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Abstract
Concurrency bugs are easy to introduce but dif-
ficult to detect, especially in implementations of
distributed algorithms where concurrency non-
determinism is an inherent problem. These bugs
may only be identified under very specific order-
ings of execution events, making them challenging
to reproduce. Controlled concurrency testing tech-
niques have been proposed to address the testing
challenge, by taking over the scheduling of events,
and effectively searching the state space of sched-
ules to identify the concurrency bugs.
In this paper, we investigate and compare the per-
formance of two concurrency exploration algo-
rithms, probabilistic concurrency testing (PCT) and
delay bounding strategy on our implementation of
the HotStuff consensus protocol, which has been
quite popular and was adopted by Meta for its Diem
blockchain project. Our results suggest that can in-
deed find concurrency bugs more frequently in our
HotStuff implementation than the baseline random
strategy. However, using different bound parame-
ters for PCT and delay bounding does not have sig-
nificant effect on bug finding performance on our
benchmarks.

1 Introduction
Imagine checking your bank account twice but seeing your
balance suddenly plunge the second time — this is what could
happen when concurrency bugs manifest. Ensuring the cor-
rectness of concurrent programs is a challenging task. Con-
currency can introduce non-deterministic behaviours in pro-
grams and result in concurrency bugs. It can be very diffi-
cult to identify, reproduce and fix the bugs in concurrent pro-
grams.

Concurrency non-determinism is inherent in the context of
distributed systems. The execution order of different pro-
cesses is arbitrary, and messages sent over the network can
be delayed and reordered. Distributed consensus algorithms
are therefore essential for distributed server nodes to achieve
agreements despite unpredictable network conditions or even
when some nodes can fail.

HotStuff [1] has been a popular Byzantine fault tolerant
(BFT) consensus algorithm in recent years, and is the basis
of the DiemBFT [2] algorithm that Meta adopted for its cry-
potcurrency project Diem. HotStuff addresses the scalabil-
ity challenges in past algorithms due to high communication
complexity like the seminal PBFT [3], and achieves linear
complexity in optimistic cases. It also offers optimistic re-
sponse time that depends on the actual network delay, rather
than a theoretical upper bound in Tendermint [4]. More im-
portantly, HotStuff is the first algorithm that decouples the
safety and liveness property on the algorithmic level, offering
high flexibility in customizing the liveness conditions accord-
ing to different applications.

Controlled concurrency testing (CCT) [5] techniques have
been proposed to address the challenge of effectively find-

ing concurrency bugs. This approach takes over the schedul-
ing of threads, and then explores the possible interleavings of
events for buggy schedules. However, the number of possible
interleavings could be very large, posing a new challenge of
effective schedule exploration.

Research on the characteristics of concurrency bugs pro-
vides an important observation that most bugs can be found
with just a small number of ordering constraints [6] or context
switches [7]. This critical observation has given rise to effec-
tive schedule exploration strategies like probabilistic concur-
rency testing (PCT) [8] and delay bounding [9]. PCT bounds
the minimum number of reorderings required to find the bug,
and delay bounding bounds the number of a schedule deviates
from the decision of a deterministic scheduler. Both strategies
can explore a small subset of possible schedule where concur-
rency bugs are most likely to manifest, and thus can be more
effective than systematic or naive random strategy.

Previous work [10] has examined the performance of dif-
ferent concurrency exploration techniques including PCT and
delay bounding on finding concurrency bugs in implementa-
tions of the Paxos [11] and Raft [12] algorithm. This paper
aims to expand such effort to examining the performance of
PCT and delay bounding strategies on finding concurrency
bugs in our HotStuff implementation.

The main questions that this research aims to investigate
and answer are as follows:

RQ1 Can PCT and delay bounding strategy find bugs more
frequently in our HotStuff implementation, compared to
the baseline random scheduler?

RQ2 Which bound parameter gives the best performance in
PCT and delay bounding?

The paper will be structured as follows. In section 2, we
will provide further details on relevant CCT techniques and
the HotStuff algorithm. In section 3, we will introduce the
experimental setup for evaluating the CCT techniques and re-
port our results. Section 5 presents our considerations on the
ethical and reproducibility aspect of this research. Discussion
of the results will be in section 4. We conclude our research
and suggest possible directions of future work in section 6.

2 Methodology
In this section, we will provide more details on the techniques
and algorithms used to answer our research question. We
will further explain controlled concurrency testing strategies
in section 2.1 and the HotStuff consensus algorithm in section
2.2.

2.1 Controlled Concurrency Testing
Controlled concurrency testing aims to control the nondeter-
minism in typical system schedulers, and generate determin-
istic and reproducible schedules.

Systematic Scheduling
With systematic concurrency testing (SCT) [13; 14], a pro-
gram is tested repeatedly where each test iteration explores
a different schedule of executions, until all schedules haven
been explored. This method is very effective and gives no
false-positives, but it does pose two major challenges. First,



the state space of interleavings grows exponentially with the
number of executions and makes it often infeasible to explore
all schedules. Second, many schedules are equivalent to each
other in terms of bug finding (e.g., re-ordering of two trivial
events that are not relevant to exposing a bug).

Randomized Scheduling
Randomized exploration strategies are proposed to address
the first problem of state space explosion. A subset of inter-
leavings is randomly sampled and explored, rather than all
possible ones.

Random walk (RW) strategy is a straightforward approach.
At each scheduling point, it randomly chooses a next opera-
tion to execute. Despite its simple idea, it has been shown to
be quite effective and is therefore a good baseline strategy to
be compared with other techniques [5].

Thread A
1

2

3

4

5 assert(x==0)

Thread B
1 exec(1)
2 ...
3 exec(k-1)
4 x = 1
5

Figure 1: An execution where RW provides much worse probabilis-
tic guarantee than PCT due to irrelevant homogeneous schedules.
Variable x is initialized to 0. Example taken from [15].

However, random walk strategy can be ineffective when
there are many homogeneous schedules (that do not expose a
bug). Consider the execution in Figure 1. In order for the as-
sertion to fail and to catch the bug, a scheduler needs to sched-
ule all k operations in thread B before thread A, each has 1/2
of the chance to be picked at a scheduling point. Therefore,
there is only a probability of 1/2k that RW will explore the
buggy schedule in this scenario.

Probabilistic concurrency testing (PCT) [8] is a popular
randomized scheduler that addresses the problem of too many
equivalent schedules. It relies on the observation that most
concurrency bugs are only caused by a small number of re-
ordered events [6]. The intuition is that only these few events
need to be scheduled correctly to find a bug, while the numer-
ous possible schedules of other irrelevant events do not need
to be explored, thus increasing the probability of hitting the
bug. The minimum number of ordering constraints for a bug
to manifest is defined as bug depth d in PCT.

PCT assigns a unique priority to each thread, and chooses
the thread with the highest priority at each scheduling point.
It also randomly decides d − 1 priority change points where
the executing thread will be given a lower priority. In an ex-
ecution with n threads and k steps, PCT can detect concur-
rency bugs of depth d with a probability of at least 1/nkd−1.
To find the bug in Figure 1, we only need to schedule the
assertion in thread A after the assignment in thread B. The
bug is therefore only of depth 1 and PCT gives a probabilistic
guarantee of 1/2, much stronger than RW.

Schedule Bounding
With the intuition that most concurrency bugs are due to only
a few reorderings, PCT effectively reduces the search space
to a small subset of schedules with high probability of finding

a bug. Many other strategy have been proposed using similar
intuition [7; 16] to put an effective bound on schedules using
different parameters. Delay bounding is one such technique
[9] that can be applied to various deterministic schedulers.

Delay means blocking a thread at scheduling point, and
giving execution to the next thread. This can also be seen
as a deviation from a given deterministic schedule, and de-
lay introduces nondeterminism into an otherwise determinis-
tic scheduler. Delay bounding technique uses the total num-
ber of such delays to bound the search space of a scheduler.
In an execution of k steps and a delay bound of d, the search
space can be bound to kd.

2.2 HotStuff Consensus Algorithm
HotStuff aims to achieve consensus among a set of decen-
tralized nodes. It guarantees correctness when there are
n ≥ 3f + 1 nodes, where f is the number of nodes that can
exhibit Byzantine faults.

In the HotStuff algorithm, each server node stores a tree of
blocks. Each block contains a command requested by client, a
reference to its parent block and other bookkeeping variables.
A consensus is reached when a block is committed. To com-
mit a block, the leader of the current view needs to collect the
majority vote from a quorum of n−f nodes (known as a quo-
rum certificate, or QC) in three phases: Prepare, Pre-Commit,
and Commit. The leader then broadcasts the decision in the
Decide phase. Execution of the HotStuff protocol produces
a monotonically growing chain of blocks. A typical execu-
tion of the multi-phased Basic HotStuff (Algorithm 2 in [1])
is illustrated in Figure 2.

Figure 2: Execution of multi-phased Basic HotStuff protocol.

Since each phase of the Basic HotStuff is doing very simi-
lar work, it can then be optimized similar to a CPU pipeline.
When a leader has collected enough Prepare votes and pro-
duced a quorum certificate in a view, it can relay the QC to
the leader in the next view, delegating the responsibility of the
Pre-Commit phase. The next leader does not actually start a
Pre-Commit phase, however, but instead initiates another Pre-
pare phase and make its own proposal. This Prepare phase
simultaneously serves as the Pre-Commit phase for the pre-
vious view. Therefore, when a block carries a QC that refers
to its direct parent, we know that the parent has completed its
Prepare phase. This is called a One-Chain. If the direct par-
ent also carries a QC referring to its direct parent, this forms
a Two-Chain and implicates that the direct grandparent has
completed its Pre-Commit phase. Finally, a block becomes a
committed decision when a Three-Chain has formed. Execu-
tion of the Chained HotStuff algorithm (Algorithm 3 in [1])



is illustrated in Figure 3. The block of QC3 forms a Three-
Chain and the block of cmd1 can be committed.

Figure 3: Execution of pipelined Chained HotStuff protocol.

3 Experimental Setup and Results
For the experiment, we implemented the event-driven Hot-
Stuff (see Algorithm 4 in [1], cryptographic component is
omitted for simplicity) in C#, using the Coyote Actor frame-
work v1.7.8. The event-driven version is based on the
Chained HotStuff, which is then further simplified and has its
liveness mechanism decoupled into the Pacemaker class. The
Pacemaker is implemented with a predefined rotating leader
scheme (shared among all nodes) in Round-Robin style. Two
additional classes are implemented for testing: a client that
sends requests and waits for responses, a cluster manager that
coordinates communications with the client and among the
servers.

3.1 Correctness Specification

The correctness of a consensus algorithm is specified with
two properties: agreement and termination. Agreement is a
safety property, specifying that no two correct nodes decide
different values. Termination is a liveness property, specify-
ing that every correct node eventually decides a value.

Safety and liveness specification of the HotStuff imple-
mentation is implemented with the Monitor API in Coyote
library. The SafetyMonitor specifies that one client request
cannot be decided in two different blocks and reports a bug
upon violation. It is invoked each time the cluster manager
receives a decision from the servers. The LivenessMonitor
checks that client eventually receives responses to all the re-
quests they have sent, and reports a bug in case of insufficient
responses. Both monitors are registered to Coyote runtime
during test initialization.

Note that liveness checking is conceptually very difficult, if
not impossible [17], since it can be impossible to tell whether
a message will not arrive or will only arrive after a very long
delay. Liveness checking is however possible in a controlled
execution environment like Coyote, because delays are not
unbounded. The liveness violation threshold is sufficiently
long (50000 steps) for any correct execution to complete
(1200 steps, with 4 servers and 1 client sending 10 requests),
and there are no heavy and long operations that could cause
the starvation of other threads in case of an unfair scheduler.

3.2 Performance Measurement and Data
Collection

Performance of concurrency exploration techniques are mea-
sured in two ways. First, we measure how frequently a strat-
egy can find the bug, more precisely, the number of test itera-
tions that a strategy identifies the bug out of 1000. Second, we
measure how quickly a strategy can hit the bug. For this, we
record the elapsed time from test start to the first bug found
(if there is one) for each iteration, and compute an average.

Test results are collected through additional logging due to
limitations of the Coyote library. For the safety property, a
timer is started with each test iteration, and the elapsed time
(in milliseconds) is written to a text file when the SafetyMoni-
tor reports a violation for the first time in that iteration. There-
fore, the number of lines in the text file represents the number
of iterations that identified a bug, and each line represents the
time it took to find the bug in that iteration. For the liveness
property, a new line is written to another text file when an iter-
ation runs to completion. Therefore, the number of violations
is equal to the number of total iterations minus the number of
lines in the log file.

3.3 Test Setup
Experiments are performed on macOS 13.2 with a 12 core
Apple Silicon CPU. Before running the tests, Coyote needs
to be invoked to rewrite the compiled binary to inject hooks
for controlling the concurrency.

Tests involve six mock objects: a client, four servers run-
ning our HotStuff implementation, and a cluster manager that
coordinates communications with the client and among the
servers. Tests are run with default number of max steps of
10000 unless otherwise specified. A correct implementation
will not hit this bound with a reasonable number of requests.

For each test iteration, the client sends one or more requests
to the cluster manager. The cluster manager enqueues the
requests, and broadcasts one to the servers to kick-start the
consensus process. The leader sends the quorum certificate to
the cluster manager after it has collected enough votes. The
cluster manager will then broadcast this QC along with the
next client request. After a consensus is reached (i.e. a block
is committed), the decision is sent to the cluster manager and
forwarded to the client.

3.4 Strategies and Bugs
We measure the performance of the following concurrency
exploration strategies implemented in Coyote. Tests are run
with default parameters unless otherwise specified.

S1 Random Walk (RW). It picks a random operation at
each scheduling point and is used as a baseline for com-
parison [5].

S2 PCT. Coyote’s implementation of the PCT algorithm in
[8]. Default depth is set to 10, an empirically best pa-
rameter suggested in [10].

S3 Fair-PCT (F-PCT). Same as above, but falls back to
Random Walk strategy when exceeding the maximum
number of unfair scheduling steps, and thus avoids star-
vation of some threads.



S4 Delay-Bounding (DB). Coyote’s implementation of the
Delay-Bounding algorithm in [9]. Default bound is set
to 10, also an empirically best parameter suggested in
[10]..

S5 Fair-Delay-Bounding (FDB). Same as above, but falls
back to Random Walk strategy when exceeding the
maximum number of unfair scheduling steps, and thus
avoids starvation of some thread.

In order to benchmark the performance of different ex-
ploration strategies, we seeded the following concurrency
bugs into our implementation. Only one concurrency bug is
present in the implementation in any test iteration.

B1 Safety violation. This bug is due to the lack of de-
duplication of client requests combined with an incorrect
implementation of re-sending client requests. The client
tries to re-send a request too eagerly, which can result in
servers sometimes receiving and committing duplicate
requests. This violates the SafetyMonitor since dupli-
cate requests are committed in different blocks.

B2 Liveness violation. This bug is caused by a specific or-
dering of events. During test initialization, a message
is sent to the cluster manager to kickstart the consen-
sus process. If this message arrives earlier than client
requests, the cluster manager has no client request to
broadcast to servers to start the consensus. But when the
client requests finally arrive, the cluster manager can-
not kickstart the consensus and will just freeze, since
the message is only sent once.

B3 Liveness violation. This bug has a similar root cause as
B2, but is much harder to be caught by the schedulers.
The bug manifests after a first round of quorum certifi-
cate has been produced and sent to the cluster manager,
but the cluster manager does not receive further client
requests to start the next round of consensus. It also
freezes and does not progress when client requests come
in the future. This bug likely has a higher depth, which
could explain why it is much harder to find.

3.5 Results
We first examine how frequently can PCT and delay bounding
technique find a concurrency bug. The experiments are run
with 4 servers and 1 client. Client sends 1 request in B1 (the
result is more distinct for different strategies) and 10 requests
in B2 and B3. (Fair-)PCT and (Fair-)Delay Bounding uses
the default bound of 10.

Table 1 shows the number of buggy schedules found by
each strategy out of 1000 explorations. (Fair-)PCT strategies
are the only ones that found all three concurrency bugs. Fair
delay bounding strategy found B1 and B2 in almost every
schedule, but fails to find a buggy schedule for B3. There-
fore, both PCT and delay bounding can find concurrency bugs
more frequently than the baseline random scheduler, and PCT
is the most effective strategy here, being the only strategy that
successfully finds B3.

We then try to examine what is the best bound parameter
for PCT and delay bounding to find bugs in our HotStuff im-
plementation. Based on the intuition that most concurrency

RW PCT F-PCT DB F-DB
B1 609 9 982 0 1000
B2 507 837 832 987 990
B3 0 9 22 0 0

Table 1: The number of buggy schedules out of 1000 explored

bugs are caused by a small number of reorderings, only val-
ues smaller than the default 10 are experimented with.

Table 2 shows the number of buggy schedules found by
(fair) PCT strategies in B2 and B3, using different values of
bug depth. Table 3 shows the number of buggy schedules
found by (fair) delay bounding strategies in B2 and B3, using
different values of the bound parameter.

The number of buggy schedules found using different
bound parameters do not differ significantly from each other,
nor do they exhibit any clear trend. It is therefore difficult to
make any arguments from this data.

One explanation for the small difference between different
bounds could be that our implementation and seeded bugs
are not complicated enough, that they do not require a bound
larger than 2 or even 1. Therefore, the different bounds for
PCT and delay bounding do not make visible difference in
terms of bug finding performance on our benchmarks.

d 1 2 3 4 6 8 10
B1-F 989 988 988 991 995 990 982
B2 842 831 839 857 846 831 837

B2-F 845 848 839 850 842 832 832
B3 18 16 20 13 14 22 9

B3-F 9 26 21 12 20 15 22

Table 2: The number of buggy schedules found out of 1000 explo-
rations using different bug depth value for (fair) PCT. ”-F” suffix
indicates the fair version was used.

d 1 2 3 4 6 8 10
B1-F 1000 1000 1000 1000 1000 1000 1000
B2 997 996 996 994 995 992 987

B2-F 998 996 993 994 994 992 990
B3 0 0 0 0 0 0 0

B3-F 0 0 0 0 0 0 0

Table 3: The number of buggy schedules found out of 1000 explo-
rations using different bounds for (fair) delay bounding. ”-F” suffix
indicates the fair version was used.

4 Discussion
Our results show that PCT and delay bounding strategy can
indeed find bug more frequently than the baseline random
scheduler. This is consistent with the previous experiments
on other benchmarks [10; 5].

However, when exploring the best parameters for PCT and
delay bounding, our experiment show no significant different
for parameter ranging from 1 to 10. On the other hand, the



results in previous research are not very consistent either. [5]
suggests the best parameter for PCT is d = 3, which is a
reasonable number based on the intuition that most bugs are
caused by small number of reorderings. [10] suggests they
observed best result with d = 10, which does not correspond
very well to the observed characteristics of concurrency bugs
[6]. The best parameter may largely depend on the bench-
marks, and thus can vary a lot in different scenarios.

5 Responsible Research
The research itself carries minimal ethical implications. Ex-
periments on concurrency testing are conducted on a sim-
ple implementation of HotStuff consensus developed for this
project, rather than a production one. Therefore, the usual
concern of finding and reporting bugs in a critical real world
system is not a problem in this research.

Reproducibility is also not an issue for this research, al-
though the topic of concurrency and nondeterminism could
leave a different impression. Since we are investigating con-
trolled concurrency testing techniques, the nondeterministic
schedules are well controlled by the scheduler, and turned
into serialized, deterministic and fully reproducible sched-
ules. Therefore, it is actually quite easy and straightforward
to reproduce the results in this research.

Furthermore, we will take the following approaches to pro-
vide all the necessary details to reproduce our experiments
and results. First, the experimental setup and parameters, es-
pecially the seed values for random schedule generation, used
in the experiments will be reported in full detail. Second, all
of the code in the research, including our HotStuff implemen-
tation, test setup and the seeded bugs, will be published to a
public repository. With these two measures, we hope that ev-
eryone would be able to replicate our experiments and results
in the exact same setup.

6 Conclusions and Future Work
In this paper, we experimented with two controlled concur-
rency testing techniques, PCT and delay bounding, investi-
gated whether they can find bugs more frequently than the
baseline random scheduler in our implementation of the Hot-
Stuff consensus algorithm, and explored what is the best
bound parameter for the two strategies. To conduct the exper-
iment, we implemented the popular HotStuff algorithm using
Coyote framework, and seeded several concurrency bugs into
the implementation as test benchmarks.

Our experiments show that PCT and delay bounding strate-
gies can indeed find buggy schedules more frequently in our
HotStuff implementation compared to the random walk strat-
egy. In particular, one of the seeded bugs is only found by
PCT but not the other two strategies. It is therefore the most
effective exploration strategy on our benchmarks.

On the other hand, using different bound parameters does
not make a significant difference on the number of buggy
schedules found in our HotStuff implementation. This is
likely due to the characteristic of the bugs we seeded in the
implementation, such that they are not very sensitive to the
bounding parameters.

Seeding concurrency bugs is one major issue of this re-
search. The HotStuff consensus provides a very strong safety
guarantee despite its simplicity. Coyote’s event driven Task
Asynchronous programming model also eliminates some
sources of common concurrency bugs like synchronization.
Therefore, the seeded bugs are somewhat limited in variety
and may not be very good test benches that can provide in-
sightful comparison among different strategies.

For the purpose of benchmarking concurrency testing
strategies, it may be of interest for future work to test them
on lower level implementations like the SCTBench [5] where
more concurrency bugs may be exposed. It may also be of
interest to experiment the exploration strategies on sophisti-
cated production systems, where the concurrency bugs may
have more diverse characteristics and are more suitable to
evaluate the performance of using different bound parame-
ters.
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