
Performance of the Dejavu audio fingerprinting framework in music identification 
in movies

Natália Struharová1

1Delft University of Technology

Abstract
Audio fingerprinting is one of the standard solu-
tions for music identification. The underlying tech-
nique is designed to be robust to signal degradation
such that music can be identified despite its pres-
ence. One of the newly emerged applications of a
possibly challenging nature is music identification
in movies. This paper examines the audio finger-
printing framework Dejavu by evaluating its per-
formance against an existing benchmark created for
the context of music identification in movies. The
results show that Dejavu’s performance matches
the expectations derived from the implementation
and previous testing, and can be reconfigured to im-
prove the performance in terms of the benchmark.

1 Introduction
Audio fingerprinting is a music information retrieval tech-
nique well known for its capabilities in music identification.
One of the main advantages of an audio fingerprint is its
compactness. A fingerprint compresses perceptual informa-
tion from an audio file into a numeric sequence that is much
shorter than the original waveform data. With this, the com-
parison of different audio files becomes more efficient and
effective in the fingerprint domain [1]. Audio fingerprinting
is also known for its robustness to distortions. The extracted
features that are eventually summarised in form of the finger-
print are ”as robust as possible to typical distortions to typical
distortions” [2, p. 3], such as those that arise from imperfect
transmission channels or background noise.

Both of these features make audio fingerprinting a suitable
technique for music identification in challenging conditions
and demanding contexts, which is likely the reason why many
popular music identification platforms, such as Shazam [3],
base their algorithms on this technique [2].

However, as audio fingerprinting became a standard so-
lution for music identification in contexts such as broad-
cast monitoring [4], new, seemingly similar implementations,
were not addressed quite as extensively. Muziekweb [5], the
music library of the Netherlands, has recently tested audio
fingerprinting in a new context. Based on satisfactory expe-
rience with audio fingerprinting in identifying music in radio
streaming, they attempted to identify music in movies with

the same technique. Contrary to the expectations, audio fin-
gerprinting did not yield satisfactory results in the informal
experiments.

The motivation for using audio fingerprinting for music
identification in movies is further explained in the paper on
the benchmark developed specifically for this context [6]. Us-
ing this benchmark, the following research evaluates an open-
source audio fingerprinting framework called Dejavu 1 to bet-
ter understand its suitability to the context in question.

This study investigates Dejavu by addressing the following
research questions:

• How does Dejavu perform in identifying music in
movies in terms of the benchmark?

• How can Dejavu be configured to compensate for its
weaknesses in music identification in movies?

The remaining part of this paper is structured as follows.
Section 2 describes related work with its contributions and
limitations. In section 3, the Dejavu framework is pre-
sented and analysed. Section 4 gives an overview of meth-
ods employed in order to answer the research questions. Sec-
tion 5 elaborates on the practical experiments and their re-
sults. In section 6, the results obtained are discussed in terms
of findings and their limitations to the scope of research. Sec-
tion 7 explains the ethical issues related to the research and
our efforts in mitigating them. Finally, section 8 concludes
the research and suggests directions for future work.

2 Related work
While there is no published data on audio fingerprinting in
movie music identification, some existing research addresses
music identification in similarly challenging environments.

In 2014 Guzman et al. [7] proposed an audio fingerprint-
ing system robust against several signal degradations, includ-
ing noise addition and temporal desynchronization such as
pitch shifting. While the noise categories are treated modu-
larly, only two samples of real-world noise were used in test-
ing. Therefore, the research covers only a very limited subset
of categories using only one sample rather than several dis-
tinct ones. Moreover, the experiments do not examine various
signal-to-noise ratios (SNR). Such experimentation setups do

1https://github.com/worldveil/dejavu

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



not give sufficient insight into how different amplitudes of
noise affect the performance.

Another reportedly robust audio fingerprinting framework
was presented by Rafi et al. [8] in the same year. Their ap-
proach to identifying live versions of songs with audio fin-
gerprinting was tested against a data set containing several
live music performances. These often contained background
noise together with structural changes such as pitch shifting
and tempo changing. The limitation of this evaluation is that
the results are presented in terms of overall performance on
the data set rather than a modular overview of the effects of
different degradation categories. Similarly to the previous
study, the SNR is also not considered in this work, further
generalising the framework’s behaviour rather than systemat-
ically analysing the effect of the relative noise amplitude.

While these works are indirectly related to the problem ad-
dressed by this research, the experimental setups of the stud-
ies was not sufficiently similar to the modular, systematic ap-
proach proposed in this paper.

3 Dejavu
Dejavu is an open-source audio fingerprinting framework
written in Python. The following section provides a brief
overview of the framework’s identification pipeline as well
as a more detailed review of its implementation and perfor-
mance.

3.1 Identification pipeline
The music identification pipeline of Dejavu strongly resem-
bles the basic scenario described in the ’Identification’ usage
model by Cano and Batlle [1].

Specifically, Dejavu first ‘memorises’ songs by extract-
ing their fingerprints and storing them in a database. The
database also contains a table with the songs’ metadata which
is linked to their corresponding fingerprints. After populating
the database, recognition can be done by querying the audio
to be identified. Dejavu first extracts the fingerprints from
the input and then compares them to the database to find the
best-matching set of fingerprints. Finally, it outputs the meta-
data of songs from the database that was found to have the
best matching fingerprints. As a result, Dejavu returns a list
of songs that were matched. The result contains the match
name and query time, as well as more technical details that
would normally not be of interest to the user. The ranking of
a match among other results is determined by the input confi-
dence. This coefficient represents the percentage of the input
that was matched to the given result. For example, if our in-
put was completely accurately matched to a given result, the
input confidence would be 1.0. The higher this coefficient is,
the higher the particular result ranks. Dejavu also calculates
fingerprinted confidence, which represents the number of the
hashes matched relatively to the entire song in the database.
This means that if we input 10 seconds out of a 20 seconds
long song, and it is matched perfectly, the fingerprinted con-
fidence would be 0.5. Dejavu’s implementation was designed
to always return a match, regardless of the confidence coef-
ficients. Therefore, to classify a result as a False Negative
(FN), or in other words a missed match, it is necessary to im-

pose threshold on confidence, as this coefficient essentially
indicates how likely it is that the match is correct.

Considering this pipeline, the framework’s capabilities
can be roughly classified into two main tasks: remember-
ing a song by fingerprinting it and storing its metadata and
analysing a queried song by fingerprinting it and comparing
these fingerprints to the database to retrieve the best match.
Both of these tasks make use of the same audio fingerprinting
procedure.

3.2 Fingerprinting
The purpose of audio fingerprinting is to reduce the dimen-
sionality of audio files such that they can be stored and com-
pared more efficiently. However, to allow for these benefits,
unique perceptual features must be preserved as well as pos-
sible. Dejavu’s fingerprinting mechanism operates under this
requirement, as it gradually decomposes the signal until a
compact fingerprint of such nature can be formed.

3.2.1 Preprocessing
To ready the audio for preprocessing, it is first discretised by
sampling. By default, Dejavu samples the signal with a fre-
quency of 44.1 kHz, meaning that 44,100 samples of the sig-
nal are extracted per second. This choice of this frequency
is justified using the Nyquist-Shannon sampling theorem, ac-
cording to which the signal should be sampled at double the
maximum frequency we aim to capture. Since humans gener-
ally cannot hear frequencies above 20,000 Hz, the maximum
frequency was established at 22,050 Hz, such that no human-
audible frequencies would be missed when sampling. Using
the theorem, Dejavu’s default sampling frequency is double
the maximum frequency, or numerically, 2 * 22,050 = 44100
Hz.

3.2.2 Frequency domain spectrogram
After preprocessing, Dejavu generates a frequency domain
representation of the given audio file by applying Fast Fourier
Transform (FFT) to overlapping windows across the sig-
nal [9]. This approach is identical to the extraction technique
described by Haitsma and Kalker [4], where they motivate
this choice by reasoning that the most perceptually signifi-
cant audio qualities are present in the frequency domain. The
transformed windows are combined such that they form a fre-
quency spectrogram of the entire audio file.

The X-axis of the spectrogram represents time relative to
the audio file, and the Y-axis represents the frequency val-
ues. With that, each pixel within the spectrogram image cor-
responds to a given time-frequency pair. The colour of this
pixel indicates the amplitude of a given frequency at the cor-
responding time. These spectrograms are then used to extract
the features that will constitute the fingerprint.

3.2.3 Peak finding
The peak finding algorithm chooses the time-frequency pair
coordinate corresponding to an amplitude value that is greater
than the amplitudes of its local neighbouring points. This
strategy is based on the fact that these high amplitude fre-
quencies are more likely to survive distortion than the low
amplitude frequencies around them. Dejavu uses the image
of the spectrogram and analyses its pixels to find these peaks.

2



Specifically, it first applies a high pass filter that emphasises
the high amplitude points, and then it extracts the local max-
ima, which ultimately become the noise-resistant peaks.

Depending on the frequency composition, the number of
peaks can range between thousands to tens of thousands per
song. However, despite this amount of data, peak extraction
stores only a subset of information unique to the song. The
rest of the information is discarded, which directly increases
the likelihood of peaks of different songs being similar or
even identical. If the framework was to match tracks based
on the extracted peaks, there would likely be many collisions
and incorrect matches. To avoid these collisions as much as
possible, Dejavu encapsulates the peaks in the fingerprint us-
ing a hash function.

3.2.4 Fingerprint hashing
The peaks are combined into a fingerprint using a hash func-
tion. The hash functions used here take a number as input and
return a number as output. A good hash function will always
return the same output for a given input. In addition, it should
also ensure that only a few distinct inputs will be hashed into
the same output.

Given a set of peaks and the time differences between
them, Dejavu creates several hashes, which constitute the
unique fingerprints for the particular track [10].

3.3 Configurable parameters
Based on the manual written for Dejavu, several parameters
can be configured. The overview of parameters and their ef-
fects is available in Table 3.

Most of the configurable parameters present similar trade-
offs. If they are set such that more information is stored, the
fingerprints take up more storage space and the matching will
be more computationally expensive. The upside to such con-
figuration, however, would be better accuracy in matching, as
there will likely be fewer collisions of different songs in terms
of identical or similar fingerprints.

Knowing the parameters and their trade-offs, it may be pos-
sible to configure these parameters to improve the benchmark
score based on its results.

3.4 Performance
3.4.1 Recall
The developer of Dejavu has tested the framework in different
experimental setups. Perhaps the experiment most significant
for this research was the one testing microphone-recorded
queries that were captured in the presence of humming and
talking. The results showed that with only 1 second of a ran-
dom part of the song, Dejavu can identify it correctly in 60%
of the cases. Queries with lengths between 2 and 4 seconds
were identified with recall above 95%. In the last two test
categories of 5 and 6 seconds, all queries were identified cor-
rectly [10].

Given that these queries were noisy and still identified cor-
rectly by Dejavu, there is a reason to expect the framework
to provide satisfactory performance when tested against the
noise categories in the benchmark.

3.4.2 Implementation speed
In terms of fingerprinting, the performance bottleneck is the
peak finding stage. However, according to the developer, the
matching time that resulted from an experiment on one song
with different query lengths was linear. The equation of the
linear regression showed that matching time takes approxi-
mately 3-times as long as reading the song, with a small con-
stant overhead [10].

Generally, it is advised to make use of a local database, as
this decreases latency in the total time of querying as opposed
to using remote storage.

3.5 Limitations
The developer emphasised that Dejavu performs best when
identifying audio with little to no noise. While this state-
ment does not directly provide the range of distortion Dejavu
can tackle, it admits that the performance of the framework
is bounded by some amount of noise [11]. In the context of
music identification in movies, this could translate into a per-
formance drop when identifying music degraded by noise or
signal modifications, especially when the distortion is louder
than the music. It is also said to perform better on exact sig-
nals, indicating that modifications such as pitch shifting and
tempo changing may pose a challenge to Dejavu.

4 Methodology
In this research, experiments are evaluated in terms of the
benchmark for audio fingerprinting frameworks in the con-
text of music identification in movies [6]. To evaluate the
frameworks, the benchmark employs a set of criteria that
are meant to capture the essential features of a framework
in terms of identifying music in movies. The motivation of
criteria choice is further explained in [6]. For the purposes
of this research, it is sufficient to understand the criteria and
their metrics, which are explained in Section 4.1.

The first research question was addressed by testing De-
javu against the benchmark. First, a preliminary test with real
movie data was conducted to observe Dejavu’s capabilities in
a real-world scenario of identifying music in movies. Then,
the performance of Dejavu in its default configuration was
evaluated against the benchmark where the framework was
tested with a set of synthesised data meant to simulate the
conditions present in movies.

To tackle the second research question, more experiments
were devised based on the initial benchmarking in order to
bring Dejavu’s performance closer to the optimum. After
obtaining the results of these experiments, the configuration
that reached the best benchmark scores was marked as the
optimal one. This configuration was also used to obtain the
search speed and scalability score for the framework. As a
final step, this configuration was used to observe the changes
in Dejavu’s performance on data extracted from real movies.

4.1 Criteria
The collective benchmark evaluates a framework in terms of
three criteria: robustness, reliability and search speed and
scalability. All three criteria are measured with their corre-
sponding metrics.

3



The robustness criterion measures the framework’s abil-
ity to correctly identify music despite the presence of signal
distortion in the input query. The metric used to measure ro-
bustness is Recall.

Reliability indicates to what extent can the framework be
trusted in terms of the correctness of the match. This criterion
is measured by Precision.

The final criterion, search speed and scalability, measures
the execution time of the framework with respect to its search
space. It does so by recording the average query time of the
data set in four different database setups further explained
in [6].

4.2 Evaluation set up
4.2.1 Data set
The data set that will be queried in evaluation consists of
14,014 tracks that were generated to represent each of the 17
distortion categories dictated by the benchmark. An overview
of these categories can be found in Table 4. To generate
this data set, different types of noise and signal modifications
were applied to the signals of 98 different songs. These songs
were randomly selected from movie soundtracks provided by
Muziekweb [5].

In each experiment, the evaluation is run with this data set
unless explicitly stated otherwise.

4.2.2 Database
A local MySQL database was used to store the fingerprints
and their corresponding metadata. For all experiments, ex-
cept for search speed and scalability measuring, conducted
in this research, the database of Dejavu was populated with
the same dataset of 1407 songs in total. The first part of the
data set consists of 907 songs extracted from various movie
soundtracks provided by Muziekweb. This set of tracks from
movies contains all the tracks used to generate test set. Such a
database setup allows all tested songs to be correctly matched
and discards the possibility of true negatives. Therefore, the
only results we can obtain are True Positives (TP), False Posi-
tives (FP) or False Negatives (FN). The second part of the data
set constitutes 500 random tracks, also provided by Muziek-
web. These were added in order to provide a more realis-
tic setup, where the database contains more different tracks,
and consequently, more different fingerprints to compare the
query with [3].

4.2.3 Dejavu configuration
For the experiments, Dejavu will be tested in its default con-
figuration specified by the developer on GitHub [11] unless
explicitly stated otherwise.

As mentioned in Section 3.1, Dejavu does not report FNs
by default. To enforce this, a threshold has to be applied to the
confidence coefficient of a result. For the initial benchmark-
ing in section 5.2, the threshold of 0 was applied to the in-
put confidence, as this is the coefficient significant enough to
have been chosen as the ranking parameter in Dejavu’s match
sorting. In practice, this means that any result with input con-
fidence equal to 0 will be classified as FN, regardless of its
real correctness.

4.2.4 Hardware specifications
Search speed and scalability is often largely dependent on the
hardware used to run the given framework. The following
experiments were run on a laptop running macOS Catalina,
with a 2.3GHz 8-core 9th generation Intel Core i9 processor
and 16 GB of DDR4 RAM memory.

5 Experimental Setup and Results
5.1 Experiment 1: Real movie data
To get a preliminary overview of Dejavu’s identification of
music in movies, a data set consisting of manually extracted
and labelled tracks from five movies of the benchmark data
was tested.

5.1.1 Data set
A total of 130 labelled audio excerpts from five different
movies (chosen from the Muziekweb-provided data set) were
tested with Dejavu.

5.1.2 Results
Dejavu has exhibited a serious decline in performance com-
pared to the results of the developer’s recall testing presented
in Section 3.4.1. All 130 samples were identified incorrectly,
therefore there were no true positives. With the data set ex-
tracted directly from movies, it is very difficult for us to
identify what type of signal degradations or SNRs rendered
these excerpts so challenging for Dejavu. The results of real
data testing highlight the necessity of a modular approach to
analysing the performance of the framework.

5.2 Experiment 2: The default configuration
performance

In this experiment, we measured the performance of Dejavu
in all benchmark categories in terms of the metrics defined
in Section 4.1.

5.2.1 Results
For a better overview of overall performance, recall and pre-
cision were averaged over the three SNRs for every category.
Besides this, the SNRs per category were looked at in terms
of the benchmark metrics. The overview with average met-
rics per category and detailed performance in terms of SNR
is shown in Figure 1.

Overall, Dejavu performed quite well on several different
categories where the noise was overlapped with the original
track. The average recall and precision of the categories was
0.85 and 0.94 rounded to two decimal places respectively.
Based on these results, it can be concluded that in its default
configuration, Dejavu’s recall is stronger than its precision.

As expected based on its previously mentioned limitations,
Dejavu’s performance deteriorates in lower SNRs relatively
to the higher SNRs. When comparing the recall and precision
in Figure 1c and Figure 1d, it is evident that recall is more
sensitive to SNR than precision. When looking at Figure 1b,
it is also visible that querying time is lower for negative SNR
which generally scores worse than the positive SNR.

An interesting finding is that the Tempo Changing category
(TC) was one of the statistically most precise categories with
the highest possible recall, outperforming even some of the

4



(a) Recall and precision averaged over SNRs (b) Query time averaged over SNRs

(c) Recall over SNRs (d) Precision over SNRs

Figure 1: Benchmark score of the default configuration

noise overlapping categories. Despite the forecast based on
limitations, Dejavu scored with a perfect recall of 1.0 and
near-perfect precision of almost 0.98.

In general, there were two noticeable weaknesses that
emerged from the benchmark evaluation:

1. Upon analysing the output, it appeared that many False
Negative (FN) results have the input confidence of 0
despite returning the correct match from the database.
Therefore, there is a reason to suspect that an adjustment
to thresholds may improve the metrics of the benchmark.

2. The weakest category for Dejavu was PS with a recall of
0.39 and precision of 0.38, significantly lower in com-
parison to the average metrics.

To examine these issues further, they will be gradually
tackled in the next two experiments.

5.3 Experiment 3: Examination of confidence
For the initial benchmarking, a threshold to determine
whether the result is a false negative was only imposed on
input confidence. Recall that this confidence indicates the ra-
tio of hashes matched with regards to all hashes in the input.

However, with this threshold configuration, a substantial
amount of results were classified as false negatives despite
being matched with the correct song. A close up of the rele-
vant results in terms of their input confidence and correctness
is depicted in Figure 2a.

(a) Results in terms of input
confidence

(b) FNs in terms of finger-
printed confidence

Figure 2: Analysis of confidences

These results suggest that the height of the threshold causes
many true positives to be classified as false negatives. How-
ever, the threshold cannot be lowered from 0.0 with its current
precision of two decimal places.

To mitigate the inaccuracy of the input confidence, the fin-
gerprinted confidence was examined in more detail. This was
done in order to observe its behaviour in relation to the cor-
rectness of matches in false negatives. The results are visu-
alised in Figure 2b.

From these results, it is apparent that positive fingerprinted
confidence is more likely to indicate a correct match as op-
posed to incorrect matches. Therefore, applying a threshold
to fingerprinted confidence may lead to an optimisation of the

5



Recall Precision Average
IC = 0
FC = / 0.8465 0.9373 0.8919

IC = 0
FC = 0 0.8973 0.9368 0.9171

IC = 0.025
FC = 0 0.8776 0.9606 0.9191

IC = 0.025
FC = 0.01 0.7832 0.9793 0.8813

IC = 0.05
FC = 0 0.8767 0.9621 0.9194

IC = 0.05
FC 0.01 0.7825 0.9865 0.8845

Table 1: Confidence threshold configurations

benchmark metrics. It is expected that there will be a trade-
off between recall and precision, as decreasing the number of
false negatives will, in this case, lead to some increase in false
positives. However, the trade-off may still be favourable, as-
suming that the optimal configuration is one that maximises
the average of these two metrics.

Based on these observations, our hypothesis for the next
experiment is that adding an additional confidence threshold
may optimise the benchmark metrics. To test this hypothe-
sis, the recall and precision metrics were recalculated with an
additional threshold on fingerprinted confidence. Due to the
distribution of results, several different combinations of input
confidence and fingerprinted confidence threshold were cal-
culated. The results of these recalculations in comparison to
the initial benchmarking can be found in Table 1.

When comparing these results, it is apparent that most
confidence threshold configurations are superior to the initial
configuration where only the input confidence is thresholded.
What is also visible is the trade-off between recall and preci-
sion, as the highest recall corresponds to the lowest precision
and vice versa.

In terms of the optimal configuration, we assume that in the
context of identifying music in movies, a balanced trade-off
would be desirable. Therefore, the optimal threshold config-
uration used in the rest of the experiments is the one with
input confidence and fingerprinted confidence set to 0.05 and
0 respectively.

5.4 Experiment 4: Examining pitch shifting
To further examine Dejavu’s behaviour when identifying
pitch-shifted tracks, additional semitone deviations were gen-
erated and tested. The category was extended to test a range
from -3 to +3 semitone pitch shifts with 0.5 semitone incre-
ments. The results are visualised in Figure 3.

5.4.1 Results
The detailed overview of a greater range of pitch shifts with
more granular increments indicates an apparent trend in per-
formance. Precision has the tendency to decrease as the val-
ues move away from 0. Recall values, while more erratic,
follow a similar trend. This is justified as more pitch-shifting
in any direction degrades the signal further from the original.

Figure 3: Pitch shifting performance

5.5 Experiment 5: Improving pitch shifting
In this experiment, Dejavu will be reconfigured based on
literature findings and the trade-off in parameters described
in Section 3.3.

5.5.1 Pitch shifting in audio fingerprinting
The challenge of identifying pitch-shifted audio has been ad-
dressed by several audio fingerprinting frameworks. The task
itself appears to be quite complex based on the research con-
ducted by Zhu et al. [12]. In this research, they remark
that even one of the most famous, reportedly robust frame-
works [4] becomes less accurate in identification when even
slight pitch-shifting is present.

As Fenet et al. [13] have remarked, pitch-shifting can be
done by scaling all frequencies in a signal with a factor K. For
example, shifting a tone upwards by an octave corresponds to
doubling the tone’s frequency, i.e. A4 with frequency 440
Hz would be translated to A5 with frequency 2 * 440 = 880
Hz. Therefore, pitch-shifting can be treated solely in the fre-
quency domain [13].

Since Dejavu uses FFT for transforming the signal into its
frequency components, parameters that affect the configura-
tion of FFT are likely to have an effect on how those frequen-
cies are captured. A factor that has a considerable effect on
FFT is the window size, which determines how many samples
are considered per FFT window. The default value of this pa-
rameter is 4096, meaning that 4096 samples are taken into
account per FFT window calculation. The size of the window
also determines the number of frequency bins returned, or in
other words, the frequency resolution. The number of bins
is equal to half the window size, which means that 4096 will
yield 2048 equally spaced frequency bins [14]. Therefore, by
decreasing the window size, we are essentially decreasing the
number of frequency bins.

In practice, this would mean that frequency X may be saved
in the same bin as a pitch-shifted version of X, X * K, given
that X and X * K are in close enough proximity to be classi-
fied in the same bin. Given its implementation, Dejavu would
then consider these frequencies to be identical, resulting in
treating them as identical peaks, and with that, eventually,
as similar or identical fingerprints that are more likely to be
matched.

6



Based on this theory, the next experiment will test the
hypothesis that Dejavu performs better on the category of
pitch shifting using a smaller FFT window size. Specifically,
Dejavu will be tested with an alternative value for the DE-
FAULT WINDOW SIZE, where this parameter will be set to
2048 (half of the original value).

5.5.2 Results
The results of the experiment are visualised in Figure 4.
These results prove our hypothesis, as Dejavu’s performance
in PS improved relative to its default configuration.

Figure 4: Overview of PS metrics with FFT window size of 2048

However, with regards to other categories, there is a reason
to expect that this configuration may hinder the performance.
Paradoxically, this is due to the fact that frequency bins are
larger and therefore provide less resolution. In practice, this
could translate into similar songs being matched due to the
close proximity of their frequency peaks and the consequent
similarity of their fingerprints. However, the current configu-
ration may provide sufficient granularity. To examine the ef-
fect of this configuration on identification in other categories,
the benchmark was rerun against the entire dataset.

Figure 5: Benchmark metrics with FFT window size of 2048

Despite the potential of the new configuration presenting
inaccuracies in fingerprinting, the benchmark has improved
relative to the default configuration which employed FFT
with a greater resolution. The metrics of recall and precision
increased, averaging at 0.9 and 0.98 respectively.

With this configuration being superior to the default one in
both recall and precision, and thus proving to be both more
robust and more reliable. By our assumption of equal weights
of these criteria, the optimal configuration out of those tested
within this research.

5.6 Validation with real data
Despite the expectations, testing Dejavu in the identification
of real movie data with the new configuration showed no im-
provement from preliminary testing in terms of true positives.
However, in some cases, the song was misidentified, but the
match corresponded to a different one from the same sound-
track. This was the case especially when the songs in the
soundtrack belonged to the same genre. This indicated some
positive improvement, as there were no such cases present in
the preliminary testing.

5.7 Search speed and scalability
The results of search speed and scalability testing based on
the configurations defined in [6] are summarised in Sec-
tion 5.7. For this evaluation, three categories, namely SMT,
SMW and TW were omitted due to the time constraints of
this research. There is a visible trend of average query time
growing with the database size, which is justified, as in larger
databases, more comparisons have to be made on average.

Total tracks Average query time (in seconds)
10 0.965
98 0.991
196 1.357
980 1.487

Table 2: Search speed and scalability results

6 Discussion
Upon further analysis of incorrect matches, it has been dis-
covered that some tracks in the data set were duplicated. This
circumstance gave rise to several invalid false positives for
results that were classified correctly. Due to time constraints,
the data set could not be fully examined and corrected. How-
ever, given the awareness of this circumstance, it is likely that
most reliability coefficients are higher in reality than the study
shows. In terms of using the selected optimal configuration,
fingerprinted confidence for thresholding could turn into a
limitation. This confidence is determined by the proportion
of the result matched to the song in the database. In a real-
istic scenario, any excerpt of the song of any length can be
input, which directly influences the fingerprinted confidence.
Therefore, this confidence may generally not be a valid or a
reliable indicator of match correctness. Furthermore, the us-
age of a smaller FFT window also implies less granularity
in captured frequencies. The decrease in resolution proved
to work well in the setup of this research, however, in a
real-world application where many tracks in the database fea-
ture similar dominant frequencies, identification may become
more inaccurate with this configuration. Finally, it is impor-
tant to emphasise that the results obtained in this research do

7



not accurately represent the performance in a real-world ap-
plication. The main purpose of this performance assessment
is to examine the framework in greater detail and establish
its score in terms of the benchmark metrics. This is done to
allow for a fair comparison of Dejavu with other frameworks
with regards to the context of music identification in movies.

7 Responsible Research
One of the most important aspects of research validity is the
reproducibility of results. In our research, the data used were
synthesised, and for its generation, both the base tracks and
noise samples were necessary. The base tracks were obtained
from a data set of soundtracks provided by Muziekweb [5].
However, this data is protected by copyright, and therefore
could not be published. To mitigate this issue, the list of
movies used to extract the soundtracks from was uploaded
to GitLab 2.

The noise samples used were extracted from a website
called freesound.org 3. To ensure that the noises from the
samples that were overlapped with the base tracks did not
contain any silent parts, the samples were further processed
to minimise the silence. The exact editing of these samples
depended on the time-wise position of silent parts, and there-
fore, the precise format of samples would be difficult to re-
produce. To mitigate this, the edited noise samples were pro-
vided and are available for use in attempts to reproduce this
research.

Another ethical issue regarding the usage of these sam-
ples is their licensing. While most samples extracted were
licensed under Creative Commons 0, and thus allowing for
use without any attribution, few samples were licensed with
the Attribution license.

Both the collection of edited noise samples and overview
of attributions can be found ’Movie Labeling’ document on
GitLab 2.

For fully synthesised data, specifically pitch shifting and
tempo changing, a Python script was written and used and is
also available on GitLab 2.

Finally, for reproducibility of evaluation of the framework,
the evaluation scripts were made available on GitLab 4.

8 Conclusions and Future Work
In this paper, we analysed the performance of an open-source
audio fingerprinting framework, Dejavu, in music identifica-
tion in movies with data synthesised to simulate the appro-
priate conditions. In evaluation against the collective bench-
mark for movie music identification with audio fingerprint-
ing, Dejavu measured up to the expectations derived from its
implementation and prior testing performance. In addition, its
configuration was further optimised to target its weaknesses,
namely its performance in pitch shifting. This yielded a con-
figuration superior to the default one in terms of the bench-
mark.

2https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-5/rp-
group-5-common

3https://freesound.org
4https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-5/rp-

group-5-nstruharova

To advance even further in the investigation of Dejavu’s
optimal configuration, the confidence thresholds should be
examined and tested with precision higher than two decimal
places, as this accuracy may not provide enough detail to de-
termine the match correctness. Furthermore, the time offset
of identification relative to the input should be analysed in
order to pinpoint the exact parts of the noise that are easier
or more difficult to identify. In addition, query time appears
to have no correlation with the other metrics. To better un-
derstand the inner workings of the matching algorithm, it is
recommended to be examined in more detail.

In terms of further development of the benchmark, more
categories of noise degradation potentially occurring in
movies due to postprocessing can be examined. To examine
categories such as Speech in detail, speech could be synthe-
sised with specific frequencies to observe their effect on De-
javu’s performance in the category. In addition, combinations
of categories can be further investigated to better understand
the effect of overlapping several categories in a given query
track.

9 Acknowledgements
I would like to thank Dr Cynthia Liem and Dr Jaehun Kim for
their supervision and guidance during this research. Next, I
would like to thank Casper Hildebrand, Tim Huisman, Ruben
Nair and Cas Weaver for collaboration and sharing their en-
thusiasm throughout the project.

References
[1] P. Cano and E. Batlle, “A review of audio finger-

printing,” Journal of VLSI Signal Processing, vol. 41,
pp. 271–284, 11 2005.

[2] R. Typke, F. Wiering, and R. Veltkamp, “A survey of
music information retrieval systems,” p. 153–160, Jan
2005.

[3] A. Wang, “An industrial strength audio search algo-
rithm.,” Jan 2003.

[4] J. Haitsma and T. Kalker, “A highly robust audio finger-
printing system with an efficient search strategy,” Jour-
nal of New Music Research, vol. 32, p. 211–221, Jun
2003.

[5] “Muziekweb - the music library of the netherlands.”
[6] C. Hildebrand, T. Huisman, R. Nair, N. Struharová, and

C. Wever, “Benchmarking audio fingerprinting imple-
mentations for music identification in movies,” 2021.

[7] J. Guzman, C. Feregrino, A. Menendez-Ortiz, and
J. J. Garcia-Hernandez, A Robust Audio Fingerprinting
Method Using Spectrograms Saliency Maps. Dec 2014.
journalAbbreviation: 2014 9th International Conference
for Internet Technology and Secured Transactions, IC-
ITST 2014.

[8] Z. Rafii, B. Coover, and J. Han, “An audio fingerprinting
system for live version identification using image pro-
cessing techniques,” in 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), p. 644–648, May 2014.

8



[9] K. Chaudhary, “Understanding audio data, fourier trans-
form, fft, spectrogram and speech recognition,” Jun
2021.

[10] W. Drevo, “Audio fingerprinting with python and
numpy,” Nov 2013.

[11] Worldveil, “worldveil/dejavu.”
[12] B. Zhu, W. Li, Z. Wang, and X. Xue, “A novel au-

dio fingerprinting method robust to time scale modifi-
cation and pitch shifting,” in Proceedings of the 18th
ACM international conference on Multimedia, MM ’10,
p. 987–990, Association for Computing Machinery, Oct
2010.

[13] S. Fenet, G. Richard, and Y. Grenier, “A scalable audio
fingerprint method with robustness to pitch-shifting,”
Poster Session, p. 6, 2011.

[14] J. Burg and J. Romney, “Digital sound and music.”

9



A Appendix

Name Description Effect of low values Effect of high values

FINGERPRINT REDUCTION
The number of bits of the hash
that will be used for the fingerprint
calculation

More collisions in matches due to
less unique data in fingerprints;
Less storage necessary

More precise matching due to
storing more unique data;
More storage necessary

PEAK SORT Determines whether peaks are sorted
temporally or not

False: Less fingerprints generated
Can negatively affect performance

True: Better performance
More fingerprints generated

DEFAULT OVERLAP RATIO Determines to what extent do the FFT
windows overlap

More precise matching
More storage necessary

More precise matching
More storage necessary

DEFAULT FAN VALUE The number of close peaks
used to make up the fingerprint

Low accuracy expected
Less storage necessary

High accuracy expected
More storage necessary

DEFAULT AMP MIN The minimum amplitude in order to
be considered a peak in the spectrogram

More fingerprints generated
Captures more data and promotes accuracy

Less fingerprints generated
Can negatively affect accuracy

PEAK NEIGHBORHOOD SIZE
The number of cells around an amplitude
peak in order to be considered a spectral
peak

More fingerprints generated
Positively affect accuracy

Less fingerprints generated
Can negatively affect accuracy

CONNECTIVITY MASK Determines the morphology of the mask
used when searching for maximum peaks

Value 1: diamond morphology, diagonal
elements are not neighbours

Value 2: square mask, all elements are
considered neighbours

DEFAULT FS The default sampling rate Lower quality of audio when sampling
Worse performance

Higher quality of audio when sampling
Better performance

DEFAULT WINDOW SIZE The size of the FFT window Lower granularity of frequencies
Can negatively affect accuracy

Higher granularity of frequencies
Positively affect accuracy

MIN/MAX HASH TIME DELTA Determine how close or far can fingerprints
be to be paired time-wise

Small range may reduce number of matches found
May hinder performance of DEFAULT FAN VALUE

Higher range will likely increase the
number of matches, bu itt does not
indicate better performance

Table 3: Configurable parameters in Dejavu

Category Subcategory Code

Speech

Female Talking SFT
Male talking SMT
Female whispering SFW
Male whispering SMW
Female shouting SFS
Male shouting SMS
Cheering SCH

Ambient Street noise AS
Dining noise AD

Nature

Rain NR
Running water NW
Thunder NR
Wind (Air) NA

Terrain Gravel TG
Wood creaking TW

Table 4: Noise categories and their acronyms

10


	Introduction
	Related work
	Dejavu
	Identification pipeline
	Fingerprinting
	Preprocessing
	Frequency domain spectrogram
	Peak finding
	Fingerprint hashing

	Configurable parameters
	Performance
	Recall
	Implementation speed

	Limitations

	Methodology
	Criteria
	Evaluation set up
	Data set
	Database
	Dejavu configuration
	Hardware specifications


	Experimental Setup and Results
	Experiment 1: Real movie data
	Data set
	Results

	Experiment 2: The default configuration performance
	Results

	Experiment 3: Examination of confidence
	Experiment 4: Examining pitch shifting
	Results

	Experiment 5: Improving pitch shifting
	Pitch shifting in audio fingerprinting
	Results

	Validation with real data
	Search speed and scalability

	Discussion
	Responsible Research
	Conclusions and Future Work
	Acknowledgements
	Appendix

