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Abstract

Aging is the biological process that changes the body over time. When we age our
bodies become more prone to disease and other health risks. But not everyone expe-
riences these changes at the same age. This is because the age of our cells (biological
age) does not always match our chronological age (time since birth). Being able to
predict someone’s biological age and comparing it to their chronological age can be
used to infer if someone is indeed more prone to diseases or other health risks.

Other studies have been able to predict the age of cells by using gene expressions.
They explore the number of expressions in young and old individuals to identify genes
that are affected by age. What has not yet been explored is how the correlation of
gene pairs are affected by age. How genes cooperate can change with age, this can
be captured by looking at how genes correlate and how that correlation changes with
age. This paper will explore these correlations and answer the following question. By
performing a correlation analysis between features of young individuals, and on the
same features for old individuals, can we interpret any differences and use those to
improve current age prediction models?

During this study we found a lot of gene pairs that have a significant difference in
correlation from younger to older individuals. We also identified hub genes that change
correlation with many other genes. Using these genes to train a linear regression model
we were able to predict the age of cells with a Mean Absolute Error of 9.7835.

Using the hub genes we were not able to improve the current existing linear regres-
sion model. But we did identify genes that have earlier been linked to aging. Like
LIMD2, but also a lot of ribosomal genes and mitochondrial genes, both of which lose
functionality with aging.

1 Introduction
The human body endures significant mechanical, chemical, and environmental stress on a
daily basis. Minor injuries such as cuts, bruises, and muscle strains are very common. The
same goes for diseases that make us sick and weaken our immune systems when they fight
back. Yet, in youth our cells repair very quickly and we heal completely from this damage.
However, as we age, our cells become less active, stem cells do not work as well, and our
body’s natural repair systems slow down, making it harder for tissues to stay healthy. A once
minor injury can now result in prolonged inflammation, delayed wound closure, or chronic
pain. The immune system also weakens with age. A normal flu can be deadly in old age as
thousands of people die from it every year, most of whom are 65 years or older [4]. But this
does not happen to everyone at the same age. There are many 65-year-olds in great shape,
so age does not say everything. This is because there are two types of ages, the chronological
age, which is the time since birth, and the biological age, the age of our cells. The biological
age is responsible for the effects mentioned above and knowing someone’s biological age can
tell us if someone is healthy or not, whether they are more prone to diseases, and if they
need more medical care.

One way to research biological age is to look at the expression of genes in young and
old individuals. Certain genes have a negative correlation between their expression and the
age of the individuals. This means that the older our cells get the less these genes are
expressed. There is already a lot of research done on biological age, and there exist models
that can predict someone’s biological age based on their gene expressions [14]. Previous
studies have also already explored genes that are more affected by aging. For example,
Soheili-Nezhad et al. showed how gene length negatively correlates with their expression in
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older individuals [9]. Additionally, Olga Ibañez-Solé explored age-related changes in gene
expression, including correlations between average expression levels in young and old cells
[5]. They also identify a correlation between the length of a gene and their expression over
age.

These studies looked at gene expression for single genes, and explored how these expres-
sions change with age. But they did not look at gene pairs and how they work together.
Do correlations between genes change with age and are these changes significant? Are there
genes that act as hubs and change correlation with many other genes across age groups? By
performing a correlation analysis between features of young individuals, and on the same
features for old individuals, can we interpret any differences and use those to improve current
age prediction models?

To fill this gap and answer these questions, we calculated the correlations between genes
of different types of blood cells. This has been done for three different age groups. Then
we looked at the differences between these correlations to identify gene pairs that shift from
a strong to a weak correlation (or the other way around) from one age group to another.
We also created networks of those genes to look for hub genes that change correlation with
many other genes. We then used these hub genes to train an age prediction model.

2 Methodology

2.1 Data
The dataset consists of single-cell RNA sequencing measurements profiling gene expres-
sion in 1,058,909 blood cells, covering 36,169 genes. For each cell, expression levels are
quantified by counting unique mRNA transcripts per gene. It is a version of the Asian
Immune Diversity Atlas (AIDA). There are 508 healthy donors from Asian countries like
Japan, South Korea and Singapore between the ages of 17 and 75. The data is hosted by
The Chan Zuckerberg Initiative and can be downloaded using this link https://cellxgene.
cziscience.com/collections/ced320a1-29f3-47c1-a735-513c7084d508. Select the first dataset
"AIDA Phase 1 Data Freeze v1: Chinese, Indian, Japanese, Korean, and Malay donors in
Japan, Singapore, and South Korea". This dataset was also used by Enikő Zakar-Polyák
et al. [14]. They use the data to train single cell transcriptomic clocks using ElasticNet
regression models. We used the same data to find correlations between genes and train the
same models on genes with many significant differences in correlation across age groups.

2.2 Age Ranges
During this research the correlation coefficients are calculated for three age groups: young,
middle-aged and old. To define the age ranges for the three age groups we looked for
age ranges that closely matched biological age groups like early adulthood (20-30), middle
adulthood (30-65), old age (65+) [13], while still keeping at least 50 donors (for most cell
types) to ensure that all correlations have a small p-value. This resulted in the following age
ranges, young (19-30), middle-aged (40-50) and old (60-75). The age groups have 10-year
gaps between them. We chose to do this to make it easier to see any differences (if there are
any) between the correlation coefficients between these groups. The gaps make sure that
the groups are not that similar.

The age ranges are based on the total distribution of the donors’ ages for the entire
dataset. The age ranges are also the same for all cell types to make comparisons between
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the cell types easier. Figure 7 shows the distribution of the donors’ ages for the entire
dataset. In the final age groups, there are 94 young, 148 middle-aged, and 55 old donors.

2.3 Cell Types
The dataset used during this research has a total of 33 different cell types. When making
subsets of the data, we chose 9 cell types instead of all 33. We chose to do this because
we wanted to reduce the total number of results, so it would still be feasible to analyze
them within the time of the project. To still get the best results possible, we chose the
9 best performing cell types based on the prediction-models that were created by Enikő
Zakar-Polyák et al. [14]. These cell types are CD8-positive alpha-beta T cell, CD8-positive
alpha-beta memory T cell, CD4-positive alpha-beta T cell, central memory CD4-positive
alpha-beta T cell, effector memory CD4-positive alpha-beta T cell, gamma-delta T cell,
regulatory T cell, double negative T regulatory cell, and innate lymphoid cell.

2.4 Preprocessing
The preprocessing consists of creating subsets for every cell type. First, all the cells that are
of a different cell type are removed. Then the genes that have a very small expression count
are removed. A small expression count is considered less total expressions than the number
of cells. So, if there are 3000 cells in the subset, all genes with less than 3000 transcripts in
total are removed. For the next step, the average normalized expression (the log-normalized
expression value x̃ij for gene j in cell i was calculated as x̃ij = ln

(
1 +

cij∑
k cik

× 104
)
, where

cij is the raw count of gene j in cell i,
∑

k cik represents the total counts in cell i, and
ln denotes the natural logarithm) of the genes is taken for all the cells of the same donor.
So, the matrix goes from cells by genes to donors by genes. To remove unwanted outliers,
donors who have less than 10 percent of the median number of cells are removed. So, if the
median number of cells for the donors is 20, all donors with 2 cells or less are removed. The
final step of the preprocessing is to make subsets for the age ranges. There are three subsets
created: young (19-30), middle-aged (40-50) and old (60-75).

When all the subsets were created we looked at the distribution of the donors’ ages for
all the subsets and the average number of cells for all of the ages (Figures 1 and 8). Based on
this information, we excluded CD8 positive alpha-beta T cells, double negative regulatory
T cells, and innate lymphoid cells from the results since they did not have enough data for
the results to be reliable. This results in six cell types for the rest of the results.

2.5 Correlation Analysis Across Age Groups
The Pearson’s correlation coefficients are computed for all gene pairs in the dataset after
it has been preprocessed. This was done for the six cell types mentioned above and in the
three different age groups. This results in 3 different correlation coefficients for every gene
pair, one for each age group.

Then the log fold change is calculated between young-middle-aged, middle-aged-old and
young-old. LFC_young_middle = log2

(
young_correlation
middle_correlation

)
. The difference between the

correlation is also calculated and the Fisher z-transformation is used to check if the difference
is significant.

The Fisher z-transformation converts a Pearson correlation coefficient r to an approxi-
mately normally distributed variable z:
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z =
1

2
ln

(
1 + r

1− r

)
(1)

To test whether two correlation coefficients r1 and r2 are significantly different both
normally distributed variables are calculated.

z1 =
1

2
ln

(
1 + r1
1− r1

)
(2)

z2 =
1

2
ln

(
1 + r2
1− r2

)
(3)

Then the difference between the variables and the standard error of the difference are
calculated. Where n1 and n2 are the sample sizes for each correlation.

zdiff = z1 − z2 (4)

SE =

√
1

n1 − 3
+

1

n2 − 3
(5)

Then for the final step the difference is divided by the standard error of the difference
to get the final normally distributed value which can be turned into a p-value.

z =
zdiff

SE
=

z1 − z2√
1

n1−3 + 1
n2−3

(6)

We consider a difference between correlation coefficients to be significant if |z| > 2.576,
because that corresponds to a p-value of 0.01.

Gene pairs were identified based on the following criteria: (1) a significance threshold of
p < 0.01, (2) an absolute log2 fold change (|LFC| ≥ 0.7) across all correlation differences,
and (3) a strong correlation (r ≥ 0.8) in at least one age group. These strict thresholds were
selected to detect pairs that shift from a strong correlation (r ≥ 0.8) to weak correlation
(r ≤ 0.1), or the other way around.

2.6 Creating Networks of Genes
A network of genes for each cell type has been constructed to see how many correlations
change for a single gene. For example, some genes might lose correlation with only a single
other gene from young to old, while others might lose correlation with 100 or more. We
create a network (for every cell type) where all the genes become nodes. Two nodes are
connected with an edge if the difference between the correlation coefficients is significant
between the young and the old group, and the absolute log fold change between the young
correlation and old correlation is at least 2. These thresholds were chosen to look for genes
that have significant differences with other genes that are also an increase (or decrease) of 4
or higher. This means that nodes are connected if they go from a weak (0.1-0.2) to a strong
correlation (0.6-0.9) or the other way around.

The hub genes are then identified by looking at the node degree distributions and fitting
a power law to validate the results [6][8]. A gene is considered a hub if they are connected
to at least 10 percent of the other genes. The hub genes across cell types are identified as
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well. This is done by adding the degrees (connections) of the genes together for all the cell
types, except for the central memory CD4-positive, alpha-beta T cell type. This cell type
is excluded because it does not follow the power law. The threshold for hubs across the 5
cell types is set at 300 connections. 300 was chosen since the average number of nodes in
the networks is 600, (600 * 5)/10 = 300.

2.7 Prediction Model
We used the hub nodes found in the effector memory CD4-positive, alpha-beta T cell type
to train a ElasticNet regression model. This has been done in the same way that Enikő
Zakar-Polyák et al. trained their ElasticNet regression model [14]. We applied a 5-fold
cross-validation using the log-normalized gene expression count in the data. Then there are
5 prediction models that are applied on all the cells of the same cell type and the Mean
Absolute Error and correlation between age and predicted age are calculated to rate the
models.

2.8 Code and Environment
All the results shown in this paper can be reproduced by running the python code on this
Github page: https://github.com/TychoGrapendaal/CSE3000. All of the results are created
by a Jupyter notebook or a python file using Python 3.11.4, Anndata 0.11.4, Numpy 1.24.3,
Pandas 1.5.3, Scipy 1.10.1, Scanpy 1.11.1, Matplotlib 3.7.1, Seaborn 0.13.2, Sklearn 1.3.0,
Powerlaw 1.5.

All the figures in the Results (see subsection 4) can be replicated by running the files in
the experiments folder in the Github repository. There is also a README file that explains
step by step how to replicate the results.

One of the code files (apply_clocks_general.py) is made by Enikő Zakar-Polyák et al.
[14]. We use their code file to apply the prediction models in the exact same so we can
compare performance. We did write the file prediction.py (since this code is not provided
by Enikő Zakar-Polyák et al.) but it trains the models in the same way described by Enikő
Zakar-Polyák et al. [14].

3 Responsible Research

3.1 Human data
The data used during this project are blood cells from human donors from Asian countries.
This is a processed version of the Asian Immune Diversity Atlas (AIDA). This data is
public and hosted by the Chan Zuckerberg Initiative. The dataset is anonymized, meaning
all personally identifiable information has been removed, and all the donors gave permission.
This is crucial to protect donor confidentiality.

The data is licensed under the Creative Commons Attribution 4.0 International License
(CC BY 4.0). Which means that we are free to use, share and adapt the data under the
following conditions. "Attribution - You must give appropriate credit, provide a link to the
license, and indicate if changes were made. You may do so in any reasonable manner, but
not in any way that suggests the licensor endorses you or your use. No additional restrictions
- You may not apply legal terms or technological measures that legally restrict others from
doing anything the license permits." (Page 1) [2]. Since we published all our results on
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Github and allow everyone to use the data under the same conditions and provide credit
and links to the original source we follow both of these conditions.

Since all the donors are from Asian countries the results can be biased towards these
population groups. We point this out to ensure that we do not draw too general conclusions.
Because there are certainly differences between aging when comparing different population
groups. For example the life expectancy of Japan is 84 years while in the Netherlands it is
82.

3.2 Predicting Age
Being able to accurately predict someone’s biological age can have many ethical implications.
Some positives would be that we can help people live healthier lives with preventive care if
we can predict their biological age. Knowing more features that influence how we age could
help us change our lifestyles for the better. We might also be able to use this information
to develop better treatments.

However, there are also possible negative consequences that could come with predicting
someone’s age. For example, if we know what someone’s biological age is and it is much
higher than their chronological age, it might be used as a reason to increase their insurance
premiums. The models used to predict someone’s age might also have a lot of biases because
of a lack of data from certain groups. This might cause certain treatments to only be effective
on the groups that the models were trained on.

3.3 Reproducibility and Integrity
All the results shown in this paper can be reproduced using the code in the Github repository
below https://github.com/TychoGrapendaal/CSE3000. There is also a test dataset that
can be used to confirm the correctness of the programs. The data used to create the results
can be found and downloaded using this link https://cellxgene.cziscience.com/collections/
ced320a1-29f3-47c1-a735-513c7084d508. Select the first dataset "AIDA Phase 1 Data Freeze
v1: Chinese, Indian, Japanese, Korean, and Malay donors in Japan, Singapore, and South
Korea" (for more information see subsection 2.8).

All results shown in this paper are complete, no information was excluded to force
conclusions. All the results can be interpreted by the reader and reproduced if necessary.
There are possible biases in the results like the limited races and cell types in the dataset.
These biases and limitations are discussed in the Discussion (see subsection 5).

4 Results

4.1 Distribution
The scRNA-seq dataset used for the results contains 1,058,909 blood cells from 508 healthy
human donors. They are all between 19 and 75 years old and from the countries South_Korea,
Singapore and Japan. The entire dataset has a distribution for the ages of the donors as
shown in Figure 7. The age ranges used for the results are based on this distribution.
However since there are 33 different cell types in the entire database the distribution might
change across cell types. We chose to look at the 9 cell types that resulted in the best-
performing cell-type-specific single-cell clocks made by Enikő Zakar-Polyák et al. [14], and
Figure 1 shows the number of donors for every age for those 9 cell types. For most cell types,
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the distribution resembles the overall dataset (Figure 7). There is only one cell type that
differs a lot from the others. This is the lymphoid cell type. The reason that the distribution
is so different is because the dataset had only lymphoid cells from around 160 donors instead
of around 500 for most other cell types. This means that there are immediately a lot less
donors to look at during the correlation analysis which is why we exclude it from the results.

Figure 1: The distribution of the ages for the 508 donors in the dataset for the 9 different cell
types. The x-axis shows the age in years of the donors and the y-axis shows the number of
donors in the dataset that have this age. There are 9 differently colored bars that represent
the different cell types. The legend in the top right shows which color is which cell type.

We also looked at the average number of cells for every age. Figure 8 shows the average
number of cells for every age for a specific cell type. The lymphoid, double negative and
CD8-positive alpha-beta cell types all have a very small amount of cells for certain ages
(multiple ages only have one cell type on average) even after the preprocessing. This means
that the results are also not as reliable and these cell types are excluded as well.

4.2 Gene Pairs
To find gene pairs that have different correlation coefficients for every age group that are
also statistically significant we calculated the difference between the correlation coefficients
from young to middle, middle to old and young to old age groups. We then used the Fisher
z-transformation to calculate z-scores for all of the differences and used volcano plots to
visualize them (Figure 2). The plots show if a gene pair has significant differences between
their correlation coefficients in the three age groups and what their minimum log fold change
is between the groups. Every plot shows a lot of points below the red line which means that
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they are not significant but there are also points with a very high log fold change that are
still insignificant. This is because they have very small correlation coefficients, the young
group could be 0.0001 the middle 0.001 and the old 0.01. The log fold change would be very
high since the increase/decrease between the correlations is 10, but the absolute difference
is still very small and not significant.

Figure 2: Volcano plots for 6 different cell types. Every point represents a gene pair. The
x-axis shows the minimum log fold change between young-middle, middle-old and young-
old correlation coefficients. The y-axis shows the minimum -log10(p-value) for the three
correlation differences. The reason it shows the minimum is to ensure that all the correlation
differences are significant if the gene-pair is above the red line, and that they all have at
least the log fold change shown in the plot.

When filtering for gene pairs with a correlation of at least 0.8 in one of the age groups,
an absolute log fold change of 0.7 and a p-value of 0.01, we find the genes in Table 1. One
of these genes is LIMD2 which has been identified as a cell aging-immune/inflammation-
related hub gene by Ping Tao et al.[12]. It starts with a very strong correlation with PFN1
in young individuals and ends with a very weak correlation in old individuals. The high cor-
relation (young age) suggests that LIMD2 and PFN1 are co-regulated or functionally linked
in younger individuals. PFN1 (Profilin-1) is an actin-binding protein critical for cytoskele-
tal dynamics, cell motility, and immune cell function (e.g., T-cell activation) [7]. LIMD2
(LIM Domain-Containing Protein 2) is implicated in cell adhesion, migration, and immune
signaling [3]. Their tight correlation in youth may reflect coordinated roles in immune cell
function (e.g., T-cell migration, antigen presentation) and maintenance of cellular structure
and signaling in healthy, young tissues. They lose this correlation in older individuals. This
indicates a loss of coordinated regulation which could result in a loss of cytoskeletal reg-
ulation (PFN1) and altered adhesion (LIMD2) could impair immune responses in aging.
LIMD2 shows up multiple times in Table 1 which is not surprising as we identify it as a hub
node in the next section.
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Table 1: Gene pairs with their correlation coefficients across different age groups. The Correlation
Young, Middle, Old show the Pearson correlation coefficient for each gene pair in their respective age
group.
Cell Type Gene1 Gene2 Correlation Young Correlation Middle Correlation Old
central memory CD4-positive LIMD2 PFN1 0.81 0.41 -0.12
central memory CD4-positive LIMD2 SF1 -0.82 -0.50 -0.09
central memory CD4-positive LIMD2 MYL12A 0.80 0.49 0.11
gamma-delta SFPQ RPS28 -0.81 -0.47 -0.07

4.3 Gene Network
Even though the gene pairs shown in the previous section have a very big change in cor-
relation it might only be with one gene. To find genes that are more affected across age
groups we created a network of the genes. The nodes in the networks are the genes in
the correlation matrix and two nodes share an edges if the correlation between the genes
changes significantly from the young to the old group (a difference is considered significant
if |z| > 2.576) and the absolute log fold change between young and old is bigger than 2.
Figure 3 shows the node degree distribution of these networks. For most of these networks
the number of genes with a low degree are very high while the number of genes with a high
degree are very low. This is to be expected for gene networks. A way to validate these
results is to fit a power law to the node degree distribution [6][8]. Most of the networks
follow this line, however the central memory CD4-positive cell type does not, the number
of genes increase with the degree at the start of the plot. Even though we expect it to go
down.
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Figure 3: The Node Degree Distribution of all the gene networks one for each cell type. The
x-axis shows the "Number of Associated Genes". This is the number of connections a node
has, also known as the degree. And the y-axis shows the "Frequency", this is the number of
genes that have this degree. The blue bars are the actual data and the red line is the fitted
power law.

Figure 4: This figure shows genes that have a high degree across all the networks by adding
those degrees together. The genes with a degree of at least 300 are shown. The x-axis shows
the "Number of Significant Differences" which means how often that gene had a significant
difference with another gene from the young to the old group. The y-axis shows which gene
it is.
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The genes with a very high degree have a lot of genes that they change correlation with
from young to old. To find out which genes are the most important across cell types we
added the degrees of all networks together for all cell types except the central memory CD4-
positive cell type because it does not follow the power law. We then select every gene with
a total degree higher than 300 (The average number of nodes in the networks is 600. 600 *
5 networks * 10% = 300). The genes that we selected are shown in Figure 4.

To better understand these genes, we used the Enrichr tool [1]. This tool shows biological
processes that all or most of the genes that you give it are involved in. Figure 5 shows the
biological processes that these genes are involved in. However all the processes have an
adjusted p-value higher than 0.05, so none of them are significant. This means that there
are a lot of different genes in the hub genes and it is not one specific biological process that
stands out.

However, there are a lot of Ribosome genes like RPL41, RPS28, RPS27, RPL21, RPS29,
RPL36A, RPL37, RPS10, RPL39, and RPS21, and it has been shown that ribosome function
degrades with age by Kevin C Stein et al. [11]. There are also some mitochondrial genes
like MT-ND3, MT-ATP8, MT-ATP6, and MT-ND6 and mitochondrial functional decline
has also been linked to aging. "Mitochondrial functional decline and accrual of damaged
mitochondria in various tissues is associated with aging" (Page 11, Sarika Srivastava) [10].

Figure 5: The results of the enriched hub genes. It shows the adjusted p-values of the hub
genes entered in the Enrichr tool. The database used is GO Biological Process 2025. The
name shows the biological process and the adjusted p-value shows how significant they are.

4.4 Prediction Model
Now that we have gene networks for all the cell types, we selected the hubs of the effector
memory CD4-positive alpha-beta T cell network. A hub is a gene that has connections
with at least 10% of the other genes. In this case that is 58 connections. We then used
the hub genes to train a prediction model in the same way as Enikő Zakar-Polyák et al.
trained their ElasticNet regression model [14]. Figure 6 compares our model (left) with
theirs (right). Our model has a Mean Absolute Error of 9.7385 and a correlation of 0.3797,
their model has a Mean Absolute Error of 9.2808 and a correlation of 0.4188. So, our model
did not outperform theirs.

11



Figure 6: Left figure our prediction results of the model trained on the hub genes of effector
memory CD4-positive alpha-beta T cell network, the right figure the prediction results
of Enikő Zakar-Polyák et al.[14]. The x-axis shows the age in years and the y-axis the
predicted age in years. MAE is the Mean Absolute Error, R is the correlation between Age
and Predicted Age and n is the number of cells in the figures which is the same for left and
right.

5 Discussion

5.1 Limitations and Reflection
This study had limitations that might have influenced the final results. This includes the
population groups of the used data which are only from Asian countries. This reduces
the generalizability to other population groups. We also only used blood cells during this
research which limits generalizability to other tissues. The strict thresholds (p < 0.01,
|LFC| ≥ 0.7) ensured biological relevance but may have excluded other important gene
pairs. The power law validation strengthened hub identification but excluded the central
memory CD4-positive network from the final hubs. The threshold to define a gene as a hub
is an arbitrary threshold, it could have been stricter or more lenient. Due to all of these
limitations the results cannot be taken too generally. We cannot conclude that the result
would be the same for different datasets with other cell types or other population groups.
Or if we decided to use different thresholds.

5.2 Explanation Results
Figure 2 shows the number of gene pairs that have significant correlation differences across
the three age groups for 6 cell types. Central memory CD4-positive alpha-beta T cell type
shows an abnormally large number of significant pairs compared to the other cell types.
2508 compared to less than 500 for the other cell types. One possible explanation for this
is that the central memory cell type also has a lot more cells in the dataset compared
to the other cell types (111,905 cells compared to 39,218 cells in the next biggest subset
CD8-positive alpha-beta memory T cell). The higher quantity of cells might have revealed
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significant correlations between genes that would normally not be identified due to a lack of
expressions in smaller subsets.

The big number of significant gene pairs for the central memory cell type might also
explain why its node degree distribution does not follow a power law (see Figure 3). The
big number of significant pairs means that there are more genes that are connected. This
results in more genes with around 50 connections than genes with 0 to 10 connections. But
after the small increase at the start of the node degree distribution it does drop very fast.

When we used the hub genes of the effector memory cell type to train a ElasticNet
linear regression model (see Figure 6), it did not outperform the model made by of Enikő
Zakar-Polyák et al.[14]. One possible reason it did not improve the performance is the
inherent limitations of ElasticNet regression in capturing non-linear relationships. While
ElasticNet effectively handles multicollinearity and performs feature selection through its
L1/L2 regularization, it may fail to model complex, higher-order interactions between the
hub genes. Additionally, our correlation-based hub gene selection prioritized coordinated
expression changes rather than individual predictive power, potentially excluding genes with
strong linear age associations that ElasticNet could readily exploit. This suggests that
alternative modeling approaches (e.g., graph neural networks or non-linear regression) might
better leverage the network topology information captured by our correlation analysis.

6 Conclusions and Future Work
This study investigated whether analyzing changes in gene-gene correlations across age
groups could improve biological age prediction models. Through computational analysis
of 1,058,909 blood cells from 508 donors, we found significant age-dependent correlation
changes between gene pairs, one example is LIMD2-PFN1 (from r = 0.81 in young to
r = −0.12 in old). Multiple hub genes are identified showing consistent correlation changes
across multiple cell types. And we demonstrated that hub genes can predict age with com-
parable accuracy (MAE=9.74 years) to existing models. So there clearly are differences
between correlations of genes in young and old individuals. But the identified genes have
not been able to improve the existing age prediction model.

For future work we could perform the same experiments on different datasets with other
population groups or tissues to see if the results are similar or very different. The number of
age groups could also be increased, this could provide more insight in how fast the correlation
changes from age to age. Other types of machine learning models could be trained on the
found hub genes like an artificial neural network for example. This might find patterns that
cannot be found by linear regression models. A more specific example would be to train an
artificial neural network on the number of expressions for the hub genes in the blood cells.
The neural network would then classify the blood cell in one of the three age groups.

New and unanswered questions that resulted from this research are: Do the observed
correlation patterns generalize across ethnic groups beyond Asian populations? Do other
tissues (e.g., skin, muscle, neurons) show similar age-related correlation changes? Does using
the hub genes as features in other machine learning techniques improve the accuracy of age
prediction/classification?
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A Appendix

Figure 7: The distribution of the ages for the 508 donors in the dataset. The x-axis shows
the age of the donors and the y-axis shows the number of donors in the dataset that have
this age. For example there is only one 19 year old donor and there are no donors older
than 75 or younger than 19.
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Figure 8: The average number of cells for every age for every cell type. The x-axis shows
the age (in years) of the donors and the y-axis shows the average number of cells that are
in the database for the specific cell type of that plot.
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