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Abstract

With the following paper we are planning to present
and explore the possibilities of the the newly in-
troduced Poisson Flow Generative Model (PFGM).
More specifically, this work aims to introduce
the Conditional Poisson Flow Generative Model
(CoPFGM), which by extending the existing repos-
itory of the PFGM, it will be able to be trained
in a way that allows for conditional image sam-
pling. The work aims to provide a more modu-
lar solution that can be easily adjusted for multi-
ple data sets, including custom, as well as datasets
taken directly from large Python libraries such as
PyTorch and TensorFlow. Our proposed CoPFGM
consists of two steps: (i) modifying the input of un-
derlying UNet and (ii) modifying the loss function.
More specifically, for (i) we have augmented the in-
put channels of every image with one-hot-like class
conditional images, and about (ii) we are introduc-
ing an updated loss function which incorporates the
Cross-Entropy Loss of the generated images dur-
ing training. The proposed model is tested against
2 datasets, the MNIST, and the Dilbert dataset, the
latter, consists of 1100 custom images of the faces
of 6 characters taken from the Dilbert Comic-Strip.
The proposed model will be tested and presented
in the form of an Ablation Study, with which, we
show the conditional behavior of the channel aug-
mentation, and the image improvement in terms of
class representation with the Cross-Entropy loss.

1 Introduction
Conditional generative models, compared to unconditional

ones, as the name suggests, can generate/sample images that
satisfy a certain condition. Generative models are a power-
ful class of models capable of learning the underlying distri-
bution of the dataset. This allows for image generation that
is similar to the training data. Conditional image a gener-
ation has various benefits, including and not limited to ef-
ficiency and quality. Efficiency as less time and resources
are required during sampling process to get images from the
desired class. Quality, due to the fact that conditional gener-
ative models can often generate higher-quality samples than
unconditional models. This is because the conditioning infor-
mation provides additional structure that can help the model
to generate better samples. One popular example in the scope
of conditional generative models are the Conditional Genera-
tive Adversarial Nets (CGANs)1, which acted as the basis for
a lot of subsequent models2 3 4 5. In a few words, CGANS, by
incorporating the information of the label both at the gener-
ator as well as the discriminator, they were able to generate
images that belong to a certain class with high quality.

Deep generative models are slowly becoming part of the
everyday world. From the image6 1 7 8 and text9 10 up to and
not limited to audio11 12 generation, their quality can be com-
pared to and sometimes exceed the product of professionals
across different disciplines13. There are two types of genera-

tive models: deterministic, e.g., GANs, and probabilistic gen-
erative models, e.g., Diffusion14 15 1 and Poisson Flow Gen-
erative Model. Even though GANs have been around for a
longer time than Diffusion models, the latest has proven to
beat GAN on Image Synthesis in both terms of quality, train-
ing and sampling time16.

While other Diffusion models account for conditional
image generation via embeddings or simply the use of labels,
Poisson Flow Generative Model initial repository does not
directly address such needs. Therefore, the purpose of this
paper is to introduce the concept of conditional sampling im-
ages using the Poisson Flow Generative Model (PFGM)6 17

and address the following questions.

1. How can we introduce the content of the label of every
image to the model/underlying neural network?

2. How should the existing loss function needs to be modi-
fied in order to account for conditional image generation.

3. What changes need to be made in terms of the over-
all code structure to support training such a conditional
model?

The rest of the paper is structured as follows. In Sec-
tion 2, we will present all the related work and background
information regarding this paper. Section 3 will analyze the
Methodology, including the proposed solution in detail. In
Section 4, the Evaluation of the findings and the results and
a small discussion about the the whole project will be given.
Following that, We will mention the Responsible Research
related to our project, and lastly, we will make some conclu-
sions and propose some future work for this project.

2 Background and related work
In this section we will go over some important ideas and

concepts which later are going to be utilized for the method-
ology section. Including the PFGM model itself, and how is
the Loss Function derived and what it represents, as well as
the formula for the Cross-Entropy Loss.

2.1 Poisson Flow Generative Models Overview
The idea underlying the PFGMs6 draws parallelism with

its predecessor, the Diffusion Model15. While the latest uses
principles in thermodynamics to add noise to images and
then try to ’de-noise’ them, PFGMs are treating the pixels
as charged particles and by borrowing laws from electrostat-
ics, are able to corrupt the images with random noise. More
specifically, as the name suggests, using the Poisson Equa-
tion the authors were able to express the particle dynamics in
a Poisson field, with both a theoretical and an empirical equa-
tion. Eventually by utilizing backward Ordinary Differential
Equation solvers, they were able to generate samples from the
estimated underlying distribution. Following, we dive deeper
into the PFGM, especially how the loss the function is de-
rived, which loss function will be updated in our proposed
solution.

1https://stablediffusionweb.com/



Figure 1: Illustration of the positive Poisson Field progression over
time presented in O’Connor’s article about explanation of PFGM 20.

2.2 Deeper dive into PFGMs
Poisson Equation

Poisson’s equation, named after French physicist Siméon
Denis Poisson18, is a widely utilized elliptic partial differen-
tial equations in theoretical physics. It allows for calculat-
ing potential fields from known charge or mass distributions,
subsequently enabling the derivation of corresponding elec-
trostatic or gravitational fields.

∆ϕ = f (1)

where ∆ is the Laplacian operator usually rewritten as ∇2 ≡∑N
i=1

∂2

∂x2
i

, ϕ is called the potential and f the source function.
The authors of the original paper utilize the equation in the
scope of the electrostatic theory19, where f = −ρ(x) which
is interpreted as the electric charge density. Therefore the
equation 1 becomes:

∇2ϕ(x) = −ρ(x) (2)

The paper that introduces PFGM6, using an extension of
the Green’s function 2 also proves that:

ϕ(x) =

∫
G(x, y)ρ(y)dy (3)

G(x, y) =
1

(N − 1)SN−1(1)

1

∥x− y∥N−2
(4)

where SN−1(1) is a geometric constant representing the sur-
face area of the unit (N-1) sphere.

Poisson Field
By defining the gradient (Poisson) field E, as E(x) =

−∇ϕ(x). E is the N -dimensional analog of the electric field.
In other words, Poisson Field describes how forces behave
in space, more specifically, in this case the electromagnetism
forces from point charges. As the paper proves, if you treat a
data distribution as charge distribution, then the Poisson Field
over time it is uniformly distributed in a higher-dimensional
hemisphere as is shown in figure 1. From 3, E(x) can be
written as:

E(x) = −∇ϕ(x) = −
∫

∇xG(x, y)ρ(y)dy (5)

∇xG(x, y) = − 1

SN−1

x− y

∥x− y∥N
(6)

2https://mathworld.wolfram.com/GreensFunction.html

So eventually, we want to train a model that is able to simu-
late the negative Poisson Field, that means by starting from
the random noise in a higher dimensional space, it is able to
gradually de-noise it and generate a picture that could have
been taken from the underlying distribution.

Augmented Poisson Field
When working with a 2-dimensional space, Xu and his team,
faced the issue of mode collapse, where all points/particles
during the reverse process, went toward a singular point. To
resolve the issue, they augmented an extra dimension to the
original data, x̃ = (x, z), where (Eq. 5) becomes:

E(x̃) = −∇ϕ(x̃) =
1

SN (1)

∫
x̃− ỹ

∥x̃− ỹ∥N+1
p̃(ỹ)dỹ (7)

Given a set of training data D = {xi}ni=1 the authors defined
the empirical version of the Poisson field (Eq. (7)) as

Ê(x̃) = c(x̃)

n∑
i=1

x̃− x̃i
∥x̃− x̃i∥N+1

(8)

where c(x̃) is a constant used numerical stability. The PFGM
is based on a neural network fθ, that aims to calculate the neg-
ative normalized field for a huge batch of data by minimizing
the following loss function:

L(θ) = 1

|B|

|B|∑
i=1

∥fθ(ỹi)− vBL
(x̃)∥22 (9)

vBL
(x̃) = −

√
N ÊBL

(x̃)/∥ÊBL
(x̃)∥2 (10)

where B is a small batch of images or ’samples.’ taken from
a larger batch BL.

2.3 Cross Entropy Loss
Classification is used in this work as well, to guide the

model to learning to de-noise the perturbed images in a way
that the ’estimated’ image belongs to a certain class. But we
are not stopping there, we want to ’punish’ possible uncer-
tainty, in other words, given a pre-trained classifier, we would
like the model not only to de-noise the image in a way that be-
longs to a certain class according to the classifier , but also to
do it with as much certainty as possible. For example a classi-
fication of an image that belongs to a class c with probability
of 0.70 will be punished more compared to classification with
a probability of 0.90. This is the reason we are using Cross-
Entropy Loss, as explained in detail below.

Assuming that we have our input as x where x has size
of (batchSize, numClasses) where each image in the batch
has associated probabilities of being in each class, with the
requirement:

∀i ∈ [1, batchSize]

Classes∑
j=1

xi,j = 1 (11)

Moreover, we assume y is the target vector, which has the
same size as x with the only difference

∀i ∈ [1, batchSize]∃c ∈ Classes|yi,c = 1 (12)

∀c′ ̸= c, yi,c′ = 0 (13)

https://mathworld.wolfram.com/GreensFunction.html


With (Eq. 11 and 12) in mind, can be defined Cross Entropy
Loss as:

L(x, y) =

∑N
n=1 ln
N

(14)

ln = −
C∑

c=1

wclog
exp(xn,c)∑C
i=1 exp(xn,i)

yn,c (15)

In the scope of this research project, we assume equal weights
wi = 1 for each class as they are equally distributed. More-
over, implementation for such a function already exists, and
we will be using the implementation provided by PyTorch
for such calculation.

3 Methodology
We propose the Conditional Poisson Flow Generative

Model, or CoPFGM, which relies heavily on the implemen-
tation of the existing PFGM17, and introduces the concept
of conditional training and sampling with a combination of
two key ideas. First, we augment the channels of each im-
age to include the information of the image’s label. Secondly,
we update the loss function to include both the existing loss
function, as well as the Cross-Entropy Loss of the denoised
images, which is calculated with the help of a classifier that
is trained before the CoPFGM. Both these concepts will be
explained in detail in this section, as well as an explanation
of how we obtain the probabilistic model, which is used in
finding the cross-entropy loss. At the end, we will be able to
conditionally generate images of 6 characters from Dilbert’s
comic strips as shown in Figure 2, as well as handwritten dig-
its from 0-9, as shown in Figure 3

Figure 2: Combined results of sampling from the CoPFGM trained
in Dilbert’s dataset for 25k steps, the 6 characters that were included
in the dataset.

3.1 Overall Architecture of CoPFGM
Before we dive into the details, it is important for us to

explain the updated structure of the proposed model. As
shown in Figure 4 we are introducing two new components,
the Classifier and the image labels, and we are updating two
more, the NCSN++21 and the Loss Function.

Figure 3: Combined results of sampling from the CoPFGM all the
numbers with the model trained on the MNIST dataset for 50k steps.

So starting from the Classifier, it is a model that is
trained with the same dataset before the CoPFGM and it is
capable given a new image to probabilistically classify it to
the classes of the dataset. Where probabilities for all classes
for a single image should add up to 1. To train such classifier
easily we would need the labels of every input image.

Next, the NCSN++21 is the U-net mainly used in the
original paper6 to calculate the expected negative Poisson
Field (see Eq. 5) and then later used for sampling purposes,
the exact update will be explained in 3.2. It is important to
mention the relation with the Perturbed samples part, which,
even though it is not modified in our the proposed solution is
directly related to the U-net itself. Empirically, the forward
Poisson process on an image can be illustrated by adding
seemingly random colored pixels. Depending on how much
we ’allowed’ the forward process to run, we can get from lit-
tle up to a lot of noise, as shown in Figure 6. Visually, the
purpose of the NCSN++ is to be able, given an image with
added noise, to estimate which pixels were added as ’noise.’

The Loss Function is a function that initially given
the output of the above mentioned NCSN++, it produced a
loss, which our model is trying to minimize over time. Our
proposed model would use the outcome of the classifier as
well, to provide an updated loss function, which includes the
Cross-Entropy loss. Which then our optimizer will try to min-
imize by changing the parameters of the NCSN++. We will
go over the updated loss function later in this section.

3.2 Augmenting input channels with label
information

The first step to the proposed solution is the introduction of
the label information into the neural network architecture that
is used to find the noise for a given image. The authors of the
original paper adopt the NSCN++/DDPM++ architectures22

https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html#CrossEntropyLoss
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Figure 4: Updated code structure regarding training CoPFGM,
which includes the classifier and updated loss function.
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Figure 5: Visualization of the augmented channels for images of
Dogbert and Dilbert. All channels are grids, with values ranging
from 0 up to 1; for the RGB channels, we are showing both the
grayscale interpretation and the actual color. For the augmented
channels that correspond to either only white or black pixel grids.

Figure 6: Perturbed image of Dogbert (character in Dilbert’s comics)
at different not adjacent time steps.

as the backbones for their model. One downside of this ar-
chitecture is that it only supports images with square size and
dimensions to be the power of 2. Which, unfortunately, rules
out a lot of ways used by Conditional GANs1 like to append
the information on the label in the form of one-hot tensor 3 at
the end of the existing image since that would be something
that changes the image dimensions and the network could not
use the input. Having this restriction in mind, as well as the
flexibility of NSCN++ to accept an arbitrary number of chan-
nels for every image, the proposed model augments extra N
channels to the existing (usually 1 or 3) channels of the im-
age. Where N is the number of classes that exist in the dataset
that we are seeking to conditional sample images from.

But the question remains, given the augmented channels,
now how the label’s information is incorporated. Before an-
swering that question is important to understand the meaning
of a channel for an image and what it represents. Every chan-
nel of an image creates its grid of values ranging from [0, 1]
where RGB channels, for example, are scaled- down values of
the corresponding RGB value of each pixel. Now regarding
the last N channels, we are utilizing a similar the idea as the
one-hot encoding, with the only difference instead of a sin-
gle one, we have a single channel with a grid full of 1s with
the same size as the original image and the rest augmented
channels are just 0s; see Figure 5 for a visual example of the
method mentioned above.

3.3 Updating Loss Function with Cross Entropy
Loss

We want to guide the neural network to denoise the im-
ages towards a certain outcome. For that purpose, we will use
the cross-entropy loss, as explained in 2.3, where we defined
the Cross-Entropy loss L(x, y) between the predicted proba-
bilities per class per image as x and the actual labels y in a
one-hot-like format, one for every image. Moreover, we are
denoting the initial loss function with L(θ) (see Eq. 9) where
θ represents the parameters of the NCSN++, mentioned be-
fore. With these equations in mind, we propose an updated
loss function defined as follows:

L′(θ) = (β + L(x̂, λ̂)) · L(θ) (16)

x̂ = P({ỹi + fθ(ỹi)}|B|
i=1) (17)

Where P(x) returns a tensor with length equal to the num-
ber of classes and each element is the the associated probabil-
ity that the image belongs to the corresponding class (see Fig-
ure 4 at the arrow going from the Classifier to the Loss func-
tion). The {ỹi + fθ(ỹi)}|B|

i=1, are simply all the predicted im-
ages formed by adding the negative Poisson field as the U-net

3https://en.wikipedia.org/wiki/One-hot

https://en.wikipedia.org/wiki/One-hot


estimates it, and the initially perturbed images. While λ̂ is the
2-dimensional tensors that contains the true classes of every
image in the batch. We also introduce the hyper-parameter
β which is used to avoid over-fitting the model with just the
cross entropy loss. Fine-tuning this parameter, unfortunately,
so far can only be done empirically.

3.4 Obtaining the Probabilistic Model for Cross
Entropy Loss

In the subsection 3.3 we used the P(x) function to retrieve
the probabilities that the image x belongs to all the available
classes of the dataset, probabilities that, according to the sub-
section 2.3 they should add up to 1 for every image; in other
words, the following relation should hold.

∀i ∈ [1, batchSize]

Classes∑
j=1

xi,j = 1

Such functionality requires the implementation and
training of a classification network/model that, simply by
only accepting the denoised image, would output the corre-
sponding probabilities. To implement and use such a model,
a small modification on the code structure and ’pipeline.’
needed to be made, as shown in Figure 4. More specifically,
before training the CoPFGM model, we created and trained
a classifier which, by using relatively simple architecture and
minimal training time, we achieved a model with very high
accuracy with minimum 90 percent accuracy. Last but not
least, to ensure that the outcome probabilities indeed sum up
to 1 for every image, we made use of the Soft-max function
which is defined as 4:

Softmax(xi) =
exp(xi)∑
j exp(xj)

(18)

The model used for the Dilbert dataset is represented in
much detail in Appendix A, keep in mind that this classifier
was specifically implemented to take as input 32x32 images
with 6 classes on the dataset. Such model needs to be re-
implemented and adjusted to the corresponding dataset if an
arbitrary dataset needs to be utilized.

4 Experimental Setup and Results
In this section, we will go over the the environment used

for the project, as well as some preparation is needed before
running a custom dataset and train a new CoPFGM model.
Furthermore, we are going to present the results of our model
that was trained on two datasets.

4.1 Environment and preparation
This project was executed on the Google Colab Pro+ plat-

form, leveraging a 40GB GPU and a CUDA-enabled vir-
tual environment, enabling effective training within hours.
This paper’s related code can be run in any CUDA- pow-
ered Torch environment following the instructions provided

4https://pytorch.org/docs/stable/generated/torch.nn.Softmax.
html

in the project repository (https://github.com/GeorgiadeG/
CoPFGM).

The repository contains configurations and code for two
datasets, MNIST and a custom dataset of manually labeled
faces from an American Comic Strip, Dilbert. To recreate re-
sults with a custom dataset, necessary considerations must
be made. The MNIST dataset is directly accessible from
the TensorFlow Datasets library, while the custom dataset re-
quires additional data pre-processing.

The project’s code can serve as a reference for training
a dataset directly from the TensorFlow library or a custom
dataset with images and labels. However, if a custom dataset
is used, be aware of the complex configuration files involved
regarding the data, training phase, sampling, and the neural
network. It’s suggested to refer to both the PFGM paper6

and the Score-Based Generative Modeling21 paper for under-
standing the hyper-parameters values. This paper primarily
reuses the CIFAR-10 dataset’s configuration file due to its
compatibility with 32x32 images. However, the performance
may vary with other models using the same configuration file.

4.2 Evaluation Metrics
When it comes to evaluation, we will use the FID/Inception

score. The Fréchet Inception Distance (FID) and Inception
Score are metrics used to assess the quality of the gener-
ated/sampled images. The Inception Score uses a pre-trained
Inception model to classify generated images, then calculates
a score based on the predicted label distribution’s diversity
and confidence. A higher score indicates a better image qual-
ity and variety. On the other hand, the FID compares the sta-
tistical properties of generated images and real images in the
Inception model’s feature space. A lower FID score implies
that the real and generated images are more alike, indicating
better generative model performance.

4.3 Sampling
Once the model is trained, we would like to generate im-

ages conditioned on a certain class. The authors of the PFGM
paper6 explain in detail how they make use of Ordinary Dif-
ferential Equations (ODEs) to map the base distribution to a
data distribution, and then use a reverse ODE solver to sample
images using the same denoising network NCSN++ (see Fig-
ure 4). Now all that is left for us to do, is to reuse the code for
sampling from the previous repository, and pass the informa-
tion of the desired label into the U-net itself in the same way
as we did during the training. Then, we are able to generate
images from any given class with a single command. Refer
the CoPFGM repository for more details.

4.4 Results
Now, it is time to go over the results of our model after

running it with the two above mentioned datasets, MNIST
and Dilbert. To evaluate the results better, and show that
both of the main parts of our proposed solution work, we will
go over the results in the format of Ablation Study, for both
datasets, we will have to evaluate 3 different models, one is
the CoPFGM itself, as proposed in the previous section, the
second the model will have the channel augmentation but not
the updated loss function lastly a model without the channel

https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://github.com/GeorgiadeG/CoPFGM
https://github.com/GeorgiadeG/CoPFGM


Model Dataset FID score * Inception score*

CoPFGM Dilbert 1.4930× 102 2.5904

CoPFGM-Old loss/without classifier Dilbert 1.4608× 102 2.9499

CoPFGM-Old U-net/without channel augmentation Dilbert 1.0077× 102 2.8267

CoPFGM MNIST 3.1364× 102 1.7850

CoPFGM-Old loss/without classifier MNIST 3.0943× 102 1.8149

CoPFGM-Old U-net/without channel augmentation MNIST 2.1500× 102 2.8150

Table 1: Performance metrics of different models for both datasets. Both the FID * and Inception * score was calculated as the average score
from all the classes of the corresponding dataset.

augmentation but with the updated loss function. Note: The
implementation for such models was made for evaluation pur-
poses and it will not be included in the repository.

4.5 Ablation Study Results
As is already shown in Figures 2 and 3 and more in detail

in Appendix B, our proposed model proved that it can gener-
ate images conditioned on a certain class from the underlying
dataset, with an average sampling time of 5 32 by 32 images
per second. But that leaves someone to wonder, what do the
2 main parts of CoPFGM contribute exactly to the outcome?
Therefore, that is the reason we are performing an Ablation
study to illustrate with figures and metrics how each idea af-
fects the plain PFGM model, leading the way to the proposed
CoPFGM.

Generally from Table 1 we can see no model signifi-
cantly outperforming the others, besides slightly better met-
rics, both FID and Inception score for both datasets when we
excluded the data augmentation. One possible explanation
might be due to the reduced complexity of the model since
the input of the NCSN++ is tripled for Dilbert and almost
quadrupled for the MNIST dataset. But what about sampled
images? What images can we generate from all these 3 mod-
els? As can be seen for a lot of examples in Figure 7 we can
derive some general comments about these models.

Firstly, it is rather obvious that without augmenting
channels, we can see no change in behavior in between dif-
ferent sampled classes, as there is no way of ’informing’ the
NCSN++, what class we are currently training, and which
class we want to sample from. But besides that we can see
since we are using the updated loss, which partially incorpo-
rated the Cross-Entropy loss, the quality of the sampled im-
ages especially for the MNIST dataset, is better then the other
two models since we guide the model to generate images that
have high probability of belonging to any class.

Secondly, it is also evident that the conditional behavior
appears with just the channel augmentation, which, indeed
makes sense. We are giving information about the class of
each image during training, and we are sampling by passing
the same information around. On the other hand, it is notice-
able more in MNIST and a little less in the Dilbert dataset,
the generated images even though they still resemble the con-

ditioned class, they are still not quite good to be confidently
classified into the same class.

5 Responsible Research
The foundation of robust and effective scientific research,

is not only based on the method used or the results that were
obtained, but also on the principles and standards for good
research practices. This paper obeys the principles set by
the Netherlands Code of Conduct 5 such as scrupulousness,
transparency, and independence. which are dictating not only
our procedural choices but also our underlying ethos. By ad-
hering to this code of conduct, we aim to contribute to the
scientific community, with a paper that is not only technically
correct, but also ethically principled.

5.1 Scrupulousness
The term scrupulousness, among other things, refers to the

attention to detail and dedication to maintain high standards
of accuracy. Our paper explicitly defines and explains the
previous related work and the steps taken for the proposed
solution. All related work is properly referenced, and by us-
ing scientific methods, we were able to pay close attention
and exercise the best possible care in designing and reporting
our research.

5.2 Transparency
The Netherlands Code of Conduct defines Transparency

as ”...ensuring that it is clear to others what data was the
research-based on how the data were obtained, what and how
the results were achieved...”. In our paper, we properly refer-
enced the source of both of the related datasets, MNIST and
Dilbert, even though for the latter one the the dataset is not
currently public. Furthermore, in the methodology and the
experimental setup section we are properly explaining how
the resulting images were generated and sampled.

One of the main branches of transparency is the repro-
ducibility of the project and the results. Usually, when it
comes to Artificial Intelligence and Deep learning, recreating
the same results is rare due to the randomness that is intro-
duced during the training phase. This paper tries to address

5https://www.nwo.nl/en/netherlands-code-conduct-research-integrity

https://www.nwo.nl/en/netherlands-code-conduct-research-integrity


(1) - Dogbert (2) - Dogbert (3) - Dogbert

(1) - Carol (2) - Carol (3) - Carol

(1) - Pointy-hair boss (2) - Pointy-hair boss (3) - Pointy-hair boss

(1) - Number 0 (2) - Number 0 (3) - Number 0

(1) - Number 4 (2) - Number 4 (3) - Number 4

(1) - Number 8 (2) - Number 8 (3) - Number 8

Figure 7: Samples from the Ablation Study. Each column represents
a model, from left to right, we have (1) CoPFGM without Channel
Augmentation, (2) CoPFGM without Cross Entropy Loss, and (3)
the proposed CoPFGM. Each row represents one of the many classes
of each dataset (3 random classes per dataset)

such an issue by providing a public repository of the imple-
mentation of the proposed solution, as well as an explanation
on how to use two different kinds of datasets. Datasets that
can be already provided by a Python library, such as Ten-
sorflow or PyTorch, or even a custom dataset. The same re-
sults might not be reproducible but at least another CoPFGM
model can be generated that can properly and accurately gen-
erate conditioned images, assuming proper setup by the user.

5.3 Independence
The term independence is usually associated with the con-

cept of confirmation bias, which is guiding our decisions both
for the design and assessment of the data in order to get any
positive results. Decisions that can deviate from properly sci-
entific and scholarly standards, which would lead to a false
and unethical research without contributing to the scientific
community. This report adheres to Independence such all the
design choices were guided by adjusted techniques that were
used in similar models and architectures, which is making our
choice of method independent and scientifically correct.

6 Discussion
In this section, we will discuss stuff related to the results,

as well as the bigger picture of this research. We will go over
an interpretation of the results as well as the limitations that
are related to this research.

6.1 Interpretation of the results
Summarizing the results of the Ablation Study, we can in-

troduce the conditional sampling to the original PFGM, with
just the channel augmentation, and enhanced by the addition
of the Cross-Entropy loss to the Loss Function. Concluding
that a combination of both of these ideas would lead to the
creation and training of a model based on PFGM that is able
to conditionally sample from each class distribution. As it
showed from the sampled images in Figure 7, it is possible
with appropriate fine-tuning and enough training to obtain a
sort of Conditional model without the need to train a classi-
fier and update the loss function. But the updated loss would
help the model to generate images that actually belong to the
desired class faster, and more accurately.

6.2 Limitations
Throughout this research, we faced various limitations in

terms of factors that might have affected the quality and effi-
ciency of our model and results.

For both datasets, we were dealing with a relatively
small amount of classes among with small images them-
selves. Therefore augmenting the channels did not signifi-
cantly affect the training time as it increases the parameters
of the underlying U-net. So it is possible that the NCSN++
model might get very slow if another dataset with larger im-
ages and more classes are used, for example, CIFAR-100,
which consists of 100 classes instead of the 10 that MNIST
currently does.

As mentioned in section 6.1 even though the CoPFGM
seems to sample decently conditional images, there are still
imperfect results, or in other words, images generated that



do not fit in the required class. Reasons behind such behav-
ior might vary. First, we have the relatively small training
time per dataset per model, secondly it might be due to the
fact that we are using mainly the configuration file provided
for the CIFAR-10 dataset for the sampling and training the
underlying U-Net. In other words, fine-tuning these models
might not have been the best.

7 Conclusions and Future Work
In this section we will mention some conclusions by going

over both the Research question and sub-questions, and then
we will cover the future work and possible improvements that
we are proposing for anyone who might want to work further-
more on the CoPFGM.

7.1 Conclusions
This paper aimed to present a new model build on top

of the paper and repository of the Poisson Flow Genera-
tive Model6 17, which is able to conditionally sample images
from. The proposed method consists of several parts and de-
sign ideas, which evidently are the answer to the proposed
sub-questions. Starting with the first one, we introduced the
information of the class itself (or the so-called label) by as-
signing each class a number. By having a number associated
with each class, we were able to augment the color channels
of the images with one-hot-like channels, with N−1 of them,
to be filled with 0s and one of them with ones (indicating
the class). Furthermore, the second sub-question is related to
the updated loss function (Eq. 16) which includes the Cross-
Entropy Loss of the denoised images, a metric that relates the
probabilities are given by the classifier and their ground truth
class. Lastly, the third question, which is about significant
changes in the code structure in order to obtain such a condi-
tional model from the PFGM, is answered by the subsection
3.1 and Figure 4. In a few words, we simply add to the start
of the training ’Pipeline’ a step to train a classifier with the
same dataset and labels, which is then accessible within the
existing loss function during each training step, and used to
calculate the updated loss. The information on the labels is
passed together with images to the NCSN++, so no change
needs to be made.

7.2 Future Work
As it can be seen from the Limitation subsection, CoPFGM

has a lot of room for improvement. Firstly, the Channel Aug-
mentation even though proved to be effective it still might de-
lay training and sampling for datasets with way more classes,
so we are suggesting of finding an improved way to introduce
the information of the label both during and sampling. Some-
thing that allows, a further extension to a generative model
with full comic strips, conditioning not only on the charac-
ters in, but more context about background color, space, and
even dialogues. Furthermore, both the hyper-parameter β we
have introduced for the updated loss, as well as other parame-
ters which were reused, have definite room for improvement,
in a few words, improve the CoPFGM by fine-tuning it to
the same datasets or other datasets. Lastly, a little bit more
difficult, to switch from class labels, and move on to class

embeddings, including text, which might lead to the creation
of the next Stable Diffusion!
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B Full sampled images of MNIST digits

Figure 9: 100 sampled images of the number 0 with the CoPFGM
after 100k iterations.

Figure 10: 100 sampled images of the number 1 with the CoPFGM
after 100k iterations.

Figure 11: 100 sampled images of the number 2 with the CoPFGM
after 100k iterations.

Figure 12: 100 sampled images of the number 3 with the CoPFGM
after 100k iterations.



Figure 13: 100 sampled images of the number 4 with the CoPFGM
after 100k iterations.

Figure 14: 100 sampled images of the number 5 with the CoPFGM
after 100k iterations.

Figure 15: 100 sampled images of the number 6 with the CoPFGM
after 100k iterations.

Figure 16: 100 sampled images of the number 7 with the CoPFGM
after 100k iterations.



Figure 17: 100 sampled images of the number 8 with the CoPFGM
after 100k iterations.

Figure 18: 100 sampled images of the number 9 with the CoPFGM
after 100k iterations.

Figure 19: 100 sampled images of Dogbert with the CoPFGM after
13k iterations.

Figure 20: 100 sampled images of Dilbert with the CoPFGM after
13k iterations.



Figure 21: 100 sampled images of Carol with the CoPFGM after
13k iterations.

Figure 22: 100 sampled images of Alice with the CoPFGM after 13k
iterations.

Figure 23: 100 sampled images of Pointy-Haired Boss with the
CoPFGM after 13k iterations.

Figure 24: 100 sampled images of Wally with the CoPFGM after
13k iterations.
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