
SPLIT-PO: Sparse Piecewise-Linear Interpretable Tree Policy Optimization
An Interpretable and Differentiable Framework for Sparse-Tree Policy Optimization

Ernesto Hellouin de Menibus1

Supervisor(s): Anna Lukina1, Daniël Vos 1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Ernesto Hellouin de Menibus
Final project course: CSE3000 Research Project
Thesis committee: Anna Lukina, Daniël Vos, Luciano Cavalcante Siebert

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Deep reinforcement learning has shown strong per-
formance in continuous control tasks, but its re-
liance on deep neural networks (DNNs) hinders in-
terpretability, limiting deployment in safety-critical
domains. While recent approaches using differen-
tiable decision trees improve transparency, they of-
ten rely on fixed structures that limit flexibility and
lead to unnecessarily complex policies.
We propose SPLIT-PO (Sparse Piecewise-Linear
Interpretable Tree Policy Optimization), a novel
framework that learns sparse, interpretable decision
trees with linear leaf controllers and dynamically
adaptive structure. SPLIT-PO introduces learnable
gating and regularization to prune uninformative
branches during training, enabling compact tree
policies to emerge automatically. It maintains end-
to-end differentiability and integrates crispification
within the training loop, building on prior inter-
pretable methods like ICCT.
Experiments on standard continuous control bench-
marks show that SPLIT-PO matches neural net-
work performance (e.g., 285 vs. 287 average re-
ward on Lunar Lander) while producing trees with
100–1000× fewer parameters and as few as 1–3 leaf
nodes. Additionally, we prove SPLIT-PO is a uni-
versal function approximator, offering neural-level
expressivity in an interpretable form. Although it
requires more samples to converge, SPLIT-PO pro-
vides a promising foundation for transparent and
verifiable reinforcement learning.

1 Introduction
Reinforcement learning (RL) enables agents to learn through
trial-and-error interactions with their environment, guided by
rewards. In continuous-action settings, policies are often rep-
resented using deep neural networks (DNNs), trained via al-
gorithms like Proximal Policy Optimization (PPO) [9] and
Deep Deterministic Policy Gradient (DDPG) [6].

However, DNNs function as black boxes, posing chal-
lenges in domains where interpretability and verifiability are
essential, such as healthcare, robotics, and autonomous sys-
tems.

To address this, recent work has explored decision tree-
based models as more transparent policy representations.
Some approaches distill trained policies into trees post hoc,
while others directly train trees within the RL loop [13].

Classical decision trees are non-differentiable due to dis-
crete splits, preventing gradient-based optimization. Differ-
entiable decision trees (DDTs) [12] address this by replacing
hard decisions with soft, differentiable splits, allowing end-
to-end training.

However, converting soft trees to hard trees after training,
known as crispification, can degrade performance due to mis-
alignment between training and inference.

Interpretable Continuous Control Trees (ICCTs) [7] ad-
dress this limitation by incorporating crispification directly

into the training loop. During the forward pass, ICCTs evalu-
ate actions using a crispified (hard-split) decision tree, ensur-
ing that the agent’s behavior remains interpretable through-
out training. For the backward pass, gradients are computed
using the soft (differentiable) version of the tree, enabling ef-
fective gradient-based optimization. This approach preserves
interpretability during training and inference while maintain-
ing end-to-end differentiability.

Nonetheless, ICCT still requires the tree structure to be
fixed in advance, which may limit expressiveness and intro-
duce structural bias.

This work introduces a method for learning piecewise-
linear differentiable decision trees with sparse structure in
continuous-action RL environments. Unlike classical trees
with constant leaf outputs, our model uses linear functions at
the leaves, allowing more expressive policies.

Instead of fixing the structure, we introduce a learnable
gating mechanism that prunes uninformative branches dur-
ing training, enabling compact, sparse trees without manual
tuning, while maintaining end-to-end differentiability and in-
terpretability.

We propose Sparse Piecewise-Linear Interpretable Tree
Policy Optimization (SPLIT-PO), a method that learns in-
terpretable, sparse trees for continuous-action tasks using a
refined crispification approach inspired by ICCT.

Experiments show that SPLIT-PO matches neural network
performance on simple tasks like Inverted Pendulum (return
of 1000), and approaches baseline performance on harder
tasks like Lunar Lander Continuous (returns 130–285 vs. 287
for a neural net), while offering compact, human-readable
policies.

These results demonstrate SPLIT-PO’s ability to main-
tain strong performance while significantly improving inter-
pretability.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews DDTs, ICCTs, and formalizes the research
problem. Section 3 introduces our method, SPLIT-PO, de-
tailing the architecture and training procedure. Section 4
presents our experimental setup and results. Section 5 dis-
cusses key findings and limitations. Section 6 addresses re-
sponsible research practices. Section 7 concludes with future
directions.

2 Problem Description

2.1 Reinforcement Learning

Reinforcement learning (RL) is a framework in which an
agent learns to make decisions by interacting with an envi-
ronment to maximize cumulative rewards. At each time step
t, the agent observes a state st ∈ S, selects an action at ∈ A
according to a policy πθ(st), receives a reward rt, and transi-
tions to the next state st+1.

The objective is to learn a policy πθ that maximizes the
expected return, defined as the discounted sum of future re-
wards:

J(πθ) = E

[∞∑
t=0

γtrt

]
, (1)

where γ ∈ [0, 1) is the discount factor.
In this work, we employ an actor-critic architecture where

the policy (actor) πθ is trained alongside a value function
(critic) Qϕ(s, a), parameterized by ϕ. The critic estimates
the action-value function and is updated by minimizing the
Bellman error:

yt = rt + γQϕ(st+1, πθ(st+1)), (2)

Lcritic = (yt −Qϕ(st, at))
2
. (3)

The actor is trained to maximize the expected Q-value of
its actions. In the basic deterministic setting used by Deep
Deterministic Policy Gradient (DDPG) [6], this is done by
minimizing:

Lactor = −Qϕ(s, πθ(s)). (4)

In addition to DDPG, we also evaluate our model using
Soft Actor-Critic (SAC) [5], which augments the objective
with an entropy term to encourage exploration and policy ro-
bustness. In SAC, the actor loss becomes:

Lactor = Est∼D [αH(πθ(·|st))−Qϕ(st, at)] , (5)

where α is the temperature parameter controlling the trade-
off between exploration (entropy) and exploitation (Q-value
maximization).

In both settings, the actor and critic are implemented using
differentiable function approximators—in our case, sparse in-
terpretable decision trees trained end-to-end using gradient-
based optimization.

2.2 Decision Trees in Reinforcement Learning
Decision trees are widely regarded as interpretable function
approximators due to their hierarchical and rule-based struc-
ture [2]. In RL they have been used to approximate and
learn optimal policies. These approaches can be split into
two types, distillation and direct policy learning.

Distillation techniques usually try to fit a tree to a well per-
forming black box policy, whereas direct policy learning try
to build the tree as the agent interacts with the environment.

Previous works such as VIPER [1] perform post-hoc imi-
tation learning, extracting a decision tree policy from a deep
Q-network by imitating the network’s behavior. Nonethe-
less, this depends on having an already trained teacher (DQN)
model and does not directly optimize the tree.

Policy Tree [4] introduces a direct policy learning algo-
rithm which trains decision trees with linear models in leaves
using policy gradients. That said, Policy Tree relies on a
greedy and irreversible structure growth process, which can
lead to suboptimal splits and limited flexibility during learn-
ing.

Similarly, Conservative Q-Improvement [8] greedily ex-
pands a decision tree to improve the Q-values, but suffers of
the same fixed structure issue.

Silva et al. [11] introduced Differentiable Decision Trees
(DDTs), which use soft splits to enable gradient-based train-
ing within the RL loop. This makes them compatible with
policy optimization methods while preserving a tree-based
structure. However, when crispification is applied after train-
ing, converting soft splits to hard decisions, performance of-
ten degrades significantly.

To overcome this Interpretable Continuous Control Trees
(ICCTs) [7] were introduced which significantly improve the
performance of the resulting interpretable tree. A key limi-
tation of this approach is that the tree structure must be pre-
defined, which restricts flexibility, may introduce bias if the
structure does not align well with the task, and can lead to
unnecessarily large trees. This constraint can result in subop-
timal representations, where equally performant but sparser
trees could exist. These differentiable approaches, particu-
larly DDTs and ICCTs, form the foundation for our work,
and in the following sections we provide a detailed overview
of their mechanisms and limitations as a basis for our pro-
posed extension.

2.3 Differentiable Decision Trees (DDTs)
Differentiable Decision Trees (DDTs) are a soft, continuous
generalization of traditional decision trees that can be opti-
mized using gradient-based methods like backpropagation.
The key innovation in DDTs is replacing hard threshold
splits at internal nodes with soft decisions, typically mod-
eled by sigmoid functions. This enables full differentiability,
making DDTs well-suited for integration into reinforcement
learning pipelines.

Visual Comparison: Hard vs. Soft Trees
Figure 1 illustrates the difference between a traditional deci-
sion tree with hard splits (left) and a differentiable decision
tree using soft splits (right). In the hard tree, each internal
node makes a binary decision (e.g., x < 0.5), routing the
input deterministically down a single path to a leaf. In con-
trast, the soft tree uses sigmoid-based gating functions (e.g.,
σ(x−0.5)), which probabilistically route the input down mul-
tiple paths. This allows all leaves to contribute to the final
output, weighted by their respective path probabilities.

Figure 1: Comparison of hard and soft decision trees of depth 2.
Left: traditional tree with hard threshold splits. Right: soft tree using
sigmoid-based gating functions.

The mathematical formulation for a soft split at node i is:

si(x) = σ(αi(w
⊤
i x− ti)), (6)

where wi is the weight vector, ti is the threshold, αi con-
trols the sharpness of the transition, and σ is the sigmoid func-
tion. As αi → ∞, the soft split approximates a hard thresh-
old.

The probability of reaching leaf ℓ for input x is computed
as:1

Pℓ(x) =
∏

(i,di)∈path(ℓ)

{
si(x) if di = 0

1− si(x) if di = 1
, (7)

and the overall output is a weighted combination of all leaf
predictions:

πθ(x) =
∑
ℓ∈L

Pℓ(x) · yℓ(x), (8)

where yℓ(x) is the output of leaf ℓ, typically a constant or
a linear model.

Output Behavior: Sharp vs. Smooth
The effect of soft versus hard decisions is also reflected in
the model’s output. Figure 2 compares the output curves of
a hard decision tree and a soft decision tree on a 1D input.
The hard tree (dashed yellow) exhibits sharp discontinuities
at split boundaries, while the soft tree (solid orange) produces
a smoother function due to the continuous nature of its gating
functions.

Figure 2: Output comparison of a hard vs. soft decision tree of depth
2. The soft tree provides a smoother approximation, which is bene-
ficial for gradient-based optimization but often less interpretable.

Trade-offs and Crispification
While soft trees are fully differentiable and thus trainable
via backpropagation or policy gradients, they sacrifice inter-
pretability. To recover interpretability, a post-training crispi-
fication step can convert soft decisions into hard thresholds.
However, as seen in Figure 2, this often leads to reduced per-
formance due to the mismatch between the optimized soft
structure and the non-differentiable hard splits.

1This expression computes a soft probability of reaching a leaf
node by taking the product of the sigmoid gate outputs si(x) (or their
complements) along the path. It enables backpropagation through all
possible paths during training.

2.4 Interpretable Continuous Control Trees
(ICCTs)

Interpretable Continuous Control Trees (ICCTs) extend dif-
ferentiable decision trees by introducing an online crispifica-
tion procedure that enables consistent use of a hard decision
tree structure during both training and inference. The key
innovation of ICCTs is that the forward pass uses crisp de-
cisions to preserve interpretability, while the backward pass
computes gradients through a soft, differentiable surrogate,
allowing effective end-to-end optimization using gradient-
based methods.

To enforce single-feature decision splits, ICCTs use a
softmax-based selection mechanism over the input dimen-
sions. For each internal node i, the feature importance is
computed using a temperature-scaled softmax:

zi = softmax
(
|wi|
τ

)
, (9)

where wi is the feature selector weight vector and τ is the
temperature controlling the sharpness of the selection.

The most important feature is selected using a differen-
tiable straight-through estimator, which enables gradient flow
through the non-differentiable argmax operation. Specifi-
cally, a hard one-hot vector is used in the forward pass to en-
force discrete feature selection, while the backward pass uses
the gradient of the softmax output. This is implemented as:

ẑi = onehot(argmax
j

zi,j) + (zi − detach(zi)). (10)

Here, the detach operation prevents gradients from flowing
through zi during backpropagation, ensuring that only the
soft softmax component contributes to the gradient update,
while the forward computation relies on the discrete one-hot
vector.

The selected feature is then extracted from the input vector:

xi = ẑ⊤i x, (11)

resulting in either a soft or hard selection of a single feature,
depending on whether ẑi is relaxed or one-hot.

Each internal node computes a soft decision value based on
the selected feature and a learned threshold ti:

si(x) = σ(αi(xi − ti)), (12)

where αi is a sharpness parameter, and σ is the sigmoid func-
tion. To preserve interpretability during training, ICCTs use
a crispified version of this split function in the forward pass:

ŝi(x) = σ(xi − ti) + (si(x)− detach(si(x))) , (13)

This formulation uses a straight-through estimator, where the
forward pass behaves like a hard threshold function (using
the unscaled sigmoid σ(xi − ti)), while the backward pass
allows gradients to flow through the soft surrogate si(x). The
detach operation blocks gradients through the crispified out-
put, ensuring that only the soft path contributes to optimiza-
tion.

Each leaf node d of the tree contains a sparse linear con-
troller, designed to remain interpretable by limiting the num-
ber of active input features. This sparsity is enforced via a

differentiable top-k feature selector, implemented by repeat-
edly applying a straight-through one-hot approximation to a
learned importance vector θd:

ud =

k∑
j=1

DIFFARGMAXj(|θd|), (14)

where each DIFFARGMAXj selects the j-th most important
feature using a temperature-scaled softmax followed by an
argmax operation, with masking to avoid selecting the same
index multiple times. This approximates a discrete top-k se-
lection in a fully differentiable manner. A straight-through es-
timator is used to enable gradient flow through the one-hot se-
lections, producing a k-hot binary mask vector ud ∈ {0, 1}m
that determines which features are active in the linear con-
troller.

The output of the controller is given by applying the se-
lected mask to both the learned weights βd and the per-
feature biases ϕd:

ℓ∗d(x) = (ud ◦ βd)
⊤(ud ◦ x) + u⊤

d ϕd, (15)

where ◦ denotes the element-wise (Hadamard) product. This
operation zeroes out all components except those selected by
the sparse mask ud ∈ {0, 1}m.

Equivalently, the output can be written in expanded form
as:

ℓ∗d(x) =

m∑
j=1

ud,j · βd,j · xj +

m∑
j=1

ud,j · ϕd,j , (16)

where ud,j denotes the j-th entry in the sparse top-k mask
vector ud, and m is the dimensionality of the input. This
formulation highlights that only the top-k selected features
contribute to the output, preserving both sparsity and inter-
pretability.

Unlike DDTs, which compute a weighted average over all
leaves, ICCTs use the crispified split values ŝi(x) to deter-
ministically follow a single path from the root to a leaf during
the forward pass. Thus, the final policy output is given by:

πθ(x) = ℓ∗d(x)(x), (17)

where d(x) is the index of the leaf reached by the hard deci-
sion path, and ℓ∗d(x) is the sparse linear controller at that leaf.
This crisp path selection makes the policy’s behavior inter-
pretable at every step. During the backward pass, however,
gradients are propagated through the corresponding soft de-
cisions si(x) and soft selectors zi, allowing the model to be
trained via standard gradient descent.

By combining interpretability in the forward pass with dif-
ferentiability in the backward pass, ICCTs achieve strong per-
formance while maintaining transparency. A major limita-
tion, however, is that the tree structure must be fixed before
training. This constraint may limit representational capacity,
introduce bias if the chosen structure does not align well with
the task and create unnecessarily large trees.

2.5 Research Problem
Recent work in interpretable reinforcement learning has
shown that differentiable decision trees like ICCTs can com-
bine strong performance with transparency by aligning train-
ing and inference policies through gradient-based optimiza-
tion.

However, these models rely on fixed tree structures (e.g.,
depth, branching), which introduces structural bias. This
rigidity can lead to underfitting or overfitting and limits adapt-
ability, particularly in continuous control settings where task
complexity varies across states.

This raises the central research question:

How can we design a reinforcement learning
framework that allows differentiable piecewise-
linear decision trees to adapt their structure dy-
namically during training while encouraging spar-
sity?

Solving this requires a method that is end-to-end differ-
entiable, interpretable at inference, and capable of learning
sparse, adaptable trees within the RL loop.

3 Sparse Piecewise-Linear Interpretable Tree
Policy Optimization (SPLIT-PO)

To overcome the structural rigidity of existing differentiable
tree policies, we propose Sparse Piecewise-Linear Inter-
pretable Tree Policy Optimization (SPLIT-PO). SPLIT-PO
augments the standard differentiable decision tree, specifi-
cally ICCT [7] with a dynamic gating mechanism that en-
ables the model to learn not only the parameters of the splits
and leaf outputs, but also the active structure of the tree during
training. This is achieved through a bypass strategy that softly
disables (or enables) branches, allowing the tree to prune and
become sparse in a data-driven and interpretable way.

3.1 Dynamic Node Gating and Tree Structure
To enable a decision tree to dynamically adjust its structure
during training, we introduce a learnable gating mechanism
at each internal node. This mechanism determines whether a
node actively participates in decision-making or is bypassed.
Unlike standard decision trees, where the structure is fixed a
priori, our approach allows the agent to prune or grow the tree
during training in a fully differentiable manner.

Each internal node i is assigned a gating parameter gi ∈ R,
which is transformed into a soft gate using a sigmoid func-
tion. To maintain a hard, interpretable structure during the
forward pass while preserving gradient flow during backprop-
agation, we use the straight-through estimator:

ĝi = step(σ(gi)) + (σ(gi)− detach(σ(gi))) , (18)

where σ(·) is the sigmoid function, and step(·) is a binary
threshold function (e.g., step(x) = 1 if x ≥ 0.5, otherwise 0).
The detach(·) operator ensures that gradients only propagate
through the soft sigmoid term. As a result: - When ĝi ≈ 1,
the node is active, and its decision is used. - When ĝi ≈ 0,
the node is inactive, and its left/right decision is bypassed,
always routing to the right child.

The key idea is that inactive nodes are skipped, effec-
tively allowing the model to prune unnecessary subtrees or
defer splitting until useful in order to promote sparsity.

Figure 3: Learned decision tree for the Inverted Pendulum (SPLIT-
PO, k=1). Yellow nodes are bypassed, blue nodes represent decision
splits, and green leaves are linear controllers with their formulas.
Gray nodes indicate unreachable states during training.

Figure 3 shows an example of a learned decision tree]for
the Inverted Pendulum task (SPLIT-PO, k=1). The tree high-
lights how certain state nodes are bypassed and some become
unreachable. The two yellow nodes have a ĝ ≈ 0 so their
decision is bypassed.

This gating modifies the path probability computation used
to determine which leaf is active for a given input x. Let
path(ℓ) denote the set of internal nodes (i, di) along the path
to leaf ℓ, where di ∈ {0, 1} indicates a left (0) or right (1)
branch. The probability of reaching leaf ℓ is defined as:

Pℓ(x) =
∏

(i,di)∈path(ℓ)

{
ĝi · ŝi(x) if di = 0

(1− ĝi) + ĝi · (1− ŝi(x)) if di = 1
,

(19)
where ŝi(x) is the crispified soft decision function (as defined
in ICCT). This formulation ensures: - If a node is inactive
(ĝi ≈ 0), the left decision is never taken; the path always
proceeds to the right. - If a node is active (ĝi ≈ 1), the split
operates as in ICCT, and either left or right is selected based
on ŝi(x).

The final policy output is computed as a weighted sum
over all leaves, where each leaf contributes according to its
path probability Pℓ(x). To ensure bounded continuous ac-
tions (e.g., in [−1, 1]), the output is passed through a tanh
activation:

πθ(x) = tanh

(∑
ℓ∈L

Pℓ(x) · yℓ(x)

)
, (20)

where yℓ(x) is the output of leaf ℓ, typically a learned scalar
or vector. The output is then scaled by the range of the action
space 2. Despite the use of a soft sum formulation, the gating
and crispified decision functions produce path probabilities of

2If the environment’s action space is bounded in [amin, amax],
then the scaled action is computed as 1

2
(amax − amin) · tanh(·) +

1
2
(amax + amin). This ensures the action remains within the valid

range while allowing the model to output unbounded values before
the tanh squashing.

zero for all but one leaf, rendering their contributions to the
final output null as they are multiplied by zero.

This design introduces a natural way for the model to learn
a sparse structure: early in training, many nodes may remain
active, effectively behaving like a full binary tree. As learn-
ing progresses, nodes can ”turn off” when they don’t help im-
prove policy performance allowing the tree to become more
sparse.

By embedding this gating mechanism into the path com-
putation and ensuring full differentiability through straight-
through estimators, SPLIT-PO enables interpretable tree-
based policies that adapt their depth and complexity in re-
sponse to the task, something fixed-structure methods like
ICCT cannot achieve.

3.2 End-to-End Training with Structural
Adaptation

We train SPLIT-PO using standard actor-critic reinforcement
learning methods, either Soft Actor-Critic (SAC) [5] or Deep
Deterministic Policy Gradient (DDPG) [6], depending on the
environment. In both cases, the actor is represented by our
differentiable decision tree policy, and the critic is a separate
value network that guides learning.

Our main contribution lies in augmenting this framework
with a structural regularization term that encourages sparsity
in the tree. Each internal node has a learnable gating parame-
ter that determines whether it participates in decision-making.
During training, we penalize active gates using a sigmoid-
based relaxation:

Lreg = λ
∑
i∈N

σ(gi),

where N is the set of internal nodes and λ controls the
strength of the regularization. This encourages the model to
deactivate unnecessary nodes, allowing it to learn both an ef-
fective policy and a compact, interpretable tree structure si-
multaneously.

We compute gradients end-to-end using straight-through
estimators, enabling optimization over both the policy and its
structure. This joint training leads to sparse policies tailored
to the task, balancing performance and interpretability.

3.3 Theoretical Analysis: Expressivity and
Approximation Power

We now show that our proposed model, SPLIT-PO, is a uni-
versal function approximator (UFA). This means that, given
sufficient capacity, SPLIT-PO can approximate any continu-
ous function defined on a compact domain to arbitrary preci-
sion. Our proof strategy is similar to the ICCT [7] strategy
which uses the classical approach of Cybenko [3], adapted to
the context of decision tree structures with gating and crispi-
fication mechanisms.

Theorem (Cybenko, 1989) [3]: Let σ : R → R be a
bounded, measurable, and discriminatory function. Then any
function f ∈ C([0, 1]n) can be approximated arbitrarily well
in the L∞ norm by a finite sum of the form:

G(x) =

N∑
j=1

αj · σ(wT
j x+ bj) (21)

This result is known as the Universal Approximation Theo-
rem. It states that a single-hidden-layer neural network with
a suitable activation function σ can approximate any continu-
ous function on a compact domain, given enough units.

We briefly recall two key conditions from the theorem:

• Sigmoidal: A function σ is sigmoidal if it is bounded,
continuous, and non-constant, typically resembling a
smooth step (e.g., the logistic sigmoid).

• Discriminatory: A function σ is discriminatory if the
set {σ(wTx+b) |w ∈ Rn, b ∈ R} is dense in C([0, 1]n).

We show below that the components of SPLIT-PO satisfy
these conditions and therefore inherit the universal approxi-
mation property.

Lemma 1: The crispified split function ŝi(x) used in
SPLIT-PO is sigmoidal.

Proof: Each internal node in SPLIT-PO selects a single in-
put feature xi and computes a decision using a sigmoid func-
tion σ(αi(xi − ti)), where αi is a steepness parameter and
ti is a learned threshold. The crispified version used in the
forward pass is:

ŝi(x) = step(σ(αi(xi − ti)))

+ (σ(αi(xi − ti))− detach(σ(αi(xi − ti)))) (22)

This function behaves like an indicator (step) in the for-
ward pass, but retains gradient information in the backward
pass. Since the sigmoid function is bounded and continuous,
and its step approximation approaches a jump from 0 to 1,
this function meets the sigmoidal condition required by Cy-
benko’s theorem.

Lemma 2: The gating function ĝi in SPLIT-PO is discrim-
inatory.

Proof: Each internal node has an associated gating param-
eter gi ∈ R, transformed into a binary decision via:

ĝi = step(σ(gi)) + (σ(gi)− detach(σ(gi)))

The forward behavior is equivalent to an indicator function,
which outputs 0 or 1 depending on whether σ(gi) crosses 0.5.
In the backward pass, the gradient flows through the sigmoid
term. The full gating function is thus a jump-discontinuous
function that is bounded, measurable, and nonconstant. By
Lemma 1 in [3], any such function is discriminatory. Fur-
thermore, Selmic and Lewis [10] extended the results of [3]
to allow jump-discontinuous activation functions. Hence, ĝi
satisfies the discriminatory condition required for universal
approximation.

Theorem: SPLIT-PO is a universal function approximator.
Proof: The output of SPLIT-PO is a sum over leaf outputs

yℓ(x), each weighted by a path probability Pℓ(x):

πθ(x) = tanh

(∑
ℓ∈L

Pℓ(x) · yℓ(x)

)
The path probabilities Pℓ(x) are computed as a product of
crispified split functions ŝi(x) and gating terms ĝi. These can
be viewed as indicator-like components that partition the in-
put space into axis-aligned regions. Since both ĝi and ŝi(x)
are discriminatory, and the leaf outputs yℓ(x) can be lin-
ear or constant functions, the overall model approximates a

piecewise-linear surface. This class of functions is dense in
C([0, 1]n), as shown by [3] and extended by [10] for jump-
continuous activations.

Therefore, SPLIT-PO is dense in C([0, 1]n), and is a uni-
versal function approximator.

This shows that given sufficient nodes, SPLIT-PO not only
maintains the theoretical expressivity of neural networks but
does so within an interpretable, tree-based structure.

4 Experimental Setup and Results
4.1 Experimental Setup
To evaluate our method, we focus on continuous control envi-
ronments from OpenAI Gym: Inverted Pendulum and Lu-
nar Lander Continuous. The implementation was done in
PyTorch. All experiments were run on a MacBook Pro M4
with 36GB of ram. GPU acceleration was not used. For fair-
ness, we train all models using the same actor-critic frame-
work.

Hyperparameters such as learning rates, discount factor
(γ), and network sizes are kept consistent across methods un-
less noted and can be found in the appendix. We report mean
episodic rewards over 50 evaluation seeds after training.

4.2 ICCT and NN
We were unable to run the original ICCT implementation [7],
so we reimplemented it by setting all gating variables g =
1 and freezing their gradients. We refer to this version as
ICCT∗, which matches the original ICCT algorithm except
for minor differences in the training loop.

For our neural network (NN) baseline, we used a standard
fully connected architecture common in continuous-control
RL. Full architectural and training details are provided in Ap-
pendix C. This NN serves as a strong, high-capacity but non-
interpretable baseline.

4.3 Results
We compare the performance of various interpretable and
non-interpretable models in terms of average reward and the
number of leaf controller nodes (for tree-based models). The
SPLIT-PO and ICCT models are evaluated under different
feature selection settings, using 1, 2, 3, or k features per leaf
to explore varying levels of interpretability. ICCT, and MLP
baselines are included for comparison. Tables 1 and 2 show
the performance of our model compared to other similar mod-
els in the Inverted Pendulum and Lunar Lander environments.

Table 1: Comparison of Episode Reward, Tree Complexity, and Pa-
rameter Count on Inverted Pendulum (Max Reward 1000)

Model Features Reward Leaves Parameters
SPLIT-PO 1 958.22± 40.32 2 65
SPLIT-PO 2 1000± 0 2 73
SPLIT-PO 3 1000± 0 2 81
SPLIT-PO k 1000± 0 2 41
ICCT* 1 1000± 0 8 58
ICCT* 2 1000± 0 4 30
ICCT* 3 1000± 0 4 34
ICCT* k 1000± 0 2 16
MLP full 1000± 0 n/a 67,586

Table 2: Comparison of Episode Reward, Tree Size, and Parameter
Count on Lunar Lander (200+ is considered solved, max reward is
just over 300)

Model Features Reward Leaves Parameters
SPLIT-PO 1 130.40± 59.23 3 109
SPLIT-PO 2 245.00± 71.07 1 125
SPLIT-PO 3 248.35± 57.41 3 141
SPLIT-PO k 285.20± 21.03 1 221
ICCT* 1 107.37± 120.32 8 102
ICCT* 2 77.56± 142.36 8 118
ICCT* 3 257.22± 33.00 8 134
ICCT* k 279.00± 18.44 8 214
MLP full 287.43± 14.23 n/a 69,124

The results in Tables 1 and 2 clearly illustrate the strengths
of SPLIT-PO in balancing performance, interpretability, and
parameter efficiency. On the Inverted Pendulum task, SPLIT-
PO matches or exceeds ICCT* performance across all fea-
ture configurations, while maintaining significantly smaller
trees (as few as 2 leaves) and comparable or fewer learned
parameters. In particular, SPLIT-PO achieves perfect perfor-
mance (1000 ± 0) even with very compact trees and modest
feature counts. For k = 1 while SPLIT-PO performs worse
than ICCT* it uses 4 times less leaves making it much more
interpretable and verifiable while having near perfect perfor-
mance.

The Lunar Lander task highlights a similar trend but under
more challenging conditions. SPLIT-PO consistently outper-
forms ICCT* when using fewer than 3 features, and at k fea-
tures, it achieves a reward of 285.20, approaching the neural
network baseline. Notably, SPLIT-PO does so with dramati-
cally fewer parameters—just 221 compared to over 69,000 in
the MLP—while also using trees with as few as 1–3 leaves.
In contrast, ICCT* requires a fixed 8-leaf tree in all cases,
leading to higher complexity and parameter count without a
corresponding performance gain.

These results support the central claim of this work:
SPLIT-PO provides interpretable and sparse tree policies that
remain competitive with both fixed-tree methods like ICCT*
and black-box baselines like MLPs, while using vastly fewer
parameters and simpler structures.

5 Discussion
5.1 Interpretability vs Performance
Our results highlight the expected trade-off between inter-
pretability and performance. Trees using fewer features are
easier to understand but perform worse due to limited expres-
siveness in the linear controllers.

SPLIT-PO enforces interpretability via top-k feature se-
lection at each leaf. Small k improves transparency by re-
stricting each controller to a few inputs, but this limits the
model’s ability to capture complex state dependencies, espe-
cially in high-dimensional settings like image-based environ-
ments, where performance significantly degrades.

Larger k improves performance by allowing richer feature
use, but reduces interpretability, as decisions depend on more
intricate input combinations.

However, SPLIT-PO’s structural regularization and gat-
ing often produce compact trees, even with expressive con-
trollers. This pruning keeps the number of decision points
low, preserving interpretability despite increased feature
complexity.

Thus, SPLIT-PO can balance interpretability and perfor-
mance by adjusting both feature-level (via k) and structural
complexity, yielding concise, effective, and auditable poli-
cies.

5.2 Parameter Count
We analyze the number of learned parameters in SPLIT-PO
compared to ICCT and neural network baselines.
Comparison to ICCT. Despite incorporating dynamic
structure and gating, SPLIT-PO shares the same asymptotic
complexity as ICCT*: both scale as O(2d(m+ o · k)), where
d is tree depth, m input dimensionality, o output dimension-
ality, and k features per leaf. While SPLIT-PO introduces a
small constant overhead per node, its ability to prune leads to
smaller trees and fewer total parameters in practice—while
maintaining equal or better performance.
Comparison to Neural Networks. Neural network base-
lines require dramatically more parameters. A standard
MLP with two hidden layers of 256 units scales roughly as
O(256 · (m+ o+256)), often exceeding 60,000 parameters.
In contrast, SPLIT-PO models typically use under 300 pa-
rameters—achieving near-parity in reward (e.g., 285 vs. 295
on Lunar Lander) with 100–1000× fewer parameters and far
greater interpretability.

Full parameter formulas are included in Appendix B.

5.3 Tree Size Tradeoff
Another important dimension of interpretability is the size of
the decision tree itself, which directly impacts how easy the
model is to inspect and understand. Our results show that
SPLIT-PO consistently produces smaller trees than ICCT*,
often with fewer than half the number of leaf nodes, while
achieving similar or even better performance.

This efficiency is largely due to SPLIT-PO’s ability to
prune branches that contribute little to overall policy perfor-
mance. Through its gating mechanism and regularization, the
model learns to disable parts of the tree that do not improve
decision quality, resulting in compact, task-specific struc-
tures. In contrast, ICCT* uses a fixed tree structure, which
may include unnecessary branches that add complexity with-
out providing additional value.

Moreover, SPLIT-PO’s structural sparsity appears to sup-
port better generalization. By avoiding overgrowth and fo-
cusing on essential decision paths, the model is less prone to
overfitting compared to rigid baselines. This enables SPLIT-
PO to learn more generalizable policies that maintain perfor-
mance across a wider range of states, while still preserving
interpretability through a minimal number of high-impact de-
cision rules.

5.4 Sample Efficiency
SPLIT-PO requires more environment interactions than neu-
ral network (NN) baselines to reach comparable performance,

reflecting a trade-off between interpretability and sample ef-
ficiency.

For instance, in Inverted Pendulum, the NN converges
around episode 350, while SPLIT-PO reaches similar scores
by episode 500. In Lunar Lander, the NN converges near
sample 750; SPLIT-PO takes over 1000.

This gap stems from SPLIT-PO’s inductive bias toward
sparsity and its need to gradually construct tree structure and
feature selection. Unlike high-capacity NNs, which learn
rapidly early on, SPLIT-PO begins with a more constrained
hypothesis space.

Improving sample efficiency is a natural target for future
work for example through imitation learning, prioritized re-
play, or curriculum learning.

5.5 Limitations
Given the 10-week timeframe, development efforts focused
on method design, leaving limited time for thorough model
training and hyperparameter tuning. With many tunable com-
ponents, learning rates, gating thresholds, feature selection
temperatures, and regularization weights, more systematic
optimization and ablation studies could have improved per-
formance and deepened insights.

Learning stabilization techniques were also underexplored.
Training was occasionally unstable, especially in complex en-
vironments or with larger trees. Greater focus on stabilization
strategies (e.g., adaptive learning rates, gradient clipping, en-
tropy regularization) and more advanced exploration methods
might have improved reliability and early learning efficiency.

Execution issues with the original ICCT code [7] required
implementation workarounds. Although the modified code is
mathematically equivalent, empirical differences due to opti-
mizer choices or initialization could affect performance, mak-
ing direct comparisons less conclusive.

Lastly, SPLIT-PO struggles with high-dimensional inputs
like images, where both sample efficiency and model capac-
ity are critical. While interpretability remains a strength, this
limits applicability in sensory-rich domains.

6 Responsible Research
6.1 Interpretability ̸= Correctness or Safety
A central aim of this work is to improve interpretability in
reinforcement learning by introducing policy representations
based on decision trees, which use sequential boolean deci-
sion making. However, interpretability alone does not guar-
antee that a policy is safe, correct, or ethically sound.

While tree-based policies are easier for humans to inspect
and understand, they can still encode flawed, biased, or un-
safe decision making. This is especially true if they are
trained on suboptimal data or under weak reward signals. In-
terpretability should be seen as a tool for post hoc valida-
tion and auditing, not as a substitute for verification or formal
safety guarantees.

This distinction is particularly important in high-stakes do-
mains such as robotics and healthcare, where interpretability
is only meaningful if the resulting decisions are also safe and
effective. Future work could explore integrating formal veri-
fication techniques with interpretable models like SPLIT-PO

to bridge the gap between transparency and trustworthiness.
Given their significantly lower complexity compared to stan-
dard neural networks, our trained models may also offer in-
creased efficiency in formal verification.

6.2 Research Integrity
Efforts were made throughout the project to ensure fairness,
transparency and responsible reporting of results. All base-
line models (ICCT, DDT, and MLP) were re implemented or
adapted within the same actor-critic framework to ensure a
fair experimental comparison.

Results were not cherry-picked; instead, performance met-
rics reflect averaged outcomes across multiple runs with dif-
ferent seeds. Benchmarks were selected from standard, pub-
licly available environments in OpenAI Gym, and no task-
specific tuning was performed beyond what was necessary
for convergence.

The limitations of the proposed methods are discussed
in Section 5 including the challenges of a 10 week
project, hyper-parameter tuning, learning stabilization, exe-
cuting original ICCT code and scaling the method to high-
dimensional environments such as pixel-based observation
spaces. These limitations are openly acknowledged to avoid
overstating the generality or robustness of the approach.

6.3 Reproducibility
To support reproducibility, all experiments were carried out
with publicly available libraries such as Py-Torch 3 and Ope-
nAI gym 4. The codebase used to implement SPLIT-PO, in-
cluding training scripts, model architecture, and evaluation
routines, will be made publicly available in a GitHub 5 repos-
itory with this thesis.

To account for stochasticity in training, each model was
evaluated over 50 random seeds and average performance was
reported. Hyperparameters, for both the actor-critic learning
components and the tree, based structures—were kept con-
sistent across baselines. A representative subset of these is
documented in Appendix A to facilitate reproducibility. For
completeness, all hyperparameters used in our experiments
are available in the training scripts included in our public
repository.

7 Conclusions and Future Work
In this work, we introduced SPLIT-PO: a Sparse Piecewise-
Linear Interpretable Tree Policy Optimization framework for
reinforcement learning. Our method combines the advan-
tages of differentiable decision trees with dynamic structure
learning and sparse linear controllers. Through a combination
of soft gating and feature selection mechanisms, SPLIT-PO
is able to adaptively prune unnecessary parts of the tree, re-
sulting in sparse and interpretable policies without sacrificing
performance.

Our experiments on standard continuous control bench-
marks demonstrate that SPLIT-PO can match or closely

3https://pytorch.org
4https://gymnasium.farama.org
5https://github.com/erni12345/SPLIT-PO

https://pytorch.org
https://gymnasium.farama.org
https://github.com/erni12345/SPLIT-PO

approximate the performance of neural network baselines,
while producing significantly smaller and more interpretable
trees than fixed-structure models like ICCT*. Additionally,
we showed that SPLIT-PO supports a flexible interpretability-
performance trade-off, and achieves strong generalization
with fewer decision nodes.

From a theoretical standpoint, we proved that SPLIT-PO is
a universal function approximator, affirming that its expres-
sive capacity is comparable to that of neural networks, even
within its sparse and structured representation.

Future Work
Despite its strengths, SPLIT-PO opens several avenues for fu-
ture research:

• Sample efficiency: SPLIT-PO needs many interactions
to learn. Methods like imitation learning, prioritized re-
play, or curriculum learning could help.

• High-dimensional inputs: Applying SPLIT-PO to raw
images is hard. Future work might use feature extractors
or dimensionality reduction.

• Discrete/hybrid actions: Extending SPLIT-PO to dis-
crete or mixed action spaces would increase its versatil-
ity.

• Formal verification: SPLIT-PO’s compact, inter-
pretable structure makes it a good fit for verification in
safety-critical settings.

• Non-linear controllers: Exploring non-linear con-
trollers with sparse features may improve the perfor-
mance/interpretability tradeoff.

• Constant-leaf trees: Using trees with constant outputs
(no selected features) could simplify interpretation and
serve as a baseline for linear controller impact.

Overall, SPLIT-PO demonstrates that interpretable models
in reinforcement learning can be both expressive and compet-
itive, providing a strong foundation for transparent and reli-
able decision-making in real-world systems.

References
[1] Osbert Bastani, Yani Pu, and Armando Solar-Lezama.

Verifiable reinforcement learning via policy extraction.
In Advances in Neural Information Processing Systems
(NeurIPS). Curran Associates, Inc., 2018.

[2] Hendrik Blockeel, Lander Devos, Benoı̂t Frénay,
Georges Nanfack, and Sebastijan Nijssen. Decision
trees: From efficient prediction to responsible ai. Fron-
tiers in Artificial Intelligence, 6, 2023.

[3] George Cybenko. Approximation by superpositions of
a sigmoidal function. Mathematics of Control, Signals
and Systems, 2(4):303–314, 1989.

[4] Ujjwal Das Gupta, Erik Talvitie, and Michael Bowling.
Policy tree: Adaptive representation for policy gradient.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 29, 2015.

[5] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor–critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. arXiv preprint arXiv:1801.01290, 2018.

[6] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander
Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning, 2015.

[7] Rishi Paleja, Abhinav Goyal, Peter Stone, and Alexan-
der Khazatsky. Interpretable reinforcement learning
for robotics and continuous control. arXiv preprint
arXiv:2311.10041, 2023.

[8] Ariel M. Roth, Nate Topin, Pooyan Jamshidi, and
Manuela Veloso. Conservative q-improvement: Re-
inforcement learning for an interpretable decision-tree
policy, 2019.

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms, 2017.

[10] Rastko R. Selmic and Frank L. Lewis. Neural-network
approximation of piecewise continuous functions: Ap-
plication to friction compensation. IEEE Transactions
on Neural Networks, 13(3):745–751, 2002.

[11] Alexandre Silva, Matthew Gombolay, Thomas Killian,
Ivan Jimenez, and Seung-Hyeok Son. Optimization
methods for interpretable differentiable decision trees
applied to reinforcement learning. In Proceedings of the
International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 1855–1865. PMLR, 2020.

[12] Alberto Suárez and James F. Lutsko. Globally optimal
fuzzy decision trees for classification and regression.
IEEE Trans. Pattern Anal. Mach. Intell., 21(12):1297–
1311, 1999.

[13] Daan Vos and Sicco Verwer. Optimizing interpretable
decision tree policies for reinforcement learning. arXiv
preprint arXiv:2408.11632, 2024.

A Hyper Parameters for training

Table 3: Hyperparameters Used for Different Experiment Configurations

Category Hyperparameter SPLIT-PO, LunarLander, 2 features
Optimization Actor learning rate (actor lr) 0.0001

Critic learning rate (critic lr) 0.001
Batch size (batch size) 128
Replay buffer size (buffer size) 100000
Soft update coefficient (τ) 0.005

3 Regularization (λ) 1× 10−6

Environment Environment name LunarLanderContinuous-v3
Max steps per episode 1000
Number of training episodes 1200
Number of evaluation episodes 15

Exploration Exploration steps 10000
Random steps 1000
Initial noise scale 0.3
Min noise scale 0.05
Noise decay 0.99

Learning Dynamics Discount factor (γ) 0.99
Evaluation frequency 20
Print frequency 10

Model Structure Number of features 2
Tree depth 4
Initial temperature (alpha init) 1.0
Temperature 0.1
Threshold for splitting 0.7

Table 4: Hyperparameters Used for Different Experiment Configurations

Category Hyperparameter SPLIT-PO, InvertedPendulum, 4 features
Optimization Actor learning rate (actor lr) 0.001

Critic learning rate (critic lr) 0.0003
Batch size (batch size) 256
Replay buffer size (buffer size) 100000
Soft update coefficient (τ) 0.005
Regularization (λ) 1× 10−5

Environment Environment name InvertedPendulum-v5
Max steps per episode 400
Number of training episodes 800
Number of evaluation episodes 5

Exploration Exploration steps 5000
Random steps 1000
Initial noise scale 0.3
Min noise scale 0.05
Noise decay 0.99

Learning Dynamics Discount factor (γ) 0.99
Evaluation frequency 10
Print frequency 10

Model Structure Number of features 4
Tree depth 2
Initial temperature (alpha init) 0.2
Temperature 0.1
Threshold for splitting 0.5

Table 5: Hyperparameters Used for Different Experiment Configurations

Category Hyperparameter SPLIT-PO, InvertedPendulum, 1 feature
Optimization Actor learning rate (actor lr) 0.001

Critic learning rate (critic lr) 0.0003
Batch size (batch size) 256
Replay buffer size (buffer size) 100000
Soft update coefficient (τ) 0.005
Regularization (λ) 0.001

Environment Environment name InvertedPendulum-v5
Max steps per episode 1000
Number of training episodes 800
Number of evaluation episodes 5

Exploration Exploration steps 5000
Random steps 1000
Initial noise scale 0.3
Min noise scale 0.05
Noise decay 0.99

Learning Dynamics Discount factor (γ) 0.99
Evaluation frequency 10
Print frequency 10

Model Structure Number of features 1
Tree depth 3
Initial temperature (alpha init) 0.2
Temperature 0.1
Threshold for splitting 0.5

Table 6: Hyperparameters Used for Different Experiment Configurations

Category Hyperparameter SPLIT-PO, InvertedPendulum, 3 features
Optimization Actor learning rate (actor lr) 0.001

Critic learning rate (critic lr) 0.0003
Batch size (batch size) 256
Replay buffer size (buffer size) 100000
Soft update coefficient (τ) 0.005
Regularization (λ) 0.01

Environment Environment name InvertedPendulum-v5
Max steps per episode 1000
Number of training episodes 800
Number of evaluation episodes 5

Exploration Exploration steps 5000
Random steps 1000
Initial noise scale 0.3
Min noise scale 0.05
Noise decay 0.99

Learning Dynamics Discount factor (γ) 0.99
Evaluation frequency 10
Print frequency 10

Model Structure Number of features 3
Tree depth 3
Initial temperature (alpha init) 0.2
Temperature 0.1
Threshold for splitting 0.5

B Parameter Count Formulas
We include the full expressions used to compute the number of learned parameters for SPLIT-PO, ICCT*, and the neural
network (NN) baseline.

SPLIT-PO. For a binary tree of depth d, input dimension m, output dimension o, and k features per leaf controller, the total
number of parameters in SPLIT-PO is:

PSPLIT(d) = (2d − 1)(m+ 3) + 2d · o(k + 1)

Each internal node has:

• A feature selection vector of size m

• One threshold scalar

• One sharpness parameter

• One gating parameter

Each leaf node has a sparse linear controller with k · o weights and an o-dimensional bias.

ICCT*. ICCT* omits the gating parameter, yielding:

PICCT(d) = (2d − 1)(m+ 2) + 2d · o(k + 1)

Neural Network Baseline. For an MLP with two hidden layers of 256 units and input/output dimensions m and o, the total
parameter count is approximately:

PNN ≈ 256 · (m+ 256) + 256 · (256 + o)

Bias terms are omitted for brevity but add ≈ 512 + o additional parameters.
These formulas provide a basis for comparing model compactness and scaling behavior across architectures.

C Neural Network Architecture
Our neural network baseline is a fully connected policy network with two hidden layers of 256 ReLU units each. It maps states
to the parameters of a Gaussian distribution over actions. Given a state input of dimension n, the network is structured as
follows:

• Fully connected layer: n → 256 (with bias)
• Fully connected layer: 256 → 256 (with bias)
• Output heads:

– Mean head: 256 → m

– Log standard deviation head: 256 → m

Actions are sampled using the reparameterization trick and passed through a tanh squashing function, then scaled to match
the action bounds of the environment. The log-probability is adjusted to account for the change of variables introduced by the
tanh and rescaling steps.

This architecture follows common practice in continuous control, such as Soft Actor-Critic (SAC), and is used as a high-
performing black-box baseline.

D Examples of learned trees

Figure 4: Resulting tree form training with number of features = k and depth = 2 for Lunar Lander

Figure 5: Resulting tree form training with number of features = 3 and depth = 2 for Lunar Lander

Figure 6: Resulting tree form training with number of features = 2 and depth = 4 for Lunar Lander

	Introduction
	Problem Description
	Reinforcement Learning
	Decision Trees in Reinforcement Learning
	Differentiable Decision Trees (DDTs)
	Interpretable Continuous Control Trees (ICCTs)
	Research Problem

	Sparse Piecewise-Linear Interpretable Tree Policy Optimization (SPLIT-PO)
	Dynamic Node Gating and Tree Structure
	End-to-End Training with Structural Adaptation
	Theoretical Analysis: Expressivity and Approximation Power

	Experimental Setup and Results
	Experimental Setup
	ICCT and NN
	Results

	Discussion
	Interpretability vs Performance
	Parameter Count
	Tree Size Tradeoff
	Sample Efficiency
	Limitations

	Responsible Research
	Interpretability = Correctness or Safety
	Research Integrity
	Reproducibility

	Conclusions and Future Work
	Hyper Parameters for training
	Parameter Count Formulas
	Neural Network Architecture
	Examples of learned trees

