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Abstract—Rapid increases in storage bandwidth, combined
with a desire for operating on large datasets interactively, drives
the need for improvements in high-bandwidth decompression.
Existing designs either process only one token per cycle or process
multiple tokens per cycle with low area efficiency and/or low clock
frequency.

We propose two techniques to achieve high single-decoder
throughput at improved efficiency by keeping only a single copy
of the history data across multiple BRAMs and operating on each
BRAM independently. A first stage efficiently refines the tokens
into commands that operate on a single BRAM and steers the
commands to the appropriate one. In the second stage, a relaxed
execution model is used where each BRAM command executes
immediately and those with invalid data are recycled to avoid
stalls caused by the read-after-write dependency.

We apply these techniques to Snappy decompression and
implement a Snappy decompression accelerator on a CAPI2-
attached FPGA platform equipped with a Xilinx VU3P FPGA.
Experimental results show that our proposed method achieves
up to 7.2 GB/s output throughput per decompressor, with each
decompressor using 14.2% of the logic and 7% of the BRAM
resources of the device. Therefore, a single decompressor can
easily keep pace with an NVMe device (PCIe Gen3 x4) on a
small FPGA, while a larger device, integrated on a host bridge
adapter and instantiating multiple decompressors, can keep pace
with the full OpenCAPI 3.0 bandwidth of 25 GB/s.

Index Terms—Snappy, decompression, FPGA, Acceleration

I. INTRODUCTION

While much prior work has studied how to improve the

compression speed of lossless data compression [1]–[3], the

common case is to compress the data once for storage and

decompress it multiple times whenever it is processed.

Recent studies [4]–[8] illustrate that FPGAs are a promising

platform for lossless data decompression. The customizable

capability, the feasibility of bit-level control, and high degrees

of parallelism of the FPGA allow designs to have many light-

weight customized cores, enhancing performance. Leveraging

these advantages, the pipelined FPGA designs of LZSS [4],

[5], LZW [6] and Zlib [7], [9] all achieve good decompression

throughput. However, these prior designs only process one

token per FPGA cycle, resulting in limited speedup compared

to software implementations. The studies [8] and [10] propose

solutions to handle multiple tokens per cycle. However, both

solutions require multiple copies of the history buffer and

require extra control logic to handle BRAM bank conflicts

caused by parallel reads/writes from different tokens, leading

to low area efficiency and/or a low clock frequency.

A compressed Snappy file consists of tokens, where a

token contains the original data itself (literal token) or a back

reference to previously written data (copy token). Even with

a large and fast FPGA fabric, decompression throughput is

degraded by stalls introduced by read-after-write (RAW) data

dependencies. When processing tokens in a pipeline, copy

tokens may need to stall and wait until the prior data is valid.

In this paper, we propose two techniques to achieve efficient

high single-decompressor throughput by keeping only a single

BRAM-banked copy of the history data and operating on

each BRAM independently. A first stage efficiently refines the

tokens into commands that operate on a single BRAM and

steers the commands to the appropriate one. In the second

stage, rather than spending a lot of logic on calculating the

dependencies and scheduling operations, a recycle method is

used where each BRAM command executes immediately and

those that return with invalid data are recycled to avoid stalls

caused by the RAW dependency. We apply these techniques

to Snappy [11] decompression and implement a Snappy de-

compression accelerator on a CAPI2-attached FPGA platform

equipped with a Xilinx VU3P FPGA. Experimental results

show that our proposed method achieves up to 7.2 GB/s

throughput per decompressor, with each decompressor using

14.2% of the logic and 7% of the BRAM resources of the

device. One decompressor keeps pace with an NVMe device

(PCIe Gen3 x4) on a small FPGA. Compared to the soft-

ware implementation, significant performance improvement is

achieved.

Specifically, this paper makes the following contributions.

• We increase decomprssion parallelism by breaking tokens

into BRAM commands that operate independently.

• We propose a recycle method to reduce the stalls caused

by the intrinsic data dependencies in the compressed file.

• We apply these techniques to develop a Snappy decom-

pressor that can process multiple tokens per cycle.

• We evaluate end-to-end performance. Our decompressor

achieves up to 7.2 GB/s throughput.

In the remainder of this paper, Section II introduces Snappy

and summarizes related work. Section III discusses solutions

to address BRAM bank conflicts and RAW dependencies.

Section IV details the Snappy decompressor architecture. Sec-

tion V presents experimental results and Section VI contains

a summary and conclusions.
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II. BACKGROUND

A. Snappy (De)compression

Snappy is an LZ77-based [12] byte-level (de)compression

algorithm widely used in big data systems, especially in the

Hadoop ecosystem, and is supported by big data formats such

as Parquet [13] and ORC [14]. Snappy works with a fixed

uncompressed block size (64KB) without any delimiters to

imply the block boundary. Thus, a compressor can easily

partition the data into blocks and compress them in parallel,

but achieving concurrency in the decompressor is difficult

because block boundaries are not known due to the variable

compressed block size. Because the 64kB blocks are individu-

ally compressed, there is a fixed (64kB) history buffer during

decompression, unlike the sliding history buffers used in LZ77,

for example. Similar to the LZ77 compression algorithm, the

Snappy compression algorithm reads the incoming data and

compares it with the previous input. If a sequence of repeated

bytes is found, Snappy uses a (length, offset) tuple, copy token,

to replace this repeated sequence. The length indicates the

length of the repeated sequence, while the offset is the distance

from the current position back to the start of the repeated

sequence, limited to the 64kB block size. For those sequences

not found in the history, Snappy records the original data in

another type of token, the literal tokens.

TABLE I: Procedure of Snappy decompression

1 while (! eof) {
2 reset (&history ) ;
3 while (!end of block() ){
4 read tag byte(&ptr , &type, &extra len , & lit len , &copy len);
5 read extra bytes (&ptr , extra len , & lit len , &copy offset) ;
6 if ( type==copy){
7 read history ( history , copy offset , copy len, &buffer) ;
8 update history c (&history , buffer , copy len) ;
9 }

10 else // type==lit
11 update history l (&history , &ptr, lit len ) ;
12 }
13 output ( history ) ;
14 }

Snappy decompression is the reverse process of the com-

pression. It translates a stream with literal tokens and copy

tokens into uncompressed data. Even though Snappy de-

compression is less computationally intensive than Snappy

compression, the internal dependency limits the decompres-

sion parallelism. To the best of our knowledge, the highest

Snappy decompression throughput is reported in [15] using

the “lzbench” [16] benchmark, where the throughput reaches

1.8GB/s on a Core i7-6700K CPU running at 4.0GHz. Table I

shows the pseudo code of the Snappy decompression, which

can also be applied to other LZ-based decompression algo-

rithms. The first step is to parse the input stream (variable ptr)

into tokens (Line 4 & 5). During this step, as shown in Line 4

of Table I, the tag byte (the first byte of a token) is read and

parsed to obtain the information of the token, e.g. the token

type (type), the length of the literal string (lit len), the length

of copy string (copy len), and the length of extra bytes of this

token (extra len). Since the token length varies and might be

larger than one byte, if the token requires extra bytes (length

indicated by extra len in Line 5) to store the information,

it needs to read and parse these bytes to extract and update

the token information. For a literal token, as it contains the

uncompressed data that can be read directly from the token,

the uncompressed data is extracted and added to the history

buffer (Line 11). For a copy token, the repeated sequence can

be read according to the offset (variable copy offset) and

the length (variable copy len), after which the data will be

updated to the tail of the history (Line 7 & 8). When a block

is decompressed (Line 3), the decompressor outputs the history

buffer and resets it (Line 13 & 2) for the decompression of

the next block.

There are three data dependencies during decompression.

The first dependency occurs when locating the block boundary

(Line 3). As the size of a compressed block is a variable, a

block boundary cannot be located until the previous block is

decompressed, which brings challenges to leverage the block-

level parallelism. The second dependency occurs during the

generation of the token (Line 4 & 5). A Snappy compressed

file typically contains different sizes of tokens, where the

size of a token can be decoded from the first byte of this

token (known as the tag byte), exclusive the literal content.

Consequently, a token boundary cannot be recognized until

the previous token is decoded, which prevents the parallel

execution of multiple tokens. The third dependency is the

RAW data dependency between the reads from the copy token

and the writes from all tokens (between Line 7 and Line 8 &

11). During the execution of a copy token, it first reads the

repeated sequence from the history buffer that might be not

valid yet if multiple tokens are processed in parallel. In this

case, the execution of this copy token need to be stalled and

wait until the request data is valid. In this paper, we focus on

the latter two dependencies, and the solutions to reduce the

impact of these dependencies are explained in section IV-C

(second dependency) and section III-B (third dependency).

B. Related Work

Many recent studies consider improving the speed of loss-

less decompression. To address the block boundary prob-

lems, [17] explores the block-level parallelism by performing

pattern matching on the delimiters to predict the the block

boundaries. Unfortunately, this technique cannot be applied

to Snappy because Snappy uses a fixed uncompressed block

size (64KB) without any delimiters. Another way to utilize

the block-level parallelism is to add some constraints during

the compression, e.g adding padding to make fixed size

compressed blocks [18] or add some meta data to indicate the

boundary of the blocks [19]. A drawback of these methods

is that it is only applicable to the modified compression

algorithms (add padding) or even not compatible to the original

(de)compression algorithms (add meta data).

The idea of using FPGAs to accelerate decompression has

been studied for years. On the one hand, FPGAs provide

a high-degree of parallelism by adopting techniques such
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as task-level parallelization, data-level parallelization, and

pipelining. On the other hand, the parallel array structure

in an FPGA offers tremendous internal memory bandwidth.

One approach is to pipeline the design and separate the token

parsing and token execution stages [4]–[7]. However, these

methods only process one token each FPGA cycle, limiting

throughput.

Other works study the possibility of processing multiple

tokens in parallel. [20] proposes a parallel LZ4 decompression

engine that has separate hardware paths for literal tokens

and copy tokens. The idea builds on the observation that

the literal token is independent since it contains the original

data, while the copy token relies on the previous history.

A similar two-path method for LZ77-based decompression

is shown in [21], where a slow-path routine is proposed to

handle large literal tokens and long offset copy tokens, while

a fast-path routine is adopted for the remaining cases. [10]

introduces a method to decode variable length encoded data

streams that allows a decoder to decode a portion of the input

streams by exploring all possibilities of bit spill. The correct

decoded streams among all the possibilities are selected as

long as the bit spill is calculated and the previous portion is

correctly decoded. [8] proposes a token-level parallel Snappy

decompressor that can process two tokens every cycle. It uses a

similar method as [10] to parse an eight-byte input into tokens

in an earlier stage, while in the later stages, a conflict detector

is adopted to detect the type of conflict between two adjacent

tokens and only allow those two tokens without conflict to be

processed in parallel. However, these works cannot easily scale

up to process more tokens in parallel because it requires very

complex control logic and duplication of BRAM resources to

handle the BRAM bank conflicts and data dependencies.

The GPU solution proposed in [19] provides a multi-round

resolution method to handle the data dependency. In each

round, all the tokens with read data valid are executed, while

those with data invalid will be pending and wait for the next

round execution. This method allows out-of-order execution

and does not stall when a request needs to read the invalid

data. However, this method requires specific arrangement of

the tokens, and thus requires modification of the compression

algorithm.

This paper presents a new FPGA decompressor architecture

that can process multiple tokens in parallel and operate at a

high clock frequency without duplicating the history buffers.

It adopts a refine and recycle method to reduce the impact of

the BRAM conflicts and data dependencies, and increases the

decompression parallelism, while conforming to the Snappy

standard. This paper improves on our previous proof-of-

concept work [22] and integrates it in a CAPI 2.0-enabled

POWER 9 system.

III. THE REFINE AND RECYCLE METHOD

A. The Refine Method for BRAM Bank Conflict

Typically, in FPGAs, the large history buffers (e.g. 32KB

in GZIP and 64KB in Snappy) can be implemented using

BRAMs. Taking Snappy as an example, as shown in Fig. 1,

to construct a 64KB history buffer, a minimum number of

BRAMs are required: 16 4KB blocks for the Xilinx Ultrascale

Architecture [23]. These 16 BRAMs can be configured to

read/write independently, so that more parallelism can be

achieved. However, due to the structure of BRAMs, a BRAM

block supports limited parallel reads or writes, e.g. one read

and one write in the simple dual port configuration. Thus, if

more than one read or more than one write need to access

different lines in the same BRAM, a conflict occurs (e.g.

conflict on bank 2 between read R1 and read R2 in Fig. 1).

We call this conflict a BRAM bank conflict (BBC).

Fig. 1: An example of BRAM bank conflicts in Snappy

For Snappy specifically, the maximum literal length for a

literal token and the maximum copy length for copy tokens

in the current Snappy version is 64B. As the BRAM can only

be configured to a maximum 8B width, there is a significant

possibility that a BBC occurs when processing two tokens in

the same cycle, and processing more tokens in parallel further

increases the probability of a BBC. A naive way to deal with

the BBCs is to only process one of the conflicting tokens and

stall the others until the this token completes. For example,

in Fig. 1, when a read request from a copy token (R1) has

a BBC with another read request from another copy token

(R2), the execution of R2 stalls and waits until R1 is finished.

Obviously, this method sacrifices some parallelism and even

leads to a degradation from parallel processing to sequential

processing. Duplicating the history buffers can also relieve

the impact of BBCs. The previous work [8] uses a double

set of history buffers, where two parallel reads are assigned

to different set of history. So, the two reads from the two

tokens never have BBCs. However, this method only solves

the read BBCs but not the write BBCs, since the writes need

to update both sets of history to maintain the data consistency.

Moreover, to scale this method to process more tokens in

parallel, additional sets (linearly proportional to the number of

tokens being processed in parallel) of BRAMs are required.

To reduce the impact of BBCs, we present a refine method

to increase token execution parallelism without duplicating the

history buffers. The idea is to break the execution of tokens

into finer-grain operations, the BRAM copy/write commands,

and for each BRAM to execute its own reads and writes

independently. As illustrated in Fig. 1, R1 and R2 only have

a BBC in bank 2, while the other parts of these two reads

do not conflict. We refine the token into BRAM commands

operating on each bank independently. As a result, for the

reads in the non-conflicting banks of R2 (bank 0 & 1), we

allow the execution of the reads on these banks from R2.

For the conflicting bank 2, R1 and R2 cannot be processed

concurrently.
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Fig. 2: Architecture overview

The proposed method takes advantage of the parallelism of

the array structure in FPGAs by operating at a finer-grained

level, the single BRAM read/write level, compared with the

token-level. It supports partially executing multiple tokens in

parallel even when these tokens have BBCs. In the extreme

case, the proposed method can achieve up to 16 BRAM

operations in parallel, meaning generating the decompressed

blocks at a speed of 128B per cycle. This refine method can

also reduce the read-after-write dependency impact mentioned

in section III-B. If the read data of a read request from a copy

token is partially valid, this method allows this copy token to

only read the valid data and update the corresponding part of

the history, instead of waiting until all the bytes are valid.

B. The Recycle Method for RAW Dependency

The Read-After-Write (RAW) dependency between data

reads and writes on the history buffer is another challenge

for parallelization. If a read needs to fetch data from some

memory address that the data has not yet been written to, a

hazard occurs, and thus this read needs to wait until the data

is written. A straightforward solution [8] is to execute the

tokens sequentially and perform detection to decide whether

the tokens can be processed in parallel. If a RAW hazard

is detected between two tokens that are being processed in

the same cycle, it forces the latter token to stall until the

previous token is processed. Even though we can apply the

forwarding technique to reduce the stall penalty, detecting

multiple tokens and forwarding the data to the correct position

requires complicated control logic and significant hardware

resource.

Another solution is to allow out-of-order execution. That is

when a RAW hazard occurs between two tokens, the follow-

up tokens are allowed to be executed without waiting these

two tokens are finished, which is very similar to out-of-

order execution in the CPU architecture. Fortunately, in the

decompression case, this does not require a complex textbook

solution such “Tomasulo” or “Scoreboarding” to store the state

of the pending tokens. Instead, rerunning pending tokens after

the execution of all or some of the follow-up tokens guarantees

the correction of this out-of-order execution. This is because

there is no write-after-write or write-after-read dependency

during the decompression, or two different writes never write

the same place and the write data never changes after the data

is read. So, there is no need to record the write data states,

and thus a simpler out-of-order execution model can satisfy

the requirement, which saves logic resources.

In this paper, we present the recycle method to reduce the

impact of RAW dependency in a BRAM command granularity.

Specifically, when a command needs to read the history data
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that is not valid yet, the decompressor executes this command

immediately without checking if all the data is valid. If the

data that has been read is detected to be not entirely valid, this

command (invalid data part) should be recycled and stored in

a recycle buffer, where it will be executed again (likely after a

few other commands are executed). If the data is still invalid

in the next execution, this decompressor performs this recycle-

and-execute precedure repeatedly until the read data is valid.

This method executes the commands in a relaxed model and

allows continuous execution on the commands without stalling

the pipeline. The method provides more parallelism since it

does not need to be restricted to the degree of parallelism

calculated by dependency detection.

IV. SNAPPY DECOMPRESSOR ARCHITECTURE

A. Architecture Overview

Fig. 2 presents an overview of the proposed architecture.

It can be divided into two stages. The first stage parses the

input stream lines into tokens and refines these tokens into

BRAM commands that will be executed in the second stage.

It contains a slice parser to locate the boundary of the tokens,

multiple BRAM command parsers(BCPs) to refine the tokens

into BRAM commands, and an arbiter to drive the output of

the slice parser to one of the BCPs. In the second stage, the

BRAM commands are executed to generate the decompressed

data under the recycle method. The execution modules, in total

16 of them, are the main components in this stage, in which

recycle buffers are utilized to perform the recycle mechanism.

The procedure starts with receiving a 16B input line in the

slice parser. Together with the first 2B of the next input line,

this 18B is parsed into a “slice” that contains token boundary

information including which byte is a starting byte of a token,

whether any of the first 2B have been parsed in the previous

slice, and whether this slice starts with literal content, etc.

After that, an arbiter is used to distribute each slice to one

of the BCPs that work independently, and there the slice

is split into one or multiple BRAM commands. There are

two types of BRAM commands, write commands and copy

commands. The write command is generated from the literal

token, indicating a data write operation on the BRAM, while

the copy command is produced from the copy token which

leads to a read operation and a follow-up step to generate one

or two write commands to write the data in the appropriate

BRAM blocks.

In the next stage, write selectors and copy selectors are

used to steer the BRAM commands to the appropriate exe-

cution module. Once the execution module receives a write

command and/or a copy command, it executes the command

and performs BRAM read/write operations. As the BRAM

can perform both a read and a write in the same cycle,

each execution module can simultaneously process a write

command and one copy command (only the read operation) at

the same time. The write command will always be completed

successfully once the execution module receives it, which is

not the case for the copy command. After performing the

read operation of the copy command, the execution module

runs two optional extra tasks according to the read data,

including generating new write/copy commands and recycling

the copy command. If the read data contains some valid bytes,

new write commands are generated to write this data to its

destination. If some bytes are still invalid, the copy command

will be renewed (removing the completed portion from the

command) and collected by a recycle unit, and sent back for

the next round of execution. Once a 64KB history is built, this

64KB data is output as the decompressed data block. After

that, a new data block is read, and this procedure will be

repeated until all the data blocks are decompressed.

B. History Buffer Organization

The 64KB history buffer consists of 16 4KB BRAM blocks,

using the FPGA 36Kb BRAM primitives in the Xilinx Ultra-

Scale fabric. Each BRAM block is configured to have one

read port and one write port, with a line width of 72bits (8B

data and 8bits flags). Each bit from the 8bits flags indicates

whether the corresponding byte is valid. To access a BRAM

line, 4 bits of BRAM bank address, and 9 bits of BRAM line

address is required. The history data is stored in these BRAMs

in a striped manner to balance the BRAM read/write command

workload and to enhance parallelism.

C. Slice Parser

Fig. 3: Procedure of the slice parser and structure of the

Assumption Bit Map

The slice parser aims to decode the input data lines into

tokens in parallel. Due to the variety of token sizes, the starting

byte of a token needs to be calculated from the previous

token. This data dependency presents an obstacle for the

parallelization of the parsing process. To solve this problem,

we assume all 16 input bytes are starting bytes, and to parse

this input data line based on this assumption. The correct

branch will be chosen once the first token is recognized. To

achieve a high frequency for the implementation, we propose
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a bit map based byte-split detection algorithm by taking

advantage of bit-level control in FPGA designs.

A bit map is utilized to represent the assumption of starting

bytes, which is called the Assumption Bit Map (ABM) in the

remainder of this paper. For a N bytes input data line, we

need a N ∗N ABM. As shown in Fig 3, taking an 8B input

data line as an example, cell(i, j) being equal to ‘1’ in the

ABM means that if corresponding byte i is a starting byte of

one token, byte j is also a possible starting byte. If a cell has

a value ‘0’, it means if byte i is a starting byte, byte j cannot

be a starting byte.

This algorithm has three stages. In the first stage, an ABM

is initialized with all cells set to ‘1’. In the second stage, based

on the assumption, each row in the ABM is updated in parallel.

For row i, if the size of the token starts with the assumption

byte is L, the following L − 1 bits are set to be 0. The final

stage merges the whole ABM along with the slice flag from

the previous slice, and calculate a Position Vector (PV). The

PV is generated by following a cascading chain. First of all,

the slice flag from the previous slice points out which is the

starting byte of the first token in the current slice (e.g. byte 1

in Fig. 3). Then the corresponding row in the ABM is used

to find the first byte of the next token (byte 5 in Fig. 3), and

its row in the ABM is used for finding the next token. This

procedure is repeated (all within a single FPGA cycle) until all

the tokens in this slice are found. The PV is an N -bit vector

that its ith bit equal to ‘1’ means the ith byte in the current

slice is a starting byte of a token. Meanwhile, the slice flag

will be updated. In addition to the starting byte position of

the first token in the next slice, the slice flag contains other

informations such as whether the next slice starts with literal

content, the unprocessed length of the literal content, etc.

D. BRAM Command Parser

Fig. 4: Structure of BRAM command parser

The BRAM command parser refines the tokens and gener-

ates BRAM commands based on the parsed slice. The structure

of the BCP is demonstrated in Fig. 4. The first step is to

generate tokens based on the token boundary information that

is stored in the PV. Literal tokens and copy tokens output from

the token generator are assigned to different paths for further

refining in the BRAM command generator. In the literal token

path, the BRAM command generator calculates the token write

address and length, and splits this write operation into multiple

ones to map the write address to the BRAM address. Within

a slice, the maximum length of the literal token is 16B, i.e.

the largest write is 16B, which can generate up to 3 BRAM

write commands. In the copy token path, the BRAM command

generator performs a similar split operation but maps both the

read address and the write address to the BRAM address. A

copy token can copy up to 64B data. Hence, it generates up

to 9 BRAM copy commands.

Since multiple commands are generated each cycle, to

prevent stalling the pipeline, we use multiple sets of FIFOs

to store them before sending them to the corresponding

execution module. Specifically, 4 FIFOs are used to store

the literal commands which is enough to store all 3 BRAM

write commands generated in one cycle. Similarly, 16 copy

command FIFOs are used to handle the maximum 9 BRAM

copy commands. To keep up with the input stream rate (16B

per cycle), multiple BCPs can work in parallel to enhance the

parsing throughput.

E. Execution Module

The execution module performs BRAM command execution

and the recycle mechanism. Its structure is illustrated in Fig. 5.

It receives up to 1 write command from the write command

selector and 1 copy command from the copy command selec-

tor. Since each BRAM has one independent read port and

one independent write port, each BRAM can process one

read command and one copy command each clock cycle. For

the write command, the write control logic extracts the write

address from the write command and performs a BRAM write

operation. Similarly, the read control logic extracts the read

address from the read command and performs a BRAM read

operation.

While the write command can always be processed success-

fully, the copy command can fail when the target data is not

ready in the BRAM. So there should be a recycle mechanism

for failed copy commands. After reading the data, the unsolved

control logic checks whether the read data is valid. There are

three different kinds of results: 1) all the target data is ready

(hit); 2) only part of the target data are ready (partial hit);

3) none of the target data is ready (miss). In the hit case

and the partial hit case, the new command generator produces

one or two write commands to write the copy results to one

or two BRAMs, depending on the alignment of the write

data. In the partial hit case and the miss case, a new copy

command is generated and recycled, waiting for the next round

of execution.

F. Selector Selection Strategy

The BRAM write commands and copy commands are

placed in separate paths, and can work in parallel. The Write

Command Selector gives priority to recycled write commands.
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Fig. 5: Structure of execution module

Priority is next given to write commands from one of the BCPs

using a round robin method. The Copy Command Selector

gives priority to the copy commands from one of the BCPs

when there is a small number of copy commands residing

in the recycle FIFO. However, when this number reaches a

threshold, priority will be given back to the recycle commands.

This way, it not only provides enough commands to be issued

and executed, but also guarantees the recycle FIFO does not

overflow, and no deadlock occurs.

V. EVALUATION

A. Experimental Setup

To evaluate the proposed design, an implementation is

created targeting the Xilinx Virtex Ultrascale VU3P-2 device

on an AlphaData ADM-PCIE-9V3 board and integrated with

the POWER9 CAPI 2.0 [24] interface. The CAPI 2.0 interface

on this card supports the CAPI protocol at an effective

data rate of approximately 11 GB/s. The FPGA design is

compared with an optimized software Snappy decompression

implementation [16] compiled by gcc 7.3.0 with “O3” option

and running on a POWER9 CPU in little endian mode with

Ubuntu 18.04.1 LTS.

We test our Snappy decompressor for functionality and

performance on 6 different data sets. The features of the data

sets are listed in Table II. The first three data sets are from

the “lineitem” table of the TPC-H benchmarks in the database

domain. We use the whole table (Table) and two different

columns including a long integer column (Integer) and a string

column (String). The data set Wiki [25] is an XML file dump

from Wikipedia, while the Matrix is a sparse matrix from the

Matrix Market [26]. We also use a very high compression ratio

file (Geo) which stores geographic information.

TABLE II: Benchmarks used and throughput results

Files Original Compression Throughput (GB/s) Speedup

size (MB) ratio CPU FPGA

Integer 45.8 1.70 0.59 4.40 7.46
String 157.4 2.45 0.69 6.02 8.70
Table 724.7 2.07 0.59 6.11 10.35
Matrix 771.3 2.75 0.80 4.80 6.00
Wiki 953.7 1.97 0.56 5.72 10.21
Geo 128.0 5.50 1.41 7.21 5.11

B. Resource Utilization

Table III lists the resource utilization of our design timing

at 250MHz. The decompressor configured with 6 BCPs and

16 execution module takes around 14.2% of the LUTs, 7% of

the BRAMs, 4.7% of the Flip-Flops in the VU3P FPGA. The

recycle buffers, the components that are used to support out-of-

order execution, only take 0.3% of the LUTs and 1.2% of the

BRAMs. The CAPI 2.0 interface logic implementation takes

up around 20.8% of the LUTs and 33% of the BRAMs. Multi-

unit designs can share the CAPI 2.0 interface logic between

all the decompressors, and thus the (VU3P) device can support

up to 5 engines.

TABLE III: Resource utilization of design components

Resource LUTs BRAMs1 Flip-Flops

Recycle buffer 1.1K(0.3%) 8(1.2%) 1K(0.1%)
Decompressor 56K(14.2%) 50(7.0%) 37K(4.7%)
CAPI2 interface 82K(20.8%) 238(33.0%) 79K(10.0%)
Total 138K(35.0%) 288(40.0%) 116K(14.7%)
1 One 18kb BRAM is counted as a half of one 36kb BRAM.

C. End-to-end Throughput Performance

We measure the end-to-end decompression throughput read-

ing and writing from host memory. We compare our design

with the software implementation running on one POWER9

CPU core (remember that parallelizing Snappy decompression

is difficult due to unknown block boundaries).

Fig. 6 shows the end-to-end throughput performance of

the proposed architecture configured with 6 BCPs. The pro-

posed Snappy decompressor reaches up to 7.2 GB/s output

throughput or 31 bytes per cycle for the file (Geo) with high

compression ratio, while for the database application (Table)

and web application (Wiki) it achieves 6.1 GB/s and 5.7 GB/s,

which is 10 times faster than the software implementation.

One decompressor can easily keep pace with a (Gen3 PCIe

x4) NVMe device, and the throughput of an implementation

containing two of such engines can reach the CAPI 2.0

bandwidth upper bound.

Regarding the power efficiency, the 22-core POWER9 CPU

is running under 190 watts, and thus it can provide up to

0.16GB/s per watt. However, the whole ADM 9V3 card can

support 5 engines under 25 watts [27], which corresponds to

up to 1.44GB/s per watt. Consequently, our Snappy decom-

pressor is almost an order of magnitude more power efficient

than the software implementation.
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TABLE IV: FPGA decompression accelerator comparison

Design Frequency Throughput History Area Efficiency

(MHz) GB/s bytes/cycle Size(KB) LUTs BRAMs MB/s per 1K LUT MB/s per BRAM

ZLIB (CAST) [9] 165 0.495 3.2 32 5.4K 10.5 93.91 48.3
Snappy [8] 140 1.96 15 64 91K 32 22 62.7
This Work 250 7.20 30.9 64 56K 50 131.6 147.5
1 Please note that ZLIB is more complex than Snappy and takes more LUTs to obtain the same throughput performance in principle.

Fig. 6: Throughput of Snappy decompression

D. Design Trade-off with # of BCPs

As explained in section IV, the number of BCPs corresponds

to the number of tokens that can be refined into BRAM

commands per cycle. We compare the resource utilization

and throughput of different numbers of BCPs, and present

the results that are normalized by setting the resource usage

and throughput of one BCP as 1 in Fig 7. Increasing from

one BCP to two leads to 10% more LUT usage, but results

in around 90% more throughput and no changes in BRAM

usage. However, the increase of the throughput on Matrix

slows down after 3 BCPs and the throughput remains stable

after 5 BCPs. A similar trend can be seen in Wiki where

the throughput improvement drops after 7 BCPs. This is

because after increasing the number of BCPs, the bottleneck

moves to the stage of parsing the input line into tokens.

Generally, a 16B-input line contains 3-7 tokens depending on

the compressed file, while the maximum number of tokens is

8, thus explaining the limited benefits of adding more BCPs.

One way to achieve higher performance is to increase both the

input-line size and the number of BCPs. However, this might

bring new challenges to the resource utilization and clock

frequency, and even reach the upper bound of the independent

BRAM operations parallelism.

E. Comparison of Decompression Accelerators

We compare our design with state-of-the-art decompression

accelerators in Table IV. By using 6 BCPs, a single decom-

pressor of our design can output up to 31B per cycle at a clock

frequency of 250MHz. It is around 14.5x and 3.7x faster then

the prior work on ZLIB [9] and Snappy [8]. Even scaling

up the other designs to the same frequency, our design is

still around 10x and 2x faster, respectively. In addition, our

design is much more area-efficient, measured in MB/s per 1K

LUTs and MB/s per BRAM (36kb), which is 1.4x more LUT
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Fig. 7: Impact of number of BCPs

efficient than the ZLIB implementation in [9] and 2.4x more

BRAM efficient than the Snappy implementation in [8].

VI. SUMMARY AND CONCLUSION

The control and data dependencies intrinsic in the design

of a decompressor present an architectural challenge. Even in

situations where it is acceptable to achieve high throughput

performance by processing multiple streams, a design that

processes a single token or a single input byte each cycle

becomes severely BRAM limited for (de)compression proto-

cols that assume a sizable history buffer. Designs that decode

multiple tokens per cycle could use the BRAMs efficiently

in principle, but resolving the data dependencies leads to

either very complex control logic, or to duplication of BRAM

resources. Prior designs have therefore exhibited only limited

concurrency or required duplication of the history buffers.

This paper presented a refine and recycle method to address

this challenge and applies it to Snappy decompression to

make an FPGA-based Snappy decompressor. In an earlier

stage, the proposed design refines the tokens into commands

that operate on a single BRAM independently to reduce the

impact of the BRAM bank conflicts. In the second stage, a

recycle method is used where each BRAM command executes

immediately without dependency checking and those that

return with invalid data are recycled to avoid stalls caused

by the RAW dependency. For a single Snappy input stream

our design processes up to 16 input bytes per cycle. The end-

to-end evaluation shows that the design achieves up to 7.2

GB/s output throughput or about an order of magnitude faster

than the software implementation in the POWER9 CPU. This

bandwidth for a single-stream decompressor is sufficient for an

NVMe (PCIe x4) device. Two of these decompressor engines,

operating on independent streams, can saturate a PCIe Gen4

279



or CAPI 2.0 x8 interface, and the design is efficient enough

to easily support data rates for an OpenCAPI 3.0 x8 interface.
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