the error in phase �� . To do this, we compute the time 
varying amplitude Au(t) and the phase �u(t) of the meas-
ured velocities u(t) by computing the Hilbert transform of 
H(u(t)) (Feldman 2011). The analytic signal of u(t), defined 
by û(t) = u(t) + i H(u(t)) , is a complex-valued time series, 
which has a modulus and a phase. The modulus of û(t) cor-
responds to the envelope of the amplitude of u(t), and repre-
sents the flow velocity magnitude at each time Au(t).

The argument of û(t) represents the phase of the oscil-
latory flow �u(t) . Au(t) and the unwrapped phase �u(t) are 
illustrated, respectively, in Fig. 7b, c, e and f. Figure 7b, 
c, e and f represents respectively the Au(t) and �u(t) of the 
flow measurement of the sample flow U = 6.17 μm s−1 and 
f = 50 Hz performed with the 2.5 μ m and 0.5 μ m bead. We 
define the measurement errors, �u for the amplitude, and �� 
for the phase, by comparing the amplitude and phase of the 
measured velocity ( Au(t) , �u(t) ) with those of the calibrated 
ground truth ( Au0(t) , �u0(t) ) such that:

Figure 7b, c, e, and f illustrates Au(t) , �u(t) , Au0(t) , and 
�u0(t) for a particular measurement. We estimate �� and �u 
for U = 1.5–70 μm s−1 and f = 10 − 90 Hz, and present 
results in Fig. 8. For each flow condition, we repeat the 
experiment nine times, each recording for 3 s. For all of the 

(4)

�� = 1∕2�

√
1

� ∫
�

0

(
�u(t) − �u0(t)

)2
dt,

�u = 1∕U

√
1

� ∫
�

0

(
Au(t) − Au0(t)

)2
dt.

Fig. 6   Signal-to-noise ratio for measuring 50 Hz unsteady flows with 
two different bead radii: a 2.5 μ m, and b 0.5 μ m. The solid lines rep-
resent the SNR calculated based on the experimental data. The dash 
lines represent SNR�

∼ 1, which theoretically approximate the SNR. 
Error bars represent the standard deviation of SNR for different rep-
etitions of the same experiments. All measurements in (a) were per-
formed using the same bead and likewise for (b)
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measurements in Fig. 8, we used a 2.5 μ m bead and a fixed 
trap stiffness of 13.9 pN μm−1 corresponding to fc = 44 Hz. 
The insets in Fig. 8 are close-up views of the error maps for 
U < 25 μm s−1 . The red curve in Fig. 8 represents the diffu-
sion limit, also discussed in Fig. 1. Both errors in phase and 
amplitude of velocities are very small far from the diffusion 
limit, when Pe ≥ 1 , and remain small below the diffusion 
limit, when Pe ≤ 1 , see Fig. 8. At very low flow amplitudes 
and higher frequencies, the errors increase. This corresponds 
to measurements in the regime, when the SNR of the OT 

signal decreases and SNR < 1 . SNR ∼ 1 corresponds to the 
diffusion limit of the trapped particle. This limit is reached 

when U ∼

√
2�kBT

�

√
f 2+f 2

c

fc
 , and is represented by the white 

curve in Fig. 8. Below this limit, neither the phase nor the 
amplitude of the measured velocities can be measured 
accurately.

We use the errors, �� and �u , to compare the accuracy of 
OTV with a 2.5 μ m bead radius to that with a 0.5 μ m bead 
radius. We measure unsteady flows at a fixed frequency of 
f = 50 Hz and decrease the velocity magnitudes from U = 
70 μm s−1 to U = 1.5 μm s−1 , using beads of both sizes. For 
each bead size, we use the laser power which gives us a 
corner frequency leading to the highest SNR: fc = 169 Hz 
for 0.5 μ m beads and fc = 50 Hz for 2.5 μ m beads. For both 
bead sizes, �� and �u increase with decreasing amplitude U 
of the measured velocity, see Fig. 9a, b.

The theoretical limit SNR�
∼ 1 corresponds to U = 26.8 μ

m s−1 and U = 7.1 μm s−1 , for bead radii a = 0.5 μ m and 2.5 
μ m, respectively (see the red and blue dash lines in Fig. 6). 
For U ≳ 26.8 μm s−1 , the theoretical signal-to-noise ratio 
is such that SNR′ > 1 for both bead sizes. For these flows, 
the errors are small for both bead sizes, with the amplitude 
error 𝜀u <14%, 7.5%, and the phase error 𝜀𝜙 <2%, 1.5%, 
respectively, for 0.5 and 2.5 μ m beads. For U < 26.8 μm s−1 , 
the accuracy of the OTV with a 0.5 μ m bead substantially 

Fig. 7   a, d Examples of measuring an unsteady flow ( U = 6.17 μ
m  s−1 and f = 50Hz) with beads of radius 2.5 and 0.5 μ m, respec-
tively. The corner frequencies of the trap, corresponding to 2.5 and 
0.5 μ m beads, are 48 Hz and 169 Hz, respectively. We define two 
measurement errors. First, the error in amplitude, �u , is deduced from 
the amplitude of the measured velocity Au(t) , see (b) and (e). Second, 

the error in phase, �� , is deduced from the unwrapped phase of the 
measurements �u(t) , see (c), (f). We calculate �u(t) and Au with the 
Hilbert transform of u(t). The shaded areas in (b, c), and (e, f), rep-
resent how much the measured �u(t) and Au(t) differ from the ground 
truth

Fig. 8   OTV accuracy in measuring unsteady flows with various 
amplitudes and frequencies: a the error in the amplitude, �u , and b the 
error in the phase, �� . The red curve represents the diffusion limit of a 
passive tracer particle, and the white curve corresponds to SNR�

∼ 1 
for a trapped bead
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decreases, especially for �� , see Fig. 6. For the 2.5 μ m bead, 
however, when 7.1 < U < 26.8 μm s−1 , the OTV measure-
ments remain accurate, 𝜀u <20% and 𝜀𝜙 <4%. For U < 7.1 μ
m s−1 , the signal-to-noise ratio is such that SNR′ < 1 for the 
2.5 μ m bead as well, and the accuracies of measurements 
start to decrease. As Fig. 9 suggests, measurements with the 
2.5 μ m bead show much better accuracies than the ones with 
the 0.5 μ m bead. For U < 3 μm s−1 , the errors in amplitude 
and phase are large for both cases, which means the meas-
ured velocity is not representative of the actual flow. For 
50 Hz flows, OTV with 2.5 μ m beads allows us to measure 
flows as small as 3–5 μm s−1 , while with 0.5 μ m beads, OTV 
is limited to flows larger than 20 μm s−1.

4.3 � Comparison between OTV and micro‑PTV

In this section, we compare the accuracy of OTV and micro-
PTV measurements. The micro-PTV measurements are pre-
formed by first trapping a bead in the flow cell and releasing 
it just before the onset of piezo stage motion. We do so to 
keep the bead in the focal plane of the camera and in the 
middle of the flow cell. The bead motion is recorded at a 
frame rate of 990.85 fps by the camera. The bead position is 
extracted from the recordings, using the TrackMate exten-
sion in Fiji (Tinevez et al. 2017). A Laplacian of Gaussian 
segmentation with quadratic sub-pixel localization method 
is used in TrackMate to detect the bead position. The micro-
PTV data is filtered following the same approach as the one 
described for the OTV in Sect. 3.2. We use the same Kalman 
filter, described in Eq. (3), for a trap stiffness of k = 0 . The 
OTV measurements are performed with a 2.5 � m bead inside 
a trap of stiffness k = 15 pN μm−1 , corresponding to fc = 48 
Hz. Figure 10b and d present measurements of the same 
unsteady flow, U = 6.1 μm s−1 and f = 50 Hz using, respec-
tively, micro-PTV and OTV. Brownian motions clearly dom-
inate the micro-PTV measurements, and despite the Kalman 

filter, the velocity cannot be measured, see Fig. 10b. This 
can also be seen from the spectrum of the bead displace-
ments in Fig. 10a. In comparison, OTV measurements of 
the same flow are far less noisy, and the Kalman filter can 
reconstruct the actual flow velocity accurately, see Fig. 10c, 
d. The example of Fig. 10 corresponds to Pe ∼ 0.35 < 1, for 
which methods based on passive tracers will be inaccurate, 
see Sect. 1. For OTV, on the other hand, the SNR�

∼ 1, and 
the measurement errors remain low, see Fig. 8.

We quantify the differences in accuracy with the phase 
and amplitude errors. Figure 11 compares �u and �� for 
micro-PTV and OTV. Both �u and �� are lower for OTV 
than for micro-PTV. The flow amplitudes corresponding to 
Pe ∼ 1 and SNR�

∼ 1 are respectively U = 17.9 and 7.1 μ
m s−1 , and are indicated with dashed lines in Fig. 11. Both 
methods are appropriate for high-amplitude flows, however, 
for lower amplitudes, when Pe < 1 , micro-PTV is no longer 
accurate, see the increase of �u and �� in Fig. 11. For OTV, 
on the other hand, the errors remain low even for Pe < 1 , and 
slowly increase for very low amplitudes, when SNR′ < 1 , see 
Fig. 11. For unsteady flows at 50 Hz, the use of micro-PTV 
is limited to flow amplitudes larger than ∼ 20 μm s−1 , while 
OTV can measure 50 Hz flows with amplitudes as low as 
3–5 μm s−1.

5 � Case study: unsteady flow around C. 
reinhardtii

Finally, we demonstrate the efficiency and robustness of 
OTV by measuring unsteady biological flows, in the f =
10–100 Hz frequency range. We use OTV to measure the 
2D flow field around the flagella of the micro-organism C. 
reinhardtii. The cilia, or flagella, of this micro-organism are 
approximately 10–12 μ m long, and beat at about 40–70 Hz. 
We capture one cell with a glass pipette at 120 μ m above 
the bottom surface of a flow cell, to limit the influence of 
wall effects on our velocity measurements. It bears emphasis 
that the beating of the flagella is not strictly periodic and 
the beating frequency fluctuates over the course of time. In 
addition, the beating frequency is not known a priori. We 
measure the velocity with OTV, using a bead trapped 35 μ m 
away from the center of the cell body. We use a bead with 
radius a = 2.7 μ m and the trapping laser has a stiffness of 
k = 9.85 pN μm−1 and a corner frequency of fc = 32.3 Hz, 
see Fig. 12a. Here, we define the bead displacement in x- and 
y-direction as x(t) and y(t), with the corresponding veloci-
ties ux(t) and uy(t) . Figure 12b, d represents the spectrum of 
x(t) and y(t). In this case study, the main frequency peak is 
broad, see Fig. 12b, compared to the flows generated with 
the piezo stage, see Fig. 4c, and the signal consists of sev-
eral harmonics, here at 50, 100 and 150 Hz (Fig. 12b). Each 
harmonic in the x(t) or y(t) signal correspond to a different 

Fig. 9   Comparing the accuracy of OTV for measuring unsteady 
flows, f = 50 Hz and U = 1.5–70 μm s−1 , using beads of 0.5 and 2.5 
μ m radii: a the error in the amplitude, �u , and b the error in the phase, 
�� . The blue and red dashed lines correspond to SNR�

∼ 1 for 0.5 μ m 
and 2.5 μ m bead radii, respectively
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harmonic in ux(t) or uy(t) with a different phase and gain. 
Each harmonic of ux(t) or uy(t) will affect the bead displace-
ments x(t) and y(t) differently according to the first-order 
dynamics of the bead described in Eq. (2), and characterized 
by the Bode diagrams on Fig. 5. Figure 12c, e represents the 
measured bead displacements and the reconstruction of the 
velocity ux(t) and uy(t) from the Kalman filter. The presence 
of several harmonics in the x(t) and y(t) signals leads to 
reconstructions of the input velocities ux(t) and uy(t) , which 
significantly differ from x(t) and y(t) in amplitude, shape and 
phase. To verify the accuracy of the velocimetry method, 

we compare the OTV measurements with the numerical 
boundary element method (BEM) simulations (Wei et al. 
2019). We model the cell body and the pipette as a single 
axisymmetric object. Briefly, our BEM simulations use a 
combination of stresslet singularities on the solid surfaces, 
and stokeslet and rotlet singularities along the cell-pipette 
centreline to impose the non-slip boundary conditions on the 
solid boundaries. Furthermore, we use slender body theory 
to represent the flagella. The shapes and deformations of the 
flagella are directly extracted from the experiment record-
ings and used in BEM simulations to compute the flow 
fields (see Wei et al. (2019) for more details). In Fig. 12, the 
predicted velocities by the BEM simulations confirm the 
accuracy of OTV to measure the amplitude and phase of 
the unsteady flow generated by the C. reinhardtii. Here, we 
want to emphasize that although the flow frequency in this 
example is fluctuating with time, and is not known a priori, 
the Kalman filter can accurately reconstruct the unsteady 
flow velocity.

6 � Conclusion

In this paper, we established a velocimetry method, called 
OTV, to accurately measure micro-scale unsteady flows. We 
implement a Kalman filter model to predict instantaneous 
flow velocities from the optical tweezers measurements. 

Fig. 10   An example of measuring the same unsteady flow ( U = 6.17 
μm s−1 and f = 50 Hz) with the OTV and the micro-PTV methods. A 
bead of 2.5 μ m radius is used in both of the methods. a The Fourier 
spectrum of the micro-PTV’s tracer particle displacements, x(t). b 
The gray line shows the displacements of the free tracer particle, and 

the blue line is the predicted velocity using the Kalman filter. c The 
Fourier spectrum of the bead displacements, x(t), for a bead trapped 
in the optical tweezers. d The gray line is the scaled bead displace-
ments, k

�
x(t) , and the blue line is the velocity predicted by the Kalman 

filter. The corner frequency of the trap is fc = 48 Hz

Fig. 11   Comparing the velocimetry errors of the OTV and the micro-
PTV methods with beads of 2.5 μ m radius: a the error in the ampli-
tude, �u , and b and the error in the phase, �� . Error bars represent the 
standard deviation of �� and �u for different repetitions of the same 
experiments. The corner frequency of the trap is fc = 48 Hz
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We characterized the accuracy of the OTV measurements 
for different bead sizes and corner frequencies of the OT. 
The velocimetry method is the most accurate for the highest 
value of the SNR. This is reached when the trap’s corner 
frequency coincides with the characteristic frequency of 
the unsteady flow. Therefore, for an optimal accuracy of the 
OTV measurements, it is recommended to always tune the 
corner frequency of the OT to the characteristic frequency 
or time scale of the flow. The corner frequency depends on 
several parameters including the bead radius and the trap 
stiffness, which also depends on the bead size, its index of 
refraction, the design of the trap and the laser power. In gen-
eral, larger beads correspond to smaller corner frequencies 
and will measure more accurately flows with lower charac-
teristic frequencies. In our experiments, 2.5 μ m beads could 
be used to optimally measure unsteady flows with character-
istic frequencies lower than ∼300 Hz, while 0.5 μ m beads are 
advantageous to measure flows with larger characteristic fre-
quencies of up to 3000 Hz. We quantify the OTV accuracy 
to measure unsteady flows with amplitudes 1.5–70 μm s−1 
and frequencies 10–90 Hz. Our results demonstrate that the 
OTV method is capable of measuring unsteady flows below 
the diffusion limit of a free tracer particle, Pe < 1 , which 
are not measurable with micro-PIV or micro-PTV methods. 
This higher accuracy lies in the fact that a trapped particle 
can offer a higher SNR than a free particle. For micro-PTV, 
the error in the phase is very large, when measuring flows 
below the diffusion limit Pe < 1 . On the other hand, the OTV 
method can accurately measure flows below the diffusion 
limits. For 50 Hz flows below the diffusion limit, which are 
typical to the ciliary flows, the maximum OTV errors in the 
amplitude and phase are ∼16.1% and ∼4.3%, respectively. 

Due to this high temporal accuracy, OTV can be effectively 
used in studies related to measuring unsteady flows in micro-
fluidic and biofluidic studies, especially studies related to 
microorganisms.
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Appendix

A velocity model

We model the flow velocity, u(t), as a summation of different 
harmonics with the central frequencies f j

0
 , as in (de la Serna 

and Rodriguez-Maldonado 2011):

Fig. 12   A case study of measuring the unsteady flow velocity by 
OTV close to the cilia of  C. reinhardtii. a A 2.5 μ m trapped bead, 
35 μ m away from the C. reinhardtii, is used to measure the flow 
velocity. The corner frequency of the trap is fc = 32.3 Hz. b and 

d present  the Fourier spectra of the bead displacements in x and 
y-direction, respectively. c and d are comparison  of the measured 
velocity by OTV experiments with BEM simulations. ux(t) and uy(t) 
are the velocity of the flow in the x and y-direction, respectively

http://creativecommons.org/licenses/by/4.0/
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where aj(t) and �j
(t) are the time-varying amplitude and 

phase of u(t) corresponding to the jth central frequency, and 
ℜ represents the real part. pj(t) = aj(t)ei�

j
(t) is referred to as 

the dynamic phasor and Uj
(t) is the rotating phasor. Equa-

tion (5) implicitly suggests that the instantaneous frequency 
related to jth harmonic in Eq. (5) can dynamically change as 
f j(t) = f

j

0
+ 𝜙̇j

(t)∕2𝜋 (Monti et al. 2016). The state transition 
of the dynamic phasor pj(t) at time t = n�t can be estimated 
by a K order Taylor expansion (de la Serna and Rodriguez-
Maldonado 2011). In this study we use a Taylor expansion 
up to the second order, such that:

where Pj
n
= [p

j
n, ṗ

j
n, p̈

j
n]

T is the state vector, ◻̇ and ◻̈ stand 
for the first- and second-order time derivatives, and pjn is the 
truncated approximation of pj(t) at time t = n�t . Therefore, 
the velocity un can be approximated as:

where h = [1, 0, 0]T , Uj
n
= P

j
n
ei2�f

j

0
t , and the bar represents 

the complex conjugate. The state transition of Uj
n
 can be 

derived using Eq.  (6) (de  la Serna and Rodriguez-Mal-
donado 2011):

where � j
= ei2�f

j

0
�t , and �̃ is defined in Eq. (6). Equations 

(7)–(8) provide us with a model to approximate the veloci-
ties of the unsteady flows.

B Kalman filter

We rearrange the state space model from Eq.  (3) 
to an extended version in order to include Eqs. 
(7)–(8) in our model. The extended state vector is defined as 
Xn = [xn, U

1T
n
, Ū

1T

n
,… , U

jT
n
, Ū

jT

n
]
T , and therefore, equation 3 

becomes:

(5)

u(t) =
∑
j

aj(t) cos(2�f
j

0
t + �j

(t))

= ℜ

(∑
j

pj(t)ei2�f
j

0
t

)
=

∑
j

ℜ(U
j
(t)),

(6)P
j
n
=

⎛⎜⎜⎝

1 𝛥t
𝛥t2

2!

0 1 𝛥t

0 0 1

⎞⎟⎟⎠
P

j

n−1
= �̃P

j

n−1
,

(7)

un =
∑
j

ℜ

(
h
T
P

j
n
ei2𝜋f

j

0
t
)

=
1

2

∑
j

(
h

h

)T (
U

j
n

Ū
j

n

)
,

(8)
(
U

j
n

Ū
j

n

)
=

(
𝜓 j
�̃ 0

0 𝜓̄ j
�̃

)(
U

j

n−1

Ū
j

n−1

)
,

where � = [1, 0,… , 0] , yn is the measurements of the bead 
position, wn is the process noise with the covariance matrix 
� , and vn is the measurement noise with the covariance r. 
The transition matrix � is given by:

where h2 = [h
T
, h

T
]
T , and �j is the transition matrix in Eq. 

(8). The Kalman filter utilizes the state space model in Eq. 
(9) to estimate the state vector Xn from the noisy measure-
ments yn . In this study we implement a forward–backward 
Kalman filter rather than a single Kalman filter. Using a sin-
gle Kalman filter can cause unwanted time lags in estimating 
the flow velocity u(t). A forward-backward Kalman filter not 
only increases the accuracy of filtering, but also prevents any 
possible time lag in estimating the velocity u(t). The forward 
part of the filter recursively calculates the best estimate of Xn 
based on the measurements before time instance n, as follow:

The forward filtering, which is presented in Eqs. (11)–(15), 
includes two main steps. Equations (11) and (12) represent 
the first step, which gives an a priori estimation of the state 
vector Xn|n−1 , and state-error covariance matrix �n|n−1 . This 
estimation is purely based on the state space model in Eq. 
(9). In the second step, the measurements yn are combined 
with the state vector estimation by the Kalman gain �n . 
Therefore, the posterior estimation of the state vector Xn|n 
and state-error covariance matrix �n|n can be calculated 
through Eqs. (13)– (15).

The backward filter is a Rauch T́ung Śtriebel smoother 
(Maybeck 1982) that estimates the state vector, conditional 
on all the measurements yn , as follow:

(9)
Xn = �Xn−1 + wn−1,

yn = �Xn + vn, 1 ≤ n ≤ N,

(10)� =

⎛
⎜⎜⎜⎜⎜⎝

1 −
k

�
�t

�t

2
h
T
2

⋯
�t

2
h
T
2

0 �1

⋮ ⋱

0 �j

⎞
⎟⎟⎟⎟⎟⎠

,

(11)Xn|n−1 =�Xn−1|n−1,

(12)�n|n−1 =��n−1|n−1�T
+�,

(13)�n =�n|n−1�T
(��n|n−1�T

+ r)−1,

(14)Xn|n =Xn|n−1 +�n(yn −�Xn|n−1),

(15)�n|n =(� −�n�)�n|n−1.
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where �n is defined as the smoothing estimator gain matrix. 
�n+1|n and Xn+1|n in Eqs. (17) and (18) can be calculated 
similar to Eqs. (11) and (12). Equations (16)–(18) estimate 
the smoothed state vector Xs

n|N and the state-error covariance 
matrix �s

n|N backward in time, from time instance n = N 
to n = 1 , with the boundary conditions Xs

N|N = XN|N and 
�

s
N|N = �N|N.
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