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Abstract

A two-dimensional (2D) panel method is developed to find the first and second order wave forces acting
on a semi-submerged cylinder in regular waves. The panel method is based on potential flow and the
waves are modeled for both finite and infinite water depth. The motion is limited to heave, but allows for
extensions to other modes as well. It uses boundary conditions for floating body dynamics with Neumann
and mixed type boundaries on the surfaces. The waves are generated and the reflection of the waves is
suppressed by generating absorbing boundary conditions (GABC) on the radiation surfaces. The model
is used to investigate the hydrodynamics of an oscillating buoy wave energy converter (point energy con-
verter). For this, an analytical solution of the optimal damping is used. The method uses panels along all
boundaries to solve the boundary conditions. The model can be used for any time-harmonic free surface
flow problem.

A second order wave running through the domain is successfully modelled, without the interference of
a body. Challenges of a second order model with body are explained. The boundary element method has
innate challenges finding the correct solution to tangential flows on the panels and spatial derivatives of
the velocity, which are required for the second order solutions.

Highlights

- Diffraction and radiation problems in boundary element methods for any 2D shape on the
free surface are modeled.

- Two-dimensional generating absorbing boundary conditions are applied to free surface
waves.

+ The energy balance for a floating body with power take off with the combined radiation and
diffraction problem is modeled.

- Power predictions for 2D floating devices with power take off in waves is found.

+ Modelling a second order running wave through a fluid domain.

- Second order theory and challenges are explained for further model improvements.
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Definitions

Superscripts and subscripts

® is chosen as arbitrary symbol to serve as an example.

D) Vector of length n
Py | Matrix of dimensions n x m
o) First order
(2 Second order
O(t) A function of t
Symbols
\Y differential operator
P, incoming wave potential
dp radiated wave potential
w frequency
t time
U velocity in x-direction
z complex coordinate (z + iy)
P pressure
g gravitational acceleration
I} coordinate of rotation
S body surface
Sk radiation boundary surface
c wave speed
M mass
A damping
N panel numbering
TR position of right radiation boundary
a(t) complex velocity of body
af(t) body velocity
l panel length
21 local panel position
2 local panel end coordinate
P potential influence matrix
G influence matrix of d/dy of the potential
C complete boundary condition matrix
q source strength
€ phase
Py incoming wave power
Pgr radiated wave power
h hydrodynamic efficiency
T transmission coefficient
% velocity influence matrix
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potential

diffracted wave potential

free surface elevation
dimensionless frequency, wave number
velocity vector

velocity in y-direction

incoming wave amplitude

density

identity vector normal to body surface
surface area

free surface area

space dependent potential
bottom surface

added mass

spring stiffness

position of left radiation boundary
complex motion of body

body motion

body acceleration

local panel coordinate

local panel start coordinate

local panel center

normal velocity influence matrix
waterplane area

known wave parameter matrix
force

response amplitude operator (RAO)
absorbed power

transient wave power

radiation coefficient

material derivative operator

green function



Chapter 1

Problem Definition

Wave energy converters (WECs) use the energy available in waves to generate power. A prediction needs
to be made how much power can be absorbed from the incoming waves. A model is made to estimate
this power absorption, since full scale testing is not feasible in a design stage. The model has to predict
the reality as closely as possible, but there will always be assumptions to model all complicated real world
phenomena. There is existing theory on finding the average power using linear potential theory. This
thesis will elaborate on that theory and find the contributions of the second order phenomena. This should
improve the model to better match reality, as steeper waves can be modelled more accurately and the
second order interaction between different waves an frequencies is included.



Chapter 2

Literature review

In this chapter the literature related to the present research will be presented and discussed. This will be
done in multiple parts, discussing key features of the research.

Firstly, a literature review on potential theory of gravity waves is outlined, including second order effects. A
literature study on floating bodies is presented including results from theory and experiments. Secondly,
existing literature on boundary element methods (BEM's) will be discussed. The literature research will
conclude with wave energy converters.

2.1 Potential wave theory

Since the problem is solved with a boundary element method, only potential flow theories are of interest
in this research. Potential theory is based on two fundamental equations: the conservation of mass and
the conservation of momentum. The objective is not to research new non-linear wave theories. Existing
non-linear wave theory is used to perform the research.

Linear wave theory

For linear potential theory all equations are linearized, meaning higher than first order terms are neglected.
This results in harmonic waves propagating along the surface. The pressures in the flow can be calculated
with the Bernoulli equation. It is assumed the waves are not steep, and are large enough to neglect surface
tension. This theory is also known as the Airy wave theory. The potential function of the Airy wave is seen
below. In order to satisfy the boundary conditions, the dispersion relation must also hold, as shown in
Eq. (2.2). This dispersion relation couples the frequency and wavelength of the waves. This also means
long waves travel faster then short waves and deep water waves travel faster then shallow water waves,
which is also seen in reality [10]. The wave speed is defined as ¢ = w/k.

W _ Ag cosh(k(h +y))

@ w cosh(k h)

cos(wt — kx) (2.1)
w? = kg tanh(k h) (2.2)

Non-linearity

In order to solve a non-linear problem, it is common to use perturbation theory. This describes a function or
solution on different order terms. This was first done by Stokes in 1847 [24] for free surface gravity waves.
This was repeated by [22] for waves with infinite water depth.

A=A 4 cAM 4 242 4 (2.3)

In this equation, A is the perturbation series approximating the real function. ¢ is typically a small term
(for waves it is the wave steepness), so that higher order terms become smaller as the order increases.



Therefore, an approximate solution is found by truncating the series, which could for example result in only
first order terms (A = A(® + cA(M), as done by the linear potential wave theory, or second order terms
(A=A 4 A 4 £24()) as done for the second order wave theory.

An index to find the non-linearity for waves in finite water depth is the Ursell number. It is defined as the
steepness/(relative depth)3. The higher the Ursell number, the more non-linear a wave is going to behave.
N AL AL?

Ursell — (h/L)3 - h3

(2.4)

The results for the second order potential found in this thesis is derived in Appendix[C] as shown by Stokes
[24].
3 A2w cosh(2k(h + v))

P —
8 sinh?(kh)

sin(2(wt — kx)) (2.5

Bi-chromatic waves

Longuet-Higgins [18] showed that for second order bi-chromatic second order waves a sum and difference
frequency appear to satisfy the dynamic boundary condition at the free surface. This results ina 2D velocity
potential as shown in Eq. by Dalzell [€], with a as amplitude and A as coefficients shown in Eq. (2.7b)
and Eq. . As the problem is 2D, the relative angle between the waves (6; — 6,) is assumed 0, as the
propagating direction of the wave can only be in x direction. Interestingly, this results in there being no
sum terms in the potential.

W
Jj=1 7

b= (Z aia;Aye (kitki)Z sin (W, + U;) + aza; A eFi=k)? gin (T, — \I!J)) 4 9% ki sin(¥;) (2.6)
i=1

U, = k;x — w;t (278)
wiwj(w; +w;)(1 — cos(f1 — 62))
A = J J 2.7b
P it gkt K 27
A% — wiw; (w; — w]‘)2(1 + CO§(91 — 62)) (2.70)
(Wz - wj) - glkz - kj‘

Floating bodies

If abody is floating within the waves, some boundary conditions are added to the system of equations. The
water particles can not enter the body, so there is a no-penetration boundary condition on the body. Also,
the body has its own equations of motion which have to be introduced to the system. The fluid domain
with the additional boundary condition can be solved in different ways.There is an option to solve for a body
fully analytically. This has been done for a cylinder by Dean [7] and Ursell [27], [28] up to first order. The
mathematics required to solve this are extensive. Ogilvie [23] extended this theory to include second order
forces on a stationary and free to respond submerged cylinder. The application for these theories is limited,
as not many geometries allow for a fully analytical solution. Discretization offers additional opportunities
in solving these problems, as will be discussed later.



2.2 Boundary element methods

A method to find waves and pressures in a fluid domain is to discretize the problem with a lot of small
panels. Boundary element methods or also named panel methods exist that use this technique. Sources
are used to satisfy the boundary condition on each panel. This results in matrix calculations solving the
boundary conditions on each panel and thereby also giving the entire velocity field around the object. Cur-
rently, many examples of functioning panel methods exist, with Delfrac, Rapid, and WAMIT being only a
small example of them.

Frank [9] used sources of large complexity which use Green functions to solve the boundary conditions at
the free surface and at infinity. A more detailed explanation of Green functions is shown in the appendix.
The advantage of using these complicated Green functions is that only the body surface itself needs to
contain panels. The research done by Frank is useful for cylinders in or below the free surface. The lim-
itations are that it is done in two dimensions and only solves the linear potential flow problem. More on
linear Green functions is found in Appendix[Al

A more sophisticated example is the work done by Kim and Yue [15], [14]. They use a complicated Green
function to solve the second order diffraction problem and find the body motions and pressures. This is
also done in three dimensions. The software WAMIT uses the methods from this work to calculate the
second order flow around floating bodies.

A different approach is taken by Yeung [31]. Instead of using a complicated Green function to solve for
the boundary conditions, simpler sources are used on the panels. The boundary conditions at the free
surface and at infinity are solved by having panels on the free surface and including a radiation boundary.
This increases the amount of panels needed, but reduces the complexity of the calculations. The work
done by Yeung is in two and three dimensions for waves radiating away from a moving body.

A boundary element method can be in a time-domain or a frequency domain. A time domain calculates all
pressures for a time step, and differentiation in time is done with different time steps. This allows to calcu-
late the development of a problem in time. However, when a problem is fully harmonic in time, a frequency
domain can be used. This requires only one single calculation to solve the entire behaviour, where every
value is oscillating and represented with an amplitude and phase. This is a lot faster then time domain
calculations, since only one matrix equation has to be solved. An example of time domain is the work
done by Ballast [3], who uses numerical beaches in a time domain to calculate higher order pressures. A
frequency domain is used by Yeung [31], who solves a linear, 2D radiation problem.

Objectives

This report will focus on a two-dimensional method that solves both the diffraction and radiation problems.
It will combine the method of Yeung with panels on all boundaries with the possibility to add incoming
waves. It will also combine both methods for a power prediction of a power take off in the system. An
additional objective is to add non-linear effects up to second order for both the diffraction and radiation
problem, to increase the accuracy of the BEM and power prediction.



2.3 Wave energy converters

Introduction

There are many forms of WECs. The goal is always to transform mechanical energy from the waves to a
form of electrical energy that can be transported and used. An overview is given by the European Marine
Energy Centre [2]. The different kinds of WECs are seen below:

+ Attenuator

+ Oscillating wave surge converter
+ Oscillating water column

- Overtopping/terminator device

- Submerged pressure differential
+ Bulge wave

+ Rotating mass

+ Point absorber

The attenuator uses the difference in free surface level and buoyancy to have different sections hinge with
respect to each other. This relative rotation can generate power. The oscillating wave surge converter is a
plate which moves back and forth with the wave surge, pivoting around a joint on the sea bed. The oscillat-
ing water columnis a partially submerged hollow structure which uses the rising and falling water level due
to the waves to compress and decompress the air within. This can then drive a turbine. The overtopping
device captures the elevated water from waves and uses the difference in hydro-static pressure when this
is returned to the sea. The submerged pressure differential heaves with the pressures just below the free
surface. A bulge wave is a rubber tube filled with water, in which bulges appear and travel through the tube
increasing in size. At the end of the tube they drive a turbine. The rotating mass is a device that uses the
motion in pitch to rotate a mass inside, which generates power.

Finally, the point absorber is a floating structure which moves with the waves, generating power. An exam-
ple is shown in Fig. Many configurations of the device are possible, and multiple degrees of freedom
can be exploited. Somewhere in the system a power take off (PTO) can be installed to transform the me-
chanical energy to electrical energy. Point absorbers have some advantages over other types of WECs.
They can absorb wave energy from all directions and they have a relatively simple design. This also makes
them more cost effective [13].

Buoy

-

Incident wave v Heave
Mass
pT0*
Damper
Spring

Sea floor

Figure 2.1: Schematic display of a heaving point absorber WEC with PTO system [5]



Mass-spring-damper system

A linear mass-spring-damper system is used to define the motion of a point absorber. The terms from
the mass-spring-damper can be added to a classical equation of motion. Rewriting this with added mass,
radiated wave damping, wave pressure and mass-spring-damper terms, gives:

(M +p] X+ [A+Apro] X+ [C+K]X=F (2.8)

where M, B and C are mass and hydro-static terms as derived earlier, A is the added mass matrix and B the
radiated and diffracted waves damping matrix. Apro is the PTO damping coefficient and K the mechanical
spring stiffness. These two final values can be tuned to generate a desired response of the system. The
non-linear contributions found by the BEM can be included in this equation, as they are separated with
perturbation theory. For a certain optimal damping coefficient, the most power is absorbed by the PTO.
The obtained power is seen in equation Eq. by Teillant [25].

Py = Apro(t)i(t)? (2.9)

Most existing theories are based on a linear system, and must be expanded for non-linearity. For example,
a hydraulic PTO is highly non-linear as shown by Falcao, [8]. This can be controlled to behave linearly, but
a non-linear damping possibility in the model allows for a better evaluation.



Chapter 3

Objectives

3.1 Research question

The goal of the research is to develop a first order method for the estimation of the power taken off by a
WEC which is suitable to be extended to second order. This will build on existing panel method technology.
The research question is stated as

How can the second order effects on the power prediction of WEC be determined?

Secondary goals are established to answer the main research question. Answering these will lead to the
answer of the overall research question, in a step-wise approach.

1. How can the fluid domain with body be described?
2. How can a wave be added to the fluid domain?
3. How can the produced power of the moving body be determined??

4. How can second order effects be implemented in the model?

3.2 Approach

The result of this research will be a 2D model evaluating the behaviour of a point absorber WEC up to first
order with predictions and recommendations for a second order model. This will be evaluated for water
of arbitrary depth, and it will be done within a frequency domain. Some differences between a first and
second order model will be presented, and the relevance of the additional complications in the analysis
will be discussed.

The process will be divided by the different sub goals stated in[3.T} These will be discussed subsequently.

First order model

First, a 2D boundary element method will be made. This is done to create the comparison to first order, and
to give the overview of a linear method, which will be simpler to understand than a higher order method.
Existing methods can be used, and no additional Green functions need to be derived.

A method needs to be found to add incoming waves into a 2D frequency domain. This will be done by
finding comparable methods from other numerical models. When completed, the model must be able to
solve both the diffraction and radiation problem to find the complete power prediction.

finally, the power must be predicted for the wave energy converter, finding the ideal damping for the power
take-off. Up to this point, only linear components are regarded.



Second order predictions

A start is made at predicting the second order contributions in the model. This is done by finding the
relevant second order theory and implementing this in the existing linear model. A look will be had at the
added difficulties and challenges, but also at the possibilities of the model to be expanded to second order.

3.3 Overview

The objective is to develop a method in 2D that can quickly and more realistically predict the efficiency of

a WEC. This will improve the design possibilities for a wave energy converter.

Overview Objectives

State of the art

Beyond state of the art

Non-linear
wave theory

Defined up to very high orders [22], [24]

Use second order potential theory to
find the second order contributions to
the produced power

Boundary
element
methods

Second order with Green function in
3D [14], Radiation problem in 2D with
panels on all boundaries in frequency
domain [37]. Radiation and diffraction
problem in time domain 3D [3] with nu-
merical beaches

Solve both diffraction and radiation
problem in 2D in the frequency domain.
Combine these solutions to find the op-
timal power take off. Include second or-
der effects

Wave energy
converters

Use a variety of methods to find the hy-
drodynamic properties. Then evaluate
the ideal power take off [13], [29].

Decrease time needed to find an accu-
rate solution for the optimal damping
and efficiency.

The table below shows the comparison to other existing literature with boundary element methods:

Table 3.1: State of the art BEM

. . Couple incoming
2D | 3D Incoming | Simple Frequepcy waves with Second
waves sources domain . order
radiated waves
Kim, Yue (1990) [14] | No | Yes Yes No No No Yes
Yeung (1973) [3] Yes | Yes No Yes Yes no No
Frank (1967) [9] Yes | No Yes No Yes No No
Ballast (2004) [3] No | Yes Yes Yes No Yes Yes
This research Yes | No Yes Yes Yes Yes Yes




Chapter 4

Background theory

This chapter will explain some of the fundamental theories on which the developed model is built. The
definitions in this chapter will be referred to throughout the rest of the report, and form the basis of the
research.

4.1 Potential Wave Theory

Linear Wave Theory

Different annotations of the wave potential are often used throughout different literature, which asks for
some clarification on the definitions used in this report. Also, the complex potential will be defined in this
chapter.

Harmonic propagating wave

A wave propagating in the positive x-direction is referred to as a right going wave [10]. It must hold the con-
ditions for an ideal fluid, mass conservation (Eq. (4.1a))) and the kinematic and dynamic boundary condition
as given below (Eq. (4.1b)). The no-penetration boundary condition of the bottom surface is described in

Eq. (419).

V20 =0 (4.1a)
0%  Jn B

9 _ y=—h (410)
oy

The resulting wave potential is seen here, found with the condition that the free surface behaves like a sine
wave. The derivation of this potential can be found in the appendix.

n = A sin(wt — kx) (4.2a)
o= % W cos(wt — kx) (4.2b)

The velocities in x and y direction can be derived from this potential:

0®  cosh(k(h+y) .
5, U= Aw ~cosh(kh) sin(wt — kx) (4.3a)
0® _ 4, 5mhk(hty) _
9y v=Aw cosh (k) cos(wt — kx) (4.3b)

Left going wave
A wave propagating in the negative x-direction is called a left going wave. This is defined slightly differently
as the right going wave:



_ Ag cosh(k(h +y))

®
w cosh(k h)

cos(wt + kx) (4.4)

Infinite Depth

For infinite depth, a part of the potential can be simplified, leading to the potential as shown below.

cosh(k(h+y))  efhthy 4 e—Fh—ky

= 4.5
cosh(k h) ekh + e—kh (4.52)
h—oo: el =00, e =0 (4.5b)
ekh+ky
= (450)
b= Ag ¥ cos(wt + kx) (4.6)
w
Complex potential
The sine and cosine components can be written in complex form, as shown below.
Aw cosh(k(h+Y)) _ike iwt
=" tkr iw 4.7
k  cosh(kh) < € (47)
_ . COSh(k(h + y)) —ikx _iwt
u=—iAw cosh(k 1) e e (4.83)
sinh(B(h 4+ v))  _ike iwt
— A 1RT 1w 4
v w “cosh(kh) e e (4.8b)
Second order wave theory
V20 =0 (4.9a)
0P
P22 Ve +gn=0 (4.9b)
p Ot
on _ 02, 020n (4.9¢)

ot~ oy | oz ox

The potential must again satisfy the Laplace equation (Eq. (4.9a)), and the dynamic boundary condition
(Eq. (4.90)). This prescribes a constant atmospheric pressure along the free surface. It is evaluated from
the unsteady Bernoulli equation along the free surface streamline [22]. This can be done since a character-
istic of potential flow is that along a streamline the pressure does not change [17]. The kinematic boundary
condition, which describes that a fluid particle will remain on the free surface, is seen in Eq. (4.9¢).

The resulting second order wave potential is seen in Eq. (4.10). Interestingly, for a single wave this is
the same result as for the first-order wave.

gA

d=T"eMsin(—kx+wt)+ O(A%) (4.10)
w

The free surface elevation is given in Eq. (4.11). The second term in the equation is not an added free
surface wave, but locked to the first order wave. This is also called a Stokes wave. [t can be seen in

Fig.[4.7] The Stokes wave has higher and shorter peaks, but also less deep and wider troughs.

1
n=Acos(kx—wt)+ §k A? cos(—2kx + 2wt) + O(A%) (4.17)

10



Stokes second order wave
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Figure 4.1: Second order wave

Derivation second order potential

The derivation for the non-linear wave potential will be given here. This is done by finding a solution for the
boundary conditions, as shown by Newman [22]

Replacing the kinematic boundary condition with the material derivative of the pressure gives the following
exact boundary condition at the free surface. The derivation of the boundary condition is found in the ap-
pendix. The final term is neglected as this is third order. An expression for i is seen in Eq. , evaluated
from the dynamic boundary condition.

Dp

i (y=mn) =0 (4.12)
220 b o0 1
7 Y95, +2Ve Vo 4 SV Vo) =0 (4.13)
1/00 1
= (L4 ve.ve 414
n=—_ (8t +5Ve-V ) (4.14)

To approximate the second order potential with the free surface boundary as expressed in Eq. (4.13), a
Taylor expansion is made around y = 0. The first and second order components can be split. A more
detailed explanation of this derivation is found in Appendix[B]

0d

®(z,n,t) = (x,0,t) + nafyly:o (4.15a)
¢ =o® + o (4.15b)
2o 9o

R (4.15¢)

2?20 99> o0 1900 9 (9201 990
— _ovp) . : 9 4.15d
a2 975y VeV e 8y( o2 T, ) (4.15d)
o2 — 3 A%w cosh(2k(h + y))edikz 2iwt (4.16)

8 sinh*(kh)

The result of the second order potential is seen above. ®2) is 0 for deep water, since it analytically reduces
to 0. This means the first order potential as seen in Eq. (4.6) is a solution to the second order boundary
problem in infinite depth.

1 /00 1 0 1 /00 1
- (1 ve Vo) ot (- (E +-ve.-vo))|,- 417
n=-2 (G5 +5v0 ) Lo tng (<2 (55 + 57092 ) b (417a)
1
n=Acos(kx—wt)+ §k; A? cos(2kx — 2wt) + O(A*) (4.17b)

1



The free surface elevation for infinite depth can be found by another Taylor expansion around y = 0 and is
givenin Eq. (4.17D). Here, ® as in Eq. is substituted. The second term in the equation is not an added
free surface wave, but locked to the first order wave. The solution for finite depth is seen in Eq. (4.18), as
derived by Stokes [24].

(ekh + e—kh) (eZkh + e—2kh + 4)

2 (ebh — e—kh)?

n=Acos(kx —wt) — kA? cos(2kx — 2wt) (4.18)

4.2 Floating bodies

With floating bodies in waves, a distinction is made between diffracted waves and radiated waves. The
diffracted wave is a reflection from the incoming wave on the body surface, to satisfy the no-penetration
condition. The radiated waves originate from the motion of the body, also satisfying the no-penetration
condition on the body surface.

Diffracted wave

To solve the diffracted wave, the no-penetration boundary condition has to be satisfied at the body surface.
This holds for each order n in the perturbation series. The previously defined wave potential ® will now be
named &y, for the incoming wave.

oo oo\
= _ 4.19
8’/11, 8nb ( )
The diffracted wave is split in different order terms, as seen in Eq. (4.20a). The challenge arises when
solving the second order term for the free surface boundary condition. Eq. (4.20b) and Eq. (4.20c) also
hold for @, since it is still a water wave. To solve this problem, Molin [2] showed that both a locked and
free wave must be included in the diffraction potential for a second order problem.

op =oY) + 0 (4.20a)
V20 =0 (4.20b)
a9 92el)

b =A® 420
T oy o2 (4.20c)

”2e?  gp? 90 1900 9 /9201 9o
A® = _Z L _ L 4 ove™. - — 4.20d
oz 9o, TV VYt o oy e 9, ) 4209)

The detailed description of A is found in Molin [21]. This is derived from the boundary condition at the
free surface, as seen in Eq. (4.15d). A solution to this problem in 3D can be found in the work of Kim [T4].
The diffracted and incoming wave will result in a bi-chromatic wave where the resulting wave is a semi
propagating wave. This means both waves are travelling in the exact opposite direction. When deriving
the wave potential given in Eq. (2.6), the resulting wave has a second order sum frequency term that is not
dependent on position, but only on time. The potential can be seenin Eq. . Both waves share the same
frequency and wave number, as the diffracted wave is a reflection of the incoming wave. Interestingly, this
term also does not reduce with increasing depth. It is only a pressure term, since the spatial derivatives
are always 0.

B = et 4 ,H2) 2t (4.21a)
S = Alwekye—ik'w n Apw oy gike (4.21b)
0 = A Asw (4.27c)
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For finite depth, the same phenomenon occurs (Dalzell, [6]).

b — (p(l)eiwt + (p(2)€2iwt (4.22a)
Aigcosh(k(h+vy)) _; Asg cosh(k(h+1y))

1) — A19 Y ike | 4229 Y)) ikx 4.22h

v w cosh(k h) ¢ + w cosh(k h) ¢ (4.22b)

0@ = 2A1A2%(3 + coth?(kh)) (4.220)

Radiated Waves

Radiated waves originate from the motion of the body. The boundary condition for radiated waves at the

body is seen in Eq. (4.23).

99
8711,

The radiated waves depend fully on the motion of the body. Just like the incoming and diffracted waves,
they have to fulfil the dynamic boundary conditions at the free surface and the Laplace equation. The
motions of the body in 2D are limited to only three degrees of freedom: surge, heave and pitch. The
equations of motion are derived from a linear momentum balance and an angular momentum balance.
The resulting equation is as follows (Mei [19]), where the external damping term [B] is not part of the original
equation from the author.

= flb - Uy (423)

82 X 8 X X ny .
M)z + Bl | Y| +[C|Y :—p/ dS®, |ns| + F (4.24)
g 5 g Sp ns

In this equation [M] contains terms of the mass and mass moment of inertia, with the center of gravity not
coinciding with the center of rotation. [C] contains external forces and hydro-static forces and moments
due to non-symmetry of the object. 3 Is the angle around the z-axis. The term including ®; includes the
added mass and damping of the floating object. A more detailed derivation can be found in Appendix Al

4.3 Forces and Pressures

To find the forces and pressures in the domain and on the body, use is made of the Bernoulli equation. It
can be seen the pressure has different order terms, as shown up to second order in Eq. (4.26). (%) is the
water level at rest, which is chosen as 0 by definition.

p 0P 1 9
E_22 L J\voe 425
P at+2\V\+py (4.25)
PO =pgn® =0 (4.26a)
o)
P = P+ pgn® (4.26b)
1 P(2)
p? = §\V<I><1>|2 + p% +pgn® (4.26¢)

The forces on the body are the integration of the pressures along the body surface. For the body surface,
a difference can be made for the static body surface of 0-th order, and higher order components which
depend on the wetted surface on the body. This again depends on the wave height and body motion. We
can make the distinction between surfaces as seen in Table[4.7and Fig. The same principle applies
for higher order components of the body surface.
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Table 4.71: Body surface distinction

Symbol | Description Order
Séo) Body surface at equilibrium 0
Sél) Body surface with linear wave height and linear motion regarded 1
Sflo) Waterplane area of body at equilibruim 0
sto Waterplane area of body with first order motions and wave heights 1

static
body

S_a(1) \

S_a(0) / N
e

< wave elevation

PO body in
mofion

Figure 4.2: Surface distinction

With different orders in pressures and different orders in body surfaces, the following integrals provide the
second order forces.

1 — (€] (0)

F /Séo)p + /sg”p (4.27a)
(2) — (2 (€] (0)

F /sf,‘”p + /s{,”p + /9£2>p (4.27b)

The hydrostatic term in the pressure, p gy is the buoyancy term. This is not taken into account for the
hydrodynamic properties of the floating body. It does however become of importance with the equations
of motion. For two dimensions, the equation becomes as shown below. This means for all linear equations
only the O-th order waterplane area is used. This approximates the sides of the body as straight lines. For
a square, this is accurate. For a cylinder, it induces approximations.

/< pgn“):/ pg () —a) (4.28a)
Sb(J) S{(L())

/< pgn“):/ pg (™ —ah) (4.28b)
Sbl) S{(Ll)
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4.4 Power prediction and optimal damping

The power can be predicted analytically to find the optimal damping of the PTO. To do this, the average
power is determined and the optimal frequency is found. Then, for this frequency the optimal damping is
determined. The power is known from the PTO characteristics as seen in Eq. (2.9), and is shown below:

Py(t) = Aproaf(t)® (4.29)

The velocity is found from the oscillatory motion of the body, with @ the amplitude of the body motion. With
the known velocity, the average power is calculated.

a(t) = wasin(wt) (4.30a)
a(t)? = w?a?sin?(wt) (4.30b)
With the following average power:
_ 1 [T
P, = 7/ Py(t)dt (4.37a)
T 0
_ 1 /T
Pd = T/ )\]DTou)Z(AZ2 sin2(wt) dt (431b)
0
P, = %Apmw?a? (4.31c)

The amplitude of the body is determined by the response amplitude operator (RAOQ, ¢,). This is defined as
the ratio between the incoming wave and body motions, for this case in heave: ¢, = a/A The expression
for the RAO comes from an equation of motion with F,, the forces on the body in heave, the added mass
1, the damping coefficient A and the buoyancy K. A new expression for the average power is found from
there.

Ey

“= —w?(M + p) —iw(A + Apro) + K (4.32a)
Pa= %APTO“’Q A (4.32b)
i = o e T T O A (4:320)

2 A2
Py = % (K — w2 (M ipz)o)(: f&yA gy y— (4.32d)

With this expression for the average power, the optimal value for the optimal damping must be found. This
is done by finding the derivative of the average power with regard to the PTO damping, and finding a root
of this equation. This optimal damping will be used to find the power prediction of the floating body.

Py

v 0 (4.33a)
1w GF, (K —w*(M +p)* +0?(V = A2,)) _0 (4.33b)
2 (K = w?(M+ )2 + (W + Aopr))?)? ‘

Nopt = V(K Jw — w(M + p)% + N2 (4.33¢)
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4.5 Boundary Element Theory

An overview of a fluid domain is seen in Fig.[4.3] The sources have strengths which are are found by solv-

ing for all boundary conditions.

—

Sr

Sp L
q)I (I)D w\\)

or

By

Sr

Figure 4.3: General overview of a domain of a 2D panel method

Abbrevation

Physical meaning

Incident wave

Diffracted wave

Radiated wave

Body surface

Free surface

Radiation boundary

Bottom boundary

Table 4.2: List of Abbreviations

Boundary Conditions Free Surface Sy

Both the linear kinematic and dynamic boundary conditions are applied to the surface. This can be com-
bined to one single relation for all panels, the Haskind relation. Use is made of the oscillatory behaviour
of the potential, meaning its time dependence is of e**. This makes it simple to find the time derivative
whilst remaining in the frequency domain. It should be noticed this boundary condition is of the mixed
type, whereas the body boundary condition is a Neumann condition (Yeung, [31]). If no subscript is used,

the condition holds for all different potentials.

o _ o0
ot Oy
9 =0
o0 _ e
Yoy = o
0 .
Y2 o —
8y+ (—iw)
0P
Tk =
dy k
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The wave height can be found as below:

g 10%_ Ty (4.35)

Radiation Condition S

To prevent the necessity of modelling the free surface to infinity or implementing a numerical beach, a
radiation condition is used. Boundary conditions on the edge of the fluid domain are used to simulate
open boundaries. It is not desirable to have reflections of the outgoing waves to go back into the fluid do-
main. Waves created by the body must radiate away from the body (Bertram, [4]), with ¢ an undetermined
constant amplitude and w, the encounter frequency of different waves:

‘ llim (®P + ®F) = Re{petveilbr—wet)y (4.36)
Tr|—0o0

For second order wave potentials, sum and difference frequency terms will also be present in the limit of
the potential at infinity.

The Sommerfeld condition describes a boundary value that suppresses the reflected wave at the bound-
ary. The condition that must be satisfied is seen in Eq. (4.37). This radiation condition is perfect for a
two-dimensional problem. A Sommerfeld condition for bi-chromatic waves can be seen in Eq. (4.38).

0 0
il - (n) —
<6t +Cax> Lod 0 (4.37)
0 0 0 0
g I3V ( < I e _
(8t+018x) <at+czax><1> 0 (4.38)

Body surface Sz

At the body, the normal velocities have to be 0. This meas the following no-penetration condition has to

hold:

(1)
00T _ (4.39)

anSB

Bottom boundary condition B,

At the bottom, the normal velocities have to be 0. This meas the following no-penetration condition has to
hold: W
0P
=0

B (4.40)

Infinite Depth

If the fluid is infinitely deep, the potential and velocities approach 0 as y approaches —co. As soon as the
values approach infinitesimal values the boundary no longer has to be paneled. Also, as the magnitude of
the potential and its derivative in y decreases, the spacing of the panels can increase. This is done with a
logarithmic spacing function.
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Chapter 5

Linear problem

In this chapter, only the linear problem with linear wave theory is regarded. A boundary element method
is written to find the hydrodynamic properties of an arbitrary shape and to solve the complete system
of motion with both the diffracted as the radiated waves. The choice is made for a method with simple
sources instead of complicated Green functions, as this will be more suitable to extend to the second order
problem. The linear problem is split in a diffraction and a radiation problem, which when coupled together
give the compete motions of the cylinder. Additional information on a panel method is found in Appendix
Dl

5.1 Problem description

The resulting geometry (for few panels, to give an overview) is seen in Fig. In this figure, all individual
surfaces have only 5 panels for clarification purposes.

Geometry

_ 727 —— Panel surface
£ ® Panel end points z
>

® Collocation points z,

-2 -1 0 1 2
x[m]
Figure 5.1: Panel Layout
The surfaces can be split in 6 different surfaces, similar to Fig. The left radiation boundary (S, the
left free surface SF, the body surface Sg, the right free surface Sg, the right radiation boundary boundary

Sr and the bottom boundary By. These surfaces are subject to different boundary conditions, as shows
in Section[4£8
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5.2 Boundary conditions

Free surface boundary condition

The conditions that have to be satisfied on the boundary are the kinematic boundary condition (which
relates the height of the surface of the water to the particle velocities) and the dynamic boundary condition
(no pressure jJump since there is no surface tension). The boundary condition on the free surface is as
follows:

op M)

dy

— koM =0 (5.1)

For a linear problem, the panels can simply be placed on y = 0. Using perturbation methods the boundary
conditions can then be linearized around y = 0. Similarly to the body panels, these panels can be added to
the influence matrix and solved for the boundary conditions. It is recommended to use at least 12 panels
per wave length (Yeung, [31])

Body boundary condition

For the diffraction problem, the velocities normal to the body are 0. This is shown in the boundary condition
below.

1)
0 =0

(‘)nb (52)

For the radiation problem, the fluid velocities normal to the body must be equal to the normal velocities of
the body surface. This will be the driving phenomena for the radiated waves.

o) 0
= np - )
o = [J o' (t) (5.3)

Bottom boundary condition

At the bottom boundary, the velocities normal to the bottom surface are 0.

o)
=0
8TLBU

5.3 Generating absorbing boundary condition

A highlight of the thesis is the generation of waves on the radiation boundary, which interact with the body.
To achieve this, the ABC for which the Sommerfeld condition is used, will be adapted to be a GABC.

The Sommerfeld condition is based on a propagating wave in a certain direction. On the left and right
radiation boundaries, respectively right and left running waves are suppressed. This means no waves can
reflect from the boundaries back into the domain, but waves exiting the domain can pass through freely.

(gt + 08‘1) oM =0 (5.5)

The wave speed is defined as w/k for arbitrary depth. This means that for the frequency domain the
equation simplifies to:

(aa;c + zk‘) oM =0 (5.6)

This Sommerfeld condition suppresses all waves in a chosen direction, depending on the chosen sign.
This is also the expression used by Yeung [31] for his radiation problem.

19



For the diffraction problem, the right hand side of the equation must not be 0. There must be a right
going wave at the left boundary, which is the incoming wave. Therefore, one right going wave is allowed
by changing the right hand side of the equation from 0 to the incoming wave potential substituted in the
Sommerfeld condition. This is done for finite volume problems in a time domain by Wellens [30]. The result
for a single wave is seen in Fig.[5.2] The left boundary is a GABC, and the right boundary is an ABC. It can
be seen the resulting numerical value is a near perfect match to the analytical potential.

<§x _ k) o) = <§x - Zk) o) = 2ik o) (57)

Potential at free surface

10.0 A

7.5 1

5.0 1

2.51

o
~ —— Analytical
£ 0.0 e
5 —— Numerical
® 251
—5.0 A
=7.5 1
—10.0
T T T T T
-100 =50 0 50 100

x[m]
Figure 5.2: Right going wave potential

This boundary condition has proven to be accurate to generate a wave entering the domain, as will be
seen in the results. For the right boundary, a ABC as shown in Eq. is used. The spacing of the panels
can increase with increasing depth, since the gradient of the potential decreases. This is done using a
logarithmic spacing function.

5.4 Discretization

The approximate solution is achieved by solving a matrix equation, similar to the body boundary condition.
since this is a mixed type boundary condition, the potential and the normal velocity must be defined on
all panels. The condition is solved for each collocation point (observation point) on each respective panel.
These are places just inside the fluid domain.

Source panels are used to find the solution to the boundary problem. These are sources spread out over
the whole panel. More explanation is found in Chapter@ The influence matrix Py, ,,; describes the influ-
ence of the potential of panel m on panel n. The influence matrix Q,,,,,; is used to find the influence of
panel m on panel n with regard to the normal velocity of the panel (pointing inwards of the fluid domain).
Here, [ is the panel length.

Un
Plnm) :/ % I (Zem) — 21n) (5)) ds (5.8a)
panel
Iy 0
Q[n,m] = /panez %Tn}, In (Zc[m] — zl[n](s)) ds (58b)
21(5) = 70 + (a1 — 70) (550
z=x+1iy (5.8d)
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S Zp

Figure 5.3: Panel Definitions

Implementation influence matrices

Implementing these influence matrices in a code is not a trivial task. A different approach is taken
for the potential value influence matrix P, ,,; and the normal velocity influence matrix Qp, n)-

Py ) is found by numerical integration of sources along each panel. The challenge arises
when m = n. At this panel, the collocation point z. is very close to the panel surface. If the
integration step is not small enough, integration errors will occur on this panel as the distance
between the panel and collocation point is critical in the result. To ensure a good result, the
integration step size has been reduced until the solution converges.

For Qpm,»), an analytical solution is found. The advantage of this solution is that it is faster
to calculate the influence matrix then by doing a numerical integration. However, this computation
time advantage is negligible compared to the computation time of matrix equation to find the
source strengths. The analytical solution for Q. is seen in Eq. (5.9).

N (m) (n)
1 Ze | — 2 ds dz
_ = e T ea ) 82 (n) 21 (m)
Qum,n) = Im {Z o <ng) B Zlgn)> dz!  ds | } (5.9)

n=1

With these descriptions of the normal velocities and potential in the entire domain, the boundary conditions
can be written in a discretized form. To solve for all boundaries simultaneously, the problem must be
brought into one matrix equation.

Q[n,m] — Z'k‘P[nym] ,n e Sy
Q[n,m] NS Sp
Civ oy =3 Quuam) + k Py m € Sp (5.10)
Q[n,m] - Zkl)[n,m] ,n € SR
Q[n,m] ,n € By

This matrix C' contains all influence matrices that need to be solved for. Another matrix, describing the
known behaviour of the fluid at its boundaries is also determined. This matrix is different for the diffrac-
tion problem and the radiation problem.

Diffraction problem
—2ik®M)  nesp
,nE Sy
.n€Sp (5.17)
,n € Sp
,n e By

o o

(1) _
Kpj =

o O

Radiation problem
0 ,n €St
a ,n € Sy
EY=30" nesp (5.12)
0 ,n € Sp
0 ,n € By
with a,,[,) the normal body velocities
Qin[n] = Mb[n] - Wp[n] (5.13)
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The source strengths g, can be found as a solution to the boundary problem.

Clarmy 0] = Ky (5.14)

From this resulting source strength matrix the potential and free surface values can be found.

@fjlf — q[(i]) : P[(nl_’)m] (5.15a)
n(l) — ;W(I,(l) n €Sy (5.15b)
= g Il

5.5 Coupling radiation and diffraction problem

Combining the radiation and diffraction problem to find the power prediction and energy balance is a high-
light of this thesis. The incoming wave induces forces on the cylinder, which causes the motions of the
body. The body motions cause radiated waves away fro the body and is solved separately, since the body
motions are not known beforehand.

To find the energy balance of the complete system, these two problems need to be combined. This is
done by finding the complex response amplitude operator (RAQ) of the body. This has information on
both the amplitude of the motion of the body and the pase difference to the incoming wave.

The diffraction force has components in phase with the potential and in phase with the velocities. The
modulus of these components defines the amplitude of the force. In Fig.[5.77|the real part of the diffrac-
tion forces is in phase with the accelerations of the incoming wave. The imaginary part is in phase with
the velocities of this wave. The combination of these creates a total phase difference with the incoming
potential. This phase difference is dependent on the frequency.

Fy = pw/s (@8 +igl™) (5.162)
b
F, = |F,| et (5.16b)

The displacement and velocity of the body in the frequency domain is given as follows, with ¢,,, a complex
number for the amplitude and phase of the motion

aM(t) = D) et (5.17a)
aM(t) = iwaM (1) (5.17b)

The motion amplitude and phase of the body will be defined by the complex RAO. The hydrodynamic
coefficients in the definition of the RAO are determined from the radiation problem.

Ey

S —w?(M + p) —iw(A+ Apro) + K (5.182)
Gy = |Gyl e (5.18b)
B = Al¢,| e (5.18¢c)
The real and imaginary parts of a can be written as the position and velocity of the body:
aD(t) = Re {a(l)(t)} (5.19a)
&M (t) = Re {iwa(l)(t)} (5.19b)

With the correct phase difference and amplitude of the body the diffraction and radiation potentials can
be added up to find the total potential. This allows for the calculation of energy conservation and finding
the combined free surface elevation.
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5.6 Validation and verification

To be able to use the model and expand it up to a second order panel method, the linear results must first
be validated with proven models, or experimental results.

Diffraction problem

The results of the radiation coefficient are plotted in Section[5.6] for a square cylinder of r; = r, = 1. The
infinite depth case compares quite well to the theoretical values of Ursell [26]. The experimental values
from [16] differ from the numerical results from this method. this difference appear at higher frequencies,
when the velocities are higher. This induces more viscous effects and non-linearity. Therefore, a difference
between the experiments and BEM is most likely explained.

Infinite depth validation h=6.17r, validation
___________________ 1.0 4

g
o

1 —=- Ursell -=- Kincaid
—— Present —— Present

o
©
o
©
|

°
o
1
o
o
L

o
>
L
o
>
|

Reflection coefficient R [-]
Reflection coefficient R [-]

°

N
o
N

0.0 0.2 0.4 0.6 0.8 1.0 12 14 0:1 0j2 0j3 Ot4 OjS 0:6 0j7 0t8
k [1/m] k [1/m]

Figure 5.4: Reflection coefficient: Ursell's exact solution for infinite depth [26] and Kincaid's experiment for
h/ry = 6.17 [16]

An error was found for the energy conservation. An analysis has been done to find the reason and the
magnitude of these errors. It proved the grid size was not small enough to capture a linear propagating
radiated wave. The radiated wave did not have a constant modulus, as would be expected from a linear
wave. The resulting errors are seen below:

Table 5.1: Grid size errors

No. panels (side x surface x body) | Deviation in modulus n;, | 1 — (R? +T?)
30x60x60 71% 0.058
50x100x60 11.4 % 0.037
100x200x90 7.0% 0.021
200x400x120 4.8 % 0.011

Radiation problem

The radiation problem can be validated with the results from Yeung [31]. Yeung published results for cir-
cular cylinders, which should be identical.

The found values from the panels method are compared with the results from Yeung for two frequen-
cies, with the following condition: wave number k& = “7274 (a difference is seen in the non-finite depth of
Yeung's method). The chosen values for k£ are 1.5 and 0.9. The comparison between the values of the
potential at the body surface are seen in Fig. It can be seen there is almost no difference between the
results.

A comparison with the added mass and damping forces with the panel method by Frank [9], which used a
complicated green function for the free surface boundary conditions for infinite depth, is seen in Fig.[5.6]
What can be seen is that the added mass terms of the current method are higher then the comparisons. At
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larger frequencies these differences disappear. The coefficients are made non-dimensional as seen below
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Figure 5.6: Validation hydrodynamic coefficients
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RAO

The amplitude of the RAQ is a combination of the diffraction and radiation problem. This has been validated
with the numerical results from Isaacson et al. [T1] and the analytical results from Zhao et al. [32]. Their
results are for a finite depth of i = 5ry, which should only give very small deviations from infinite depth.
The result is seen in the figure below, Fig. for a square with aratio ry /ro = 1.5.

RAO validation

1.6 ,i\ ----- Zhao
. K !\ -—- lsaacson
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e
C e e,

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Dimensionless wavelength 2ry/L[—]

Figure 5.7: RAO validation
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Radiation boundary convergence

In order to achieve a solution with only propagating waves leaving the domain, there must be no effect of
the evanescent waves at the position of the radiation condition. According to theory, a few wavelengths
should be sufficient to find a converging solution. For the current method, several boundary positions are
plotted to see what distance is required. For the comparison, k = 0.1 and » = 1 is chosen.

W 8 & 4 2 0

0.25L
05L
* 1L

5 4 3 2 10

-150

0.25L

05L -1p0%
* 1L
— 2L

(@) Yrear, Diffraction problem

20 15 10 05 00-05

-100*

(b) @imag, Diffraction problem

20 15 10 05 00-05

-150

05L -100®
* 1L
— 2L

(C) @rear, Radiation problem

-150

0.25L
05L -1o0®
= 1L
— 2L

(d) ¢imag, Radiation problem

Figure 5.8: Radiation boundary convergence

It can be seen the value already looks converged at 0.5 wavelengths away from the body. This shows the
2 wavelengths used for the solutions is at a sufficient distance.
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5.7 Reslults

The results are show in this section. First, the diffraction problem is solved, then the radiation problem.
These are then coupled to find the total forces and motions of the floating body. Also, a power take off
is included in the system. An overview of the resulting wave profiles is seen in Fig.[5.9} In the diffraction
problem, at the left side of the body a partly propagating wave is seen. It is a combination of the incoming
wave and the reflected wave form the body. At the right side of the body, the transient wave is seen. This
is a propagating wave to the right side. In the radiation problem, a left running wave is seen at the left of
the body and a right running wave at the right of the body. These both propagate away from the body. The
combined solution for a free floating cylinder and with PTO is seen in Fig.[5.10]

s Free surface diffraction problem s Free surface radiation problem
—_—n - n
104 —— Body surface 104 —— Body surface
0.5 0.54
E o0 E 0.0
< <
—-0.51 -0.51
-1.04 -1.01
-15 T - - - - -15 - - - - -
-20 -10 0 10 20 -20 -10 0 10 20
x [m] x [m]

Figure 5.9: Wave profiles with body

Free surface diffraction and radiation problem free floating s Free surface diffraction and radiation problem with PTO
15 .
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Figure 5.10: Wave profiles with body combined

Diffraction Forces

The cylinder is in motion due to the forces found from the diffraction problem. As shown in Section (4.3
the linearized Bernoulli equation, the pressures are found (Eq. ). To find the hydrodynamic behaviour,
the hydrostatic pressures pgy are not regarded to find the hydrodynamic pressures. As shown by Zhao et
al. [32], the heaving force is found as seen in Eq. . This equation shows the time derivative of the
incoming and diffracted potential.

0P
P=pgr TP9Y (5.21)

F, = piw / (@) + ®p) ds (5.22)
Sy

The potential found from the panel method is split in a space- and time-dependent part. This is done as
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below:
o™ (2,y,t) = &\ +ipl (5.23a
=" (z,y) ™! (5.23b
o™ (@) = o1 + il (5.23¢
o) = <pg")ei‘”t + igoén)eiwt (5.23d

)
)
)
)

This is substituted in Eq. (5.22), resulting in the following discretized expression for the heaving force:

N2:N3
Byl =pw Y (98 +ipi™) (5.24a)
n=1
F, = |F,| e~ (5.24b)

The force has components in phase with the potential and in phase with the velocities. The modulus of
these components defines the amplitude of the force. In Fig.[5.TT]the real part of the diffraction forces is
in phase with the accelerations of the incoming wave. The imaginary part is in phase with the velocities
of this wave. The combination of these creates a total phase difference with the incoming potential. This
phase difference is dependent on the frequency. The results of the force amplitude and phase difference
is seen in Fig.[5.T1] At low frequencies, the forces are almost exclusively in phase with the accelerations of
the incoming wave, meaning the cylinder will almost exactly move along with the free surface.

Force components on body Force and phase difference on body
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o
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Figure 5.11: Diffraction forces on a cylinder in heave

Radiation Forces

First, the values of the only space-dependent potential (¢) have to be found. The potential found from
the panel method is complex in both space and time, with parts in phase with the velocity and with the
displacement.

o (z,y,t) = &\ + i®f" (5.25a)
=" (z,y) - a(t) (5.25b)

0™ (z,y) = o\ +ipl” (5.25¢)
O = " - &(t) +w oM alt) (5.25d)

As expected, the time-independent values for ¢ do not change when the phase of the motion is changed.

With the Bernoulli equation the dynamic pressures on the body can be calculated. The hydrostatic pres-
sures also vary in time due to the free surface elevation, but this is not taken into account here. The second
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order effect of the pressure is neglected here. With these dynamic pressures the added mass p and damp-
ing coefficient A are found, where the added mass is in phase with the accelerations and the damping in
phase with the velocity. The resulting coefficients for a cylinder in heave is seen in Fig.

F= /pr -nyds (5.26a)
N2:N3
F= 3" —plpy” - m)alt) - pw (e -mp) a(t) (5.26b)
n=1
F=—pa(t) — Xa(t) (5.26c)
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Figure 5.12: pand X for a cylinder in heave

Equations of motion

The resulting RAO of the cylinder in heave can be found with the following equation, where K is the spring
term from the buoyancy force (Zhao et al. [32]). This approximates the walls of the body as straight lines,
as explained in Section[4.3]

Fy

—w2(M + p) —iw(A+ Apro) + K (5:27)
An optional power take off damping is included, which if set to zero represents the free floating cylinder. Kis
the spring stiffness, which is represented by the buoyancy (K = 2rpg). This term shows only the buoyancy
that occurs on top of the buoyancy at the position of the cylinder at rest, where the buoyancy and weight
cancel each other. The resulting RAO in heave for a free floating cylinder can be seen in Fig.[5.13] At low
frequencies the RAQO is 1, which means the motions are equal to the wave elevation. This is as expected,
since the spring term (buoyancy) is dominant for low frequencies. A peak in the RAO appears around
the natural frequency. The motions in this area are dominated by damping effects. Finally, for very large
frequencies the RAO approaches zero. This is because the inertia forces from the mass and added mass
of the floating body are dominant, and the floating body will barely move.

Cy:
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RAO of heaving cylinder
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Figure 5.13: RAO of a cylinder in heave

Power prediction

As seen in Section the optimal PTO damping is defined as Aoyt = +/(K/w —w(M + )2 + A2. The
incoming wave power and absorbed power are seen below. Note that from Fig.[2.7] only the damping term
contributes to the absorbed power and will therefore be evaluated. A WEC with this damping is called
ideally damped.

2
P = %p g ‘2 ~ (5.28a)
Py = %)\PTO w? Cy2 (5.28b)

With these parameters the hydrodynamic efficiency of the wave energy converter can be calculated:

Py

-5 (5.29)

Nh

The results for the damped system are seen in Fig. It can be seen the largest hydrodynamic efficiency
is found around the natural frequency, with a value of around 50%.

RAO and efficiency of ideally damped heaving cylinder
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Figure 5.14: RAO and efficiency of ideally damped heaving cylinder

Energy conservation

The energy flux entering the domain should be equal to the energy flux leaving the domain. For a fixed body,
the only energy entering the domain is the incident wave, and the energy leaving the body is the radiated
and transient wave. Conservation of energy is then described as in Eq. (5.37).

Transmission and reflection coefficients are used to show the effect of the body on the waves. They are
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the ratio of amplitudes of the reflected and transmitted wave to the incident wave. The behaviour with a
square cylinder (square = cross section in x-y plane, cylinder = infinitely long floating object) can be seenin
Fig. The incident wave is subtracted from the reflected wave, as the amplitude of the standing wave

is the sum of both waves. The wave heights are calculated sufficiently away from the body, to prevent any
influence of the evanescent waves.

R= UZL - %’ z =z (5.30a)
T = "ZR - ‘I)DTJ?{’I z =g (5.30D)
In_l.'l:::nt 11‘ T_rilLsmilted
Reflected o 2 r2

ATy Ty iy A A F T ITT SIS

Figure 5.15: Wave definitions [20]

PI = PR —+ PT (5318)
lpgA®w lpgniw lpgnpw
2 k2 k 2k (531b)
A% =02tk (5.31c)
R*+T*=1 (5.31d)

The results of these equations are plotted below in Fig.

Energy balance in diffraction problem
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Figure 5.16: Radiation and Transmission coefficients and Energy conservation

For a problem with a moving body and power take off, it is slightly different. The radiated wave from the
moving body and the power extracted by the PTO become part of the energy losses in the domain. The
resulting equations are seen below. The resulting energy conservation is seen in Fig. The derivation
of the energy conservation is given in Eq. , as performed by Zhao et. al.[32], who used an analytical
model of a floating square to find these results. Here, n;, and ng are respectively the wave heights at the
left and right of the body. 7, is the hydrodynamic efficiency.
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Figure 5.17: Energy conservation with PTO

32



Errors radiation boundary and free surface

The values of the velocities at the free surface boundary close to the radiation boundary, and at the radiation
boundary close to the free surface boundary, show some errors. The values directly prescribed by the
boundary conditions seem to be calculated correctly. However, the tangential components on the panels
show some errors. These are difficult to explain, since the perfect analytical solution is a solution to all
boundary conditions. When this ideal solution is prescribed, all sources go to 0. This means the perfect
analytical solution is indeed a solution to the boundary conditions. If these errors are excluded in the
relevant equations, it does not provide a significant problem. The presented comparison in Fig.[5.18 and
Fig.[5.179)are done for a domain without body, so it can be compared to the theoretical values. It can be

seen close to the boundary intersections the velocities deviate from the analytical solution.
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Figure 5.19: Corner problem at radiation boundary
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5.8 Conclusions

It can be concluded that the first order method has been developed successfully. the goal was to develop
a linear panel method for a cylinder oscillating on the free surface with a power take off.

Boundary conditions

The boundary conditions applied in the method are validated. The free surface boundary condition is de-
rived from the pressure- and kinematic conditions at the free surface. This boundary condition is based
on physics and is implemented correctly. The body and bottom boundary no-penetration boundaries are
also modelled correctly. Finally, the GABC and ABC at the left and right radiation boundaries function well.

Some errors appear in close proximity of the intersection point between the free surface and radiation
boundaries, but these are very local. The results have been validated despite these errors. Also, the ex-
pected behaviour of linear propagating waves at the boundaries is not perfect. Some non-linearity arises
in the form of a non-constant amplitude of the reflected wave. This is due to a discretization error, as the
error reduces significantly for smaller panels.

The evanescent waves appear not to be significant to the solution if the radiation boundary is placed 0.5
wavelengths away from the body. This is for a linear wave, for a non-linear wave the behaviour should be
re-evaluated.

Geometries

Different geometries are validated in this linear method. This leads to the founded expectation that other
geometries can be used in this method with success.

Energy balance

The diffraction problem successfully abides the energy conservation laws. This shows the coupling be-
tween the diffraction and radiation problem was successful, and the energy prediction of the PTO predicts
the same amount of energy that is lost from the waves.
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Chapter 6

Second order problem

This chapter describes the second order problem. The problem is split in a diffraction and radiation prob-
lem. Unlike the linear model, these can not simply be superimposed to find the complete motion of the
object, since there is a non-linear interaction between the waves. This can be overcome by solving the
radiation and diffraction problem simultaneously and adding coupling terms.

The second order problem has not been completely solved in this report. This chapter will present
the model as developed, and will discuss the obtained results. The model can currently run a
monochromatic wave through the finite depth domain, without interference with a body.

Problem definition

The same geometry is used as for the linear problem, as seen in Fig. The same distinction between
the surfaces is made.

6.1 Non-linear model

This section shows the theoretical model for a second order problem. The boundary conditions and dis-
cretization steps are displayed. The problem is no longer linear and the choice is made to keep the panels
at the same locations. Second order effects are included through both the inclusion of non-linear terms in
the boundary conditions and through Taylor expansions around the existing panel surfaces. This means
the problem is still described as a single matrix equation to solve for the source strengths.

6.1.a Boundary conditions
Free surface boundary condition

The free surface boundary condition for second order can be seen in Eq. (4.15d). The panels are placed at
y = 0, as the boundary condition is a Taylor expansion around y = 0. This right hand side is commonly
called the quadratic forcing function [14]. The details of this derivation are found in Appendix|[C]

092 9 (oM 9™ HpM) Hph) 109M 9 (920 opM)
—4wd@ 4 g = + = — +g (6.7)
oy ot \ 0xr Ox oy Oy g Ot Oy ot? oy

QFF = — 6.2)

8 (90dW 9o 9p1) o) 1900 9 /920W) o)
at(@x ox oy ay) g ot ay< o +g<9y)
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Left radiation boundary condition

The second order term of the incoming wave is the only right going second order locked wave at the left
boundary. Therefore the Sommerfeld condition will again be used as a GABC. Note that the wave speed is
the same wave speed as for the linear wave, since it is a locked wave.

(889: - 2ik> 3 = (;x - m) o = —4ik ol (6.3)

This no longer works when the pressure term from Eq. (4.27) or Eq. (4.22) appear. The additional pressure
term will have an influence on the time derivative part of the potential, but the spacial derivative is 0. Since
the Sommerfeld equation is based on propagating waves, this is no longer valid.

Possibly the Sommerfeld condition is not required at all. The second order potential is a function de-
pendent on the first order potential, which is already successfully generated at the boundary. Therefore
the second order wave is also created without the necessity to generate it at the boundary.

Right radiation boundary condition

The right radiation boundary is as follows, with the same exceptions as stated above.
0 L oi) 6@
— +2ik | ®® =0 (6.4)
ox

Body surface

At the body surface, the velocities normal to the body must be O for the diffraction problem.

(2
0P —0
8nb

(6.5)
For the radiation problem, they must be equal to the second order component of the velocity of the body.

P2 )
T = N (1) (6.6)

Bottom boundary condition

At the bottom surface, the no-penetration boundary condition holds.

092
=0
GnBO

(6.7)

6.1.b Discretization

This section is splitin two parts. First, the model with Sommerfeld condition with the same matrices as the
linear problem is presented. This method is not yet fully functional, as will be discussed with the results.
Secondly, a working model for a running wave without body is presented. This uses a new matrix that
replaces the Qy,,.») Matrix to find the velocities at the free surface.

Model 1

Similar to the first order solution, a matrix equation is solved containing all boundary conditions and wave

parameters. The Py, ,,,; and Qy,, ., influence matrices are unchanged from the linear problem. The matrix
containing all boundary condition components of the second order potential is seen below. This C[(i);]

matrix contains the Sommerfeld condition to generate the second order wave and uses the Qy,, ,,,) matrix
to find the normal velocities on the panels.
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— Qikp[n,m] ,n €Sy

,m]
(2)% n,m| NS Sb
Cim) = § Qinm) +4k Prmp sn € Sp (6.8)
[n,m] — 2t k Ppm ,n€ Sr
[n,m] ,n € By

The equations on the right hand side are less trivial than the linear problem, since the right hand side of
the free surface is not zero but instead the QFF.

Diffraction problem
(& —2ik) @ nes;

@) ,n €Sy
Ky = QFFiy ,n € Sp (6.9)
0 ,n € Sp
,n € By
Radiation problem

0 ,nmesg
a2ty nmes,
0 ,n € Sp
0 ,n € By

Model 2

Another matrix is created which does not use the Sommerfeld condition to generate the second order
wave and which does not use the Q, ,,,; Matrix, but instead the G, ,,,; matrix as defined in Eq. (6.11).

G[n,m] = agyp[n,m] =2k tanh(Qk(h + y)) P[n,m] (611)
The tanh(2k(h + y)) term originates from the transformation of the cosh(2k(h + y)) to a sinh(2k(h + y))
when taking the partial derivative in y. This matrix can only be used for a running wave withouta body,
because of this use of the derivative.

2 _)9 G[n,m] —4w? P[mm] ,n € Sp
(nom] = {G[n,m] ne By (6.12)
Since there is no body, only one right hand side is necessary.
@ _ JQFF, ,n€Sp
K[n] - {0 .n € By (613)

6.2 Results

The goal of this chapter is to clearly communicate the possibilities and challenges of the linear model
with regard to the second problem, and to increase the understanding of the second order problem to the
reader. For all results, the following values are used: A = 1[m], w = 1[1/s], h = 10[m]. The second order
potential found is seen in Eq. (6.14).

@ _3 A?w cosh(2k(h + y)) o 2ikz it

d
8 sinh4(k‘h)

(6.14)
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Radiation boundary condition

Since the problem is a two-dimensional wave, the Sommerfeld condition will work without errors as a gen-
erating absorbing boundary condition. In this boundary condition it is important to note that the wave
speed is the same speed as the first order wave, since it is a locked wave and the dispersion relation is not
valid for the properties of that wave.

The results of the potential on the radiation boundary is seen in Fig.[6.T} To ensure the boundary is tested
properly, the theoretical potential value is prescribed as a boundary condition on the free surface. This
leaves the radiation boundary condition to be evaluated. It can be seen that it is nearly a perfect fit. The
differences can most likely be explained as discretization errors.

Left radiation boundary Right radiation boundary

—— Analytical —— Analytical
—0.2 —— Numerical | —— Numerical

-10 -8 -6 -4 -2 0 -10 -8 -6 -4 -2 0

Figure 6.1: Radiation boundaries

However, as described, the Sommerfeld condition may not be necessary to obtain the correct second order
wave.

Free surface boundary condition

To solve the free surface boundary condition, first the quadratic forcing function needs to be found. The
quadratic forcing function is calculated as seenin Eq. (6.2). To find the values numerically, some challenges
arise. Two components need to be found that are not present in the first order problem and existing model.

Firstly, the V&) term requires the tangential component of the flow along the panels. This can be found
from the original velocity influence matrix. As shown in the appendix in Chapter[D] the velocity influence
matrix Vi, ., has a real and imaginary part. In Eq. , it is shown the tangential velocity is found from
the real part of the velocity influence matrix. This is what we now define as Q ,,,m), With t,, the tangential
unit vector of the panels.

Iy O
= Il = - N
Qt [n,m] /panel o o1, (2efm) — Z1[n) (3)) ds (6.15)
When discretized, it results in the following equation for the tangential flow at the free surface
9 1) 1)
or [n] ,

Secondly, the 33722 of the potential has to be found. For the propagating waves, this is found as seen below:

82

?
However, as seen in Eq. (6.18) by Mei [19] for a Green function, the evanescent waves are of different
nature. The behaviour in y direction is not a hyperbolic cosine but a normal cosine. This means the double
derivative in y would result in —k2®() . Therefore, Eq. (6.17) can not be used to find the double derivative.
This would result in errors close to the body where evanescent waves appear. This is where the results are
most critical to determine the hydrodynamic properties of the floating object.

oW = k2 (6.17)
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A different approach is taken. since the velocities inside the fluid can be determined at any point, a numer-
ical differentiation is done very close to the free surface. A differentiation step is shown in Eq. (6.19), with
e a very small number. Ideally, the differentiation would be done between y = € and y = —e to find the
value at y = 0. However, above y = 0 but below the panels the singularities and numerical integration at
the panels make the solutions less accurate. Above the panels the result is no longer physical, since the
velocities are not continuous when crossing a panel.

(6.19)

o LAl O 3 ly=0 = 7,V ly=—
Oy? v= €
The result is seen in Fig. comparing the found values for a propagating wave only. It compares the
analytical solution to the numerical differentiation. Since it is only a propagating wave, Eq. can also
be used to find the accelerations at the free surface. The results show the values are nearly identical. Some
errors occur close to the radiation boundary, which is not related to this problem.
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Figure 6.2: Normal derivative velocity on the free surface

The quadratic forcing function on the free surface is then determined as follows. It is important to note
that the square of a complex number is not the same as the square of a cosine. Therefore the square has
to be taken as seen in Eq. . The mean terms originating from the square of the complex numbers
disappear when taking the derivative in time.

9 &) e
3 =0 =g, - Q) (6.20a)
9 $1) _
& ) 5% |y 0= gy ®a] ly=—c
) 1 1 ..
R{e’kw}zzR{Q—i—zez””} (6.21)
(1) 2 (1)2 (1) 251
1 (0%, oo, 1 0P o=,
QFF = —2iw az[/] o S |’ 83[/] +g 6y[2] (6.22)

The results are compared to the analytical results of the quadratic forcing function from Chapter seenin
Fig.[.3] The differences are very small, and for increasing panel density these differences become smaller.
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For clarity, the panels closest to the radiation condition have not been plotted. These values are not correct,
which is a problem not related to the QFF calculation.

Quadratic forcing function
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Figure 6.3: QFF on the free surface

Body boundary condition

The method is not developed far enough to place a body inside the domain and compare the results to
existing literature, as the evanescent waves can not be found correctly yet. However, when the model is
run with the body included and incorrect evanescent waves, the no-penetration boundary at the body is
satisfied correctly.

Propagating wave results for model 1

The results for a propagating wave shows that the theoretical and numerical results still differ. In this ex-
ample, a running wave is simulated in a domain of four wavelengths, with the properties as described in
the introduction of this chapter. The results shown are the values of the first and second order potential at
all boundaries.

First order potential at free surface Second order potential at free surface
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Figure 6.4: First and second order potential

The results show that the boundaries are not solved correctly. The first order potential is solved very ac-
curately. The second order potential has some differences from the theoretical results.

Firstly, the amplitude at the free surface is not correct, as seen in Fig.[6.4] The frequency and wave length
are correct, but the amplitude is too small. This could be related to the difference with the theoretical
derivation to existing literature. The difference between the theoretical and numerical value is not a fixed
ratio, but this is different for each water depth and wave frequency. Changes in the wave amplitude do not
change the ratio of difference between the results. As a comparison, the right image shows the first order
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Left radiation boundary

Right radiation boundary
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Figure 6.5: Second order potential on radiation boundaries
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Figure 6.6: Second order potential on bottom boundary

solution, which is correct.

Secondly, the radiation boundaries are no longer accurate. It appears they suffer from the incorrect poten-
tial at the free surface, since the results are correct with a prescribed potential at the free surface boundary.

In Fig. it can be seen that for both the left and right boundary the values are no longer correct.

As seen in Fig.[6.6] the velocity at the bottom boundary is effectively 0 for the first order wave. The noise is
probably caused by discretization and round-off errors, since they have a magnitude of 1-1%. The second
order wave velocities do approach a solution where it is 0, but still shows some oscillations and the ampli-
tude is quite large compared to the first order wave. The amplitude of these oscillations differ for different

depths and frequencies.
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Propagating wave results for model 2

The second model successfully runs a second order wave through the fluid domain. The results are shown
below.

First order potential at free surface Second order potential at free surface
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Figure 6.7: First and second order potential

It can be seen that both potential values are correct. There are small differences with regard to the second
order amplitude. The peaks do not fully correspond with the analytical amplitude. This is however a small
difference which reduces with increased panel density (this results is 100 panels per wave). From this
result it can be concluded the Qn, m] matrix has some difficulties finding the correct normal velocities on

the free surface.
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Figure 6.8: Second order potential on bottom boundary

The second order wave height is also determined from the derivation done by Stokes [24], as seen in

Eq. (4.18). The comparison of the numerical and analytical results is shown below. A small difference for
the linear result is visible, whereas the second order wave is well predicted. The result is shown in Fig.[6.9]
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Figure 6.9: First and second order wave height

6.3 Conclusions

It has been shown that the second order model can successfully model the propagation of a second order
wave through the domain. However, due to the way the G/, ,,,) matrix calculates the velocities at the free
surface, it cannot be used for a problem containing evanescent waves. This means there will be errors in
determining the normal velocities when a body is introduced in the domain.

The Sommerfeld condition can be used to generate a second order wave. However, since the linear wave
is already present there is no absolute need to generate the second order wave, as the second order wave
will already appear as a result of the QFF on the free surface. The successful results for the second order
problem were generated without a Sommerfeld condition.

The complex numbers in the model used to describe the oscillations cannot simply be squared to find
the QFF. This is because it represents a cosine only the real part should be squared. This has been suc-
cessfully solved. Another challenge in finding the QFF was to find the double derivative in'y. This has been
solved with a numerical integration along the free surface which is also suitable for evanescent waves.
The QFF calculation can therefore also be used with a body in the domain.
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Chapter 7

Conclusions and recommendations

7.1 Conclusions

The conclusions to the research question and sub goals presented in Section [3.1| will be presented. The
main goal of the thesis was to find the contribution of second order effects on the power prediction for
wave energy converters.

How can the fluid domain be described?

In Section[2.1]different possibilities of finding wave loads in floating objects are found. It was concluded
that a boundary element method with panels along all boundaries is the most applicable method. It allows
the use of potential flow and to approximate an analytical solution by discretization. It does not provide a
solution in the presence of any viscous forces, but these are small and outside the scope of this research.
From the results presented in Section[5.7]it is shown the linear boundary conditions are successfully solved
by the chosen method.

An error appears at the radiation and free surface boundaries, in the close proximity of their intersection
point. This is seen in Section The velocities tangential to the panels show different behaviour than
expected from the linear wave theory. The cause of this error has not been found, but it does not influence
the results of the energy prediction as all verification and validation on the body was successful.

The evanescent waves appear not to be affecting the radiation boundary if the radiation boundary is placed
0.5 wavelengths away from the body. This is for a linear wave, for a non-linear wave the behaviour should
be re-evaluated.

How can a wave be added to the fluid domain?

A generating absorbing boundary condition is used. The absorbing boundary condition based on the Som-
merfeld condition used by Yeung [31] was able to absorb waves, thus having waves leaving the domain.
The GABC used by Wellens [30] for a CFD model was used on the radiation boundary where the wave
enters the domain, with good success. The GABC accurately generates a wave entering the domain, as
shown in Section[5.3

How can the produced power of the moving body be determined?

The values of the potential, wave pattern, forces and hydro-dynamical properties can be found with suc-
cess, as proven in Section[5.6] The power can be predicted with the theoretically derived optimal damping.
Itis also shown that energy conservation for the diffraction problem is achieved. The energy conservation
for a coupled diffraction and radiation problem shows some energy losses. The reason for this energy loss
has not been found. A small portion is due to discretization errors.
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How can second order effects be implemented in the model?

The linear model is suitable to be extended with second order effects. The results and challenges are dis-
cussed in this chapter. The second order model is functional for a monochromatic wave running through
the domain.

A challenge has been found in the pressure term found in Section[4.2] These pressure terms will interfere
with the Sommerfeld condition when the incoming and reflected wave interact with each other. Possibly
the Sommerfeld condition is not needed at all, but investigation on this behaviour with a body in the do-
main has not been performed.

The normal derivatives of the velocity on the free surface and quadratic forcing function are found with
success in the BEM. With the boundary conditions given in the second model as shown in Section[6.1] the
second order potential is solved successfully. The first model has trouble finding the correct amplitudes
for the second order potential. This will create challenges when adding a body to the domain because of
the evanescent waves.

7.2 Recommendations

Following this thesis, some recommendations are made for further research.

- Solve the problem with bi-chromatic waves. This also allows the calculation of second order drift
forces on the body.

- Find a solution for the second order problem with a body. The current problem is that the evanescent
waves cannot be correctly estimated at the free surface. A solution using a different method to find
the normal velocities is required.

- Find a solution for the radiation boundary condition, as the pressure terms from incoming and re-
flected waves will induce pressure terms in the entire domain. A standard Sommerfeld condition
does not take this pressure term into account, so an adapted solution needs to be found to model a
GABC. A possible solution is that no radiation boundary is necessary for the second order problem,
this remains to be investigated.

- Find a method to solve the diffraction and radiation problem simultaneously, as the incoming, re-
flected, transient and radiated waves interact with each other. This would require a coupling between
both problems. The first order problem can be found completely by superimposing the radiation and
diffraction solutions, which can then be used to find the second order terms using perturbation the-
ory.

- Evaluate the second order behaviour of dampers used in a PTO. This will allow for a more precise
power prediction and answer the main research question. Additional research on the non-linear be-
haviour of PTO dampers has to be done and implemented in the equations of motion from the BEM.
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Appendix A

Green Function

Green functions are used to describe the influence of a (pulsating) source positioned at x¢ on the fluid
domain. The simplest form of a Green function would be of a source with constant strength ¢, as seen in
Eqg. (AT). This Green function is used to describe the influence of the source on the entire fluid domain,
and can satisfy the boundary conditions with a source strength which is to be calculated.

G(x|xg) = % In|x — xqo| = % Inr (A7)

When the Green function must also satisfy the free-surface boundary condition, it becomes more com-
plicated. A good derivation is found by Mei [19], and the most critical steps will be discussed in this chapter.

The Green function is derived from Greens theorem, which is seen in Eq. (A.2). For a 2D potential flow
problem where V2G = §(x — xg), this can be simplified to Eq. (A.5) using the Dirac property as seen in
Eg. (A.4), with the singularity at a included in S. Also, symmetry is used to interchange x with xg.

/// (PV3G — GV?D)dQ = //dQ <(I)8n — G )dS (A.2)

//Q(@VQG)dQ _ / (@Zi - GZi) ds (A3)
/f 5(z — a)dS = f(a) (A4)
w0 = [ (@(xwgf - Ga@;:(,)) as (A5)

The Green func’uon must satisfy the boundary conditions as seen in Eq. (A.6), where (zq, yo) is the source
location. Eq. (A.6a) shows the Laplace equation. The only place where a source is not actually an ideal
flow is at the smgularlty of the source location. Since this singularity is not within the flow field that is being
solved, but within or on the body, this does not impose a problem for the solution. This singularity will be
seen as a Dirac function for the Laplace equation. Eq. is a representation of the linear free surface
boundary condition and Eq. is the radiation condition at infinity.

0?°G  0*G

02 + £ =6(z — 20)0(y — o) (A.6a)
oG
= — = A.
oy wG =0 (y=0) (A.6b)
g—G +ikG =0 (k|lx — x| — o0) (A.6c)



If these conditions are made for the Fourier transform of G with respect to x, the following equations are
obtained, where K is the Fourier transform variable:

ZZC:—KQé:é(y—yo)e_iK“ —00<y<0,y#yo (A7)

Gloy =Gl =0 (A.7b)
% |oteg — % gy =€ (A7)
%f—wézo (v—0) (A 7d)

The solution to this problem can be presented in the form of Eq. , where the function w(x, xo) repre-
sents the solution to the boundary conditions above.

G = e % §(x, x0) (A.8)

When taking the Fourier inverse of this function, a problem arises with the integral. The Fourier inverse
formula is given in Eq. (A.9). Since the function of w is symmetric, the integral can be taken as twice the
integral from 0 to co. The problem is the integration of the poles (singularities) at K = +k and K = +ik.

f@) =5 [ F)erear (A9)
G(x,%0) = % /0 " K- 5(x, x0)dK (A.10)

These singularities are solved using the Cauchy theorem. This shows that for a function with a singularity
at z;, the complex function of f(z) can be solved with the residue theorem, if z; is with the integrated
domain. In Eq. (A.11), N is the number of poles, n is the order of singularity and z; is the complex pole
location.

N
ff(z)dz = 2mi ZR@S (f(2)]2=z,) (A1)

an—l

(n—1)" zlgglo Ozn—1

Res (f(2)]:=2,) = [(z = 2)" f(2)] (A12)

It is logical that near the source point, the source point will dominate the function. Knowing the potential
function for a source, given in Eq. (A.14), and with the use of the Laplace transform identities shown in
Eq. (A.15) the final expression for G can be derived. The derivation depends strongly on the function w.

|x —xo| =17 (A13)
o= Q Inr (A14)
2m
e8] /2 2
ge_Kb(l —cos Ka) =1In va' + ¥ (A.15a)
o K b
; %(efm’ — e Khy = ln% (A.15b)

The resulting Green function for a linear problem in deep water is seen in Eq. ‘ The first term is the
source at the body and the second term satisfies the linear free surface boundary conditions as seen in
Eq. . For more details refer to Mei [19] or John [T12]. For a higher order free surface boundary condition
the derivation could become complicated quickly.

2 < dK K
G(x,%xg) = - Inr —|—/ K [weK(eryO) cos K(z —xo) —e & (A.16)

0o K |lw—K



Added mass & damping coefficients

Mei [19] derived the added mass and damping matrix from the radiated waves. This begins by separating
the radiation potential by different modes. For the notation in this report it is simplified to two dimensions
The definition is as follows, with « the different modes (1 for surge, 3 for heave and 5 for pitch):

Op = Zva Doy (A17)

in which v, represents the amplitude of the body velocity in mode «. The hydrodynamic force on the body
is also generalised. The complex notation is seen in Eq. (A.18).

/ png dS = Re{F,e ™'} (A18)
Sp
F, = ipw/ Ddn,dS (A.19)
Sp
F, = ipw/ SpngdS + Z ipwvg/ ¢ nedS (A.20)
SB /B SB

Where 3 represents a mode (8 =1, 3, 5)

Fo=F2+> vsfoa (A.27)
B

In this final equation, F.P represents the exciting force due to diffraction. fs, is the restoring force matrix,
where (Ba) is the component that represents a hydrodynamic reaction in mode « due to normal mode
3. This component can be evaluated further to find the added mass and damping components (without
summing over ):

Re{vg faae ™'} = Re{(Re foa +iIm fga) vge ™'} (A.22a)
= Re { <ipo.) . Re¢png dS — pw/s Imégna dS) vﬁe—w} (A.22b)
= — <p/SB Re ¢png dS) Re%(vge_i“t) - <pw [SB Im ¢gng dS> Re(vge ")

(A.22¢)
=- <p /S Re dpna dS) X5 — (W /S Im ¢pgng dS) Xp (A.22d)
=[p] X5 +[A] X5 (A.22¢)

Fi==) npaXp =) AsaXp (A.23)
B B

Eq. (A.23) shows the expressions for the added mass matrix [u] and the radiation damping matrix [\].
These can then be substituted into a simple equation of motion as seen in Eq. (A.24), with £ as amplitude
of a regular motion.

[~w?([M]+[p]) + [C]—iw[A]] {&} = {FP} + { Fext } (A.24)

These equations are all linear. For a second order system, they should be expanded using Taylor expan-
sions or other methods.



Appendix B

Derivation Linear Potential

For a full derivation of the linear wave potential for finite and infinite depth refer to Mei [19] or Holthuizen
[10] . Some more details on linear waves are found below.

Free surface

The free surface is found from the dynamic and kinematic boundary conditions, resulting in the following
equation for the wave height:

109
n= —ga (B~1)
n = A sin(wt — kx) (B.2)

Left going wave

A wave propagating in the negative x-direction is called a left going wave. This is defined slightly differently
as the right going wave:

_ Aw cosh(k(h +y))

@ k cosh(k h)

cos(wt + kx) (B.3)

Second order boundary conditions

The second order potential is derived form the Bernoulli equation at the free surface. At the free surface,
the pressure is equal to the atmospheric pressure. The Bernoulli equation is shown in Eq. below. The
resulting expression for the wave height is found by evaluating this from the strong form of the Bernoulli
equation. The characteristic of the strong form is that potential flow is used and the equation is a constant
in the entire domain. Therefore, the pressure can be eliminated and the constant can be chosen as 0.
Substituting the wave height for y gives the pressure at the free surface.

p 09 1

P92, Ve .V + gy = B4

; 8t+2v Vo +gy=0 (B.4)
1 /00 1

N i v 7 T v/ ) B.5

K g(at—’_ZV v ) (B.5)

At the free surface, the material derivative of the pressure is 0. the material derivative is the change of the
pressure when following a particle. This results in the free surface boundary condition

Dp _ —
0 0 1
<at+v<1>-v> <8t+2V<I>-V<I>+gy> -0 (B.6b)



This results in 5 terms from the product sum rule. Numbering the individual terms from Eq. (B.6b) from 1to
5, the results are shown below. The final boundary condition for the free surface, a sum of these individual
terms, is shown in Eq. (B.8). The third order term is cancelled out.

(1.3):22 B72)
(1,4) :%%(V@ V) = Vb - v%‘f (B.7b)
(1,5):0 (B.7¢)
(2,3) VD - v%‘f (B7d)
(2,4) :%V@ V(VD - VD) (B.7¢)
(2,5) ;g%’ (B.79)

P 9 o0 1
5= Tt 2vq>-v§+m_o (B.8)

As a next step, a Taylor expansion is made around y=0 to approximate the potential on the free surface.
Again, third order terms are cancelled out.

Bz 7.0) = B(2,0.8) + 15y =0 (8.92)
0% 0P 0P o [(9*d 0P
2V - —_— — +2 — B.
0= v +ga +2V Va ”ay(at2 +gay+jj”)7?’;f> (B.9b)
9%d 0P 0P 0P 1 o [(0%® 0P
4oV -V — = ([ 4oV | — (e g B.9
0= 8t2+ay+v Vi~ <8t+M>ay(at2+gay> (B.90)
82 6<I> o2 1090 9 PRL 0P

Next, the potential is split in a first and second order term. For both orders a separate equation appears.
All terms leading to terms higher then second order are left out.

d=oWM) + (3 (B.10a)
N T T T O
8;‘1;(1) v ga‘;’;) —0 (B.100)
UL (R ] (‘92’;) ; ga§;>> (.10d)

For deep water waves in Eq. (B.10d), the right hand side reduces to 0 analytically, for the potential found in
Eq. (4.2b). This means the first order potential is a solution to the second order problem and the second
order term for monochromatic deep water waves disappears.



Appendix C

Finite depth second order wave
derivation

In finite depth, the second order potential is not zero. This second order term can be derived from the
boundary conditions. At the free surface, the following boundary condition, known first order potential and
dispersion relation are the beginning of the derivation. The dispersion relation is a solution to the linear
free surface boundary condition, as shown by Newman [22]. This derivation is based on Stokes [24]. The
derivation is done in the frame of reference moving along with the wave.

¥=x—ct (C.1a)
r=a (C.1b)
&M = Acosh(k(h +v))sin(k x) (C.1c)
2?90 99 o0 —cooM 9 [ ,020M 991
2 - (O v il P2
53 +g 9 2VoY . V(—c) . + s o oy <c 57 +g 9 ) (C.1d)
2 =9 tanh(k h C.le
k
The right hand side of Eq. (C.1d) is evaluated first.
o) 000 _ 9 e . gl
—2VoeW . V(—c) o ca—x(vtb - Vo) (C.2a)
o (9M?  9pM?
(1?2
6§I = A%E? cosh? (k(h + y)) cos® (k x) (C.2¢c)
1?2

azy = A%k?sinh®(k(h + y)) sin®(k z) (C.2d)

(1?2 1?2
<8§ + (9(;) ) = A%E?*(cosh?(k(h + 1)) + cos?(kx) — 1) (C.2e)

z Yy
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;c@@m —cAk

T or ;o (k(h+y))cos(kz) |y =0 (C.3a)
2 (1)
88(};2 = —c?Ak? cosh(k(h + y)) sin(k ) (C.3b)
opM)
g o g Asinh(k(h + y)) sin(k ) (C.3¢c)
2 o) (1)
8%/ (0266;1; ga(;y > = A sin(k x) k? (— sinh(k(h + y))c*k + cosh(k(h + 1)) g) (C.3d)
—c0®M 9 (,0%70M  §o)
g Oz 9y (02 Ox? +yg Ay ) - (C3¢)
P A%ES cos(ka) sin(kx) cosh(kh)?
T g2 sinh(kh)? (C.3)

The boundary condition with substitution of the dispersion relation then becomes:

52 o2 o2 c® A2k cos(kx) sin(kx) cosh(kh)?
2 — _ A213 g —_
g+ oy c A’k sin(2k z) + o7 sinh (k)2 (C.4a)
AQ 3 &3 2
_ 3cA%k’sin(2kz) (C.4b)
2
The second order potential has the following characteristic, the challenge is to find B.

®® = Bcosh(2k(h + y)) sin(2kz) (C.5)

Again, with substitution of the dispersion relation the equation for the second order becomes as shown.

21.3 o3
—8Bk?sinh(kh)? sin(2kz)c? = —M (C.6a)
3A%k
~ 16csinh(kh)? (C.6b)
From the first order potential, A is known to be:
ca

A= ——— v
sinh(kh) (€7)

This results in the following second order potential:

2 .

@ — 3ca®k cosh(2k(h + y)) sin(2kx) (©8)

8 sinh(kh)?



Appendix D

Boundary element method

About the method

A panel method is a method to satisfy boundary conditions within a flow. The flow is disrupted by a body
in the flow, made up from panels. Each panel is a location on which the boundary conditions must be
satisfied. This helps breaking down a complicated boundary condition to a matrix problem.

Source Panels

Simply put, a panel method consists of a kind of source for each panel which satisfies the boundary con-
dition at that panel. However, when a source creates a flow, it also influences the entire fluid domains and
therefore all other panels. These influences are all captured in a matrix, the influence matrix, which will be
come back to later.

z=x+ 1y (D.1)
W(z) =u—iv
Eq. describes the coordinate z in complex coordinates. Eq. (D.2) shows the complex velocity.

q

W(z) = 27(z — 21) (03
Creating a linear panel method is done in smaller steps. First, an example is made for a steady uniform
flow. A typical source description is given in Eq. (D.3), where q is the source strength, z any coordinate and
z1 the source coordinate. To reduce velocity peaks and strong variation in the velocity along the panel, the
source strength is integrated along the panel surface to create a panel source as seen in Fig.[D.1] A point
source and a panel source are both shown on the left, with the local coordinate s shown on the right. The
velocity field for a constant source strength along the panel is as follows:

W () 1/ _ads (D.4)

B ﬂ anel # 21(8)

with 0 < s < 1 describing the panel:
21(8) = 24 + 8(2p — 24) (D.5)

dziewi 2p — Za

SE g b fa D.6

ds |2p — 24| (Do)
The angle of the source panel with respect to the x,y coordinate system is calculated in Eq. (D.6). This is
used to change the global velocities from the panel source to velocities normal and tangential to the panel.
This is especially useful for a no normal velocity boundary condition, which will be applied to each panel.

vs—ivn:W(z)%:%m (i:i:) (D.7)

This panel is not yet a solid boundary. This is achieved then the strength g is chosen so that the total v, is
zero (from the panel and external flow).




ds«

Z

v

Figure D.1: Source Panel [1]

Collocation Points

Collocation points are added to each panel. These points are used for the calculation of the panel strength,
so that no integration is needed for that step. The collocation point is placed just within the body close to
the panel, as a point on the panel would result in a singularity from the panel source itself. It is defined as
follows and seen in Fig.[D.2}

Ze = %(za + 2p) — te(2p — 2a) (D.8)

Figure D.2: Collocation Point [T]

e is a sufficiently small number, for example 10~#. The displacement A is then given by the second term in
the equation for z.. This collocation point is used to determine the flow from the entire body on the panel,
and it is on this point that the boundary conditions are satisfied.

Influence Matrix

As previously mentioned, the influence matrix describes the influence of each panel on all other panels.
The velocity at the control point of panel m due to all other panels n is shown in Eq. , in the coordinates
aligned with the panel.

N (m) (n)
§ 1 Ze ~—Z dz
- (n) ¢ a (n) ©*1 (m)
Wy, = q ln ( (m) _ ) le | ds | (Dg)
N (m) (n)
1 z z ydz
(mn) — LT re (n 1
n=1 c b

Imagine the influence of a panel on its own collocation point (n=m). In this case, half the flow from the
source will go through that point, whereas the other half will go outside of the body. Therefore, the diago-
nals of the influence matrix should always be 0.5:. This also makes the matrix diagonally dominant, which
allows for reliable matrix division.

The external flow can be written to the local coordinates of the panel as well, as seen below:



Ve — vy, = Wy B2 () (1)
ds

This allows to write the normal velocity and tangential velocity as the imaginary and real parts of the
combination of the external velocity and the velocities created by the panels.

N
_ dz1 (m) ) (m.n)
Us—Re{ds| Woo}—i-;q Re{v(mm)y (D.12a)
N
le
= I { O W 3 gm0y (0.12b)

A different notation is used for the normal velocity influence matrix:
Im{Vimmy = Qimm) (D13)

Source Strengths

Finally, the goal is to satisfy the boundary condition of no flow through each panel v = 0. This results in
the matrix division as seen below:

" = _Im {Cﬁ;q(m) Wm} 1) (D.14)
S

The challenge is to find the right influence matrix for more difficult boundary conditions and external flows,
such as a free surface and a non-uniform incoming flow with oscillating behaviour. This will result in
a different W (z) for the panels (instead of only a source) and possibly additional panels at additional
boundaries. The essence of solving the boundary on the panel will remain the same however. Knowing
the source strengths g for each panel, the total flow can be found. For a cylinder with 35 panels, this results
in Fig.[D.3] The flow inside the cylinder has no physical meaning.
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Figure D.3: Steady flow around a cylinder

Boundary Value Problem
For a boundary-value problem only with a moving body, without a prescribed velocity field as seen above,
the resulting boundary condition is:

> gMQ ™ = 4 ™ (D.15)
Sy
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