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For aeronautical applications of topology optimization, it is of importance to develop
topology optimization techniques, that can handle stress constraints in an e�cient and
accurate manner. The development of such topology optimization techniques is a challeng-
ing task due to the local nature of the stress constraints, their highly non-linear behaviour
with respect to the design variables and the so-called singularity phenomenon. An accurate
sensitivity analysis is essential for these type of problems with multiple constraints.

In this paper, we propose a methodology of dealing with stress constraints in a level
set based framework. In this framework, the level set function nodal values are related
to element densities by an exact Heaviside projection. Stress relaxation and constraint
aggregation techniques are used to deal with the singularity phenomenon and the local
nature of the stress, respectively. A constrained optimization problem is then solved,
in which the design variables (the level set nodal values) are updated in the projected
steepest-descent direction, which is determined using a consistent sensitivity analysis.We
demonstrate the e�ectiveness of this technique on two numerical examples. The results
show that the level set method with a consistent sensitivity analysis allows for the treatment
of multiple constraints by using constrained optimization techniques.

Nomenclature

(:)e Subscript indicating element de�ned quan-
taties

� Angle of attack
� Design variable vector with densities
� Stress vector
" Strain vector
�c Update step scaling
� Structural boundary
C Elasticity tensor
f Load vector
K Global sti�ness matrix
Ke Element sti�ness matrix
u Nodal displacement vector

 Design domain

mat Material domain
� Level set function

�PN P-norm approximation of maximum stress
�min Minimum density
�max Maximum local stress value
�lim Maximum allowable stress
~(:) Superscript indicating a qp-relaxed state of

the variable
C Sum of the compliances
c Scaling factor
E Young’s modulus
E� E�ective Young’s modulus
g Constraint
H Heaviside function
m Number of group constraints
n Number of design variables
P Exponent P-norm approximation
p Exponent SIMP law
q Exponent qp�approach
V Volume fraction
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I. Introduction

The grown demand of lightweight structures in aeronautics, driven by fuel cost savings, emission re-
duction and improved ight performance, makes design optimization an even more important discipline for
the aircraft industry. Since aircraft components typically operate under multiple loading conditions, it is
di�cult to rely only on engineering intuition to decide where to remove material and simultaneously meet all
structural requirements (e.g. stress and buckling criteria). This makes topology optimization a potentially
powerful tool to assist the design of aircraft components.

One of the challenges in topology optimization is the inclusion of stress constraints. Traditionally, most
work in continuum density-based topology optimization (e.g. SIMP1,2), focuses on the minimum compliance
design. The reason for this is its well-established problem formulation which can be solved e�ciently by
mathematical programming techniques.3 Therefore, real-world applications of topology optimization are
usually based on the minimum compliance design, followed by shape optimization to satisfy stress and
buckling criteria.4 It is known that for a limited class of problems, the minimum compliance design is
equivalent to the stress-based design.5 However, real-world applications, often subjected to multiple loading
conditions, do typically not belong to this class of problems.

When considering stress constraints additional di�culties have to be addressed, such as the local nature
of the stress, whereas compliance is a global measure. This leads to a computationally expensive problem in
which the number of constraints might be of the same order as the number of design variables. Furthermore,
in density-based topology optimization, problems arise related to the non-uniquely de�ned stress for interme-
diate densities and the occurrence of singular optima, which cannot be reached by a typical gradient-based
optimizer. The existence of singular optima is known from truss optimization (e.g. in Refs. 6, 7) and is
related to the fact that the allowable stress is discontinuous at zero density/area representing void material.
This yields a solution containing substantial regions with intermediate densities, whereas a crisp solid/void
result is typically desired.

A variety of techniques have been proposed to deal with the di�culties discussed above. For example,
constraint aggregation techniques that are based on making a global approximation of the local stress con-
straints (P-norm,8 KS-function9), thereby drastically reducing the number of constraints and, thus, the costs
of sensitivity analysis. To solve the problem of having a non-uniquely de�ned stress for intermediate densities,
Duysinx and Bends�e proposed an empirical model that mimics the behaviour of porous layered material.10

Finally, di�erent formulations have been proposed to deal with the singularity phenomenon. In general,
these formulations are based on various forms of relaxation of the constraint functions, e.g. relaxation by
using smooth envelope functions,11 "-relaxation approach12 and qp-approach.13

In this paper, we want to explore the potential of level set based optimization for stress-constrained
problems. Depending on the design discretization in level set based optimization, intermediate densities
are avoided or limited to a small band along the boundary. We expect this can be an attractive feature
for stress-constrained problems. In this paper, we solve the stress-constrained problem following an explicit
level set method and consistent sensitivity analysis.14,15 An exact Heaviside function is used to relate the
material fractions/densities to the level set function and we derive the sensitivities with respect to the level
set nodal values. The method can be regarded as density-based topology optimization in which the element
densities are controlled by the level set function. Techniques introduced to deal with stress constraints in
density-based methods (e.g. stress relaxation) will also be used in the current approach.

Only limited work has been done on using a level set method to solve stress-constrained problems.16,17

The reason for this is that many level set methods solve an unconstrained optimization problem, while
adding the constraint(s) to the objective function by a penalty term. In the case of multiple constraints,
this can cause di�culties in the optimization process. The novelty of the present approach is that, by using
a consistent sensitivity analysis, we formulate the problem as a constrained optimization problem and are
able to treat multiple stress constraints.

In this paper, �rst we introduce the level set method in Section II. Then, we discuss the stress constraint
implementation, followed by two numerical benchmark examples which are solved using our level set based
optimization algorithm. First, we consider the L-bracket benchmark in Section IV, where we minimize its
weight subjected to (multiple) stress constraints. Then, we consider an airfoil shape in Section V, which
is subjected to two loading conditions which correspond to two di�erent angles of attack. We perform
weight minimization subjected to stress constraints considering the loading conditions, individually and
combined. Furthermore, the airfoil is also optimized towards a minimum compliance design subjected to a
mass constraint. Finally, inSection IV the conclusions and suggestions for future research are presented.
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II. Level set method using a consistent sensitivity analysis

In topology optimization, the aim is to �nd the optimal material distribution 
mat inside a larger design
domain 
. When using a level set method to solve this material distribution problem, the material domain
and the structural boundary can be described by the level set function �(x) as shown in Figure 1.

� = 0

� > 0

� < 0


 
mat
�

�(x) > 0 8x 2 
mat

�(x) < 0 8x 2 
n
mat

�(x) = 0 8x 2 �

Figure 1: On top the level set function �(x) cut by the zero level plane. Below the material domain 
mat

and the structural boundary � described by the level set function, shown on the design domain 
.

The structural boundary � is described implicitly as the zero isocontour of the level set function (�(x) = 0)
and the material domain 
mat is given by � > 0. A change of the level set function results in a change
of shape (and potentially of topology) of the material domain 
mat. As in most level set based topology
optimization methods, a �xed �nite element mesh is used for the design discretization and the level set �
nodal values (design variables) are mapped to a volume fraction/density �e for each �nite element. This
density represents the presence of material in each element. In this paper, this relation is de�ned as,

�e(�) = �min + (1� �min)

R
De
H(�)dAR
De
dA

; (1)

where H(�) is the Heaviside function and De is the element domain. In most level set methods this relation
is evaluated by introducing an approximate Heaviside function (e.g. Refs. 18,19). However, in this paper we
use the level set method proposed by van Dijk et al14 in which the exact Heaviside function is used. We also
refer to this work for a detailed explanation of the calculation of Eq. (1). Once the relationship is established
between the element density and the level set nodal values, the material distribution can be changed by
changing the level set function. Typically, in level set based optimization methods in which the level set
function is mapped to element densities, the Ersatz material approach is used and the material properties for
each element are then scaled with the density.18,20 Here, SIMP is used and the e�ective Young’s Modulus,
E�, is de�ned as,

E�e = �peE0; where, �e 2 [�min; 1] and p > 0: (2)

Here E0 is the Young’s Modulus associated with ‘solid material’ elements (� = 1) and �min is a lower bound
close to zero to avoid singularity of the global sti�ness matrix. Note that p > 1 to penalize intermediate
densities.a It is known that SIMP penalization is introduced to avoid large grey area’s of intermediate
densities. Although, in this level set method intermediate densities are limited to a small band along the
boundary, similar numerical artefacts were observed. The level set function tends to form small islands,
thereby increasing the presence of intermediate densities.14 The linear structural problem is now de�ned as,

K(�)u = f ; where, K(�) =
X
e2


�pe(�)K0
e; (3)

where K is the global sti�ness matrix which, u the vector with nodal displacements and f is the applied load
vector.

aIf p = 1 the method becomes the same as the Ersatz material approach.
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III. Stress constraint implementation: local and global approach

In our stress constraint implementation, we use the qp-approach13 to relax the stress to circumvent prob-
lems of singular optima. Furthermore, computational costs are reduced by applying constraint aggregation
techniques,8 in combination with scaling to account for the overestimation of the maximum local stress.
Finally, also group constraints are considered to have a better local control over the stress level.21,22 Next,
these techniques are discussed briey and the general stress-based optimization design problem is formulated.

A. Stress relaxation

One of the di�culties when considering stress constraints is the non-uniquely de�ned stress for intermediate
densities. Depending on the de�nition of the stress, this may lead to an all void design or problems with
singular optima. Di�erent choices have been presented for the stress de�nition. For an overview of these
di�erent stress de�nitions we refer to Le et al.21 In this paper, we consider the qp-approach13 for which the
relaxed stress vector ~� is de�ned as,

~� =
�

�q
; where; q 2 (0; p): (4)

In this formulation, the exponent q is chosen within the interval (0; p), and, consequently zero stress is
imposed for zero density. Lower values of q increase the amount of relaxation. Furthermore, � is the stress
vector consistent with the e�ective Young’s modulus E� in Eq. (2). The stress vector is de�ned as,

� = C(E�)"; (5)

where C is the elasticity tensor and " the strain vector. Substituting (5) together with (2) in Eq. (4) gives,

~� = �p�q�0; where �0 = C0"; and q 2 (0; p); (6)

where C0 is the elasticity tensor and �0 is the stress vector for solid material. This interpolation scheme
prevents the occurrence of singular optima since the stress becomes zero as the density tends to zero.

In the numerical examples in this paper, the Von Mises stress is considered. Following Eq. (4), the relaxed
Von Mises stress for each element, is de�ned as ~�e = �p�qe �0, where �0 is the Von Mises stress considering
solid material properties. The relaxed local stress constraint is then de�ned as,

~� = �p�q�0 � �lim; with, 0 < q < p; (7)

where �lim is the allowable stress. Note that Eq. (7) is always satis�ed for any q in the interval (0; p) and a
su�ciently small �. This solves the problem of the presence of singular optima. However, the design space
is highly non-convex and it may be di�cult to �nd an optimal solution.23 Note, that Eq. (7) generally has
to hold for every element. Consequently, the number of constraints becomes of the order of the number of
design variables which leads to computationally expensive problem. In this paper, to reduce the sensitivity
analysis costs, aggregation functions are used to approximate the maximum local stress.

B. Global approximation of maximum stress

Next, we will discuss constraint aggregation used for reducing the sensitivity analysis costs. The local stress
constraints can be replaced by a global constraint using aggregation functions. First, let us de�ne ~�vm as
the vector in which the local stresses ~�e are stored, i.e. ~�vm = [~�e]e2
. The basic idea is that the maximum
local stress, ~�max = max(~�vm), which is non-di�erentiable, is approximated by a smooth global aggregation
function. Here, the P-norm approximation10 is used for the maximum local stress which is de�ned as,

�PN =

 X
e2


~�P
e

!1=P

: (8)

As P ! 1, the P-norm approaches the maximum stress, �PN ! ~�max, whereas lower values overestimate
the maximum stress value. However, for a large value of P the aggregated function is highly non-linear,
which leads to slow convergence or no convergence at all. Therefore, typically a moderate value of P is
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chosen to obtain a more smooth approximation. Using the P-norm approximation, the local constraints can
be replaced by a single global constraint,

�PN � �lim: (9)

Since a moderate value of P is used, the maximum local stress is overestimated and, consequently, this
relation will lead to a too conservative design. To correct for the overestimation of the maximum local
stress, a solution strategy was proposed by Le et al.21 in which the P-norm is normalized/scaled adaptively
towards the actual maximum local stress. Instead of the condition in Eq. (9), the following condition has to
hold,

c�PN � �lim; (10)

where c is a scaling factor which is updated during optimization such that the scaled P-norm converges to
the actual maximum stress. For the adaptive scaling factor the following update scheme is introduced,

ck+1 = ck ��c; where, �c = ck �
�

~�max

�PN

�
k

; (11)

where �c is the step size which is bounded to avoid excessive oscillations and k indicating values for the
current iteration, in this paper we used: [�0:05; 0:05].

C. Group constraints

Finally, to have a better control over the local stress level, one also could use an intermediate approach, in
which several aggregated stress functions are considered.21,22 This can be achieved by dividing the domain

 in several subdomains 
j for j = 1:::m, where m is the number of groups. These groups do not necessarily
have to be physical/geometrical regions. In this paper, this subdivision is based on maximizing the di�erence
in magnitude of the individual stress values within each group.21 The local stresses are stored over the groups
as follows: 1) �rst the vector with local stresses ~�vm is sorted by magnitude, 2) the entries of this sorted
stress vector are subdivided over the subdomains as, 
j = f�j ; �j+m; �j+2m:::g for j = 1::m, where j is the
index which gives the location in the sorted vector of ~�vm. Consequently, the P-norm is a more accurate
approximation for the maximum local stress within each group.

Finally, the general form of the design problem, including group constraints is then de�ned as,

min
�
V =

1

n

nX
e=1

�e

gj =
cj�PN;j

�lim
� 1 � 0; for j = 1::m

�min � �i � 1; for i = 1::n; (12)

where the objective function V is the volume fraction to be minimized, and n and m are the number of
design variables and groups, respectively. When m = n we return to the local stress-constrained problem
where the number of constraints equals the number of design variables, and for m = 1 we treat a single
global constraint function.

Note that both the adaptive scaling and the fact that group constraints change between iterations (since
the order of ~�vm changes) do introduce inconsistencies in our optimization algorithm. The inuence of
adaptive scaling on convergence is largely depend on the chosen update scheme. Here, this e�ect is limited
by choosing small bounds on its update in Eq. (11).

IV. Numerical benchmark study: L-bracket

The algorithm was tested on the L-bracket example shown in Figure 2(a). This example has been used
extensively to study stress constrained topology optimization due to its tendency to form a peak stress in
its reentrant corner. See Ref. 21 for an overview of various L-bracket designs. Here, the design optimization
problem formulated in Eq. (12) was solved. First, the case for a single aggregated stress constraint (m = 1)
was considered. Then, the number of group constraints (i.e. m > 1) was varied to show the e�ectiveness of
the level set method for treating multiple constraints and to study the e�ect of taking more than one group
constraint in combination with scaling.
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For all examples, plane stress linear elasticity is considered and the design domain is discretized by
quadrilaterals with bilinear shape functions. Furthermore, the level set mesh coincides with the �nite element
mesh. A Young’s modulus of E = 100 and a Poisson’s ratio of � = 0:3 are used. For the optimization problem
the allowable stress is set to: �lim = 2 and for each case we start with the initial design shown in Figure 2(b).
The following set of parameters is used for the stress constraint implementation: the exponent of the P-
norm is set to P = 12, the penalization exponent of the SIMP law is chosen as p = 3 and the relaxation
parameter to "qp = p � q = 0:8. Finally, the constrained optimization problem is solved using a gradient
projection method based on a �xed density change in every iteration (0.1).14 For a fair comparison, every
design problem was solved for a �xed number (400) of topology optimization iterations.

Design Domain

25

25

10

10 F

(a) L-bracket.

0

0.2

0.4

0.6

0.8

1

(b) Density distribution.

Figure 2: (a) L-bracket: clamped on the top and forced downwards on the right end. For the design
discretization of the design domain a �xed �nite element mesh of 1600 quadrilaterals is used (50 elements
along the largest sides in both horizontal and vertical direction). (b) the density distribution for the initial
design, where red represent solid material elements and green represents the void material elements.

A. Single aggregated stress constraint

First, the L-bracket was optimized for a single aggregated stress constraint. The optimized design and its
corresponding Von Mises stress �eld are shown in Figure 3. An optimized design was obtained of a relative
volume of V = 42:29%. Furthermore, the maximum stress is ~�max = 2:00, and converged to the maximum
allowable stress. It can be seen that the optimized design has a rounded shape along the reentrant corner,
which e�ectively prevents the occurrence of peak stresses.

(a) Density distribution. (b) Von Mises stress.

 

0

0.5

1

1.5

2

Figure 3: L-bracket: minimizing volume subjected to a single aggregated (P-norm) stress constraint.

B. Group constraints

Next, the L-bracket is optimized using di�erent number of group constraints, as described in Section III. We
solve the design problem in Eq. (12) for m = f2; 4; 8; 16; 32; 64g. The results are listed in Table 1, including
the data for a single aggregated constraint. Also the mean stress of each structure is listed, where the mean
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stress is used as a measure to compare uniformity of the stress distribution between designs. In Figure 3 the
optimized design and corresponding stress �eld is shown for m = f4; 8; 16; 32g.

Table 1: Volume minimization subjected to groups stress constraints.

Case

Objective Constraints Volume (%) max�vm mean �vm

Volume 1 group �PN 42.29 2.00 0.68

Volume 2 groups �PN 41.55 2.00 0.70

Volume 4 groups �PN 40.07 2.00 0.73

Volume 8 groups �PN 38.74 2.01 0.76

Volume 16 groups �PN 41.09 2.01 0.77

Volume 32 groups �PN 41.16 2.01 0.78

From the data listed in Table 1, it can be seen that all design converged to the maximum allowable
stress �lim. Furthermore, it can be seen that, initially increasing the number of group constraints, lead to
more optimal designs in terms of volume objective. However, after a certain number of groups the optimized
design became less optimal again. This might be related to the constraint handling capabilities of the applied
optimizer. The same e�ect was observed in Ref. 21 where MMA was used as an optimizer. Thus, there seems
to exist an optimum number of groups to reach the most optimal design for a given design problem and
optimizer. For this problem, the most optimal design was obtained for 8 group constraints. Furthermore, it
was observed that the inconsistencies introduced in the optimization algorithm by constraint swapping and
scaling also have a negative e�ect on the convergence. This will be discussed in subsection C.

Note that the mean stress in Table 1, which is used as a measure of the uniformity of the stress distribution,
did increase. This increase of the mean stress is di�cult to see by comparing the stress �eld in Figure 3 since
the di�erences are relatively small. However, it is particularly noticeable by comparing the stress distribution
for a single constraint and the result for 32 group constraints in Figure 4(h).

(a) 4 groups: � (b) 4 groups: ~�vm (c) 8 groups: � (d) 8 groups: ~�vm

(e) 16 groups: � (f) 16 groups: ~�vm (g) 32 groups: � (h) 32 groups: ~�vm

 

0

0.5

1

1.5

2

Figure 4: Material distribution and Von Mises stress �eld for di�erent numbers of group constraints: (a-b)
2 groups, (c-d) 4 groups, (e-f) 8 groups,(g-h) 16 groups.
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C. Convergence history

As discussed in Section III, for the stress constraint implementation the following measures were applied:
division into group constraints and scaling. Both measures lead to inconsistencies. The division in group
constraints also introduces inconsistencies since its subdivision is based on the order of the magnitudes of
the stress values, therefore the composition of these groups changes between iterations. We will refer to this
as ‘constraint swapping’. In this section, we examined the e�ect of these inconsistencies on the convergence
history. This was done by comparing convergence histories of the L-bracket problem for a single aggregated
stress constraint and for the case with 4 group constraints. Both cases are considered without and with
scaling. For scaling the update scheme in Eq. (11) was used. The results are shown in Figure 5 where the
normalized objective function is plotted and the constraint function versus iteration history. For the sake of
clarity, the constraint functions are scaled 100�.

0 50 100 150 200 250 300 350 400

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

# of iterations

Objective function - normalized volume

Single global stress constraint (scaled 100x)

(a) 1 group constraint - no scaling.

0 50 100 150 200 250 300 350 400

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

# of iterations

Objective function - normalized volume

Single global stress constraint (scaled 100x)

(b) 1 group constraint - with scaling.

0 50 100 150 200 250 300 350 400

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

# of iterations

Objective function - normalized volume

Group constraints 

(scaled 100x)

(c) 4 group constraints - no scaling.

0 50 100 150 200 250 300 350 400

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

# of iterations

Objective function - normalized volume

Group constraints 

(scaled 100x)

(d) 4 group constraints - with scaling.

Figure 5: Convergence history with and without scaling: (a-b) convergence history for a single group con-
straint. (c-d) convergence history for four group constraints. Note that the response functions of the
constraints are scaled 100 times for the sake of clarity.

It can be seen, by comparing the results for 1 group constraint and 4 group constraints without scaling
in Figure 5(a) and Figure 5(c), respectively, that constraint swapping itself has a small or no e�ect on the
smoothness of convergence. However, when comparing both cases again but now with scaling in Figure 5(b)
and Figure 5(d) it can be seen that the e�ect of scaling on the smoothness of convergence becomes larger as
the number of groups increases.

This negative inuence on the convergence, for the combination of swapping and scaling of each group
constraint, can be explained by the fact that the composition of each group changes between iterations.
Therefore, the scaling factor, determined in the previous iteration to scale the current aggregated stress
function is not valid anymore. In theory, close to convergence this e�ect should vanish since the order of the
stress distribution does not change anymore. In practice, it was observed that this e�ect remains since even
a single change in magnitude can lead to a completely di�erent redistribution in groups.
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V. Numerical case study: 2D-Airfoil Model

In this section, we consider a symmetrical NACA 0030 airfoil subjected to two loading conditions, shown
in Figure 6. The airfoil is supported along the boundaries of the grey region. The aim is to weight-minimize
the interior structure. First, volume minimization subjected to a global stress constraint will be performed
followed by compliance minimization with a volume constraint. For each optimization case we study both
load cases individually, as well as the combined load case.

c
t

x

y

s

f
(1)
p (x) = a1

��x
c

�3

� 2
�x
c

�2

+
x

c

�

�f (1)
p (x)

(a) Load case � = 0.

f
(2)
p (x) = a2

h
1� x

c

i

f
(3)
p = a3f

(1)
p

(b) Load case � = 10.

Figure 6: Load cases for two di�erent angles of attack

The simpli�ed loading conditions correspond to di�erent angles of attack (� = 0 and � = 10) and are used
here for illustrative purpose only. Parameters de�ning the geometry and loadings applied to the structure
are listed in Table 2.

Table 2: Geometry and Loads.

Loads

Geometry Coe�cient Resultant force

chord width c = 1 a1 = 15=12 F1 = 1=15

max. thickness t = 0:3 a2 = 1=15 F2 = 1=30

skin thickness s = 1=60 a3 = 1=4 F3 = 1=60

As in the L-bracket example, the design is discretized using quadrilaterals with bilinear shape functions.
We assume plane stress linear elasticity. The airfoil is modeled by 120 elements along the chord length and
36 elements along the maximum thickness. We use a Young’s modulus of E = 1e4 and a Poisson’s ratio of
� = 0:3. Furthermore, the skin is modeled by ‘non-design’ elements, which have the material properties of
solid material elements (� = 1). These elements do not form part of the design domain. However, their stress
values also have to satisfy the stress constraints and, consequently, do contribute to the global stress function.
For the stress constraint implementation the same parameters are used as for the L-bracket: P = 12 and
"qp = 0:8. Here, a maximum allowable stress is assumed of �lim = 80. The constrained optimization problem
is solved using a gradient projection method based on a �xed density change in every iteration (0.1).14 As
a stopping criterion a �xed number (600) of topology optimization iterations is used. The initial data for
both load cases are given in Table 3.
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0

0.2

0.4

0.6

0.8

1

Figure 7: Initial density distribution.

Table 3: Initial data for initial design for each load condition.

Load Case max�vm Compliance

� = 0 17.51 0.30

� = 10 92.72 1.71

First, volume minimization subjected a single global stress constraint is considered for each load case
individually, m = 1 in Eq. (12). For the combined load case, an additional constraint is added to the problem
and the design problem is de�ned as,

min
�
V =

1

n

nX
e=1

�e

gi =
ci�PN(ui)

�lim
� 1 � 0; for i = 1::2;

�min � �j � 1; for j = 1::n; (13)

where ui, �PN(ui) and gi are the displacement vector, the aggregated stress function and the group constraint
belonging to the i-th load case, respectively. Finally, the airfoil is optimized again by minimizing compliance
subjected to a volume constraint to illustrate the di�erences between strength-based and sti�ness-based
design. Again, the load cases are studied individually, as well as combined. In this case, the volume values
obtained in the stress-based case are used as volume constraints.

For compliance minimization of a design under multiple load cases, generally two types of formulations
are used:24 minimization of the maximum compliance with respect to the loading condition or minimize a
(weighted) sum of the compliances of both load cases. Here, the latter is used and the design problem is
de�ned as,

min
�
C =

2X
i=1

uT
i Kui

g =
V

Vlim
� 1 � 0;

�min � �i � 1; for i = 1::n; (14)

where C is de�ned as the sum of the compliances for each individual load case.

A. Stress-based design

The optimized designs for a single loading conditions are shown in Figure 8. For each loading condition a
di�erent design was obtained. The design for the �rst load case (� = 0) converged to a relative volume of
V = 12:03% and is made out of vertical members which are fully stressed as can be seen in Figure 8(a).
The maximum stress is ~�max = 80:13 and the constraint is thus slightly violated. For the second load

10 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
Fe

br
ua

ry
 2

6,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
13

58
 



case (� = 10) the optimized design converged to V = 28:24% has completely di�erent design, which is a
combination of diagonal and vertical members. Furthermore, note there still exists a relatively large region
of low stress material connected to the leading edge, which appears to be suboptimal.

0

20

40

60

80

(a) Stress-based design for load case � = 0 in Figure 6(a).

 

0

20

40

60

80

(b) Stress-based design for load case � = 10 in Figure 6(b).

Figure 8: Stress-based design for the two loading conditions individually. On top the material distribution
is shown and on bottom the corresponding Von Mises stress belonging to the applied load case.

The optimized design for the combined load case is shown in Figure 9. It can be seen that the design shows
more resemblance with the second load case � = 10. Both structures have the same topology. However, the
diagonal members in the mid area between the spar connection and the trailing edge did change in shape
and are in between the designs for the two individual load cases. The data for the each single load case and
the combined case are listed in Table 4.

(a) Density distribution.

  

0

20

40

60

80

(b) On top and bottom, the Von Mises stress �eld for load case
1 and load case 2 are shown, respectively.

Figure 9: Stress-based design for the two loading conditions combined.

When minimizing volume, the stress constraint for the second load case � = 10 is more critical. The stress
constraint of the �rst load case becomes �rst active and therefore the optimizer only follows this constraint
surface until the moment that the second constraint becomes active. Therefore, the design for the combined
load case shows more resemblance with the second load case � = 10. The design is also less optimal in terms
of weight than the other two designs which is most likely a results of the fact that the shape of the members
is now less optimal for the second load case � = 10 (which becomes critical �rst). To compensate for this
less mass was removed from the structure.
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Table 4: Stress-based design for di�erent load cases.

Load Case Volume (%) max�vm Compliance

� = 0 12.03 80.13 6.99

� = 10 28.24 80.44 6.74

Combined* 30.04 80.15/80.53 4.67/6.30

* For the combined case, the two entries for stress and compliance
correspond to load case � = 0 and � = 10, respectively.

B. Compliance-based design

Next, we perform a compliance-based optimization of the airfoil. The optimized volumes obtained in the
previous section (listed in Table 4) are used here as volume constraints. These are: V 1

min = 12%; V 2
min = 28%

and V 3
min = 30%, for the load case � = 0, load case � = 10 and the combination of these two, respectively.

For the combined load case the objective function was taken as the sum of the compliances for both individual
load cases. The optimized designs for the single load cases are shown in Figure 10.

 

50

100

150

(a) Optimized design for load case � = 0 in Figure 6(a).

 

0

50

100

(b) Optimized design for load case � = 10 in Figure 6(b).

Figure 10: Compliance-based design for the two loading conditions individually. On the top row the density
distributions are shown for the �nal design. On the bottom row the corresponding stress state.

It can be seen that the optimized design for the �rst load case � = 0 in Figure 10(a) is almost identical
to the stress-based design in Figure 8(a). However, there is a local peak stress since no stress constraints
are taken into account. The design for the second load case � = 10 in Figure 10(b) is mainly made out of
diagonals and shows resemblance with the stress-based design in Figure 8(a). However, its topology di�ers
from the stress-based design. Furthermore, the design is more asymmetric which corresponds with the fact
that the load is asymmetric. Also from comparing the stress distributions it can be seen that this is less
uniform than in the stress based design.

For the combined load case the optimized compliance-based design is shown in Figure 11. This structure
looks like a combination of the optimized designs of the individual load cases. In contrary to stress-based
design for a multiple load case which showed much more resemblance with the second load case (� = 10)
since this became critical earlier in the design optimization process. This can be explained by the fact that,
for the combined load case, the objective function used in Eq. (14) is de�ned as the sum of the compliances.
In Table 5 the data are listed for each load case. It can be seen that the compliances for the combined load
case are of the same order and therefore are both reected in the �nal design.
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(a) Density distribution.

 

0

50

100

 

0

20

40

60

(b) On top and bottom, the Von Mises stress �eld for the �rst
load case (� = 0) and second load case (� = 10) are shown,
respectively.

Figure 11: Compliance-based design for the two loading conditions combined.

Furthermore, it can be seen from Table 5, that for each load case the maximum allowable stress limit is
exceeded. It can be observed that the optimized design for the combined load case is non-optimal in terms
of distributing the stress since there is a large di�erence between the maximum stress values for each load
case, ~�max(u1) = 57:08 vs. ~�max(u2) = 107:35.

Table 5: Compliance-based design for di�erent load cases.

Load Case Volume (%) max�vm Compliance

� = 0 12.00 153.43 7.09

� = 10 28.00 111.68 3.64

Combined* 30.29 57.08/107.35 2.10/4.12

* For the combined case, the two entries for stress and compliance
correspond to load case � = 0 and � = 10, respectively.

C. Dependence on initial design

One of the major di�culties we have observed is the strong dependence on its initial design. Especially, for
stress constraints we observed this problem. This will be illustrated by repeating stress-based optimization
for the second load case (� = 10) for a di�erent initial design shown in Figure 12. Instead of the coarse
distribution of large holes in Figure 7, we use a re�ned initial design with a increased number of smaller
holes.

Figure 12: Re�ned initial design with an increased number of smaller holes.
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In Figure 13, the optimized designs for both initial conditions are shown with the corresponding Von
Mises stress distribution. On the top row the optimized design for the original coarse mesh and on the
bottom row for the re�ned mesh. The results are listed in Table 6.

(a) Optimized design for initial design in Figure 7.

 

 

0

20

40

60

80

(b) Von Mises stress.

(c) Optimized design for initial design in Figure 12.

 

0

20

40

60

80

(d) Von Mises stress.

Figure 13: Stress-based design for load case � = 10, obtained for two di�erent initial designs. On the top
row the optimized design is shown for the coarse distribution of holes and on the bottom row the optimized
design is shown for the re�ned initial design.

It can be seen that the their is a large di�erence between the two optimized structures in Figure 13. For
the re�ned initial design the optimized design contains more thin members and is more optimal in terms of
the volume objective. Both designs lead to a more or less uniform stress distribution for the applied load
case as can be seen from Figure 13(b) and Figure 13(d).

Table 6: Stress-based design for di�erent load cases

Load Case Volume (%) max�vm Compliance

� = 10 28.24 80.44 6.74

� = 10 24.17 80.15 6.26

VI. Conclusions and future work

Our preliminary results show that level set based optimization with a consistent sensitivity analysis can be
used e�ectively for stress-constrained problems with (multiple) constraints. For both numerical benchmark
problems we obtained stress-based designs that meet the maximum allowable stress criterion very closely.
Furthermore, for the airfoil design subjected to multiple loading, we obtained a stress-based design which
is e�ective for both loading conditions, i.e. the maximum stress for both loading conditions is close to the
maximum allowable stress. It was also shown that this design may be very di�erent from the minimum
compliance-based design, especially for the multiple load case.

Furthermore, it was shown by comparing convergence histories, that inconsistencies introduced by scaling
of the P-norm in combination with ‘swapping’ of elements between group constraints, have a negative e�ect
on convergence. This appears to become more critical when increasing the number of group constraints.
Therefore, a careful choice should be made for an adaptive scaling update scheme.

One of the major di�culties when considering stress constraints is that due to their non-linear nature
these problems are prone to convergence to inferior local minima and highly depend on the initial design. In
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this level set description in which all changes occur along the boundary we also observed a strong dependence
on the initial design.

For future research, we will compare the results obtained with this method to results obtained by SIMP.
Furthermore, we will investigate how to improve scaling and subdivision in group constraints and limit the
e�ect of such inconsistencies.
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