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Summary

Over the last two decades shearlet analysis has played an important role in the field
of microlocal analysis. One of the main advantages of the shearlet transform is its ef-
ficiency in capturing anisotropic data structures. This effectiveness can be explained
by earlier research: in Bartolucci (2019) it is shown that there is a profound relation
between the shearlet transform, the wavelet transform, and the Radon transform. This
relation is established through an integral representation.

The first objective of this thesis is to examine the properties of the three transforms as
described in the literature and to understand their roles in the resolution of the wavefront
set within shearlet analysis. The findings of this literature review are as follows:

(i) The wavelet transform effectively captures isotropic data structures, but falls short
in capturing anisotropic features. This limitation motivated the development of the
shearlet system.

(ii) The Radon transform in combination with the Fourier transform can be used to
determine whether a point is a regular directed point.

(iii) The shearlet transform is able to detect the wavefront set. This result was already
shown in Grohs (2010), and has been partially established in a theorem in Bar-
tolucci (2019) using the integral representation of the shearlet transform in terms of
the Radon and wavelet transforms.

The result established in Bartolucci (2019), as described in (iii), characterizes almost the
entire wavefront set, but not the entire wavefront set. Therefore, the second goal of this
thesis is to generalize this result. Building on these foundations, we formulate and prove
a more general theorem. This new theorem represents a new contribution to the existing
literature and offers a deeper theoretical understanding of the shearlet transform’s role
in microlocal analysis through its connections with the Radon and wavelet transforms.
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Introduction

Shearlets have been extremely popular in the field of applied harmonic analysis and
over the last two decades their properties have been studied extensively. In the first
section of this chapter, we will provide a motivation for our interest in shearlets through
examples from image analysis. We will explain why shearlet improves other methods,
such as wavelets, curvelets, and contourlets, and we will provide a short history of the
introduction of shearlets in applied harmonic analysis. In Section 1.2 we describe the
research goals of this thesis and in Section 1.3 we give an outline of its structure.

1.1 Applications of Shearlets

Applied harmonic analysis is a broad and fast-developing field in mathematics with
numerous applications, many of which revolve around the efficient representation and
reconstruction of ‘signals’ and the study of their fundamental properties. Examples of
such ‘signals’ include audio recordings, digital images, and video sequences. Since
these signals can be quite large and require extreme storage capacity, the challenge is to
develop techniques that reduce the storage requirements in such a way that compresses
the information effectively while preserving essential features.

Tools from applied harmonic analysis are extensively used in the field of image analysis,
particularly in detecting and characterizing the geometric properties of images. It is
often possible to ‘reconstruct’ the original image from its ‘edges’. For example, consider
the pictures in Figure 1.1. In Figure 1.1a we see a photo of a cat. By studying only the
edges of this image, we can see that the original photo displays a cat. In Figure 1.1b we
see an image of a church. Using the simple structure of the window (the gray shape),
we see from its shape that it represents a window. In other words, we can reconstruct
images from their edges, which represents an efficient approach to data storage and

1



2 Introduction

compression while preserving the essential information. It saves a lot of memory to
store only the edges, instead of the full image.

Chapter 4

Wavefront Set Resolution in
Shearlet Analysis and the Radon
Transform

The use of wavelets in signal analysis and computer vision has proved almost opti-
mal for one-dimensional signals in many ways, and the mathematics behind classical
wavelets has reached a high degree of elaboration. One of the main reasons why the
wavelet transform is widely exploited in signal analysis is its ability to describe point-
wise smoothness properties of univariate functions in terms of the decay behaviour of
the wavelet coe�cients (we refer to [45, 56] as classical references).

However, when we shift from one-dimensional to multidimensional signals, the
wavelet transform has proved not flexible enough to capture the geometry of the sin-
gularity set. Indeed, when we handle multidimensional signals, it is not just of inter-
est to locate singularities in space but also to describe how they are distributed (see
Figure 4.1). This additional information is expressed by the notion of wavefront set
introduced by Hörmander in [43].

Figure 4.1: The edge detection is a clear and practical example of the interest to capture the geometry
of the singularity set of multidimensional signals (see also the website http://www.shearlab.org/ for
further details and examples.)

For this reason a huge class of directional multiscale representations has been intro-
duced over the years to handle high dimensional problems, such as directional wavelets
[5], ridgelets [14], curvelets [15], wavelets with composite dilations [36], contourlets [25],
shearlets [54], reproducing groups of the symplectic group [33], Gabor ridge functions
[33] and mocklets [21] – to name a few. Among them the shearlet representation has

89

(a) A cat (b) A church window

Figure 1.1 Example of reconstructing an image from its edges. Source: Bartolucci (2019)
and Kutyniok and Labate (2012).
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Fig. 2 Example of a cartoon-like image (function values represented using a gray scale map)

Definition 1. The class E2(R2) of cartoon-like images is the set of functions f :
R2 ! C of the form

f = f0 + f1χB,

where B � [0,1]2 is a set with ∂B being a closed C2-curve with bounded curvature
and fi 2 C2(R2) are functions with supp fi � [0,1]2 and k fikC2 � 1 for each i = 0,1.

Let us finally mention that, in the digital setting, the usual models for d-
dimensional signals are either functions on Zd such as �2(Zd) or functions on
{0, . . . ,N � 1}d, sometimes denoted by Zd

N .

3.3 Frame Theory

When designing representation systems of functions, it is sometimes advantageous
or unavoidable to go beyond the setting of orthonormal bases and consider redun-
dant systems. The notion of a frame, originally introduced by Duffin and Schaeffer
in [20] and later revived by Daubechies in [13], guarantees stability while allowing
nonunique decompositions. Let us recall the basic definitions from frame theory in
the setting of a general (real or complex) Hilbert space H .

A sequence (ϕi)i2I in H is called a frame for H , if there exist constants
0 < A � B < ∞ such that

Akxk2 � ∑
i2I

|hx,ϕii|2 � Bkxk2 for all x 2 H .

The frame constants A and B are called lower and upper frame bound, respectively.
The supremun over all A and the infimum over all B such that the frame inequalities
hold are the optimal frame bounds. If A and B can be chosen with A = B, then the
frame is called A-tight, and if A = B = 1 is possible, then (ϕi)i2I is a Parseval frame.
A frame is called equal norm if there exists some c > 0 such that kϕik = c for all
i 2 I, and it is unit norm if c = 1.

Figure 1.2: Example of a cartoon-
like image. Source: Kutyniok and
Labate (2012).

In Figure 1.2, we see an image inside a box. This im-
age consists of a smooth region separated by a smooth
edge. These kinds of figures are so-called ‘cartoon-like
images’. In image analysis, these types of images are
often modeled as a function f : R2 ! C. Based on Fig-
ure 1.2, we would expect that this model consists of
piecewise regular functions. This motivated the follow-
ing terminology: the set of cartoon-like images consists
of smooth functions, say they are twice continuously
differentiable, which are of the form

f = f0 + f1cB,

where B is a region in R2 with ∂B a closed curve which is smooth and has bounded
curvature. From this observation, we see that we can model a cartoon-like image by a
function consisting of a part that describes the interior of the region, and a function that
describes the boundary. We see that the important parts of a photo are the edges, since
they describe the whole picture. More precisely, the most important parts that describe
and characterize a signal are exactly its sharp changes and unusual patterns.

In image science, we are often not only interested in the location of such edges but also
in their direction. Microlocal analysis provides a framework for studying the behavior
of distributions by examining not only the location of their singularities, but also the
directions in which these singularities propagate. A fundamental concept in the theory
of microlocal analysis is the wavefront set of a distribution. According to Hörmander
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(1983), the wavefront set in R2 consists of all the points (x,x ) such that x is an element
of the boundary of a region and x is perpendicular to the boundary of that region at
x. Thus, the wavefront set contains information about both the singular support of a
distribution, that is the set of points where the function fails to be smooth, and the
specific directions where singularities occur.

In many branches of mathematics, the wavefront set serves as a crucial concept. For
example, in the study of partial differential equations, it plays an essential role in ana-
lyzing and understanding how singularities propagate through space and time, see Hintz
(2025). It is also used in the study of medical imaging and tomography, see Deans
(1983) and the references therein. Due to the many applications of the wavefront set, a
lot of research has been done and is therefore well understood.

One of the first ideas to analyze singularities of signals was to use the Fourier transform.
The Fourier transform has the ability to provide a description of the overall regularity of
a signal. However, despite this global description, the Fourier transform has limitations
when it comes to identifying the precise locations of singularities or detecting their
spatial distribution of singularities.

This limitation of the Fourier transform inspired the development and study of wavelets.
The ‘wavelet era’ began in the mid-late 1980s, and wavelet theory started gaining se-
rious attention, which led to collaboration between mathematicians, physicists, and en-
gineers, such as Yves Meyer, Stéphane Mallat, and Ingrid Daubechies. Consequently,
new developments were made and one of the main objectives was to fix the limitation of
the Fourier transform. This eventually led to the development of the wavelet transform.
This transform is able to simultaneously detect spatial and frequency localization. This
is due to the fact that wavelets have the property that they can characterize pointwise
smoothness properties of functions. Therefore, the wavelet transform is able to charac-
terize the local regularity of signals. For more details, we refer to the classical paper of
Mallat and Hwang (1992).

Wavelets have truly revolutionized image and signal processing, and the theory of wavelets
has been implemented in the algorithm of JPEG 2000, which is the current standard for
image compression. Furthermore, wavelets have many applications in other fields such
as signal and audio processing, time-frequency analysis, inverse problems and the nu-
merical analysis of partial differential equations. See for example Daubechies (1992),
and Gröchenig (2001) and the references therein.
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Figure 1.3 shows a picture of two parrots (top left) and a version of the same picture with
noise added (top right). The wavelet transform is able to capture geometric properties of
this noisy image to achieve the most important features, for example, the edges of this
picture (bottom left). Finally, a reconstruction is also shown, which is obtained using
the shearlet transform (bottom right). Comparing the shearlet-based method and the
wavelet-based method, we see that the shearlet-based method gives a better result, since
we obtained more information about the original photo.

38 Demetrio Labate and Guido Weiss

Fig. 1.11 Comparison of edge detection using shearlet-based method versus wavelet-based
method. From top left, clockwise: Original image, noisy image (PSNR= 24.59 dB), shearlet result,
and wavelet result (Courtesy of Glenn Easley).

not very accurate when dealing with discrete data. The advantage of the continuous
shearlet transform is that, by representing the image as a function of scale, loca-
tion and orientation, the directional information is directly available. A number of
tests conducted in [43, 44] show indeed that a shearlet-based approach provides a
very accurate estimate of the edge orientation of a noisy images; this method sig-
nificantly outperforms the wavelet-based approach. A typical numerical experiment
is illustrated in Figure 1.10, where the test image is the characteristic function of
a disc. This figure displays the average angular error in the estimate of the edges
orientation, as a function of the scale a. The average angle error is defined by

1
|E| ·∑

t2E
|θ̂(t)�θ(t)|,

where E is the set of edge points, θ is the exact angle and θ̂ the estimated angle.
The average angle error is indicated for both shearlet- and wavelet-based methods,
in presence of additive Gaussian noise. As the figure shows, the shearlet approach
significantly outperforms the wavelet method, especially at finer scales, and is ex-
tremely robust to noise.
Using these properties, a very competitive algorithm for edge detection was de-

veloped in [44] and a representative numerical tests is illustrated in Figure 1.11.
We refer to [43, 44] for details about these algorithms and for additional numerical
demonstrations.

Figure 1.3 Comparison of edge detection using shearlet-based method versus wavelet-based
method. From top left, clockwise: Original image, noisy image, shearlet result, and wavelet
result. Source: Deng et al. (2009)

The reason why the wavelet-based method performs worse than the shearlet-based
method is that the wavelet-based method exhibits limitations when applied to multivari-
ate data structures. Wavelets achieve almost optimal representation efficiency for one-
dimensional data containing pointwise singularities, but detecting singularities along
curves (or manifolds within higher-dimensional spaces) is a more difficult task. This
fundamental limitation arises from the inherently isotropic nature of the wavelet con-
structions, which employ uniform scaling parameters across all directions and cannot
adapt to the geometric features of higher-dimensional data.

When we are dealing with images with edges in a two-dimensional setting, we are
working with multivariate functions that are typically governed by anisotropic (i.e. di-
rectional) singularities.
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In Figure 1.4, we see a curve which is covered with both isotropically shaped squares
(Figure 1.4a) and anisotropically shaped and rotated rectangles (Figure 1.4b). From this
figure, it is clear that it is suboptimal to describe isotropic data with wavelets to capture
singularities along edges. Figure 1.4 indicates that it is more efficient to study function
systems with varying types of localization, as well as a method for rotating the elements.

• The lower bound of Theorem 5.0.2 already holds fir the smaller function class of piecewise constant
cartoon-like functions, i.e., when f0 = 0 and f1 = 1 in Definition 5.0.1.

• It appears to be a bit arbitrary to focus on C2 regularity in the definition of cartoon-like functions and
the optimality result. In fact, generalisations exist to piecewise Ck functions with Ck regular boundaries.
The lower bound on the N -term approximation rate is then N�k/2, see e.g. [5].

Considering that there is a considerable gap between the approximation by wavelets and the lower bound
of Theorem 5.0.2 we shall be interested in finding an alternative representation system that performs better
when curve-like singularities are present.

5.1 Shearlets

To understand how to construct a system that o�ers optimal approximation of piece-wise constant or smooth
functions we observe in Figure 5.1 why the isotropic scaling of wavelets is suboptimal to capture singularities
along lower dimensional manifolds.

Figure 5.1: Left: Isotropically shaped squares overlapping a curve. Right: The same curve covered by
anisotropically shaped and rotated rectangles.

It appears to be worthwhile to study function systems with di�erent types of localisation and a method to
also rotate the elements. The first system of this type was the curvelet system, [4]. Which is a generalisation
of 2d wavelets, with an anisotropic scaling matrix and rotated elements. It is very similar to the shearlet
systems that we shall introduce in the following section and hence, we only make appropriate comments
there, as to where the di�erences lie.

5.1.1 Continuous shearlet transform

Returning to the standard procedure that we have already observed for the short-time Fourier transform
and the Gabor systems, or the wavelet transform and the wavelet systems, we first introduce a continuous
transform and then demonstrate how this leads to discrete systems.

For a 2 R+, s 2 R, we denote the anisotropic scaling matrix Aa and the shearing matrix Ss by

Aa :=

✓
a 0
0 a

1
2

◆
, and Ss :=

✓
1 s
0 1

◆
.

Based on these two matrices, we can now define the shearlet transform.

Definition 5.1.1. Let � 2 L2(R2), then we define

SH : L2(R2) ! L�(R+ ⇥ R ⇥ R2)

f 7! ((a, s, t) 7! hf, �a,s,ti),

28

(a) Isotropically shaped squares overlapping a curve
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(b) Anisotropically shaped rectangles overlapping a
curve

Figure 1.4 Comparison of isotropically and anisotropically shaped regions along a curve.

The main reason why the shearlet-based method performed better than the wavelet-
based method is that shearlets have an anisotropic structure. This means that they can
handle different directions and shapes more effectively. Therefore, the shearlets are bet-
ter for capturing geometric structures than wavelets. We hope that Figures 1.3 and 1.4
provide an informal motivation for why shearlets improve wavelets. In the next chap-
ter, we will give a more mathematical argument for why we need shearlets to detect
anisotropical data.

Due to the limitations of wavelets for such problems as described above, many re-
searchers were motivated to look for alternative methods. In 1992, the steerable pyra-
mid, and directional filter banks were introduced by Simoncelli et al. (1992) and Bam-
berger and Smith (1992), respectively. A year later, Antoine et al. (1993) introduced
two-dimensional directional wavelets. Curvelets were introduced in Candès and Donoho
(2004), and in 2005 Do and Vetterli introduced contourlets. We refer to Do and Vetterli
(2005) for more details. Finally, in 2006 the shearlet system was introduced by the fa-
mous paper of Guo, Kanghui, Kutyniok, and Labate Guo et al. (2006). Shearlet systems
satisfy all the desired properties that are required to handle an anisotropic system. We
refer to Kutyniok and Labate (2012) and Labate et al. (2005) for a more detailed history
of the emergence of the shearlet system.
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In recent years, shearlets have been used in many branches of applied mathematics.
For example, they are used to classify handwritten numbers, which is a classic machine
learning problem, see Foroozandeh et al. (2020). Shearlets are also valuable in noise
detection, and in reconstruction and inverse problems; we discussed these phenomena
based on Figure 1.3.

1.2 Goal of this Thesis

In the existing literature a lot of research has been done on how and why shearlets can
be helpful in identifying the wavefront set. In Grohs (2010) it is shown that the shearlet
transform can successfully detect the wavefront set. The proof in that work uses several
ideas from real analysis and it is quite technical.

In Bartolucci (2019) a different approach was taken to study the role of the shearlet
transform in detecting the wavefront set. The author established an integral connection
between the shearlet transform and the wavelet and Radon transforms. Based on this
representation, a theorem was formulated and proved showing that the shearlet trans-
form can determine whether a point belongs to the wavefront set. While this result was
already known from earlier research, the integral formula provided new geometric in-
sight into the shearlet transform’s ability to resolve the wavefront set of signals.

However, the theorem in Bartolucci (2019) offers valuable new insights; it only char-
acterizes almost the entire wavefront set, but not the entire wavefront set. This leaves a
gap in the existing literature to fully describe the wavefront set via the shearlet transform
and the established integral formula. The main goal of this thesis is to generalize this
theorem to achieve a complete characterization of the wavefront set using the shearlet
transform.

To formulate this theorem and provide a proof, we need to examine the literature and
study the Radon and wavelet transforms. We will see that these transforms play an
important role in our theoretical framework, since exactly these two transforms explain
why the shearlet transform is suitable for detecting the wavefront set. Therefore, the first
goal of this thesis is to provide the necessary mathematical background on shearlets,
wavelets, and the Radon transform.

With this theoretical background we can formulate and provide a proof of our new
theorem. This theorem will represent a new contribution to the existing literature and
offers a deeper theoretical understanding of the Shearlet transform’s role in microlocal
analysis through its connections with the Radon and wavelet transforms.
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1.3 Thesis Outline

The structure of this thesis is as follows. We start in Chapter 2 with introducing some
notation which will be used throughout this thesis while recalling relevant theory from
Fourier analysis. Furthermore, we will devote a few sections to the exploration of the
properties of the wavelet, the Radon, and the shearlet transforms, which are all well-
known transformations in the literature. Furthermore we will give a mathematical def-
inition of the wavefront set and we will provide an example that the wavelet transform
is not always able to describe the wavefront set in higher dimensions.

After laying this foundation, we will study the role of the shearlet transform in microlo-
cal analysis in Chapter 3. In this chapter, we will study the wavefront set and see how
and why the shearlet transform can detect singularities. This will be done by providing
a motivating example in the first section. Based on this example, we will formulate in
the second section our main theorem and explain the new contribution of our work to
the literature. The proof of this theorem is outlined in the subsequent two sections.

Finally, in Chapter 4 we give a conclusion of our work and provide an overview of some
open problems for follow-up research.



2

Preliminaries

In this chapter we introduce the main theoretical concepts and known results from the
literature that will be used throughout this thesis. In Section 2.1, we introduce some
notation and define the function spaces that will be used in this thesis. In Section 2.2 we
recall some fundamental properties of the Fourier transform. Section 2.3 is devoted
to studying the wavefront set and providing some motivating examples. In Section
2.4 we discuss the Radon transform and study some important properties of it. Sub-
sequently, we will introduce the theory of wavelets in Section 2.5 and explain why
(higher-dimensional) wavelets are not suitable to describe anisotropic phenomena. This
limitation leads to the theory of shearlet systems, which will be discussed in Section 2.6.
Finally, in the last section of this chapter, we mention an interesting integral identity that
connects the Radon, the wavelet, and the (vertical) shearlet transforms.

2.1 Notation and Function Spaces

In this section we introduce some notations and definitions from real analysis. Fur-
thermore, we introduce the function spaces that we will use throughout this thesis. We
refer to classical books on this topic, such as Stein and Shakarchi (2005) and Grafakos
(2014), for more details and motivation.

We begin by introducing notation for several variables. While our theory primarily
applies to one- and two-dimensional settings, we present the notation in a general d-
dimensional context.

A function f is said to be in Lp(Rd) if
Z

Rd
| f (x)|pdµ(x) < •.

8
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Here, the measure dµ corresponds to the usual Lebesgue measure on the corresponding
s -algebra B(Rd). The Lp-norm is denoted by

k f kp
Lp(Rd)

:=
Z

Rd
| f (x)|pdµ(x).

Hölder’s inequality states that for nonzero measurable functions f and g on (Rd ,B(Rd))
we have

k f gkL1(Rd) 6 k f kLp(Rd)kgkLq(Rd),

where q is the so-called dual exponent of p and satisfies the relation p�1 + q�1 = 1.
When we are in the setting of a Hilbert space, we can define an inner product, which is
given by

h f ,gi :=
Z

Rd
f (x)g(x)dµ(x).

Let x = (x1,x2, . . . ,xd) 2 Rd . The norm of x is defined by |x| :=
q

x2
1 + x2

2 + · · ·+ x2
d .

A multi-index a is an ordered d-tuple of natural numbers, i.e. a = (a1,a2, . . . ,ad)
and we set |a| = a1 + a2 + . . . + ad , which denotes its total size. We write ∂ a f for
∂ a1

1 ∂ a2
2 . . .∂ ad

d f . Furthermore, we denote the space of all infinitely differentiable com-
pactly supported functions by C •

0 (Rd) and the space of all infinitely differentiable func-
tions by C •(Rd).

Let S (Rd) be the Schwartz space, which roughly consists of rapidly decaying func-
tions, i.e. all the functions in this space are smooth and all of their derives decay faster
than any polynomial. More precisely: a function f 2 C •(Rd) is a Schwartz function if
for all multi-indices a en b we have

ra,b ( f ) = sup
x2Rd

|xa ∂ b f (x)| < •.

Note that a function f is in S (Rd) if and only of for every multi-index b and every
N 2 N there is a constant CN,b such that for all x 2 Rd we have

|∂ b f (x)| 6 CN,b
(1+ |x|)N . (2.1)
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Recall that the dual space is the space of continuous linear functionals on the set of test
functions. We introduce the following spaces:

(C •
0 (Rd))0 = D 0(Rd),

(S (Rd))0 = S 0(Rd),

(C •(Rd))0 = E 0(Rd).

From these definitions it is clear that the dual spaces are nested as follows:

E 0(Rd) j S 0(Rd) j D 0(Rd).

The elements of the space D 0(Rd) are called distributions. Elements of S 0(Rd) are
called tempered distributions. Finally, the elements of the space E 0(Rd) are called dis-
tributions with compact support.

Since the space S 0(Rd) is defined to be the topological dual space of S (Rd), we have

S 0(Rd) := {u : S (Rd) ! C : u is linear and continuous}.

From this definition, it is clear that a linear functional u : S (Rd) ! C is a tempered
distribution if and only if there exist constants C > 0 and M,K 2 N such that for all
j 2 S (Rd) we have

|hu,ji| 6 C Â
|a|6M

Â
|b |6K

ra,b (j). (2.2)

We define the space S0(Rd) by all the functions f with vanishing moments, i.e.

S0(Rd) :=
⇢Z

Rd
xn f (x)dx < • : 8n 2 Nd

�
.

Furthermore, we write f (x) = O(g(x)) if and only if

lim
x!•

f (x)
g(x)

= C, C 2 R,

and we write f (x) . g(x) if there exists a positive constant C such that for every x we
have f (x) 6 Cg(x). Finally, R+ denotes the positive real numbers.

2.2 The Fourier Transform

In this section we will give a brief recap of the theory of Fourier analysis and recall
some well-known results from this field. We start by introducing the definition of the
Fourier transform.
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Definition 2.1 Let f 2 S (Rd). We define the Fourier transform of f by

F ( f )(x ) := bf (x ) :=
Z

Rd
f (x)e�2pix·x dx.

Definition 2.1 and a change of variables imply that for any l 2 R\{0} we have

bf (lx ) =
1

l d
bf
✓

x
l

◆
. (2.3)

This ‘dilation’ property will be used in many subsequent sections of this thesis.

We recall some well-known properties of the Fourier transform.

Proposition 2.2 Let f ,g 2 S (Rd). The following properties hold:

(i) The Fourier transform is uniformly continuous on Rd and

kbf kL•(Rd) 6 k f kL1(Rd).

(ii) Parseval’s relation:

h f ,gi =
Z

Rd
f (x)g(x)dx =

Z

Rd
bf (x )bg(x )dx = hbf ,bgi.

(iii) Plancherel’s identity:

k f kL2(Rd) = kbf kL2(Rd).

Remark 2.3 It is obvious that Definition 2.1 and Formula (2.3) make sense as a con-
vergent integral for functions f 2 L1(Rd). We can thus extend this definition of the
Fourier transform on L1(Rd). Furthermore, property (ii) makes also sense whenever f
and g are in L1(Rd) \ L2(Rd). With a slight abuse of notation we denote the Fourier
transform of f 2 L2(Rd) by bf . Then, we can extend Plancherel’s identity to functions
belonging to the space L2(Rd).

If u : S (Rd) ! C is a tempered distribution, we can take its (tempered) Fourier trans-
form, which is defined in the following definition.

Definition 2.4 For u 2 S 0(Rd) we define the Fourier transform bu of a tempered dis-
tribution u by the identity

hbu,ji = hu, bji

for all functions j 2 S (Rd).

The following two examples will be useful in this thesis.
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Example 2.5 The Dirac mass dt at a point t 2 Rd is defined by

hdt ,ji = j(t)

for every j 2 S (Rd). We have dt 2 S 0(Rd), since

|hdt ,ji| = |j(t)| 6 kjkL•(Rd) = r0,0(j). (2.4)

Therefore, by (2.2), we conclude that dt 2 S 0(Rd) and hence we can compute its
Fourier transform, which results in

hbdt ,ji = hdt , bji = bj(t) =
Z

Rd
j(x)e�2pix·tdx, 8j 2 S (Rd).

Hence, bdt can be identified with the function x 7! e�2pix ·t .

Example 2.6 Consider the distribution dx2=p+qx1 . Similarly, we can show that this is
a tempered distribution and therefore we can compute its Fourier transform. For any j
in the Schwartz space, we have:

h \dx2=p+qx1 ,ji = hdx2=p+qx1 , bji

=
Z •

�•
bj(x1, p+qx1)dx1

=
Z •

�•

Z

R2
j(y1,y2)e�2pi(x1(y1+qy2)+py2) dy1 dy2 dx1

=
Z

R2

Z •

�•
j(y1,y2)e�2pi(x1(y1+qy2)+py2) dx1 dy1 dy2 (Fubini)

=
Z

R2
j(y1,y2)d (y1 +qy2)e�2pipy2 dy1 dy2.

Therefore \dx2=p+qx1 can be identified with the function (x1,x2) 7! e�2pix2·pd (x1 +qx2).

2.3 The Wavefront Set

In this section, we will give a formal definition of the wavefront set. We start with
introducing the definitions, and thereafter we will provide some motivating examples.
Our approach is quite influenced by Kutyniok and Labate (2012).

Getting to know the Wavefront Set

By microlocal analysis we mean the mathematical study of singular points of distribu-
tions. In microlocal analysis we are not only interested in the location of the singular
points, but also in their direction. An important concept in this field is the wavefront set.
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The wavefront set is, roughly speaking, the set of singular points together with its direc-
tion, i.e. the direction that is perpendicular to the tangent of the curves. So the wavefront
set consists of points and directions.

Figure 2.1: Example of the wavefront set.

Figure 2.1 shows a discontinuity curve together
with some vectors. The black vectors are perpen-
dicular to the discontinuity curve. So the wave-
front set consists of all the points on the discon-
tinuity curve together with the vectors that are
perpendicular.

To motivate the more formal definition of the
wavefront set, we recall first the classical Paley-
Wiener theorem, see Rudin (1991). This theorem
relates the Fourier transform of a compactly sup-
ported distribution u to its smoothness and decay
properties. Specifically, u is a smooth compactly
supported function if and only if its Fourier transform F (u)(x ) decays faster than any
polynomial as |x | ! •. In other words, the Paley-Wiener theorem characterizes smooth
compactly supported functions by a growth condition on their Fourier transform.

Theorem 2.7 (Paley-Wiener) Assume u is in E 0(R2). Then u is in C •
0 (R2) if and only

if for every N 2 N there exists a constant CN such that

|F (u)(x )| 6 CN(1+ |x |)�N (2.5)

for every x 2 R2.

So the Paley-Wiener theorem implies that if u is in E 0(R2), but not in C •(R2), then
there exists at least one direction x 6= 0 such that the Fourier transform of u does not
satisfy (2.5) in any neighborhood containing x . Heuristically speaking, the direction x
causes the problem of why u is not smooth.

We introduce the following terminology.

Definition 2.8 Let f 2 D 0(R2).

(i) A point x0 2 R2 is called a regular point if there exist a neighborhood Ux0 of x0 and
a function j 2 C •

0 (Ux0), with j(x0) 6= 0, such that j f 2 C •
0 (R2).

(ii) The singular support of f is the complement of the set of regular points. This set is
denoted by singsupp( f ).
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This motivates why we are interested in studying ‘regular directed points’, since these
points enable us to analyze the local behavior of f 2 D 0(R2) in a neighborhood of a
given point x0 2 R2 and the decay behavior of its Fourier transform in a certain direction
x0 2 R2 \{0}.

Definition 2.9 Assume f 2 D 0(R2).

(i) A point (x0,v0) 2 R2 ⇥R\{0} is called a regular directed point of f if there exist
a neighborhood Ux0 of x0, a function j 2 C •

0 (R2), such that j(x0) 6= 0, and a
neighborhood Vv0 of v0 such that for every N 2 N we have

(cj f )(x ) = O
�
(1+ |x |)�N� (2.6)

for every x = (x1,x2) with x2/x1 2 Vv0 .

(ii) The complement of the set of regular directed points is called the wavefront set and
is denoted by WF( f ).

Some Examples

We will give some examples to get a feeling for this terminology.

Example 2.10 Let dt : S 0(R) ! C be the Dirac distribution defined as in Example
2.5. We claim that

WF(dt) = {t}⇥R.

Proof Choose an arbitrary point t 0 in WF(dt). If t 0 6= t then for any smooth cutoff
function j we have jdt = 0 in a neighborhood of t 0. Consequently, the Fourier transform
of t 7! jdt equals zero, i.e. we have [(jdt) = 0, and thus it decays rapidly in x . This
means that (t 0,x ) cannot belong to the wavefront set for any direction x . Consider now
the case t 0 = t. We know that dt is singular at the point t and from Example 2.5 we know
that bdt(x ) = exp(2pix · t). This does not decay fast in any direction x 2 R. Therefore
we obtained WF(dt) = {t}⇥R.

Example 2.11 Define the ‘line distribution’ dx2=p+qx1 by

hdx2=p+qx1 ,ji :=
Z •

�•
j(x1, p+qx1)dx1, j 2 S (R).

We claim that

WF(dx2=p+qx1) = {(x1,x2) : x2 = p+qx2}⇥{�1/q}.

Proof From Example 2.6 we know that

\dx2=p+qx1(x ) = e�2pix2·pd (x1 +qx2)
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in the sense of tempered distributions. Thus \dx2=p+qx1 is of fast decay, except when
x2/x1 = �q. A similar argument as given in the previous example, yields the desired
claim.

Example 2.12 Consider the function f : R2 ! R given by

f (x,y) =

(
1 if y > 0,

0 if y 6 0.

A graph of f is shown below in Figure 2.2.

Figure 2.2 The graph of f

From the graph of f , we see clearly that f has a singularity along the axis (x,0), with
x 2 R, and in the direction perpendicular to the (x,y) plane, i.e. in the direction (0,x2),
with x2 6= 0. Therefore, we would expect that

WF( f ) = {(x,0,0,x2) : x 2 R,x2 6= 0}.

This intuition can be made precise, see Boman (2014) for a proof of this result.

From the three discussed examples above, it was from the beginning ‘clear’ where the
regular directed points are located. If the function f becomes more difficult, then it is
more difficult to find and characterize these points. We are therefore interested in some
mathematical theory to locate the regular directed points; which will be done in the
following sections. In the next section we will introduce the Radon transform and show
that the Radon transform in combination with the Fourier transform is able to detect the
regular directed points of f .
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2.4 The Radon Transform

The Radon transform was introduced by Johann Radon in 1917, and since then this
transformation has had significant achievements in applications such as medicine (such
as tomography), geophysics, astronomy, and optics. We refer to Deans (1983) for details
and for more applications. Our approach in this section is inspired by Deans (1983).
Furthermore, we refer to the classical reference Ramm and Katsevich (1996) for more
details about the Radon transform.

We introduce the Radon transform in the two-dimensional setting, since the applica-
tions of this thesis are in R2. Moreover, the two-dimensional case provides the most
accessible way to motivate the main ideas and develop an intuitive understanding of the
definition. It is worth mentioning that our results and definitions can be generalized to
the setting of Rd .

We will see that the Radon transform can be obtained from different parametrizations.
Therefore we will study the following integral transformations: the ‘hyperplane’ Radon
transform, the polar Radon transform, and the (vertical) affine Radon transform. When
we refer to the ‘Radon transform’, it will be clear from the context which one we mean.

The Radon Transform

x

y

D

L

Projection line

R f

Figure 2.3: Integration along lines

Let f be defined on a domain D j R2.
The line integral of f along all possible
lines L defines the Radon transform, de-
noted by R f . See Figure 2.3.

Let x = (x,y). We can write the line L by
n · x = n1x+n2y = t. So in R2 we write

R f (n, t) =
1
|n|

Z

n·x=t
f (x)dm(x),

where dm(x) is the Euclidean measure on
the line {x 2 R2 : n · x = t}. In this for-
mula we divide by |n| for convenience.
The variables n and t can respectively
be thought of as the ‘direction’ and ‘dis-
tance’ from the origin.
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This leads to the following general definition.

Definition 2.13 Let f 2 L1(R2). The Radon transform R f : (R2 \ {0})⇥ R ! C is
defined by

R f (n, t) =
1
|n|

Z

n·x=t
f (x)dm(x),

where dm(x) is the Euclidean measure on the hyperline {x 2 R2 : n · x = t}.

We make some remarks.

Remark 2.14 (i) First, observe that R f (n, t) is well-defined. Indeed, fix an n 2 R2 \
{0}. Then Tonelli’s theorem yields:

kR f kL1(R2) 6
Z •

�•

1
|n|

✓Z

n·x=t
| f (x)|dm(x)

◆
dt =

Z

R2
| f (x)|dx < •,

for almost every t 2 R.

(ii) The parametrization of a line is not unique. Consider for example the line x = 1.
Possible parametrization of this line are ((1,0),1) and ((2,0),2). The latter reduces
to 2x = 2, i.e. x = 1.

A very important connection between the Radon transform and the Fourier transform
is summarized in the theorem below, which is known in the literature as ‘The Fourier
Slice Theorem’.

Theorem 2.15 (The Fourier Slice Theorem) Let f 2 L1(R2). Then for all n 2 R2 \{0}
and all t 2 R we have that

F (R f (n, ·))(t) = F f (tn).

Note that the Fourier transform on the right-hand side denotes the two-dimensional
Fourier transform, while F (R f (n, ·))(t) denotes the one-dimensional Fourier trans-
form of R f (n, t) as a function of t, with n fixed.

To give a rigorous proof of the Fourier Slice Theorem, we need Coarea’s formula.

Theorem 2.16 (Coarea’s formula) Let u : R2 ! R be Lipschitz function and let f 2
L1(R2). Then

Z

R2
f (x)|—u(x)|dx =

Z +•

�•

✓Z

{u�1(t)}
f (x)dS(x)

◆
dt.

The Coarea Formula can be seen as a kind of ‘curvilinear’ generalized version of Fu-
bini’s Theorem. The proof of this theorem is beyond the scope of this thesis and there-
fore we refer to Evans and Gariepy (2015).
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Coarea’s formula can be used to prove the Fourier slice theorem, which will be done
below.

Proof of the Fourier Slice Theorem Let f 2 L1(R2). Then for any n 2 R2 \ {0} and
t 2 R fixed we have

F (R f (n, ·))(t) =
Z •

�•
R f (n, t)e�2pit·t dt

=
Z •

�•

1
|n|

Z

x·n=t
f (x)dm(x)e�2pit·t dt

=
Z

R2
f (x)e2pi(nt)·xdx (Coarea’s Formula)

= F f (nt).

In the third line we used Coarea’s formula. Here we used the function u : R2 ! R
defined by u(x) = x ·n, with u�1(t) = {x ·n = t} and |—u(x)| = |n|.

The Polar Radon Transform

We start with a motivation of our choice of the parameterization of the polar Radon
transform. We parametrize the line by the pair (q , t), where q is the direction perpen-
dicular to the line L and |t| its distance from the origin. Then a parametrization of L is
xcos(q)+ ysin(q) = t. See Figure 2.4a.

(a) In the (x,y)-plane

pp

(b) In the (t,s)-plane

Figure 2.4 A parametrization of a line using polar coordinates.
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Now, suppose that we introduce a new coordinate system with axis rotated by the angle
q . If the new axis are labeled by t and s, see Figure 2.4b, then we get

x = t cos(q)� ssin(q), (2.7)

y = t sin(q)+ scos(q). (2.8)

This yields the following explicit formula for the polar Radon transform:

Rpol f (q , t) =
Z •

�•
f (t cosq � ssinq , t sinq + scosq)ds.

Figure 2.5 Parametrization of the line by the pair (q , t) 2 [0,2p)⇥R, where q is the direc-
tion which is perpendicular to the line and t the distance.

Definition 2.17 Let f 2 L1(R2). The polar Radon transform of f is the function
Rpol f : [0,2p)⇥R ! C defined by

Rpol f (q , t) = R f (n(q), t) =
Z

n(q)·x=t
f (x)dm(x). (2.9)

The reason why (2.9) is called the polar Radon transform can be seen from Figure 2.5.

Remark 2.18 Since we restrict ourself to the interval q 2 [0,2p), the parametrization
of the line is unique.

We will illustrate the theory with an example. This example will be used later on in the
thesis.
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Example 2.19 Consider the function f : R2 ! [0, 1
2 ] defined by

f (x,y) :=
1
2

(
1 if x2 + y2 6 1,

0 if x2 + y2 > 1.

Since we are on the unit circle, it is convenient to use polar coordinates. Using the
Formulas (2.7) and (2.8), the condition x2 + y2 6 1 is equivalent with

�
p

1� t2 6 s 6
p

1� t2.

Since f equals 1/2 inside the unit disk, the integral formula (2.9) reduces to

Rpol f (q , t) =
1
2

Z p
1�t2

�
p

1�t2
ds =

p
1� t2, for |t| 6 1.

For |t| > 1 the line does not intersect the disk, so the Radon transform is zero. So we
conclude:

Rpol f (q , t) =

(p
1� t2, |t| 6 1,

0, |t| > 1.

The (Vertical) Affine Radon Transform

The third way to parametrize line by a par (v, t) is by using the vector n(v) = (1,v),
which is perpendicular to the line intersecting the x-axis at (t,0). See figure 2.6.

vgl1vgl1

Figure 2.6 Affine Radon Transform

Since the points (x,y) lie on the line n(v) · (x,y) = x+yv = t, we have for any y 2 R that
x is determined by the relation x = t �vy. So if we want to integrate over the line, this is
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equivalent with integrating over all possible y-values (see the gray arrows and the gray
line in Figure 2.6), which yields

Raff f (v, t) =
Z •

�•
f (t � vy,y)dy.

These ideas lead to the following definition:

Definition 2.20 Let f 2 L1(R2). The affine Radon transform of f is the function
Raff f : R⇥R ! C given by

Raff f (v, t) = R f (n(v), t)s =
1p

1+ |v|2

Z

n(v)·x=t
f (x)dm(x) =

Z

R
f (t � vy,y)dy.

The affine Radon transform Raff f (v, t) and the polar Radon transform are related as
follows

Raff f (v, t) =
1p

1+ v2
Rpol f

✓
qv,

tp
1+ v2

◆
, qv = arctan(v).

vgl1

Figure 2.7: Parametrising along horizontal lines,
which is obtained by switching the roles of the x-
axis and the y-axis in the parametrization of the affine
Radon transform.

By construction, the affine Radon trans-
form is defined by labeling the normal
vector n(v) = (1,v) to a line by affine
coordinates. This is always possible, ex-
cept for the horizontal lines. This con-
struction is a limitation, since we cannot
‘cover’ the whole R2 plane. This short-
age motivates the introduction of the ver-
tical affine Radon transform, which will
be done now.

In this new setting we parametrize lines
in R2 by pairs (v, t) 2 R2 as {(x,y) 2 R2 :
vx + y = t}. Now we parametrize over
all the lines, except the vertical ones. See
Figure 2.7 for an illustration. We will de-
note the unit vector n by n(v) = (v,1), which will be the most convenient way to work
with.

This leads to the following definition.

Definition 2.21 The vertical affine Radon transform of any f 2 L1(R2) is the function
Rv f : R2 ! C defined by the formula

Rv f (v, t) :=
Z •

�•
f (x, t � vx)dx.
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We make two observations.

Remark 2.22

(i) Let f̃ be defined as f̃ (x,y) := f (y,x). Then the following relation holds

Raff f (v, t) = Rv f̃ (v, t).

(ii) For the vertical affine Radon transform the Fourier slice theorem reads:

F (Rv f (v, t))(x ) = F ( f )((x v,x )). (2.10)

We give an example of an explicit calculation of the vertical affine Radon transform of
a function. This example will be used in the next chapter.

Example 2.23 Consider the function f : R2 ! [0, 1
2 ] defined by

f (x,y) :=
1
2

(
1 if x2 + y2 6 1,

0 if x2 + y2 > 1.

We will compute the vertical affine Radon transform. By definition, we have

Rv f (v, t) =
Z •

�•
f (x, t � vx)dx =

1
2

Z •

�•
1{x2+y261}(x, t � vx)dx.

This integral in nonzero whenever x2 +(t � vx)2 6 1, i.e. whenever

tv�
p

1� t2 + v2

1+ v2 6 x 6 tv+
p

1� t2 + v2

1+ v2 .

This yields

Rv f (v, t) =

8
<

:

p
1+ v2 � t2

1+ v2 if t2 � v2 6 1,

0 if t2 � v2 > 1.

Detecting the wavefront set

The Radon transform has deep connections with detecting the wavefront set. The next
example shows intuitively how the polar Radon transform is able to detect the wavefront
set.

Example 2.24 From Example 2.19 we know that the polar Radon transform of the
function f (x,y) = 1

2 · 1{x2+y261} equals Rpol f (q , t) =
p

1� t2 · 1{|t|61}. In Figure 2.8
we see the graph of f (x) together with j(x) = Rpol f (q ,x).

From Figure 2.8 it is clear that when we integrate along the vertical lines, the points
belonging to the wavefront set of f (i.e. the points where the lines are tangent to the
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�2 �1 1 2

1

2

3

4

Rpol f x

y

Figure 2.8 The unit disk together with j(x) = Rpol f (q ,x).

circle) ‘create’ a point of singularity of the Radon transform, i.e. the points x = ±1,
since j is there not differentiable.

The next theorem formalizes the connection between a regular directed point of f and
the vertical affine Radon transform. The result for the affine Radon transform is proven
in Bartolucci (2019) and the proof for the vertical affine Radon transform is inspired of
this work.

Theorem 2.25 Let f 2 Lp(R2), where 1 6 p 6 •. A point (x0,v0) 2 R2 ⇥R \ {0} is
a regular directed point of f if and only if there exist a neighborhood Ux0 , a function
f 2 C •

0 (R2) satisfying f(x0) 6= 0 and a neighborhood Vv0 of v0 such that for every
N 2 N there exists a constant CN such that

|F (Rv(f f )(v, t))(x )| 6 Cn(1+ |x |)�N

for all v 2 Vv0 and all x > 0.

So Theorem 2.25 shows how we can use the Fourier transform and the vertical Radon
transform to determine whether a point (x0,v0) is a regular directed point.
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Proof Fix an f 2 Lp(R2), with 1 6 p 6 •. Since f 2 C •
0 (R2), we know it is contained

in every Lp space, so in particular we know that for a certain q we have that f 2 Lq(R2),
where q satisfies the relation p�1 +q�1 = 1. Hölder’s inequality implies that

kf f kL1(R2) 6 k f kLp(R2)kfkLq(R2) < •.

Therefore f f 2 L1(R2) so the vertical affine Radon transform of f f is well-defined.

To prove the theorem, we have to show two directions.
()) Suppose that (x0,v0) 2 R2 ⇥ R \ {0} is a regular directed point of f . Then there
exist a neighborhood Ux0 of x0, a function f 2 C •

0 (R2) satisfying f(x0) 6= 0 and a
neighborhood Vv0 of v0 such that, for every N 2 N, there exists by (2.6) a constant CN
with

|F (f f )(x v,x )| 6 CN(1+ |(x v,x )|)�N (2.11)

for all v 2 Vv0 and x > 0 We have therefore:

|F (Rvf f (v, t))(x )| = |F (f f )(x v,x )| (Fourier Slice Theorem)

6 CN(1+ |x |
p

1+ v2)�N (By (2.11))

6 CN(1+ |x |)�N

for all v 2 Vv0 and x > 0. This proves the forward implication.

(() Suppose now that there exist a neighborhood Ux0 of x0, a function f 2 C •
0 (R2)

satisfying f(x0) 6= 0 and a neighborhood Vv0 of v0 such that, for every N 2 N, there
exists a constant CN such that

|F (Rvf f (v, t))(x )| 6 CN(1+ |x |)�N (2.12)

for all v 2 Vv0 and x > 0. We then have for every N 2 N

|F (f f )(x v,x )| = |F (Rvf f (v, t))(x )| (Fourier Slice Theorem)

6 CN(1+ |x |)�N . (By 2.12)

Since

(1+ |x |)�N =

 p
1+ v2

p
1+ v2 + |x |

p
1+ v2

!N

6
 p

1+ v2

1+ |x |
p

1+ v2

!N

= (
p

1+ v2)N(1+ |(x v,v)|)�N ,

we obtain, for every N 2 N, that

|F (f f )(x v,x )| 6 CN(
p

1+ v2)N(1+ |(x v,x )|)�N 6 DN(1+ |(x v,x )|)�N

for all v 2 Vv0 and x > 0. Here is DN = CN max{(
p

1+ v2)N : v 2 Vv0}, which is a
constant independent of v. Note that Dn is well-defined, since we take the closure of
a bounded set Vv0 , which is therefore compact, and hence it has a maximum value.
Consequently, the point (x0,v0) 2 R2 ⇥R\{0} is a regular directed point of f .
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In the following sections, we explore the theory of wavelet and shearlet systems. This
rich theory plays an important role in our analysis of the wavefront set. One big advan-
tage of these systems over the Radon transform is their practical applications, since they
can be efficiently implemented in computer programs.

2.5 Wavelets

In this section we describe some general theory about wavelets that we need in this the-
sis. We start with some general theory about wavelets and thereafter we explain how and
why the wavelet transform is capable of detecting (pointwise) singularities. We refer to
classical books on wavelet theory such as Daubechies (1992), Walnut (2002), Boggess
and Narcowich (2009) or Debnath and Shah (2017), and their references therein.

General Theory

Let y 2 L2(R). We call the function y a wavelet if it satisfies:

Cy :=
Z

R

|by(x )|2

|x | dx < •, (2.13)

with by(x ) the Fourier transform of y(t). This condition is called the admissibility con-
dition, which guarantees that an inverse formula for the wavelet transform exists.

We say that a wavelet has n-vanishing moments if the following condition is satisfied:
Z •

�•
tky(t)dt = 0, k = 1,2, . . . ,n.

We define the mother wavelet Wb,ay by

Wb,ay(x) := |a|�
1
2 y

✓
x�b

a

◆
, a,b 2 R, a > 0.

Here is a the so-called scaling parameter and b is a translation parameter. A straightfor-
ward calculation shows that for every x 2 R and a > 0 we have

F (Wb,ay)(x ) = a
1
2 e�2pibx F (y)(ax ). (2.14)

Equation (2.14) will pop up in many steps in the sequel of this thesis.

Define the wavelet transform of a function y 2 L2(R) by

Wy f (b,a) = h f ,Wb,ayi = |a|�
1
2

Z

R
f (x)y

✓
x�b

a

◆
dx.
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For a wavelet that satisfies the admissibility condition, the continuous wavelet transform
is an isometry and admits an inversion formula. See the following theorem.

Theorem 2.26 Let f 2 L2(R). Then

f (t) =
1

Cy

Z •

�•

Z •

�•
Wy f (a,b)yb,a(t)

dbda
a2 , a.e.

Furthermore, we have the following isometry relation:

k f kL2(R) =
1

Cy

Z •

�•

Z •

�•
|Wy f (a,b)|2 dadb

a2 . (2.15)

A result that we need later on is the following, whose proof can be found in Mallat
(2009).

Lemma 2.27 Let c be an admissible wavelet with all vanishing moments and of fast
decay. Then for every M 2 N there exists a q with a fast decay such that

F (c)(x ) = x MF (qx ).

Remark 2.28 Note that Lemma 2.27 implies that q 2 L2(R). Indeed, due to the fact
that q is of fast decay, we have for every m > 2 that

Z •

�•
|q(t)|2dt 6

Z •

�•

cm

1+ |t|m dt < •,

for a certain cm 2 R.

Detecting singularities

One of the key advantages of the wavelet transform is its ability to accurately detect
singularities, thanks to its capability to localize information in both the time and fre-
quency domains. The next theorem, whose proof can be found in Holschneider (1995),
describes the connection between the decay rate of the wavelet transform at small scales
with the smoothness of a function.

Theorem 2.29 Let f 2 S 0(R). Then f is of C • regularity in an open interval I (in the
sense that j f 2 C •(R) for all j 2 C •(R) with compact support inside I) if and only if
for some admissible wavelet y 2 S0(R), the wavelet transform satisfies

Wy f (b,a) = O(am), a ! 0

for all m > 0, uniformly in b on all compact subsets K of I.

Theorem 2.29 says essentially that the wavelet transform detects singularities by ana-
lyzing how the function behaves at different scales a. If the wavelet coefficients decay
fast as a ! 0, this means roughly that the function is smooth and therefore it does not
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have a singularity. If the coefficients vanish slowly, then the wavelet transform ‘sees’
the singularity of the function.

Figure 2.9 shows a signal, which has some singularities, together with the scalogram
of the coefficients of the corresponding wavelet transform. Theorem 2.29 implies that
whenever the signal is smooth around a point, the wavelet coefficients decay rapidly.

Theorem 4.1.3. Let L 2 N , � 2 L2(R), supp � � [�1, 1], and let � have L vanishing moments, i.e, � is
orthogonal on all polynomials of degree less than L. If f 2 L2(R) is L-times continuously di�erentiable on a
neighborhood of b 2 R, then

|W�(f)(a, b)| . aL+ 1
2 for a ! 0.

Proof. We have that

|W�(f)(a, b)| = |
Z

R
f(x)TbDa�1�(x)dx| = |

Z

Ba(b)
f(x)TbDa�1�(x)dx|.

Using a Taylor expansion of f of order L � 1 around d we get that

|
Z

Ba(b)
f(x)TbDa�1�(x)dx| .

Z

Ba(b)
|x� � b|L|TbDa�1�(x)|dx,

for an x� 2 Ba(b). Thus

|W�(f)(a, b)| . aLkTbDa�1�kL1 = aL+ 1
2 .

Using the inversion formula one can also produce a converse to Theorem 4.1.3. In Figure 4.1 we compute
the continuous shearlet transform of a piecewise smooth signal. We observe that the transform decays slowly
at translation points associated to singularities of the signal. Additionally, the areas of slow decay become
better and better localised for smaller a.
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Figure 4.1: Top: A signal with multiple singularities of di�erent types. Bottom: Continuous wavelet
transform of the signal, with b varying along the x axis and varying scale a along the y-axis. The wavelet
used in the computation is a symmetric wavelet with four vanishing moments, called symlet.

4.2 Discrete wavelet systems

Yet again, we find ourselves in the position that we constructed a continuous transform with very interesting
properties and we would like to transform it into a discrete system.

17

Figure 2.9 Top: A signal with singularities. Bottom: A scalogram of the coefficients of the
corresponding wavelet transform.

From the scalogram in Figure 2.9 we see that the signal has some ‘jumps’. In the cor-
responding scalogram we see around these points some cones, with relatively high val-
ues. These high values indicated that the coefficients of the wavelet transform go slow to
zero around the singularities, due to the high values in the scologram. Around the points
where our signal is smooth, the scalogram shows low values of the wavelet transform.
In other words, the scalogram gives us information about the local smoothness of our
signal and vice versa.



28 Preliminaries

Our next goal is to relate the wavefront set to the cone of influence together and the
smoothness properties of the wavelet coefficients.

b

a

b0

|b�b0| > Ma |b�b0| > Ma

|b�b0| < Ma

Figure 2.10: Cone of influence

Let y be a wavelet which is compactly
supported on [�M,M], with M > 0. The
support of yb,a(t) = a� 1

2 y((t � b)/a) is
equal to [b � Ma,b + Ma]. The cone of
influence of b0 is the set of points (b,a)
such that b0 is in the support of yb,a. So
the cone of influence of b0 is defined by
the set of points (b,a) which satisfies:

|b�b0| 6 Ma. (2.16)

A visualization is depicted in Figure 2.10.

The cone of influence is related to the smoothness of a function and its wavelet coeffi-
cients. Since our wavelet has vanishing moments, we know that the wavelet coefficients
decay rapidly outside the cone of influence. This means that the singularity’s influence
is no longer significant. The cone of influence contains the points of singularity, because
the wavelets centered near the singularity do not exhibit fast decay. So the cone of influ-
ence can be used to identify the region where the wavelet coefficients are influenced by
a singularity, i.e, the places where they do not decay rapidly, even as the scale parameter
a goes to zero.

Our goal is to relate the coefficients of the wavelet transform with the cone of influence
and the wavefront set. To achieve this objective, we need the following terminology and
results.

Definition 2.30 A function f is pointwise Lipschitz a > 0 at v, if there exist a K > 0
and a polynomial pv of degree m = bac such that

8t 2 R, | f (t)� pv(t)| 6 K|t � v|a . (2.17)

A function f is uniformly Lipschitz a over [a,b] if it satisfies (2.17) for all v 2 [a,b]
with a constant K that is independent of v.
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In Mallat (2009) the following result is proven.

Theorem 2.31 If f 2 L2(R) is Lipschitz a 6 n at b0, then there exists a constant A
such that

8(b,a) 2 R⇥R+, |Wy f (b,a)| 6 Aaa+1/2
✓

1+

����
b�b0

a

����

◆a
. (2.18)

Conversely, if a < n is not an integer and there exist a constant A and an a 0 < a such
that

8(b,a) 2 R⇥R+, |Wy f (b,a)| 6 Aaa+1/2
✓

1+

����
b�b0

a

����

◆a 0

, (2.19)

then f is Lipschitz a at b0.

We will use Theorem 2.31 to prove the following result.

Theorem 2.32 Let f 2 L2(R) and let (b,a) be a point in the cone of influence of b0.

(i) If f is smooth, i.e. f 2 C •, then for every M 2 N and every (b,a) 2 R ⇥ R+ we
have

|Wy f (b,a)| . aM, as a ! 0.

(ii) If f is not smooth in the point b0, then there is some M 2 N such that

|Wy f (b,a)| & aM, as a ! 0.

Theorem 2.32 states that the decay of the wavelet coefficient of a point that lies in the
cone of influence and belongs to the wavefront set goes to zero asymptotically for a
fixed polynomial of power M.

Proof Fix f 2 L2(R) and let (b,a) be a point in the cone of influence of b0. We are
interested in the case that a ! 0, so we can assume without loss of generality that
a 2 (0,1).

(i) Suppose that f is a smooth function. Since f is smooth, we know that it is uniformly
Lipschitz with constant a < N, for every N 2 N. So by Theorem 2.31 there exists a
constant A such that for every (b,a) 2 R⇥R+ we have

|Wy f (b,a)| 6 Aaa+1/2
✓

1+

����
b�b0

a

����

◆a
.

Since (b,a) lies in the cone of influence of b0, we know by (2.16) that we have
����
b�b0

a

����6 M.
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Consequently, we obtain:

|Wy f (b,a)| . aa+ 1
2 , as a ! 0.

Since this inequality holds for every a 6 N, with N 2 N, we can always, for every
fixed M 2 N, find an a with the property a > M � 1

2 . Since a 2 (0,1), we conse-
quently obtain that for every M 2 N we have

|Wy f (b,a)| . aM, as a ! 0.

(ii) Let b0 be a point where f is not smooth. Then in particular f is not Lipschitz for
every a 6 N, with N 2 N. A similar argument as before and Theorem 2.31 [take
the negation of (2.19)] implies that there exists some M 2 N such that

|Wy f (b,a)| & aM, as a ! 0.

Limitations of the Wavelet Transform

So far, we described how the wavelet transform is able to detect pointwise singularities.
For detecting singularities of edges in a two-dimensional setting, one may ask if two-
dimensional wavelets, which possess a directional parameter, are able to work with
anisotropic data structures. It turns out that the (two-dimensional) wavelet is not always
able to capture the anisotropic data. The goal of this subsection is to give a mathematical
argument for this. This will be done by considering an explicit example to show the
failure of the two-dimensional wavelet to detect the wavefront set of anisotropic data.

We start with introducing some terminology of the two-dimensional wavelet. A two-
dimensional function y is called a wavelet if it satisfies the admissibility condition

Z

R2

|by(x )|2

|x |2 dx < •.

Let (a,q , t) 2 R+ ⇥ T ⇥ R2, with T the one dimensional torus. Define the functions
ya,q ,t by

ya,q ,t(x) =
1
a

y
✓

Rq (x� t)
a

◆
. (2.20)

In this formula Rq denotes the rotation by q 2 T, which can be seen as a matrix

Rq =

✓
cosq �sinq
sinq cosq

◆
.

Given the vector t = (t1, t2), and applying the rotation matrix gives:

Rq (�t) =

✓
cosq �sinq
sinq cosq

◆✓
�t1
�t2

◆
=

✓
�t1 cosq + t2 sinq
�t1 sinq � t2 cosq

◆
.
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The two-dimensional wavelet transform of a function f 2 S 0(R) is defined by

W 2D
y ( f )(a,q , t) := h f ,ya,q ,ti.

We will first give an example where the two-dimensional wavelet successfully describes
the wavefront set of a distribution.

Example 2.33 Consider the point singularity d0, which is in S 0(R) by (2.4). Then for
t = (t1, t2), where t 6= 0, we have that

W 2D
y (d0)(a,q , t) = hd0,ya,q ,ti

= a�1
Z

R2
d0(x)y

✓
Rq (x� t)

a

◆
dx

= a�1y
✓

Rq (�t)
a

◆
= O(aN�1), 8N 2 N.

The latter follows from Formula (2.1), since y is a Schwartz function. This implies that
for t 6= 0 we have

W 2D
y (d0)(a,q , t) = O(aN) 8N 2 N.

When t = 0 we have

W 2D
y (d0)(a,q ,0) = O(a�1).

Therefore, we see that the two-dimensional wavelet transform is (in this case) able to
describe the wavefront set of d0.

Now we will show that the two-dimensional wavelet transform has some limitations and
is not able to detect the wavefront set.

Example 2.34 Consider the distribution n = dx1=0. It is clear that the singularities lie
on the line x1 = 0. Example 2.6 implies that

bn = dx2=0. (2.21)

Therefore we have

hv,ya,q ,0i = hbn , bya,q ,0i (Plancherel)

=
Z

R2
dx2=0(x )bya,q ,0(x )dx (By 2.21)

= a
Z

R
y
✓

a
✓

cos(q) �sin(q)
sin(q) cos(q)

◆✓
x1
0

◆◆
dx1 (By Prop 2.2)

= a
Z

R
y(acos(q)x1,asin(q)x1)dx1

If we let a ! 0, then W 2D
y (n)(a,q ,0) = O(1) for every q . So the two dimensional
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wavelet varies smoothly with d and since W 2D
y (n)(a,q ,0) = O(1) for every q , it is not

possible to distinguish the singularity direction, which corresponds to q = 0, and the
other directions.

In other words, Example 2.34 shows that, when we work with anisotropic phenomena,
the two-dimensional wavelet transform is not (always) able to detect the wavefront set
of a distribution n . To overcome this limitation, we will introduce shearlet systems in
the next section. It turns out that the shearlet transform is able to detect the wavefront
set.

2.6 Shearlet Systems

In this section we introduce the shearlet system. We will use a group theoretic approach,
which is strongly inspired by Shah and Tantary (2023). For motivation and completeness
we introduce a lot of results, although we don’t need them all in the sequel of this thesis.
For proofs of most results, we refer to Shah and Tantary (2023) and Dahlke et al. (2009).

Shearlet transform: A Group Theoretic Approach

We start by introducing the main notation and the definition of continuous shearlets.
Shearlet systems are composed of three operators, namely: scaling, shearing, and trans-
lation. The term ‘continuous’ indicates that continuous parameter sets are considered.

We start with defining the following four operators. The scaling matrix Aa is defined by

Aa =

 
a 0
0 a

1
2

!
, a > 0.

The shearing matrix Ss is given by

Ss =

✓
1 s
0 1

◆
, s 2 R.

Let y 2 L2(R2). Then the translation operator Tt is defined by:

Tty(x) = y(x� t), t 2 R2.

Finally, the dilatation operator of a matrix M on L2(R2) is defined by

DMy(x) = |det(M)|�
1
2 y(M�1x), M 2 GL(2,R).
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Definition 2.35 For y 2 L2(R2), the continuous shearlet system SH(y) is defined by

SH(y) =
�

ya,s,t = TtDAaDSsy : a > 0,s 2 R, t 2 R2 .

The shearlet group S is then defined to be the set R+ ⇥R⇥R2 endowed with the group
operation � defined by

(a,s, t)� (a0,s0, t 0) = (aa0,s+ s0pa, t +SsAat 0).

It can be shown that this is a locally compact group with a left-invariant Haar measure
dµ = a�3dadsdt. We let the unitary representation s : S ! U (L2(R2)) be defined by

sa,s,ty := s(a,s, t)y := TtDAaDSs y = |a|�
3
4 y(A�1

a S�1
s (x� t)) (2.22)

where U (L2(R2)) denotes the group of unitary operators on L2(R2). It is a tedious, but
not a hard job to show that sa,s,ty is indeed unitary, i.e. it satisfies

s(a,s, t)(s(a0,s0, t 0)y(x) = s((a,s, t)(a0,s0, t 0))(x)

for every y 2 L2(R2), x 2 R2 and (a,s, t),(a0,s0, t 0) 2 S.

Furthermore, for any pair of functions y,f 2 L2(R2) we have
Z

S
|hf ,s(a,s, t)yi|2 dµ =

Z

R

Z •

0

��� bf (x1,x2)
���
2
⇢Z •

0

Z

R

|by(z1,z2)|2

z 2
1

dz2dz1

�
dx1dx2

+
Z

R

Z 0

�•

��� bf (x1,x2)
���
2
⇢Z 0

�•

Z

R

|by(z1,z2)|2

z 2
1

dz2dz1

�
dx1dx2,

here is dµ the left Haar measure on the shearlet group (S,�). This formula gives moti-
vation for the definition of a shearlet.

Definition 2.36 A function y 2 L2(R2) is called a shearlet if
Z

R2

|by(x )|2

|x1|2
dx < •.

Based on Definition 2.36, we will now introduce the shearlet transform. The shearlet
transform defines a mapping of f in L2(R2) to the components of f associated with the
elements of S.

Definition 2.37 Let y 2 L2(R2) be an admissible shearlet for the square integrable
representation s : S ! U (L2(R2)) of the shearlet group (S, ·) on the Hilbert space
L2(R2). Then the Continuous Shearlet Transform of f 2 L2(R2) is the mapping

L2(R2) 3 f ! S H y f (a,s, t) = h f ,s(a,s, t)yi, (a,s, t) 2 S.

Thus, S H y maps the function f to the coefficients S H y f (a,s, t) associated with
the scale variable a > 0, the orientation variable s 2 R, and the location variable t 2 R2.
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In a similar fashion as in (2.22), we can define the vertical shearlet representation. The
vertical shearlet representation is defined by

Sv
b,s,a f (x) = |a|�

3
4 f (Ã�1

a S̃�1
s (x�b)), (2.23)

where

S̃s =

✓
1 0

�s 1

◆
and Ãa = a

 
|a|� 1

2 0
0 1

!
.

This leads to the associated vertical shearlet transform:

S H v
yv f (b,s,a) := h f ,Sv

b,s,ayvi. (2.24)

2.7 The connection between the affine Radon, Wavelet, and

Shearlet transforms

In this section we will give a formula with connects the (vertical) affine Radon transform
and the wavelet transform with the shearlet transform. This formula will be frequently
used in the next chapter. We start by introducing some notions and assumptions.

Let y be in L2(R2) and of the form

Fy(x1,x2) = Fy1(x1)Fy2

✓
x2

x1

◆
, (2.25)

with y1 2 L2(R) satisfying the conditions:

0 <
Z •

�•

|Fy1(x )|2

|x | dx < • and
Z •

�•
|x ||Fy1(x )|2dx < •,

with y2 2 L2(R). Then y satisfies the admissible condition (2.13). Define the function
c1 2 L2(R) by

F c1(x ) = |x |
1
2 Fy1(x ),

which is a one-dimensional wavelet.

In Bartolucci (2019) the following theorem has been shown true.

Theorem 2.38 Let f 2 L1(R2)\L2(R2). Then

S H y f (b,s,a) = |a|�
3
4

Z

R
Wc1(R

aff f (v, ·))(n(v) ·b,a)f2

 
v� s

|a| 1
2

!
dv.

Here n(v) = (1,v).
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We can obtain an analog of Theorem 2.38 for the vertical shearlet transform. Suppose
that yv is an admissible wavelet satisfying:

Fyv(x1,x2) = Fy(x2,x1).

Let c1, f2, y1 and y2 as before. We impose that yv satisfies

Fyv(x1,x2) = Fy1(x2)Fy2

✓
x1

x2

◆
, (2.26)

where Fy2 = f2 satisfying the admissible condition:

0 <
Z

R2

|Fy(x )|2

|x2|2
dx < •, x = (x1,x2).

In this setting, we can formulate the following theorem.

Theorem 2.39 For any f 2 L1(R2)\L2(R2) we have the formula:

S H v
yv f (b,s,a) = |a|�

3
4

Z

R
Wc1(R

v f (v, ·))(n(v) ·b,a)f2

 
v� s

|a| 1
2

!
dv, (2.27)

with n(v) = (v,1).

As we have seen before, we know that the wavelet transform is capable of detecting
one-dimensional singularities and the Radon transform is well-suited for capturing sin-
gularities and edge information of a function in higher dimensions. Theorems 2.38 and
2.39 establish a link between the (vertical) shearlet transform, the wavelet transform,
and the (vertical) affine Radon transform. It is therefore reasonable to expect that the
shearlet transform is suitable to detect the wavefront set. This intuition is indeed correct,
as we will see in the next chapter.
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Shearlets and the Wavefront Set

In this chapter we show that the shearlet transform can capture the wavefront set. Build-
ing on the transforms introduced in the previous chapter (the wavelet, shearlet, and
(vertical) Radon transform) along with the result of Theorem 2.39, which establishes
the connection between the shearlet transform and the wavelet and affine Radon trans-
forms. We will show how these results play a central theme in our analysis.

The goal of Section 3.1 is to provide an explicit example and show that the shearlet
transform is indeed capable of detecting the wavefront set for this specific function,
based on properties of the wavelet and Radon transforms. This motivating example will
lead to a general theory, which will be the scope of the subsequent three sections.

3.1 A motivating example

Theorem 2.29 implies that a function is smooth around a point if and only if the coeffi-
cients of the wavelet transform decay faster than any polynomial. Therefore, the wavelet
transform is capable to ‘detect’ pointwise singularities and we would expect, due to the
relationship mentioned in Theorem 2.39, that the shearlet transform is also able to ‘de-
tect’ these points of singularities. The objective of this section is to provide an example
to show that our intuition is indeed correct. We will provide a function for which we can
explicitly calculate the vertical Radon transform.

Consider the function f : R2 ! [0, 1
2 ], defined by

f (x,y) :=
1
2

(
1 if x2 + y2 6 1,

0 if x2 + y2 > 1.

36
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1

�2

�1

1

2

f(t)

t

Figure 3.1: Graph of f(t) = Rv f (0, t)

In Example 2.23 we computed the corresponding
vertical affine Radon transform:

Rv f (v, t) =

8
<

:

p
1+ v2 � t2

1+ v2 if t2 � v2 6 1,

0 if t2 � v2 > 1.

Based on this calculation, we define the function

f(t) =

(p
1� t2 if |t| 6 1,

0 if |t| > 1.
(3.1)

The graph of f(t) is shown in Figure 3.1. It is
clear from the graph that f(t) is smooth except
at the points t = ±1.

The scalogram of the coefficients of the wavelet transform of f is shown in Figure 3.2.

 

Figure 3.2 Scalogram of the wavelet coefficients of f .

In Figure 3.2 we see two ‘cones’ around the singular points t = ±1 of f(t). Figure 3.2
suggests that the wavelet coefficients Wc1f(b,a) of the function f decrease faster than
any polynomial if and only if a ! 0 and b = ±1. To make these observations precise,
we need the following auxiliary lemma and make some explicit calculations.
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Lemma 3.1 Let c1 be a compactly supported wavelet on the interval [�1,1] and f
defined by (3.1) . Then

Wc1(R
v f (v, t))(b,a) =

1
4p1+ v2

Wc1(f)

✓
bp

1+ v2
,

ap
1+ v2

◆
.

Proof We start with showing that

Rv f (v, t) =
1

4p1+ v2
W

0,
p

1+v2(f)(t). (3.2)

For t2 � v2 > 1, this identity is trivially true, since both sides of (3.2) are equal to zero.
So we consider the case t2 � v2 6 1. Then we have

1
4p1+ v2

(W
0,
p

1+v2f)(t) =
1

4p1+ v2
· 1

4p1+ v2
f
✓

tp
1+ v2

◆

=
1p

1+ v2
·

s

1� t2

1+ v2 =

p
1+ v2 � t2

1+ v2

= Rv f (v, t).

Then for any fixed t we have by (3.2) that

Wc1(R
v f (v, t))(b,a) = hRv f ,Wb,ac1i

=
1

4p1+ v2
hW
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p

1+v2f ,Wb,ac1i

=
1p

a(1+ v2)

Z •

�•
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Furthermore, we have:

1
4p1+ v2

(Wc1f)

✓
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Z •
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=
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Z •

�•
f
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tp
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c1

✓
t �b

a

◆
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Comparing (3.3) and (3.4) we deduce

Wc1(R
v f (v, t))(b,a) =

1
4p1+ v2

Wc1(f)

✓
bp

1+ v2
,

ap
1+ v2

◆
, (3.5)

which proves the desired equality.

We will integrate f(t) along horizontal lines. See Figure 3.3.

1

�2

�1

1

2

f(t)

t

Figure 3.3 Graph of f(t) = Rv f (0, t) together with horizontal lines.

We will now show that the shearlet transform, using the wavelet transform and the
vertical Radon transform, is capable of detecting the wavefront set of f .

f

vgl1

g

Figure 3.4: Direction of integrating.

Consider the point (0,1). This point lies on the bound-
ary of x2 +y2 6 1. If we integrate along horizontal lines
(i.e. with direction ‘0’), then the horizontal line through
the point (v,1), with v 2 R, ‘touches’ this point. Thus,
the point (0,1,0) lies in the wavefront set of f . We will
show that the decay behavior of the vertical shearlet
transform in this point is not faster than any polynomial.

In the setting of the vertical shearlet transform, we have
for the point (0,1) that b = (0,1). Consequently, by Fig-
ure 3.4, we have q = 0 and hence s = tan(q) = 0. This
implies that

n(v) ·b = (v,1) · (0,1) = 1.
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In the setting of Theorem 2.39 we take f2(t) = 1[�1,1](t) and we assume that c1 is an
admissible wavelet such that supp(c1) j [�1,1]. If we integrate along the horizontal
lines, such as depicted in Figure 3.3, we obtain:

|S H v
yv f (0,1,0,a)| = |a|�

3
4

����
Z s+|a|

1
2

s�|a|
1
2

Wc1(R
v f (v, ·))(v,a)dv

���� (By Thm. 2.39)

= |a|�
3
4

����
Z s+|a|

1
2

s�|a|
1
2
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✓
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,
ap

1+ v2
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dv
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���� (By (3.5))

= 2|a|�
1
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����
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4
p

1+ v2
a
Wc1f
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a
,
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a

!���� (MVT)

> 1
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p

1+ v2
a

����Wc1f

 
1p

1+ v2
a
,

ap
1+ v2

a

!���� (|a| 6 1)

In the third line we used the mean value theorem for integrals, with va 2 [�|a| 1
2 , |a| 1

2 ]. In
the last line we used that |a| 6 1. This condition is not restrictive, since we are interested
in the case a ! 0. As a ! 0, then va ! 0, so 1/

p
1+ v2

a ! 1.

We claim that the point (1/
p

1+ v2
a,a/

p
1+ v2

a) belongs to the cone of influence cre-
ated by the singularity t = 1, which is a singular point of f . To prove this claim, we
need to show that for every a 2 R we have

����1� 1p
1+ v2

a

����6
|a|p
1+ v2

a
.

This is equivalent with

�
q

2|a|+a2 6 v 6
q

2|a|+a2.

But we always have |a| 1
2 6

p
2|a|+a2. This proves the claim.

Since f is not smooth in the point t = 1, by Theorem 2.32 part (ii) we know that there
is an N 2 N such that |Wc1(f)(1/

p
1+ v2

a,a/
p

1+ v2
a)| & aN . From this we observe

that the wavelet coefficients do not have a fast decay whenever a ! 0. Consequently we
have

|S H v
yv f (0,1,0,a)| & aN

for some N 2 N. Therefore, based on this example, we see that the shearlet transform
does not decay too fast around a point belonging to the wavefront set. An intuitive
reasoning is that this is caused due to the fact that the wavelet coefficients do not de-
cay quick as a ! 0. If they decayed too quickly, then by Theorem 2.29 they indicate
smoothness rather than the presence of a singularity.
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Now consider the point (1,0). From Figure 3.1 it is clear that f is smooth around
the point (1,0), so the point (1,0,0) does not lie in the wavefront set. The following
calculation shows that the coefficients of the shearlet transform equal O(aN). Since
n(v) = (v,1), we get n(v) · (1,0) = v and therefore:

|S H v
yv f (1,0,0,a)| = |a|�

3
4

����
Z s+|a|
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2

s�|a|
1
2

Wc1(R
v(v, ·))(v,a)dv

���� (By Thm. 2.39)
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= O(aN� 1
4 ).

The latter follows by Theorem 2.29, which can be applied since f is smooth around
(0,1). So we conclude that for every N 2 N we have

|S H v
yv f (1,0,0,a)| = O(aN� 1

4 ), as a ! 0.

Since this holds for every N 2 N, we can therefore conclude that |S H v
yv f (0,1,0,a)| =

O(aN) for every N 2 N as a ! 0. From this we see that if a point does not belong to the
wavefront set, then the shearlet coefficients show fast decay.

Based on this example, we formulate the following conjecture.

Conjecture 3.2 Let f a function. A point (b,s) does not belong to the wavefront set of
f if and only if for every N 2 N we have

S H v
yv f (b,s,a) = O(aN), as a ! 0.

This conjecture turns out to be true under some conditions of the function f and the
wavelet y . We will make our intuition precise in the next section and provide a proof.

We close this section with two final remarks.

Remark 3.3 (i) The example presented in this section shows that the shearlet trans-
form can successfully detect the wavefront set. This capability arises from the pres-
ence of singularities in the function f , which induce singularities in f = Rv. More-
over, the result of Theorem 2.39 plays a key role in our analysis, as it establishes
that the wavelet transform effectively characterizes the smoothness of univariate
functions.

(ii) Although we derived an explicit expression for the Radon transform of f , this is
in fact not really necessary. What really matters is the location of its singularities.
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This point becomes evident when we have a second look at the formula given in
Theorem 2.39. From this expression, we see that the decay behavior of the wavelet
coefficients within the integral, which is determined by the location of the singu-
larities of the vertical affine Radon transform, influences the decay behavior of the
shearlet.

Remark 3.4 Based on the motivation example given in this paragraph, we will now
give a sketch of the connection between the shearlet transform and a point in the wave-
front set of an arbitrarily function. This sketch is incomplete and can perhaps be made
precise in further research.

Suppose f 2 L1(R2) \ L2(R2) and assume (b0,s0) 2 WF( f ). Assume without loss of
generality that supp(c2) j [�1,1] and f2 is the characteristic function of the interval
[�1,1]. Let n(v) = (1,v) and b0 = (b0,1,b0,2). Keeping Theorem 2.39 in mind, it follows
that

|S H v
yv f (b0,s0,a)| = |a|�

3
4

����
Z s0+|a|

1
2

s0�|a|
1
2

Wc1(R
aff f (v, ·))(n(v) ·b0,a)dv

����.

By the mean value theorem, we know that there is a va in the interval

(s0 � |a|
1
2 ,s0 + |a|

1
2 ) (3.6)

such that this integral equals

|S H v
yv f (b0,s0,a)| = |a|�

3
4 [s0 + |a|

1
2 � (s0 � |a|

1
2 )]|Wc1(R

v(v)a, ·))(n(va) ·b0,a)|

= 2|a|�
1
4 |Wc1(R

v(va, ·))(n(va) ·b0,a)|.

We are interested in the behavior whenever a approaches zero, so the interval (3.6)
becomes small. Therefore, write va = s0 + ea, with e0 represents a very small constant.
In this case we have

n(va) ·b = (1,s0 + ea) · (b0,1,b0,2) = b0,1 + s0b0,2 + eab0,2.

Consequently

|S H v
yv f (b0,s0,a)| = 2|a|�

1
4 |Wc1(R

v(va, ·))(b0,1 + s0b0,2 + eab0,2,a)|.

We would like to make the following argument: observe that S H v
yv f (b0,s0,a) is the

only shearlet coefficient that contains Wc1(R
v( f (s0, ·))(n(s0)b0,a) as a ! 0 and since

(b0,s0) 2 WF( f ), it follows that the wavelet coefficients contain information about this
singularity. We therefore obtain:

S H v
yv f (b0,s0,a)| & aN .
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3.2 Detecting the Wavefront set using Shearlets

In the previous section, we saw an explicit example where we showed that the shearlet
transform is capable to detect a point in the wavefront set. This example shows the role
of the shearlet transform in the study of wavefront set resolution in shearlet analysis.
Based on this example, we will formulate a general theorem in the following subsection.
This theorem is one of the main results of this thesis and constitutes a novel contribution
to the existing literature, as we will discuss in more details in the subsequent subsection.

The Main Theorem

In the setting of our main theorem of this thesis, we will assume that y is of the form
(2.25) and yv is of the form (2.26). Furthermore, from now on we assume that we have
c1 2 S0(R) and f2 2 C •

0 (R). Finally, we impose a growth condition on y and yv;
they are a rapidly decreasing functions, i.e. for every x 2 R2 and every N 2 N we have
y(x) = O((1+ |x|)�N and yv(x) = O((1+ |x|)�N .

Theorem 3.5 Let f be a function in L2(R2) and let (b0,s0) be a point in R2 ⇥R\{0}.
Define the following two spaces:

• D1 := {(b0,s0) 2 R2 ⇥ [�1,1] : there exist neighborhoods Vb0 of b0 and Vs0 of s0
such that for every N > 0 there exists a CN > 0 satisfying |S H y f (b,s,a)| 6
CN |a|N as a ! 0 for every b 2 Vb0 and every s 2 Vs0}.

• D2 := {(b0,s0) 2 R2 ⇥ ((�•,�1) [ (1,•)) : there exist neighborhoods Vb0 of b0
and Vs0 of s0 such that for every N > 0 there exists a CN > 0 satisfying
|S H v

yv f (b,s,a)| 6 CN |a|N as a ! 0 for every b 2 Vb0 and every 1/s 2 Vs0}.

Then D1 [D2 = WF( f )c.

Since we work with the sets D1 and D2, we split R2 in two different regions. In each
cone we use the shearlet transform or the vertical shearlet transform. In this way we
work with ‘cone-adapted’ shearlets, see Figure 3.5.

First, note that D1 \ D2 = ?, so if (b,s) 2 D1 [ D2, then we have either (b,s) 2 D1
or (b,s) 2 D2. If (b,s) 2 D1, then we are in the green region and we are integrating
along vertical lines. In this case, we work with the affine shearlet transform. Note that
the tangent of the corresponding parametrization is between �1 and 1. If (b,s) 2 D2,
then we are integrating over the horizontal lines. In this case, we work with the vertical
shearlet transform.
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Figure 3.5 Cone-adapted shearlets

To prove Theorem 3.5, we need to show two inclusions, i.e. we need to show the fol-
lowing two cases:

• (b,s) 2 WF( f )c only if (b,s) 2 D1 [D2;

• If (b,s) 2 D1 [D2, then (b,s) 2 WF( f )c.

The proof of Theorem 3.5 is quite long and therefore the following two sections are
devoted to providing the proof. We split it into the ‘Only if’ part and the ‘If’ part, which
correspond respectively with the two bullets above.

Contribution to the Literature

Theorem 3.5 is one of the most important theorems of this thesis. While the result has
been established for more than a decade, Grohs’s original 2010 proof was quite techni-
cal, see Grohs (2010). Some years later, in 2019, Bartolucci obtained an integral rep-
resentation of the shearlet transform in terms of the wavelet and the Radon transforms.
This integral representation was used to formulate and prove a theorem for detecting
the wavefront set using the shearlet transform. In Bartolucci (2019), only the shearlet
transform was used, but the vertical shearlet transform was not used. The problem with
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this framework is that we are not able to cover the whole wavefront set, because only (a
version of) the region D1 is taken into account.

The new contribution to the literature is that we consider not only the shearlet transform,
but also the vertical shearlet. Working with cone-adapted shearlets, i.e. by considering
the sets D1 and D2, we make a distinction between the use of the shearlet transform and
the vertical shearlet transform. This approach allows us to generalize the results from
Bartolucci (2019) to cover all possible directions in the wavefront set.

A chronological visualization of the key results in the study of the wavefront set, along
with the results of this thesis, is shown in Figure 3.6.

Wavelet system

1980

Shearlet system

2005
Grohs
2010

Bartolucci
2019

Rozenbroek
2025

Figure 3.6 Timeline of the study of the wavefront set

The proof of the vertical shearlet transform, presented in the next two sections, follows
the approach outlined for the shearlet transform in Bartolucci (2019). In addition, we
offer much motivation and include the intermediate steps in detail.

3.3 ‘Only if’ part of the proof of Theorem 3.5

Suppose that (b,s) 2 WF( f )c. If (b,s) 62 D2, then in Bartolucci (2019) it is shown that
(b,s) 2 D1. So our task is to show that if (b,s) 62 D1, then (b,s) 2 D2. This will be
achieved in this section.

From Theorem 2.25 we know that the wavefront set of an Lp function f can be described
using the decay properties of the Fourier transform of the function t 7! Rv(f f )(v, t). In
Section 2.5, we saw that wavelets are able to detect whether a function is smooth at a
point. So it makes sense to expect that the decay properties of the wavelet coefficients
of t 7! Rv(f f )(v, t) can tell us something about the microlocal features of f .

We now formalize and prove this intuition in the lemma below.

Lemma 3.6 Let f 2 L2(R2) and let (x0,v0) 2 R2 ⇥R\{0} be a regular directed point
of f . Let c 2 L2(R) be an admissible wavelet with all vanishing moments such that
F (c) 2 L1(R). Then, there exist a neighborhood Ux0 of x0, a neighborhood Vv0 of v0
and a function f 2 C •

0 (R2) satisfying f(x0) 6= 0 such that for every N > 0 there exists
a constant CN such that

|Wc(Rv(f f ))(v, t)| 6 CN |t|N (3.7)
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for every v 2 Vv0 and t 2 R.

Proof Let (x0,v0) 2 R2 ⇥R\{0} be a regular directed point of f 2 L2(R2). Theorem
2.25 implies that there exist a neighborhood Ux0 of x0, a neighborhood Vv0 of v0 and
a function f 2 C •

0 (R2) satisfying f(x0) 6= 0 such that, for every N 2 N, there exists a
constant CN with

|F (Rv(f f )(v, t))(x )| 6 CN(1+ |x |)�N (3.8)

for all v 2 Vv0 and x > 0. By the definition of the wavelet transform and Parseval’s
identity, we have

Wc(Rv(f f )(v, t))(b,a) = hRv(f f )(v, t),Wb,ac)i = hF (Rv(f f )(v, t)),F (Wb,ac)i.

Parseval’s identity is justified by the fact that both Wb,ac and Rv(f f ) are in L2, the
latter is a consequence of Hölder’s inequality and the fact that f is in C •

0 . Combining
this result with Formula (2.14), we obtain

|Wc(Rv(f f )(v, t))(b,a)| 6 |a|
1
2

Z •

�•
|F (Rv(f f )(v, t))(x ))|F c(ax )|dx . (3.9)

For every M > 0 we can find an a such that 0 < a < 2M
2M+1 . We split the integral in (3.9)

as the sum of A and B, where

A := |a|
1
2

Z

|x |6|a|�a
|F (Rv(f f )(v, t))(x ))|F c(ax )|dx ,

B := |a|
1
2

Z

|x |>|a|�a
|F (Rv(f f )(v, t))(x ))|F c(ax )|dx .

Estimating A yields:

A = |a|
1
2 +M

Z

|x |6|a|�a
|x |M|F (Rv(f f )(v, t))(x ))|F (q)(ax )|dx (Lemma 2.27)

6 |a|
1
2 +M(1�a)

Z

|x |6|a|�a
|F (Rv(f f )(v, t))(x ))|F (q)(ax )|dx (Since |x | 6 |a|�a )

6 |a|
1
2 +M(1�a)

Z

|x |6|a|�a
|F ((f f )(vx ,x ))|F (q)(ax )|dx (Fourier slice theorem)

6 |a|
1
2 +M(1�a)kF (f f )kL•

Z

|x |6|a|�a
|F (q)(ax )|dx (Hölder)

6 |a|M(1�a)kf f kL1

Z

|x |6|a|�a
|F (Wx+vy,aq)(x )|dx (Prop. Fourier transform)

6
p

2|a|M(1�a)� a
2 kf f kL1kF (Wx+vy,aq)kL2 (Cauchy-Schwarz)

=
p

2|a|M(1�a)� a
2 kf f kL1kqkL2 . (Plancherel)
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We can also estimate B by

B 6 CN |a|
1
2

Z

|x |>|a|�a
(1+ |x |)�N |F c(ax )|dx (By (3.8))

6 CN |a|
1
2

Z

|x |>|a|�a
|x |�N |F c(ax )|dx (Since |x | 6 |1+x |)

6 CN |a|aN+ 1
2

Z

|x |>|a|�a
|F c(ax )|dx (Since |x | > |a|�a )

= CN |a|aN� 1
2

Z

|x |>|a|�a
|F c(x )|dx (Dilation)

6 CN |a|aN� 1
2 kF ckL1 . (Since {|x | > |a|�a} j R2)

The latter is finite, since we imposed that F c 2 L1. The constant CN is independent of
v and since our previous two estimates work for every positive M and N, we obtain

|Wc(Rv(f f )(v, t))(b,a)| = O(|a|M(1�a)� a
2 + |a|aN� 1

2 ),

with v 2 Vv0 . Consequently, since c has all vanishing moments, we deduce for every
N > 0 that

|Wc(Rv(f f )(v, t))(b,a)| = O(|a|N).

So we obtain (3.7) for every v 2 Vv0 and every t 2 R.

With this lemma in mind, we can now prove the ‘Only if’ part of the proof of Theorem
3.5.

Proof ‘Only if’ part of Theorem 3.5 Let (b0,s0) 2 R2 ⇥R \ {0} be a regular directed
point of f 2 L2(R2). Lemma 3.6 implies that there exist a neighborhood Ub0 of b0, a
neighborhood Vs0 of s0 and a function f 2 C •

0 (R2) , with f(x0) 6= 0, such that for every
N > 0 we have

|Wc(Rv(f f )(v, t))(b,a)| 6 CN |a|N , (3.10)

for a certain constant CN and for all v 2 Vs0 and b 2 R. Furthermore, we can assume
without loss of generality that f ⌘ 1 on Ub0 . So for every b 2 Ub0 we can assume that
|x�b| > d for some positive d .

We are interested in the behavior of |S H v
yv f (b,s,a)| as a ! 0. By (3.10) we know

how the wavelet transform of the vertical Radon transform of f f behaves. Therefore,
we write f = (1�f) f +f f and we get the following inequality

|S H v
yv f (b,s,a)| 6 |S H v

yv(1�f) f (b,s,a)|+ |S H v
yvf f (b,s,a)|.

So to study the behavior of the shearlet coefficient of f , it suffices to study the behavior
of the shearlet coefficients of (1�f) f and f f .
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We start with giving an estimate of the shearlet coefficients |S H v
y((1�f) f )(b,s,a)|.

We have:

Sv
b,s,ay = |a|�

3
4 |y(Ã�1

a S̃�1
s (x�b)), (By (2.23))

6 CN |a|�
3
4 (1+ |Ã�1

a S̃�1
s (x�b)|)�N (Since y is rapidly decreasing)

For every x 2 R2 and M 2 GL(2,R) we have |x| = |MM�1x| 6 kMk|M�1x|, where k ·k
denotes the spectral norm1 of a matrix. So we obtain.

kMk�1|x| 6 |M�1x|.

The eigenvalues of the matrix Ã†
aÃa are a2 and |a| 1

2 . Since we are interested in the
behavior of the shearlet coefficients as a ! 0, we may consider the case that |a| < 1.
Consequently, we deduce kÃak = |a| 1

2 . Furthermore, we have for all s 2 R that

kS̃sk2 =
1
2

s2 +1+
1
2

p
s4 +4s2. (3.11)

From these observations, it follows that:

|Sv
b,s,ay(x)| 6 CN |a|�

3
4 (1+ |Ã�1

a S̃�1
s (x�b)|)�N

6 CN |a|�
3
4 (1+kÃak�1kS̃sk�1|x�b|)�N (3.12)

= CN |a|�
3
4 (1+ |a|�

1
2 kS̃sk�1|x�b|)�N (3.13)

= CN |a|�
3
4 + N

2 kS̃skN(kS̃sk|a|
1
2 + |x�b|)�N .

Combining the above estimate with the definition of the vertical shearlet transform, see
(2.24), gives that for every b 2 Ub0 and all s 2 Vs0 we have

|S H v
y((1�f) f )(b,s,a)| = |h(1�f) f ,Sv

b,s,ayi|

6
Z

R2
|1�f(x)|| f (x)||Sv

b,s,ay(x)|dx

6 CN |a|�
3
4 + 1

2 NkS̃skN
Z

R2
|1�f(x)|| f (x)|(kS̃sk|a|

1
2 + |x�b|)�Ndx

6 CN |a|�
3
4 + 1

2 NkS̃skN
Z

R2
|1�f(x)|| f (x)||x�b|�Ndx

= CN |a|�
3
4 + 1

2 NkS̃skN
Z

|x�b|>d
|1�f(x)|| f (x)||x�b|�Ndx

6 CN |a|�
3
4 + 1

2 NkS̃skNk1�fkL•k f kL2

✓Z

|x�b|>d
|x�b|�2Ndx

◆ 1
2

6 C|a|�
3
4 + 1

2 N ,

1 The spectral norm of a matrix M is defined as the square root of the maximum eigenvalue of M†M, where
M† is the Hermitian transpose.
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for some C which is independent of b and v. Note that we assumed that s 2 Vs0 and
therefore there is some e > 0 such that s 6 e + s0 and thus kS̃sk2 6 Cs0,e . This gives an
estimate of the shearlet transform of the function (1�f) f .

We will now estimate the shearlet coefficients of the function f f . In our analysis, The-
orem 2.39 plays a vital role. In the setting of this theorem, we may assume without
loss of generality that supp(f2) j [�1,1]. Then f2((v � s)|a|�1/2) equals zero outside
the interval (s� |a| 1

2 ,s+ |a| 1
2 ). Since we are interested in the case that a ! 0, we have

for sufficiently small a that (s � |a| 1
2 ,s + |a| 1

2 ) j Vs0 . We will work with this a. Note
that f f 2 L1(R2)\ L2(R2), so Theorem 2.39 is applicable and consequently for every
b 2 Ub0 and s 2 Vs0 we obtain

|S H v
yv(f f )(b,s,a)|

6 |a|�
3
4

Z

R2
|Wc(Rv(f f )(v, t))(n(v) ·b,a)||f2

 
v� s

|a| 1
2

!
|dv (By Theorem 2.39)

= |a|�
3
4

Z

Vs0

|Wc(Rv(f f )(v, t))(n(v) ·b,a)||f2

 
v� s

|a| 1
2

!
|dv (Porperty of f2)

6 CN |a|�
3
4 +N

Z

VS0

|f2

 
v� s

|a| 1
2

!
|dv (By (3.10))

6 CN
p

2|a|Nkf2kL2 (Cauchy-Schwarz)

6 D|a|N (Since f 2 C •
0 )

Here is D a constant independent of b and v. Combining both results, we obtain

|S H v
yv f (b,s,a)| 6 |S H v

yv(1�f) f (b,s,a)|+ |S H v
yvf f (b,s,a)|

6 C|a|�
3
4 + 1

2 N +D|a|N .

Since this equality holds for every N we deduce that (b,s) 2 D2 and hence we have
shown the ‘Only if’ part of Theorem 3.5.
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3.4 ‘If’ part of the proof of Theorem 3.5

x0,1

x0,2

Figure 3.7: The cone G⇤
x0

Suppose that (b,s) 2 D1 [ D2. If (b,s) 2 D1, then we
are done, since this case was already shown in Bar-
tolucci (2019). So assume (b,s) 2 D2. We will show that
(b,s) 2 WF( f )c. To obtain this result, we start with in-
troducing the definition of a cone.

Definition 3.7 A set G j R2 is called a cone if for
every x 2 G and for every l 2 R\{0} we have lx 2 G.
The set Gx0 \B(0,1)

c
will be denoted by G⇤

x0
.

Figure 3.7 shows an illustration of the cone G⇤
x0

.

We make the following remark, which will be used later
on in the thesis.

Remark 3.8 For every x0 2 Gx0 , where x0 =
(x0,1,x0,2), we have that the ratio of x0,1 and x0,2, is
constant. In other words, we have that x0,1/x0,2 6 M for
some M > 0.

To prove the ‘If’ part of Theorem 3.5, we will do some
preparations. First, in Lemma 3.9 we show that a point
(x0,x0) is a regular directed point of f if for every j 2
L1(G⇤

x0
) we have

�����

Z

G⇤
x0

|x |NF (f f )(x )j(x )dx

�����6 CNkjkL1(G⇤
x0

). (3.14)

After proving this particular estimate, our proof is in reach.

Lemma 3.9 Let f 2 D 0(R2). The following statements are equivalent:

(i) A point (x0,x0) 2 R2 ⇥ R \ {0} is a regular directed point of f if there exist a
neighborhood Ux0 of x0, a function f 2 C •

0 (R2) satisfying f(x0) 6= 0, and a conic
neighborhood Gx0 of x0 such that, for every N 2 N, there exists a constant CN such
that

|F (f f )(x )| 6 CN(1+ |x |)�N

for all x 2 Gx0 .

(ii) A point (x0,x0) 2 R2 ⇥ R \ {0} is a regular directed point of f if there exist a
neighborhood Ux0 of x0, a function f 2 C •

0 (R2) satisfying f(x0) 6= 0, and a conic
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neighborhood Gx0 of x0 such that, for every N 2 N, there exists a constant CN > 0
such that

|F (f f )(x )| 6 CN |x |�N

for all x 2 G⇤
x0

= Gx0 \B(0,1)
c
, with B(0,1) the ball of center 0 and radius 1.

(iii) A point (x0,x0) 2 R2 ⇥ R \ {0} is a regular directed point of f if there exist a
neighborhood Ux0 of x0, a function f 2 C •

0 (R2) satisfying f(x0) 6= 0 and a conic
neighborhood Gx0 of x0 such that, for every N 2 N, the functional

j 7!
Z

G⇤
x0

|x |NF (f f )(x )j(x )dx

is continuous on L1(G⇤
x0

), i.e.,
�����

Z

G⇤
x0

|x |NF (f f )(x )j(x )dx

�����6 CNkjkL1(G⇤
x0

),

for every j 2 L1(G⇤
x0

).

Proof We start with proving (i) ) (ii). Take f 2 D 0(R2) and assume that the point
(x0,x0) 2 R2 ⇥R\{0} is a regular directed point of f . Then, by our assumption, there
exists a neighborhood Ux0 of x0, a function f 2 C •

0 (R2) satisfying f(x0) 6= 0, and a
conic neighborhood Gx0 of x0 such that, for every N 2 N, there exists a constant CN > 0
such that

|F (f f )(x )| 6 CN(1+ |x |)�N

for all x 2 Gx0 . So in particular it holds for every x 2 G⇤
x0

. Since x 2 G⇤
x0

, we have
|x | > 1. Consequently, for every N 2 N we have

|F (f f )(x )| 6 CN(1+ |x |)�N 6 CN |x |�N ,

which proves the first implication.

Now we prove (ii) ) (i). Let f 2 D 0(R2) and let (x0,x0) in R2 ⇥R \ {0} be a regular
directed point of f . Suppose that there is a neighborhood Ux0 of x0, a function f 2
C •

0 (R2) satisfying f(x0) 6= 0, and a conic neighborhood Gx0 of x0 such that, for every
N 2 N, there exists a constant CN > 0 such that

|F (f f )(x )| . |x |�N

for all x 2 G⇤
x0

= Gx0 \B(0,1)
c
. Then, for |x | > 1 we have (1+ |x |) 6 2|x | and conse-

quently we have

|F (f f )(x )| . |x |�N . (1+ |x |)�N .
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Now consider the case |x | 6 1. Note that the Fourier transform of f f is essentially
bounded and consequently there exists an M > 0 such that |F (f f )(x )| 6 M. So for
every N 2 N we have

|F (f f )(x )| 6 M · (1+ |x |)N

(1+ |x |)N 6 2M
(1+ |x |)N ,

in the last step we used our assumption that |x | 6 1.

Finally, we show that (ii) , (iii). Note that

|F (f f )(x )| 6 CN |x |�N

holds for every x 2 G⇤
x0

if and only if the functional x 7! |x |NF (f f )(x ) is bounded.
Since x 7! |x |NF (f f )(x ) belongs to L•(G⇤

x0
), this is equivalent with requiring that the

functional

j 7!
Z

Gx0

|x |NF (f f )(x )j(x )dx

is continuous on L1(Gx0), in other words, we require that for every j 2 L1(G⇤
x0

) we have
�����

Z

G⇤
x0

|x |NF (f f )(x )j(x )dx

�����6 CNkjkL1(G⇤
x0

). (3.15)

Lemma 3.10 Let f 2 L2(R2) and j 2 C0(G⇤
x0

) we have
����
Z

G⇤
x0

x NF (f f )(x )j(x )dx
����6

Z

R2

Z

R

Z

R+
|S H v

yv(f f )(b,s,a)||a|�
1
4 �N (3.16)

⇥
Z

G⇤
x0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2

dadsdb
|a|3 .

Here is c̃1 a wavelet that satisfies the relationship F (c2N
1 )(t) = |t|NF (c̃1)(t).

Proof Suppose that f 2 L2(R2) and j 2 C0(G⇤
x0

). Observe that for any yv we have
Z

G⇤
x0

x NF (f f )(x )j(x )dx =
Z

R2
x NF (f f )(x )j(x )dx (Since j 2 C0(G⇤

x0
))

= hF (f f ), | · |Nji (Definition inner product)

= hf f ,F�1| · |Nji (Fourier transform is unitary)

= hS H v
yv(f f ),S H v

yv(F�1| · |Nj)i (Shearlet transform is an isometry)
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and consequently, we obtain
Z

G⇤
x0

x NF (f f )(x )j(x )dx

=
Z

R2

Z

R

Z

R+
S H v

yvf f (b,s,a)S H v
yv(F�1| · |Nf)(b,s,a)

dadsdb
|a|3 . (3.17)

We will estimate S H v
yv(F�1| · |Nf)(b,s,a) to obtain the estimate displayed in (3.16).

By Formula (2.27) we have

S H v
yv(F�1(·)Nj)(b,s,a)

= |a|�
3
4

Z

R
Wc1(R

v(F�1(·)Nj)(v, ·))(n(v) ·b,a)f2

 
v� s

|a| 1
2

!
dv. (3.18)

Note that

Wc1(R
v(F�1| · |Nj)(v, ·))(n(v) ·b,a)

= hRv(F�1| · |Nj)(v, ·),Wn(v)·b,ac1i (Def. wavelet transform)

= hF (Rv(F�1| · |Nj)(v, ·)),F (Wn(v)·b,ac1)i (Parseval)

= h|n(v)|Nj(·n(v)),F (Wn(v)·b,ac1)i (Fourier slice theorem)

= (1+ v2)
N
2 hj(·n(v)),F (Wn(v)·b,ac1)i. (Rewriting)

We have

|hj(·n(v)),F (Wn(v)·b,ac1)i| 6
Z

R
|j(x n(v))||F (Wn(v)·b,ac1(x ))|dx

= |a|
1
2

Z

R
|j(x n(v))||e2pix n(v)·b||F c1(ax )|dx (By (2.14))

= |a|
1
2 �N

Z

R
|j(x n(v))||ax |N |F c1(ax )|dx (Rewriting)

= |a|
1
2 �N

Z

R
|j(x n(v))||F c̃1(ax )|dx , (Defenition c̃1)

where in the last line we defined c̃1 such that F c̃1(x ) = |x |NF c1(x ) holds. Combining
the latter estimate together with (3.18) yields:

|S H v
yv(F�1(·)Nj)(b,s,a)|

6 |a|�
1
4 �N

Z

R

Z

R
(1+ v2)

N
2 |j(x n(v))||F (c̃1(ax )||f2

 
v� s

|a| 1
2

!
|dx dv.
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Using the substitutions v 7! x1/x2 and x 7! x2 we obtain

j(x n(v)) = j(x (v,1)) = j(x2(x1/x2,1)) = j(x1,x2) (3.19)

and consequently

|S H v
yv(F�1(·)Nj)(b,s,a)|

6 |a|�
1
4 �N

Z

R

Z

R

✓
1+

x 2
1

x 2
2

◆N
2

|j(x1,x2)||F (c̃1(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
||x2|�1dx1dx2

6 C|a|�
1
4 �N

Z

G⇤
x0

|j(x1,x2)||F (c̃1(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2.

In the second inequality, we used the fact that j is compactly supported in G⇤
x0

and there-

fore we know that |x2| > 1. By Remark 3.8 we know that (x1,x2) 7! (1+x 2
1 /x 2

2 )
N
2 6 C

holds for some positive C. Combining the last inequality and (3.17) gives the desired
formula (3.16).

Finally, we need the following result, whose proof can be found in Kutyniok and Labate
(2009).

Lemma 3.11 Let yv 2 L2(R2), which is in the form as described in Section 2.7, where
y1 2 L2(R) is a wavelet, Fy1 2 C •

0 (R) such that supp(Fy1) j [�2,�1/2][ [1/2,2].
Furthermore, on y2 we impose the following restrictions: ky2kL2 = 1, Fy2 2 C •

0 (R)
such that supp(Fy2) j [�1,1] and Fy2 > 0 on the interval (�1,1).
Then for f 2 L2(R2) and f 2 C •

0 (R2) we have for every N 2 N that there exists a
constant CN such that

|S H v
yvf f (b,s,a)| 6 CN |a|N . (3.20)

Remark 3.12 From Lemma 3.11 we see that the imposed conditions for the wavelets
are quite strict. In our proof we don’t need these specific conditions; the only thing that
we need in our proof is the estimate (3.20). It is not known if (3.20) also holds for our
(less restrictive) choice of yv. This is a nice question for follow-up research.

Now we have set up our preparations, we are ready to prove the ‘If’ part of the proof of
Theorem 3.5.

Proof ‘If’ part of Theorem 3.5 By Lemma 3.9 part (iii), it suffices to show that there
exist a neighborhood U 0

b0
of b0, a function f 2 C •

0 (R2) such that f(x0) 6= 0 and a
neighborhood V 0

s0
of s0 such that for every L 2 N the functional

j 7!
Z

G⇤
s0

|x |LF (f f )(x )j(x )dx
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is continuous on L1(G⇤
s0

). Here is G⇤
s0

= Gs0 \B(0,1)
c
, where Gs0 is the cone parametrized

by the interval V 0
s0

. Choose e 0
0 > 0 such that V 0

s0
:= (s0 � e 0,s0 + e 0) is contained in

Vs0 = (s0 � e,s0 + e) in such a way that there is always a positive distance between the
boundary’s of V 0

s0
and Vs0 . Finally, let f 2 C •

0 (R2) such that supp(f) j U 0
b0

j Ub0 .

By Formula (3.15) and Lemma 3.10 it suffices to show that for every L > 0 there exists
a constant CL > 0 such that
Z

R2

Z

R

Z

R+
|S H v

yvf f (b,s,a)||a|�
1
4 �N (3.21)

⇥
Z

G⇤
s0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2

dadsdb
|a|3 6 CLkjkL1(G⇤

s0 ),

where j is in C0(G⇤
s0

). We split the above integral in eight integrals, call them I1, I2, . . . , I8,
and analyze these in eight different regions. See Table 3.1 for an overview. In the fol-
lowing estimates, we consider C as a general positive constant which may vary from
expression to expression.

Integral a s b

I1 |a| < 1 s 2 Vs0 b 2 U 0
b0

I2 |a| > 1 s 2 Vs0 b 2 U 0
b0

I3 |a| < 1 s 2 V c
s0

b 2 U 0
b0

I4 |a| > 1 s 2 V c
s0

b 2 U 0
b0

I5 |a| < 1 s 2 Vs0 b 2 U 0c
b0

I6 |a| > 1 s 2 Vs0 b 2 U 0c
b0

I7 |a| < 1 s 2 V c
s0

b 2 U 0c
b0

I8 |a| > 1 s 2 V c
s0

b 2 U 0c
b0

Table 3.1 Overview of the split integrals

We start with estimating the first integral, I1. Since Lemma 3.11 holds for every N > 0,
we may choose N such that N > 2 1

4 +L. In this case, we have

I1 =
Z

U 0
b0

Z s0+e

s0�e

Z

|a|<1
|S H v

yv(f f )(b,s,a)||a|�
1
4 �L

⇥
Z

G⇤
s0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2

dadsdb
|a|3

6 C
Z

U 0
b0

Z s0+e

s0�e

Z

|a|<1
|a|N�3 1

4 �L

⇥
Z

G⇤
s0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2dadsdb (By Lemma 3.11)
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6 C
Z

U 0
b0

Z s0+e

s0�e

Z

|a|<1
|a|N�3 1

4 �L
Z

G⇤
s0

|j(x1,x2)|dx1dx2dadsdb

6 CkjkL1(G⇤
s0 ).

In the preceding inequality we made use of the fact that f2 is compactly supported in
G⇤

s0
, and hence bounded, and the fact that F (c̃1) is bounded. The latter is a consequence

of the fact that we imposed that c1 is in S0(R) and consequently it follows that c̃1 is in
S0(R) too.

For I2 we select N such that N < 2 1
4 + L, which is again always possible due to the

fact that Lemma 3.11 holds for every N. A similar calculation as above shows that
I2 6 CkjkL1(G⇤

s0 ).

Now we will estimate I3. We first note that by Lemma 2.27 we have

|S H v
yvf f (b,s,a)| 6 |a|�

3
4

Z

R
|Wc1(R

v(f f )(v, ·))(n(v) ·b,a)||f2

 
v� s

|a| 1
2

!
|dv.

(3.22)

We have

|Wc1(R
v(f f )(v, ·))(n(v) ·b,a)| (3.23)

= |hRv(f f )(v, ·)),Wn(v)·b,ac1i| (Def. Wavelet transform)

= |hFRv(f f )(v, ·)),F (Wn(v)·b,ac1)i| (Parsevel)

6
Z

R
|F (f f )(vx )||F (Wn(v)·b,ac1)(x )|dx (Fourier slice theorem)

6 |a|
1
2 kF (f f )kL•(R)

Z

R
|F (c1)(ax )|dx (By (2.14))

= |a|�
1
2 kF (f f )kL•(R)kF c1kL1(R) (3.24)

Combining (3.22) and (3.24) yields:

|S H v
yvf f (b,s,a)| 6 |a|�1 1

4 |F (f f )kL•(R)kF c1kL1(R)

Z

R
|f2

 
v� s

|a| 1
2

!
|dv.

Since we assumed that supp(f2) j [�1,1], we obtain

|S H v
yvf f (b,s,a)| 6 |a|�1 1

4 |F (f f )kL•(R)kF c1kL1(R)

Z s+|a|
1
2

s�|a|
1
2

|f2

 
v� s

|a| 1
2

!
|dv.

By the Cauchy-Schwarz inequality we finally obtain

|S H v
yvf f (b,s,a)| 6

p
2|a|�

3
4 |F (f f )kL•(R)kF c1kL1(R)kf2kL2(R).
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This inequality implies that

I3 =
Z

U 0
b0

Z

|s�s0|>e

Z

|a|<1
|S H v

yv(f f )(b,s,a)||a|�
1
4 �L

⇥
Z

G⇤
s0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2

dadsdb
|a|3

6 C
Z

U 0
b0

Z

|s�s0|>e

Z

|a|<1
|a|�4�L

⇥
Z

G⇤
s0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2dadsdb

We know that f2 2 C •
0 (R), and hence it is also in S (R) and thus, by (2.1), we have

|f2

 
x1/x2 � s

|a| 1
2

!
| 6 |a|�

N
2

����
x1

x2
� s

����
�N

,

where we choose N > 1.

Furthermore, Lemma 2.27 implies that for every M 2 N there exists a q 2 L2(R) such
that for every x2 2 R we have

F (c)(x2) = x M
2 F (qx2),

here we choose M > 3+L+ N
2 .

Furthermore, from these observations, we get the following estimate for I3:

I3 6 C
Z

U 0
b0

Z

|s�s0|>e

Z

|a|<1
|a|M�4�L� N

2

⇥
Z

G⇤
s0

|j(x1,x2)||F (q)(ax2)||x2|M
����
x1

x2
� s

����
�N

dx1dx2dadsdb

Since we have v = x1/x2 2 Vs0 = (s0 � e 0,s0 + e 0) we have |x1/x2 � s0| < e 0. Since we
are integrating in the region |s� s0| > e > e 0 > 0, we know that

0 < |s� s0|� e 0 < |s� s0|� |x1/x2 � s0|,

from which it follows:

|x1/x2 � s0|�N 6 ||s� s0|� |x1/x2 � s0||�N < ||s� s0|� e 0|�N . (3.25)
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The first inequality is an application of the reverse triangle inequality. Hence we obtain

I3 6 C
Z

U 0
b0

Z

|s�s0|>e

Z

|a|<1
|a|M�4�L� N

2

⇥
Z

G⇤
s0

|j(x1,x2)||F (q)(ax2)||x2|M
����|s� s0|� e 0

����
�N

dx1dx2dadsdb

6 CkjkL1(G⇤
s0 ).

A similar calculation shows that I4 6 CkjkL1(G⇤
s0 ), but then we choose M such that

M < 3+L+ N
2 .

Now will estimate I5.

I5 =
Z

U 0c
b0

Z

|s�s0|6e

Z

|a|<1
|S H v

yv(f f )(b,s,a)||a|�
1
4 �L

⇥
Z

G⇤
s0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2

dadsdb
|a|3

6
Z

U 0c
b0

Z

|s�s0|6e

Z

|a|<1
|a|�

1
4 �L

Z

supp(f)
|f f (x)||Sv

b,s,ayv(x)|dx

⇥
Z

G⇤
s0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2

dadsdb
|a|3

Note that we are integrating in the region |a| < 1, so we are in the setting of Equation
(3.13), so we get, for N > 6�2L, that

|Sv
b,s,ayv(x)| 6 CN |a|

N
2 � 3

4 (|a|
1
2 +kS̃sk�1|x�b|)�N 6 CN |a|

N
2 � 3

4 kS̃skN |x�b|�N .

Equation (3.11) implies that

kS̃sk2 =
1
2

s2 +1+
1
2

p
s4 +4s2.

Since s 6 e + s0, we deduce that kS̃sk2 6 Cs0,e . Hence

|Sv
b,s,ayv(x)| 6 C|a|

N
2 � 3

4 |x�b|�N .

Since b 2 U 0c
b0

and x 2 supp(f) 2 U 0
b0

, we can always find a C > 0 such that |x � b| >
C|b0 �b|. Consequently, we obtain

|Sv
b,s,ayv(x)| 6 C|a|

N
2 � 3

4 |b0 �b|�N
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and thus

I5 6
Z

U 0c
b0

Z

|s�s0|6e

Z

|a|<1
|a|

N
2 �4�L

Z

supp(f)
|f f (x)||b0 �b|�Ndx

⇥
Z

G⇤
s0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2dadsdb

6
Z

U 0c
b0

Z

|s�s0|6e

Z

|a|<1
|a|

N
2 �4�Lkf f kL1(R2)|b0 �b|�N

⇥
Z

G⇤
s0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2dadsdb

6 CkjkL1(G⇤
s0 ).

For I6 we have |a| > 1 and hence Equation (3.12) implies that for N > L
2 + 3

2 we have

|Sv
b,s,ayv(x)| 6 CN |a|�

3
4 (1+ |a|�2kS̃sk�1|x�b|)�N

= CN |a|2N� 3
4 kS̃sk�1|x�b|�N .

A similar argument as before, yields:

|Sv
b,s,ayv(x)| 6 C|a|2N� 3

4 |x�b|�N .

In the same spirit as the estimates for I5, we can show that I6 6 CkjkL1(G⇤
s0 ). The latter

is a consequence of our choice for N > L
2 + 3

2 .

Now we will estimate the last two integrals, I7 and I8. We start with estimating I7.
Equation (3.12) implies that

|Sv
b,s,ayv(x)| 6 CN |a|�

3
4 (1+kÃak�1kS̃sk�1|x�b|)�N .

Since we integrate in the region |a| < 1 we know that kÃak equals |a| 1
2 . Consequently:

|Sv
b,s,ayv(x)| 6 CN |a|

N
2 � 3

4 kS̃skN |x�b|�N . (3.26)

It therefore follows that

I7 =
Z

U 0c
b0

Z

|s�s0|>e

Z

|a|<1
|S H v

yv(f f )(b,s,a)||a|�
1
4 �L

⇥
Z

G⇤
s0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2

dadsdb
|a|3

6
Z

U 0c
b0

Z

|s�s0|>e

Z

|a|<1
|a|�

1
4 �L

Z

supp(f)
|f f (x)||Sv

b,s,af v(x)|dx
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⇥
Z

G⇤
s0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2

dadsdb
|a|3 (Def. S H v

yv (f f ))

6
Z

U 0c
b0

Z

|s�s0|>e

Z

|a|<1
|a|�4�L+ N

2 kS̃skN
Z

supp(f)
|f f (x)||x�b|�Ndx

⇥
Z

G⇤
s0

|j(x1,x2)||F (c̃1)(ax2)||f2

 
x1/x2 � s

|a| 1
2

!
|dx1dx2dadsdb. (By (3.26)

We have b 2 U 0c
b0

and x 2 supp(f) j U 0
b0

we can find a C such that |x � b| > C|b0 � b|.
Furthermore, we know that f2 has fast decay, so for every Ñ, we can find a constant C
such that

|f2

 
x1/x2 � s

|a| 1
2

!
| 6 C|a|�

Ñ
2

����
x1

x2
� s

����
�Ñ

.

Here we choose Ñ > 1 + N. We can do this, since the inequality above holds for every
Ñ. Finally, since c̃1 2 S0, we know that there exists a q 2 S0 such that for every
x2 2 R and every M we have F (c̃1)(ax2) = aMx M

2 F (qx2). Here we choose M such
that M > 3�L� N

2 + Ñ
2 .

Combining these three observations with our earlier estimates, yields:

I7 6
Z

U 0c
b0

Z

|s�s0|>e

Z

|a|<1
|a|M�4�L+ N

2 � Ñ
2 |b0 �b|�N

Z

supp(f)
|f f (x)|dx

⇥
Z

G⇤
s0

|j(x1,x2)||F (q)(ax2)||x2|MkS̃skN |
����
x1

x2
� s

����
�Ñ

dx1dx2dadsdb

6
Z

U 0c
b0

Z

|s�s0|>e

Z

|a|<1
|a|M�4�L+ N

2 � Ñ
2 |b0 �b|�Nkf f kL1

⇥
Z

G⇤
s0

|j(x1,x2)||F (q)(ax2)||x2|MkS̃skN |||s� s0|� e 0|�Ñdx1dx2dadsdb (By 3.25)

6 CkjkL1(G⇤
s0 ).

The integrals above converge, due to our imposed choices of Ñ and M.

The final case I8 can be treated similar. The only difference is that we choose M such
that M < 3�L� N

2 + Ñ
2 .

Combining all eight cases leads to the proof of (3.21). Therefore, our theorem has been
proven.



4

Conclusions and discussion

In this final chapter, we give an overview of the results of this thesis. In Section 4.1
we state our conclusions from our literature review and summarize our contribution to
the existing literature in the study of the roles of the Radon transform and the wavelet
transform in the resolution of the wavefront set in shearlet analysis. Finally, in Section
4.2 we outline potential directions for future research based on our work.

4.1 Conclusion

The goal of this thesis was to study the microlocal properties of the shearlet transform
via the Radon and wavelet transforms. This was done by first studying some well-known
results from the literature. This literature review gave the following insights.

(i) The wavelet transform is capable of detecting pointwise singularities, see Theo-
rem 2.29, but it generally falls short in capturing the wavefront set, as shown in
Example 2.34. The main reason for this limitation lies in the isotropic nature of the
wavelet system.

(ii) Theorem 2.25 shows that the Radon transform is able to determine whether a point
belongs to the wavefront set.

(iii) The shearlet transform can characterize points in the wavefront set. This result was
already established in Grohs (2010). The integral formula connecting the (vertical)
shearlet transform with the wavelet and the (vertical) affine Radon transforms, as
presented in Theorems 2.38 and 2.39, offers a new proof approach for this result.
However, the theorem in Bartolucci (2019) characterizes almost the entire wave-
front set, but not completely.

In our study, the results in Theorems 2.38 and 2.39 played a vital role, as they highlight
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the connection between the (vertical) shearlet transform and both the wavelet and (verti-
cal) Radon transforms. This relationship is fundamental to understanding how shearlets
can be used effectively in microlocal analysis.

The novel contribution of this thesis to the literature is the formulation (and proof) of
a general theorem that extends the results from Bartolucci (2019) to cover all possible
directions in the wavefront set. In Theorem 3.5 we work with so-called ‘cone-adapted’
shearlets, i.e. we use the shearlet transform in a set D1 and we use the vertical shearlet
transform in the set D2. This approach enables us to characterize the whole wavefront
set. The proof was inspired by previous work of Bartolucci (2019), but we provided
more motivation and intermediate steps.

Figure 4.1 presents a timeline illustrating the study of the wavefront set using the tools
discussed in this thesis.

Wavelet system

1980

Shearlet system

2005
Grohs
2010

Bartolucci
2019

Rozenbroek
2025

Figure 4.1 Timeline of the study of the wavefront set

4.2 Discussion and Suggestions for Follow-Up Research

In this thesis, we have established a deeper understanding of the connection between the
shearlet transform and the wavefront set. However, several interesting questions remain
unanswered. We provide an overview of these open questions:

(i) In Remark 3.4, we sketched an approach to prove directly, using the decay prop-
erties of the vertical affine Radon transform, that if a point (b0,s0) does not lie in
the wavefront set of f , then the coefficients of the vertical shearlet of the function
f at (b,s,a), with b 2 Ub0 and s 2 Vs0 , decay rapidly as a ! 0. We gave an outline
of an idea in Remark 3.4, but making it mathematically precise remains a topic for
further research.

(ii) The estimate (3.13) in Lemma 3.11 is used in our work, but the conditions in which
it is formulated in Lemma 3.11 are quite strict, and we do not use all these con-
ditions. Future research could aim to prove (3.13) under weaker conditions on the
wavelets, such that the estimate still holds.

(iii) In this thesis, we developed most of the results for functions in the space L2(R2).
Follow-up research could extend our framework to the space of distributions D 0(R2).
This extension would provide deeper insights into the theory.
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Answering these open problems could yield new insights into the microlocal properties
of the shearlet transform, using the Radon and wavelet transform. These insights can be
relevant for theoretical understanding, but also for more practical and applied contexts.
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