A comprehensive comparison between federated and centralized

learning

Swier Garst
Delft University of Technology

Julian Dekker
Delft University of Technology

Marcel Reinders
Delft University of Technology

Geert Leus
Delft University of Technology

December 10, 2021

Abstract

Federated learning is an upcoming machine learning concept which allows data from multiple sources be used
for training of classifiers without said data leaving its origin. In certain research cases using highly private
data, the step of gathering data can be quite tedious. In such cases, federated learning has the potential to
vastly speed up the research cycle. However, the question arises whether such a federated framework gives
similar performance compared to a central model with access to all data, in other words: Whether it might
be worth the hassle of gathering all data anyway due to the performance difference. In this work, we provide
an extensive set of experiments comparing central and federated models, using multiple classifiers on multiple
datasets. Results show that federated learning indeed has the potential to provide similar results, but that
its nature might enable use cases in which challenges with regards to batch effects between different datasets

could become prevalent.

1 Introduction

Nowadays lots of data is available for the use of
machine learning applications. However, in some
use cases this data does not naturally reside at a
single location, and centralizing said data might be
difficult or straight up impossible due to regulation.
One example is that of medical data [29] [5], which
resides at different hospitals or medical institutions,
but which cannot leave said institutions due to privacy
concerns.

In order to still try to leverage this type of data,
the concept of federated learning [16] was introduced.
Instead of gathering the data at the place where
a model is being trained, in a federated learning
environment, the model gets send to wherever the
data is available: the so-called clients. At these
clients, the model undergoes some form of training,
after which the updated model is sent back to a
central point, referred to as the server. The server
then aggregates all the local updates in order to create
a new global model, which it then sends back to all
of the clients, and the cycle repeats. With this setup,
only model updates are being communicated, and
since the original data never has to leave its origins,
the entire process becomes less privacy-sensitive.

the federated learning problem defini-
given n clients,

Formally,
tion can be described as follows:
minimize the function

min F(W(X,y)) = ZL(W(%), yi) (1)

where L is a loss function,W a set of model parameters
(for example the weights and biases of a neural
network) and X = {x;}7, with x; the dataset on client
i with its corresponding labels y;.

The concept of federated learning is adjacent to
other fields trying to learn from distributed data,
particularly distributed learning [30] [18]. Distributed
learning broadly operates similar to federated learn-
ing, having a network of clients trying to solve an
optimization problem. However, distributed learning
allows for different learning objectives per client,
which are only locally known. This is contrary to
federated learning, where everyone utilizes the same
loss function, but on data which is only locally known.
Besides, federated learning uses a star network, with
a centralized server connected to each client. Such a
central point is not present in distributed learning,
with clients having only connections to (some) other
clients. A more in-depth analysis of distributed
learning is given in supplementary materials I. A
variant of federated learning which utilizes a sin-
gle loss function, but without a central server and
thus a network architecture much more akin to dis-
tributed learning, has been coined swarm learning [26].

Since the conception of federated learning back
in 2015 [16], lots of research has been done on
its efficiency, performance and privacy-preserving
properties [11] [12]. Communication ends up being a
bottleneck in many federated systems [13]. As a result,
development of techniques to reduce communication

rounds have been emerging [9] [4].With regards to
performance, many analyses have been made on the
performance of the original federated algorithm, called
federated averaging (details in supplementary II).
These studies focus usually on performance under
poorer data distributions [7] [3] [6], as it can be
shown that, under certain assumptions about the
data distribution, federated averaging gives results
equivalent to stochastic gradient descent, see appendix
A. As a result, extensions of federated averaging
trying to accommodate for different (non-I1ID) data
distributions have been developed, e.g. [6] [23].
Privacy preservation has been explored by means of
constructing specific attacks on federated systems
[2] [25]. As a response, extensions on the original
federated algorithms which include some form of
increased privacy preservation is becoming a vast area
of research [27].

Although all of the aforementioned researches have
developed the federated learning concept into research
areas of their own, many of the analyses remain mostly
theoretical. Besides, it is usually taken for granted
that the federated approach is a given, while there are
certain use cases where the question whether or not to
use federated learning is an important design decision.
In these cases, for example medical research, where it
is possible, albeit tedious, to gather enough data in
a central framework, it remains a tradeoff for which
the performance differences between a central and
federated model are an important factor. However,
to our knowledge, experimental results comparing
federated to centralized models has been scarce.
Therefore, in this paper, we will describe a vast set of
experiments in which centralized and federated models
are compared with one another. We explore the use
of different classifiers on multiple datasets, distributed
in multiple ways. In doing so, we shed some light on
different scenarios in which federated learning might
perform similarly to a centralized model, and when to
be careful in assuming such a similar performance.

2 Results

Linear models on binary classification problem
show importance of learning rate for conver-
gence time

First, a baseline was created by training a ’simple’
classifier on a ’simple’ dataset. From there, extensions
to both different datasets and classifiers were made.
The MNIST dataset, consisting of 60.000 handwritten
images of the numbers zero to nine, was chosen as a
first dataset, as it is known to be a relatively easy
problem for modern day classifiers [28] (methods).
In order to simplify further, MNIST was converted
into a binary classification problem by selecting only
two of the classes. This dataset will be referred to
as the 2class MNIST dataset. It was distributed
evenly among ten clients, meaning that each client
had a similar amount of samples, with an even class

distribution (methods).

As for the first classifier, a logistic regression
(LR) model (details in methods) was trained on this
2class MNIST dataset, with varying learning rates
for both the central and federated model. Results
can be found in figure la, with the final accuracy’s
and Area Under Curve (AUC) values collected in
supplementary table 5. These results show that
increasing the learning rate leads to faster conver-
gence times, both in the federated and centralized
case. Curiously, a centralized model with a learning
rate of a factor 10 lower seems to fit the federated
counterpart much better compared to a central model
with a learning rate equal to that of a federated system.

Binary classification experiments show ro-
bustness to distribution perturbations

In the next experiment, the robustness to a change
in the class -and sample distribution (among the
clients) was tested. Previously, 2class MNIST was
distributed evenly over all ten clients (referred to as
the IID distribution). Now, the same dataset was
distributed twice more, but the distribution of either
sample size or classes was made differently (methods).
These two new distributions are referred to as the
sample imbalanced (SI) and class imbalanced (CI)
distributions (supplementary figure 8). Furthermore,
a Support Vector Machine (SVM) was used besides
the already existing LR model (details in methods).
Figure 1b / supplementary table 6 shows that all
federated models give a similar performance compared
to their IID counterpart.

To visualize the learning process, the euclidean
distance between each client’s parameters and the
global parameters were calculated each round. These
distances were plotted into a heatmap (figures 2a
and 2b). Figure 2b shows an interesting oscillation,
which can be explained by the class imbalance on
that experiment. The initial model might include
a bias towards one of the classes, as it is randomly
initialized. =~ This means that the client where the
favored class is over-represented will create an update
with a smaller magnitude, as its error will be lower.
On the other hand, the client on which this favored
class is under-represented will create a larger model
update. This is seen in the heatmap, as client 0 has a
small distance to the global model, whereas client 9
a very large one, with this distance increasing as we
move from client 0 to 9. As a result, The next global
model iteration might swing more towards the other
class (in this case the one over-represented on client 9),
which now produces an update with small magnitude,
while client 0 produces a much larger update. This
cycle continues while the model converges towards
an equilibrium, in which both classes are equally
represented in the global model. This does mean
that both client 0 and 9 create larger model updates
compared to the other clients, as is expected.

central vs. federated LR on 2Zclass MNIST

[~

os |

=
1=}
&
]
B 071 central federated
—= 5%¥107F |— 5*107%
06 | 5+10°7 5+10-3
—= 5%¥107% |— 5*107*
—- 5#107 — 5*10°°
05 1
T T T T T T
o 20 40] 80 100
communication rounds
(a)
support wector machine on Zclass MNIST
09 1
0.5 1
=
1=
e
=]
[*)
B 07
— id
d
0.6 1 — scaffold (ci}
—_— &
05 | — central
T T T T T T
o 20 40 B0 80 100
communication rounds
(b)
All classifiers on 2class MNIST (11D}
104
09 1
0.5 1
=
L
5
o 07 1
] centralized federated
—- IR — LR
0.6 1 SWM VM
—:== DT — DT
05 | —:= FNN —— FNN
== (NN —— (NN
T T T T T T
o 20 40] 80 100
communication rounds
(c)
Figure 1: Several exrperiments on the 2class MNIST
dataset. Graphs display the average and variance over 4
runs. (a) explores the effect of altering the learning rate

for both a central and federated logistic regressor(numbers
in legend correspond to learning rate). (b) shows the ef-
fect of different data distributions (imbalance in dataset size
(SI), or in class distribution (CI)) on the SVM. (c) gives
an overview of all classifiers, with IID data distributions.

(v)

Figure 2: Heatmaps illustrating the differences between in-
dividual client’s model updates. The r axis denotes the
round, while the y-axis denote the client. A lighter color
means a higher distance between said clients’ local model
parameters and the global model parameters.

Extension towards more complex models shows
similar results compared to linear classifiers
Once the experiments using the linear models were
finished, additional classifiers were tested to explore
the effects of increasing model complexity. These were
a Fully connected Neural Net (FNN), Convolutional
Neural Net (CNN) and a decision tree based classifier
(details in methods). Results of all classifiers on the
2class MNIST can be found in figure 1c, which shows
similar results for both the FNN and decision tree
classifiers compared to the linear models previously
described. Numerical values for AUC and accuracy at
the final training round are found in supplementary
table 7. The CNN, however, shows a slightly larger
accuracy difference between its central and federated
models.

Besides fedAVG, another federated algorithm was
implemented to explore difference in performance in
the CI case. This algorithm is called SCAFFOLD [6]
(supplementary materials III). Its performance can
be found in figure 1b, and is comparable to fedAVG
in this setting. This is to be expected, as fedAVG
shows similar performance in the CI case compared
to the IID case. If performance using fedAVG would
deteriorate in the CI case, then SCAFFOLD could
improve on that.

Extension to multiclass problem results in
similar performance compared to binary classi-
fication

Next, the effects of having a multiclass problem
were explored by making an extension to the 2class
MNIST dataset. This was done by selecting two more
classes from the original MNIST dataset which were
then added to the preexisting 2class MNIST dataset,
resulting in the 4class MNIST dataset. The results in
figure 3 / supplementary table 8 show similar results
compared to the binary classification problem of 2class
MNIST.

The aforementioned 4class MNIST dataset was
also distributed in three different ways, similar to the
2class MNIST dataset. Although the accuracy differ-

ence compared to the 2class MNIST was significant,
the same robustness to distribution perturbation as
observed in the 2class MNIST experiments is observed
here as well.

4class vs. 2class MNIST, LR

094 i
0.8 1
=
@
5 dclass MNIST 2class MNIST
§ 0.7 1 n=>5*10"* |np=5*%10"°
== iid — iid
D_E - Ei ﬂ
== scaffeld — scaffold
—= & — s
05 1 == gentral — central
T T T T T T
] 20 40 60 BO 104
communication rounds
(a)
4class vs. 2class MNIST, FNN
10
0.9 1
0.8 1
=, 0.7
b
5 06 - 4class MMIST 2class MNIST
| n=5+%*10"1 n=5%10"
051 == iid — iid
d d
0.4 1 —-= scaffold — scaffold
] == 5 — 5
0.3 == gentral — central
T T T T T T
o 20 40 B0 BO 100
communication reunds

(v)

Figure 3: Both LR and FNN results on the 4class MNIST,
compared to previously displayed 2class MNIST results.

Increasing class distribution aggresiveness gives
variable results

After creating working models on the MNIST deriva-
tives, the next goal was to experiment on a ’harder’
dataset. Here the fashion MNIST dataset was used ,
as it is meant to be a direct replacement and at the
same time more difficult problem compared to the
original MNIST [28].

Two different dataset distributions were made,
one with an IID distribution, and one with a class-
imbalanced (CI) distribution. This time, however the
CI distribution was made more ’aggressive’, meaning
that not every client had samples for every class
(supplementary figure 10).

Results on fashion MNIST can be found in fig-
ure 4 / supplementary table 9. The linear models kept
performing similarly, whereas the neural nets show a
significant accuracy difference between the federated
and centralized models. Difference between IID and

CI distributions seem negligible, except for the GBDT,
which completely breaks down in the CI case.

CNN on fashion MMIST

0.5 1
0.7
0.6
Z 0.5+
&
0.4
3
0.3 1
0.2+ — federated, n = 0.05
01 — central, n = 0.05
. — central, n = 0.005
T T T T T T
0 100 200 300 400 500
communication rounds
(a)
Logisic Regression on fashion MNIST
0.5 1
0.7 4
0.6
=
=]
£ o5
B
0.4 4 — id, n=5*%10""
i = =3
034 ci,n=5%10
— central, n=5%10"7
0.2 1
— central, n=5*10"%
T T T T T T
o 20 40 B0 BO 100
communication rounds
(b)
GBDT on fashion MMIST
0.8 ,/-’—_
0.6
=
=)
&
o J
= 04
021 — i
a
= central
D'G A T T T T T T
o 20 40 &0 8O 100
communication rounds
(c)

Figure 4: Several models on the fashion MNIST dataset.
(a) underlines the increased convergence time (note the x
azis) using CNN, while (b) and (c) compare the different
distributions, IID and CI.

Experiments on high dimensional data show
potential for federated data processing tech-
niques

Until now, all experiments have utilized a single
dataset which has then been separated into multiple
pieces. A more realistic scenario would use multiple
datasets, where each dataset is gathered on a separate
client.

In order to imitate this scenario more realistically, a
triad of datasets (A1-A3) from [26] was used. these
three datasets are representations of gene expressions,
labelled based on the presence or absence of Acute
Myeloid Leukemia (AML) in a sample (each sample
corresponds to blood cells of a different human).
These three datasets were synthesized independently,
with A3 even having a different measuring method
compared to A1/A2 ie. Al-2 uses microarray analy-
sis, whereas A3 uses RNA-sequencing (methods). This
dataset will be referred to as the AML dataset from
now on.

In order to determine the feasibility of learning
on these datasets, first an experiment was done using
A2 only. Here, A2 was distributed in an IID fashion
over 10 clients. As A2 has a high dimensionality (over
11.000 features), a dimensionality reduction method
seemed to be required, as all classifiers (also in the
centralized models) could not perform above random
level in the original feature domain. Therefore, a
Principal Component Analysis (PCA) was performed
beforehand, reducing to 100 features. For this we im-
plemented the PCA in a federated manner, described
in more detail in the methods.

With the reduced dataset, all classifiers seemed
to be performing reasonably well. Once the IID
experiment was completed, the data was distributed
in a SI/CI distribution similar to the MNIST datasets,
before reapplying the federated PCA. Once again a
high robustness to these different data distributions
can be seen, see figure 5 / supplementary table 10.

Support Vector Machine on A2

k]
- 0.8
L=
&
2 — jid, n=5%10"%
® 07 i
ci,n=5*10"7
— 5, n=5%10""
0ne —— central, n=5*%*10"%
— central, n=5*10"%

40 B0 BO 100
communication reunds

= 4
P
[=]

Figure 5: SVM results on the A2 dataset

Usage of heterogeneous datasets can inhibit
proper model training

Once experiments on only the A2 dataset were
complete, the full triad of Al-A3 was tested. In
this setup, only three clients have been used, each
holding one complete dataset. As these datasets have
the same high dimensonality issue as the A2 dataset
described before, first the federated PCA was executed.

The results vary per type of classifier. ~Whereas
the linear models seem to be able to perform reason-
ably well (figure 6a), the neural networks completely
break down, both in the central case as well as the
federated case (see figure 6b).

The hypothesis on why this breakdown is happening
was that one of these datasets, A3, is distributed quite
differently in such a way that it disturbs training.
The reason to select A3 specifically is that it has been
synthesized using a different measuring technique
(methods), also resulting in different preprocessing
steps. Furthermore, when looking at a heatmap dur-
ing training (figure 7), it can be seen that the model
updates from the client holding A3 are consistently
far away from the global average model.

In order to test this hypothesis, an experiment
was conducted in which the A3 dataset was omitted;
In this case there were only two clients, holding Al
and A2 respectively. A new PCA was made using
only these two clients. Results show not only that the
central and federated neural models are quite similar
in performance, but their performance also ends up
being quite agreeable, indicating that the use of A3
indeed disturbed the convergence of training (figure
6¢).

Logistic Regression on 3node

09

0.8 1

07 A

G 1

accuracy

05 1

04+

—_—iid, g = 1*107*

0.3 — central, n=1*10"*

07 — central, n=1%*10""

o 25 50 75 100 125 150
communication reunds

(a)
FNM on 3node

T T
175 200

9
08

0.7 1

ol
!

y f"'l ||Hl|1 ['fl'

A

0.3 - central

I

accuracy

05

04 4

communication rounds

(b)
2node, FNN

095

090 4

085 1

080

075 1

070
065 1

— federated
central

060

(55 1
100

(c)

Figure 6: Several experiments on the A1-A83 datasets. figure
6c shows an improvement over 6b by omitting dataset AS.

Figure 7: The heatmap of the FNN on a 3node dataset
experiment, corresponding to figure 6b.

3 Discussion and Conclusion

This paper describes the results of a set of experi-
ments exploring the differences between centralized
and federated machine learning models. Multiple
classifiers were used on several datasets, which have
been distributed in different ways. Results show
that, especially under IID circumstances, a federated
classifier could reach similar performances compared
to its centralized counterpart. However, a careful
choice of parameters such as learning rate and batch
size is vital to reach a comparable performance. The
exact relation between said parameters for reaching
equal performance between centralized and federated
models remains unclear, and could be part of future
work. Furthermore, when using datasets from multiple
sources, which is a paradigm explicitly supported by
the federated setting, federated learning can suffer
from the heterogeneity between the sources, and
should be approached catiously.

On the MNIST 2class dataset, the federated convolu-
tional neural network scores considerably lower than
its central version (fig. 1c). Moreover, it is the only
classifier with such a big discrepancy. This could be
the result of the batch learning used for the CNN
classifier (no batch learning has been utilized for any
other model). A possible explanation could be that a
central model utilizes batch learning more efficiently
than a federated model.

Figure la shows that when comparing a central-
ized and federated model, a learning rate of a factor
10 lower for the central model gives a much better
fit instead of using equal learning rates. The reason
for this difference is not entirely clear. However, it is
intriguing that this factor of 10 is equal to the amount
of clients used in the federated case, making this a
potential starting point for future research.

Comparing the results on the MNIST 2class dataset to
its extension, the 4class dataset, accuracy differences
between the federated and central models seem to
increase (fig 3). Although the learning rate used in the
4class case is lower, it is kept equal between the central
and federated models, and should therefore not be of
influence for any final accuracy difference. A possible
explanation could be that intuitively the problem
becomes ’harder’ when moving from 2 to 4 classes,
therefore amplifying any performance differences
between a centralized and a federated model.

The federated GBDT-classifier completely breaks
down on the class-imbalanced distribution of the fash-
ion MNIST dataset (figure 4¢). This is not surprising
looking at the dataset distribution, which shows that
all clients have approximately half of the total amount
of classes. The inPrivate learning algorithm utilizes
decision trees created by the previous clients to boost.
If these trees were created using a different subset
of classes, it can be understood that the resulting

gradient does not serve as a helpful tool for the
creation of the following decision tree.

In [26], from which the AML dataset originated,
no form of dimensionality reduction was used. Fur-
thermore, no omission of dataset A3 in order to
improve results was mentioned. The first point can be
explained by the difference in the used classifiers. In
this work, a deep neural network including multiple
dropout layers, which are known for being helpful at
dealing with highly dimensional data, was used. In
contrast, the neural network used here only consisted
of two linear layers, combined with a relu-layer.
Regarding the use of A3, it is unclear of the original
results were synthesized using federated averaging;
The authors state a couple of other aggregation
methods that were used, including taking the median
instead. This, combined with the aforementioned
point on model difference, could lead to a setup in
which A3 does not bring much of a disturbance.

One of the strengths of the federated averaging
algorithm is that it allows for multiple local epochs, as
well as batch learning. This results in multiple learning
steps per communication round. In the original work
[16], the authors show that this can be used to reduce
the total amount of communication rounds required.
In this work, neither local epochs nor batch learning
has been used (except for the CNN, where 10 batches
per round were used. However, this number was never
varied on to explore its influence). A further analysis
on differences between federated and central models
should probably include experiments exploring the
influence of varying these parameters.

4 Methods

4.1 Algorithm overview

In total, five different classifiers were implemented
in a federated setting: A Logistic Regressor (LR), a
Support Vector Machine (SVM), a Fully connected
Neural Network (FNN), a Convolutional Neural
Network (CNN) and a Gradient-Boosting Decision
Tree protocol (GBDT). Except for the GBDT, all
classifiers follow the same algorithm, which is given by
pseudocode 1. The algorithm for the GBDT is given
by pseudocode 2. Notation used in these pseudocodes
can be found in table 1.

First, a brief description of algorithm used by
the first four models is given. First, a model is ini-
tialized on the server with random values. this model
is sent to all clients. Then every client (in parallel)
performs a local training step to update its coefficients
by means of Stochastic Gradient Descent (SGD). All
clients then send back their updated model to the
central server. There, these models are gathered, and
combined to update the global model. Finally, the
next epoch starts, and the combined coefficients from

the previous round are now used as the new values

sent out.
Table 1: notation overview
Notation Meaning
wg global model at round r
W model at client i at round r
X in training data at client i
Y in labels for trainig data at client i
X} test data at client i
Yi,, labels for test data at client i
acct. accuracy score of client i at round r
S dataset size (amt of samples) at client i

Algorithm 1 the federated implementation of all clas-
sifiers except for GBDT

1: init W§ as random

2: for all r rounds do

3: On server: Send W¢ to all clients i

4: On clients: W}« W¢

5: On clients: accl = acc(W}E, Xioor, Yiier)

6: On clients:
W;—Q—l A localStep‘(W;, XZrain} Y—tlrain)

7 On clients: s' < size(X{,4;,,)

8: On clients: send W}, , acc;, s; back to
server

9: On server: retrieve W/, acc. and s; for all

10: W= W W2 Wi)

11: S = {st,s?% .., s}

12: On server: WY | = globalStep(W',S)
13: On server: accl. = acc(W? 1, Xiest, Yiest)
14: end for

The functions localStep and globalStep in lines 6 and
13 respectively are either an implementation of the fed-
erated averaging [16] algorithm or of the SCAFFOLD
algorithm [6].
For the implementation of federated averaging, local-
Step is simply done by means of Stochastic Gradient
Descent, i.e. :

Wi =W} —mxVL(X]

train)
T rain’ Ytrain

(2)
where L(X} . insYiain) is @ loss function which differs

between classifiers.

The global step of federated averaging consists
of, as the name suggests, taking the weighted average
for all the coefficients:

N
Wf+1:m* S*WT-‘,-I (3)
=0

Where s* is the dataset size of the i*! client, and

S=3N s

For both the local and global step, SCAFFOLD

expands on federated averaging by means of a control
variate. for the local step:

Wi =W} —nxVioss; +c? —c, (4)

Both ¢f and all ¢! are initialized as all zero. For the
second part of the local step, ¢ gets updated as:

. . 1 . .
C;+1 =c. -+ EW; - ;+1 (5)

A global update step of SCAFFOLD first updates the
coefficients as follows:

N
Wiy =W+ 2> Wi =W, (6)
1=0

And then updates ¢ :

=2

1 i i
Cg—&-l = C7g" + N * Z(cr+1 - Cr) (7)
i=0
A more in-depth analysis of federated averaging and
SCAFFOLD is given in supplementary material I and
IIT respectively.

The federated GBDT is implemented differently
from the other classifiers, as due to the nature of the
GBDT model, it does not lend itself very well for
parameter averaging such as in federated averaging.
Instead, for the GBDT, we followed the ”inPrivate
Learning” algorithm [31]. In this algorithm, only one
client is active per round; This is the client referred
to as Cyetive in the pseudocode. This client uses the
decision trees of its predecessors to calculate a loss
on its own dataset, which it then uses to boost the
decision tree it builds. A more in-depth analysis of
this algorithm is given in supplement IV.

Algorithm 2 The implementation for the inPrivate
learning algorithm

1: init W9 as random

2: for all r rounds do

3: Cluctive = T mod N

4 send W9 to client Cgepive

5 Do on client Cyetive:

6: calculate loss on local training set

7 create new tree using calculated loss to

boost
8: add tree to W9
9: acc, = aCCUTacy(Wg’ ngz‘tive , }/tg;tctme
10: send W9, acc, back to server
11: End
12: Receive Y, acc, from client Cyeiive
13: CLCC? = accuracy(WQaXtest}/test)
14: end for

4.2 Datasets

All classifiers were tested on several datasets. These
datasets were based on three different ’baseline’

datasets: MNIST [10], fashion MNIST [28] and a
dataset used for the prediction of Acute Myeloid
Leukemia (AML) [26]. The MNIST dataset was trans-
formed into both a two-class and a four-class problem.
The AML dataset consists of three subsets: Al1-A3.
The fashion MNIST dataset was kept as-is, having one
variation with a different data distribution.

4.2.1 Two Class MNIST

The first dataset used throughout all experiments is
derived from the MNIST dataset [10]. The original
MNIST consists of 10 classes, one for every digit
between 0 and 9; see supplementary VIII for some
samples. In order to reduce complexity, two digits
were chosen, and the corresponding samples from
those digits were taken. The chosen digits were 4 and
9, as these happened to give the most errors from the
classifier of the original work of MNIST.

After these samples were selected, the dataset
was made ’federated’, meaning that it was split up
into ten smaller datasets. For this, three different
splits were made: an IID distribution, a distribution
with imbalances in sample size (SI) and one with
imbalances in classes (CI). supplementary figure 8
shows these sample and class distributions.

4.2.2 Four Class MNIST

Besides the 2class MNIST dataset, a 4class MNIST
dataset was constructed as well. This contained the
same digits as the two-class (four and nine) as a base.
From there, the one digit that added the most amount
of errors from the original list of errors mentioned
earlier was added. This process was repeated once
more to create a four-class dataset.

After this 4class MNIST dataset was created,
the same process was used to create three similar
federated datasets as was done with the 2 class
MNIST, e.g. an IID split, a size imbalance split and a
class imbalance split. see supplementary figure 9.

4.2.3 Fashion MNIST

The fashion MNIST dataset [28] was created with the
goal in mind to be a stand-in replacement of MNIST
with a harder classification task, which would be
more suitable to benchmark modern ever-improving
classifiers. Similarly to MNIST, it contains 10 classes,
consisting of different clothing articles; See supplement
IX for some samples. Due to its goal of replacing
MNIST, its dimensions are exactly that of the original
MNIST dataset, i.e. 10.000 test -and 60.000 grayscale
images of 28 by 28 pixels.

Unlike MNIST, this dataset was used as is, us-
ing all 10 classes. Two different distributions have
been used, being an IID distribution as well as a class-
imbalanced distribution. Note that this imbalanced

distribution is built up differently from the MNIST
imbalanced distributions; see supplementary figure 10.

4.2.4 AML dataset (A1-A3)

The final dataset used was taken from a study done by
Warnat-Herresthal et al. [26]. In their experiments,
they used transcriptomes of gene expressions to pre-
dict the presence of acute myeloid leukaemia (AML).
These transcriptomes were taken from human pe-
ripheral blood mononuclear cells (PBMC) from three
different sources, all with their own data generation
method; Dataset 1 and 2 used different variations of
microarray analysis (MRA) [22], whereas dataset 3
uses RNA-sequencing [14]. Due to this heterogeneity
of generation methods, the data was separated in three
different sets, based on generation method (A1-3).

All three datasets contain 12709 different gene
expression values per sample, with labels for 25
different illnesses. With regards to labelling, the same
approach was used as in [26], meaning that all AML
samples were given a label (1), and all other labels
were joined under one label (0) (in the original paper
named ’cases’ and ’controls’). This approach does
result in an inherent class imbalance in the dataset,
with approximately 5000 samples of label 0 and only
2500 samples of label 1.

4.2.5 federated PCA

After some initial testing, it turned out that the high
dimensionality of these datasets was going to become
problematic. Therefore, a principal component analy-
sis [1] was made to reduce the feature space to 100 fea-
tures. This PCA was done in a federated way, which
is described in algorithm 3 .

4.3 experimental setup

The goal is to compare federated classifier performance
to its ’classical’, centralized performance. In order to
make this comparison fair, certain parameters were set
the same. see table 2 for the details.

Table 2: The equivalent federated parameters to the original
centralized ones. Parameters in the same row were kept the
same throughout each comparison

centralized ‘ federated
Learning rate | Learning rate (at every client)
epochs global rounds
batch size batch size

All experiments were executed on one laptop, run-
ning all clients as well as the server. In order to en-
sure full independence between all clients, the federated
learning platform vantage6 [17] [15]was used. Vantage6
uses a dockerized solution, which means that every
client (and every task that every node runs on) runs
in its own docker, therefore being unable to alter the
solution of the other clients.

Algorithm 3 Pseudocode describing the federated
PCA process

1: On Server: request metadata from all clients i
2: On all Clients: mean' = mean(X?), std® =
std(X?), St = length(X*)
On server: collect mean?, std’ and S* for all i
On server: S =57 s’
On server: mean? = Y1 | 5"« mean’
On server: send mean? to all clients, request
local covariance matrices
On all clients: X! = X* — mean¥
8: On all clients: A’ = (X!)T x X}
9: On server: collect A; for all i
n A
A9 = (i
11: On server: std? = diag(A9)
12: On server: send meany, std, to all clients, re-
quest local covariance matrices

13: On all Clients: X}, = 2=/
g9

14: On all Clients: A% = (X!)T % X},

15: On server: collect A% for all i

A = 555

17: On server: V = eigenvectors(AY, 100) >
Calculate the first 100 eigenvectors of A9

18: On server: send V to all clients i

19: On all clients: Xho, = X'« V

20: Om all clients: save Xb. 4, send 'done’ back to
server

AN

=

10: On server:

16: On server:

Appendices

A federated Averaging: deriva-
tion

First, a derivation is given considering a singular local
epoch per communication round, as well as no batch
learning. This is then afterwards extended including
both the effect of multiple local epochs as well as batch
learning.

A.1 No batch learning or local epochs

The local model update from federated averaging is
given by stochastic gradient descent:

W} =W{ | — VLW (X)), y) (8)

These local model updates are then combined into a
new global model as follows:

1L
Wi = > sy
=1

Where N is the amount of clients, s° the dataset size
of client i, and S = Zi\; s'. If we combine equations
8 and 9, we get:

9)

L (X))
= § 2 WE -0 (0
with fi(t) = nVL(W{(X"),y!). By doing some refac-

toring, equation 10 becomes:

1 1
= E;SZth_l — giz:;s’fl(t

s'fHt —1).

i=1

g
W,

- ()
Since S = Y7, 5%, we get:

n

1 i pi
—EZsf(t—l).

=0

wWg=w¢, (12)
This recursion can be rewritten towards its initial
condition, being:

T n
WE =Wy -3 L3S
t=1 1=1

Where W is the random initialization of the model.
Equation 13 can be generalized even further, if we make
two important assumptions. The first is that all client
data is equally distributed, i.e. the data distribution
amongst clients is ITD. The second assumption, is

(13)

10

that, if the first assumption holds, each client deliv-
ers a similar model update. In this case, we get
that fi(t) = f(t), and equation 13 becomes:

T n
Wi =W -3 S s
=1 =1
T

=Wg = aVLW{ (X, y)),
t=1

(14)

Which is equivalent to Stochastic Gradient Descent in
a centralized model.

A.2 Generalization using batch learn-
ing and local epochs

First, if we introduce batch learning (only), equation 8
becomes:

B
Wi =w{, - ZWVL(thbe(Xé)a Ys); (15)
b=1
Where B is the total amount of batches. Similarly,

using only local epochs (and no batch learning), we
can get:

E
Wti =W, - ZWVL(th—l,e(Xi),yi>v (16)
e=1
with E the total amount of local epochs. Combining
equations 15 and 16, we get:
Wi, ZZUVL t— lbe(Xb) yb) (17)

e=1b=1

Note that equation 9 is independent of either batch
learning or local epoch amount. Following the same
derivation as in the previous section, but with equation
17 instead of 8, we can arrive at:

where f'(t —1,b,e) = nVL(W/ , (X{),9;). Once
again, if we make the same two assumptions as in
the previous section (data is distributed IID amongst
clients, each client update results in a similar gradi-
ent over the loss function), we can generalize using

fi(t,be) = f(t,be):

n E B
th:WFl*%ZsiZZﬂ 1,b,e)
i=1 e=1b=1
E B T E B
=W =D ft=1,0,e) = W=D "D f(t—1,b,e)
e=1b=1 t=1 e=1 b=1

(19)

References

[1]

Michael Galarnyk. “PCA using Python (scikit-
learn)”. In: towards data science (2017). URL:
https : / / towardsdatascience . com / pca -
using-python-scikit-learn-e653£8989e60.

Jonas Geiping et al. “Inverting Gradients - How
eagsy is it to break privacy in federated learning?”
In: CoRR abs/2003.14053 (2020). arXiv: 2003.
14053. URL: https://arxiv.org/abs/2003.
14053.

Farzin Haddadpour and Mehrdad Mahdavi. “On
the Convergence of Local Descent Methods in
Federated Learning”. In: CoRR abs/1910.14425
(2019). arXiv: 1910.14425. URL: http://arxiv.
org/abs/1910.14425.

Eunjeong Jeong et al. “Communication-Efficient
On-Device Machine Learning: Federated Distil-
lation and Augmentation under Non-I1ID Private
Data”. In: CoRR abs/1811.11479 (2018). arXiv:
1811 .11479. URL: http://arxiv.org/abs/
1811.11479.

Arthur Jochems et al. “Distributed learning: De-
veloping a predictive model based on data from
multiple hospitals without data leaving the hos-
pital — A real life proof of concept”. In: Radio-
therapy and Oncology 121.3 (2016), pp. 459-467.
ISSN: 0167-8140. DOI: https://doi.org/10.
1016/ j . radonc . 2016 . 10 . 002. URL: https:
//www.sciencedirect.com/science/article/
pii/S0167814016343365.

Sai Praneeth Karimireddy et al. “SCAFFOLD:
Stochastic Controlled Averaging for Federated
Learning”. In: Proceedings of the 37th Inter-
national Conference on Machine Learning. Ed.
by Hal Daumé III and Aarti Singh. Vol. 119.
Proceedings of Machine Learning Research.
PMLR, 13-18 Jul 2020, pp. 5132-5143. URL:
https : / / proceedings . mlr . press / v119 /
karimireddy20a.html.

Ahmed Khaled, Konstantin Mishchenko, and Pe-
ter Richtarik. “Tighter Theory for Local SGD
on Identical and Heterogeneous Data”. In: Pro-
ceedings of the Twenty Third International Con-
ference on Artificial Intelligence and Statistics.
Ed. by Silvia Chiappa and Roberto Calandra.
Vol. 108. Proceedings of Machine Learning Re-
search. PMLR, 26-28 Aug 2020, pp. 4519-4529.
URL: https://proceedings.mlr.press/v108/
bayoumi20a.html.

Kiprono Elijah Koech. “Cross-Entropy Loss
Function”. In: towards data science (2020). URL:
https : // towardsdatascience . com/ cross -
entropy-loss-function-£38c4ec8643e.

Jakub Konecny et al. “Federated Learning:
Strategies for Improving Communication Effi-
ciency”. In: CoRR abs/1610.05492 (2016). arXiv:
1610 . 05492. URL: http://arxiv.org/abs/
1610.05492.

11

[10]

[11]

[12]

[14]

[15]

[16]

[18]

[19]

[20]

Y. Lecun et al. “Gradient-based learning applied
to document recognition”. In: Proceedings of the
IEFE 86.11 (1998), pp. 2278-2324. DOI: 10 .
1109/5.726791.

Qinbin Li et al. “A Survey on Federated Learning
Systems: Vision, Hype and Reality for Data Pri-
vacy and Protection”. In: CoRR abs/1907.09693
(2019). arXiv: 1907.09693. URL: http://arxiv.
org/abs/1907.09693.

Tian Li et al. “Federated Learning: Challenges,
Methods, and Future Directions”. In: IEEE Sig-
nal Processing Magazine 37.3 (2020), pp. 50-60.
DOI: 10.1109/MSP.2020.2975749.

Tian Li et al. “Federated Learning: Challenges,
Methods, and Future Directions”. In: IEEFE Sig-
nal Processing Magazine 37.3 (2020), pp. 50-60.
DOI: 10.1109/MSP.2020.2975749.

Ruairi J Mackenzie. “RNA-Seq: Basics, Ap-

plications and Protocol”. In: Technology
Networks (2017). URL: https : / / www .
technologynetworks com / genomics /

articles/rna- seq-basics - applications -
and-protocol-299461.

Frank Martin, Melle Sieswerda, and et al. Hasan
Alradhi. vantage6 repository. Accessed: 2021-09-
08. URL: https://doi.org/10.5281/zenodo.
3686944.

Brendan McMahan et al. “Communication-
Efficient Learning of Deep Networks from De-
centralized Data”. In: Proceedings of the 20th In-
ternational Conference on Artificial Intelligence
and Statistics. Ed. by Aarti Singh and Jerry Zhu.
Vol. 54. Proceedings of Machine Learning Re-
search. PMLR, 20-22 Apr 2017, pp. 1273-1282.
URL: https://proceedings .mlr.press/v54/
mcmahani7a.html.

Arturo Moncada-Torres et al. “VANTAGEG:
an open source priVAcy preserviNg federaTed
leArninG infrastructurE for Secure Insight eX-
change”. In: AMIA Annual Symposium Proceed-
ings. 2020, pp. 870-877.

Angelia Nedic and Asuman Ozdaglar. “Dis-
tributed Subgradient Methods for Multi-Agent
Optimization”. In: IEEFE Transactions on Auto-
matic Control 54.1 (2009), pp. 48-61. DOI: 10.
1109/TAC.2008.2009515.

Angelia Nedi¢ et al. “Geometrically conver-
gent distributed optimization with uncoordi-
nated step-sizes”. In: 2017 American Control
Conference (ACC). 2017, pp. 3950-3955. DOLI:
10.23919/ACC.2017.7963560.

F. Pedregosa et al. “Scikit-learn: Machine Learn-
ing in Python”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825-2830.

[21]

[22]

23]

[25]

[26]

[28]

[29]

Guannan Qu and Na Li. “Harnessing Smooth-
ness to Accelerate Distributed Optimization”. In:
IEEE Transactions on Control of Network Sys-
tems 5.3 (2018), pp. 1245-1260. por: 10.1109/
TCNS.2017.2698261.

John Quackenbush. “Microarray Analysis and
Tumor Classification”. In: New England Jour-
nal of Medicine 354.23 (2006). PMID: 16760446,
pp. 2463-2472. DOI: 10 . 1056 / NEJMra042342.
eprint: https : / / doi . org / 10 . 1056 /
NEJMra042342. URL: https://doi.org/10.
1056/NEJMra042342.

Anit Kumar Sahu et al. “On the Convergence of
Federated Optimization in Heterogeneous Net-
works”. In: CoRR abs/1812.06127 (2018). arXiv:
1812 . 06127. URL: http://arxiv. org/abs/
1812.06127.

Wei Shi et al. “EXTRA: An Exact First-Order
Algorithm for Decentralized Consensus Opti-
mization”. In: SIAM Journal on Optimization
25.2 (2015), pp. 944-966. por: 10 . 1137 /
14096668X. eprint: https://doi.org/10.1137/
14096668X. URL: https://doi.org/10.1137/
14096668X.

Reza Shokri, Marco Stronati, and Vitaly
Shmatikov. “Membership Inference Attacks
against Machine Learning Models”. In: CoRR
abs/1610.05820 (2016). arXiv: 1610.05820. URL:
http://arxiv.org/abs/1610.05820.

Stefanie Warnat-Herresthal et al. “Swarm Learn-
ing for decentralized and confidential clinical ma-
chine learning”. In: Nature 594.7862 (June 2021),
pp. 265-270. 1SSN: 1476-4687. pDoI: 10 . 1038/
s41586-021-03583-3. URL: https://doi.org/
10.1038/s41586-021-03583-3.

Kang Wei et al. “Federated Learning With Dif-
ferential Privacy: Algorithms and Performance
Analysis”. In: IEEE Transactions on Informa-
tion Forensics and Security 15 (2020), pp. 3454
3469. DOI: 10.1109/TIFS.2020.2988575.

Han Xiao, Kashif Rasul, and Roland Vollgraf.
“Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms”.
In: CoRR abs/1708.07747 (2017). arXiv: 1708.
07747. URL: http://arxiv.org/abs/1708.
07747.

Jie Xu et al. “Federated Learning for Healthcare
Informatics”. In: Journal of Healthcare Informat-
ics Research 5.1 (Mar. 2021), pp. 1-19. ISSN:
2509-498X. DOI: 10.1007/s41666-020-00082-
4. URL: https://doi.org/10.1007/s41666-
020-00082-4.

Tao Yang et al. “A survey of distributed
optimization”. In: Annual Reviews in Con-
trol 47 (2019), pp. 278-305. 1SSN: 1367-5788.
DOI: https : / / doi . org / 10 . 1016 / j .
arcontrol.2019.05.006. URL: https://www.

12

sciencedirect . com/science/article/pii/
S51367578819300082.

Lingchen Zhao et al. “InPrivate Digging: En-
abling Tree-based Distributed Data Mining with
Differential Privacy”. In: IEEE INFOCOM 2018
- IEEE Conference on Computer Communica-
tions. 2018, pp. 2087-2095. por: 10 . 1109 /
INFOCOM.2018.8486352.

Supplementary

I Distributed Learning

The goal of distributed learning is to minimize the sum of a set of local cost functions in a network of n clients.
This can formally be written as

mzin F(x) = ZfL(a:Z) (20)

Here f; is the local cost function of client i, which is only known by itself. Note that these functions can differ
between clients, a vital difference compared to federated learning. Furthermore, x is a resource vector, with its
components the resources allocated to each client.

The distributed learning setting does not utilize a central server, and the network is not a complete
graph either. Therefore, a notion of neighbours exist. Each round, each client can exchange information with
each of its neighbours only, and will try to decrease its cost function based on said information. For this
purpose, a weight matrix A is being updated by each client. This matrix holds nonzero weights for each of its
neighbours, including itself, and zero weights for all other clients in the network. The total weights add up to
1, and their magnitude is a measure for the value of the information of the corresponding neighbour. A seminal
algorithm, being distributed Stochastic Gradient Descent (dSGD) [18], uses this matrix as follows:

T =y Al —nlx Vf(a)) (21)
j=1

Where 7’ is the learning rate at client i on round r, and Af?(2%(k)) the local gradient over the cost function at
client i on round r. Note that, in case of no neighbours, the A-matrix becomes all zeros except for the value
corresponding to a clients own information, wich will become one; This retrieves the standard SGD used in
non-networked machine learning applications.

From the basic model described by equation 21, several extensions have been made over the years [30].
In the original work, distributed SGD utilizes a learning rate which is variable, and diminishes over time.
Another approach is to keep the learning rate fixed, but to utilize more information than just the gradient on
the cost function from the latest time step. That is, to look at more previous iterations and their respective
cost functions.

One of these algorithms is EXTRA (EXact firsT-ordeR Algorithm) [24], which uses the two previous
iterations of the cost function instead of just one. Formally, this becomes:

n

v = a4+ Yy Al =Y Alal —a(Vfi(ak) - Vi(aly)) (22)
j=1 j=1

Where A = % with I the identity matrix. There is the exception of =0 as there only z¢(0) can be used,

thus the terms using z%_; are left out for the first iteration.

Besides use of more previous iterations, another option is to modify the gradient calculation method. The
DIGing (Distributed Inexact Gradient method and the gradient trackING technique) [21] [19], a separate state
which corresponds to the gradient estimation is being updated. This state is also being shared with neighbours,
in a similar way to the 2* state.

N
T = Y Ay (r) = ay'(7) (23)

With y° gets updated as:
Y1 = Y Ay (r) + V(2! (r +1)) = V(2 (r)) (24)
j=1

13

II Federated Averaging

The main goal of federated averaging was to create the option to learn over multiple datasets without the need
to upload said data to a central point. This is achieved by learning a model on each of these smaller datasets
locally, and then sharing the model parameters with the other models.

The locations of the data, which is where the local models will be learned, are called ’clients’. These
clients are connected to a central point, named the ’server’. The server maintains a global model, which it
updates according to the results of the updates at the clients.

The algorithm is divided in rounds. Each round starts with the server sending out the global model to all
clients. Each client then makes one or more local update steps in which it updates the model parameters to
lower its local loss function f(W(X?),y*). Once completed, it sends these locally updated parameters back to
the server. Once the server has received an update from all clients, it aggregates these local parameters to
create a new global parameter set, which it sends out in the next round.

The local update step is driven by Stochastic Gradient Descent (SGD). The authors of fedAVG [16] in-
troduce both batch learning and multiple learning epochs per communication round, so the local update
becomes:

E B
Wi, =W¢ - Z Z UVL(Wf,b,e(Xg)a) (25)
e=1b=1
Where FE is the amount of local epochs and B the batch amount. During all experiments in this paper, E has
been kept at 1. B was kept at 1 except for all experiments using the CNN (curiously, without batch learning,
the federated CNN would not converge).

After the local update has been completed on all participating clients, the server starts the global up-
date section of the current round. This global update simply consists of a weighted average of all the received.
The original creators of federated averaging [16] gave the option of sampling clients, i.e. not using all clients
for every update step. The motivation behind this was that the performance increase becomes negligible after
a certain amount of clients:

C
1 7 1
mg:§§p*mﬂ (26)
=1

Where W7 ', is the new set of global parameters, and X; is the set of parameters which have been sent back by

client i earlier this round. s; is the size of the dataset on client i, and S = chﬂ s;. C is the total amount of
participating (sampled) clients in a round. According to [16], sampling becomes useful when using more than
100 clients. As all experiments in this paper use ten or less clients, no sampling was used in the experiments
described within this paper. To summarize, there are three parameters that tune the behavior of federated
averaging:

Parameter ‘ Meaning
B batch size
C fraction of sampled clients
E local epochs

Two of these, E and C, have been kept at 1, and B has only been altered during the experiments with the
Convolutional Neural Network.

IIT SCAFFOLD

The SCAFFOLD algorithm was created as a means to increase the performance of the earlier discussed feder-
ated averaging, specifically with respect to a non-IID setting. A non-IID setting means that the distribution
of classes between different clients is not similar, i.e. some clients only having access to a very low amount
(in some cases even zero) of samples of certain classes. The problem that arises in federated averaging within
the non-IID setting is that a drift is starting to settle in, meaning that the global parameters do not or slowly
converge to the optimum. In order to combat this drift, the authors of [6] introduce a new algorithm for

14

Stochastic Controlled Averaging, called SCAFFOLD.

The main addition in SCAFFOLD is the introduction of a control variate for all clients, and for the
server. This control variate consists of a set of values with the same structure as the set of parameters (i.e. it
has one value per parameter). Intuitively, it denotes the direction (and magnitude) of the local update of said
parameter. If this direction is different from many other clients, the control variate is used to compensate for
that difference, which decreases the aforementioned drift.

The general setup of SCAFFOLD is similar to that of federated averaging. The algorithm consists of
rounds, which consists of a global part at the server, and a local part which happens at all clients simultane-
ously. at the beginning of each round, the server sends the global model to all clients, as well as its own control
variate ¢. Now, each client makes a pass over its local data to calculate the gradient over its loss function.
This also happens in federated averaging, as part of the stochastic gradient descent step. After the gradient
has been determined, the parameters get updated as follows:

7f+1 = Wff] - nVL(XZTain’ yirain) + Ci - Ci‘ (27)

Note that if both ¢9 and ¢’ are all zero, equation 27 becomes standard SGD, and SCAFFOLD becomes federated
averaging (at least for the local step). After the model has been updated, each client also needs to update its
control variate. This is done according to the following equation:

A , 1 ,
Cryq =Cp —Cf + EW; - Wi (28)

Finally, W/, is sent back to the server, which denote the end of the work on the client for the round. Once
the server has received W} +o1 for all i € N, it aggregates the local updates into a new iteration of the global

model. This update is executed as follows:

N
Ui] i
WT+1— Tg-i-Ng*E W,?Jrl—WT7 (29)
i=1

Which is equivalent to the global update of federated averaging, if 7, is set to 1 (which is the case during all
experiments described in this report). Different from federated averaging is the need to update ¢ as well, which
is done according to the following equation:

Mz

¢l =cf + <~ *) (g — (30)

=1
Once this is done, the next round starts by the server sending out the updated model parameters and c. A

big difference wich federated averaging is that SCAFFOLD is a stateful algorithm, with the control variates
functioning as some sort of state for clients and server.

IV inPrivate Learning

Whereas federated averaging and SCAFFOLD are quite similar in nature, the inPrivate learning algorithm is
quite different. The global idea of using rounds in which something happens on the clients and on the server
sequentially still exists, but also covers the extent of the similarities between the algorithms.

The idea behind inPrivate learning is to implement Gradient Boosting Decision Trees (GBDT) in a fed-
erated manner. To accomplish this, clients construct trees sequentially, with just one client constructing only
one tree each round.

The main gain of using the federation, compared to just creating a local model on the (small amount
of) available data, is the use of ’gradient boosting’. Gradient boosting can be used to combine an ensemble
of 'weak learners’, such as decision trees. Intuitively, gradient boosting means that, after the first learner, all
subsequent learners try to correct for their predecessors, thereby iteratively lowering the total loss over the
training dataset.

In InPrivate learning, this is accomplished as follows: Once a client receives the previously made deci-
sion trees (the first round is an exception, there is no boosting yet, as there is nothing to boost off), it calculates
the gradient of its loss function according to these previously constructed trees. It then creates its own tree
such as to lower this gradient.

15

V classifiers background

V.1 model differences
V.1.1 Logistic Regression (LR)
Logistic Regression is a linear model, meaning that it tries to learn a linear function given by
flx)=wlz+b (31)
where x is a set of training samples, and w’ and b the coefficients to be learned. This is done by minimizing

a loss function; The difference between these loss functions is what differentiates between the different linear
classifiers in our experiments. for the Logistic regressor, the loss function is given by [20]:

Lpr(yi, f(w:) = log(1 + exp(—y: f(z:))) (32)

where y; is the label of training sample z;.

V.1.2 Support Vector Machine (SVM)

The Support Vector Machine is also a linear model, so the function it tries to learn follows eq. 31, just like the
logistic regressor. The difference with LR lies in the loss function, which for SVM notes [20]:

Lsvm(Yi, f(z:)) = max(0,1 — y; f(x:)) (33)

V.1.3 fully connected neural network (FNN)
The FNN architectures have been kept as simple as possible, as attaining maximal accuracy was not a goal of
the experiments. see table 3 for the details. Note that the only perturbations between the different datasets

is within the final layer, to accommodate for the appropriate amount of classes. The loss function used for
updating the coefficients is the cross-entropy loss [8] :

Lz, y:) = — Z yilog(z;) (34)
i=1

with ¢ the amount of classes, y; the truth label (either 0 or 1) of a certain sample and x; the probability for
class i estimated by the neural net.

Table 3: the architectures of the FNN

Layer 1 Layer 2 Layer 3
MNIST | Fully Connected: ReL.U Fully Connected:
2 Class | 784 x 100 100 x 2
MNIST | Fully Connected: ReLU Fully Connected:
4 Class | 784 x 100 100 x 4
fashion | Fully Connected: ReLU Fully Connected:
MNIST | 784 x 100 100x10

Fully Connected: Fully Connected:
A2 100 x 100 ReLU ™ 1g0x2

V.1.4 Convolutional Neural Network (CNN)

The CNN architectures have been derived from the FNN architectures; see table 4. Besides the first layer being
changed to a convolutional one, the last fully connected layer has its input dimensions changed in order to fit
the output of the convolutional layer. The same loss function from the FNN; i.e. cross-entropy loss (eq. 34), is
used for the CNN implementations as well.

16

Table 4: the CNN architectures

Layer 1 Layer 2 Layer 3
Convolutional: Max pool:
MNIST | kernel size:3 k * {)_ 2 Fully Connected:
2 Class | stride: 1 erhel = 196 x 2
. stride = 2
padding: 1
Convolutional: Max pool:
MNIST | kernel size:3 K rr>1({)_ 2 Fully Connected:
4 Class | stride: 1 erhet = 196 x 4
. stride = 2
padding: 1
Convolutional: Max pool:
fashion | kernel size:3 K * Il)— 2 Fully Connected:
MNIST | stride: 1 e T S 196 x 10
. stride = 2
padding: 1
Convolutional: Max ool:
kernel size:3 Poo™: Fully Connected:
A2 . kernel = 2
stride: 1 stride — 2 25 x 2
padding: 1 -

V.1.5 Gradient Boosting Decision Trees (GBDT)

Gradient Boosting Decision Trees is an ensemble classifier that builds a collection of decision trees in a sequential
manner. The single decision trees are called 'weak learners’, and the concept of gradient boosting can be applied
to a variety of weak learners. After a tree has been made, the loss on the training dataset is calculated based
on some differentiable loss function. Then, an update step is being performed which is akin to gradient descent.
However, instead of modifying the parameters of the first tree, we add another tree which is parameterized such
as to lower the loss which was calculated using the first tree. This process then repeats, using the existing trees
to calculate a loss, which is then used to parameterize the next tree. Prediction (and thus loss calculation) is
performed using a majority vote, weighted by the accuracy of the corresponding tree’s iteration.

VI supplementary tables

Table 5: Logistic regression results on the 2class MNIST dataset with multiple different learning rates (figure 1a). Mea-
sured were Area Under Curve (AUC) and the accuracy in the final communication round, both for a centralized and a
federated model with equal parameters.

AUC Final Accuracy
Learning rates | Federated Central | Federated Central
5% 1072 0.960 0.959 0.971 0.969
5% 1073 0.956 0.961 0.971 0.971
5%1074 0.899 0.955 0.958 0.971
5%107° 0.630 0.899 0.795 0.958

Table 6: Results of SVM on the 2class MNIST dataset. All experiments used the same learning rate. Data corresponds
to figure 1b.

AUC Accuracy
1ID 0.907 0.959
CI 0.905 0.959
SCAFFOLD | 0.904 0.958
SI 0.912 0.960
Central 0.955 0.968

17

Table 7: Overview of all classifiers on 2class MNIST (IID distribution). Equal learning rate between federated and central

model per classifier. Corresponds to figurelc

AUC Final Accuracy
LR Federated | 0.956 0.965
Central 0.961 0.970
SVM federated | 0.907 0.911
Central 0.955 0.965
GBDT Federated | 0.947 0.956
Central 0.955 0.965
FNN Federated | 0.870 0.891
Central 0.863 0.876
CNN Federated | 0.815 0.794
Central 0.946 0.964

Table 8: Comparison between 2class and 4class MNIST for LR and FNN. learning rates were kept equal per combination
of classifier and datasetcorresponds to figure 3.

2class 4class
MNIST MNIST
AUC Final AUC Final
Accuracy Accuracy
11D 0.956 0.971 0.897 0.926
CI 0.954 0.970 0.897 0.926
LR SCAFFOLD | 0.955 0.971 0.897 0.926
SI 0.955 0.970 0.900 0.928
Central 0.961 0.971 0.926 0.940
1ID 0.870 0.891 0.788 0.806
CI 0.867 0.851 0.788 00.806
FNN SCAFFOLD | 0.862 0.869 0.7838 0.806
SI 0.870 0.889 0.787 0.806
Central 0.863 0.876 0.856 0.855

Table 9: results on the fashion MNIST dataset. corresponds to figure 4. federated models were using the learning rate of

the upper central option displayed.

AUC Final Accuracy
1ID 0.629 0.740
CNN Central,
(500 rounds) 7 =15x*10"2 0.8120.830
Sft;il’m,g 0.743 0.813
1ID 0.817 0.839
GBDT CI 0.275 0.229
Central 0.833 0.867
1ID 0.651 0.780
LR CI 0.647 0.740
S‘ft;il’m,g) 0.827 0.842
Sft;il’m_6 0.651 0.742

18

Table 10: Results of the SVM classifier on the A2 dataset. Corresponds to figure 5. All learning rates except for bottom

line were equal (5% 107°).

VII

class distribution for the ID distributed datasets

AUC Final Accuracy
11D 0.901 0.954
CI 0.896 0.947
SI 0.907 0.953
Central 0.952 0.974
Se_nt;illo_s 0.901 0.963

supplementary figures

test/train distribution for the nonliD distributed datasets{samples)

dataset distributions

class distribution for the nonllD distributed datasets(samples)

1750

1000

sample size

750

N test
W train

3

client 1D

(b) ci

. class 4
. class 9

sample size

4
client ID

(c) si

Figure 8: The three different data distributions for the 2class MNIST dataset

700 . class 4
N Class 9
600
500
&
» 400
£
g 300
200
100
o
o 2 4 6 B
client 1D
(a) id
class distribution for the ID distributed datasets
B class 2
700 W class 4
class B
600 N class 9
s
E 400
=4
E
7 300
200
100
(]
] 2 4 3]
client ID
(a) iid
class distribution for the fashion MNIST |1D dataset
" ‘“ “
B0
[]
u 500 -—
@ -—
3 400 -
£ —-—
" 300 -
200 -
-
100
-—

(a)

Figure 10: The different data distributions for the fashion MNIST dataset

class distribution for the nonllD distributed datasets(samples)

class distribution for the nonlID distributed datasets(classes)
00

1000

800

600

sample size

400

200

client 1D
(b) ci

Figure 9: The three different data distributions for the 4class MNIST dataset

BN class 2 BN class 2
- class 4 1000 7 wem class 4
class B class B
. class 9 goo | ™ class 9
ki
; 600
a
E
=
Y400
200

4
client ID

(c) si

class distribution for the fashion MNIST class imbalance dataset

3500

3000

2500

2000

sample size

1500

1000

500

19

client ID

(v)

sample size
w
=]

200

00

VIII

0

class distribution for the A2 dataset, iid

client ID

(a) iid

sample size

200

class distribution for the A2 dataset, ci

Il

. dass0
E dassl

client ID

(b) ci

sample size

class distribution for the A2 dataset, si

4
client ID

Figure 11: The three different data distributions for the A2 dataset

5
8

=] =

=
<1

C.
ooy

-
=
N

=]

s
=]

s
1]

Figure 12: Some samples

MNIST Samples

5

=1

g = o
=
=1

5
1]

BN

5
1]

=
s
5]

a
R

20

s
=

20

10 20

B s o

s

s

<] s -] 5 -
=
=

s

)
S

5
8

E

of the original MNIST dataset, before conversion to 2class (or jclass)

IX fashion MINIST samples

F

_..j' | B

(]

o

0

o

—

0
10
0

I

HINELIMEL]

of the fashion MNIST dataset

Some samples

Figure 13

21

