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Abstract. Hydrological models are extensively used in ur-
ban water management, development and evaluation of fu-
ture scenarios and research activities. There is a growing in-
terest in the development of fully distributed and grid-based
models. However, some complex questions related to scale
effects are not yet fully understood and still remain open
issues in urban hydrology. In this paper we propose a two-
step investigation framework to illustrate the extent of scale
effects in urban hydrology. First, fractal tools are used to
highlight the scale dependence observed within distributed
data input into urban hydrological models. Then an inten-
sive multi-scale modelling work is carried out to understand
scale effects on hydrological model performance. Investiga-
tions are conducted using a fully distributed and physically
based model, Multi-Hydro, developed at Ecole des Ponts
ParisTech. The model is implemented at 17 spatial resolu-
tions ranging from 100 to 5 m. Results clearly exhibit scale
effect challenges in urban hydrology modelling. The applica-
bility of fractal concepts highlights the scale dependence ob-
served within distributed data. Patterns of geophysical data
change when the size of the observation pixel changes. The
multi-scale modelling investigation confirms scale effects on
hydrological model performance. Results are analysed over
three ranges of scales identified in the fractal analysis and
confirmed through modelling. This work also discusses some
remaining issues in urban hydrology modelling related to
the availability of high-quality data at high resolutions, and

model numerical instabilities as well as the computation time
requirements. The main findings of this paper enable a re-
placement of traditional methods of “model calibration” by
innovative methods of “model resolution alteration” based
on the spatial data variability and scaling of flows in urban
hydrology.

1 Introduction

Urban environments are very complex systems due to their
intrinsic extreme variability over a wide range of spatio-
temporal scales, and the interaction between human activities
and natural processes. A notable illustration is the ongoing
urbanization process that changes land cover and strongly in-
fluences the hydrological behaviour of urban catchments. Ur-
ban hydrological models were developed over the years and
used to simulate the portion of the water cycle in urban en-
vironments (Refsgaard and Knudsen, 1996; Tech University
of Darmstadt and Ostrowski, 2002; Salvadore et al., 2015;
Hromadka, 1987; Daniel et al., 2011; Elliott and Trows-
dale, 2007; Sarma et al., 1973; Blöschl and Sivapalan, 1995).
They can be classified according to either the nature of the
employed algorithms (empirical, conceptual or physically
based; Salvadore et al., 2015), or their spatial resolution and
how they represent the complexity of urban hydrology pro-
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332 A. Ichiba et al.: Scale effect challenges in urban hydrology

cesses (lumped, semi-distributed and fully-distributed mod-
els).

Lumped (Kleidorfer et al., 2009) and semi-distributed
(Insa-Valor, 1999) models are conceptual ones and rely on
a simplified representation of urban catchment’s heterogene-
ity. Indeed the whole catchment is considered as a single
unit with homogeneous features for the lumped ones, while a
catchment is divided into a limited number of homogeneous
sub-catchments for the semi-distributed models. These two
approaches were widely developed and used for modelling
applications because they require limited amount of data
for their implementation, and exhibit fast computation time.
They often rely on a calibration step that ’“forces” the model
to represent the observed data. However, these models give
output information at the sub-catchment scale, which is too
coarse for meeting urban water managers’ requirements in
their need to understand some very local flooding problems
or to evaluate management strategies at very small scales.
Hence, the need has arisen to change the spatial resolution
of hydrological models, and several works in the literature
have investigated this approach for semi-distributed models
(Park et al., 2008; Stephenson, 1989). It appears that the ag-
gregation and disaggregation of sub-catchments changes the
model output, which reflects a “scale effect issue”, and that
the complex calibration step must be performed again to ob-
tain performance similar to the previous configuration.

The influence of catchment scale on hydrological response
is more pronounced for fully distributed (Ichiba, 2016) and
gridded-based models, because of their modelling approach
that usually consists in representing the high heterogeneity
of urban catchment in a gridded format. The choice of an
appropriate spatial resolution is always critical and the ob-
tained model performance strongly depends on the chosen
implementation scale (Ichiba, 2016). The appropriate spa-
tial resolution is obviously linked to the quality and resolu-
tion of data available as well as the modelling goal (Dehotin
and Braud, 2008). A more accurate representation of the land
cover heterogeneity is obtained using a high-resolution grid
(small pixel size). However, given current computational ca-
pabilities and data availability, high-resolution modelling is
feasible only for small areas. Therefore, it is important for
modellers to understand the effects of spatial resolution in
urban hydrological simulations.

Scale effects and scaling in urban hydrology have been in-
vestigated by researchers – for example Gires et al. (2013);
Park et al. (2008); Stephenson (1989); Elliott et al. (2009);
Wood et al. (1988); Zhang and Montgomery (1994). This
topic was also reviewed by Blöschl and Sivapalan (1995).
Ostrowski (2002) discussed temporal and spatial scaling is-
sues in the context of urban storm water modelling. Dehotin
and Braud (2008) proposed a spatial discretization method-
ology applied for distributed hydrological models to get an
efficient representation of land cover heterogeneity. Ghosh
and Hellweger (2012) investigated the effects of spatial res-
olution on predictions of peak flow and total outflow vol-

ume in an urban catchment. Zhang and Montgomery (1994)
analysed the Digital Elevation Model (DEM) grid size and
land cover representation. They found that the effect of grid
size on the model performance is not linear; a 10 m grid size
provides a substantial improvement over 30 and 90 m data,
whereas 2 or 4 m data provide only marginal additional im-
provement. Wood et al. (1988) investigated the effects of
scale in urban hydrology by trying to identify a threshold
scale called “Representative Elementary Area (REA)”. The
REA is strongly influenced by the topography.

Fractal tools will be used in this work to characterize scale
effects in environmental data. They are widely used in sev-
eral science domains including geology, medicine, meteorol-
ogy and finance (Niu et al., 2016; West, 2012; Goldberger
and West, 1987; Nonnenmacher et al., 2013; Turcotte and
Huang, 1995; Yanshi and Kaixuan, 2002; Turcotte, 1989).
In hydrology, the fractal dimension concept has been used
in many studies in the past for various purposes, ranging
from catchment geometrical characterization to flow anal-
ysis (Mesev et al., 1995; Wu et al., 2013; Thibault and
Crews, 1995; Frankhauser, 1998; Wu and He, 2009; Sagar,
2004; Jiang et al., 2012; Gires et al., 2013; Radziejewski and
Kundzewicz, 1997), but has seldom been used in urban hy-
drology (Gires et al., 2017).

This work was motivated by the fact that on the one hand
the inputs of the hydrological models exhibit scale-invariant
features while on the other hand distributed models are im-
plemented at a single resolution. Hence the question we seek
to investigate in this paper is “at which resolution should
we implement the model?” – bearing in mind practical con-
straints such as missing data at high resolution or longer
computation time. The main goal of the paper is to inves-
tigate the existence and try to identify the appropriate res-
olution (or a range of resolution) for a Multi-Hydro model
(Sect. 3) implementation over a peri-urban area close to Paris
(Sect. 4). We first use fractal tools to analyse the features
of the model’s inputs and then we perform multi-scale mod-
elling work. Methodology is presented in Sect. 4 and results
are discussed in Sect. 5.

2 Multi-Hydro model

Multi-Hydro (Fig. 1, Multi-Hydro, 2015; Giangola-Murzyn,
2013; Ichiba, 2016; El Tabach et al., 2009) is a fully dis-
tributed and physically based model developed at Ecole des
Ponts ParisTech which has been used by several authors
(Ichiba, 2016; Giangola-Murzyn, 2013; Versini et al., 2016;
Gires et al., 2014). It is an interacting core between four
open source software packages, each of them representing
a portion of the water cycle in urban environments. Multi-
Hydro involves a modelling approach that consists in raster-
izing the urban domain at a specific spatial resolution chosen
by the user. A unique land use class for which hydrological
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and physical properties are specified is then assigned to each
pixel.

The modelling approach involved in Multi-Hydro model
relies on solving physical equations that describe the
catchment behaviour. Seven processes are generally simu-
lated; (1) precipitation, (2) interception and storage, (3) in-
filtration, (4) overland flow, (5) sewer flow, (6) infiltration
into the subsurface zone and (7) sewer overflow.

The four modules that make up the core of Multi-Hydro
are presented in Fig. 1:

– The surface component (MHSC) is based on the exist-
ing TREX model (Two-dimensional Runoff, Erosion,
and Export model) developed by Colorado State Uni-
versity and used in Multi-Hydro only for rainfall–runoff
modelling (Velleux et al., 2008). The surface module
computes interception, storage and infiltration occur-
ring at each pixel according to the properties of its land
cover class. The overland flow can occur after exceed-
ing the depression storage threshold, and it is governed
by equations ensuring the conservation of mass (conti-
nuity) and momentum. This flow depends on the surface
properties as well as the elevation, and is computed us-
ing the diffusive wave approximation of Saint-Venant
equations (England et al., 2007; Velleux et al., 2008).

– The rainfall module was developed at Ecole des Ponts
ParisTech. It is used to manage different types of rainfall
data (rain gauges, radar data,. . . ) and to process them
in the correct input format needed for the Multi-Hydro
model. The module also performs some data analy-
sis and can be used for radar data downscaling. The
downscaling and data analysis carried out relies on the
multifractal framework (Lovejoy and Schertzer, 1990;
Schertzer and Lovejoy, 1987) and has been used in an
urban context by Gires et al. (2012).

– The Drainage module (MHDC) is based on the 1-D
SWMM (James et al., 2010) model (Storm Water Man-
agement Model) developed by the US Environmental
Protection Agency. It is widely used for urban drainage
and modelling purposes. The flow in the sewer network
is given by a numerical solution of Saint-Venant equa-
tions. This module requires a detailed description of
the sewer network (nodes, pipes characteristics, gullies,
outlet. . . ).

– The infiltration module relies on the VS2DT model de-
veloped by the US Geological Survey. It is used to simu-
late the infiltration into the unsaturated subsurface zone
(Healy, 1990; Lappala et al., 1987). This module uses
the infiltration depth calculated by the surface module
as input, and simulates a 2D infiltration (vertical and 1-
D horizontal) into the subsurface. This module was not
used here because the analysis of the subsurface infiltra-
tion was not one of the objectives of this work.

The four modules are connected via the Multi-Hydro
core, which groups together a set of codes allowing inter-
action, retro-action (feedback) and data exchange between
these modules. In this case study, these interactions are per-
formed after each time loop of 5 min. More precisely, the
surface module outputs are used as inputs for the soil and
the drainage modules, and in the same way the sewer over-
flow is taken into account in the overland depth for the next
step. Multi-Hydro produces a large set of outputs that de-
scribe the catchment response. For example, overland water
depth maps are available at each time step as well as over-
land discharge flow maps and velocity profiles at any point
of the catchment. Saturation profile of the subsurface zone
and sewer flows are also computed. The model also provides
a detailed volume balance at each time step.

Multi-Hydro is highly demanding on data quality and res-
olution. Distributed data (usually available in GIS format)
describing the topography and land use over the catchment
must be collected at a high resolution. Precise information
about all the components of the sewer network are also nec-
essary for the drainage module. Such information is usually
available for urban areas and can be obtained from the lo-
cal authority in charge of the water management. Details
about all pipes (geometry, length, diameter as well as inlet
and outlet nodes) should be carefully validated, as well as
all the system nodes (coordinates and elevation). The subsur-
face structure should be described as well if there is a need
to simulate the infiltration through the unsaturated zone. The
rasterization of the urban domain is the first step of Multi-
Hydro implementation. During this process a unique class of
land use is attributed to each individual pixel. This attribution
can be done following at least two methodologies, illustrated
in Fig. 2. The first one is based on a priority order defined
by the user to attribute land use class. The second method is
based on a majority rule, which means that each pixel will
be affected by the majority class of land observed within it,
with an exception of the gully class which remains a priority
regardless of the method applied, to ensure the connection
between the surface and the drainage system.

The possibility to implement other rules was investigated
in the framework of Ichiba (2016), but the model formulation
allows only one land use class (characterized by a few param-
eters such as the conductivity) per pixel. This means that im-
plementing other approaches (such as a fractional approach)
would require to a great increase in the number of classes as
well as the development of a multifractal spatial characteriza-
tion of key parameters such as conductivity. Those are possi-
ble motivating future investigation paths but they are outside
the scope of the current study. Hence it was chosen to limit
the study to two rules for affecting pixels’ class, while keep-
ing the number of classes reasonable.

The two rules considered here were tested and compared
by Ichiba (2016). The main findings are reported in Sect. 5
(see Figs. 12 and 13) and indicate that considering the ma-
jority rule methodology leads to a better representation of

www.hydrol-earth-syst-sci.net/22/331/2018/ Hydrol. Earth Syst. Sci., 22, 331–350, 2018



334 A. Ichiba et al.: Scale effect challenges in urban hydrology

Figure 1. The Multi-Hydro model is an interacting core between four modules, each of them representing a portion of the water cycle in
urban environments. © (Giangola-Murzyn, 2013).

the catchment heterogeneity. Consequently, the majority rule
was used here during the rasterization step to attribute a
unique land cover class to each pixel.

Multi-Hydro has already been implemented in several lo-
cations for different purposes: in the cities of Villecresnes
(France) and Manchester (UK) for flood mitigation by us-
ing barriers and retention basins (Giangola-Murzyn, 2013),
in Sucy (France) for retention basin management (Ichiba,
2016), in Sevran (France) to study the impact of small-scale
rainfall variability in urban areas (Gires et al., 2014), and in
Villepinte and Champs-sur-Marne (France) for quantifying
the impact of large-scale implementation of blue and green
infrastructures on storm water management (Versini et al.,
2016).

3 Case study and data sets

3.1 Sucy-en-Brie catchment

The case study presented in this paper is a 2.45 km2 ur-
ban catchment located southeast of Paris, in Val-de-Marne
County, which is part of the Île-de-France region (Fig. 3).
The city is connected to Paris via a train at the Sucy-Bonneuil
station (30 min travel time to the centre of Paris). Known his-
torically as an agriculture area, the city is now highly urban-
ized with an imperviousness coefficient around 35 %. The
city is bounded at the north by the Marne river (one of the
two main rivers in the Paris region). The area has suffered
in the past from several flooding events as a consequence
of (1) the very steep slope (34 m km−1) that increases wa-
ter speed and causes overflows in the downstream portion of
the storm water network and (2) the increase of impervious
areas combined with a soil structure that limits infiltration
to the subsurface. The drainage system in this area is a sep-
arated one (i.e. there are separate networks for waste water

and storm water). The storm water system is routed to the
Marne River.

3.2 Distributed data

Spatially distributed data are used in this study to set up the
Multi-Hydro model. The data were made available by vari-
ous public institutions in the framework of research collabo-
rations with Ecole des Ponts ParisTech.

– Topography: the Digital Elevation Model (DEM) of the
catchment was obtained from the IGN (French National
Institute of Forest and Geographic Information). The
spatial resolution of the data is 25 m with a 1 m reso-
lution in height, which is far from meeting the needs of
the studies carried out in this work. Linear interpolation
was implemented to obtain data at a better resolution
(between 5 and 10 m).

– Land cover: Fig. 4 shows distributed data (available
in GIS format) describing the land cover. The data
were obtained from the DSEA 94 of Val-de-Marne
County (Direction des Services de l’Environnement et
de l’Assainissement). Its quality is high, with a preci-
sion of up to 50 cm, but we had to deal with one land use
class named ”Other” in the original data. This class cor-
responds to unknown information and introduces miss-
ing data. A comparison with satellite images was done
and the majority of missing data was filled with urban
grass.

– Sucy-en-Brie subsurface structure: the subsurface struc-
ture was elaborated using data obtained from the BRGM
database (Office of Geological and Mining Research)
from soil investigations done before construction works
and archived in the BRGM database. The data indicate
that a layer of clay mixed in some places with sand dom-
inates the majority of the catchment subsurface. Down-
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Figure 2. Two attribution methodologies are implemented in Multi-Hydro and can be used during the rasterization phase. The first one is
based on a priority order defined by the user to attribute land use class, whereas the second methodology is based on a majority rule. In both
methodologies, the gully class has priority, to ensure the connection between the surface and the drainage modules.

Figure 3. Location of the Sucy-en-Brie case study in Val-de-Marne County, southeast of Paris.

stream, near the river, there is a layer of sandy soil which
is much more permeable. Physical parameters charac-
terizing soil, which are needed for modelling, were ob-
tained from the literature (Lappala et al., 1987) and no
measurements were done to verify or to estimate these
parameters.

– Sucy-en-Brie storm runoff system: the sewer system in
this catchment (Fig. 5) is a separate one. The storm

water system is routed downstream to the Marne river.
The DSEA 94 of Val-de-Marne County is the service in
charge of the control and the management of the whole
system. Data describing the sewer system in this area
are very detailed, consisting of 2030 nodes and 1015 el-
ements of pipes representing a total length of 25 km.
The average slope is around 0.052 m m−1.

www.hydrol-earth-syst-sci.net/22/331/2018/ Hydrol. Earth Syst. Sci., 22, 331–350, 2018
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Figure 4. The land cover data available for Sucy-en-Brie catchment and used to implement the Multi-Hydro model.

3.3 Rainfall and flow measurements data

Rainfall data are provided by the General Council of Val-
de-Marne County. The data come from a 0.2 mm resolution
tipping bucket rain gauge located at the centre of the catch-
ment. The data were processed and validated by the DSEA
94 and provided with a 5 min resolution. Eight rainfall events
(Fig. 6) that occurred between 2010 and 2014 were selected.
Their main characteristics are summarized in Table 1. The
corresponding flow measurement data were available, also at
5 min resolution – coming from a flow sensor located at the
outlet of the catchment. The choice was made in this work
to use uniform rainfall information in order to focus on the
sensitivity of the Multi-Hydro model to land use variability
and to avoid the effect of rainfall spatial variability.

4 Methodology

4.1 Part 1: analysis of the scaling of urban catchment

The first step of this work is to investigate and identify the
scale dependence observed within the distributed GIS infor-
mation (presented in Sect. 3.2) used as input for hydrological
models. The analysis relies on the fractal dimension concept.

Fractal geometry was formally introduced by Mandelbrot
(1983) and is used to describe geometrical sets that exhibit a

great level of complexity, i.e. they are too irregular to be eas-
ily described with the help of basic Euclidean concepts but
they can be described with the help of simple and iterative
processes. Fractal sets exhibit scale invariance, which means
that similar structure will be observed at any scale. The con-
cept of fractal dimension is used to characterize them. The
fractal dimension Df is the exponent of the power-law re-
lation between the resolution λ, which is defined as the ra-
tio between the outer scale l0 and the observation scale l
(λ= l0

l
), and the number of non-overlapping pixels Nλ,A

needed to cover the set (A) at a given resolution:

Nλ,A ≈ λ
Df (1)

Hence Df is the asymptotic slope of Nλ,A vs. λ in a log-log
plot. It has a limit behaviour, meaning that mathematically
the fractal dimension is defined as follows:

Df = lim
λ→+∞

ln(Nλ,A)
ln(λ)

. (2)

Figure 7 shows an example of how fractal analysis is prac-
tically implemented in urban hydrology to analyse a portion
of the sewer system. Several pixel sizes are used to cover the
sewer network starting from 2 m pixels and multiplying their
size by 2 at each step. The number of pixels Nλ needed at a
given resolution λ to cover the storm water system is com-
puted and plotted in a log-log plot as a function of the res-
olution λ (blue points). Figure 7 shows the linear behaviour
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Figure 5. The storm water system of Sucy-en-Brie catchment which is used to implement the Multi-Hydro model.

Table 1. Main characteristics of the eight rainfall events selected to perform the scale dependence investigations. Imax is the maximum
rainfall intensity recorded in mm h−1 over 5 min.

Event Date Time start–end Imax (mm h−1) Total depth (mm)

E1 12/06/2010 22:00–07:00 (+1) 19.2 16
E2 12/07/2010 06:00–14:00 24 14.2
E3 16/07/2011 19:00–05:00 (+1) 9.6 38.6
E4 5/08/2011 07:00–19:00 9.6 21.2
E5 21/05/2012 11:00–04:00 (+1) 43.2 19.2
E6 8/07/2012 01:00–09:00 21.6 11.6
E7 8/10/2014 06:00–15:00 21.6 33.2
E8 12/12/2014 18:00–18:00 (+1) 14.4 38.6

retrieved over two separate ranges of scales. This means that
the concept of fractal dimension can be used to characterize
the sewer network, but two regimes must be taken into ac-
count. In this work, the structure of the urban storm water
system and the distribution of impervious land use will be
analysed using fractal tools.

4.2 Part 2: scale effects on fully distributed models
outputs

To address the effects of spatial resolution on Multi-Hydro
performance, the model was implemented at 17 spatial scales
ranging from 100 to 5 m and intensive modelling work was

carried out. Figure 8 shows how the chosen grid size influ-
ences the way that land cover heterogeneity is represented
in the model. These scale effects will be analysed with re-
spect to real flow measurements from various points of view
according to the performance indicators chosen:

– Correlation coefficient r: The correlation coefficient r
(Eq. 3) measures the strength and the direction of the
linear relationship between the modelled flowQmod and
the observed one Qobs. It is computed as follows:

r = Cor(Qmod,Qobs)=
cov(Qmod,Qobs)

σmod · σobs
, (3)

www.hydrol-earth-syst-sci.net/22/331/2018/ Hydrol. Earth Syst. Sci., 22, 331–350, 2018
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Figure 6. Rainfall data and the corresponding flow measurement available for the eight rainfall events selected to perform the multi-scale
modelling investigation.
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Figure 7. Example of fractal analysis of a portion of the sewer network (256 m size). (a) Nλ is plotted as function of λ in a log-log plot.
(b) A scaling behaviour is retrieved over two separate ranges of scales with a break around 32 m.

Figure 8. Scale effect observed on the catchment land cover. The grid size strongly affects the way land cover heterogeneity is represented
in the model.
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where cov(Qmod,Qobs) refers to the covariance of the
variables Qmod and Qobs, and σmod and σobs are their
respective standard deviations.

The r value ranges from −1 to +1. A positive value of
r indicates that the two time series describe the same
dynamic (they increase and decrease at the same mo-
ment). Generally, a correlation greater than 0.8 is de-
scribed as strong, whereas a correlation smaller than 0.5
is described as weak.

– Nash–Sutcliffe efficiency NSE: The NSE coefficient
(Eq. 4) is the most commonly used indicator to quan-
tify performance of urban hydrological models. NSE
measures how well the model outputs reproduce the ob-
servation outputs in comparison with a model that only
uses the mean of the observed data. The NSE coefficient
is computed as follows:

NSE= 1−

∑n
t=0
(
Qt

obs−Q
t
mod

)2∑n
t=0

(
Qt

obs−Q
t

obs

)2 , (4)

whereQt
obs andQt

mod are respectively the observed and
modelled flow at time step t , Qobs is the mean of ob-
served flow and n is the length of the time series.

NSE ranges from −∞ to +1. A value of 1 indicates a
perfect model, while a value of zero indicates perfor-
mance no better than simply using the mean. A negative
value corresponds to performance worse than using just
the mean. The pros and cons of the NSE coefficient have
been discussed in the literature, and many attempts have
been made to improve it (Gupta et al., 2009).

– The coefficient of regression β: The β (Eq. 5) is com-
puted as follows:

β =
cov(Qmod,Qobs)

var(Qobs)
, (5)

where cov(Qmod,Qobs) is the covariance betweenQmod
and Qobs, and var(Qobs) is the variance of the observed
flow Qobs.

The β is used here to distinguish spatial scales for which
the model overestimates and those for which the model
underestimates the observed flow. The β values range
between−∞ and+∞ and a value of β = 1 indicates an
ideal match between the observed and simulated flows.
If β < 1, then the model is underestimating the observed
flow, otherwise it is overestimating the observed flow.

– Peak flow relative error δr: A special focus is given to
peak flows. The relative error observed at the peak flow
δr (Eq. 6) is used to address effects of scale changes on
the modelled peak flow. δr is estimated as follows:

δr =
Qmax

mod−Q
max
obs

Qmax
obs

, (6)

where Qmax
mod and Qmax

obs refer respectively to the maxi-
mum modelled flow and the maximum observed one.

In total, 136 simulations (17 spatial resolutions, 8 rainfall
events) were run and results were analysed with the help of
these statistics. The analysis will help to identify spatial reso-
lutions for which the model exhibits good performance with
respect to available flow measurements.

5 Results and discussions

5.1 Fractal analysis of distributed data

5.1.1 Fractal dimension of urban sewer network

Two areas have been selected to perform the fractal analysis
for the storm water system. The purpose of this selection is
to minimize the effect of no data pixels by considering two
well-covered square areas whose size is a power of 2. Fig-
ure 9 shows the 2 m pixel size original data available and the
two selected zones. The small and great area are respectively
of size 512 m (l0 = 512= 29 m) and 1024 m (= 210 m).

Figure 10 displays results obtained when plotting in a log-
log plot the number of pixelsNλ needed at a given resolution
λ to cover the storm runoff system as a function of λ. Results
show a clear agreement to the relation defined in Eq. (1) over
two distinct ranges of scales separated by a break at ≈ 64 m.
For small scales (2–64 m), the fractal dimensionDf is almost
equal to 1, simply reflecting the linear behaviour of the sewer
pipes structure observed across this range scales. For large
scales l ≥ 64 m the fractal dimensions Df found of 1.82 and
1.88 are close to the dimension of the embedding space of 2.
This means that over this range of scales, the structure of
the pluvial networks fills most of the space. These results
confirm similar conclusions of a multi-catchment work per-
formed in the framework of the RainGain project about frac-
tal analysis of environmental data of 10 pilot sites located
in Europe (Gires et al., 2017). The break at 64 m is related,
according to this study, to the typical distance between two
roads in urban areas.

5.1.2 Fractal dimension of impervious data

For impervious data (Fig. 9), two 1024 m size square ar-
eas were selected to perform the fractal analysis. Figure 11
shows the obtained results. Both areas exhibit a clear and
unique scaling regime across the whole range of available
scales (2–1024 m). This shows the high scale dependence of
urban catchment patterns and demonstrate how important it
is to well represent urban catchment heterogeneity when us-
ing gridded models. This scale dependence has significant
consequences on a hydrological model performance, as we
will show. The fractal dimension Df computed is 1.82 for
Area 1 and 1.85 for Area 2, which is similar to the values
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Figure 9. The original 2 m pixel size data used to perform the fractal analysis of the storm water sewer system and impervious areas; two
well-covered areas were selected.

Figure 10. Fractal analysis of the sewer system structure. Two ranges of scale are identified in both areas; Df is equal to 1 at small scales
(2–64 m) and 1.8 for large scales l ≥ 64 m.

retrieved for the large scales of sewer systems found in other
European cities (Gires et al., 2017).

5.1.3 Effect on the urban catchment behaviour

Previous results show that the urban catchment configuration
considered in grid-based models highly depends on the scale
at which the model is implemented. In fact, spatial patterns
observed in the land cover strongly evolve with the observa-
tion scale. Figures 13 and 12 display, for the two land cover
pixel attribution methodologies, the distribution of the four
main land cover classes (forest, road, grass and house) con-
sidered in the Multi-Hydro model, as well as the impervious-

ness coefficient Cimp – defined as the ratio between impervi-
ous surface (gully, roads, houses) and the total surface – as a
function of the model spatial scale. The imperviousness coef-
ficient is actually not a parameter of the modelling formula-
tion. It is simply a quantity used to gain some insight into the
inputs of the model and how its overall features change with
resolution. It refers here to the areas directly participating in
the rapid runoff. Results with priority rule are in Fig. 12 and
those obtained with the majority rule in Fig. 13.

Both figures demonstrate that the scale dependence high-
lighted here is mainly due to the rasterization methodology
performed in the Multi-Hydro model during the implementa-
tion phase, which assigns a unique land cover to each pixel.
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Figure 11. Fractal analysis of the impervious data. One unique scaling regime is identified across the whole range of available scales (2–
1024 m); Df is greater than 1.8 for both areas.

At very small scales both methodologies will basically lead
to the same catchment representation, whereas results ob-
tained at intermediate scales are different. To illustrate these
differences, let us consider the case of pixels of size 100 m. In
an urban environment it is very likely that such a pixel will
intersect a road. Then, with the priority rule, since “road”
pixels have a high level of priority, this will make the portion
of pixels affected by road land cover class greater. This por-
tion decreases as the pixel size decreases. On the other hand,
with the majority rule (Fig. 13), the portion of road pixels is
smaller because the roads will usually not occupy the greater
portion of such pixel.

The variation of the imperviousness coefficient Cimp (red
line) provides an insight into the model behaviour across
scales. It is continuously decreasing in the first configura-
tion (Fig. 12), whereas in the second (Fig. 13), the behaviour
is different. The high values of the Cimp coefficient at large
scales are due to the fact that most of the priority land cover
classes (gully, road and houses) are impermeable.

When applying the priority rule (Fig. 12), the impervious-
ness coefficient Cimp is still very high even at high resolu-
tion (5 m pixels), meaning that the user must perform hydro-
logical simulations at much finer resolutions, which is chal-
lenging in urban hydrology modelling considering the qual-
ity of available GIS data, as well as computation time. On
the other hand, Fig. 13 shows that the majority rule method-
ology is more suitable to take into account urban catchment
heterogeneity at coarser resolutions. The land cover distribu-
tion is more coherent than with the previous methodology.
In this case, three ranges of scales can be identified: (i) large
scales (100–30 m) at which the imperviousness coefficient
decreases significantly from 55 % observed at 100 m to its
minimum value of 27 % at 30 m – this is due to a great redis-
tribution of land cover classes; (ii) medium scales (30–10 m),
at which the imperviousness coefficient increases from 27 to
37 % estimated at 10 m; (iii) small scales (10–5 m), at which

we observe what can be considered as the final configuration
of the catchment, i.e. the most accurate, and closer to the re-
ality on the ground. Across small scales the imperviousness
coefficient remains stable around 38 %, which suggests that
the model response will be stable across this range of scales.

5.2 Scale effects on Multi-Hydro model outputs

For each of the eight selected rainfall events, 17 simulations
were carried out and the corresponding simulated flow time
series were retrieved at the outlet pipe, where effects are typ-
ically smoothed compared to more upstream pipes.

Figure 14 represents all simulated flows Qs obtained with
the Multi-Hydro model at the 17 spatial scales involved.
These results show the high sensitivity of the outputs to the
spatial scale of the model.

5.2.1 Hydrodynamic evaluation

The hydrodynamic evaluation aims to quantify the ability of
the model to reproduce the flow dynamic observed in the
measurements. It is based here on the estimation of the cor-
relation coefficient r between modelled and observed data.
The box plots are obtained from the computation of eight
samples corresponding to the eight rainfall events. All the re-
sults obtained are plotted and no information was removed.
The boxes corresponding to the 20 and 80 % quantiles were
added only for indicative purpose. From Fig. 15, one can no-
tice the high capacity of the Multi-Hydro model to reproduce
the observed flow dynamic at any spatial scale. In fact, r val-
ues range between 0.85 and 0.98, with an average between
0.94 and 0.98, indicating high correlation between modelled
and observed data. This trend was also noticed from visual
inspection of modelling outputs and observed data (Fig. 14).
This demonstrates the ability of this physically based model
to reproduce correctly the observed flow dynamic, and also
the rather good quality of the rainfall data, bearing in mind
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Figure 12. Scale dependence observed in the overall distribution of land cover classes and the imperviousness coefficient Cimp with priority
rule as explained in Fig. 2. The priority order was set as follows: gully, road, forest, house, grass.

Figure 13. Scale dependence observed in the overall distribution of land cover classes and the imperviousness coefficient Cimp with majority
rule as explained in Fig. 2

that the spatial variability is not taken into account. It also
indicates that the physical parameters characterizing the be-
haviour of each land cover class, which were selected from
their somewhat representative range and used for the imple-
mentation of the model, yield acceptable results whatever
the chosen implementation scale. This suggests an alterna-
tive approach to the classical model calibration. Indeed, in-
stead of tuning the parameters to force the model to repro-
duce the simulated flow, one can simply change the imple-
mentation scale to one enabling a proper representation of

the catchment’s land cover variability. As an illustration, the
overestimation of the volume visible with coarse pixels is in
fact mainly due to an overestimation of impervious areas ob-
served with such pixel size. The next section will provide
hints on how to select the appropriate modelling scale.

5.2.2 Performance evaluation

The multi-scale performance evaluation of Multi-Hydro
model output is performed using the three statistical indica-
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Figure 14. Multi-scale modelling outputs compared with observed flow, showing the high sensitivity of Multi-Hydro response to the spatial
resolution of the model.

tors presented in Sect. 4.2: NSE, the coefficient of regression
β and the relative error at the peak flow δr . Obtained results
are summarized in Fig. 16. Note the high scale dependence of
the obtained model performance, which was not the case for
the dynamic evaluation. In fact, all indicators reveal a similar
trend of higher performance at small scales and lower per-
formance at large scales. Model performance is indeed im-
proved as the model resolution increases. From these results,
the three ranges of scale previously identified with the help of
the fractal analysis (Fig. 12) are also found in Fig. 16. Con-
sequently, performance evaluation will be analysed at these
three ranges of scale. Basic statistics (minimum, maximum
and mean) of performance indicators Correlation, NSE, β
and δr calculated for the three ranges of scales (100–40 m),
(30–15 m) and (10–5 m) are displayed in Table 2.

Table 2. Min/max/mean of performance indicators (Correlation,
NSE, β and δr) calculated at three ranges of scale: (100–40 m), (30–
15 m) and (10–5 m).

Range of scales Performance indicators (min/max/mean)

Correlation NSE β δr

(100–40 m) 0.83/0.99 −13.92/0.92 0.62/4.07 −0.36/3.69
/0.93 /−2.36 /1.99 /1.09

(30–15 m) 0.81/0.98 0.63/0.91 0.54/1.25 −0.31/0.51
/0.94 /0.79 /0.89 /0.17

(10–5 m) 0.82/0.98 0.44/0.91 0.59/1.60 −0.39/0.61
/0.93 /0.72 /1.06 /0.19
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Figure 15. Results of model hydrodynamic evaluation; the correlation coefficient r was retrieved for each modelling output with respect to
real measurements.

– At large scales (100–40 m): the imperviousness coeffi-
cient Cimp of the catchment is very high, ranging from
45 % at 100 m to 30 % at 40 m. The modelled flow ob-
tained at this range of scales exhibits similar dynamic
as observed flow; however, performance indicators are
bad. NSE values range from −13.92 observed at 100 m
scale to 0.92 observed at 40 m scale. The β indicator
suggests that the model is highly overestimating ob-
served flow, with values ranging from 4.07 observed at
100 m scale to a minimum value of 0.62 noticed at 40 m,
and an average around 2. This follows a trend similar to
Cimp. In terms of the peak flow analysis, the relative er-
ror indicator (δr) shows clear overestimation of the peak
flow at this range of scales, up to 369 %.

All statistic indicators suggest very weak performance
of the model at large scales (100–40 m). In fact, the
catchment behaviour at this range of scales is consis-
tent with the high imperviousness coefficient observed,
which means that infiltration is limited and water is in
the majority of cases rapidly routed to the sewer system.

– At medium scales (30–15 m): the model shows its best
performance. NSE values range from 0.63 to 0.91, with
an average around 0.79. The β indicator takes values be-
tween 0.54 and 1.25, and its mean is around 0.89, sug-
gesting a good fit between modelled and observed data.
The relative error indicator (δr) ranges from −0.31 to
0.51 with a mean value around 0.17, meaning that the

model still overestimates the peak flow by 17 % on av-
erage.

– At small scales (10–5 m): at this range of scales, the
model performance remains high but potential trends
with regards to scale are unclear. In fact, Table 2 indi-
cates that NSE values range between 0.44 and 0.91 with
a mean value around 0.72, demonstrating good perfor-
mance of the Multi-Hydro model. The β indicator takes
values between 0.59 and 1.6, with a mean around 1.06.
The relative error indicator (δr) ranges from −0.39 to
0.61, with a mean value around 0.19. Slight fluctuations
of the model performance are observed at this range of
scales; the trend observed in statistics as a function of
pixel size for large and medium scales (the improvement
of all statistics as the pixel size decreases) is no longer
valid at small scales, where fluctuations of statistics are
noticed (they increase at 10 and 9 m before decreasing
at 7 m). These fluctuations highlight some specific is-
sues at this range of scales, which influence the model
performance. This point will be discussed further in the
next section.

5.2.3 Specific modelling issues at small scales

It is also important to discuss in this paper the performance
of the model in a more global framework, especially by tak-
ing into consideration some serious problems that one may
face when performing high-resolution modelling. In fact, as
shown in Fig. 16, the model performance indeed increases
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Figure 16. Performance indicators NSE, β and δr estimated from Multi-Hydro modelling output obtained at the 17 spatial scales with respect
to observed data.

with decreasing spatial scale of the model. This is due to a
better representation of the catchment complexity, notably
its scaling behaviour and the small-scale heterogeneity. How-
ever, three ranges of scales were clearly identified from pre-
vious results. At large scales (100–40 m), the model shows
a fast computation time (up to only few minutes on a stan-
dard laptop) but lower performance (the model reproduces
the same flow dynamic, but the volume is overestimated by
up to 234 %). At medium scales (30–15 m), the model ex-
hibits high performance (Table 2) and fast computation time.
At small scales (10–5 m) the urban catchment configura-
tion remains unchanged (the imperviousness coefficient re-
mains around 37 %, compared to the medium scale); how-
ever, model performance at this range of scales is unclear
and some fluctuations are noticed. Such fluctuations are in
fact related to some non-trivial problems that only take place
at small scales and should be considered when implementing
urban storm models:

1. Quality of distributed data: urban hydrological models
in general and fully distributed ones in particular are
highly demanding with respect to the distributed data

needed for their implementation. A detailed description
of the land cover is essential as well as distributed to-
pography data. Such data are usually available and can
be provided by specialized services. However, quality
is a big issue, especially when used to perform high-
resolution modelling. Two main issues are highlighted
here:

– The spatial resolution of the topography data: the
topography is the main driving force for surface
water movements and the accuracy of these data
has a lot of influence on grid-based models out-
puts. In our case, the topography data were avail-
able at 25 m resolution and interpolation was per-
formed to obtain distributed data at small scales.
However, the quality of obtained data below the
25 pixel grid is not fully reliable. The problem is
even more striking for small scales down to 2 m
(not included in this work, but details can be found
in Ichiba, 2016), where the movements of water in
the surface are very limited because the elevation
gradient becomes very low.
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– Land cover description: the land cover is also of ex-
treme importance in urban hydrology and specif-
ically for fully distributed models. In fact, physi-
cal properties defined for each pixel depend exclu-
sively on its land cover. Such data are usually avail-
able especially after huge improvements noticed in
the availability of satellite images and new tech-
nologies used in this field. However, one commonly
faced issue is the proportion of unknown data, indi-
cating unidentified land cover. This is not related to
the data resolution, but depends on the processing
procedure of satellite and areal images obtained.
In the case of Sucy-en-Brie catchment, land cover
data were available at very good resolution (25 cm),
but the proportion of unidentified data was about
20 % and was filled in most cases by grass. At large
scales, the problem associated with “no data” pix-
els has limited influence, because large pixels usu-
ally include a large portion of well-identified land
cover classes, like roads and houses. But at small
scales, the catchment behaviour will be affected by
the land cover attributed to these “no data” pixels,
and the model response will not be the same if the
unidentified areas are filled by grass or by impervi-
ous soil.

2. Numerical instabilities: fluctuation of the model perfor-
mance noticed at small scales can also be the conse-
quence of numerical instabilities. In fact, the numerical
scheme used in the Multi-Hydro model for the surface
modelling calculations is sensitive to small-scale vari-
ation, which affects the model response. Further works
should be conducted to better quantify these instabili-
ties.

3. Computation time: it is important in urban hydrology
to consider the computation time needed for a model to
simulate a given rainfall period. It is in fact one of the
first criteria considered by urban water managers for the
choice of urban storm models. Fast computation time
is even crucial in the case of models used in real-time
management processes. For fully distributed models,
the computation time depends on two factors; the size
of the catchment and the resolution of the model. For
the case of Sucy-en-Brie catchment, the Multi-Hydro
model shows fast computation time at large scales up
to 10 m (a few minutes on a standard laptop), and huge
computation time is needed at very small scales (5–2 m)
(several hours). This is due to the numerical scheme, the
modelling approach and the great number and size of
the model outputs saved for research needs. Improve-
ments should be implemented in the model structure in
order to enhance the model performance from this point
of view.

4. Mismatch between rainfall input resolution and model
resolution: in this study, uniform rainfall input (rain
gauge data) was applied to the catchment in all model
simulations. Numerous authors have shown that model
performance is strongly dependent on rainfall input res-
olution (Rafieeinasab et al., 2015; Ochoa-Rodriguez
et al., 2015; Gires et al., 2015; Ichiba, 2016). Never-
theless, the aim of this study was to investigate the sen-
sitivity of model performance to model resolution inde-
pendently of rainfall resolution; therefore uniform rain-
fall was purposely input to the model. Future studies
will look into the combined effects of rainfall and model
resolution, based on the high-resolution rainfall data in-
creasingly available.

5. Interactions between spatial and temporal resolution:
In this study, a constant time resolution of 5 min was
used for rainfall input, flow data and model simulations.
Previous studies have shown that a dependence exists
between spatial and temporal resolution of rainfall in-
puts and model simulation results (Rafieeinasab et al.,
2015; Ochoa-Rodriguez et al., 2015; Gires et al., 2015;
Ichiba, 2016). Both rainfall phenomena and hydrolog-
ical processes exhibit scale dependence, both with re-
spect to their spatial and temporal resolution. Previous
studies have suggested that a fixed relationship could
exist between spatial and temporal resolution and that
the spatial resolution of rainfall input and model simu-
lation cannot be changed independently of the temporal
resolution. Future studies are planned to investigate this
relationship and the implications it has for hydrological
model simulations.

6 Conclusions

This work was motivated by the fact that on the one hand the
inputs of the hydrological models exhibit scale-invariant fea-
tures while on the other hand distributed models are imple-
mented at a single resolution. Hence the question we tried to
investigate in this paper is “at which resolution should we im-
plement the model?” – bearing in mind practical constraints
such as missing data at high resolution or longer computa-
tion time. The main goal of the paper is to investigate the
existence and try to identify the appropriate resolution (or a
range of resolutions) for Multi-Hydro implementation.

In the first part of the paper, fractal tools were used to char-
acterize the scale dependence observed within distributed
data (available in commonly used GIS formats) used to con-
figure urban storm models. Both the structure of the sewer
network and the distribution of impervious areas were anal-
ysed. Then multi-scale modelling investigations were carried
out using the fully distributed model to analyse the effect of
this scale dependence on the model performance.

The model was implemented at 17 spatial resolutions rang-
ing from 100 to 5 m. The case study area is a 2.45 km2 ur-
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ban catchment located southeast of Paris, in Val-de-Marne
County.

Results coming from this work confirm the scale depen-
dence of the obtained model outputs. In fact, model perfor-
mance indeed increases with decreasing spatial scales. This
is due to a better representation of the catchment small-
scale heterogeneity and scaling behaviour, notably for the
impervious areas which are immediately active during a rain-
fall event. At large scales (100–40 m), the model shows a
fast computation time (only a few minutes) and also repro-
duces well the overall flow dynamic, but the flow volumes
remain largely overestimated. At small scales (10–5 m) the
urban catchment configuration, including the overall imper-
viousness, becomes scale independent, without any further
improvement, and one can notice a possible decline of the
model performance. The small fluctuations of the model per-
formance at this range of scales are in fact related to specific
issues taking place at high resolution: mainly data problems,
such as GIS data quality and missing information, as well as
model numerical instabilities, without ignoring the computa-
tion time constraints essential for urban hydrology applica-
tions.

Over the remaining medium range of scales (30–15 m) for
our case study, the model exhibits high performance and fast
computation time since the increase in data resolution creates
sufficient spatial variability among the grid-based parameters
of the model. Such variability becomes somewhat represen-
tative (i.e. up to the selected precision) for the geophysical
variability of the studied urban catchment.

Due to a tremendous increase in number of data pixels for
grid-based models, one easily understands the difficulty of
applying the classical methods for model parameter calibra-
tion. Analysis performed here demonstrates that forcing the
model to give a better performance by changing its parame-
ters is simply not reasonable for grid-based models because
of their strong scale dependence. In turn, such scaling depen-
dence induces an alternative to the classical model calibra-
tion. As we have demonstrated here, a better consideration
of such scale dependence makes it possible to define an opti-
mum range of scales – over which the model performs much
better with respect to the measurements. This can be seen as
a proposed alternative to the classical parameter calibration
of grid-based models.
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