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Summary

Currently, available models are not able to accurately predict the temporal evolution of

coastal morphodynamic processes. The main reason for this, is that essential compo-

nents governing this evolution are neither fully identified nor understood. Additionally,

there is high uncertainty in some of the parameterizations and their input parameters.

A proper management of coastal systems depends on a thorough understanding of

their present and future state. Regarding the present state of the system, detailed

analyses that take into account the inference of human activities and interactions

with other natural process may provide the required information to the decision mak-

ers. The evaluation of future states, on the other hand, is not possible without the use

of data assimilation, i.e. integration of measurements and predictions in the context

of formal uncertainty analysis. Despite the need to implement data assimilation, only

recently the necessary coastal observations became available. Since then, the integra-

tion of data assimilation methods and coastal morphodynamic models have become

the focus of ongoing research. Unfortunately, the implementation of these methods is

not straightforward. Sequential data assimilation methods, such as ensemble Kalman

filter, are practical to implement but their update usually breaks conservation laws

and may easily result in model instabilities. Variational (adjoint based) schemes, on

the other hand, preserve the physical integrity but require the implementation of an

adjoint model which commonly matches in complexity the forward model.

This thesis is concerned with the implementation of a variational data assimilation

method to improve the predictive skills of a commercial model by estimating its input

parameters. Model reduced 4DVar was used to address the problem. This method

is an adjoint-free variational method that uses a truncated first order Taylor approx-

imation of the morphodynamic model to implement the data assimilation process.

The construction of the Taylor approximation is considerably simpler than the devel-

opment of a full adjoint model. Additionally, the method provides the sensitivity of

the morphodynamic model with respect to the state and/or input parameter vector.

Regarding the commercial morphodynamic model, on the other hand, the Delft3D

suite was selected. Delft3D is a module based simulator that merges a wave module

and a flow and morphodynamic module to produce a fully coupled wave, flow and

v



vi SUMMARY

morphodynamic model.

To gain a better understanding of the method and the potential challenges of its

implementation on a real application, the technique is first applied to a small study

case with synthetic observations (twin experiment). In this proof of concept, three

wave properties were estimated by assimilating observations of bathymetry. Different

reduction strategies were implemented to characterize the method’s performance and

to assess the effects of uncertain observations on the results. The data assimilation

method is able to improve the performance of the morphodynamic model and shows

to be robust in the presence of noisy observations. Nevertheless, some difficulties

are identified regarding the size and direction (sign) of the perturbations required for

the finite difference estimations. In light of this finding, the implementation shows

that it is necessary to increase the number of model executions to make the method

more robust. Also, the test show problems in connection with the restarting capability

of Delft3D. These problems have a significant impact on the accuracy of the finite

difference estimations.

To address the issues found in the proof of concept, an alternative novel model re-

duction method is proposed: ensemble model order reduction (enMOR). The method

computes the low rank linear approximation of the full model based on an ensemble

similar to those used in Monte Carlo approaches (e.g. ensemble Kalman filter). This

offers a number of advantages over the more common finite difference approach. For

instance, the model executions necessary for this type of ensembles are not prone

to numerical instabilities; making the implementation significantly more robust. The

implementation time is considerably lower and the availability of such ensemble al-

lows computing the model error covariance matrix, which was not available when the

finite differences are used. Finally, the method does not requires the model to be

restarted, solving altogether the problems identified during the implementation of this

first experiment.

The enMOR method was partially implemented in a more realistic study case based

on a set of laboratory measurements. The measurements were taken as part of an

experiment aimed at studying rip current circulations in a morphodynamic system. A

set of 12 bathymetric observations were assimilated into the morphodynamic model to

estimate a set of 19 flow, wave and morphodynamic parameters. One data assimilation

problem for each state transition (LBT, RBB, TBR, and LTT) is implemented in

order to characterize the parameter changes in each case independently. The enMOR

technique is only applied to the dynamic components of the linear approximation, the

model sensitivities to input parameters are estimated with finite differences. This serves

two purposes, (1) it allows to assess possible shortcomings in the implementation of

the method, and (2) reliable model sensitivities are estimated to analyze the influence

of each parameter in the dynamic evolution of the system. The results show that the

evolution of the morphodynamic system cannot be easily captured by a constant set

of parameters; it is necessary to consider some of the parameters as time dependent.
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The results also show that the 2D model used is not able to reconstruct shallow and

deep morphodynamic processes simultaneously. Nevertheless, the data assimilation is

able to improve the overall performance of the model. The implementation of the

enMOR shows no significant practical difficulty other than potential long estimation

times for reduced order models of considerable size.

A full implementation of the enMOR method with a 3D model of the Egmond aan

Zee system in The Netherlands is finally presented. A set of time exposure images are

used to estimate roller energy dissipation maps that are assimilated into the model to

estimate a set of 13 input parameters that include the time-dependent wave height

and peak period. The results show that the data assimilation method is able to find

a parameter set that considerably improves the model performance. The results also

suggest that the predicted morphodynamic evolution of the model has been improved,

enhancing the forecasting capacity of the system. The implementation of the method

proved significantly more practical than the common finite difference approach. The

complete data assimilation implementation only required a set of 40 forward model

runs (commonly known as ensemble). The model is not restarted at any point to

produce the piece wise linear approximation necessary in model reduced 4DVar and no

finite difference was implemented in the process. Consequently, the implementation

difficulties observed in the proof of concept are not an issue in this implementation.

In conclusion, enMOR is a practical model order reduction method that can be used

for data assimilation without any loss of performance.

Further developments are necessary to take advantage of the available information

about the adjoint of the model. Its use in applications for observation network opti-

mization and process characterization should be considered. Also, state estimation is

probably the best manner for bathymetry estimation. On this regard, further research

is necessary to assess the best manner to implement state estimation using model

reduced 4DVar. Finally, an estimation of the expected errors of the reduced order

models can be achieved by means of Monte Carlo methods. This information could

be valuable to identify weaknesses in the reduced order model and therefore in the

assimilation process.



Samenvatting

Op dit moment zijn morfodynamische modellen nog niet in staat de ontwikkeling van

complexe bodempatronen in de kustgebieden nauwkeurig te voorspellen. De belan-

grijkste reden hiervoor is dat essentile bijdragen aan deze bodemontwikkeling niet

volledig gedentificeerd en begrepen zijn. Daarbij komt ook nog de grote onzeker-

heid in gebruikte parametrisaties en input variabelen. Voor een goed beheer is het

juist essentieel dat zowel de hedendaagse als de toekomstige toestand goed wordt

begrepen. Wat betreft de huidige toestand zou eventueel voldoende kennis kunnen

worden verkregen door gedetailleerde analyses waarin zowel de invloed van menselijke

activiteiten als natuurlijke ontwikkelingen worden beschouwd. Een goed inzicht in de

toekomstige toestand kan in het algemeen alleen verkregen worden met behulp van

data assimilatie, het integreren van metingen en voorspellingen in de context van een

formele onzekerheidsanalyse. De noodzakelijke data zijn pas recentelijk beschikbaar,

wat geresulteerd heeft in een sterke toename van onderzoek naar data assimilatie meth-

oden voor kust-morfodynamische modellen in de afgelopen jaren. De implementatie

van deze methoden is echter niet eenvoudig. Sequentile data assimilatie methoden,

zoals ensemble Kalman filters, zijn relatief eenvoudig te implementeren, maar meestal

voldoen de updates niet aan de behoudswetten en kan het morfodynamische model nu-

meriek instabiel worden. Met variationele (gebaseerd op de geadjungeerde) schema’s

worden de fysische behoudswetten niet geschonden, maar deze methode vereist de

implementatie van een geadjungeerd model, wat niet eenvoudig te ontwikkelen is.

In dit proefschrift wordt een variationele data assimilatie methode gemplementeerd

om de voorspellende kwaliteiten van een commercieel model te verbeteren door schat-

ting van de benodigde invoerparameters. De gebruikte data assimilatie methode is

de model-gereduceerde 4DVar methode, een variationele methode waarbij de gead-

jungeerde niet wordt gebruikt. In plaats daarvan wordt een eerste orde Taylor benader-

ing van het morfodynamische model gebruikt. Het construeren van de Taylor benader-

ing is veel eenvoudiger dan het ontwikkelen van een volledig geadjungeerd model. De

methode geeft de gevoeligheid van het morfodynamische model voor de toestands-

en/of input-parameter vector. Als commercieel morfodynamisch model is het Delft3D

pakket gebruikt, een modulaire simulator die een golfmodule, stromingsmodule en

viii
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morfodynamische module combineert tot een volledig gekoppeld model.

Om de methode beter te begrijpen en inzicht te verkrijgen in eventuele onvoorziene

problemen in de implementatie, is deze techniek eerst toegepast op een klein prob-

leem met synthetische data (een ’twin experiment’). In dit experiment worden drie

golfeigenschappen geschat door observaties van bodemdieptes te assimileren in het

morfodynamische model. Verschillende strategien zijn gemplementeerd om de effec-

tiviteit van de methode te karakteriseren en de invloed van onzekerheden in observaties

te schatten. Het blijkt dat de data assimilatie methode in staat is de morfodynamis-

che modelresultaten te verbeteren. Verder is de methode robuust voor observaties met

ruis. Tijdens dit experiment is geconstateerd dat de keuze van de grootte en richting

van de verstoringen, nodig om eindige differenties te schatten, problemen kan geven.

Om de methode robuust te maken, is het daarom nodig het aantal modelruns te ver-

hogen. Verder laat dit testprobleem zien dat het herstarten van het morfodynamische

model Delft3D problemen geeft. Deze problemen hebben een significante invloed op

de nauwkeurigheid van de eindige differentie schattingen.

Om bovengenoemde problemen aan te pakken, is er een alternatieve, nieuwe model-

gereduceerde methode ontwikkeld: ensemble model order reduction (enMOR). Deze

methode berekent een lineaire benadering met lage rang van het volledige model,

gebaseerd op een ensemble zoals gebruikt in Monte-Carlo methoden (e.g. ensemble

Kalman filter). Dit resulteert in een aantal voordelen ten opzichte van de gebruike-

lijke eindige differentie aanpak. Zo zijn de modelruns niet gevoelig voor numerieke

instabiliteiten, resulterend in een veel robuustere implementatie. Verder is de imple-

mentatietijd veel kleiner, kan het ensemble gebruikt worden om de covariantie matrix

voor de modelfouten te berekenen, en hoeft het morfodynamische model niet herstart

te worden.

De enMOR methode is eerst gedeeltelijk gemplementeerd in een meer realistisch

experiment, gebaseerd op laboratorium metingen van muistromingen. Twaalf bode-

mobservaties zijn in het morfodynamische model geassimileerd, waarmee 19 stromings-

, golf-, en morfodynamische parameters zijn geschat. Om de parameter veranderingen

per toestandsovergang (LBT, RBB, TBR en LTT) te kunnen karakteriseren, is de

data assimilatie methode per overgang toegepast. De nieuwe enMOR-methode is

alleen toegepast op de dynamische componenten van de lineaire benadering, de pa-

rametergevoeligheden zijn nog geschat met eindige differenties. De resultaten laten

zien dat de morfodynamische ontwikkeling niet eenvoudig kan worden gereproduceerd

met vaste parameterwaarden, het is nodig een aantal parameters tijdsafhankelijk te

maken. Verder blijkt dat het 2D model niet in staat is de morfodynamische processen

in zowel de ondiepe als diepe gebieden gelijktijdig te reproduceren. Desondanks is de

enMOR methode in staat de modelresultaten te verbeteren. De implementatie van de

enMOR methode heeft niet geresulteerd in essentile problemen, de methode kan echter

wel resulteren in lange schattingstijden voor relatief grote gereduceerde modellen.

In de laatste toepassing is de enMOR methode gemplementeerd voor een 3D model
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van de kust bij Egmond aan Zee in Nederland. Hierbij zijn tijdsgemiddelde beelden

gebruikt om de dissipatiepatronen van de roller energie te schatten. Deze dissipatiepa-

tronen zijn in het model geassimileerd om 13 invoerparameters, zoals de tijdsafhanke-

lijke golf hoogte en piek periode, te schatten. Met behulp van het data assimiliatie

proces zijn parameters gevonden die de modelresultaten flink hebben verbeterd. De

resultaten suggereren ook dat de voorspelde morfodynamische evolutie is verbeterd,

wat betekent dat de voorspellende kwaliteit van het systeem is toegenomen. De im-

plementatie van de enMOR methode is veel praktischer dan die van de gebruikelijke

eindige differentie methode. Voor de gehele implementatie waren slechts 40 model

runs (ensemble) nodig. Het model is niet herstart om lineaire benaderingen te maken

zoals in de model-gereduceerde 4DVar methode. De nieuwe enMOR methode is dus

een praktische model-reductie methode, die gebruikt kan worden in data assimilatie

zonder verlies aan performance.

Meer onderzoek is nodig om optimaal gebruik te kunnen maken van de aanwezige

informatie over de geadjungeerde van het model voor bijvoorbeeld optimalisatie van

waarnemingsnetwerken en karakterisering van processen. Also, state estimation is

probably the best manner for bathymetry estimation. On this regard, further research

is necessary to assess the best manner to implement state estimation using model

reduced 4dVar. Verder kunnen de verwachte fouten van het gereduceerde model

geschat worden met behulp van Monte Carlo methodes. Deze informatie kan worden

gebruikt om zwakke punten in het gereduceerde model te identificeren, wat direct

consequenties heeft voor het assimilatie proces.



Chapter 1

Introduction

Decision support systems (DSS) use predictions and their uncertainties to produce

risk assessments (e.g. early alarm systems or actuarial science) or prospective scenar-

ios for characterization and control activities (as in environmental impact analyses).

Reducing the uncertainty in the predictions is fundamental to both risk assessment

and prospective characterization. To this end, data assimilation combines information

coming from observations and models to produce estimations of minimal uncertainty.

Complex mathematical models are used to predict the behavior of the variables of

interest in time. As measurements of these variables become available, the perfor-

mance of the mathematical model can be tested by comparing its results with the

observations. This comparison produces information that is used for improving the

model estimations. This process is commonly called data assimilation and comprises

the joint analysis of the prediction error distribution, observation error distribution and

the distribution of the deviations between the model and the observations.

This thesis studies the potential use of data assimilation in the field of morpho-

dynamic modeling for uncertainty minimization. In contrast with the state of hydro-

dynamic models, morphodynamic modeling displays considerably higher uncertainties

limiting the reliability of DSSs built upon them. Regarding forecasting skills, the

prediction horizon depends on the processes of interest. Walstra et al. (2012), for ex-

ample, was able to predict the temporal evolution of sandbar positions for up to 3 years

using a morphodynamic profile model. In the presence of extreme weather conditions,

nevertheless, Ruessink and Kuriyama (2008) showed that severe storms can have a

significant effect on the performance of these types of models. Still, nowadays profile

models are able to predict accurately the location of the bar. Alongshore variability,

on the other hand, is the outcome of highly dynamic processes and is therefore less

predictable. Also, alongshore features tend to exists for relatively short periods of time

(∼weeks). Consequently, forecasts from state-of-the-art 2D-areal and 3D morphody-

namic models are still limited to few days; especially so, when considering complex

1



2 CHAPTER 1. INTRODUCTION

bathymetries due to evolving rip channels and other similar features (van Dongeren

et al., 2008). For these type of models the uncertainties are so high, that morpho-

dynamic analyses are usually focusing on general morphodynamic pattern evolution

rather than detailed local depth changes.

There are a number of reasons for the low predictive skills of 2D-areal and 3D

morphodynamic models. A significant number of the modeled processes are based

on relationships approximated from experimental results (van Rijn, 2007a,b,c). Thus,

the mathematical description of these processes is a mixture of physical concepts and

mathematical approximations that may not be applicable to conditions outside the

laboratory. Also, the substantial differences in spatial and temporal scales at which

several processes take place make the modeling process difficult. Spatially, for ex-

ample, circulation currents that may cover kilometers are as important in the model

outcome as horizontal eddies of sizes in the order of magnitude of meters and tur-

bulence processes that involve microscopic processes. To model accurately horizontal

eddies of sizes in the order of magnitude of tens of meters, the size of the mathe-

matical model (due to its resolution) becomes a limiting factor; let alone turbulence.

Furthermore, despite the recent increase in computer power it is still common practice

to implement depth averaged models due to the intensive computational requirements

of three dimensional modeling. Finally, the implementation of morphodynamic mod-

els is information intensive and a considerable amount of input data is prone to high

uncertainties (e.g. satellite information).

Using data assimilation for morphodynamic modeling may contribute significantly

to lowering the predictions’ uncertainty. Data assimilation makes use of two strate-

gies to improve the modeling estimations: state estimation and parameter estimation.

The model errors are usually addressed with state estimation, and these include incom-

pleteness of the mathematical model and numerical errors (resolution and numerical

solution). Input uncertainties, on the other hand, are addressed by estimating the

parameters. As a result, data assimilation is expected to produce an improvement of

the model capacity to reconstruct the system’s behavior and prediction skills.

Here a variational data assimilation technique, model reduced 4DVar (Vermeulen

and Heemink, 2006), is implemented on a well established open-source integrated

wave-current-sediment numerical model, Delft3D. In model reduced 4DVar, the pa-

rameter estimation process is implemented via a minimization process that assumes

uncertain model parameters and observations. Model reduced 4DVar is an adjoint-

free variational data assimilation technique that uses a reduced order model to ap-

proximate the adjoint model of Delft3D. In essence, model reduced 4DVar extends

incremental 4DVar (Courtier et al., 1994) by projecting the tangent linear model to a

reduced space estimated via principal component analysis (PCA). The Delft3D suite is

a process-based set of simulators capable of modeling wave dynamics, flow evolution

and sediment transport. It is the result of over 20 years of code development, aimed

at reconstructing hydrodynamic and morphodynamic evolution of water systems under
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various forcing conditions. The suite consists of two coupled models: a wave simulator

(SWAN) and a hydrodynamic, sediment transport and bed update simulator (FLOW).

Since one of the major objectives of this research is to contribute to the minimization

of uncertainties on practical morphodynamic modeling applications, the Delft3D suite

constitutes a good candidate to assess the limitations of data assimilation. It has been

used intensively for research and commercial applications in a large number studies.

Also, it includes all the relevant physical processes and offers the possibility to build 3D

morphodynamic models. Finally, at the time in which this research was initiated other

now available choices, such as X-Beach (Roelvink et al., 2009), were not available.

1.1 Problem description

Recent developments in coastal measuring techniques have provided a wealth of obser-

vations (information) that was not available before. Time exposure images (Holman

et al., 2013; van Dongeren et al., 2008), in coastal areas, and radar-based methods,

also used in open seas, are now able to provide on-line information about the cur-

rent state of the observed system. Despite high uncertainties in the measurements

(Uunk et al., 2010), the amount of information is such that they have cleared the

way to implement data assimilation for morphodynamic modeling. It is the author’s

opinion that the use of these sources of information in combination with appropriate

data assimilation methods are fundamental to the implementation of an operational

morphodynamic prediction system.

The high uncertainties typical of coastal morphodynamic models justify the use of

data assimilation; but their complexity poses challenges for its implementation (see

de Vriend et al., 1993, for a detailed review). Sequential methods such as ensemble

Kalman filter are practical to implement but their update usually breaks the conserva-

tion laws and may easily result in model instabilities. Variational schemes (or adjoint

based schemes) preserve the physical integrity of the process but require the imple-

mentation of an adjoint model which commonly matches in complexity the forward

model. The adjoint model is a tool capable of estimating the sensitivity of model

output with respect to the inputs at each point in time (if the forward simulator works

with time). The availability of the adjoint model offers several advantages for system

analysis. In particular, it provides the necessary information for detailed sensitivity

analysis which can be used for observation network optimization and process char-

acterization. Adjoint-free variational methods use an approximation of the adjoint

model to produce an estimate of the real sensitivities used in the data assimilation.

The approximation is a trade off, its implementation is considerably simpler but the

result of the data assimilation is sub-optimal. Nevertheless, the scheme preserves the

physical laws, avoids the construction of the adjoint model and offers some advantages

in terms of system characterization.

In the author’s opinion, variational schemes are the most appropriate data assimi-
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lation strategies for coastal morphodynamic models. Not only because they preserve

the physical integrity of the process, but also because of the potential use of the

model sensitivities for further optimizing the system’s performance. In this study an

adjoint-free model reduced 4DVar scheme (Vermeulen and Heemink, 2006) has been

used to assess the potential of data assimilation for morphodynamic modeling. The

method is in line with the approach discussed by Vos et al. (2000), where he suggests

that the temporal evolution of the studied system could be taken into account via the

adjoint model. The research project have been designed and implemented to address

the following research questions:

� Can model reduced 4DVar be used to estimate parameters of coastal morpho-

dynamic models implemented in the Delft3D suite?

� In terms of modeling abilities of Delft3D, what improvements should be expected

from the implementation of model reduced 4DVar?

� Is it feasible to use model reduced 4DVar in an operational forecasting morpho-

dynamic system?

1.2 Models, model errors and data assimilation.

The development and implementation of models for the simulation of natural processes

is a challenge in many ways. Its success depends upon a good understanding of the

underlying physical processes, a good mathematical representation of these processes

and advanced numerical solution strategies. Even when all the previous conditions have

been met, success still depends on the appropriate estimation of many uncertain model

parameters.Even though it is unquestionable that the modeling process is subject to

errors, very few disciplines have devoted serious efforts to include data assimilation

in their estimations. In the case of meteorology, however, model errors grow so fast

that data assimilation is at the heart of meteorological forecasting. In other fields of

science where modeling errors do not render the forecasts useless, uncertainty analysis

is not commonly used.

Model uncertainty arises from different sources. Errors associated to a deficient

conceptualization of the relevant physical processes are structural and can only be

fixed by improving the physical understanding of the system and updating the model.

A second important source of errors is a deficient numerical implementation of the

model. There are a lot of causes for numerical errors and, in general, they are per-

vasive and unavoidable. It is not a matter of whether numerical errors exist, it is a

matter of how big they are and how they propagate in time and space. The spatial

discretization of the system, for instance, limits the model’s capacity to deal with

processes of smaller scale than the discretization. The numerical implementation of

the mathematical model also plays a determining role in error generation. Take for

example the logistic map (see equations 1.1 and 1.2), this is an extreme but clear
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Figure 1.1: Consequences of different numerical implementations of the same dy-
namic model.

example of the consequences of slightly different implementations of the same mathe-

matical relation. Here the same dynamical model is solved by using the following two

mathematically equivalent forms,

xt+1 = xt + 3xt − 3x2t , (1.1)

xt+1 = (1 + 3− 3xt)xt, (1.2)

where xt is a scalar and t indexes time. Notice that these two relations are in fact the

same function. They define the exact same dynamic model and yet the differences

between the two solutions are of the same order of magnitude as the range of the

function, see figure 1.1 (X0 = 0.01 in both cases). Furthermore, which of the two

solutions is the correct one?

Other sources of error in the model results include: uncertain model parameters

and boundary conditions, empirical relations (common in morphodynamic modeling),

re-parameterization of processes (e.g. in turbulence) and uncertain forcings. The rate

of growth of these errors depends on the mathematical characteristics of the model

and on its numerical implementation. In the case of the logistic model (presented
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previously) even the smallest error will eventually render the estimations obsolete.

Aside from improving the understanding of relevant physical processes and en-

hancing the implementation of the mathematical model, errors can only be minimized

by means of parameter- and state-estimation framed in the context of uncertainty

analysis: i.e. data assimilation.

1.3 Morphodynamic modeling

The remarkable progress observed in hydrodynamic modeling along with nowadays

available computational power is providing an appropriate setting for morphodynamic

modeling. In the case of coastal morphodynamic modeling, intense work is currently

underway to improve model capabilities and the result’s quality. Assessments of mod-

els’ skills to reconstruct observed bathymetric evolution are common in the literature.

Some examples are,Ranasinghe et al. (2004) who uses a 2DH (2 dimensional depth av-

eraged) finite difference coastal area model to simulate the morphodynamic processes

and compares its results with data derived from video based observations. Carniel

et al. (2011) examines the qualitative performance of a high resolution wave-current-

sediment numerical model with respect to observations coming from an ARGUS video

station. Davidson et al. (2013) tests the performance of a simple morphodynamic

model to predict shoreline changes attained from ARGUS derived information.

Parallel to the improvement of morphodynamic simulators, the use of data as-

similation for coastal morphodynamic modeling has increased during the last decade.

Remotely sensed data is providing the necessary information and is having a significant

effect on the way coastal- and (more generally) ocean models are being implemented

and used. Satellite imagery for the case of ocean models, and radar and Argus im-

ages for the case of coastal models are providing enough information to exploit the

advantages of data assimilation. An increasing number of works that combine data

assimilation techniques and hydrodynamic and morphodynamic models are found in

the literature. In the case of data assimilation for the Delft3D suite the author is only

aware of the works by van Dongeren et al. (2008) and Briere et al. (2011). In the

former, a sequential scheme based on the Kalman filter is used to reconstruct coastal

bathymetries from ARGUS images. In the latter, a cost function that measures model

mismatches is minimized using the DUD algorithm citepralston1977. More general

applications of data assimilation for nearshore modeling include Scott and Mason

(2007) who assimilated satellite observations of waterlines into a 2D horizontal (2DH)

decoupled morphodynamic model to optimize the bathymetric estimations of the in-

tertidal area for the Moracambe Bay. Smith et al. (2012) and Thornhill et al. (2012)

implemented a 3D variational data assimilation scheme for the Morecambe Bay to in-

corporate bathymetry observations derived from various sources into morphodynamic

models. Wilson et al. (2010) used the ensemble Kalman filter for estimating bathyme-

tries, by using bathymetric observations and a two dimensional horizontal model of
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nearshore hydrodynamics. Birrien et al. (2011) used a laboratory dataset to imple-

ment an analysis-step based on the Kalman filter. More recently, Holman et al. (2013)

uses time series observations of surface wave motions to estimate bathymetry maps

by implementing a Kalman filter to solve coverage gaps and make map estimates.

1.4 Data assimilation scheme: Model reduced 4DVar

Model reduced 4DVar (mr4Dvar) is an adjoint-free variational method that approx-

imates the adjoint model by using a truncated first order Taylor approximation of

the forward simulator. This approximation is considerably simpler to implement than

the full adjoint model. The method provides the sensitivity of the morphodynamic

model with respect to the state and/or input parameter∗ vector. This information

can be used to identify parameters that have a significant influence on the behavior

of the model; and for appropriate approximations, this adjoint model could be useful

for observation networks optimization (Daescu and Carmichael, 2010). Previous ap-

plications of model reduced 4DVar have been done by Altaf et al. (2009) who used

it for shallow-water flow modeling, and Pelc et al. (2012) who used it in ecosystem

modeling.

Here, the original scheme proposed by Vermeulen and Heemink (2006) has been

modified to avoid the use of finite differences. The implementation of the Gateaux

derivative is not straightforward in the case of morphodynamic models because it is

prone to generate model instabilities. To avoid their computation an alternative model

reduction method was proposed and tested: ensemble model order reduction . The

method computes a linear approximation of the full model based on an ensemble similar

to those used in Monte Carlo approaches (e.g. ensemble Kalman filter). This offers

a number of advantages over the traditional finite difference approach. For instance,

the model simulations necessary for this type of ensembles is not prone to instabilities;

which makes the implementation more efficient and reliable. The implementation time

is considerably lower and the availability of such ensemble allows computing the model

error covariance matrix, which was not available when the finite differences are used.

1.5 Implementations

Three sets of observations were used throughout the research project presented here.

The first implementation aims to be a proof of concept, and is mainly concerned with

identifying unforeseeable difficulties in the use of data assimilation with Delft3D. It

consists of a small implementation of mr4dvar with 3 wave parameters and synthetic

observations of bathymetries (twin experiment). The implementation shows important

challenges in the implementation process. In particular the propensity of the model to

∗Here a parameter is understood as any forcing, input parameter or boundary condition of
interest. It refers to any model-input in a mathematical sense.
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crash during the estimation of the finite differences and the significant errors generated

by re-starting the model. In the second implementation of the method a set of detailed

laboratory measurements of water depths is used. The main aim of the laboratory

experiment is to study the evolution of coastal systems from high energy to low energy

states (Michallet et al., 2013, 2010; Castelle et al., 2010). In this implementation a

set of 19 parameters that includes wave, flow and morphodynamic components is

estimated. The data assimilation is done by combining the finite difference based

model order reduction and the ensemble reduced order model method. Finally, a set

of time exposure images of Egmond aan Zee are used to estimate a set of 13 parameters

two of which are vectors (effectively 20 parameters). In this test the ensemble based

reduced order model is used to construct a reduced linear approximation that include

flow components, time varying wave forcings and morphodynamic components. In

general, the use of data assimilation not only contributes to the improvement of the

modeling skills but also serves to diagnose and characterize the modeling process. The

proposed method proved to be 3 times faster than the more common finite difference

method. Also the two methods for model reduction seem to perform satisfactorily.

1.6 Reading guide

This thesis consists of 8 chapters and is organized as follows:

� Chapter 2 presents a historical review of the field of data assimilation along with

the theoretical background is explained.

� Chapter 3 shows the mathematical background of model reduced 4DVar and a

detailed description of a new alternative method for estimation of reduced order

models.

� In chapter 4, the modeling suite Delft3D is described. In it, the reader will also

find a discussion on some relevant numerical issues that came across during the

development of the research.

� Chapter 5 presents the results of the proof-of-concept implementation. The

experiment aims to estimate three wave parameters by using a set of synthetic

observations. An interesting characterization of some of the model reduced

4DVar properties is presented there.

� Chapter 6 presents the results of a modified model reduced 4DVar implemen-

tation for a laboratory experiment. Here the proposed alternative method for

model order reduction is partially implemented.

� Chapter 7 shows the results of the implementation of the data assimilation

scheme using the alternative proposed method for model order reduction. The

experiment is implemented for a set of real time exposure images taken on
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Egmond aan Zee, The Netherlands. A discussion on some of the advantages

and disadvantages of the proposed method is included in this chapter.

� Finally, a summary of the most relevant results from each implementation is

presented in chapter 8. This chapter also provides information about open

challenges and unresolved problems.





Chapter 2

A review of data assimilation

”The absence of evidence was taken as evidence of absence. The great

difficulty of observing the ocean meant that when a phenomenon was not

observed, it was assumed it was not present. The more one is able to

observe the ocean, the more the complexity and subtlety that appears.”

Wunsch (2002)

Data assimilation addresses the problem of estimating the true state of the system

based on both the model information and the observations. To this end, the math-

ematical model is required to be written in state space representation. In general,

the state space representation consists of two equations, the state equation (eq. 2.1)

and the observation equation (eq. 2.2). In most applications the dynamic system is

assumed to be discrete in time. Consider a discrete dynamic system,

xtk+1 = fk(xtk,αk) + ωk+1, (2.1)

where xtk ∈ Rn is the true state vector at time tk(k ∈ N). This state vector consists

of the dynamic variables of the system. The input vector, αk ∈ Rm, consists of the

model parameters and forcings at time tk. The process noise ωk+1 ∈ Rn represents the

model error and fk(·, ·), the dynamic model, is usually a nonlinear equation that defines

the state’s transition from time tk to time tk+1. In the context of morphodynamic

modeling of coastal systems the function fk(·, ·) in equation 2.1 encompasses the

system of nonlinear equations that simulates the wave and water motion, sediment

transport and bed evolution (as described in chapter 4).

The observation equation relates the state vector to some measured quantity,

yk ∈ Ro, at time tk. In general the observation equation can be written as:

yk = hk(xtk,αk) + νk, (2.2)

11
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where νk ∈ Ro is the observation noise representing measurement errors, xk is the

model forecast, and the nonlinear function hk(·, ·) is usually known as observation

operator and maps the model results to the measurements.

The result of the data assimilation process at time tk, xak ∈ Rn, is commonly

known as the analysis. From a statistical point of view the estimation of the state is

equivalent to finding the minimum variance unbiased estimator of the real state of a

system. The solution to the problem is not straightforward and various methods have

been used to find it.

2.1 Optimal interpolation and Kalman filter

In the early days of data assimilation in weather prediction (probably the first field

of data assimilation development) the predictions were hand-optimized based on the

modeler’s experience and judgment. This process is called subjective analysis. The

first mathematically formal method to become popular is optimal interpolation initially

presented by Eliassen (1954), for the univariate case, and then used by Gandin (1963),

for the multivariate case. The method is still used in many fields and amounts to an

objective analysis step (the concept is presented further down). Simultaneous to

Gandin’s publication, Bucy (1959) and Kalman (1960) developed the ideas that led

to the Kalman-Bucy filter (Kalman and Bucy, 1961), which is a significant extension

to optimal interpolation as it includes uncertainty propagation in time.

In both optimal interpolation and Kalman filtering, an objective analysis step takes

place at each time an observation is made available. The difference is that while

optimal interpolation is a method that implements an analysis step alone, the Kalman-

Bucy filter is a method that implements both uncertainty propagation in time and an

analysis step. Since the methods discussed in this section are restricted to linear

forward models and observation operators, the remainder of this section will address

state spaces representations given by (consistent with equations 2.1 and 2.2),

xtk = Fkx
t
k−1 +Gkαk−1 + ωk, (2.3)

yk = Hkx
t
k + νk. (2.4)

Here Hk ∈ Ro×n is the observation operator at time tk, Fk ∈ Rn×n and Gk ∈ Rn×m

are transition matrices that map the state vector and the input vector at time tk−1 to a

prediction/estimation of the state at time tk. The term νk represents the observation

error. The term ωk represents the model error at time tk.

An objective analysis consists of an optimal least squares estimation that can be

written as follows:

xak = xk +Kk(yk −Hkxk), (2.5)

where Kk ∈ Rn×o is a weighing matrix commonly known as gain matrix that is

computed based on the model error and the observation error covariance matrices.

The observation error and the model error are assumed to be normally distributed
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with covariance matrices Rk ∈ Ro×o and Pk ∈ Rn×n, respectively. The assumption

of normality is fundamental for the KF because it enables the propagation of the model

uncertainty in time. The difference (yk −Hkxk) is usually referred to as innovation.

In optimal interpolation the model error covariance matrix is usually constructed in

an ad-hoc manner. In the KF this error covariance matrix is computed based on the

model dynamics (further discussion will follow).

The gain matrix that minimizes the analysis’ uncertainty is given by∗:

Kk = PkH
′
k(HkPkH

′
k +Rk)−1. (2.6)

where H ′k is the transpose matrix of the observation operator Hk. In KF the fact

that the dynamic model is linear enables the model error covariance matrix, Pk, to

be computed at each time step as part of the method. Bear in mind that a linear

combination of normal distributions is normally distributed. The propagation of the

model uncertainty can be easily computed at each time step by solving:

Pk = FkPk−1F
′
k + Ck−1, (2.7)

where F ′k is the transpose of the model dynamics matrix. Information about the input

parameters error covariance matrix is usually obtained from expert knowledge. The

result of equation 2.7 is used to compute the Kalman gain (eq. 2.6).

The capacity to propagate the model uncertainties in time (provided by equation

2.7) is a significant improvement over optimal interpolation. The most restrictive

assumption is that the model dynamics and the observation operator must be linear.

This assumption is unacceptable in most fields of study. Aside from this, if the

forward model consists of 100 by 100 gridcells in the horizontal and 10 layers in the

vertical direction, the state vector has 105 elements. The covariance matrix of such a

state vector has 1010 elements that if defined as single-precision floating-point format

will take over 30 GB of space. Uploading to memory this amount of information is

challenging; let alone, producing it on every forward step of the forecasting system.

For this reason the KF is not used in applications of considerably size.

The use of both optimal interpolation and the Kalman-Bucy filter became widespread

in the 70’s and 80’s. Optimal interpolation was the data assimilation method of choice

in weather prediction. The Kalman-Bucy filter quickly became common use in fields

such as control systems, navigation systems and avionics; and was implemented in

projects of such magnitude as the Apollo program. As a matter of fact, its imple-

mentation for the Apollo program resulted in the formulation of the Extended Kalman

Filter (EKF) (McElhoe, 1966; McGee et al., 1962). In the EKF the non-linear dynamic

model is linearized by means of a truncated Taylor expansion (see McGee et al., 1962).

This adaptation of the method makes the result sub-optimal, but it is a significant

improvement in terms of flexibility. Unfortunately for models of considerable size the

linearization process of the model is usually unfeasible.

∗The derivation of the gain matrix can be found in:
www.asp.ucar.edu/colloquium/1992/notes/part1/node121.html
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2.2 Variational methods

At the same time as optimal interpolation and the KF were being implemented and

used in different fields, the adjoint method to estimate model sensitivities started to

get considerable attention. One of the first publications to mention the use of adjoint

functions for sensitivity analysis was done by Wigner (1945) as a report for the Man-

hattan project. In the beginning of the 80’s, Dan Cacuci (Cacuci et al., 1980; Cacuci,

1981a,b) picked up the subject and formally introduced the concepts of sensitivity

analysis by using concepts of nonlinear functional analysis. Shortly after this, a series

of works that assessed the potential of the adjoint method as a data assimilation tool

were developed (Le Dimet, 1982a,b; Lewis and Derber, 1985; Courtier, 1985); which

ultimately led to the pivotal work by Le Dimet and Talagrand (1986).

In adjoint based data assimilation methods, the estimation problem is defined as a

minimization of an objective function that measures the distance between the output

vector and the observations. Consider the following objective function,

J(α1,α2, . . . ,αl−1) =

l∑
k=1

[
1

2

(
αk−1 −α0

k−1
)′
B−1k−1

(
αk−1 −α0

k−1
)]

+

l∑
k=1

[
1

2
(hk(xk,αk)− yk)

′
R−1k (hk(xk,αk)− yk)

]
.

subject to xk = fk(xk−1,αk−1), the state estimate at time tk, the estimation vector at

time tk−1 is given by αk−1, and α0
k−1 the initial choice of the input vector (commonly

known as prior) at time tk−1. Matrices Bk−1 and Rk are the error covariance matrices

of the prior at time tk−1 and of the observations at time tk, respectively. Notice that

the dynamic model, fk(·, ·), and the observation operator, hk(·, ·), are not necessarily

linear. Nevertheless, for convenience, in the rest of the section the observation operator

will be assumed to be a linear map, hk(·, ·) = Hk. The forward model, fk(·, ·), on the

other hand, will remain nonlinear, in which case the cost function can be rewritten as,

J(α1,α2, . . . ,αl−1) =

l∑
k=1

[
1

2
(αk−1 −α0

k−1)′B−1k−1(αk−1 −α0
k−1)

]

+

l∑
k=1

[
1

2
(Hkxk − yk)

′
R−1k (Hkxk − yk)

]
. (2.8)

The adjoint method is in fact an efficient way to estimate function derivatives and

Cacuci’s work showed how it works for non-linear functions. It works by defining the

estimation of the function derivative in terms of differentials provided by the chain

rule,

∇αk−1
J = B−1k−1(αk−1 −α0

k−1) + {∇αk−1
fk}∗H ′kR−1k (Hkxk − yk), (2.9)
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where ∇αk−1
fk stands for the Jacobian of fk(xk−1,αk−1) with respect to αk−1, and

is in fact the sensitivities of the model to input parameters. The term {∇αk−1
fk}∗

denotes the adjoint of the model Jacobian (see, Giering and Kaminski, 1998; Errico,

1997). For most of the forward dynamic models, the adjoint operator is equivalent to

the transposition operator (from now on it will be assumed that this is the case).

For models defined in state space form, the adjoint method becomes powerful by

enabling the estimation of the model gradient with respect to the initial parameters

in a recursive manner,

∇α0fk(xk−1,αk−1) = ∇xk−1
fk(xk−1,αk−1)∇xk−2

fk−1(xk−2,αk−2)

. . .∇x1
f2(x1,α1)∇α0

f1(x0,α0).

The model gradient at each time step can be implemented with the help of code

differentiation (Griewank, 1989; Baur and Strassen, 1983; Giering and Kaminski, 1998)

to produce the adjoint model. Unfortunately, the construction and maintenance of

adjoint codes is very demanding. For complex systems subject to constant updating,

considerable efforts must be devoted to keep an operational adjoint model. Only for

linear models, the adjoint model comes at no expense.

From an implementation point of view, the data can be assimilated sequentially

as observations come (sequential estimator), or within an assimilation window were

measurements at different times are used to estimate the initial state and/or input

parameters (smoother). The sequential estimator is commonly known as 3DVar and it

is equivalent to computing an objective analysis (Courtier, 1997). The smoother, on

the other side, is commonly known as 4DVar and it uses the adjoint model to propa-

gate the uncertainties within the assimilation window. The use of the adjoint model

is advantageous when compared to the forward estimation scheme of the EKF where

drastic approximations are necessary to keep the implementation practical. Further-

more, the model gradient may be used in a number of analyzes such as optimization

of observation networks (see the work of Daescu and Carmichael, 2010; Frazier et al.,

2009; Wu et al., 2007). For cases in which the model error is not only due to input

uncertainties, the weak constrained 4DVar should be used (e.g. Fisher et al., 2005).

In 4D-Var, the covariance matrix of the analysis is given by the Hessian of the final

cost function (Courtier et al., 1994).

Despite the convenience of the adjoint method in data assimilation, the compu-

tational costs of its implementation in weather prediction was too high. As Courtier

pointed out (Courtier et al., 1994), the computational cost of assimilating data for

24 hours was equivalent to the cost of four days of model integration; making the

method too onerous for operational weather prediction. Courtier et al. (1994) would

also provide the solution to the problem by advising to implement the data assimilation

process using an incremental minimization strategy commonly known as incremental

4DVar. This method consist of two minimization processes referred to as outer loops.

In the first outer loop, a low resolution model with simplified physics is used to produce
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a preliminary analysis in low resolution. After the preliminary estimation is available,

the second outer loop is used to further improve the quality of the analysis. In the

second outer loop the physics are taken into account by using a linear approximation

of a coarse physical model. The linearization is in fact a first order truncated Tay-

lor expansion and it is commonly known as the tangent linear model. The tangent

linear model provides the first order derivative of the full nonlinear model and it is

used for the minimization of the cost function. The incremental 4DVar made the

adjoint method practically feasible for implementation in models of considerable sizes.

The incremental 4DVar is equivalent to an extended Kalman filter in which the time

propagation of the forecast errors is done with the tangent linear model.

2.3 Particle filters

With the increase of computational power during the 80’s, a new set of filtering

techniques started to emerge during the beginning of the 1990s. These techniques

exploited the flexibility and ease of implementation of Markov chain Monte Carlo

(MCMC) methods. To the author’s knowledge, the first to suggest its use was Gordon

et al. (1993). The general idea behind the technique is to use a Markov Chain to

propagate in time the probability distributions which are defined in terms of samples

(ensemble members). For the estimation step, Bayes theorem is used to combine the

information coming from the observations and the model. One of the main advantages

of using the Bayesian approach is that it provides a rigorous general framework for state

estimation problems. Particle filters (as they were named) are particularly appealing

because they made no assumptions on the characteristics of the model, nor do they

require a particular form of the probability distribution of the errors. Although the

idea of using the MCMC methods in data assimilation had been considered before,

a practical method for implementing Bayes theorem at the analysis step was still

missing. Gordon et al. (1993) provided the solution to the problem by means of

a recursive version of the importance sampling Monte Carlo method known as the

sequential importance sampling (SIS).

Particle filters take advantage of the Monte Carlo method to model the evolution

in time of the model error probability distribution. This probability distribution is

described in terms of samples/particles. The reconstruction of the function is given

by the following rule,

p(x) =
1

ns
δ(x− xik) (2.10)

where xik is the value that the sample i takes at time k. The function δ(·) is the delta

Dirac function (delta function from now on) that is zero everywhere except at zero,

with an integral of one over the entire real line. The cumulative probability function is

therefore a step function. To account for the total number of samples, ns, the delta

function is scaled by 1/ns. The information about the evolution of the model error
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probability distribution is given by the different trajectories of the ensemble members.

These trajectories are governed by a Markov process such that,

p(xik) = p(xik | xik−1)p(xik−1 | xik−2) . . . p(xi1 | xi0)p(xi0) (2.11)

At the time of the analysis, Bayes’ theorem is used to approximate the posterior

probability distribution. The main advantage of the method is that it does not require

knowledge on the complete form of the prior distribution. Instead, an importance-

weight is assigned to each of the ensemble member that serves as a proxy for the

probability density at its location. The analysis step is then defined as,

p(xk | yk) =

ns∑
i=1

wikδ(x− xik) with, (2.12)

wik =
p(yk | xik)∑ns
j=1 p(yk | xjk)

(2.13)

The term p(yk | xk) represents the likelihood of the observation given the model

result and in most cases it is assumed to follow a normal distribution,

p(yk | xk) = C exp
(
−0.5[hk(xk,αk)− y]′Σ−1[hk(xk,αk)− yi]

)
.

The covariance matrix of the observation error is given by Σ. The way in which the

importance weights change the probability distribution as data is assimilated is given

by:

p(xik | y0:k) = wikp(xik | xik−1)wik−1p(xik−1 | xik−2) . . .

× wi1p(xi1 | xi0)

[
1

ns
δ(x− xi0)

]
.

This equation shows the manner in which the state vector evolves in time and is

updated as observations come. It also shows the main weakness of the particle filter.

The problem arises when there is an observation that lies far away from one of the

samples. In this case the importance weight will be very close to zero which causes

the sample’s probability from that point to be negligible. In this situation the sample

will provide no information on the form of the probability distribution. Eventually,

all but one sample will have negligible probability. The problem is unavoidable and

pervasive to all applications. Even if the particles follow the observations in time, the

weights will slowly diminish in all but one sample. This process is commonly called

filter degeneracy. The problem has been alleviated with the development of resampling

techniques. The most common and probably simplest resampling strategy is to make

copies of samples that are getting higher weights and remove samples whose weights

are below a certain threshold. Nevertheless, for high dimensional problems with several

observations, they remain inapplicable.
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More generally, the problem is that the number of samples required to infer the

probability distribution accurately depends on the size of the state vector (dimensions

of the space) and on how nonlinear the model is. In cases of nonlinear model dynamics

with a considerable state space dimension, the number of particles necessary to accu-

rately describe the evolution of the probability distribution in time is extremely high.

This phenomenon is usually referred to as the dimensionality curse. From a practical

point of view the implementation of an assumption-free particle filter is unattainable

in most complex systems. From a theoretical point of view, on the other hand, a

particle filter with infinite particles provides a formal mathematical solution to the

problem of state estimation.

Shortly after the presentation of the particle filter by Gordon, Evensen (1994)

proposed to use the Monte Carlo method in the framework of the Kalman filter.

Since the propagation in time of the model error covariance matrix is computationally

expensive, the idea is to use an ensemble of model runs to describe the evolution

of uncertainties. The rest of the method steps are preserved as initially proposed by

Kalman and Bucy.

The ensemble Kalman filter (EnKF) provides a working solution to the problem

of filter degeneracy of particle filters, while taking advantage of their flexibility and

ease of use. The temporal evolution of the model error probability distribution is given

in terms of stochastic samples. The filter uses the same analysis rule of the Kalman

filter and therefore requires the same assumptions; specifically, the model error at the

time of the analysis is normally distributed with mean zero and known variance. Since

the Monte Carlo sampling is only used to analyze the temporal change of the second

order moment the required number of samples remains feasible. By using the Kalman

equations for the analysis, the method completely avoids the use of the importance

sampling technique. The moments are defined by:

x̄k =
1

ns

ns∑
i=1

xik, (2.14)

Pk =
1

ns − 1

ns∑
i=1

(xik − x̄k)(xik − x̄k)′, (2.15)

where x̄k is the ensemble mean and Pk is the model error covariance matrix at time

k. With this information the Kalman gain is estimated (equation 2.6) and ultimately

each ensemble member is updated following the Kalman analysis rule, equation 2.5.

After the seminal paper of Evensen (1994), a series of papers (Burgers et al.,

1998; Houtekamer and Mitchell, 1998; Whitaker and Hamill, 2002) further developed

the method and partially solved the problem of analysis covariance underestimation.

The problem was related with the derivation of the analysis of the covariance matrix.

Burgers et al. (1998) shows that the observations must be treated as random variables

as well, and therefore random perturbations with the correct statistics should be added

to them. Nevertheless, the correction to the algorithm is only asymptotically valid and
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its implementation with few ensemble members generates problems related to sampling

error, as Whitaker and Hamill (2002) remarks. To alleviate the problem, Whitaker and

Hamill (2002) proposed a stochastic square root filter or advised to use the scheme

proposed by Pham (2001). The stochastic square root filters are in fact an adaption of

the square root filter implemented on the Kalman filter. The latter dates back to 1977

(Maybeck, 1977) and was design to avoid numerical issues with the implementation

of the KF.

There are several variations of each of the data assimilation techniques that have

been discussed here. Hybrid methods that try to exploit the strengths of two filtering

techniques have been implemented for different applications. A non-exhaustive list

of different techniques is given by Ngodock et al. (2006) in the introduction of their

paper.





Chapter 3

Model reduced 4D-Var: Insight and

updates

”The ability to simplify means to eliminate the unnecessary so that the

necessary may speak.” - Hans Hoffman (1880-1966, German painter)

One of the main limitations of adjoint based methods, such as variational schemes,

is that the construction of the adjoint code is not straightforward for complex non-

linear models. For a linear model, on the other hand, the adjoint model construction

consists of a matrix transposition. From this perspective, the use of the tangent linear

model has great potential. Unfortunately, for high dimensional dynamic models the

implementation of the tangent linear model becomes unfeasible. Model order reduc-

tion makes a practical approximation of the tangent linear model by bringing together

concepts of model linearization and principal components analysis. The outcome is a

reduced rank tangent linear model that preserves the most important dynamic com-

ponents of the non-linear model. The approximation of the model dynamics using a

reduced order model (ROM) is convenient because it does not require to estimate the

full model gradient (see section 3.3). In fact, the number of model executions required

is proportional to the number of principal components of the dynamic system (which

is chosen by the user) and the size of the input vector. This makes the expense of

building a reduced order model affordable with current computational standards, even

for highly dimensional problems.

The theory behind mr4DVar is presented here in three different sections. The

theory behind model order reduction is shown in section 3.1. An alternative reduction

procedure: ensemble model order reduction, is proposed in section 3.2. Finally, the

way in which model order reduction and 4DVar are brought together in mr4DVar is

shown in 3.3.

21
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3.1 Model order reduction

The ROM presented here, consists of a linear approximation of a nonlinear model

projected onto a reduced rank space. The linearization is done via a truncated Taylor

expansion of the nonlinear model. The linearized approximation of the model is given

by,

δxk =
∂xk
∂xk−1

δxk−1 +
∂xk
∂αk−1

δαk−1 (3.1)

with δxk−1 and δαk−1 being changes in the state and parameters, respectively, at

time tk−1 (k ∈ N) . The term xk ∈ Rn is the state vector and αk ∈ Rm, is the

input vector at time tk. The truncated Taylor expansion gives an approximation of the

changes in the model results (xk) due to changes in the model inputs, i.e. previous

state (xk−1) and model parameters (αk−1). As it turns out, this linear approximation

(Eq. 3.1) is useful for fairly small problems (small sizes of xk). That is because the

model derivative with respect to the previous state (first term of the right hand side)

is in Rn×n and its estimation is too expensive. To make the linearization useful for

large models a projection into a low dimensional space is necessary,

P ′δxk = P ′
∂xk
∂xk−1

PP ′δxk−1 + P ′
∂xk
∂αk−1

δαk−1, (3.2)

where it is assumed that the projection matrix P ∈ Rn×np has rank significantly

smaller than n (np � n). By defining rk = P ′δxk, equation 3.2 can be rewritten as

a first order autoregressive model:

rk = P ′
{(

∂xk
∂xk−1

P

)
rk−1 +

∂xk
∂αk−1

δαk−1

}
(3.3)

The first term in the right hand side of equation 3.3 is a Gateaux derivative (directional

derivative) and each column i of this matrix is given by{
∂xk
∂xk−1

P

}
i

= lim
ε→0

fk(xk−1 + εp̂i,αk−1)− fk(xk−1,αk−1)

ε

with vector p̂i being the ith column of matrix P and xk = fk(xk−1,αk−1). Notice

that the numerical approximation of the complete directional derivative only requires

2np + 1 model simulations (np � n). This is a key component within the reduction

process because it avoids estimating the full Jacobian, ∇xk−1
fk(xk−1,αk−1) ∈ Rn×n.

Since the number of parameters, nα, is usually small, ordinary finite differences are

used to estimate the second term, ∇αk−1
fk(xk−1,αk−1) ∈ Rn×nα , on the right hand

side of equation 3.3.

The projection matrix, P , is estimated by means of a principal component analysis.

The sub-space should preserve the most relevant features of the system making it

necessary to study the model behavior with respect to the model parameters of interest.
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An ensemble of model simulations with at least nα + 1 members is executed to span

the full parameter space. The ensemble consists of a reference simulation (also known

as background) with the initial set of parameters, and a set of perturbed-parameter

model simulations. State vectors from each ensemble member are stored at a number

of times, nt, and the difference between the perturbed and the reference simulation

is computed, fk(xk−1,αk−1 + ∆αk−1) − fk(xk−1,αk−1). Each of these vectors is

commonly known as a snapshot. The nα × nt snapshots of each perturbed model

integration are assembled into a snapshot matrix of nα×nt columns by n rows. Solving

a singular value decomposition (SVD) on this matrix produces a set of orthonormal

vectors from which np are chosen to span the sub-space of interest. The number of

relevant singular vectors is expected to be much smaller than the length of the state

vector.

The following steps are necessary for its implementation:

1. Run the model with an initial guess of the parameter values (background).

2. Run an ensemble of nα mutually-independent perturbed-parameter simulations.

3. Subtract the background from each of the ensemble members and build the

snapshot matrix.

4. Get the principal components by solving a SVD on the snapshot matrix.

5. Make a first order Taylor expansion of the model and project it on the subspace

spanned by the principal modes (eq. 3.3), i.e. compute the directional deriva-

tives for each column in the projection matrix and the finite differences for each

input parameter.

Steps 1 and 2 imply nα + 1 simulations of the system and step 5 implies an extra

np +nα model simulations, where np is the number of principal modes. Nonetheless,

the simulations involved in steps 1 and 2 can be carried out in parallel and, subse-

quently, all the simulations involved in step 5 can also be run in parallel. Hence the

cost of the technique is relative to the availability of processors, which nowadays is

generally not an issue.

3.2 Ensemble Model Order Reduction: An alternative method

Here a novel model order reduction technique that avoids the use of finite differences

is presented. One of the main drawbacks when using the traditional model order

reduction method presented in section 3.1, is that sometimes the estimation of deriva-

tives via finite-differences is difficult. The Ensemble model order reduction (EnMOR)

method presented in this section uses the ensemble of simulations used for estimating

the projection matrix to determine the different components of the ROM. The process
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only requires enough ensemble members to properly constrain a least squares estima-

tion of the unknown components. EnMOR not only avoids to run perturbed model

simulations but also avoids restarting the model.

Although most numerical models have a restarting procedure available, in some

cases it has undesirable effects in the state evolution (see, for example, section 4.3 ).

Commonly these effects are caused by loss of information during the restarting process.

Consequently, the derivatives at different simulation times cannot be estimated or they

are inaccurate. In the case of the Gateaux derivative, on the other hand, the required

perturbation may cause numerical problems. For models based on the mass and

momentum conservation laws, perturbing the model state frequently leads to model

instabilities. This is mainly due to the characteristics of the perturbed run required

for estimating the Gateaux derivative,

lim
ε→0

fk(xk + εp̂,αk−1)− fk(xk,αk−1)

e
.

In order to make a successful estimation of the directional derivative required in the

method, delicate analysis and processing of the perturbation is necessary. In some

cases, the efforts to minimize undesirable effects and maintain the accuracy of the

result are considerable. Aside from the numerical issues, the size of each parameter

perturbation for the finite-difference estimation demands a detailed analysis. Pertur-

bations should be big enough to limit the effects of numerical errors but small enough

not to include system’s non-linearities in the calculation. All in all, the finite difference

based model order reduction requires in-depth knowledge about the model behavior

prior to its implementation.

Before getting into detail, a summary of the relevant dimensions is presented:

� n: state vector size,

� nα: number of input parameters,

� ne: number of ensemble members,

� nt: number of ROM steps (number of piece-wise linearizations),

� np: rank of the reduced space (number of principal modes).

Also, let the ROM (eq. 3.3) be re-written in the following manner:

rk = DkP
′δxk−1 + Skδαk−1, (3.4)

where,

Dk = P ′
∂xk
∂xk−1

P,

Sk = P ′
∂xk
∂αk−1

.
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Dk represents the dynamic component of the model and Sk stands for the projected

sensitivities of the model to the input parameters. The terms δxk−1 and δαk−1 are

changes with respect to the background (linearization of the trajectory), in the state

vector and parameters, respectively, at time tk−1.

The objective function used to estimate the ROM’s components is the sum of the

square differences between the ROM results and the projected ensemble runs for each

ensemble member i, xik, at each reduced order model step, k,

min
arg Dk,Sk

JROM =

ne∑
i=1

nt∑
k=1

1

2

[
rik − P ′δxik

]′ [
rik − P ′δxik

]
. (3.5)

The required training information for the optimization process is coming from the

model ensemble. The term rik is a ROM integration where the same perturbations used

to produce the ith ensemble member were used. The arguments of the minimization

problem are the ROM components, Dk and Sk. Given the size of the problem,

nt × (n2p + np × nα), a gradient based minimization scheme is preferable to minimize

the computational expenses. Since the arguments of the problem are matrices, the

estimation of the gradient is not straightforward. To show how to calculate it, consider

the following product:

z = (ABCu− v)′(ABCu− v), (3.6)

We are interested in estimating the derivative of z with respect to vec(B), where

vec(�) is the vectorization operator. The vectorization operator stacks the columns of

the m × n matrix B on top of one another to produce an mn × 1 vector vec(B). It

can be shown that,

vec(ABC) = (C ′ ⊗A)vec(B), (3.7)

where the operator ⊗ represents the Kronecker product and C ′ is the transpose of C.

If C is a u× v matrix and A is a p× q matrix, the Kronecker product is the up× vq
block matrix given by,

C ′ ⊗A =

c11A · · · cu1A
...

. . .
...

c1vA · · · cvuA

 ,
where cij is the i, j element of matrix C.

Using equation 3.7 and the fact that the vectorization of a column vector is equal

to the vector, the calculation of the derivative mentioned before is straightforward and

is given by,

∂z

∂vec(B)
= 2

[
∂

∂vec(B)
ABCu

]′
(ABCu− v)

= 2

[
∂

∂vec(B)
vec(ABCu)

]′
(ABCu− v),
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and,

∂

∂vec(B)
vec(ABCu) = [u′C ′ ⊗A] . (3.8)

Equation 3.7 can be used again to rewrite the result in a more convenient form:

∂z

∂vec(B)
= 2 [Cu⊗A′] (ABCu− v)

= 2vec (A′ [ABCu− v]u′C ′) . (3.9)

The estimation of the Hessian is also straightforward,

∂2z

∂vec(B)2
= 2

∂

∂vec(B)
[Cu⊗A′] (ABCu− v) (3.10)

= 2
∂

∂vec(B)
[Cu⊗A′] (u′C ′ ⊗A)vec(B)

= 2 [Cu⊗A′] [u′C ′ ⊗A]

= 2 [Cuu′C ′ ⊗A′A] . (3.11)

These results are very useful in the context of the estimation problem of interest. If

the recursion defined by the ROM (eq. 3.4) is resolved, the objective function (eq.

3.5) is of the same form as equation 3.6; and the derivative and the Hessian of the

cost function are defined by,

∂JROM
∂vec(Dj)

=

ne∑
i=1

nt∑
k=1

[
∂rik

∂vec(Dj)

]′ [
rik − P ′δxik

]
, ∀j ≤ k; j ∈ N, (3.12)

and

∂2JROM
∂vec(Dj)∂vec(Dl)

=

ne∑
i=1

nt∑
k=1

[
∂2rik

∂vec(Dj)∂vec(Dl)

]′ [
rik − P ′δxik

]
+

[
∂rik

∂vec(Dj)

]′ [
∂rik

∂vec(Dl)

]′
, ∀j, l ≤ k; j, l ∈ N (3.13)

respectively. The derivative of the ROM with respect to the dynamic component (Dj)

is estimated by using equation 3.8. The estimation of the derivative with respect to

the sensitivity components (Sj) is done analogously.

As an example, consider the cost function term corresponding to the following

reduced order model estimation,

r3 = D3D2D1r
i
0 +D3D2S1δα

i
0 +D3S2δα

i
1 + S3δα

i
2, (3.14)

where the parameter perturbation at time tk−1 used for the ith ensemble member is

given by αik−1 and the initial state perturbation for the ith ensemble member is given
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by ri0 = P ′δxi0. We are interested in computing the derivative with respect to D2 of

the cost defined by,

JROM =
1

2

[
ri3 − P ′δxi3

]′ [
ri3 − P ′δxi3

]
where δxi3 is the difference between the ensemble member state and the background

state at time t3. This derivative is given by,

∂ri3
∂vec(D2)

= vec(D′3
[
P ′δxi3 − ri3

]
(D1P

′δxi0)′ +D′3
[
P ′δxi3 − ri3

]
(S1δα

i
k−1)′).

The second order derivative is given by,

∂2ri3
∂vec(D2)2

= D1P
′δxi0(D1P

′δxi0)′ ⊗D′3D3 + S1δα
i
k−1(S1δα

i
k−1)′ ⊗D′3D3

=
[
D1P

′δxi0(D1P
′δxi0)′ + S1δα

i
k−1(S1δα

i
k−1)′

]
⊗D′3D3.

In this form each of the terms of the summations in the cost function (equation 3.5)

can be differentiated with respect to each of the ROM’s components.

As it is presented, equation 3.5 is weighing all training observations equally. This

could be changed by inserting a weighing matrix that assigns more importance (weight)

to areas of the state vector of particular interest. Such implementation would produce

a ROM specialized in reconstructing specific areas of the full nonlinear model. In

applications where modeling errors are spatially dependent, the ability to emphasize

the importance of certain regions in the construction of the ROM is very useful. In

this case the estimation problem (equation 3.5) would be given by,

min
arg Dk,Sk

JROM =

ne∑
i=1

nt∑
k=1

1

2

[
rik − P ′δxik

]′
Q−1

[
rik − P ′δxik

]
, (3.15)

where Q is a symmetric positive definite matrix. In data assimilation this matrix is

usually the error covariance matrix of the training information; thus, the model error

covariance matrix.

From a computational point of view, the use of the Hessian might speed up the esti-

mation process. Given the eigenvalue decomposition of the matrices A′A = QAΛAQ
′
A

and Cuu′C ′ = QuCΛuCQ
′
uC the eigenvalue decomposition of the Hessian matrix (eq.

3.11) is given by,

EIG(Cuu′C ′ ⊗A′A) = QuCΛuCQuC ⊗QAΛAQ
′
A,

= (QuC ⊗QA) (ΛuC ⊗ ΛA) (QuC ⊗Q′A) . (3.16)

It is not necessary to have the Hessian matrix to estimate its eigenvalue decomposition

(see theorem 13.10 in Laub, 2005, page 141). If the principal components of the

much smaller matrices A′A and Cuu′C ′ are available, the principal components of



28 CHAPTER 3. MODEL REDUCED 4D-VAR

the Hessian can be calculated exactly and are given by equation 3.16. Significant

computational savings can be achieved by using only the leading modes of matrix A

in the computation.

From an implementation perspective, the scheme presented here differs consider-

ably from the finite difference based approach of model order reduction. The scheme

completely avoids the use of finite differences to estimate the ROM components. In-

stead it relies on a model ensemble to gather the necessary information to construct

the ROM. This is advantageous when working with models that do not have a restart-

ing functionality, or where the state and parameter perturbation is not straightforward.

The estimation process replaces the finite differences estimation by the minimization

of a quadratic cost function defined by equation 3.5. The size of the problem depends

on the number of simulated times, nt, the size of the input vector, nα, and the size

of the projection subspace, np, and is given by nt × (n2p + np × nα). Given the

form of the ROM, the gradient and the Hessian of the cost function with respect to

the ROM’s components are defined by equations 3.9 and 3.11. Using the Hessian of

the objective function in the minimization process produces a rate of convergence at

least quadratic, and for high dimensional problems this is very useful because it offers

significant efficiency improvements. In cases where the Hessian matrix is singular,

adding a background term in the definition of the cost function may be advisable.

The definition of the singular value decomposition of a Kronecker product (eq. 3.16)

offers interesting advantages for the approximation of the cost’s Hessian. Finally, the

model ensemble provides additional information that is unavailable when the model

executions are intended for finite differences estimation. Given appropriate perturba-

tions, the ensemble could be used to estimate the temporal evolution of the model

uncertainty.

The implementation of the scheme proposed here involves the following steps:

1. run a model ensemble with the appropriate state and input vector error proper-

ties,

2. assume an initial set of ROM components: Dk and Sk, zero matrices for in-

stance,

3. compute the cost function (eq. 3.5), which compares the ROM results with

each ensemble member, and

4. start a gradient-based minimization process on the cost function, using the

gradient (eq. 3.9) and, if necessary, the Hessian (eq. 3.11).

3.3 Model Reduced 4D-Var

In model reduced 4DVar a ROM is constructed by means of a principal components

analysis (PCA) as described previously. Its linearity both in state vector and parame-
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ters, facilitates considerably the use of data assimilation. By introducing equation 3.3

in the cost function (equation 2.8), the problem can be written as:

J(δα1, . . . , δαl−1) =
1

2

l∑
k=1

δα′k−1B
−1
k δαk−1

+
1

2

l∑
k=1

(HkPrk − ŷk)′R−1k (HkPrk − ŷk) (3.17)

and its derivative with respect to δαk−2, for instance, is given by

∇δαk−2
J = B−1δαk−2 +

[
∂rk

∂αk−2

]′
P ′H ′kR

−1
k (Hkxk − ŷk),

= B−1δαk−2 + [DkSk−1]
′
P ′H ′kR

−1
k (Hkxk − ŷk).

This minimization problem is fast to solve, but the update is sub-optimal. The two

main reasons for this are that (1) the ROM is accurate only in the vicinity of the

prior parameter set and (2) only a part of the full parameter space is available. If the

update is not within the threshold of validity of the ROM, a new ROM that is closer

to the true state is required.

Due to the properties of the technique, the modeler has a lot of freedom to

implement and run the data assimilation procedure. The main objective is to find the

optimal parameter set; the challenge is to do it in a cost efficient manner. To optimize

the performance of each iteration, the modeler can rely on increasing the quality of

the ROM by fine tuning its construction. For example, by generating more snapshots

or by increasing the number of modes in the projection sub-space, more information

about the model behavior is captured by the ROM. Or, by using second order estimates

(central differences) the approximation of dynamic components and the sensitivities are

expected to be more accurate (if using the finite difference approach). Nevertheless,

these strategies usually come at the cost of more model simulations.

In model reduced 4D-Var, the ROM’s main task is to provide the direction of

greatest descent to the optimization procedure. It has been developed to avoid the

construction of the adjoint model. The concept of “quality” of the ROM is no longer

focused on its capacity to reconstruct quantitatively the evolution of the state vector;

instead, it should be able to identify the direction in which the state vector should be

updated due to changes in model parameters.

The implementation of model reduced 4DVar involves the following steps:

1. Implement a reduced order model of the nonlinear model of interest.

2. Build the adjoint model of the reduced order model.

3. Implement 4DVar assimilation to optimize the parameters of interest by mini-

mizing equation 3.17.
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4. Run the full model with the analysis.

5. Assess whether the update satisfies the expected accuracy. If not, take the

current model update for a background run and repeat the process.



Chapter 4

Wave-Flow-Morphodynamic modeling

” So long as the volume of matter to be dealt with in science was insignifi-

cant, the need for the employment of models was naturally less imperative;

... Yet as the facts of science increased in number, the greatest economy

of effort had to be observed in comprehending them and in conveying

them to others; and the firm establishment of ocular demonstration was

inevitable in view of its enormous superiority over purely abstract sym-

bolism for the rapid and complete exhibition of complicated relations.

(Boltzmann, 1974, page 215)

Coastal morphodynamic evolution the result of several natural processes that in-

teract with each other. Generally, the sources of energy that drive morphodynamic

changes are climatic (e.g. wave and wind) and astronomic (moon and sun gravitational

fields), whereas the geomorphological properties of the system determine to a great

extent the way in which the morphodynamic changes happen. Regarding the modeling

of coastal systems, the mass continuity and conservation of momentum equations are

the keystones of the hydrodynamic model; while for sediment transport the advection-

diffusion equation is commonly used (Waeles et al., 2007; van Ledden, 2003, see,).

A thorough review of the physical background of sediment transport processes may

be found in van Rijn (2007a,b,c); van Rijn et al. (2007). In most cases no closed

form solution of these equations is available and a numerical approximation of them

is necessary. The numerical method plays a determining role in the approximation of

the morphodynamic evolution. There are several numerical methods for solving sys-

tems of differential equations; each one with various advantages and disadvantages.

This chapter is part of:
I. Garcia, G. Serafy, A. Heemink, and H. Schuttelaars. Towards a data assimilation system for
morphodynamic modeling: bathymetric data assimilation for wave property estimation.Ocean
Dynamics, pages 1–17, 2013.
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Each of these methods requires some level of parameterization, and thus, there are

model parameters of physical nature and of numerical nature both playing an equally

important role in the simulation outcome.

4.1 Swan and Delft3D-MOR Description

The Delft3D suite is used to implement all the experiments presented here. This model

has two different modules that interact with each other during the morphodynamic

simulation: (1) a wave module and (2) a flow and morphology module. Delft3D-

SWAN, the wave module, is a numerical model for estimating wave parameters for

stationary wind, bottom, and current conditions (Deltares, 2009b). Delft3D-FLOW,

the flow and morphology module, calculates non-steady flow, sediment transport and

the bed evolution resulting from tidal and meteorological forcings (Deltares, 2009a).

Here a brief description of the modules is presented. For a detailed description of the

model, the reader is referred to Deltares (2009a,b); Lesser et al. (2004).

4.1.1 Waves Module

The wave module, SWAN, computes the wave propagation, the breaking and the radi-

ation stresses by solving the two dimensional wave action density spectrum, N(σ, θ),

which is governed by the action balance equation,

∂N

∂t
+
∂cxN

∂x
+
∂cyN

∂y
+
∂cσN

∂σ
+
∂cθN

∂θ
=
S

σ
. (4.1)

The action density spectrum is related to the energy density spectrum throughN(σ, θ) =

E(σ, θ)/σ , where σ is the relative radian frequency and θ is the wave direction. The

terms cσ and cθ are the propagation velocities in spectral space (σ,θ), and cx and cy
stand for the propagation velocities in Cartesian space. S represents the source term

expressed as energy density and may take into account generation by wind, dissipation

by whitecapping, bottom friction, depth-induced breaking and non-linear wave-wave

interactions.

4.1.2 Hydrodynamic Module

The hydrodynamic fluid motion is governed by the conservation of momentum equa-

tion and the continuity equation. For systems where the horizontal length scales

are considerably larger than the water depth, the momentum and mass conservation

equations can be simplified to produce the shallow water equations. In this case, the

continuity equation is given by,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (4.2)



4.1. SWAN AND DELFT3D-MOR DESCRIPTION 33

where ζ is the water level with respect to the water depth at still water conditions,

h. The velocity components in the x, y and z directions are given by u, v and

w,respectively. The term Q is the total addition or subtraction of water per unit area

due to precipitation, evaporation, etc. The equations for momentum conservation are:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂P

∂x
+ Fx +Mx +

∂

∂z

(
νv
∂u

∂z

)
(4.3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂P

∂y
+ Fy +My +

∂

∂z

(
νv
∂v

∂z

)
(4.4)

where Fx and Fy are the horizontal Reynold’s stresses and momentum sources and

sinks are given by Mx and My. The vertical eddy viscosity is given by νv = ν +

max(νminv , ν3D), where ν is the kinematic viscosity, νminv is the minimum vertical

eddy viscosity (user defined), and ν3D is the three-dimensional turbulence (coming

from the turbulence model). The water density is given by ρ, and f is the Coriolis

parameter that depends on the geographic latitude of the earth. For the case of

constant water density the pressure term, P , consists of the hydrostatic pressure and

the atmospheric pressure, i.e.

P = ρg(ζ − z) + Patm. (4.5)

The horizontal Reynold’s stresses are given by,

Fx =
∂τxx
∂x

+
∂τxy
∂y

(4.6)

Fy =
∂τyx
∂x

+
∂τyy
∂y

(4.7)

with the shear stresses defined as:

τxx =2νh

(
∂u

∂x
+
∂u

∂z

)
, (4.8)

τxy =τyx = νh

[
∂u

∂y
+
∂u

∂z
+
∂v

∂x
+
∂v

∂z

]
, (4.9)

τyy =2νh

(
∂v

∂y
+
∂v

∂z

)
. (4.10)

Delft3D implements a half implicit half explicit numerical method over a staggered

grid for solving the system of differential equations presented here. In the vertical

direction, a so called sigma layer (σ-layer) approach is used to minimize the problems

associated to significant changes in water depths common in certain natural systems

(e.g. coastal systems). The numerical solution of the momentum and continuity

equations as implemented in Delft3D is described in detail by Lesser et al. (2004). The

computation of the vertical velocities in Delft3D is only required for post-processing

purposes and they are computed from the continuity equation Deltares (2009a).
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4.1.3 Morphodynamic Module

The morphodynamic module implements a numerical solution to the set of differential

equations that govern transport sediment due to hydrodynamic forcing. Because of the

significant differences in the physical processes governing suspended sediment trans-

port and bed-load transport, different mathematical descriptions are given for each.

The equation that describes the transport of suspended sediment is the conservation

of sediment mass equation,

∂c

∂t
+ ∇ · f = Qs, with (4.11)

f = fa + fs + fd, and, ∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k.

where i, j, and k are unitary vectors pointing in the x, y, and z directions, respectively.

The sediment concentration is given by c, sources and sinks of sediment are given

by Qs (e.g. river discharges), and f is the total sediment flux consisting of three

components: the advective flux, fa; the settling flux fs; and the diffusive flux, fd. The

three sediment fluxes are given by:

fa = c(ui + vj + wk), (4.12)

fs = −cwsk, (4.13)

fd = −κh
(
∂c

∂x
i +

∂c

∂y
j

)
− κv

∂c

∂z
k. (4.14)

Here the sediment settling velocity is represented by ws, and the horizontal and vertical

eddy diffusion coefficients are given by κh and κv, respectively. The settling velocity

for non-cohesive sediment is a property of the sediment particles and in Delft3D is

defined as:

ws =
(ρs/ρ− 1)gd250

18ν
, 65µm < d50 ≤ 100µm,

ws =
10ν

d50

[(
1 +

0.001(ρs/ρ− 1)gd350
ν2

)0.5

− 1

]
, 100µm < d50 ≤ 1000µm,

ws = 1.1 [(ρs/ρ− 1)gd50]
0.5
, 1000µm < d50,

where ρs is the density of the sediment, d50 is the sediment grain size and ν is the

kinematic viscosity of the water. The eddy coefficients, on the other hand, are user

defined parameters. For erodible boundaries, e.g. the bed, the boundary condition is

given by:

− [fs + fd] · n = S∗, (4.15)

where n is a unitary vector perpendicular to boundary, and the erosion/deposition flux

at the bed, S∗, is given by,

S∗ = wsca − wsc0, (4.16)
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with c0 the sediment concentration at the bottom. The reference concentration, ca,

depends on the prevailing flow conditions and is defined as the concentration at the

reference height, a. The reference height depends on the bed roughness, and is defined

as one half of the bed form height (van Rijn, 1993). There are several formulations

for the reference concentration which usually define it as a power law of the relation

between the magnitude of the bed shear stress, τ , and magnitude of the bed critical

shear stress, τc. For the case of non erodible boundaries the boundary condition is

given by,

− [fs + fd] · n = 0. (4.17)

In Delft3D the reference concentration is given by van Rijn (2007b),

ca = 0.015ρs
dT 1.5

a

aD0.3
, (4.18)

where a is the reference level and with

Ta =
τ − τc
τc

, (4.19)

D =d50

[
g(ρs/ρ− 1)

ν2

]1/3
. (4.20)

The bed load transport (sb) formulation is independent of the transport equation

4.11. The governing equation is given by,

sb = 0.006ρswsd50M
0.5M0.7

e (4.21)

where

M =
V 2
H

gd50(ρs/ρ− 1)
, (4.22)

Me =
(VH − Vc)2

gd50(ρs/ρ− 1)
, (4.23)

Here VH stands for the magnitude of the horizontal velocity, Vc is the critical flow

velocity for initiation of motion and is based on a parameterization of the Shields

curve.

The wave related suspended transport is modeled as,

sw = 0.007ρsd50Mγ

[
U4
on − U4

off

U3
on − U3

off

]
, (4.24)

where γ is the wave phase lag coefficient, and Uon and Uoff are the high frequency,

near orbital velocities due to short waves (Lesser et al., 2004). As implemented

in Delft3D, the wave related suspended transport is included in the total bed load
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Parameter Name Delft3D Acronym

Chezy coefficient in U-direction Ccofu
Chezy coefficient in V-direction Ccofv

Horizontal eddy viscosity Vicouv
Minimum depth for drying and flooding Dryflc

Vertical eddy viscosity Vicoww
Wave breaking index Gamdis

Roller front slope Betaro
Roller breaker delay Flam

Table 4.1: Notable hydrodynamic parameters

transport vector. The direction of the bed load transport is given by the current

direction whereas the direction of the wave-related transport is given by the direction

of the orbital velocities.

The bed evolution, as implemented in Delft3D, is computed by solving the following

equation:

(1− φ)
∂h

∂t
+

1

ρs

[
∂Sb
∂x

+
∂Sb
∂y

]
=

1

ρs
S∗. (4.25)

(4.26)

where φ is the sediment fraction porosity.

4.2 Delft3D Parameters

Each module of Delft3D has a set of parameters that will directly/indirectly affect

the morphodynamic estimations. Due to the numerical solution of the differential

equations the relevant parameters are both physical and numerical in nature. Conse-

quently, there is a large number of parameters that influences the modeling process

significantly. In the following the set of parameters relevant to this work is discussed.

The set includes those parameters that control the morphodynamic evolution of the

model. The selection of it was based on expert judgment.

The hydrodynamic evolution is a key component in any morphodynamic model. It

provides the information about flow properties required for sediment transport 7 and

wave estimation. Table 4.1 presents the set of relevant hydrodynamic parameters. In

Delft3D, the roller model parameterization is given in the flow input file (see table 4.1)

and consists of the following parameters: wave breaking index, roller front slope, and

roller breaker delay (flow Deltares, 2009a) . The roller model is of particular interest

to the work presented here because it links the morphodynamic evolution with time

exposure images such as the ones coming from the Argus system (see Holman and

Stanley, 2007). The minimum depth for drying and flooding defines the system’s
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Parameter Name Delft3D Acronym

Wave significant height WaveHeight
Wave peak period Period

Wave direction of incidence Direction
Wave directional spreading DirSpreading

Table 4.2: Notable wave parameters

Parameter Name Delft3D Acronym

Horizontal eddy diffusivity Dicouv
Vertical eddy diffusivity Dicoww

Van Rijn’s reference height factor Aksfac
Wave related roughness parameter Rwave

Streamwise bed gradient factor (bed load) AlfaBs
Transverse bed gradient factor (bed load) AlfaBn

Factor for suspended sediment ref. concentration Sus
Factor for bed-load transport vector magnitude Bed

Wave suspended sed. transport factor SusW
Wave bed-load sed. transport factor BedW

Factor for erosion of adjacent dry cells ThetSD

Table 4.3: Notable morphodynamic parameters

shoreline and prevents numerical issues arising in extremely shallow areas. As in the

case of the roller model, observations of the shoreline evolution in time are a potential

source of information as it may be computed from time exposure images as well.

Since the waves are the main driving force of the morphodynamic evolution in the

surf zone, these parameters are expected to have a considerable impact on the model

results. In fact, the rip channel’s evolution and dynamic behavior depend mainly on

wave properties and initial bathymetry (Smit et al., 2007, 2008). Table 4.2 shows

the set of most relevant (to this research) wave parameters in Delft3D. From the

morphodynamic module, on the other hand, a set of 9 parameters are considered

relevant, and they are presented in table 4.3. From this set of parameters, it is worth

highlighting the importance of the wave-related suspended sediment transport factor

and the wave-related bed-load sediment transport factor; which are multiplicative

factors that decrease the sediment transport due to the presence of waves. Notice

that all of them are numerical parameters. Furthermore, both sediment transport

factors are designed to reduce model biases associated to the unresolved nonlinearities

of the wave breaking model. According to experts, for 3D models the estimated

sediment transport values should be decreased by approximately 30% and in the case

of 2D models reductions of up to 90% are expected.
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Figure 4.1: Tank study case for time step analysis.

4.3 Model Characterization

The combination of the proper orthogonal method (Cazemier et al., 1998) and the

Taylor expansion, as presented in Vermeulen and Heemink (2006), requires a certain

level of characterization of the model behavior. Here a brief analysis of the most

relevant mathematical characteristics of the model is shown.

4.3.1 Time Steps and Temporal Evolution of the Model

Among the parameters related with the numerical solutions of the equations, the time-

step size is of great importance. Different natural processes take place at different

time scales. Of course, those natural processes that take place on time scales smaller

than the time-step in which the equations are being solved will not be properly recon-

structed by the model. In this sense, it is of great importance to guarantee that those

that are relevant are properly described. Choosing a proper time-step size implies a

trade-off, decreasing it will increase the reliability of the model at the cost of higher

computational costs. The proper choice is that in which satisfactory results are ob-

tained while keeping the computational expense acceptable. An analysis of the effect

of different time steps on the solution of the model was carried out.

A grid of 59 (X direction) by 28 (Y direction) cells of 0.5 by 0.5 meters was used

for the hydrodynamic computations. The wave module uses a grid of 59 (X direction)

by 52 (Y direction) cells of the same size as the flow grid. The south, east and

west boundaries are closed boundaries consisting of an erodible beach in the southern

boundary and Neumann condition on the other two. The system is forced from the

north boundary by beach-normal waves with a significant height of 0.15 m and a

peak period of 3.5 s. The initial bathymetry consists of a set observations taken in

a laboratory experiment done by Michallet et al. (2010, 2013). Figure 4.1 shows a

description of the hydro-morphodynamic model used for the analysis. The bathymetry

shown corresponds to the first measurements of water depth available.
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The Courant condition analysis results on a maximum time step for accurate com-

putation of wave propagation of 0.85 seconds and the maximum time step for hori-

zontal advection of 1.16 seconds. To assess the model sensitivity to the time step size,

five simulations were undertaken with different time-steps all lower than the Courant

condition limits: 0.6, 0.48, 0.3, and 0.06 seconds. Each simulation consists of 10 days

of coupled wave, flow and morphodynamic estimations plus a 3 hour spin up phase,

at the beginning of the simulation, were no bed updates are taken into account. The

main aim of the spin up phase is to reach the hydrodynamic equilibrium before the

bathymetry starts to be modified. Once the morphodynamic processes start to be

taken into account, the bed updates take place on every timestep. The wave estima-

tions are updated every 20 minutes of hydrodynamic estimations (including the spin

up time).

The differences between 0.6 (M06, red), 0.48 (M048, orange), 0.3 (M03, green)

and 0.12 (M012, blue) seconds time step models with respect to a 0.06 (M006)

seconds time-step simulation are presented in figure 4.2. The plots show a similar

behavior of the deviations for all the analyzed model results up to day 5. After the

sixth day the M012 model shows a lower divergence rate from the reference model

(0.06 seconds) in terms of water depth and velocities. Regarding the water depths,

after 10 days of simulation the M06, M048, and M03 models have deviated from the

reference (M006) by twice as much as the M012 model (see upper panel of figure 4.2).

The velocity estimations (central an lower panes of figure 4.2) show similar results.

There is a clear difference between the M012 model and the rest of them; notice how

the M06, M048, and M03 trajectories cluster and deviate from the M012 trajectory.

This suggests significant differences in the morphodynamic evolution of the models

due to the timestep differences.

Figure 4.3 shows how the system evolves during the 10 days simulation in terms

of the root mean squared bathymetric changes at the available times, i.e.
√
E[(Zt −

Zt−1)′(Zt − Zt−1)] where E[·] is the expected value operator. All models (including

M006) show a very similar behavior in time. The observed differences in figure 4.2 are

clearly observed at the end of the simulation. Bear in mind that the only difference

between these models is the time resolution in which the differential equations are

resolved, and that all the timesteps are lower than the value for the Courant condition.

Certainly, there are significant processes taking place at different time scales that seem

to be neglected when time resolution is decreased. Notice that the trajectories start

diverging as the intensity of the morphodynamic evolution decreases (6 days and after).

From a practical point of view, the observed differences due to the time step size

are not significant for the analyses presented here. The reason for this is that the

simulation time of all the models used here is less than 5 days. Because of this, the

biggest time step that satisfies the Courant condition will be used to minimize the

computational expense. Nevertheless, for analyses that involve long term simulations,

the results presented here suggest that the simulation time step may have a significant



40 CHAPTER 4. MORPHODYNAMIC MODELING

Figure 4.2: Bathymetric differences between simulations with various time steps
a simulation with a 0.6 seconds time step

Figure 4.3: Behavior of the morphodynamic evolution of Delft3D.
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Figure 4.4: Effects in the velocity field due to restarting the model. The norm of
each velocity horizontal components is shown (||V u,vt ||). The non-restarted model
is presented in dark gray while the restarted simulation is shown in light gray.

influence on the model results.

4.3.2 Effects of re-starting Delft3D

In the context of reduced model 4DVar as formulated by Vermeulen and Heemink

(2006), a good model restart routine is a requirement; unfortunately, due to some im-

plementation practices this capability is not always available or it generates undesirable

effects. Here, the routine is tested by restarting a simulation at a certain point and

comparing the subsequent model results between the non-restarted with the restarted

run. The model configuration is preserved unchanged on the restarted run.

The reference model consists of 8 hours of only hydrodynamic simulation. The

second model was stopped and restarted after 6 hours. Figure 4.4 shows the effects

of the process on the velocity field. The dark gray solid- and dashed-lines show the

behavior of the u-component and v-component, respectively. The light gray solid- and

dashed-lines show the behavior of the velocity components for the restarted simulation.

The restart takes places after the velocity field has already reached equilibrium. The

perturbation of the simulation due to the restarting routine can be clearly observed at

hour 6. The graph also shows that the restarted model reaches a different equilibrium

quickly after the restarting point. From discussions with the team of developers of

Delft3D (personal communication, 2009), it seems that the problem is that in the

initial time step of the restart procedure, the wave forcings are not taken into account.

This has serious consequences for wave driven systems (e.g. a swell dominated beach).

The consequences on the estimated water levels are shown in figure 4.5. In this

figure the difference between the water levels of the restarted simulation and the water

levels of the normal simulation (not restarted) is shown. A wave of considerable size

moving seaward is observed during the first 10 seconds of the simulation. Once the
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Figure 4.5: Water level changes (in cm) caused by not taking into account the
wave forgings during the initial time step of the restarting procedure.

wave has left the domain, its effects remain visible for up to 30 seconds. After ten

minutes of spin up of the restarted simulation, the effects are not present in all but a

handful of grid cells where the effects remain permanently. The effects on the direction

of the velocity field are relevant to this evaluation. Figure 4.6 shows the difference in

the direction of the velocity in terms of the angle between the velocity vectors. As in

the case of the water levels, permanent differences are observed after the 10 minutes

spin up of the restarted simulation. Bear in mind that 0.25 radians is approximately 15

degrees. Notice that the effects on the velocity direction are not confined to the near

shore area. In contrast with the water level, changes are observed in a considerably

larger area after 10 minutes of the restart.

The combined effect of different velocity directions and velocity magnitudes has

a significant effect on the morphodynamic evolution. Preliminary analysis (not shown

here), show that the effects of restarting the model with no spin up are of the same

order of magnitude as the sensitivity of the morphodynamic process to the wave pa-

rameters. In fact, the minimal sensitivity estimate depends significantly on the effects

of the restarting process. Parameters with very low influence on the morphodynamic

process may appear significant if its sensitivities were estimated by restarting the model
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Figure 4.6: Velocity-direction changes (in radians) caused by not taking into ac-
count the wave forcings during the initial time step of the restarting procedure.

with no spin up time.

Given the effects of the restarting procedure on the evolution of the system, it is

clear that a spin up time of at least 1 hour is necessary after restarting the model. Bear

in mind that this will minimize the undesired effects on the model evolution but will not

completely avoid them; the changes in some of the velocity directions and magnitudes

will certainly have a long lasting effect on the model evolution. Alternatively, the

use of the restarting procedure could be avoided by using a coldstart instead. The

main problem with this approach is that the spin up time in this case is 3 times bigger

which adds quite a big computational expense to the data assimilation implementation.

Furthermore, partial analyses show that replacing the restarting procedure with a

coldstart does not prevent side effects on the morphodynamic process. For this reason,

it was decided to use the restarting procedure with an appropriate spin up time every

time a model restart is required. For the application of EnMOR, restarting the model

is not necessary and this problem is not applicable.
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Figure 4.7: Sediment and water cumulative volumetric changes, for different as-
sumptions of concentration of sediments at the model boundary. With EqmBc:On
the equilibrium concentration profile at the model boundary is assumed. With
EqmBc:Off a zero sediment concentration at the boundary was assumed.

4.3.3 Sediment and water volumetric changes

Sediment exchange at the model boundaries is an issue that demands some attention

because there is usually no information about the sediment fluxes at these points

and the modeling process is not straightforward. To deal with it, Delft3D offers the

modeler the choice of prescribing a sediment-flux boundary condition or assuming an

equilibrium sand concentration profile at the boundary. Here, the implications of these

two conditions are evaluated.

The behavior of the total volume of sediments and water in the system can be

seen in figure 4.7. The assumption regarding the boundary condition clearly has a

significant effect. By assuming an equilibrium sand-concentration profile (EqmBc:On)

the total volume of sediments (light gray line) in the system increases linearly with time,

∼ 1m3 : 1day. This phenomenon has an effect on the total volume of water (light gray

dashed line) of the system; which decreases accordingly (notice that the figure shows

water out-take). When a zero sand-concentration boundary is assumed (EqmBc:Off),

the sediment volumetric increase rate (dark gray solid line) is considerably lower (∼
1m3 : 3day) and the water volume decrease behaves consequently (dark gray dashed

line). Surprisingly, the sum of the sediment and water volumetric changes (red dotted

lines) behaves very similar in both cases. Notice that for the first 36 hours the rate of

sediment intake is higher than the rate of water outtake. This phenomenon seems to

be reversed during the following 36 hours where the water outtake rate increases to

account for the extra sediment (see the red dotted lines).

The decrease in the water volume agrees with the observed velocity field at the

boundary shown in figure 4.8. Here, the evolution of the depth averaged velocity

field at the open boundary is shown for the case of a zero sediment concentration

boundary condition. It is important to mention that there is no significant difference
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between these velocities and those of the model with the equilibrium concentration

assumption at the boundary. Graphs showing results before 09:40, correspond to the

spin up period (3 upper panels). Note that there is an effective outflow of water at

all instances.

The observed phenomena could be explained by the manner in which the wave

processes are coupled with Delft3D. The problem comes from solving the wave equa-

tions in a 2D context. Due to nonlinearities in the wave equations there is an import

of water to the system. This additional water mass is usually compensated by an

undertow. In the case of 2D simulations the resulting velocity profile is averaged. In

this case this averaging results in an effective outflow of water.

It remains an open question which mechanism is responsible for the additional

sediment accessing the system if the hydrodynamic results show a consistent water

outflow. The only reason that the author can think of is that the additional water mass

associated to the wave processes is prescribed to have some sediment concentration.

Probably the concentration defined in the boundary condition. Still, in the case of a

zero concentration boundary condition, what is the source of the additional sediments?

Further analyses are necessary to characterize and understand this model behavior.

Regarding the analysis presented in this manuscript, we will assume that these changes

in the sediment mass do not change significantly the morphodynamic evolution and

they will be ignored.

4.3.4 Linearization: Finite Differences

The linear approximation for the finite difference model order reduction (see section

3.1) requires the estimation of the model gradients with respect to the parameters of

interest. Derivatives of two different nature need to be estimated: (1) the sensitivities

are approximated using the traditional finite difference approach and (2) the projec-

tion of the model dynamics demands a gateaux derivative. Perturbed simulations are

necessary in both cases but the perturbation in each case is conceptually different.

In any case, the magnitude of the perturbation should be such that the gradient ap-

proximation is valid and accurate; i.e. the effect of the non-linear dynamics should be

negligible. A simple test to determine if the effect of the non-linearities in the estima-

tion of the gradient is insignificant, is to estimate the gradient with both a forward

and a backward finite difference using the same perturbation. The two approximations

should be equal. Since both the sensitivities and the model dynamics, change as the

model evolves in time, multiple approximations of them are necessary for each phase

of the model.

Finite difference estimation for sensitivities.

The upper panels of figure 4.9 show the effect of parameter perturbations of the

model at different simulation times. Each plot uses three model simulations: (1)
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Figure 4.8: Velocity field at the open boundary.

reference, (2) a positive parameter perturbation (of the reference parameter set) and

(3) a negative parameter perturbation. The magnitude of the perturbation is kept

constant. A perturbation that remains within the linear threshold of the model will

produce the same effects independent of its sign. The graphs show how the model

behaves for the following parameter perturbations: wave significant height, Hs± 0.01

m (left); wave peak period, Tp ± 0.01 s (center); and wave direction of incidence,

Wd ±0.1 deg (right). It is surprising that even for a perturbation of 0.1 degrees in

wave direction and 0.01 s in wave peak period the model behaves non-linearly (see

for instance step 6 in center and right panels). For the case of Wd, observed results

with perturbations of 1 and 5 degrees (not shown here) show larger changes. Despite

the fact that from a physical point of view all perturbations are negligible they still

have a measurable impact in the model results. For perturbations on peak period and

wave direction the model seems to behave linearly during the first 24 hours (4 saving

steps), contrary to what is observed in the case of wave significant height.

Finite difference estimation for Gateaux derivatives

As in the case of the parameter sensitivities estimation, it is necessary to use a proper

perturbation size for the estimation of the directional derivative. The lower panels of

figure 4.9 show the effect of the Gateaux perturbations at different times. Again, a
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perturbation that remains within the linear threshold of the model will produce the

same effects independently of its sign. For this analysis three modes were considered.

The magnitude of the perturbation used for numerically estimating the directional

derivative is 0.1. The analysis is not straightforward. The model is not perturbed

homogeneously over all the morphodynamic grid. The perturbation depends on the

mode used (column of the matrix P ) and the size of the perturbation. Interestingly,

preliminary experiments (not shown here) show no significant impact on the results of

the assimilation scheme with choices of ε, as long as the perturbation remains within

physical bounds.

From a morphodynamic perspective, the model simulations show two phases, ini-

tially there is an intense morphodynamic evolution of the system where the model

bathymetry is rapidly adjusted to the prevailing hydrodynamic conditions. As the

bathymetry begins to match the flow conditions, the sediment transport lowers and

the bathymetric changes become significantly smaller; more generally, as equilibrium

is reached the morphodynamic evolution slows down considerably. Figure 4.9, lower

panels, suggest that the effects of the non-linearities associated to depth perturbations

increase as the simulation evolves, specially for modes 2 and 3. Further analysis is

necessary to assess whether the level of morphodynamic activity influences the model

response to the perturbations. In general, the differences between the forward and the

backward finite difference estimation are considerable, but making the perturbation

smaller comes at the risk of losing too many features from the spatial pattern (in the

product εp̂) due to precision issues.

Discussion

The results presented here describe the effects of using the finite difference method to

estimate the model gradient with respect to the wave input properties. A more detailed

analysis (not shown here) suggests that the estimation of the gradient by using smaller

perturbations does not change significantly the result of the derivative estimation. For

the case of very small perturbations, numerical errors due to the precision of the

algorithm start to become relevant, while bigger perturbations will trigger non-linear

components of the model. Especially for the directional derivative small perturbations

will cause loss of information associated to the small components of each principal

mode. Nevertheless, the perturbations presented in this section provide an acceptable

gradient approximation for practical purposes. The differences between the forward

and the backward finite difference estimation can be minimized by using a second order

accurate finite difference. Regarding the snapshot matrix generation, positive and

negative perturbations should be taken into account to guarantee that the sub-space

does not miss important dynamic components. For the case of the EnMOR method

the considerations about the size of the perturbation for estimating finite differences

is not applicable, but taking into account positive and negative perturbations in the

construction of the ensemble is relevant.
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From a physical point of view, the finite difference analysis (sec. 4.3.4) presented

here helps to characterize the evolution of the morphodynamic components as the

simulation evolves. The effects of perturbing the parameter set change with the

simulation time. Regarding the wave significant height, the non-linear effects seem to

be present in the beginning of the simulation and not so much in the later simulation

times. Wave peak period and wave direction of incidence, on the contrary, appear to

trigger non-linear effects only on the later stage of the simulation. This is interesting

because it suggests that the properties of the non linear behavior of the model depend

on simulation time. It is difficult to assess what are the practical implication of these

observations. A more detailed characterization is necessary to be able to generalize

these results to other parameters of interest and to assert whether these observations

are applicable to other morphodynamic models.





Chapter 5

Estimation of wave parameters

To assess the applicability of model reduced 4DVar to morphodynamic problems, we

decided to focus on three of the most relevant parameters for characterizing the near-

shore bathymetry (Wright and Short, 1984): wave direction of incidence (Wd), wave

peak period (Tp) and wave significant height (Hs). As a background simulation,

close to normal wave-weather conditions (Ranasinghe et al., 2004) were considered:

Tp = 7.8 s, Hs = 1.5 m and Wd = 84◦. The set of observations was produced with the

model as well (twin experiment). All the parameters other than the three of interest

are the same across all Delft3D simulations including the twin experiment. Note,

that the goal of the study is neither to accurately model the natural morphodynamic

behavior of the beach nor to give a detailed description of the physical processes

relevant for this site. Instead, the study strives to assess the potential of incorporating

observations into this type of models.

Three different types of scripts were implemented: scripts that deal with the re-

duction of the model, scripts that communicate with the morphodynamic model and

scripts that deal with the data assimilation procedure. The computational cost of

these procedures is negligible in comparison to the average computation times of the

morphodynamic model (more or less 4 hours each morphodynamic simulation). The

necessary model simulations were undertaken in a cluster of 20 processors. The data

assimilation scheme was implemented for a 5 day morphodynamic simulation. For

the snapshot matrix, 20 snapshots (every 6 hours) of each perturbed run were used.

Likewise, the number of linearization points along the reference trajectory was set to

20 for all the experiments shown here. This implies that the linear approximations are

valid for 6 hours worth of morphological simulation.

This chapter is part of:
I. Garcia, G. Serafy, A. Heemink, and H. Schuttelaars. Towards a data assimilation system for
morphodynamic modeling: bathymetric data assimilation for wave property estimation. Ocean
Dynamics, pages 1–17, 2013.
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Two different implementations of the technique are presented here. Firstly, the

original model reduced 4DVar is evaluated. The idea is to assess the capabilities of the

data assimilation scheme as proposed by Vermeulen and Heemink (2006). Secondly, a

set of “single outer loop” implementations are undertaken to evaluate different features

of the scheme. This knowledge will lead to evaluate optimization strategies for the

construction of the ROM and the overall implementation of the technique. We will

focus on how the initial perturbations and the size of the projection subspace influence

the performance of the data assimilation process. In table 5.1 a description of each

experiment is presented.

5.1 Study case and numerical model

Two grids of the study area were constructed. The wave grid extends over an area

of 13800 meters along-shore by 4200 meters seaward, with a cell-size of 100x100

m2 (see figure 5.1). The flow grid with 149 (NS) by 88 (EW) cells of 15x15 m2,

provides a detailed description of the bathymetry of Palm Beach (see figure 5.1). A

model run encompasses 5 days of morphological updates with a flow time step of 12

seconds. Bathymetric information along with flow information is saved every 6 hours.

Initializing the model (cold start) requires a spin-up phase, which was chosen to be

of 8 hours length. During this phase, the stationary flow conditions prescribed by

both the wave forcings and the bathymetry are reached. Once a stationary solution is

attained, the morphological module is turned on. Every 15 minutes of flow simulation,

the wave module is executed to make an update of the wave conditions. Given the

nature of this work, no morphological scaling factor (Roelvink, 2006) was taken into

account (see chapter 4).

A natural system, Palm Beach, was chosen for this study. This ensures that the

complexity of the coupled morphodynamic model and its associated physical processes

is taken into account. This beach is located in the northern area of Sydney; eastern

Australia (see figure 5.1). It is a swell-dominated and micro-tidal beach of about 2

km length,with no significant seasonal variability in the wave conditions. The near

shore beach slope is 0.03 and the median grain size is 0.30 mm (Ranasinghe et al.,

2004). The dominant wave direction is from the SSE and wave heights averaging

1.5 m, but can reach 3 - 6 m during storm conditions (Short, 1992). The beach

commonly exhibits all intermediate states and is known for the frequent occurrence

of rip channels (Smit et al., 2008; Wright and Short, 1984). Observations show that

beach is most commonly showing a traverse bar and rip (TBR, 22.8 days) state and

in order of decreasing mean residence times: rythmic bar and beach (RBB, 11.8

days), low tide terrace (LTT, 9.3 days) and longshore bar and trough (LBT, 5.4 days)

states (Ranasinghe et al., 2004). Down state changes usually take place sequentially

from LBT to RBB, TBR, and, finally, LTT. Under storm conditions the beach is

consistently taken to a LBT state independent of its initial state (Ranasinghe et al.,
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Figure 5.1: Geographic location of Palm Beach.

2004). Ranasinghe et al. (2004) show that in average the beach takes 40 days to

switch from an LBT to a LTT state. A detailed description of the beach can be found

in the works by Turner et al. (2006); Short (1993); Ranasinghe et al. (2004); Brander

(1999). The initial bathymetry (see figure 5.2) and the description of the sediments

and relevant physical processes were taken as described in Smit et al. (2008).

5.2 Observations and Weighing Matrices

One of the main advantages of an observation set coming from a twin experiment is

that it allows the modeler to disregard the effect of model errors in the analyses. This

is an important asset in the present study because it gives a better picture of the skills

of the model reduced 4DVar.

Observations and Observation Operator. In order to analyze and characterize the

performance of the scheme two sets of synthetic observations of water depths (m) were

produced. The first set is an idealized condition of perfect measurements; the second

set is a more realistic set of uncertain measurements. An observation is generated

every 6 hours during the 5 days of simulation for all experiments.
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Figure 5.2: Initial bathymetry, as used in the work by Smit et al. (2008).

Observations at night time are not available in a realistic scenario. The num-

ber of observations for data assimilation is naturally relevant. From an optimization

point of view, the modeler should aim to have a determined or over-determined sys-

tem. This condition is usually unfeasible, and for highly undetermined operational

forecasting systems the background term is very important to keep the optimiza-

tion feasible. In a system like the one that is being presented here, the number

of observations is determined by the size of the assimilation window and the fre-

quency of measurements. If the amount of information coming from an observa-

tion dataset is considered to be insufficient to appropriately optimize the model, ei-

ther a longer assimilation window should be taken into account (e.g. 7 days) or, if

possible, the frequency of the measurements should be increased. If the frequency

of observations is low and a constant parameter condition is not appropriate, time

varying parameters can be taken into account by augmenting the input vector, e.g.

[Hs(t1), Hs(t2), ...,Wd(t1),Wd(t2), ..., Tp(t1), Tp(t2), ...], to account for the temporal

variability.

The perfect set of measurements has not been perturbed with noise and the full

model domain was assumed to be observed. The parameter set used for producing

these observations is: Hs = 2.1 m, Tp = 7.5 s and Wd = 87.8 deg; and it was

assumed to be constant during the 5 days. This assumption is of course not realistic.

In a real application, the choice of an assimilation window of this size would require

augmenting the input vector as mentioned before. But for the purpose of this paper,

this condition is acceptable.

The second set is an ensemble of 2000 observations of the same truth. The true

state was taken as the set of perfect observations and was perturbed with an additive

normally distributed error, N (µ, σ2) with µ = 0 [m] and σ = 0.1 [m], to produce
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the ensemble. Usually video-based observations only provide information about the

bathymetry along the wave-breaking area. Therefore only grid cells that correspond

to water depths between 1 and 4 meters were assumed to be observed. This error

choice as well as the observed spatial domain follow estimations done by Roelvink

et al. (2003) and Uunk (2008) for video-based observations of bathymetry.

Since both the state vector and observations consist of water depths in meters, the

observation operator is linear and is defined as a logical (0/1) matrix that identifies

the model grid cells where observations are taken.

Weighing Matrices. The common choice for the weighing matrices B and R is the

error covariance matrix of the background and of the observations, respectively. The

main advantage of choosing them is that the estimation process will weigh accurate

measurements higher than inaccurate measurements. This is of particular importance

in cases where the observations are of different nature or are coming from different

sensors. For the case in which all observations have the same error, this matrix just

scales the observation term to have the same order of magnitude as the background

term in the objective function.

The prior covariance matrix (background covariance matrix) in all experiments was

assumed to be diagonal. The standard deviation of the error was chosen to be 0.7 m

for wave significant height, 1 s for wave peak period; and 10 deg for wave direction

of incidence.

In the case of perfect measurements (experiment one), the identity matrix was used

instead of the covariance matrix (zero matrix) for the observation weighing matrix.

The choice of the identity matrix is for convenience. The zero matrix cannot be

used because it is singular; making the objective function indeterminate and choosing

a diagonal matrix with very small values will render the background term useless.

The objective function will weigh the model deviation from the observation so highly

that it will dominate the minimization process. From a practical point of view, the

initial guess contains relevant information. It is usually based on expert knowledge

and/or measurements (e.g. buoy measurements) and should be weighed accordingly

in the estimation process. By choosing the identity matrix the estimation process will

take into account information from both terms of the objective function, as happens

in most operational data assimilation schemes. For the experiments with uncertain

observations the observations covariance matrix: 0.01∗INobs[m2] (Nobs is the number

of measurements), was used in the assimilation process.

5.3 Implementation of Model Reduced 4DVar

Here the procedure proposed by Vermeulen and Heemink (2006) is followed. The

ROM is a linearization of the model trajectory prescribed by the initial parameter set.

The parameter perturbations necessary to build the projection matrix are done by
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Original Hs [m] Tp [s] Wd [deg] Cost

Loop 1: Three small parameter by parameter perturbations
δx: 0.07 0.1 1.0

Reference: 1.5 7.8 84.0 740.51
Initial Guess: 1.5 7.8 84.0 740.51

Loop 2: Three small parameter by parameter perturbations
δx: 0.07 0.1 1.0

Reference: 1.90 7.51 86.84 128.58

Loop 3: Three small parameter by parameter perturbations
0.07 0.1 1.0

Reference: 1.89 7.54 86.52 125.17

Single Outer-loop Hs [m] Tp [s] Wd [deg] Cost

Experiment 1: Three simultaneous perturbations.
Initial guess: 1.50 7.80 84.00 740.51

1.31 8.10 88.62 1336.11
1.92 7.39 89.11 269.65

Reference: 1.92 8.07 81.27 195.03

Experiment 2: Three parameter by parameter perturbations.
Initial guess: 1.50 7.80 84.00 740.51

1.50 7.90 84.00 761.26
1.50 7.80 85.00 743.05

Reference: 1.57 7.80 84.00 586.54

Experiment 3: Three parameter by parameter perturbations.
Initial guess: 1.85 7.80 84.00 156.43

1.78 7.80 84.00 227.89
1.85 7.80 83.00 173.21

Reference: 1.85 7.70 84.00 152.47

Experiment 4: Six parameter by parameter perturbations.
Initial guess: 1.50 7.80 84.00 740.51

1.15 7.80 84.00 1605.58
1.50 7.30 84.00 986.61
1.50 8.30 84.00 895.62
1.50 7.80 79.00 757.31
1.50 7.80 89.00 787.28

Reference: 1.85 7.80 84.00 156.43

Truth Hs: 2.1 m — Tp: 7.5 s — Wd: 87.8 deg

Table 5.1: Configuration of the experiments implemented.

varying one parameter per snapshot run. Several iterations were allowed to optimize

the final estimation and to evaluate the performance of the assimilation. Each iteration

requires the construction of a new ROM for the updated state vector. The initial set of

parameters is presented as the reference run of the first iteration, namely: Wd = 84.00

deg, Hs = 1.50 m and Tp = 7.80 s. Subsequent reference trajectories correspond to

the analysis (see table 5.2) of the previous iteration.

Table 5.2 shows the performance of the data assimilation scheme for three itera-

tions. The update of the first iteration is remarkable. In the second and third loops

the parameter set does not show any significant update. This behavior is explained

by the form of the cost function which is shown in figure 5.3. A set of 86 model

runs with different state vectors was used to approximate the cost function. A linear

interpolation between the different (86) model runs (red dots) is used. The color bar

represents the cost function value. Note that the value of the cost function shows little
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Iteration 1

Hs [m] Tp [s] Wd [deg]
Reference 1.50 7.80 84.00

Perturbation 1 1.57 7.80 84.00
Perturbation 2 1.50 7.90 84.00
Perturbation 3 1.50 7.80 85.00

Update 1.90 7.51 86.84

Patterns (Energy) 5 (83.70%)
Reference’s Cost 740.51
Update’s Cost 128.58

Iteration 2

Hs [m] Tp [s] Wd [deg]
Reference 1.90 7.51 86.84

Perturbation 1 1.97 7.51 86.84
Perturbation 2 1.90 7.61 86.84
Perturbation 3 1.90 7.51 87.84

Update 1.89 7.54 86.52

Patterns (Energy) 8 (84.77%)
Reference’s Cost 128.58
Update’s Cost 125.17

Iteration 3

Hs [m] Tp [s] Wd [deg]
Reference 1.89 7.54 86.52

Perturbation 1 1.96 7.54 86.52
Perturbation 2 1.89 7.64 86.52
Perturbation 3 1.89 7.54 87.52

Update 1.90 7.62 85.38

Patterns (Energy) 8 (84.57%)
Reference’s Cost 125.17
Update’s Cost 104.04

Truth Hs: 2.1 m — Tp: 7.5 s — Wd: 87.8 deg

Table 5.2: Implementation of model reduced 4DVar as presented by Vermeulen
and Heemink (2006).
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sensitivities to Tp and Wd (see in particular 5.3a) when the significant wave height

is in the range [1.7, 2.1]. Nevertheless, the gain in terms of cost is significant as it

drops from 740.5 to 128.58 only in the first loop and drops further to 104.04 in the

subsequent iterations.

5.4 Single outer iteration experiments

Four different experiments were implemented in order to characterize the performance

of the technique and to identify its most relevant features. One of our focuses is

reducing its computational expense, which depends mainly on: (1) the number of

parameters of interest and (2) the number of patterns used in the ROM. The number

of parameters of interest is usually a variable that offers little flexibility. On the other

hand, the number of patterns is a very flexible parameter. Two questions come to

mind: (1) what are the real implications of increasing the number of patterns? And

(2) Is there a way to increase the quality of the patterns? These two questions are

addressed with the experiments presented here. The first question is addressed by

considering the impact of the number of patterns used in the construction of the

ROM. To this end, in each experiment 5 to 10 patterns were used to prescribe the

reduced space. The second question was addressed by evaluating the magnitude of the

perturbations used for defining the projection matrix and the way these perturbations

are implemented.

The reference (or background) constitutes a key concept in this technique since the

Taylor approximation is built around it. Normally, the reference trajectory corresponds

to the model simulation with the initial set of parameters. Nevertheless, from the

Nα + 1 simulations necessary to span the parameter space (the initial ensemble),

there is no guarantee that the initial-guess corresponds to the point with the lowest

cost function. If in fact the initial-guess does not correspond to the best point at

hand, why use it as the reference? Intuitively, the closer the reference run is to the

real system state, the better the capabilities of the linear approximation to optimize

the model. Following this hypothesis, experiments 1 through 4 do not linearize the

model around the initial-guess-trajectory (initial-guess parameter set: Wd = 84.00

deg, Hs = 1.50 m and Tp = 7.80 s). Instead, from the Nα + 1 simulations the one

that corresponds to the lowest cost function has been chosen (see REF, in table 5.3)

as the linearization trajectory.

Experiment 1. The objective of this experiment is to determine if there is any gain

from simultaneously perturbing all parameters. For this, three simultaneous pertur-

bations were used to compute the projection matrix (table 5.1). The results of the

experiment for different number of patterns are shown in table 5.3. The optimization

process worked better when the projection space is limited to the subspace spanned

by the first 5 modes, 96% of the energy. The selection of the reference run for the
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linearization process seems to have contributed significantly to the improvement of

the Hs estimation. For the other two parameters, instead, this selection came at a

high cost. Smaller perturbations might be useful to alleviate the cost of choosing the

reference from the ensemble of simultaneous perturbations.

Experiment 2 and 3. These two experiments aim to assess the importance of the

direction (sign) of the perturbation. In both cases the same three small perturbations

(see table 5.1) were used. For the case of experiment 2 the perturbations are all

positive while for experiment 3 the perturbations are all negative. Contrary to the

previous case, the selection of a linearization point different from the initial guess does

not show any negative effects on any parameter.

Results from experiment 2 show that the updates of Tp, are moving away from

the truth in all but the best result. The other two parameters are updated in the right

direction. It should be highlighted that in terms of the most sensitive parameters,

Hs and Tp, the reference run of this experiment is the farthest away from the truth.

Because of this, the validity of the ROM might be limited. Results from experiment

3 show a very poor performance for the Hs as the scheme consistently fails to update

it. The parameter Wd also shows very little improvement. On the other hand the

parameter Tp shows a significant improvement during the update. It appears as if the

sub-space is specially tailored to highlight the dynamics associated to the latter.

Putting into perspective the results from both experiments, it looks like the di-

rection in which the perturbation is performed has a significant effect on the overall

performance. Observe that each experiment shows good performance for parameters

that correspond to a perturbation done in the correct direction (i.e., the perturbed

parameter is closer to the true value). In experiment 2 the parameter Tp is consistently

updated away from the truth, while in experiment 3 this same parameter shows the

best end result. The contrary happens in the case of the Hs and Wd; thus reinforcing

the hypothesis of the importance of the direction of the perturbation.

Experiment 4. In this case 7 (2Nα + 1) model simulations are used to span the

parameter space for the modes identification. The perturbations are presented in table

5.1. The perturbations are made in both the positive direction and the negative di-

rection. Notice that for these perturbation magnitudes the model non-linearities take

a significant role in the effects on the model behavior (see chapter 4). Therefore,

the model behaves differently for a positive perturbation than for a negative pertur-

bation. Again, the model run that corresponds to the lowest cost function is used

as the reference simulation of the ROM. The contribution of the extra number of

model perturbations to the optimization procedure is significant. With 10 patterns

corresponding to 98.7% of the energy, the optimization shows the best estimates. All

the parameters are consistently updated in the right direction.
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Discussion. Table 5.3 shows the performance of the scheme for the different experi-

ments implemented here. Experiment 4 shows consistently better results than the rest

suggesting that the perturbation choice has a significant effect on the optimization

process. Note that the reference trajectory for experiments 3 and 4 are very similar

in terms of cost function values. Nevertheless experiment 4 shows a very good up-

date while experiment 3 shows less satisfactory results. In this case the performance

of the scheme is independent of the choice of the reference set of parameters. This

reinforces the argument that the direction of the perturbation plays a significant role

in the performance of the scheme.

Despite the fact that in experiment 1 all parameters are perturbed in both direc-

tions, the results are less satisfying than those of experiment 4. Even though the cost

function values are not drastically higher than those of experiment 4 the updates of

Tp and Wd are not as satisfactory. The problem might be related to the simultaneous

perturbations. The sensitivity of the cost function to the parameter Hs is significantly

higher than to the rest of the parameters (compare the decrease in cost between initial

guess and reference for experiments 2 and 3). The effects of changes in the Wd and

Tp parameters are concealed by the effects of the changes in Hs, thus depriving the

ROM of relevant information regarding the model behavior.

Analyzing the experiments in the context of the implementation presented in sec-

tion 5.4 it is worth noting that only experiment 4 shows a better performance in the

quality of the update. Bear in mind that even though this experiment is the most com-

putationally expensive, it is still around one third as expensive as the three iterations

of the original implementation.

Figure 5.4 shows the depth averaged velocity field for the lowest cost function in

each of the experiments. The improvement in the overall estimation of the velocity

field is especially clear for the analysis coming from experiment 4 (lower center graph).

The figures also show the complexity of the problem at hand.

5.5 Noisy Observations.

The main aim of this chapter is to assimilate observations that resemble the charac-

teristics of actual measurements. A set of 2000 observation ensembles was generated.

Each observation ensemble is the result of perturbing the truth with a normally dis-

tributed random noise. In the operational case, this ensemble of observations is not

available. In this sense, the form of the distribution of the updates provides a better

insight into the performance of the model reduced 4DVar.

Figures 5.5 and 5.6 show frequency distributions and scatter plots, respectively,

for the ROM presented in experiment 4 with 3, 7 and 10 modes in the context of

noisy observations. In all cases the frequency distributions appear to be symmetric

and centered at the update produced for perfect observations. The scatter plots show

a weak positive correlation between the Tp and the Wd. In average, there does not
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Figure 5.5: Distribution of the updates for an ensemble of 2000 members of noisy
observations. Same ROM as the one used in the 4th experiment (see table 5.3)
with: 3 modes (left panel), 7 modes (center panel) and 10 modes (right panel).

Figure 5.6: Scatter plots of the parameter updates for an ensemble of 2000 mem-
bers of noisy observations. Same ROM as the one used in the 4th experiment (see
table 5.3)

seem to be a significant decrease in the quality of the update with respect to the

other experiments discussed here. The spread of the three parameters is small in

all cases which implies that irrespective of the ensemble member that is chosen the

parameter update is sensible. There is a significant decrease in the standard deviation

of the distribution of analyzes by increasing the number of modes used to define the

subspace. In this sense the use of a bigger subspace is justified and advised. As the

number of modes used for the reduced order model is increased, the fluctuations of

the update around the mean value are diminished.

5.6 Discussion

Model reduced 4DVar was implemented successfully for the morphodynamic model

Delft3D. In general, the scheme shows to be robust and consistent in lowering the
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prescribed cost function. Furthermore, we have been able to implement the data

assimilation scheme in a model that encompasses all the processes associated with the

temporal evolution of sediment transport processes.

The quality of the ROM, understood as its capacity to reconstruct the direction in

which the system reacts to parameter changes, is of great importance for the efficiency

of the data assimilation procedure. The sensitivities of the model to its different

components are fundamental for the construction of the ROM. These sensitivities

change in time; therefore, several ROMs valid for subsets of the full temporal domain

need to be created. One of the main strengths of the scheme is that it is suitable

for parallel implementation. All initial perturbations may be computed in parallel and,

subsequently, all derivative computations may be done in parallel as well. From a

practical point of view, there is no significant change in computational expense for

state vectors of smaller sizes than the available processors.

An intelligent selection of modes in combination with an appropriate choice of per-

turbations for their generation, seems to have a significant impact on the effectiveness

of the technique. The increase in the size of the subspace has a significant role in

minimizing the spread of the updates in the case of noisy observations. Therefore, it is

advisable to keep the sub-space as big as possible while maintaining it practical. The

size of the perturbations necessary for computing the modes that span the projection

sub-space has a significant impact on the performance of the technique. It is diffi-

cult to diagnose the most appropriate perturbation magnitude since they are: case,

model and initial condition dependent. The sign (direction) of the perturbation has

an effect on the overall performance of the data assimilation process as well. On this

regard, perturbing in both directions is advisable because it increases significantly the

performance of the scheme and may lessen the number of outer loops, which are far

more costly than the additional model executions. On the other hand, smaller per-

turbations may also be implemented instead of perturbations in both directions; but

detailed analysis of each parameter is necessary in order to assess the correct pertur-

bation magnitude. The scheme shows no detriment in performance due to observation

noises similar to those present in video-based observations. Nevertheless, the number

of modes proved to be relevant to minimize the dispersion of the updates. The scheme

shows to be very robust to deal with observation uncertainties. Regarding the outer

loops, the information produced in each iteration is mostly ignored in subsequent it-

erations (projection matrix is not reused nor the snapshot matrix). Furthermore, the

initial perturbation runs are discarded after the projection matrix is produced; on this

issue, further research is advised to assess strategies that would make a better use of

this information.

The study case implemented in the present work aims at assessing the feasibility

of using model reduced 4DVar for morphodynamic modeling. The results show the

potential of the technique and proof that data assimilation is achievable even for such

complex models. In order to take full advantage of the potential of the model reduced
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4DVar, a bigger study case with real observations and a larger number of parameters

is advised. The work has produced relevant insight on the characteristics of the use

of ROMs for data assimilation purposes. Most of the known assimilation techniques

have shown to have difficulties dealing with high dimensional non-linear problems. An

application of the technique that includes in the state vector the initial bathymetry,

morphological parameters, hydraulic parameters and numerical parameters could show

the full potential of the data assimilation scheme presented here.



Chapter 6

Laboratory data assimilation: 19

parameters problem

This chapter addresses two issues, an analysis of the morphodynamic evolution of

a highly observed system from a modeling point of view, and the evaluation of the

performance model-reduced 4DVar for parameter estimation. The information used in

this section comes from a laboratory experiment undertaken at the SOGREAH LHF fa-

cility, France. The use of this type of data has the advantage that it is highly accurate

and the system is measured in detail. Since the measurements come from the actual

evolution of a morphodynamic system, the model errors start to play a role in the

assimilation process. Consequently, the first objective of the analyses presented here

is to assess the capacity of the model to reconstruct the evolution of the morphody-

namic system. Aside from the model characterization, a partial implementation of the

enMOR method is performed to evaluate if it is practical for large scale applications.

Only the directional derivatives were estimate with the enMOR method. The model

sensitivities to input parameters are estimated using the finite difference approach.

Detailed descriptions of the laboratory set up are presented in Michallet et al.

(2013, 2010); Castelle et al. (2010). Accurate and detailed bathymetries were mea-

sured during the 5 weeks that the experiment took place. Three categories of shore

normal wave conditions: energetic, moderate with a large period, and moderate with

shorter period, were applied in the experiment. For the work presented in this chapter,

measurements taken for the moderate-large-period wave conditions were used.

The available information reconstructs a down-state beach sequence LBT-RBB-

TBR-LTT. Michallet et al. (2013) describes in detail the different phases that the

system goes through and classifies the state at each of the bathymetric measurements.

Initially, a shore parallel bar progressively migrates onshore developing into a single

crescentic bar unconnected to the shore. The bar continues to move shoreward and

67
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attaches to the beach as it develops shallow shoals and rip channels. As the shoals

attach to the shore a continuous decrease in rip channel depth is observed along

with the appearance of a single rip channel. At this point, the rate of morphological

changes progressively decreases and the only notable evolution is the accretion of the

rip channel producing an almost featureless terrace-like morphology.

The chapter is organized in 4 sections. In section 6.1, the laboratory experiment

is described and the available measurements are presented and characterized. Section

6.2, gives a detailed description of the numerical model. In section 6.3 the results of

the modeling and data assimilation are presented. Finally, a discussion and concluding

remarks are presented in section 6.4.

6.1 Observations: laboratory set-up

The wave basin is a 30 m by 30 m tank with a 60 independently controlled piston-type

wave maker. The bathymetric measurements covered an area of 15 meters (7.84 m

≥ x ≥ 22.84 m) in the cross-shore direction by 25 meters (3.12 m ≥ y ≥ 28.02 m) in

the alongshore direction. A total of eleven observations of the down-state sequence,

corresponding to the moderate with a large period wave conditions, are available at:

9:40, 15:40, 18:00, 21:00, 26:00, 31:20, 37:20, 40:00, 45:40, 51:40, 59:40 and 66:00

from the beginning of the experiment. Figure 6.1 shows the observed bathymetries

during the accretive phase of the experiment. Since the measurements are of a higher

resolution than the morphodynamic model, the information was spatially averaged

to match the model resolution (0.5 × 0.5 m). The measurements have a millimeter

precision and were done every 10 cm in the alongshore direction and every 1 cm in

the cross-shore direction. The measurements were done with a laser profiler which

required the tank to be emptied for every measurement. To take into account the

precision of the profiler and the possible effects of emptying the tank, a 2 millimeter

error was assumed for each bathymetric measurement. The observation errors were

assumed independent.

The still water level at the wave maker was h0 ≈ 76.5 cm for all experiments. Fine

sand with a density of 2.65 g/cm3 and a median diameter, d50, of 0.166 mm was

used for the experiment. This results in a particle settling velocity, ws, of 2cm/s. A

moderate wave condition with a large period corresponds to waves with a significant

height, Hs, of 18 cm and a peak period, Tp, of 3.5 s. This produces a dimensionless

fall velocity, Hs/Tpws = 2.5, in the intermediate range (Wright and Short, 1984). An

irregularity on the wave conditions, for promoting the development of 3D patterns,

was added by imposing a damped motion on the center wave paddles. The effects of

this irregularity in the morphodynamic evolution is not clear.
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Figure 6.1: Bathymetries during the accretive sequence. Time since the initiation
of the experiment.

6.2 Morphodynamic model

For the hydrodynamic estimations a grid of 59 (X direction) by 28 (Y direction) cells

of 0.5 by 0.5 meters each was built. The wave module used a bigger grid of 59 (X

direction) by 52 (Y direction) cells of the same size as the flow grid. The extra grid

cells in the y direction are just to locate the wavemaker at the same distance from the

shoreline as in the physical model (see Michallet et al., 2010). The south, east and

west boundaries are closed boundaries. The beach is located in the south while the

east and west boundaries were taken as Neumann boundaries. The observation at 9:40

was taken as the initial bathymetry. The system is forced from the north boundary

by beach-normal waves with a peak period of 3.5 s. Though the wavemaker was

configured to generate waves with significant height of 0.18 m, wave measurements

south to the wavemaker show that the actual wave height is closer to 0.15 m. The

latter was used in the model. The surf zone bathymetry at initial time (9:40) is shown
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Figure 6.2: Morphodynamic Model. Bathymetry of the surf zone (0 - 6 m. cross
shore from the beach).

in figure 6.2, deeper areas show a along-shore homogeneous bathymetry.

A convergence analysis showed that the maximum time step for accurate compu-

tation of waves is 0.84 seconds. Therefore, a time step of 0.6 seconds was used for

all simulations presented here. The wave conditions are recalculated every 20 min of

simulation. As in the laboratory experiment, no tides were considered in the model.

The system state is saved every 20 minutes of simulation. The median sediment di-

ameter (d50) was set to 164 µm as described in Michallet et al. (2013). The rest of

the sediment characteristics have their default values.

Before starting the morphodynamic updates a hydrodynamic spin up is necessary,

to ensure that the hydrodynamic condition is in equilibrium with the prescribed initial

bathymetry and the wave forcing. The spin up time for cold-start model simulations is

180 min. For sensitivity runs where the model is restarted from a previously estimated

state, the spin up time is chosen to be 100 min. Regarding the model configuration,

there is no morphodynamic scaling taken into account (Roelvink and Broker, 1993).

The estimation parameter set consists of 19 wave and hydrodynamic parameters.

Table 6.1 shows the selected parameters and a brief description of them. From the

list of parameters presented in the table, the first five parameters are part of the

hydrodynamic module and, with the exception of COMWriteInterval, they play an

important role in the pick-up and dispersion of sediment. The following 4 parameters

are used in the wave module (SWAN), controlling the forcings of the system. Finally,

the last 9 parameters are part of the morphodynamic module. These parameters

characterize the pick-up, transport and deposition of sediments.

Nonphysical values are particularly problematic for the automation of the as-

similation scheme. A parameter like viscosity, for example, takes values between
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0 and 10m2/s (see pg 76 Deltares, 2009a); but the background value is 0.001m2/s.

With this initial value it is common to get negative values during the minimization

process which would produce numerical problems. To avoid this from happening, the

maximum and minimum values of each parameter are enforced in the estimation pro-

cess. This is done by projecting each parameter value (valid for the whole real line)

to an interval of the real line delimited by its minimum and maximum value. The

projection and its derivative is given by,

θ = min+ (max−min)exp[−exp(z)]
∂θ/∂z = −(max−min)exp[−exp(z) + z],

where z is a scalar in the real line, θ is a scalar in the interval [min,max] and min and

max are the minimum and maximum values, respectively, of z. The projection and

its derivative are used in the ROM and the reduced adjoint, respectively, to enforce

each parameter interval.

Table 6.2 shows the minimum and maximum acceptable values for each parameter.

These values were chosen following the user-manual’s suggestions or were based on

expert knowledge. The table also shows the standard deviation of their prior estimate.

This standard deviation is used to produce the background covariance matrix which, for

all experiments, is assumed to be diagonal. The standard deviation of each parameter

was kept big enough to avoid biasing the estimation procedure.

6.3 Implementation and results

To analyze the morphodynamic evolution of the system four parameter estimation

processes were undertaken; one for each morphodynamic transition; namely, (1) LBT-

RBB, (2) RBB-TBR, (3) TBR-LTT and (4) LTT settling. The first estimation (from

now on experiment LBT ) covers the initial 12 hours of the experiment which includes

the change from a LBT state to a RBB state. For this transition there are three

bathymetric observations available at 15:40, 18:00 and 21:00. For the transition

from a RBB state to a TBR state, a second estimation procedure (referred to as

experiment RBB) that covers 10 hours of morphodynamic evolution was implemented.

The modeling covers the time between 18:00 and 28:00. There are two bathymetries

available for this transition: 21:00 and 26:00. The third parameter estimation process

(referred to as experiment TBR) considers the next 16 hours of the experiment; from

26:00 until 42:00. This time comprehends the transition from a TBR to a LTT beach

state. For this time span there are 3 observations available at: 31:20, 37:20 and 40:00.

The last estimation (from now on experiment LTT ) covers the stabilization process

of the beach in the low energetic state (LTT). The model considers the final 22:00

hours of the down state sequence; from 45:40 to 67:40. There are three observations

during this period of time: 51:40, 59:40 and 66:00.
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Figure 6.3: Normalized cost function for each experiment and for each iteration.
Each cost function value has been divided by the initial cost. Values less than 1
stand for an improvement of the model behavior with respect to the observations.

The method requires the construction of a ROM valid in the vicinity of the back-

ground model trajectory. For the identification of the background model an expert

was asked to calibrate the model to reconstruct the observed dynamics appropriately.

The outcome of the calibration process is presented in table 6.2 (see table column

background). The calibration was done manually and based on visual comparison.

This parameter set was used as the background run for all experiments shown here.

The background errors were considered independent and the standard deviation of

each parameter was taken from ranges suggested in Deltares (2009a) or as suggested

by experts. The values are shown in table 6.2.

The ROM is a piecewise linearization of Delft3D where each piece approximates

20 min of the morphodynamic simulation. The sensitivities (Sk in equation 3.4)

were estimated by using a central finite difference scheme. The projection space was

estimated from 50 perturbed runs with snapshots taken every 20 min, and the number

of modes/patterns (rank of the subspace) is 40 in all experiments. The dynamic

component of the ROM (Dk in equation 3.4) was estimated as shown in section 3.2.

6.3.1 Performance of the parameter estimation

The ratio of the cost over the initial cost of each experiment and each iteration

is shown in figure 6.3. The difference in the number of iterations is due to the

execution time of each experiment: 12 hours of simulation for experiment LBT, 10

hours for experiment RBB, 16 hours for experiment TBR and 22 hours and experiment
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LTT. Figure 6.3 show’s that the scheme was particularly efficient at estimating the

parameters for experiments LBT and LTT. Regarding experiment RBB the scheme

seems to be having a hard time improving the performance of Delft3D. In fact, the

parameter set corresponding to the lowest objective function is very similar to the

prior parameter set (further discussion later, see figure 6.10). This suggests that the

initial calibration was particularly suited for this morphodynamic phase. Regarding

experiment TBR the scheme performs very good during the first two iterations after

which the performance drops significantly. A diagnosis of this behavior is presented

in section 6.3.2. The lowest cost function happens at: analysis 5 for LBT, analysis 5

for RBB, analysis 2 for TBR and analysis 1 for LTT. Among the optimal parameter

sets, the roughness coefficient in the U-velocity direction, viscosity, diffusivity and

wave significant height and period change in the order of 1 standard deviation. This

is shown in table 6.2 where the parameter set corresponding to the lowest objective

function value of each experiment are given. Figure 6.4 shows the corresponding

morphodynamic simulation for each experiment (one experiment per row). All the

parameter changes are within two standard deviations, see table 6.2, which suggests

that the optimal parameter set is within prior uncertainty bounds.

During the transition from LBT to RBB (first row of figure 6.4) the model is neither

able to reconstruct the observed trough at (x, y) ≈ (10, 12) nor the pit observed at

(x, y) ≈ (16, 4) (see second row panels of figure 6.1). The shallow area at (x, y) ≈
(24, 7) is reconstructed with the proper size and location. Despite not being able

to reconstruct the trough and pit configuration, once it is provided as the initial

condition in experiment RBB, the model is capable of reconstructing their evolution

satisfactorily (see second line of figure 6.4). This is also true for experiment TBR,

where not only the trough is diffused at the proper rate but also the formation of shoals

is properly reconstructed. Finally, the evolution towards of the LTT state shows a very

similar trajectory to the one observed. Nevertheless, the shoreline at time 66:00 is less

uniform, suggesting a different shoreline evolution after 20 hours of simulation.

The root mean square error (RMSE) of each experiment for each observed bathymetry

and for each iteration is shown in figure 6.5. For RMSEs under 0.015 m the optimiza-

tion process fails to improve the model performance, this may be explained by the

assumed observation uncertainty, 0.02 m. In these cases, the model results are within

observed uncertainties and are therefore correct predictions. For experiment LBT, the

model is improved at all observation points in a very similar way. The model is still

improved after this first iteration although the increment in performance is marginal.

For experiment RBB, observation 3 (RBB Obs 3, green line with crosses) is only 3

hours after the starting time. At this point the model sensitivity to the parameter set

is still very limited and improving the model can only be achieved by estimation of the

initial condition as part of the data assimilation process. This will be discussed more

extensively in section 6.3.3. Regarding experiment TBR, the fact that observations 6

and 7 are only 3 hours away from each other biases the scheme toward improving the
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Figure 6.4: Results of the morphodynamic simulation corresponding to the model
with lowest objective function of each experiment. Each line corresponds to an
experiment. LBT: analysis 5. RBB: analysis 5. TBR: analysis 2. LTT: analysis
1.
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Figure 6.5: RMSE between the model and the observations for each experiment.

model results during this period of time. This explains why the RMSEs of these two

observations behave so similarly. For experiment LTT, despite the 6 hours between the

initial time and observation 9 (51:40) the model results compare well with the mea-

sured values (very low RMSE, see figure 6.5), i.e. the model predicts the measurement

successfully. At observation time 11, approximately 20 hours after the simulation ini-

tial time, a significantly higher RMSE is observed and a significant improvement takes

place. Notice that the changes in iteration 1 and 2 have comparatively little impact

on the RMSEs at observation times 9 and 10. This suggests that the model is able

to reconstruct accurately the evolution of the system for the prescribed hydrodynamic

conditions.

In figures 6.6, 6.7, 6.8 and 6.9 the results of the optimization procedure are il-

lustrated by showing the difference between the morphodynamic model and the ob-

servations (model − observations) for the first four iterations of the minimization

process. Positive values (green to red) in the plots represent areas where the model

predicts larger depths than is observed, negative values indicate an under-prediction

of the water depth. Each line of plots corresponds to an iteration and the color limits

are the same for all figures to make the comparison easier.

For experiment LBT the difference shows the inability of the model to reconstruct

the trough (see figure 6.6). This is in agreement with the discussion regarding the

capabilities of 2D models for trough generation given in Ranasinghe et al. (2004).

Instead of generating a trough at the correct position, a deepening to the north and

east of the trough location is observed. However these deeper areas diminish in size

and depth as the optimization develops. In fact, careful analysis shows that the

difference in the trough area decreases during the parameter estimation process. Near
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Figure 6.6: Experiment LBT: Difference between the morphodynamic model
and the observations (model − observations) for the first four updates. Positive
values (green to red) represent areas where the model predicts larger depths than
measured, negative values indicate an under-prediction of the water depth.
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the shoreline, the optimization process manages to reconstruct the shoreline behavior

accurately, resulting in errors that are consistently decreasing with each iteration step.

The estimation process for the RBB to TBR state transition (figure 6.7) shows

improvements in the surf zone area estimations at 21:00 (see the evolution at (x, y) ≈
(16, 7) and (x, y) ≈ (24, 4)). In the deeper areas the modeled deposition rate seems

to be higher than the ones observed in the trough area. This contrasts with the case

of the surf zone where the model deposition rates are lower. Aside from this local

changes, the initial low RMSEs values suggest that the initial parameter set is able to

reproduce the morphodynamic evolution accurately, which explains the limited effects

of the optimization. Furthermore, during the beginning of the simulation the model

sensitivity to the control parameters is usually low, hindering the capacity to improve

the model performance at initial simulation times.

The transition from a TBR to a LTT beach state (see figure 6.8) is particularly

interesting due to the behavior of experiment TBR during the estimation process.

During the first two iterations a considerable improvement at the last two observation

times takes place. For the first observation time a significant improvement of the

near shore area is observed, but the rest of the spatial domain is hardly improved.

For the other two observation times improvements in the near shore area take place

in the subsequent iterations. Most of the improvements on the near shore area are

reversed in the last iteration. Notice the error drop that takes place in the deeper

area (y > 8) in the last iteration. As the error in the deeper area is decreased the

errors in the near shore area are considerably increased; this suggests the necessity of

considering some parameters as space dependent. This behavior is in agreement with

what Serafy et al. (2011); Altaf et al. (2010) report in their estimation process for a

North Sea Delft3D model of particulate matter and tidal behavior, respectively. The

fact that the last two observations are so close together, biases the estimation process

because changes that produce an improvement in the initial observation at the cost

of a marginal deterioration in the other two observations are likely to be discarded.

Despite a slight increase in the RMSE in iteration 3 (31:20), figure 6.8 shows an

increase in the error in highly dynamic areas and an overall low and smooth error map

in the rest of the domain. This smoothness is lost again in iteration 4. For the first

three iterations, the morphodynamic model is eroding the deep areas excessively as

can be seen at coordinate (17,9) for the three observations.

Experiment LTT (settling of the LTT state, figure 6.9) shows a consistent improve-

ment of the model performance during the optimization process. The overall decrease

of the errors suggests that the model is capable of reproducing the relevant dynamics

during this phase of the morphodynamic evolution. Bear in mind that the simulation

spans a considerably longer time than that of the other 3 cases. The model results

shown in figure 6.4 suggest some difficulties to reconstruct the shoreline behavior,

but figure 6.9 shows that this is more likely due to a poor prior parameter set. The

improvement of the model in the shallow areas is very significant for times 59:40 and



80 CHAPTER 6. LABORATORY DATA

Figure 6.7: Experiment RBB: Difference between the morphodynamic model
and the observations (model − observations) for the four updates. Positive val-
ues (green to red) represent areas where the model predicts larger depths than
measured, negative values indicate an under-prediction of the water depth.
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Figure 6.8: Experiment TBR: Difference between the morphodynamic model
and the observations (model − observations) for the first four updates. Positive
values (green to red) represent areas where the model predicts larger depths than
measured, negative values indicate an under-prediction of the water depth.
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Figure 6.9: Experiment LTT: Difference between the morphodynamic model
and the observations (model − observations) for each update. Positive values
(green to red) represent areas where the model predicts larger depths than mea-
sured, negative values indicate an under-prediction of the water depth.

66:00; at time 51:40, on the other hand, the model shows an increase in the error.

Again the trade-off between performance in the shallow areas and in the deeper areas

is observed by comparing the performance of the model at time 66:00 for iterations 1

and 2. Nevertheless the rmse actually had a small increase in the process.

6.3.2 Parameter sets

Figure 6.10 shows the parameter changes relative to the standard deviation for each

experiment. The changes have been normalized (see the standard deviation in table

6.2) to avoid scaling issues.

The estimation process for the transition between LBT and RBB beach states show

considerable changes in viscosity, diffusivity, drying and flooding factor and the wave

properties. The wave direction, in particular, is changed in the order of two standard

deviations, suggesting that the model has trouble reconstructing the proper alongshore

current for perpendicular wave incidence. The decrease of the roughness coefficient

in the u-direction should lower the bed shear stresses close to the shore where the

alongshore current is dominating. These two changes explain the improvement of

the model performance in the shallow area just in front of the shoreline. In general,

the parameter changes result in a reduced sediment transport. A significant decrease
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of the significant wave height and peak period considerably lowers the wave energy

flux in the system, lowering the pickup and transport of sediments due to waves.

Furthermore, the current related energy is dissipated faster by means of a higher

viscosity. Finally, the decrease of the factors for suspended sediment transport (SusW

and Sus) considerably lowers the model dynamics. Consequently, the erosion rates in

the deep area are considerably diminished and the deposition rates in the shoreline

area are increased. The sign of the changes is consistent in all the iterations for most

of the parameters. The evolution shows significant changes in the parameter set from

iteration to iteration. Despite these changes, the morphodynamic behavior is not

showing important variations (stable rmse and objective function).

For the transition from RBB to TBR states, the changes are significantly smaller

than those observed in the rest of experiments. Nonetheless, the threshold for drying

and flooding and the wave direction are changed in the order of one standard deviation

as the estimation process takes place. Notice that after the second iteration the

absolute change of the drying and flooding parameter is progressively decreased. The

roughness coefficients follow a very similar behavior. A considerable increase in the

wave significant height is observed in the fifth iteration. The increase in the wave

height may explain why the suspended sediment transport factors (SUS and SUSW)

are no longer increased in the fifth iteration. An increase in the sediment transport

process is necessary, and it is achieved either by increasing the suspended sediment

transport factors (as seen in the first four updates) or by increasing the wave significant

height (as seen in the fifth update). The last update is interesting in the sense that

it achieves the lowest cost function by only significantly modifying the wave direction

of incidence and the wave height.

The first two iterations of the estimation of the transition from TBR to LTT

states, show a significant increase of the eddy diffusivity coefficient and a decrease in

the wave peak period. Less substantial changes are observed in the roughness coef-

ficients, the threshold for cell drying and flooding, the factor for suspended sediment

reference concentration and the wave significant height. In the third iteration there

is a significant increase in the objective function which is probably explained by an

unexpected increase of the wave significant height. Interestingly, this change is not

reversed in the next iteration. In fact, it gets intensified and triggers drastic changes

in other parameters. To compensate for the increased wave height, the wave period is

lowered considerably along with the factor for suspended sediment reference concen-

tration, the roughness coefficients and the wave related roughness (RWAVE). These

changes show a very positive impact in the deep zone area but produces difficulties

in the breaking zone were the excess energy intensifies the model errors. Notice that

analysis 3 appears to have a positive effect in the deep area at time 31:20 and that

analysis 4 considerably enhances the simulation in the same zone at all observation

times. Curiously, the morphodynamic behavior in the deeper area appears to be con-

siderably better parameterized with analysis 4 than with analysis 2. The evolution of
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the changes also shows the correlation between the morphodynamic parameters. Also

surprising is that the factors for wave related sediment transport (SusW and BedW)

are hardly changed in analysis 3 and 4; this suggests that they have an undesirable

effect in the deep area were the gain is taking place.

Experiment LTT shows significant changes in the viscosity and the diffusivity.

Notice that the wave characteristics are consistently decreased. This, along with

the considerable decrease of the factor for suspended sediment transport (Sus) and

the increase of the viscosity, suggests that the estimation process is lowering the

energy available in the system. As in the case of experiment LBT, there is a negative

change in the wave direction (this is also observed in experiment RBB) as well as

in the roughness coefficient in the u-velocity direction. It is worth noting that for

analysis 1 the changes in the wave related roughness is observed (RWAVE) as well

in the factor for suspended reference concentration (Sus) are very similar to those

observed in analysis 4 of experiment TBR. The effects of these two changes seem to

produce (as in experiment TBR) a considerable improvement in the deep areas of the

morphodynamic model (see figure 6.4).

6.3.3 Model sensitivity to parameters

The model sensitivity measures the magnitude of the changes in the model output

caused by a change in an input parameter. High model sensitivity to a parameter

indicates that small perturbations in the parameter value result in significant changes

in the model output. On the contrary, low model sensitivities indicate that the model

output is changed only when input values are modified considerably. Mathematically,

the model sensitivity to input parameters is estimated as the model derivative with

respect to the parameter of interest. Figure 6.11 shows the model sensitivities to

the parameter set. To take into account the difference in orders of magnitude of

the different parameters, the model sensitivities have been multiplied by the standard

deviation of each input parameter. In this way, the results may be compared in a

straightforward manner. The columns in the figure correspond to the four experiments

and each row presents the model sensitivity to one of the input parameters. The

vertical axis of each graph shows the mode number (1 to 40), being 1 the most

important and 40 the least important in terms of energy. The horizontal axis of each

graph shows the simulation time.

For the first three experiments (LBT, RBB and TBR) similar parameter sensitivities

are observed. The horizontal eddy diffusivity, wave-related suspended sediment trans-

port factor, horizontal eddy viscosity and suspended sediment reference concentration

factor appear to be the most relevant parameters, followed by the wave character-

istics and the roughness coefficients. For experiment LTT (LTT state development)

the importance of the hydrodynamic parameters is significantly lower. At this stage,

the wave-related suspended sediment transport factor has the highest sensitivity, fol-

lowed by the horizontal eddy diffusivity, the threshold depth for drying and flooding,
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Figure 6.11: Model sensitivities to the parameter set. Each line of graphs shows
the model sensitivity to the parameter specified on the left hand side of the line.
The vertical axis of each graph shows the mode number (1 to 40), being 1 the most
important and 40 the least important in terms of energy. The sensitivity value has
been rescaled with the standard deviation of each parameter to take into account
its order of magnitude.

the suspended sediment reference concentration factor and the wave-related bed-load

sediment transport factor.

The temporal change of the model sensitivities is clearly observed for each transi-

tion phase and parameter. As in most mathematical models, parameter sensitivities

show a gradual buildup in time. The sensitivity is equal to zero in all experiments for

the parameter Aksfac; which relates to Van Rijn’s reference height. This is not surpris-

ing as the model only takes into account this parameter depending on the value of the

water depth, the estimated ripple factor and the current-related effective roughness

height (see Deltares, 2009a, 348-349). Notice how the factor for erosion in adjacent

dry cells (ThetSD) increases in importance over experiment TBR. At this stage the

evolution of the rip channels takes place and the shallow shoals attach to the beach

Michallet et al. (2013). Naturally the beach erosion parameter plays an important role

at this stage.
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The graphs show the influence that each parameter has on each projection mode.

The importance of each mode decreases as the mode number increases. The trans-

mission of the sensitivities from mode to mode takes place sequentially. The most

important mode is the first to be affected by parameter changes, then the second

most important and so on until the complete subspace is sensitive to changes in the

parameters. For the TBR to LTT transition the increase and transmission of the

model sensitivities take place at a higher rate. By the end of the model simulation,

the complete subspace is being affected by the horizontal eddy diffusivity and viscosity,

and the wave-related suspended sediment transport factor. This clearly shows how the

morphodynamic evolution increases in complexity.

The results suggest a complex interaction between the hydrodynamic and the mor-

phodynamic components of the system. The low sensitivity at initial simulation times

suggests that the morphodynamic system is more sensitive to the initial bathymetry

at this point. Nevertheless, a detailed analysis is necessary to evaluate the extent and

significance of the model sensitivity to the initial bathymetry.

6.4 Discussion

A model reduced 4DVar assimilation scheme has been successfully implemented. The

results presented here suggest that the evolution of the morphodynamic system cannot

be easily captured by parameters that are constant in time, it is necessary to consider

some of the parameters as time dependent. Also, further analysis is necessary to eval-

uate the effects of using a 2D depth averaged morphodynamic system. Furthermore,

the gradual buildup of sensitivities in time for the different projection modes suggests

that for the case of parameter estimation the rank of the problem gradually increases

as the simulation time increases.

The morphodynamic model seems to lack the necessary physics to reproduce some

of the features observed in laboratory experiment. The observed trough ((x, y) ≈
(10, 8.5) and t = (15 : 40 − 31 : 20)), in particular, is not being generated by the

model despite it being incipient in the first observation (9:40). A possible explanation

of this model limitation is given by Ranasinghe et al. (2004). According to them,

for the generation of such features a 3D morphodynamic model that takes into ac-

count the vertical components of the velocity field. The model also fails to produce

accurate deposition and erosion rates to match the observations in both deep and

shallow areas simultaneously. Without the trough, the subsequent morphodynamic

evolution diverges considerably from the observations. This behavior might be solved

by implementing a full 3 dimensional model or by including a state estimation along

with the parameter estimation scheme. Aside from that, the increase in the wave di-

rection of incidence causes an increase in the along shore current, which is controlled

by a considerable increase of the bed roughness (in terms of a decrease of the Chezy

coefficient) in the U direction. The increase of the eddy diffusivity and of the wave
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significant height causes an increase in the sediment transport. Consequently the fac-

tor for suspended sediment transport factor is lowered considerably to account for the

additional wave-energy.

The results suggest that the morphodynamic model performs differently in shallow

areas then in deep areas. As the performance of the shallow areas is improved, the

errors in the deeper areas increase. Other attempts to optimize morphodynamic model

performance (Serafy et al., 2011) have reached the same conclusion. Further research

is necessary to assess the causes of this phenomenon. A possible explanation could be

the difference in process scales if deep and shallow physical processes.



Chapter 7

Estimation with time exposure (Argus)

images

In this chapter the ensemble model order reduction (enMOR) is implemented for a

morphodynamic model of Egmond aan Zee, The Netherlands. As described in 3

enMOR constructs a reduced order model via an optimization process instead of the

more conventional finite difference approach (see chapter 3). In chapter 6, a partial

implementation of the enMOR was shown where only the directional derivatives were

estimated with the alternative method. Here the enMOR as presented in chapter 3

is implemented and tested. The objective is two fold. The first objective is to assess

the performance of the proposed method for data assimilation purposes. The second

objective is to evaluate the feasibility of using time exposure images for assimilating

data into a morphodynamic model.

The implementation of an operational data assimilation scheme for a real study

case is challenging in various ways. Time exposure images measure roller dissipation

in an indirect manner. For a detailed explanation on how the roller energy dissipation

is computed from time exposure images, the reader is referred to the work of van

Dongeren et al. (2008). The estimation process assumes that the wave energy is

completely dissipated in the breaking zone, and that pixel intensity is a measure of the

amount of dissipation that is taking place in the corresponding area. By knowing the

wave dominant conditions the total roller energy can be estimated and the way in which

it is dissipated in the breaking zone is given by the observed pixel intensity changes. In

connection to measurement errors, the implications of these assumptions are difficult

to quantify. Bear in mind that the image used in the process is a composition of several

time exposure images. This involves several geometric transformations in which error

estimation is not easily accessible. Posterior error estimation is also difficult because

energy dissipation cannot be measured directly. To the author’s knowledge there is

89
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no work that addresses this issue. Uunk et al. (2010) make an attempt to estimate

the bathymetric uncertainties for values derived from time exposure images and van

Dongeren et al. (2008) use ad-hoc error definitions for their data assimilation method

(Beachwizard), but a detailed analysis on how the measurement errors propagate as

the dissipation is estimated is missing.

7.1 Study area

Egmond aan Zee is a wave dominated system located in the dutch province of North

Holland. It is part of a long continuous system of sandy beaches and multiple barred

coastal areas (Short, 1992; Wijnberg et al., 2004). Its morphology is characterized

by a shore parallel double/triple sandbar system with a beach slope of about 1:30

(Kroon, 1991; Short, 1992). Its sediments are well sorted medium to fine sands

(d50 ≈ [200, 300]µm). The average offshore wave climate consists of waves with a

mean annual height of 1.3 m and a peak period of 5.7 s. The tide is semi-diurnal and

has a mean tidal range of 1.2 m (neap tide) to 2.1 m (spring tide). A more detailed

description of the system can be found in the works by Short (1992); Aagaard et al.

(2005).

7.2 Numerical model

A three dimensional morphodynamic Delft3D model was used to simulate the study

site. As in previous sections, the SWAN wave simulator was used to reconstruct the

wave conditions and the Delft3D suite was used to reconstruct the hydraulic and

morphodynamic processes of the study area. The model characteristics are similar

to the ones used in Briere et al. (2011) for the estimation of roller parameters. The

hydrodynamic model uses a grid of 66 cells across-shore by 141 along-shore by 12

layers vertically. The grid covers a 1300 m (cross shore) by 5600 m (along shore)

area. The wave model is using a coarser grid with 81 by 134 gridcells covering an area

7000 m (along shore) long by 1500 m (cross shore) wide.

The model configuration used by Briere et al. (2011) was used in the background

simulation of the data assimilation scheme. A 10.5 hours simulation was implemented

to reconstruct the system’s evolution between 00:00 and 10:30 of the 7th of August

of 2013. The wave and flow modules are coupled on-line and they communicate every

30 min of hydrodynamic simulation to keep the wave conditions updated according

to the hydrodynamic and morphodynamic evolution. The hydrodynamic simulations

start at 00:00, and include a 4 hour spin up time where no morphodynamic updates

take place. From 4:00AM until 11:00AM a full hydro-morphodynamic simulation takes

place.

The available wave properties are adjusted time dependent observations from the

close-by Ijmuiden buoy. The adjustment was done with a coarser Delft3D flow model
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Figure 7.1: Measured bathymetry at Egmond aan Zee on the 20th of August of
2011

to take into account the changes due to the distance between the station and the

study site. Measurements of wave direction of incidence, significant height and peak

period are available every hour.

A set of water depths measurements is available from the 20th of August of 2012,

just two weeks after the time exposure images were taken. The water depth ob-

servations cover most of the modeled domain with a high non-homogeneous spatial

resolution. The measured water depths were interpolated to the model grid and were

used as the initial bathymetry for the hydrodynamic simulations. In figure 7.1 the

observed bathymetry (20th of August) is shown. The bed consists of a homogeneous

layer of sand with a median diameter of 280 µm and a specific gravity of 2650 kg/m3.

Two Neumann type boundary conditions were prescribed for the north and south model

boundaries. On the open sea boundary the water levels are specified according to the

tidal conditions of the study site. The wave forcing has only been prescribed at the

open sea boundary. A time step of 12 seconds is used for the hydrodynamic estimation.

7.3 Observations and Observation Operator

The Egmond aan Zee Argus system is composed of 5 high resolution cameras located

on the J.C.J van Speijk lighthouse. It was first installed in 1999 for coastal zone

management. Lately, efforts have been made to enhance the quality of the image

composition and post-processing techniques within the development of the CoSMoS

prediction system (van Dongeren et al., 2013). A set of time exposure images taken

during August 2011 with variable temporal coverage is available. August 7th is the

day with most observations with 10 images available at, 6:00AM, 7:00AM, 7:30AM,

9:30AM, 10:00AM, 10:30AM, 11:00AM, 11:30AM, 12:00M, and 12:30AM. Based on
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these time exposure images, roller energy dissipation maps have been produced (van

Dongeren et al., 2013). The analysis shown in this chapter uses part of this data,

namely the observations at: 7:30AM, 9:30AM, 10:00AM, and 10:30AM.

The spatial domain of the observations covers a 2800 m along shore by 1300 m

cross shore area. The spatial resolution is significantly higher than the one of the

model, with a dissipation measurement every 20 m in the along shore direction and

every 5 m in the cross shore direction. To match the model estimations and the

observations, a linear observation operator that estimates a weighed average of the

six nearest observations to each model result is used. The weights are given by the

distance between the measurement and the model result. The error of the dissipation

estimations is assumed constant and equal to 20N/m, this estimation was provided

by experts.

7.4 Roller energy dissipation in Delft3D

Since the observations used for the analyzes presented here are of roller energy dis-

sipation, a brief explanation on the computation of this quantity will be presented.

Roller energy dissipation data is not an output of Delft3D; nevertheless, all the neces-

sary information to compute it can be read from the wave and flow output files. The

operator to calculate the roller energy dissipation, Dr, is given by,

Dr = (2gβr)Er/Cw, (7.1)

(7.2)

with Cw = WL/Tp. The wave front slope (roller slope) is given by βr, Er is the

roller energy, and Cw, WL and Tp stand for wave celerity, wave length and wave peak

period, respectively. All these variables can be found in the output files for each model

grid cell at each saving time.

The roller energy in Delft3D is computed by solving the stationary balance equation

given by,

∂

∂x
(2ErCwcosθ) +

∂

∂y
(2ErCwsinθ) = Dw −Dr, with (7.3)

Dw = 0.25αrρwgfpexp

(
−Hmax

H2
rms

)(
H2
max +H2

rms

)
, and

Hmax =
0.88

k
tanh

( γw
0.88

khref

)
.

Here the short wave dissipation is represented by Dw, x and y stand for horizontal

coordinates, θ is the wave direction of incidence, αr is a user defined factor that

controls the wave height along the cross-shore profile (high values of αr imply lower

values of wave height), ρw is the water density, g is the gravitational acceleration, fp
is the spectral peak frequency, Hrms and Hmax are the root mean square wave height
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and the maximum wave height respectively, k is the wave number, href is water depth,

and, lastly, γw is a user defined parameter that controls the wave height in the surf

zone by imposing a maximum wave height in terms of the water depth.

7.5 Implementation and Results

The analysis of the results focuses on the performance of the proposed method for

data assimilation and the feasibility of using time exposure images for assimilating data

into Delft3D. From the available observations, only the 7:30AM roller dissipation map

was assimilated into the model, the rest of the observations were used to assess its

prediction skills. The idea is to assess to which extent the scheme and the model are

able to find a reasonable parameter set capable of reconstructing the observation at

7:30AM. Regarding the prediction skills of the model, they are assessed by evaluating

the cost function at later observation times (9:30AM - 10:30AM).

The estimation parameter set consists of 13 model parameters out of which 2,

the wave significant height and the wave peak period, are time dependent. These

two parameters are in fact vectors consisting of 4 elements each; one every hour

between 4:00AM and 7:00AM. The parameters and their background (prior) values are

presented in table 7.1 (See Parameters and Background). Notice that the bathymetry

is not part of the state and therefore is not directly estimated in the estimation process.

Instead, it is updated indirectly by changing the parameters shown in table 7.1.

As in the case of model reduced 4D-Var the implementation of the data assimila-

tion scheme consists of three main steps: (1) principal component analysis, (2) model

order reduction and (3) assimilation of observations. An ensemble of 45 model exe-

cutions was used for the principal component analysis and the model order reduction.

The ensemble includes a background simulation with the initial parameter set (see

Background in table 7.1), and 44 perturbed simulations where a normally distributed

(N(0, σ2)) random noise has been added to each parameter. The standard deviations,

σ, used for the additive noises are presented in table 7.1 (see Standard Deviation).

From these 44 model simulations 4 crashed due to various reasons; thus, the avail-

able ensemble size is 40. All (40) ensemble members where used for the estimation

of the ROM. To focus the efforts on the highly dynamic areas, observed dissipation

values lower than 3 N/m were not taken into account in the data assimilation process.

Given the number and order of magnitude of the innovations, the background term

(first term in the right hand side of equation 2.8) has a very small contribution in

the calculation of the cost function. For this reason, in the minimization process the

background value was multiplied by a factor equal to 1e-5 times the sum of squares

errors between the model (without update) and the observations. The main objective

of this rescaling is to keep the minimization from accepting nonphysical values.

A rank-20 ROM was used for the data assimilation process. The subspace of the

ROM preserves 47.2% of the total energy. For higher energy thresholds, the size of the
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Wave conditions for prediction

8:00 9:00 10:00

Hs [m] 1.31 1.53 1.80
Tp [s] 4.00 4.10 4.40

Table 7.2: Wave conditions used for predicting roller energy dissipation from 8:00
until 13:30.

Figure 7.2: Results of the principal components analysis: projection sub-space
used for the reduced order model.

reduced order model becomes too high. With 99.9% of the energy, for example, the

rank of the subspace is equal to 754, making the model order reduction too onerous.

The first four modes (12.3%, 6.3%, 4.3%, and 2.9%) of the principal components

analysis are presented in figure 7.2. All four modes show three high dynamic bands

(high absolute values in the map) consisting of the two bars and the shoreline area.

The higher intensities along the inner bar and the shoreline suggest that the model is

considerably more sensitive to parameter changes in these areas than along the outer

bar.

Figure 7.3 shows the cost function of the background (red with triangle) and

of the analysis (blue with square) at all observation times. The values of the cost



96 CHAPTER 7. ESTIMATION WITH ARGUS

Figure 7.3: Objective function for predictions.

function are also presented in section 2 of table 7.1 (see under Objective function

values). The difference in the cost function at 7:30AM is the result of the optimization

procedure, whereas the values at: 9:30AM, 10:00AM and 10:30AM, correspond to the

performance of the background and analysis for predicting the roller energy dissipation.

A significant improvement is observed in all cases. A reduction of 7.2% with respect to

the initial cost function is obtained at the assimilation time (7:30AM) and improved

predictions are obtained at later times: 7.3%, 12.2%, and 19.3% (see section 2 in

table 7.1) at 9:30AM, 10:00AM, and 10:30AM, respectively.

Significant changes in the parameter values are observed, see table 7.1. In par-

ticular, the wave breaker delay is increased significantly (almost 9 times its standard

deviation). The breaker delay parameter controls the position in which the wave break-

ing process starts and stops. It has been observed that there is a delay in the order

of a wave length before the waves actually start or stop breaking. When the breaker

delay is positive the delay is implemented by replacing the mean Stokes drift at the

position of interest with a Stokes drift weighted over a certain distance seaward. The

change of this parameter translates into a significant displacement of the breaking

zone shoreward. Additionally, the horizontal eddy diffusivity and viscosity are also

considerably increased in the analysis. These changes along with the increase of the

wave related roughness and the wave suspended sediment transport factor make the

system more energy dissipative and considerably enhance the material transport. This

translates into a different morphodynamic evolution. Figure 7.4 shows the bathymetric

differences between the background and the analysis simulations at observation times.

Most of the differences in the morphodynamic evolution of the system take place over

the bars and in the surf zone. The blue tones represent areas where the bathymetry
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Figure 7.4: Bathymetric differences between the background and the analysis
model simulations at the observation times. Negative values represent areas where
the analysis is deeper than the background.

is deeper in the analysis than in the background, while the red tones represent the

converse. Both the outer and the inner bars are being flattened in the analysis while

considerable deposition is observed in the surf zone; specially shoreward from the inner

bar. The spatial pattern in which the bathymetric changes are taking place seem to

be constant in time, i.e. only the intensity of the changes is varying in time. The

constant improvement in the cost function in the prediction phase might be closely

related to this change in the morphodynamic evolution but the influence of each of the

parameters is difficult to asses. More analysis is necessary to assess the implications

of the changes in the parameter set.

The effects of the data assimilation at 7:30AM is shown in figures 7.5 and 7.6

(upper-left panel). The upper panel of figure 7.5 shows the dissipation map coming

from the time exposure image, while the central and lower panels show the recon-

structed dissipation from the background and the analysis simulations, respectively.

The measurements show considerably higher roller energy dissipation values over the

outer bar than the model. In the surf zone, the background simulation shows a very

localized and intense energy dissipation over the inner bar and close to the shoreline

(see central panel), while the observations show a lower dissipation intensity on these

two areas. This difference could be partly explained by the model’s underestimation
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of the energy dissipation over the outer bar area. Nevertheless, the differences ob-

served at the southern part of the beach (between 52.6°and 52.61°), where the effect

of the outer bar is negligible, suggest that either the model is overestimating the to-

tal amount of roller energy, or the dissipation maps coming from the time exposure

images are underestimating it.

The data assimilation effects on the simulation is mainly observed as a decrease

of the dissipation values over the inner bar and the shoreline (compare the central

and the lower panels of figure 7.5). Notice that the spatial distribution of the map is

not significantly changed. The effects of the inner bar between 52.61°and 52.62°are

largely underestimated in the model simulations which causes the dissipation to take

place at the shoreline. This suggests that the bathymetry used in this area differs

considerably from the real one. Between 52.62°and 52.63°the observed features are

better reconstructed by the model and the effects of the data assimilation in reducing

the dissipation values are significant.

The upper left panel of figure 7.6 shows the histogram (empirical distribution) of

model deviations with respect to observations at 7:30AM. The background simulation

underestimation of energy dissipation in the outer bar and in the surf zone is observed

as a bias in the distribution. On the other hand, the background overestimation

(negative deviations) at the inner bar and shoreline area is observed as the fat negative

tail of the distribution. A significant decrease of the background bias (represented by

the shift in the mode) is observed in the analysis. The over estimation is also improved

but the asymmetry of the deviation’s distribution is still observed in the analysis.

Figure 7.7 shows the energy dissipation maps at the prediction times. Notice that in

all cases the background simulation shows high dissipation values concentrated along

two narrow bands over the inner bar and the near shoreline areas. These two bands can

also be identified in the observations but in this case the overall dissipation takes place

over most of the surf zone rather than at the inner bar and the shoreline. Regarding the

outer bar both the background and the analysis simulations are able to reconstruct the

observed temporal variations and the changes in magnitude. Interestingly, the total

dissipation presented in these observations is considerably higher than that observed

at 7:30AM; to the point that the model seems to be underestimating the total roller

energy in the system. This drastic increase of roller energy dissipation is not observed

in the simulation results suggesting that it is not caused by changes of the prevailing

wave conditions. The differences could be related to the quality of the time exposure

images (e.g. low contrast) or the estimation of the dissipation maps.

Regarding the data assimilation process, its main observed contribution consists

of increasing the area over which the dissipation is taking place. This has the double

effect of lowering the values over the narrow bands where the background simulation

overestimates the dissipation and increasing them in the rest of the surf zone where

they were being underestimated. These changes are more clearly observed in figure

7.6 (upper-right and lower panels). The overall distribution of the deviations is very
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Figure 7.5: Observed and simulated dissipation maps at 7:30AM. Upper panel:
Roller energy dissipation measurements derived from time exposure images. Cen-
tral panel: Roller energy dissipation map estimated with the background model.
Lower Panel: Roller energy dissipation map estimated with the analysis model.
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Figure 7.6: Histogram of model deviations from observed values (observed minus
modeled). The frequency refers to the number of deviations at each threshold.
The gray dashed lines mark the observations standard error. Negative deviations
represent model overestimation.

similar in all prediction times. In contrast with the distribution at 7:30AM, the rest

of the histograms show a significant positive tail suggesting that the models are un-

derestimating high dissipation values. This is explained by the change in total roller

energy observed in the measured dissipation maps at 9:30AM and later. Notice that

the high negative deviations (< −20) quickly drop below 10.

At 9:30AM, the improvements due to the data assimilation are similar to the ones

at 7:30AM. While the background deviation distribution has a slight positive bias

(underestimation) the analysis shows a slight negative bias. The analysis’ tails on the

other hand show a significant improvement over the background. At 10:00AM the

models seem to be unbiased and the main gain of the data assimilation consists of

decreasing the number of negative deviations while very little is achieved regarding

the positive ones. At 10:30AM the background deviations show a slight negative bias

which is corrected in the data assimilation. Additionally, significant improvements in
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both the negative and the positive tails are observed.

In general, the analysis seems to be able to correct the biases observed in the

background simulation and significant improvements are achieved in the tails of the

distributions of the deviations. This is especially observed in the surf zone between

52.61°and 52.625°, where the analysis results in a considerably smoother dissipation

map (compare, for instance, the analysis and the background at time 9:30AM). Despite

the notable differences in the surf zone between the background simulation and the

analysis, the dissipation over the outer bar is very similar.

7.6 Discussion

The ensemble model order reduction and 4DVar proposed in chapter 3 was success-

fully implemented for the Egmond aan Zee morphodynamic model. For the Delft3D

modeling suite, the implementation of the method proved to be more practical than

the common finite difference approach. The experiment presented here aimed to test

the efficiency and potential of using data assimilation to estimate a set of 13 input pa-

rameters from roller dissipation maps produced by the Argus system. The results show

that the technique is able to find a parameter set that considerably improves the mod-

eling accuracy. The ensemble model order reduction and 4DVar can be successfully

used as part of operational forecasting systems of morphodynamic processes.

The model order reduction, as presented by Vermeulen and Heemink (2006), would

have required additional model executions; for estimating the dynamic components

(Dk) and the model sensitivity to parameter changes (Sk). These model runs should

be executed in short partial simulations to produce the desired piece-wise linear ap-

proximation. These partial executions proved to be cumbersome in previous imple-

mentations. First, minimizing the effects of restarting the model requires at least 2

hours spin-up time. This implies a 2.5 hours simulation for every 0.5 hours partial

execution. This means that each of the additional simulations required for the finite

difference estimation is three and a half times more expensive. Additionally, model

crashes/errors (such as the 4 model crashes reported previously) due to numerical

issues and other events (e.g. pc errors) occur at varying rates between 2% and up

to 15% depending on the model parameter or the characteristics of the mode. Aside

from the numerical issues of the model execution, determining the size of the finite

difference perturbation for each parameter/mode requires additional test simulations.

In the case of the directional derivative for the ROM dynamic component, Dk, the

perturbation size choice is particularly difficult because these perturbations are not

mass conservative and often produce model instabilities. Taking all of these factors

into account, the model simulations required by the Vermeulen’s method usually take

considerably more time than the minimization process took. From a practical point of

view, the implementation presented here is considerably more efficient than the finite

difference based estimation.
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The morphodynamic evolution of the system is considerably changed by the changes

in the hydro-morphodynamic parameter values: horizontal eddy viscosity, horizontal

eddy diffusivity, wave suspended sediment transport factor, and wave related rough-

ness. The increase of the Chezy coefficient, lowering the bed roughness, has an impact

on the bed shear stress limiting the sediment entrainment. This lowers the amount of

available sediment in the water column. The increase of the horizontal eddy diffusion

and the wave suspended sediment transport factor increases the transport of suspended

sediment, while the increase of eddy viscosity and wave relate roughness makes the

system more energy dissipative. It is difficult to assess what are the practical implica-

tions of these changes in the model; a detailed sensitivity analysis is necessary to assess

to which extent each parameter change is affecting the morphodynamic evolution of

the system. Nevertheless, the data assimilation resulted in a more homogeneous dissi-

pation map that is in agreement with the observed dissipation pattern. The constant

cost function decrease observed in the predictions suggests that the morphodynamic

evolution of the analysis has been improved. Unfortunately, there is no bathymetric

data available to corroborate this. Longer simulations, where more observations are

assimilated into the model and more predictions are compared with measurements, can

provide more conclusive evidence about the performance of the water depth evolution

of the updated model.

The model order reduction method as implemented here constitutes a significant

step toward the development of a morphodynamic forecasting system. The next step

should be to implement the methodology in a sequential prediction - assimilation

work flow. Bear in mind, that the updated parameter vector presented here is set

to modify the bathymetry to match the observation; it is not necessarily the optimal

parameter combination for forecasting purposes. Several other developments and

implementations that might prove useful in this and other applications. The most

straightforward might be the use of the model ensemble to assess model uncertainty

in a similar fashion as in ensemble Kalman filtering. This model uncertainty could be

use to implement a weak constraint 4DVar with the reduced order model. Similarly,

the same ensemble could be used for a second outer loop if the parameter changes

are within the ensemble perturbations. Finally, an estimation of the reduced order

model error with respect to the full model should be easy to estimate by comparing

the capacity of the ROM to reconstruct the ensemble members. This information

would be useful to implement a weak constraint 4DVar.





Chapter 8

Conclusions

The development of adjoint-free variational methods has the potential to make their

implementation more practical while preserving some of the desired properties. This

thesis is concerned with the combined used of model order reduction methods and

variational data assimilation methods. The main objective of the work presented here

consists of assessing the potential use of model reduced 4DVar to estimate input

parameters in the field of morphodynamic modeling. Despite some implementation

issues, the method has been used in a number of other fields of study and shows

to be robust and consistent for parameter and state estimation. Here, its evaluation

has been done through three different applications. Some model characterization

analyses where done prior to the implementation of these applications. The analyses

mainly consisted of testing the restart-process in Delft3D, and studying the effects of

parameter perturbations in the model evolution. The results show that the restarting

process produces undesirable effects on the model’s evolution. Also, non-linear effects

are observed even for very small parameters perturbations. With these results in mind

the first application of model reduced 4DVar was implemented and consisted of a

small study case with synthetic observations. The main objective of this application

was to identify the implications of the model limitations (e.g. restarting process) on

the implementation of the data assimilation method. The results show that the use of

finite differences for the estimation of the reduced order model components constitutes

a methodological weakness. In response to this problem a novel finite-difference-free

methodology for model order reduction was proposed: ensemble model order reduction

(EnMOR). A partial implementation of EnMOR was attempted for a set of results

coming from a laboratory experiment. This second application aimed at evaluating

the performance of the new method and its limitations. The outcomes of this second

application show that the use of EnMOR for building the required linear approximation

effectively avoid the problems associated with the finite difference approach without

any detriment of the data assimilation process. Finally, EnMOR-4DVar was used

105
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to estimate input parameters for a morphodynamic model of Egmond aan Zee by

assimilating roller energy dissipation results coming from time exposure images. The

results show that the methodology successfully improves the model predictions for

short forecasting horizons, and its implementation offers significant advantages in

computational expense and robustness over the initial finite difference approach.

Despite the advance state of development of the Delft3D suite, the characterization

tests undertaken at the beginning of the research led to the identification of some

challenges in the implementation of the data assimilation method. The main problem

is related to the restarting procedure; as it generates undesired effects on the model

results and therefore lower the accuracy of the finite differences. The problem is linked

to the coupling of the wave and flow modules. At the beginning of each model restart,

one timestep of the flow model is integrated without wave forcings. For models of swell

beaches, the lack of forcings during one timestep generates an undesired wave,which

induces significant changes in the morphodynamic evolution. Aside from this bug in the

restarting procedure, the choice of the parameter perturbation for finite differences is

not straightforward. Most importantly, the relevance of the nonlinear effects triggered

by perturbing the parameter set is time dependent. Regarding the wave significant

height, the non-linear effects seem to be present in the beginning of the simulation

and not so much in the later simulation times. In this regard, an intelligent selection of

modes in combination with an appropriate choice of perturbations for their generation,

seems to have a significant impact on the cost-effectiveness of the technique. It is

difficult to diagnose the most appropriate perturbation magnitude since they are: case,

model and initial condition dependent. The sign (direction) of the perturbation has

effects on the overall performance of the data assimilation process. This is a difficulty

that may be overcome by making extra perturbations in both directions, since this

increases significantly the performance of the scheme. Although this implies more

computations, the perturbations come at a lower expense than an extra outer loop.

On the other hand, smaller perturbations might also solve the problem. By keeping the

perturbations within the linear threshold of the model, the effects of the perturbations

should be independent of the sign. The number of modes proved to be relevant to

minimize the dispersion of the analyzes.

The use of finite differences in the estimation of the reduced order model compo-

nents offers several advantages and disadvantages. On the one hand, the estimation

of finite differences requires a detailed characterization of the model and a properly

functioning restarting procedure. A detail characterization of the model is not always

available and its development is computationally expensive. A working re-starting pro-

cedure on the other hand, is mostly available although its use may trigger undesired

errors in the modeling process. On the other hand, finite differences produce an esti-

mate of model the model sensitivities to various elements which provides significant

data about the model behavior. Accurate and detailed information about the model

sensitivities is useful for a number of other analyses including physical characterization
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of processes and observation networks optimization. In short, the finite difference ap-

proach is not robust but its results are highly useful. To solve some of the weaknesses

observed in the construction of the reduced order model, Ensemble model order re-

duction (EnMOR) is a method for building low rank linear approximations of complex

non-linear models that does not use finite difference estimations in the process. The

method uses concepts from data assimilation to estimate the components of the re-

duced order model. In short, in ensemble model order reduction the coefficients of

the linear approximation are estimated using a 4DVar method that assimilates model

results into the reduced order model. To keep computational costs low, the snapshots

required to compute the subspace basis (projection basis) is also used in the estima-

tion process. Just as in model reduced 4DVar, EnMOR can be combined with 4DVar

(EnMOR-4DVar) for data assimilation purposes.

EnMOR-4DVAR was successfully implemented for a laboratory experiment and for

the Egmond aan Zee using the Delft3D modeling suite. Its implementation proved to

be more practical than the common finite difference approach. In fact, the compu-

tational expense of EnMOR-4DVar is comparable to commonly used ensemble based

data assimilation schemes such as ensemble Kalman filter. Also, the scheme shows

to be very robust to deal with observation uncertainties. The results show that the

combination of linear low rank approximations of complex models and 4D variational

methods, can be used effectively in the context of data assimilation. The results

presented here show that the technique is able to find sets of parameters that con-

siderably improve the model performance. Furthermore, it is able to reconstruct the

observed system’s bathymetry by changing the model input parameters suggesting

that the EnMOR-4DVar can be successfully used as part of an operational forecasting

systems of morphodynamic processes.

Regarding the physical processes, results from the laboratory experiment suggest

a complex interaction between the hydrodynamic and the morphodynamic compo-

nents of the system. The observed results show that the morphodynamic model is

limited in its capacity to reconstruct some of the processes observed in the laboratory.

Nevertheless, the results obtained from the use of time exposure images show that

the assimilation of roller energy dissipation data may be used to recover the system’s

bathymetry. The low sensitivity at initial simulation times suggests that the morpho-

dynamic system is more sensitive to the initial bathymetry at this point. Nevertheless,

a detailed analysis is necessary to evaluate the extent and significance of the model

sensitivity to the initial bathymetry. The model is not able to reconstruct the observed

troughs and pits appearing under extreme wave conditions. On the other hand, the

model is capable of reconstructing the down-state transitions satisfactorily. The re-

sults suggest a morphodynamic system that behaves differently in shallow areas and

deep areas. Other attempts to optimize morphodynamic model performance (Serafy

et al., 2011) have reached the same conclusion. Further research is necessary to assess

the causes of this phenomenon. A possible explanation could be the physical scale
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differences between deep and shallow morphodynamic processes. Aside from this, the

bathymetry evolution seems to be insensible to the parameter set used in chapter 7, at

least within the 4 hours morphodynamic simulation time. Further research regarding

its dependence to the initial bathymetry is necessary. Aside from that, the estima-

tion shows that an accurate reconstruction of bathymetric states from unknown initial

conditions is feasible.

8.1 Insights into future work

In order to assess the real potential of EnMOR - 4DVar, a bigger study case with

real observations and a larger number of parameters is advised. An application of the

technique that includes in the state vector the initial bathymetry, morphological pa-

rameters, hydraulic parameters and numerical parameters could show the full potential

of the data assimilation scheme presented here. An important asset of the EnMOR

4DVar is that it provides information about the adjoint of the model. This information

is useful for many additional analyzes. Daescu and Carmichael (2010), for example,

used this information for observation network optimization. Further analysis is neces-

sary to determine if the information about the adjoint produced with this technique

could be used in such applications.

State estimation is probably the best manner for bathymetry estimation. From the

results acquired in the experiments implemented here, the only way to work around

Delft3D’s limitations to generate bar-trough systems is to include bathymetry estima-

tion in the data assimilation process. The implementation of such a data assimilation

process with the model reduced 4DVar demands some additional considerations not

discussed in this manuscript. The main issue is related to the considerable increase in

state size. An efficient and flexible re-parameterization of the bathymetry is necessary

for solving the problem. This re-parameterization could be attained by the implemen-

tation of a singular value decomposition on a series of possible initial bathymetries.

Further characterization of the reduced order model is necessary to enhance the

scheme’s potential. An estimation of its expected error with respect to Delft3D by

means of Monte Carlo methods is feasible. This information could be valuable to iden-

tify weaknesses in the reduced order model and therefore in the assimilation process.
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