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Abstract
Aerospace structures are thin-walled shell structures whose load-bearing capacity is often limited by buckling phenomena.
The application of variable angle tow (VAT) composites allows to increase the buckling resistance by tailoring the fiber paths.
Fiber placement technologies such as automated fiber placement and continuous tow shearing for VAT composites have been
improved enormously in recent years. However, induced material and geometric uncertainties from the manufacturing process
have a major influence on the structural performance. The paper focuses on appropriate uncertainty quantification for VAT
composites, selecting various uncertainty models based on available data. Different uncertainty models are introduced to
quantify the natural variability (aleatory uncertainty) and lack of knowledge (epistemic uncertainty). An uncertain fiber path
definition with fuzzy variables is presented to model fiber path deviations. In addition, geometric imperfections are modeled
as random fields and as Fourier series to analyze the imperfection sensitivity. Based on this, a design optimization of VAT
composites is performed in presence of uncertainties. The introduced methods are demonstrated on a VAT composite panel
and a cylindrical shell. Geometric imperfection measurements are provided for the VAT composite cylindrical shell to validate
the approach based on experimental results. This paper contributes to a better understanding of uncertainties of tow-steered
structures. The results reveal a potential conflict in optimizing the robustness measures (e.g. minimizing the variation of the
buckling loads) and enhancing the performance measures (e.g. maximizing the mean value of the buckling loads) visualized
by Pareto fronts. This emphasizes the need to consider uncertainties in a design process of VAT composite shells based on
multi-objective optimization.

Keywords Buckling analysis · Uncertainty quantification · Variable angle tow composite shells · Geometric imperfections ·
Monte-Carlo-Simulation · Artificial neural network

1 Introduction

Thenext generationof commercial aircraft demands advanced
materials and designs to become more sustainable. Variable
angle tow (VAT) composites have the potential to satisfy
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these demands of modern aircraft. With spatially varying
fiber orientations, the structural performance can be signif-
icantly improved. In numerous research papers it is proven
that VAT composites can outperform classical composites
with tow paths in strength and stiffness [6, 45, 50]. Brooks et
al. [9] quantify the improvements by a fuel burn minimiza-
tion of up to 2.4% and weight reduction of 24% relative to
an optimized classical composite wing design.

However, aerospace structures are thin-walled shell struc-
tures whose load-bearing capacity is limited by buckling
phenomena. In various theoretical and experimental stud-
ies, it is demonstrated that the buckling resistance can be
increased by tailoring the fiber paths. In [12, 33, 37, 53,
82], possible buckling performance improvements of VAT
composites panels are studied. It is well known that thin-
walled shell structures are very sensitive to geometric and
loading imperfections. An interesting task of VAT compos-
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ites is the potential to reduce the imperfection sensitivity. In
[82], Koiter’s asymptotic theory is used to optimize plate-like
post-buckling behavior of cylindrical panels under compres-
sion loading with respect to the VAT design variables. The
results show that the imperfection sensitivity can be effec-
tively eliminated.

Furthermore, numerous researchpapers explore the impact
of tow steering on shell structures. In [63], the influence
of radius/length aspect ratio on buckling of cylinders in
bending is investigated. White et al. [83] investigate the
compression of large-scaleVAT composite cylindrical shells.
Labans & Bisagni [44] present an experimental and numer-
ical comparison between a classical laminated cylinder and
a VAT composite cylinder manufactured by automated fiber
placement (AFP). In the context of aircraft fuselage applica-
tions, Labans et al. [45] investigate a cylinder with cutouts
under bending conditions. Groh & Wu [34] explore the
post-buckling behavior of tow-steered shells with cutouts
of different sizes manufactured by AFP. They illustrate
how structural effects associated with cutouts in tow-steered
cylinders can be mitigated.

The AFP manufacturing technology for VAT composites
was developed in the 1980s [52]. To reduce process-induced
defects, such as fiber wrinkling, the Continuous Tow Shear-
ing (CTS) technique has been developed by [41]. The idea
of this method is to eliminate the defects by shearing the
tow instead of bending. Lincoln et al. [48] calculated knock-
down factors (KDFs) for aCTS cylinder to analyze the design
space and quantify the shearing effect on the imperfection
sensitivity. In their context, a more imperfection insensitive
cylinder means an increase in KDF. They note, if the influ-
ence of geometric imperfections on the pre-buckling strain
field can be reduced, then the KDF of the cylinder can be sig-
nificantly increased. It is demonstrated that theKDFof aCTS
cylinder under axial compression can be increased by 30%,
and the specific buckling load can be 4% higher than that
of an optimally designed classical laminated cylinder with
a straight fiber laminate. In a subsequent paper by Lincoln
et al. [49], a reliability-based optimization using the first-
order second-moment (FOSM) method is performed. They
calculate buckling loads of an imperfect CTS cylinder taking
imperfections from a measured dataset. One of their inves-
tigation reveals the possibility of minimizing mass while
ensuring a constant thickness-normalized buckling load.

In Brooks et al. [9], two reasons are given why existing
aerostructures generally do not fully exploit the advantages
offered by tow steering. One reason is the limited work that
measures the advantages of tow steering in real-world com-
posite designs, like a wing structure. Another reason is that
no one has experience in defining certification standards for
tow-steered structures.

To define certification standards a knowledge about uncer-
tainties is essential. Material and geometric uncertainties of

VAT composites can arise from different sources. A key role
is played by the manufacturing processes. An overview of
process-induced defects is given in [1, 2, 38, 50, 51]. Accord-
ing to this literature themainmanufacturing failures that have
a large influence on the structural performance are varia-
tion of fiber orientation, fiber discontinuities, wrinkling, gaps
and overlaps. In [85], a perturbation-based stochastic finite
element method is applied to investigate the variability in
mechanical performance of VAT composite panels. Wang
et al. [79] propose a reliability based design optimization
approach to consider stochastic variations of the wind-
ing angle subject to VAT composite cylinders under axial
compression. Pagani et al. [59] model flaws of VAT com-
posite panels via stochastic fields and analyze the stochastic
response of fiber and matrix scale stresses affected by multi-
scale uncertainty defects. Even though a fewworks have been
found, the authors note a scarcity in the literature addressing
uncertainty quantification (UQ) in VAT composites. In par-
ticular, no literature is found that incorporates the modeling
of both aleatory and epistemic uncertainties.

However, a design of VAT shell structures with deter-
ministic models implies precision. In reality, all data and
information are characterized by aleatory and epistemic
uncertainty. Aleatory uncertainty is the natural variability
and is modeled with random variables. This is already imple-
mented in probabilistic shell design, see, e.g., [43, 46, 55, 75].
Epistemic uncertainty is related to limited knowledge, e.g.,
incomplete or imprecise data and is modeled with interval
and fuzzy variables. How aleatory and epistemic uncertainty
can be considered simultaneously is a widely debated topic
in research. The different methods are summarized under
the terms imprecise probabilities [4, 16] or polymorphic
(mixed/hybrid) uncertainties [32]. The idea is to choose the
correct uncertainty model (random, interval, fuzzy variables
and/or combinations of them) based on the available data.
This is intended to ensure a more truthful modeling. In con-
trast to other approaches, the main idea of the concept of
polymorphic uncertainties is the consideration of more than
one uncertainty characteristic in one parameter [32]. This
approach has been already applied for different engineering
problems: seismic performance of buildings [81], scattering
material properties of wood [65], modeling of footbridges
[25, 69], reinforced concrete bridge design [30] amongmany
others.

In [18, 27–29], the concept is initially introduced for shell
buckling problems, where the lack of knowledge in a prob-
abilistic modeling of geometric imperfections of isotropic
cylindrical shells is quantified. In detail, the required corre-
lation parameters for a random field approach is developed
based on experimental data. The epistemic uncertainty is
considered by the definition of the correlation parameters
as fuzzy variables. Further studies to the sensitivity analysis
and non-Gaussian shell imperfections are presented in [23,
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24, 66]. In [22], an optimization approach under polymor-
phic uncertainties is initially tested on a simple isotropic
shell panel. A polymorphic uncertainty quantification for
various types of imperfections, such as surface, boundary,
material, and thickness imperfections, along with a novel
design concept for shells based on a fuzzy-valued safety
level, is presented in [26]. The main objective of the men-
tioned papers is to open up new perspectives moving away
from deterministic thinking in shell buckling, which should
be further explored for VAT composites.

Compared to classical composites, fiber steering expands
the design space. In particular, for real tow-steered structures
with a large number of degrees of freedom and multiple lay-
ers, an advanced design optimization using computationally
efficient algorithms is required. It is not obvious which tow
paths results to maximize the buckling performance. How-
ever, in addition to the fiber path variables, further design
variables and constraints are of interest. For example, Wang
et al. [80] present an aeroelastic and local buckling opti-
mization of a full-scale VAT composite wing-box structure.
The design variables, including wing-skin thicknesses, fiber
paths, andwing-spar geometry, are optimized simultaneously
with respect to static failure, aeroelastic, buckling, and man-
ufacturing constraints. In [61], a fiber path formulation is
proposed to extend the range of possible fiber paths. The
elaborate optimization problem is performed using a neural
network combined with a particle swarm optimizer. Rouhi
et al. [64] presents a multi-objective optimization method to
design VAT composites cylinders subjected to bending. They
use radial basis functions surrogate models to approximate
the high fidelity FE analysis in the optimization process. Var-
ious genetic algorithm optimizations of CTS rocket launch
structures are discussed in [47].

In the literature, various methods have been proposed to
optimize complex tow-steered structures. This paper focuses
on introducing a UQ approach with aleatory and epis-
temic uncertainty models in buckling design optimization.
Therefore, the optimization problem is limited to fiber path
parameters as the design variables. However, the proposed
approach can also be applied to more complex tow-steered
structures with multiple layers and a higher number of
degrees of freedom, incorporating design variables such as
layer thicknesses and the number of layers. The first part of
the paper is to demonstrate an appropriate UQ of fiber ori-
entation angle deviations and shell imperfections based on
experimental data. In order to investigate the imperfection
sensitivity of a VAT composite panel, geometric imperfec-
tions are applied as random fields with different correlation
parameters. For different correlated random imperfections,
the statistical moments, such as mean and standard devia-
tion, are evaluated. Furthermore, the fiber path is defined
with fuzzy variables leading to an uncertain fiber path as a
fuzzy function and an uncertain buckling load as a fuzzy out-

put variable. Furthermore, a buckling design optimization of
tow-steered composite shells considering aleatory and epis-
temic uncertainties is presented. Optimizing with uncertain
parameters demands the use of a multi-loop algorithm and
is computationally expensive. Therefore, a surrogate model
strategy is proposed using artificial neural networks. To apply
an optimization algorithm, deterministic values are required
to evaluate the fitness. For instance, in case of a stochas-
tic output, the mean value and the coefficient of variation
are suitable deterministic quantities. In case of a fuzzy val-
ued output, the area or centroid of the fuzzy output variable
are quantities to operate an optimization algorithm. Such
quantities are also called uncertainty/information reduction
measures. In [10, 67], multiple measures are discussed and
classified to describe the robustness and performance of a
structure. Robustness and performance of a structure can be
conflicting in multi-objective optimization tasks. This con-
flict is illustrated with a Pareto front on the results of a VAT
composite panel and cylindrical shell structure.

In particular, the paper presents an approach how to
address uncertainties in buckling design optimization. On
the way, potential conflicts between robustness and perfor-
mance optimization objectives are illustrated. Additionally,
it is analyzed if VAT composites shells are less sensitive to
uncertainties compared to classical composites. The paper
aims to initiate a paradigm shiftmoving away from the classi-
cal (deterministic) optimization. It’s innovative contributions
and key features can be summarized as follows:

• Introduction of aleatory and epistemic uncertainty mod-
els for VAT composites shells

• Uncertainty quantification (UQ) of fiber angle deviations
and shell imperfections based on experimental data

• Comprehensive study to the imperfection sensitivity of
VAT composite panels using random field technique

• Uncertain fiber path definition using fuzzy functions
• Multi-objective design optimization of VAT composite
shells considering aleatory and epistemic uncertainties

• Discussion of the robustness and performance of VAT
structures in presence of uncertainties based on Pareto
fronts

• Surrogate model strategy with artificial neural networks

In Sect. 2, an overview of basic uncertainty models is pro-
vided, including the definition of fuzzy and random fields.
In Sect. 3, the strategy for performing a multi-objective
optimization under uncertainties is presented. Subsequently,
Sect. 4 introduces an uncertain fiber path definition using
fuzzy functions. The practical application of the concept is
illustrated on a VAT composite panel and cylindrical shell in
Sect. 5. Finally, Sect. 6 contains a summary of conclusions
and possible future studies.
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Fig. 1 Basic uncertainty models: random, interval and fuzzy variable

2 Uncertainty quantificationmethods for
shell buckling

A reasonable modeling of shell buckling problems requires
an appropriate uncertainty quantification (UQ), where var-
ious uncertainty models are selected based on available
data. The objective is to address both types of uncertainties,
aleatory (natural viability) and epistemic uncertainty (lim-
ited knowledge). The uncertainty models employed in this
paper within the framework of VAT (fiber-steered) compos-
ite shells are briefly introduced in the following subsections.
The corresponding theoretical basis is derived from [16, 56,
71].

2.1 Basis uncertainty models

The three basic uncertainty models: random, interval and
fuzzy variable are depicted in Fig. 1. The natural variability
(aleatory uncertainty) is determined by random variables,
while the lack of knowledge (epistemic uncertainty) is
quantified using interval and/or fuzzy variables. A random
variable Xr is defined by the mapping operator

Xr : � → R, ω �→ Xr (ω) (1)

based on the probability space (�,�, P). Thus, each event
ω of the sample space � is assigned a real number Xr (ω).
An occurrence of x ∈ � in the �-algebra is defined by the
probability measure

P : � → [0, 1], (2)

which is indicated by the distribution function F(x) and den-
sity function f (x). These associated functions of a random
variable are specified by the distribution parameters λX as
given in [65]

F(x) = F(x, λX ) and f (x) = f (x, λX ). (3)

Random variables are simulated using random number gen-
erators, for which distribution parameters λX–such as the

Fig. 2 Representation of a crisp and fuzzy set

Fig. 3 Definition of a membership function based on a histogram (left)
and representation of a fuzzy trapezoidal number with α-levels (right)

mean value E[X ], standard deviation σ [X ], and distribution
function–must be defined a priori.

This requires a large amount of data (experiments). The
safety of a shell design is determined entirely by the choice
of possible distribution functions and associated distribution
parameters. If not enough data is available, false assumptions
can be generated in a probabilistic approach. This inherent
uncertainty due to a small data set is referred to as epistemic
uncertainty, which can be modeled with intervals and fuzzy
variables. The definition of a fuzzy variable Ã as a possibility
measure

Ã = {(x, μA(x)) | x ∈ R},
μA(x) : R → [0, 1],
sup
x∈R

[μA(x)] = 1
(4)

contains a membership function μA(x), that allows to grad-
ually evaluate the membership of an element x to a set. In
Fig. 2, a crisp set and a fuzzy set are depicted.

An element can assume intermediate states between “fully
associated” with μA(x) = 1 or “not associated” with
μA(x) = 0.All elements in the crisp set belong to the setwith
the same membership μ(x) = 1. The crisp set represents a
specific case of a fuzzy variable: the interval. The definition
of a membership function can be performed based on lin-
guistic assessments and expert knowledge. For this purpose,
existing data prepared in a histogram can serve, see Fig. 3
(left).
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In contrast to define distribution parameters λX of a ran-
dom variable, even a small amount of data may be sufficient
to define a membership function. This allows an evalua-
tion based on available (few) data of the input parameters,
e.g., fiber orientation angle of a VAT composite shell. In
this context, experts can estimate the extreme values of the
fiber angles based on the manufacturing process. Thus, the
epistemic uncertainty (incomplete data) can be quantified by
including expert knowledge. In this contribution, only convex
trapezoidal fuzzy numbers are defined using the following
notation

Ã = 〈x1, x2, x3, x4〉 (5)

as depicted in Fig. 3 (right). The restriction to be con-
vex means a monotonic decrease on both sides of the peak
level at μ(x) = 1. However, different shapes of the mem-
bership function are possible, e.g., triangles or non-linear
branches.

The numerical analysis with fuzzy variables requires the
discretization of the membership function into α-levels

Aαk = {x ∈ R | μA(x) ≥ αk}. (6)

These α-level sets with α ∈ (0; 1] are crisp subsets
[xαk,l , xαk,r ] (intervals) of the support S( Ã). This is the basis
for the uncertain buckling analysis presented in Sect. 2.4,
where the interval bounds of the fuzzy output variable on
each α-level have to be calculated.

A combination of the presented basic uncertainty mod-
els leads to advanced uncertainty models. For example,
a definition of at least one distribution parameter λX in
Eq. (3) as a fuzzy variable results into a fuzzy-valued proba-
bility distribution function. This advanced uncertainty model
is called fuzzy probability based random variable (fp-r).
Another possible uncertainty model to combine fuzzy and
random quantities is the model fuzzy randomness (fr), where
the combination is achieved by stochastic parametrization.
A term to describe the mixture of different uncertainty mod-
els is the concept of "polymorphic" uncertainty modeling.
This concept is introduced by Graf et al. [31, 32]. The main
idea of this approach is the consideration of more than one
uncertainty characteristic in one parameter [32]. Preliminary
contributions are, e.g., Möller et al. [58], Beer [3], Reuter
[62] and Pannier et al. [60].

The focus of the present paper is to investigate the influ-
ence of aleatory and epistemic uncertainties on the buckling
behavior of VAT composites and how to consider the uncer-
tainties in an optimization process. For this purpose, aleatory
and epistemic uncertainties are not mixed.

2.2 Fuzzy functions—Spatial modeling of epistemic
uncertainty

When input parameters vary in time or space, their epistemic
uncertainties also vary temporally and spatially. Interval
fields [15, 70] and fuzzy fields [35, 36] are suitable models
for spatial modeling of epistemic uncertainty. In this contri-
bution, fuzzy functions are used. The term "fuzzy fields" is
intentionally avoided to prevent misunderstanding by anal-
ogy with "random fields", which are described in the next
Sect. 2.3. Random fields are characterized by their correla-
tion structure, which allows to model the spatial dependency
of uncertainty. An idea for such an equivalent spatial depen-
dency concept for fuzzy fields is proposed in [35, 36]. It
is important to note that the following definition of "fuzzy
function" does not consider such an interaction concept.

A fuzzy function z̃(t) is defined by the uncertain mapping
of crisp variables t ∈ T

z̃(t) : T ∼−→ F(Z). (7)

The set of all fuzzy sets of the fundamental set Z ⊆ R is
denoted by F(Z). From Eq. (7) follows

z̃(t) = {z̃(tk) | t ∈ T, k = 1, 2.3, . . . }, (8)

where the fuzzy function z̃(t) assigns one fuzzy variable z̃ ∈
F(Z) to each crisp tk ∈ T.

If the fundamental set T signifies the time axis, the fuzzy
function z̃(t) is identified as a fuzzy process. In this contribu-
tion, a fuzzy function z̃(x) is used to describe the epistemic
uncertainty of the fiber path, that is a function based on two-
dimensional spatial coordinates x = (x, y) ∈ � ⊆ R

2 on
the surface of the shell structure.

For the numerical implementation, the so-called bunch
parameter representation has proven to be beneficial [56,
57]. Consequently, the fuzzy function can be expressed in
parametric form as a function depending on the fuzzy bunch
parameter s̃ and crisp arguments x

z̃(x) = z(s̃, x) with s̃ = {s̃1, s̃2, . . . }. (9)

The fuzzy bunch parameter s̃ contains all pre-defined fuzzy
input parameters, e.g., fuzzyfiber orientation angles for steer-
ing the fiber path. In general, Eq. (8) leads to

z(s̃, x) = {z(s̃, xi ) | x ∈ �, i = 1, 2, 3, . . . }. (10)

From another perspective, Eq. (10) means that for a vector of
crisp input parameters s = {s1, s2, . . . } and the correspond-
ing membership values μ(s1), μ(s2), . . . , a crisp function
z(x) = z(s, x) is obtained with μ(z(x)) = μ(x) [56]. In
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terms of the presented application of fiber steering, it fol-
lows that a crisp fiber path can be obtained. The numerical
processing of fuzzy functions requires in addition to the
α-level discretization, as depicted in Fig. 3 (right), a point dis-
cretization of the arguments x. This discrete fuzzy function is
defined by its values at the points in space xi ∈ � in Eq. (10).
If the fuzzy function is defined, e.g., on a finite element (FE)
model, the number of discretization points, numnp, corre-
sponds to the number of FE nodes. Then, the fuzzy function
can be expressed as:

z̃(x) = {z(s̃, x1), z(s̃, x2), . . . , z(s̃, xnumnp)}, (11)

where a sequence of fuzzy variables is represented on the FE
model.

2.3 Random fields—Spatial modeling of aleatory
uncertainty

The imperfection sensitivity of VAT composite shell is ana-
lyzed, where the spatial aleatory uncertainty of geometrical
shell imperfections are modeled with random fields. There-
fore, a brief summary is provided on the fundamentals of
random field modeling based on [68, 71, 74].

A random field wrf(x, θ) is in a mathematical sense a
collection of random variables defined as follows:

{wrf(x, θ) | x ∈ �, θ ∈ 	}, x =
(
x
y

)
, (12)

where the possible outcomes within the event set 	 are
labeled as θ . For a fixed location x0 ∈ � a random vari-
able wrf(x0, θ) is assigned. In terms of geometric shell
imperfections, a two-dimensional random field describes the
geometric deviations of the shell surface coordinates. If the
random field is a Gaussian random field, each point is asso-
ciated with a Gaussian normal distribution, characterized by
mean μ(x) and variance σ 2(x)

wrf(x0, θ) ∼ N (μ(x0), σ 2(x0)). (13)

Moreover, a specific realization of a randomfield correspond-
ing to a given event θ0 can be indicated as:

wrf
0 (x) := wrf(x, θ0). (14)

The covariances of two points xi (xi , yi ) and x j (x j , y j )
are given by the autocovariance function

C(xi , x j )

= E[(wrf(xi ) − μ(xi ))(wrf(x j ) − μ(x j ))],
(15)

which leads to the autocorrelation function (acf)

ρ(xi , x j ) = C(xi , x j )

σ (xi )σ (x j )
(16)

by normalization with the standard deviations σ(xi ) and
σ(x j ). A homogeneous covariance function is defined as
follows:

C(d) = σ 2ρ(d), (17)

where the acf is a function of the Euclidian distance d
between two points xi , x j (e.g., FE nodes)

ρ(xi , x j ) = ρ(d) with

d = |x j − xi | =
√

(x j − xi )2 + (y j − yi )2.
(18)

For the investigations in this paper, the following quadratic
exponential acf is chosen to generate the homogeneous
covariance function in Eq. (17)

ρ(d) = exp

[
−d2

�2c

]
. (19)

In this Eq. (19), �c is the correlation length, which controls
how quickly the acf falls off for larger distances d. If the cor-
relation length �c tends to infinity or the distance between two
separated points is zero, the exponential covariance function
converges to the value one. This means that two points are
fully dependent (correlated). In contrast, small correlation
lengths lead to uncorrelated fields (wavy shell imperfec-
tions). The random field is termed weakly homogeneous
when, in addition, the first two moments (mean and vari-
ance) within the domain � remain constant (translationally
invariant)

μ(x) = μ and σ 2(x) = σ 2. (20)

A numerical treatment to generate random fields requires
a discretization technique. For this purpose, the Karhunen-
Loève Expansion (KLE) is used. This series expansion of
the weakly homogeneous random field in a discrete form is
defined as follows:

wrf(x, θ) = μ + σ

M∑
i=1

√
λi ξi (θ) ϕi (x), (21)

which defines the random geometric deviations of the shell.
Therein, ξi (θ) is a standard normal distributed random vari-
able, ϕi (x) the eigenfunction and λi the eigenvalue of the
covariance matrix formulated on the FEmesh with M nodes.
This covariance matrix can be set up using the covariance
function and the specified acf in Eq. (17) and Eq. (19). The
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mean value μ is set to zero to model a spatially correlated
field of shell imperfections. Finally, it should be noted that
for large FE models a significant number of eigenvalues
and eigenfunction have to be computed and stored, which
is computationally intensive. Therefore, a truncation of the
KLE series is recommended for large-scale problems. For
example, Lauterbach et al. [46] consider a subset of eigen-
values N < M , such that their sum accounts for 99% of the
total eigenvalue sum. However, no truncation of the series is
required for the presented examples in this paper, as the the
size of the eigenvalue problem with a maximum size of 961
eigenvalues and eigenfunctions, is computationally feasible.

2.4 Fuzzy and stochastic buckling analysis

In this paper, the following mapping is performed within the
framework of fuzzy analysis

ϕ(s̃, x) �→ Pcr(s̃) = P̃cr with s̃ =
(

ϕ̃0

ϕ̃1

)
. (22)

Thus, the fuzzy fiber path ϕ(s̃, x) is defined with the fuzzy
bunch parameter s̃, which contains the fuzzy fiber orientation
angles ϕ̃0, ϕ̃1 to steer the fiber course as the input parameters.
The calculation of the fuzzy buckling load Pcr as the output
variable is performed using the so-called α-level optimiza-
tion (ALO) [58]. The ALO for a two-dimensional input and
one-dimensional output space is depicted in Fig. 4. Depen-
dencies of the input variables are excluded, allowing the input
space to be formed with the Cartesian product K̃ .

The computational model M(s) = Pcr(s) represents the
FE model to perform the buckling analyses. Based on the
α-level discretization according to Eq. (6) and Fig. 3, the
interval bounds of the fuzzy output variable P̃cr are calculated
on each α-level. To consider a specific α-level αk , the fuzzy
bunch parameters are limited by the α-level boundaries

s ∈ [sαk ,l , sαk ,r ] = {sαk }. (23)

Solving the extreme value problems on each α-level

Pcr,αk ,l = min
s∈{sαk } [M(s)]

Pcr,αk ,r = max
s∈{sαk } [M(s)]

(24)

lead to the corresponding α-level boundaries of the fuzzy
output variable P̃cr. The search of the extreme valuesM (s)
in the variable space {sαk } can be performed with an effi-
cient optimization algorithm. In thiswork, the particle swarm
optimization [40] is utilized to determine the extreme values
in Eq. (24). However, solving these optimization problems
can be highly time-consuming for a complex computational
modelM(s). To reduce the computational effort of the ALO,

it is advisable to substitute the computational model (numer-
ical buckling analysis) with a surrogate model

M̂(s) ≈ Pcr(s), s ∈ S(s̃). (25)

Thus, the optimization problem in Eq. (24) is performed on
the previously generated surrogate model M̂ (s), which is
trained on the support of the fuzzy bunch parameters S(s̃).
For this purpose, an artificial neural network (ANN) is used
as a surrogate model.

Furthermore, the stochastic buckling analysis consid-
ering spatially varying aleatory uncertainty is performed
with a sampling-based approach in form of a Monte-Carlo-
Simulation (MCS) to solve the following mapping

(ϕ(x), wrf(x, θ)) �→ Pcr(θ). (26)

Geometric imperfections are generated as random fields
(input) to calculate the stochastic buckling load Pcr(θ)

(output) for a deterministic fiber path ϕ(x). Subsequently,
second-order statistics, including the mean E[Pcr], standard
deviation σ [Pcr], and coefficient of variation CV [Pcr] =
σ [Pcr]/E[Pcr], are analyzed.

3 Optimization under uncertainties

The optimization objectives for shell designs under buck-
ling conditions often involve conflicting objectives, such
as maximizing buckling resistance while minimizing mass.
This requires a multi-objective optimization strategy. As
shown in the previous section, an uncertainty analysis leads
to uncertain structural (buckling) responses. The existing
aleatory and epistemic uncertainties cannot be neglected in
decision-making assisted by numerical design optimization
[67]. A subsequent optimization needs a post-processing of
the uncertain output quantities to obtain information about
the robustness and performance with respect to the design
parameters [10]. In the following, the theoretical basics of
multi-objective design optimization based on [10, 67] are
introduced for VAT composite shells.

3.1 Fitness evaluation

A classical optimization problem definition is

min
xd∈D

f (xd , xa)

subject to:

hi = 0 for i = 1, 2, . . . , nh

g j ≤ 0 for j = 1, 2, . . . , ng.

(27)
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Fig. 4 Fuzzy analysis of a two-dimensional input and one-dimensional output space using the α-level optimization (ALO) and artificial neural
network (ANN) as surrogate model

Therein, f (xd , xa) is the objective function andD represents
the design spacewith the associated vector of the design vari-
ables xd . The vector xa ∈ P contains the a priori parameters
of the a priori space P , which are fixed and cannot be modi-
fied during the optimization process. In addition, equality hi
and inequality constraints g j can be considered [67].

For buckling optimization problems, the objective func-
tion f (xd , xa) is often defined as the mass of the structure
subject to manufacturing constraints. Possible design vari-
ables ofVATcomposite shells are the layer thickness, number
of layers and the fiber orientation angles. For CTS/RTS
manufactured VAT shells, the fiber orientation angles can-
not be larger than 70◦, resulting in inequality constraints
0◦ ≤ Ti ≤ 70◦ for i = 0, 1, see, e.g., in [49].

Alternatively, the objective function represents the buck-
ling load, expressed as f (xd , xa) = Pcr(xd , xa), where the
single objective is denoted by the buckling load Pcr and the
design variables are the fiber orientation angles ϕ0 and ϕ1.
The buckling optimization problem is then to maximize the
buckling load, formulated as follows:

max
xd∈D

Pcr(xd , xa) ⇔ min
xd∈D

− Pcr(xd , xa). (28)

This bucklingoptimization taskwithout constraints is extended
to consider uncertainties in the present paper. In a classi-
cal (deterministic) buckling design optimization only the
structural response (performance of the structure) can be con-

Fig. 5 Buckling optimization with uncertain design parameters and a
crisp objective function

sidered in the decision making process. The various types
of uncertainty are not taken into account. Despite a crisp
objective function, an uncertainty quantification of the design
parameters xd results in uncertain objectives, as illustrated
in Fig. 5.

In addition to the design parameters, the a priori param-
eters in the vector xa are also subject to uncertainty in
this paper. The random geometric deviations from the ran-
dom field model are represented by the vector x̃a =
{wrf(x1, θ), wrf(x2, θ), . . . , wrf(xM , θ)}. These randomgeo-
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Fig. 6 Buckling optimization with crisp design parameters and an
uncertain objective function

metric deviations cannot bemodified during the optimization
process. However, this results in an uncertain objective func-
tion as depicted in Fig. 6.

In case of uncertain design parameters x̃d or an uncertain
objective function P̃cr(x) the formulation in Eq. (27) leads
to uncertain buckling optimizations

max
xd∈D

Pcr(x̃d , xa) or (29)

max
xd∈D

P̃cr(xd , x̃a). (30)

In [67], a general representation of the optimization problem
min
xd∈D

f̃ (x̃d , x̃a) is introduced, where both vectors x̃d and x̃a

are uncertain.
In Fig. 5 and Fig. 6, two design points x A

d , x
B
d with their

corresponding uncertain objectives are shown. If at least one
design parameter is uncertain, e.g., one of the fiber orien-
tation angles is defined as a fuzzy triangular variable ϕ̃0 or
ϕ̃1 represented by x̃d , then the buckling load as the objective
also becomes a fuzzy variable P̃ A

cr , P̃
B
cr derived from a precise

objective function Pcr(x̃d), as depicted in Fig. 5. In Fig. 6, the
uncertain objective function P̃cr(xd) results from the random
geometric imperfections.Although the design parameters are
not uncertain, an uncertain objective emerges, represented in
this case by random variables Pr

cr,A and Pr
cr,B . In summary,

for both cases, which are investigated in this paper, the single
objective is uncertain defined by the following mappings

Pcr(x̃d , xa) �→ P̃cr (31)

P̃cr(xd , x̃a) �→ Pr
cr. (32)

To evaluate the fitness in presence of uncertainties, the
uncertain output quantities have to be post-processed to
obtain comparable scalar values. For this purpose, uncer-
tainty reduction measures given in [67] are used. The term is
further discussed in [10] and renamed to information reduc-
tion measurements (IRMs), which describes to reduce an

uncertain output quantity to deterministic values. IRMs are
subdivided into representative measures M and uncertainty
quantifying measures U. Representative measures M are
physical values to optimize the performance and uncertainty
quantifying measures U are used to evaluate the robustness
of a structure.

In this context, the term "performance" can be used to
describe the buckling resistance. For a high-performance
VAT composite shells, generally substantial buckling loads
are expected.The term"robustness" is used for various defini-
tions in engineering. In structural design, robust structures are
those that consistently maintain optimal performance under
environmental fluctuations [5].

As an extension to probabilistic structural design, epis-
temic uncertainties are defined for all "fluctuating parame-
ters" in addition to aleatory uncertainties. Various IRMs can
be formulated to assess both the performance and robustness
of a structure. In Table 1 and Fig. 7, the IRMs utilized in this
paper are presented with respect to aleatory and epistemic
uncertainty, following the notation introduced in [10].

When considering aleatory uncertainty, the standard devi-
ation Uσ (Pr

cr) and the coefficient of variation UCV(Pr
cr) serve

as a measure of robustness, whereas the mean of the random
buckling loadsMμ(Pr

cr) serves as ameasure of performance.
If the buckling loads are represented as fuzzy variables, per-
formance can be assessed using the centroidMxS (P̃cr), while
robustness can be quantified by considering the area UA(P̃cr)
of the fuzzy output variable.

Employing various IRMs for fitness comparison may
reveal conflicts between robustness and performance. Such
a conflict is also visualized in Fig. 5 and Fig. 6. The mean or
centroid (performance measures) of the resulting quantities
for design�A is larger than that for design�B . However, the
area and coefficient of variation (robustness measures) of the
result quantities for �A are also larger (smaller robustness)
than those for �B . Pareto fronts can be employed within
multi-objective design optimization to make conflicts visi-
ble, see, e.g., in [8, 11, 39]. A graphical representation of a
Pareto front is illustrated in Fig. 8.

Considering that a robust structure is characterized by
small values of U, the ideal design point is achieved by mini-
mizing U and maximizingM. However, the ideal point does
not belong to the set of feasible results. Therefore, the Pareto
front is utilized in the decision-making process, describing
an optimal compromise. The Pareto front includes all design
points where, conversely, a decrease in robustness is associ-
ated with an increase in performance.

Finally, the optimization problems considering uncertain-
ties given in equations (29) and (30) can be formulated using
the IRMs. It follows the multi-objective design optimization
tasks
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Table 1 Information reduction measures (IRMs) to evaluate the performance and robustness in a structural design under uncertainty, following the
notation in [10]

Uncertainty performance measuresM robustness measures U

aleatory mean Mμ(Pr
cr) =

+∞∫
−∞

f (Pcr) Pcr dPcr CV UCV(Pr
cr) = Uσ (Pr

cr)/Mμ(Pr
cr)

[0.5cm] epistemic centroid MxS (P̃cr) =
max(Pcr)∫
min(Pcr)

Pcr μ(Pcr) dPcr area UA(P̃cr) =
max(Pcr)∫
min(Pcr)

μ(Pcr) dPcr

Fig. 7 Representation of performance M and robustness U measures
for aleatory (left) and epistemic (right) uncertainties

Fig. 8 Representation of a Pareto front with robustness and perfor-
mance measures

max
xd∈D

Pcr(x̃d , xa)

= max
xd∈D

[
M(Pcr(x̃d , xa));−U(Pcr(x̃d , xa))

] (33)

max
xd∈D

P̃cr(xd , x̃a)

= max
xd∈D

[
M(P̃cr(xd , x̃a));−U(P̃cr(xd , x̃a))

]
,

(34)

where theminimization ofU is indicated by the negative sign.
The deterministic output quantities allow for the utilization
of common optimization algorithms, such as particle swarm
optimization [40], to solve those minimization problems.

3.2 Multi-loop computational model and surrogate
model strategy

The numerical treatment of single- or multi-objective opti-
mization with uncertain parameters is performed based on
multi-loop computational models as given, e.g., in [30, 35,
65]. The performedmulti-loop computational schemes in this
paper for (a) deterministic, (b) aleatory and (c) epistemic
input/output parameters are depicted in Fig. 9.

The inner loop represents the deterministic computational
model M = Pcr, which serves as the FE model of the VAT
composite shells to carry out numerical buckling analyses.
In this paper, for (a) deterministic parameters and (c) epis-
temic uncertain parameters (fiber orientation angles as fuzzy
variables), an artificial neural network (ANN) serves as a
surrogate model M̂ ≈ Pcr to approximate the FE model.

The surrogate model can be directly used to perform the
single-objective optimization for case (a). When uncertain
parameters are defined as input parameters, an intermediate
loop is required for uncertainty analysis, incorporating basic
uncertainty models such as stochastic (b) and fuzzy analyses
(c). In the stochastic analysis, the MCS is performed with
random imperfections for specific fiber orientation angles
to estimate the second-order statistics of the buckling load.
In this contribution, no surrogate model is constructed for
the stochastic design optimization according to Eq.(33). For
this purpose, an advanced surrogate model strategy for ran-
dom fields is required, where the buckling load have to be
predicted for the random field realizations. This means, that
the training space of such a surrogate model can be defined
by the number of discretization points (random variables),
e.g., the number of FE nodes. To construct such a surrogate
model is particularly challenging for complex FE models
with a large number of nodes, especially when the struc-
ture is highly sensitive to imperfections. If the fiber angles
are added to the input variables, the MCS can be performed
based on such a surrogate model. However, to introduce such
a surrogate strategy is beyond the scope of this paper. For the
stochastic design optimization in Sect. 5.2, the design space
is discretized in a sufficiently fine grid. Then on each design
point anMCS is run.With this approach, sufficiently accurate
optimization results are achieved. However, further studies
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Fig. 9 Multi-loop computational models for different buckling design optimizations: (a) deterministic, (b) aleatory and (c) epistemic

with a larger number of design variables in the presence of
uncertain imperfection fields requires an advanced surrogate
model strategy. The fuzzy analysis is based on the ALO and
α-level discretization using the trained ANN as presented in
Fig. 4. The outer loop of Fig. 9 (c) solves the multi-objective
optimization task according to Eq. (34). For this purpose, the
particle swarm optimization [40] uses the ANN surrogate
model to obtain fast solutions at specific design points. The
IRMs listed in Table 1 are computed and potential conflicts
between the objectives are visualized through Pareto fronts.

The primary focus of this paper is to demonstrate the
influence of epistemic and aleatory uncertainties on opti-
mized solutions, as well as to uncover potential conflicts
between the robustness and performance of VAT compos-
ite shells. Therefore, aleatory and epistemic uncertainties
are decoupled and analyzed separately in a multi-objective
optimization approach. As an outlook, both uncertainty char-
acteristics aleatory (randomfields) and epistemic (fuzzy fiber
path) should be considered simultaneously within the frame-
work of polymorphic uncertainty modeling, as presented in
[26]. Then, a nested uncertainty analysis (fuzzy stochastic
analysis) has to be performed to solve the following map-
ping

(s̃, wrf(x, θ)) �→ P̃cr(θ) s ∈ S(s̃). (35)

To solve amulti-objective optimization problem for the poly-
morphic uncertainty modeling can lead to a high computa-
tional effort. Therefore, advanced surrogate model strategies
can be used, such as the multi-level surrogate modeling
approach described in [30] or a multi-fidelity strategy to
estimate the second-order statistics of buckling loads by
exploiting the correlations between linear and nonlinear
buckling analysis results, as discussed in [19, 20]. In terms
of a reliability-based optimization, a reliability problem is
nested in the optimization task, where the objective is to
minimize the failure probability [17]. Under polymorphic
uncertainties, the failure probabilities are uncertain. This

means that an additional loop for the interval or fuzzy analy-
sis has to be performed within the nested optimization task.
An approach for structural mechanics problems based on the
operator norm theorem and the maximum standard deviation
is presented in [13, 14, 21]. In this framework, crisp values
of the uncertain input parameters are dedicated, which define
the bounds of the failure probability. Consequently, an MCS
only needs to be performed on these pre-defined crisp values,
leading to a significant reduction of the computational effort.

4 Fiber pathmodeling

The stiffness and strength of a composite laminate depend on
the fiber orientation angle ϕ. Classical symmetric angle-ply
laminates are typically defined by the notation [±ϕ]s , where
the plies are structured with alternating fiber orientations,
switching between +ϕ and −ϕ. The fibers within each layer
are straight and uniform. The mechanical properties (stiff-
ness parameters) remain constant throughout the structure,
leading to the terminology of "constant stiffness" laminates.

In the concept of VAT laminates, the fiber orientation
angles of each layer are distributed across the structure, by
means of steering the fibers in curved paths [12]. Because
of their spatially varying stiffness and strength properties
defined by the fiber orientation angle, VAT composites are
also referred to as "variable stiffness" laminates.

The varyingfiber orientation angle is denoted as [±ϕ(x)]s ,
where the pair of fiber angles vary along a defined axis, e.g.,
the x-direction. A mathematical formulation of the steered
fiber path is essential for analyzing the structural behav-
ior. Various fiber path definitions exist in the literature, e.g.,
geodesic, constant angle, constant curvature path or pathwith
linearly varying fiber angle [6]. In this work, the common
definition of linear variation of the fiber orientation angle pro-
posed by [37] is utilized. To address epistemic uncertainties,
this common deterministic fiber path definition is extended
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Fig. 10 Deterministic fiber path

to a fuzzy fiber path definition based on the formulations for
fuzzy functions in Sect. 2.2.

4.1 Deterministic fiber path

The commonly used deterministic fiber path definition intro-
duced by [37] is as follows:

ϕ(x ′) = φ + (T1 − T0)
|x ′|
d

+ T0. (36)

In this formulation, the fiber orientation angleϕ of a reference
fiber path linearly varies along a direction x ′, from a fiber
orientation angle T0 at an arbitrary fixed starting point to the
fiber orientation angle T1 at a characteristic distance d, as
depicted in Fig. 10.

To allow a rotation of the direction of fiber orientation
angle variation, the x ′-axis is oriented at an angle φ with
respect to the x-axis. The reference fiber path in Eq. (36),
depicted by the solid black line in Fig. 10, represents the
trajectory taken by the fiber placement machine head as it
lays down a band of tows [12]. To determine fiber orien-
tation angles at different points within the x-y plane, the
reference path is shifted perpendicular to the direction of
variation (along the x ′-axis), depicted by the light gray lines
in Fig. 10. Thus, the fiber orientation angle is a function of
both coordinates: ϕ = ϕ(x, y).

The single curvilinear fiber path with a linear variation
of the fiber orientation angle according to Eq. (10) can be
calculated via the integration [72]

dy(x ′)
dx ′ = tan ϕ(x ′) ⇔ y(x ′) =

∫
x ′

tan(ϕ(x ′)) dx ′, (37)

leading to

y′(x ′) = ±
d · ln

[
cos

(
x ′ (T1 − T0)

d
+ T0 + φ

)]

T0 − T1
+ C .

(38)

Therein, the integration constant C defines the shift in
y-direction, which can be determined by the boundary con-
dition y′(x ′ = 0) = 0

C = ±d · ln [cos (T0 + φ)]

T0 − T1
. (39)

Gürdal et al. [37] introduced the notation φ〈T0|T1〉 to specify
a single curvilinear layer. In this work, the orientation angle
φ is assumed to be zero. Following this notation, laminates
with stack of±〈T0|T1〉 layer can be defined. The± sign at the
front signifies two adjacent layers with equal and opposite
variations in the fiber orientation angle [37].

The fiber path according to Eq. (36) is incorporated into
the shell formulation from [77], which is a four-node element
with linear shape functions. This formulation employs the
fiber orientation angle to convert the local material matrix of
each layer into a defined global coordinate system. Initially,
the fiber path defined in Eq. (36) is evaluated at the finite
element (FE) nodes. Subsequently, at the element level, the
transformation of the fiber orientation angle from the nodes to
the fourGaussian points is performed using the isoparametric
concept as follows:

ϕ(ξ, η) =
4∑

I=1

NI (ξ, η)ϕI (x, y). (40)

Therein, ϕI (x, y) is a fiber orientation angle evaluated at a
specific element node I using Eq. (36). This angle is inter-
polated to the fiber orientation angle of a desired point, such
as a Gaussian point, within the isoparametric space ϕ(ξ, η)

using the linear shape functions NI (ξ, η).

4.2 Uncertain fiber path

The deterministic fiber path given in Eq. (36) is extended to
a fuzzy function to account for epistemic uncertainty. Using
the fundamental definitions in Sect. 2.2, the fuzzy fiber path
can be expressed as follows:

ϕ(x′, s̃) : X ∼−→ F(Z) with s̃ =
(
T̃0
T̃1

)
, (41)

where the fuzzy fiber orientation angles T̃0, T̃1 are con-
tained as fuzzy variables in the fuzzy bunch parameter s̃.
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Fig. 11 Fuzzy fiber orientation angle variation as a fuzzy function

Fig. 12 Uncertain fiber path defined by a fuzzy function

Consequently, each finite element node x′ ∈ X is assigned
a fuzzy fiber orientation angle ϕ(x′, s̃) ∈ F(Z), which is
depicted in Fig. 11. In this example, fuzzy triangular numbers
are assigned for the starting angle ϕ̃(x ′

0) = T̃0 and the angle
ϕ̃(x ′

1) = T̃1 at the characteristic distance d. Between these
two angles, the fuzzy function varies linearly leading to the
typical "Toblerone" shape. The associated angles of the outer
dashed red lines have a membership of zero (μ = 0). Fiber
orientation angles with a membership of μ = 1 are defined
by the black solid line in the center. This line belongs to
deterministic fiber orientation angles and within the context
of a fuzzy function, it is also referred to as "trend function".
The corresponding fuzzy fiber paths are depicted in Fig. 12,
where the vertical axis represents the membership values.
At the top of Fig. 12, the reference fiber path for μ = 1 is
illustrated, as shown in Fig. 10.

For fuzzy fiber orientation angles, the fiber path defined
in Eq. (38) can also be expressed as a fuzzy function (field).

y′(x′, s̃) : X ∼−→ F(Z) with s̃ =
(
T̃0
T̃1

)
. (42)

It should be noted, that all fuzzy triangular numbers (mem-
bership functions) have the same shape in Fig. 11. When
measurements show that deviations infiber orientation angles
(uncertainty) from the reference path vary significantly

Fig. 13 Fuzzy fiber path defined on a cylindrical shell

depending on location, different membership functions can
be utilized at various locations. For example,maximumangle
errors can be observed near the inflection points of the tow
path [42]. This expert knowledge can be included by the UQ
of the fiber path.

Furthermore, the introduced definition of the fuzzy fiber
path is applied to a cylindrical shell, as depicted in Fig. 13,
where the fuzzy fiber orientation angles are defined using
trapezoidal fuzzy numbers. The fiber path varies from the
center along the axial direction and is shifted along the
circumferential direction. To calculate the fiber orientation
angles based on Cartesian coordinates using Eq. (36), the
cylinder can be unwrapped.

5 Numerical examples

The concept of multi-objective buckling design optimiza-
tion, considering both aleatory and epistemic uncertainties, is
demonstratedon aVATcomposite panel and cylindrical shell.
The optimization results under uncertainty are compared
with those obtained from classical (deterministic) design
optimization approaches. The panel example is derived from
[37]. To analyze the imperfection sensitivity different cor-
related random fields as geometric imperfection (aleatory
uncertainty) are applied for two various boundary conditions.
The cylindrical shell example is a test cylinder presented in
[44]. Thereof, experimental data of geometrical imperfection
is provided. For both examples an optimization consider-
ing epistemic uncertainties is performed, where a fuzzy fiber
path is defined based onfiber orientation anglemeasurements
from [42, 84]. The results of the multi-objective optimization
are visualized by Pareto fronts to discuss a decision mak-
ing of optimal fiber path configurations. This contribution
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focuses on the introduction of an UQ approach with aleatory
and epistemic uncertainty models in buckling design opti-
mization. Therefore, the optimization problem is limited to
fiber path parameters as the design variables. However, the
proposed approach can be extended to more complex tow-
steered structures withmultiple layers and a larger number of
degrees of freedom. This includes, for example, design vari-
ables such as shell geometry parameters, layer thicknesses
and number of layers.

All uncertainty quantification methods and optimization
algorithms are implemented using MATLAB [54]. The sur-
rogate model is based on the ANN provided in MATLAB,
modified to solve buckling design optimization within the
multi-loop computational models shown in Fig. 9. Within
this framework, the buckling analyses are the fundamental
solutions, which are performed by an extended version of
the general finite element analysis program (FEAP) [73]. A
developed interface allows to call up FEAP inMATLAB and
calculate the buckling load solutions. A geometric nonlinear
quadrilateral shell element withmoderate rotations from [77]
is implemented in FEAP. This four-node element is based on
the isoparametric concept with linear shape functions. Addi-
tionally, to avoid shear locking, the assumed natural strain
(ANS) method is implemented. The element formulation is
modified to integrate the fiber pathmodel described inSect. 4.

5.1 Basics for linear and nonlinear buckling analysis

A reliable numerical buckling analysis, serving as the inner
loop of the multi-loop approach illustrated in Fig. 9, is
essential for obtaining meaningful results of the uncer-
tainty analysis and optimization task. Various strategies are
available for identifying a stability point, as discussed, for
instance, in [76, 78].

When linear pre-buckling is present, a linear buckling
analysis can be performed to calculate stability points. For
this purpose, only a single linear calculation step and solv-
ing an eigenvalue problem are necessary. The linear buckling
analysis is based on the decomposition of the tangent stiff-
ness matrix

K T = K lin + K nlin

= K lin + KU (u) + KG(σ (u)),
(43)

where the stiffness matrix is partitioned into linear K lin and
nonlinear K nlin components. Depending on the variational
formulation, the nonlinear terms K nlin can be identified as
KU , the initial displacement matrix containing the influ-
ence of pre-buckling deformations, and KG the geometrical
matrix. Hence, the eigenvalue problem for linear buckling
analysis can be formulated as follows:

[K lin + �K nlin] ϕ = 0. (44)

In general, the tangent stiffness matrix depends on displace-
ment u and stress state σ (u) as shown in Eq. (43). However,
in linear buckling analysis, the case of u = 0 is studied,
where the linear solution

K T (0)u0 = P0 ⇐⇒ u0 = K−1
T (0)P0 (45)

is computed for an external load P0 with K T (0) = K lin. The
lowest eigenvalue, denoted by �, is utilized to increase the
nonlinear components of the stiffness matrix in the eigen-
value problem given by Eq. (44). A stability point is reached
for � = 1. The associated eigenvector ϕ is an initial post-
buckling mode. When � = 1, the mathematical expression
of the stability eigenvalue emerges

(K lin + �crK nlin)ϕ = 0

⇔ K Tϕ = 0

⇔ (K T − ω1)ϕ = 0,

(46)

indicating a stability point for ω = 0. In case of linear pre-
buckling behavior, the critical load with the corresponding
critical displacement can be computed by

Pcr = �crP0, (47)

ucr = �cru0. (48)

In case of a nonlinear pre-buckling behavior, the results of
a linear buckling analysis may significantly deviate from the
correct buckling load. This requires a nonlinear buckling
analysis,which involves a comprehensive geometrically non-
linear path tracking analysis, utilizing an iterative procedure
such as the Newton-Raphson scheme. A reliable criterion
for identifying a stability point is the change in sign of the
diagonal elements of K T , which also indicates unstable equi-
librium states

∀Dii , Dii > 0 → stable
∃Dii , Dii = 0 → indifferent
∃Dii , Dii < 0 → unstable.

(49)

While incrementally computing the load-displacement
behavior, it’s possible to monitor the signs of the diagonal
elements of the tangent stiffness matrix K T . If one or more
diagonal elements Dii turn negative, it signifies an unstable
equilibrium state [76]. This criterion is utilized to determine
the stability points at the end of the calculation process. Once
the load state of a single sample is saved, the calculation is
terminated using "task killing" within the parallelized multi-
loop computational model.
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Fig. 14 FE model with load and reference fiber path of the axially
loaded VAT composite panel

Table 2 Transversal isotropic material properties of the laminate

E11 [N/mm2] E22 [N/mm2] G12 [N/mm2] ν12 [−]
180987 10273 7170 0.28

5.2 Axially loadedVAT composite panel

At first, the presented methods are applied to an axially
loadedVAT composite panel, as described in [37]. The corre-
sponding FEmodel, including load and a reference fiber path,
is depicted in Fig. 14. The fiber angle definition in Eq. (36)
correlates with the fiber angle definition of the shell element
ϕe. A FE mesh consisting of 30 × 30 elements accurately
predicts the buckling behavior, allowing for representation
of critical buckling modes.

The transversely isotropic material properties of the lam-
inate, considering G12 = G13 = G23 and ν12 = ν13, are
provided in Table 2. The panel comprises a twelve-layer
laminate with a symmetric stacking sequence defined as
[±〈T0|T1〉]3s . As an example, Fig. 15 illustrates a contour
plot of the fiber orientation angle based on the selected FE
mesh for a single layer [+〈0|50〉]. Each fiber-steered layer
has a thickness of t = 0.127mm leading to a total panel
thickness of h = 1.524mm. The laminate is chosen to be
thin enough so that strength failure is excluded.

As analyzed in [37], (a) simply supported (ssp) and (b)
transverse edge restrained (ter) boundary conditions are
investigated. Both cases, specifying the fixed degrees of free-
dom, are depicted in Fig. 16. At all edges, the rotations are
free. The stress and deformation states are dependent on the
boundary conditions of the transverse edges at y = 0mm
and y = 1000mm. The panels are fixed along the edge at
x = 0mm in the u-direction and subjected to a uniform end
shortening�u at the opposite edge at x = 1000mm until the
stability point is reached. For example, the load-displacement
curve for the panel with the laminate [±〈0|50〉]3s and bound-
ary conditions ter is depicted in Fig. 17.

Fig. 15 Contour plot of the fiber orientation angle based on the FEmesh
with the corresponding reference fiber path for a single layer [+〈0|50〉]

Fig. 16 Cases of boundary conditions: (a) simply supported (ssp) and
(b) transverse edge restrained (ter)

Fig. 17 VAT composite panel [±〈0|50〉]3s with boundary conditions
ter: Load displacement curves stable (without geometric imperfections)
and imperfect (1st eigenvector ϕ1 scaled to 0.1mm)
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Fig. 18 Deterministic buckling optimization of SF composite panel
[±ϕ]3s : buckling load Pcr via fiber orientation angle ϕ

The result of the buckling load and the corresponding crit-
ical displacement of the panel without any imperfection are
Pcr,perf = 906N and ucr,perf = 0.0058mm. Typical linear
pre-buckling behavior of the flat panel can be observed. At
the stability point a very small imperfection can be applied
to follow the stable post-buckling path labeled as "without
imperf.". If no imperfection is applied at the stability point,
the post-buckling path is omitted, and the unstable path (solid
black line) is followed. Additionally, the path with imperfec-
tions is depicted in Fig. 17. For this purpose, prior to loading,
the first eigenvector ϕ1 is applied as nodal deviations (geo-
metric imperfection) scaled to an amplitude of 0.1mm. As
a result, the stability point disappears. To evaluate the buck-
ling load of the imperfect panel Pcr, the critical displacement
ucr,perf corresponding to Pcr,pref is employed as a reference
point. This results in a buckling load of Pcr = 806N for the
imperfect panel shown in Fig. 17.

The pre-buckling behavior of the imperfect panel can be
assumed to be nearly linear, especially for small imperfec-
tions. Therefore, the calculations of the geometrically imper-
fect panel, for example, Monte-Carlo-Simulations involving
random geometric imperfections, are performed as follows
in this work: the critical displacements ucr,perf of the panel
without imperfections for all fiber path configurations are
calculated using linear buckling analysis defined in Eq. (44).
Subsequently, random imperfections are applied, and the
panels are loaded to the critical displacement ucr,perf, at which
point the corresponding load Pcr(ucr) is evaluated.

5.2.1 Deterministic optimization

First, a classical buckling optimization with deterministic
design variables according to Eq. (27) is employed to illus-
trate howmuch the buckling resistance of the VAT composite
panel [±〈T0|T1〉]3s can be enhanced compared to a straight

Fig. 19 Deterministic buckling optimization of the VAT composite
panel: ssp (top) and ter (bottom) boundary condition

fiber (SF) [±ϕ]3s laminate. The results for both cases of
boundary conditions for the SF laminate are illustrated in
Fig. 18, and for the VAT laminate in Fig. 19. The design
spaces are defined by the fiber orientation angles without any
uncertainties. For the SF laminate, ϕ ∈ [0◦, 90◦] with incre-
ments of 1◦ and for the VAT laminate T0, T1 ∈ [0◦, 90◦]with
a grid of 5× 5. At this point, it should be noted that the opti-
mization of the panels is idealized, and they are currently not
manufacturable. For example, if manufactured using AFP,
overlaps or gaps would need to be considered, while with
CTS/RTS, thickness build-ups would occur. Additionally,
constraints such as limiting the fiber orientation angles to no
more than 70◦ for CTS/RTS manufacturing process are not
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Fig. 20 Transverse normal forces n22 along section A-A of VAT [±〈0|50〉]3s and straight fiber (SF) [±28]3s (ter), [±45]3s (ssp) laminates for both
boundary conditions ssp (left) and ter (right)

Table 3 Maximum buckling load max Pcr for the SF and VAT panel

SF VAT VAT/SF

ssp 1101N [±45]3s 1125N [±〈0|50〉]3s 1.02

ter 766N [±28]3s 906 N [±〈0|50〉]3s 1.18

considered. In both cases, this affects the resulting buckling
loads and the overall mass of the structure.

The results of the maximum buckling load max Pcr and
the ratios between the VAT and SF laminate are compared
in Table 3. For the panel with ssp boundary conditions,
only a marginal increase in the buckling load performance
of approximately 2% can be observed, whereas for the ter
boundary conditions, a significantly larger increase of about
18% is noted. This finding closely aligns with the results
given in [37], where also an explanation of this increase is
stated. For this purpose, the transverse normal forces n22 are
calculated along a section through the center of the panel
(A-A) of the VAT and SF laminates for which the maximum
buckling load can be observed. The results for both boundary
conditions ssp (left) and ter (right) are depicted in Fig. 20.
In the case of straight fiber laminates, the transverse normal
forces n22 are zero for ssp and constant for ter boundary con-
ditions along section A-A. For specific fiber orientations in
VAT panels, it is possible to achieve transverse normal forces
n22 near zero at the panel center as shown in Fig. 20 (right).
That is not the case with ssp boundary conditions. In the cen-
ter of the investigated panel, the buckling process initiates,
where the transverse normal forces n22 can be reduced by tai-
loring the fiber path. That reveals the significant optimization
potential ofVATcomposite panels. In addition, the transverse
normal forces n22 are depicted in Fig. 20 for the imperfect

panel, where the first eigenvalue ϕ1 is applied. It is evident
that the imperfection influences the stress distribution, indi-
cating potential for reducing the imperfection sensitivity of
VAT composite panels for specific fiber paths.

5.2.2 Optimization under aleatory uncertainty

In this section, a multi-objective optimization under aleatory
uncertainty is presented. Aleatory uncertainty of geometric
imperfections is simulated with random fields using KLE.
For this purpose, the quadratic exponential acf given in
Eq. (19) is chosen. The KLE series in Eq. (21) is not trun-
cated, which means that all eigenfunctions and eigenvalues
are considered. Additionally, the mean value is μ = 0mm
and the standard deviation is σ = 1mm, as referenced
in Eq. (21). The random fields wrf(x, θ) represent random
geometric out-of-plane deviations in z-direction. Thus, dif-
ferent forms of imperfections can be generated for various
correlation lengths and the imperfection sensitivity can be
investigated. Four random field realizations wrf

0 (x) for dif-
ferent correlation lengths are depicted in Fig. 21.

A small correlation length results in a highly uncorre-
lated and wavy geometric imperfection pattern. On the other
hand, for large correlation lengths, a smooth field emerges,
approaching the panel without imperfections as �c tends to
infinity. These differently correlated random imperfections
are applied to the panels. Following a convergence study, all
Monte-Carlo-Simulations involve 500 runs. Thus, the mean
and coefficient of variation (CV) of the buckling load have
reached convergence.

It follows an optimization task with an uncertain objective
function as illustrated in Fig. 6. The meanMμ(Pr

cr) and CV
UCV(Pr

cr) of the buckling load (IRMs from Table 1) are eval-
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Fig. 21 Random field realizations for different correlation lengths

uated. Figure 22 presents the results for the SF panel with
ssp and ter boundary conditions.

In addition to the colored curves for the different corre-
lation lengths, the curves from Fig. 18 for the panel without
imperfections are depicted by the black curve in Fig. 22

(top). For instance, smaller correlation lengths (resulting in
wavy geometric imperfections) lead to lower mean values.
In contrast, the mean value increases with larger correlation
lengths. This can be explained that for infinitely large cor-
relation lengths the panel without imperfections emerges.
Consequently, the buckling load Pcr of the panel without
imperfections is obtained for an infinitely large correlation
length. This can be observed by the green and yellow curves
for larger correlation lengths in Fig. 22 (top), which are closer
to the black curve representing the panel without imperfec-
tions. Furthermore, a crossing of the meanMμ(Pr

cr) and CV
UCV(Pr

cr) functions can be observed in Fig. 22. For example,
in Fig. 22 (top left), the function for the smallest correla-
tion length �c = 100mm slightly crosses the function for
the correlation length �c = 250mm (blue curve), and in
Fig. 22 (bottom) a more distinct crossing of the CV func-
tions is evident. As seen in Fig. 22 (bottom left), the CV
functions for both smallest correlation lengths �c = 100mm

Fig. 22 SF panel [±ϕ]3s with ssp (left) and ter (right) boundary conditions under random geometric imperfections: mean (top) and CV (bottom)
of the buckling load Pcr via fiber orientation angle ϕ
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and �c = 250mm increase again after reaching theminimum
for fiber orientation angles ϕ > 50◦. A possible explana-
tion for this observation is that panels with fiber orientation
angles larger than 50◦ aremore sensitive to the generated ran-
dom imperfections with these specific correlation lengths. In
other words, the range of possible worst-case imperfections
increases, leading to an increase of the CV. This shows, that
the influence of the correlation length on the stochastic buck-
ling loads is of complex nature. Care must be taken when
defining a correlation length to simulate worst-case scenar-
ios. The smallest correlation length does not always lead to
the smallest buckling load and largest variation for specific
fiber orientation angles. Additional investigations and dis-
cussions on this topic are presented, for example, in [29, 46].

However, in Fig. 22 (left) for ssp boundary conditions, it
can be observed that the maximum mean and the minimum
CV are nearly attained for the same fiber angle configura-
tion [±50]3s . The optimization objectives are not conflicting,
which is advantageous for structural design. For ter bound-
ary conditions in Fig. 22 (right), the maximum mean value
for an SF laminate [±30]3s is achieved. However, for this
design point, theCVs are relatively high across all correlation
lengths. Here is a conflict in optimizing between robustness
and performance measures depending on the boundary con-
ditions. The question ariseswhether this can also be observed
for VAT composite panels.

A correlation length of �c = 750mm is selected to gen-
erate random imperfections for the VAT composite panel.
The results for the other investigated correlation lengths do
not provide any additional insights. For the multi-objective
optimization, the two-dimensional design space (T0 × T1) is
discretized into a grid of 10 × 10 design points (100 feasi-
ble solutions). AMCS is conducted with 500 realizations for
each design point. The results are illustrated in Fig. 23 for
ssp and in Fig. 24 for ter boundary conditions.

In these figures, contour plots of the mean and CV, Pareto
fronts with corresponding design points, and histograms of
the extreme values are provided. In Fig. 23, the Pareto front of
the panel with ssp boundary conditions is vertically oriented.
This is a preferred behavior, indicating that the mean value
of the buckling load can be increased without a significant
increase in the CV. Robustness and performance measures
are not in conflict. On the other hand, the Pareto front for the
panel with ter boundary conditions is horizontally oriented.
This indicates a significant conflict between the optimiza-
tion objectives, because the performance (mean) can only
be increased with a simultaneous reduction in robustness
(increase of CV). In a design process, it should be considered
that boundary conditions can have a significant influence on
the optimization results considering uncertainties, especially
if the objectives are contradictory. This becomes evident
when comparing the laminate configurations for max Pcr
(deterministic optimization), maxMμ (maximum perfor-

Table 4 Optimal design points considering aleatory uncertainties

max Pcr maxMμ minUCV

ssp [±〈15|50〉]3s [±〈60|40〉]3s [±〈80|60〉]3s
ter [±〈0|50〉]3s [±〈0|50〉]3s [±〈90|80〉]3s

mance optimization), and minUCV (maximum robustness
optimization), as presented in Table 4. The laminate con-
figurations vary significantly.

5.2.3 Optimization under epistemic uncertainty

In this context, epistemic uncertainty refers to uncertainties
arising from incomplete knowledge or information about
fiber path modeling. Only with a high level of confidence
in the alignment of actual fiber orientation angles to their
desired values can laminate designers integrate the fiber ori-
entation angle as a design variable across the entire structure,
resulting in highly optimized VAT composite structures [84].
If this is not possible, the uncertainties of the fiber path have
to be quantified. Due to a lack of available data, it is not
advisable to define distribution functions with their parame-
ters, such as for the fiber orientation angle. Therefore, the
epistemic uncertainty of the fiber path is represented by
fuzzy functions. The theoretical foundations are discussed
in Sect. 4.2.

The uncertainty quantification is based on the measure-
ments presented in [42], wheremanufacturing characteristics
such as material properties, layup accuracy, and thickness
variation of the CTS technique are experimentally examined.
In [42], it is stated that the maximum angle error near the
inflection points is approximately 5◦ and usually in the range
of ±2◦. Based on this statement, no random variable can be
defined for the fiber orientation angle. However, this expert
knowledge can be quantified with a fuzzy variable. This
emphasizes another advantage of the approach presented in
this work: the incorporation of expert knowledge expressed
through statements regarding the uncertainties in modeling
VAT composites. Based on the statements two fuzzy trape-
zoidal numbers for the variation of thefiber orientation angles
�T0 and �T1 are defined as follows:

�T̃0 = 〈−5,−2,+2,+5〉
�T̃1 = 〈−5,−2,+2,+5〉. (50)

The one-dimensional fuzzy number, assumed to be equal for
both angle variations �T0 and �T1, is depicted in Fig. 25.
The assertion that the fiber orientation angle typically falls
within the range of ±2◦ leads to defining a membership of
one within this interval. Beyond these limits, the member-
ship decreases linearly to zero for �T0 = �T1 = ±5◦.
The maximum angle variation of approximately 5◦ can only
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Fig. 23 VAT composite panel [±〈T0|T1〉]3 s with ssp boundary condi-
tions under random geometric imperfections for �c = 750mm: contour
plots of mean and CV of the buckling load Pcr via the fiber orienta-

tion angles T0, T1 (top), Pareto front with corresponding design points
(middle) and corresponding histograms to the extreme values (bottom)
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Fig. 24 VAT composite plate [±〈T0|T1〉]3 s with ter boundary condi-
tions under random geometric imperfections for �c = 750mm: contour
plots of mean and CV of the buckling load Pcr via the fiber orienta-

tion angles T0, T1 (top), Pareto front with corresponding design points
(middle) and corresponding histograms to the extreme values (bottom)
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Fig. 25 Variation of the fiber orientation angle �T0 and �T1 defined
by fuzzy variables

Fig. 26 Deterministic design space and support of the uncertain design
space as the ANN training space

be observed near the inflection points. Consequently, low
memberships are assigned to values around 5◦. It is assumed
that the angle variations are constant at each location of the
panel. This means, the fuzzy variables defined in Eq. (50)
do not change across the panel. This assumption implies the
homogeneity of the fuzzy fiber path (fuzzy function). How-
ever, distinct fuzzy variables for the fiber angle variation can
be defined at specific locations, such as near the inflection
points, where higher variations are typically expected. Thus,
the uncertainty quantification can be improved and warrants
further investigation.

The fuzzy trapezoidal numbers defined in Eq. (50) are
added on each point of the deterministic design space xd =
{T0, T1} ∈ D with T0, T1 = [0, 90]

T̃0 = T0 + �T̃0

T̃1 = T1 + �T̃1.
(51)

Thus, at each point, a Cartesian product K̃ = T̃0 × T̃1
can be formed, representing a three-dimensional trapezoid as
depicted in Fig. 26. This results in an uncertain design space
x̃d = T̃0, T̃1, where the support S(T̃0), S(T̃1) = [−5◦, 95◦]
constitutes the training space for the ANN.

Fig. 27 ANN architecture

A fully connected feedforward neural network is con-
structed using MATLAB to learn the relationships between
fiber orientation angles (input) and the buckling load (out-
put). The architecture with input, output and hidden layers
is depicted in Fig. 27. The two fiber orientation angles, T0
and T1, within the range [−5◦, 95◦], form the input layer,
normalized to the interval [−1, 1]. They are passed to the
hidden layers and transformed back to the physical space of
Pcr in the output layer.

To accurately predict the buckling load Pcr, an architecture
of [5 20] with two hidden layers is selected. This topology
has been proved by a previous study. For this purpose, no
hyper-parameter optimization has been required. The first
hidden layer comprises 5 neurons, while the second hidden
layer comprises 20 neurons. The hyperbolic tangent func-
tion is chosen as the activation function for all neurons in the
hidden layers. Furthermore, the Levenberg-Marquardt back-
propagation algorithm is chosen as the training function,with
a learning rate of 0.01. The network is trainedwith 2500 sam-
ple points arranged in a 50×50 regular grid with ameshwide
of approximately 2◦. This equidistant sampling approach is
chosen based on the UQ of the variation in fiber orienta-
tion angles, which falls within the range of ±2◦. Advanced
sampling techniques, such as importance sampling or Latin
Hypercube sampling, are not employed in this paper. How-
ever, for optimization tasks with a larger number of design
variables, which increase the dimensionality of the training
space, advanced sampling methods are recommended. The
design points are randomly divided into 70% for training,
15% for validation, and 15% for testing. For this purpose, no
cross validation has been required.

Two separate ANNs are trained for both boundary condi-
tions, ssp and ter. To identify the stability points in the training
process, the criterion defined in Eq. (49) is applied to each
sample point. Exemplary, in Fig. 28, the mean square error
(mse) is depicted as the loss function via training epochs for
the panel with ssp boundary conditions. The mse decreases
over the training epochs, and particularly, the stable mse on
the validation data indicates that the network is well-trained
without overfitting. The response surfaces of the two trained
ANNs for both boundary conditions are depicted in Fig. 29.
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Fig. 28 Loss functions (mse) via training epochs for theVATcomposite
panel with ssp boundary conditions

Fig. 29 Response surface of the two trained ANNs for boundary con-
dition ssp (top) and ter (bottom)

In the response surfaces, kinks are observed, which are accu-
rately captured by the trained ANNs.

The ANNs are employed to conduct the fuzzy analy-
sis (ALO), as depicted in Fig. 4, within the optimization
task considering epistemic uncertainty of the fiber paths. In
Fig. 30 and Fig. 31, the optimization results for both bound-
ary conditions are presented.

The trainedANNs are evaluated at 361 design points (19×
19 grid) to determine the centroid MxS (P̃cr) (performance
measure) and the area UA(P̃cr) (robustness measure) of the
fuzzy buckling load P̃cr. For this purpose, the fuzzy output
variables of the buckling load P̃cr are discretized into 10 α-
levels. Utilizing the solutions from the 361 design points,
contour plots, Pareto fronts, and fuzzy output variables are
generated.

The Pareto fronts for both boundary conditions contain
only a few valuable design points. However, the epistemic
uncertainty of the fiber orientation angles can significantly
influence the optimization results. This is evident in the fuzzy
output variables associated with maxUA(P̃cr) in Fig. 30 and
Fig. 31 (bottom). For instance, the support length S(P̃cr) of
the fuzzy output variable for the panel with ssp boundary
conditions is approximately 310N, and for ter, it is 216N.
As a concluding remark on the results, it’s worth noting that
despite minor deviations of the fiber orientation angles, sig-
nificant discrepancies in the buckling load can occur. Even
with high accuracies achieved through modern manufactur-
ing processes, the buckling load can vary significantly.

In summary, the optimal design points for panelswith high
levels of both robustness minUA and performance maxMxS
compared to the deterministic optimization result max Pcr
are presented in Table 5. It is shown, that the laminate con-
figurations vary significantly depending on the optimization
objectives. Consequently, for highly optimized VAT com-
posite panels, it is essential to consider both aleatory and
epistemic uncertainties.

5.3 Axially loadedVAT composite cylindrical shell

The proposed methods are applied to an experimental test
cylinder from [44], which allows the results to be validated
using experimental data.

5.3.1 FE model of the test cylinder

The cylinder was manufactured by the Dutch National
Aerospace Laboratory (NLR). Photos of the test cylinder are
depicted in Fig. 32. It is important to emphasize that the VAT
composite test cylinder was not designed for maximum stiff-
ness or buckling load. Instead, the primary objective of this
cylinder was to conduct a feasibility study on the manufac-
turing method that combines parallel and shifted tows [44].
However, in this paper, optimization is performed with con-
sideration for uncertainties, based on the experimental data
from [44].

The FE model of the test cylinder is depicted in Fig. 33.
Following a convergence study, a FE mesh with 140 shell
elements in the circumferential direction and 60 elements in
the axial direction is selected. This regular FEmesh can accu-
rately represent the critical buckling forms. The test cylinder
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Fig. 30 VAT composite panel with ssp boundary conditions consider-
ing epistemic uncertainties of the fiber path: contour plot of centroid
MxS (P̃cr) and area UA(P̃cr) of the fuzzy buckling load Pcr via the

fiber orientation angles T0, T1 (top), Pareto front with corresponding
design points (middle) and corresponding fuzzy buckling loads Pcr to
the extreme values (bottom)
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Fig. 31 VAT composite panel with ter boundary conditions consider-
ing epistemic uncertainties of the fiber path: contour plot of centroid
MxS (P̃cr) and area UA(P̃cr) of the fuzzy buckling load Pcr via the

fiber orientation angles T0, T1 (top), Pareto front with corresponding
design points (middle) and corresponding fuzzy buckling loads Pcr to
the extreme values (bottom)
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Table 5 VATcomposite panels: optimal design points considering epis-
temic uncertainties

max Pcr maxMxS minUA

ssp [±〈15|50〉]3s [±〈20|50〉]3s [±〈0|0〉]3s
ter [±〈0|50〉]3s [±〈0|45〉]3s [±〈0|0〉]3s

Fig. 32 Photos of the VAT composite test cylinder from [44]: a) side
view, b) close-up view of potting, and c) top view

Fig. 33 FE model of the VAT composite cylindrical shell

features an epoxy resin end-potting as depicted in Fig. 32
b), enabling the application of load onto the structure. The
outer thickness of the potting measures 25mm, while the
inner thickness is 15mm. The potting covers 40mm of the
height at each end of the test cylinder. The end-potting repre-
sents a clamping and is not modeled in detail, e.g., with solid
elements. Therefore, the FE model of cylinder is clamped
on both edges. The boundary condition holds at the lower
edge: u = v = w = 0, ϕx = ϕy = 0 and at the upper
edge: u = �u, v = w = 0, ϕx = ϕy = 0. Only ver-
tical displacements of the upper nodes are allowed, where
the cylinder is incrementally loaded by displacement control
with �u = 0.02mm until a first diagonal element Dii of the

Table 6 Material properties of the AS4/8552 CFRP prepreg composite
material

E11 [N/mm2] E22 [N/mm2] G12 [N/mm2] ν12 [−]
141000 10300 4500 0.3

tangent stiffness matrix occurs. With this criterion defined in
Eq. (49), the stability point is identified and each calculation
is terminatedwithin the parallelizedoptimization framework.

The cylinder is fabricated using AS4/8552 CFRP prepreg
composite material, with the corresponding material param-
eters listed in Table 6.

The cylinder’s laminate consists of 8 layers with a lay-
up of [±45/ ± 〈T0|T1〉]s , where the two outer layers are
straight fibers and the inner layers are fiber-steered plies. The
fiber orientation angle of the steered layers varies along the
axial direction (x ′) from T0 at the midpoint of the cylinder
to T1 at the top and bottom of the cylinder. The fiber path is
shifted along the circumference direction (y′), as illustrated
on the unwound cylinder in Fig. 34. Using Eq. (36), the fiber
orientation angles can be computed with T0 = −15◦ and
T1 = −60◦. However, the introduced x ′y′-coordinate system
is rotated by 90◦ compared to the fiber orientation angle ϕe

of the shell element, see Fig. 34. Therefore, all angles are
defined based on ϕe. Thus, the fiber orientation angles of the
test cylinder are specified as T e

0 = −15◦ + 90◦ = 75◦ and
T e
1 = −15◦ + 90◦ = 75◦. The corresponding distribution

of the fiber orientation angle evaluated on the FE node is
depicted in Fig. 35.

The thickness of a single layer is t = 0.181mm. This
results in a total shell thickness of 1.448mm, but only in the
central region of the cylinder. At the ends of the cylinder,
overlaps can be observed due to the shift in circumferen-
tial direction. Hence, the laminate thickness almost doubles
at both ends of the cylinder. To model these overlaps, addi-
tional steered plies are incorporated into the end sections, as
illustrated in Fig. 36. Alternatively, the thickness distribution
can be modeled with a smooth function. However, the pre-
sented thickness build-up has been adapted from the work of
[44] to compare the results. In general, the thickness distribu-
tion significantly influences the resulting buckling loads and
the overall mass of the structure. Therefore, future studies
should aim to quantify the uncertainties associated with the
thickness build-ups.

5.3.2 Measured geometrical imperfections

Measured geometrical imperfections are applied on the FE
model of the cylinder as geometric radial deviations along
the z-axis in Fig. 33. In [44], measurements of geomet-
rical imperfections are presented. The measurements are
performed before the compression test using the Digital
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Fig. 34 Fiber path of the steered layers on the unwound cylinder

Fig. 35 Distribution of the fiber orientation angle

Fig. 36 Material and thickness distribution of the FE model of the VAT
composite cylindrical shell

Fig. 37 Imperfect VAT composite cylindrical shell, magnified (x50)

Image Correlation (DIC) system from the outer side and a
laser distance sensor from the inner side. In this paper, the
imperfection data obtained from the DIC system are utilized.
The geometric radial deviations are approximated with the
Fourier series using the half-wave cosine formulation accord-
ing to Eq. (A1) in appendix A. The corresponding Fourier
coefficients are available open access in a data repository at
https://doi.org/10.35097/km10c39fd3qa12kk.

The imperfect cylinder, magnified by a factor of 50, is
depicted in Fig. 37 and the imperfections on the unwrapped
surface are shown in Fig. 42. Positive values signify imper-
fections larger than the radius of the cylinder without
imperfections, while negative values indicate imperfections
smaller than the radius. The cylinder is deformed into an
oval shape at the lower edge, where a maximum imperfec-
tion value of approximately+1.2mm is observed.Within the
inner area, the cylinder is curved inward with a maximum
imperfection amplitude of −0.7mm. These approximated
imperfections wrad, obtained through the half-wave cosine
formulation, are incorporated into the FE model as geomet-
ric radial deviations from the cylinder without imperfections.
Finally, it should be noted that no aleatory uncertainty is
considered in this example. To quantify aleatory uncertainty
from only a single measurement would not provide mean-
ingful results. Therefore, the following optimization results
are based on the measured imperfection signature. However,
the influence of epistemic uncertainty in the fiber path on the
optimization results is investigated.

5.3.3 Buckling analysis

Before an optimization considering uncertainties, the results
of the numerical buckling analysis are validated with the
experimental buckling tests obtained by Labans et al. [44].
The experimental and numerical load-displacement curves of
the cylinder are depicted in Fig. 38. Therein, the numerical
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Fig. 38 Load-displacement curves of the VAT composite cylinder

results from [44] (green line) are also provided.The test cylin-
der is loaded in compression several times. In Fig. 38, the
median experimental load-displacement curve is indicated
by the black line, labeled as “test”. The median experimental
buckling load is Pcr = 208kN at the critical displacement
ucr = 2.2mm. The standard deviation of the experimental
buckling load is 1.6kN based on 8 compression tests [44].
A linear buckling analysis of the cylinder without imper-
fections reveals a buckling load of Pcr = 249kN, which
results in a knockdown factor of 208 kN/249 kN = 0.835.
The numerical load-displacement curves of the cylinder, both
without imperfections (blue dashed line) and with imperfec-
tions (red line), are calculated, presenting thefirst eigenvector
ϕ1 at the stability point. The nonlinear buckling load of the
imperfect cylinder is Pcr = 207kN at the critical displace-
ment ucr = 2.17mm. This agrees with the experimental and
numerical results reported by Labans et al. [44].

5.3.4 Optimization

Theclassical bucklingoptimizationwith deterministic design
variables according to Eq. (27) and the optimization under
epistemic uncertainty given by Eq. (31) are performed based
on an ANN, which is trained on the support of the uncer-
tain design space as depicted in Fig. 26. The fiber orientation
angles T e

0 and T e
1 are the ANN inputs, which are bounded

within the range [−5◦, 95◦]. As in the panel example in
Sect. 5.2.3, the same ANN architecture [5 20] and training
settings are used. This topology has also been proved by a
previous study without a hyperparameter optimization. The
design points are randomly divided into 70% for training,

Fig. 39 Response surface of the trained ANN for the VAT composite
cylindrical shell

Fig. 40 Deterministic buckling optimization of the VAT composite
cylindrical shell

15% for validation, and 15% for testing. For this purpose, no
cross validation has been required.

The ANN is trained on a fine grid of size 50 × 50, com-
prising 2500 sample points, to ensure accurate optimization
results considering uncertain fiber paths. At each sample
point, a nonlinear buckling analysis is conducted using the
criterion in Eq. (49) to terminate the calculation at the stabil-
ity point during the training process. The response surface of
the trained ANN is depicted in Fig. 39, where the solution of
the test cylinder [±45/ ± 〈75|30〉]s is marked.

Significant gradients can be observed, indicating the need
for optimization under uncertainty. The investigated cylinder
has significant potential to enhance the buckling load for spe-
cific fiber orientation angles. As stated in [44], the cylinder
was not designed for maximum stiffness or buckling load.
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Table 7 VAT composite cylindrical shell: optimal design points con-
sidering epistemic uncertainties

max Pcr maxMxS minUA

[±45/ ± 〈0|0〉]s [±45/ ± 〈0|0〉]s [±45/ ± 〈0|30〉]s

A deterministic optimization is conducted utilizing the
ANN solutions. For this purpose, the ANN is evaluated at
361 design points (19 × 19 grid) for T e

0 and T e
1 in the range

[0◦, 90◦]. The results for the maximum and minimum buck-
ling load are depicted in Fig. 40. Additionally, it shows the
ANN result of the test cylinder with a buckling load of
Pcr = 205.3kN, which closely correlates with the FE solu-
tion of Pcr = 207kN presented in Sect. 5.3.3. In summary,
the buckling load can be increased up to Pcr = 296kN.

Finally, the ANN is used to perform an optimization tak-
ing into account epistemic uncertainty of the fiber path. The
variations of the fiber orientation angles are quantified with
the same fuzzy trapezoidal numbers defined in Eq. (50) and
depicted in Fig. 25. No investigations are conducted for the
test cylinder regarding deviations in the fiber path. Therefore,
the uncertainty quantification of the fiber path is performed
based on the results in [42] as described in Sect. 5.2.3.

In Fig. 41, the results of the optimization under uncer-
tainty are depicted. The centroid MxS (P̃cr) (performance
measure) and the area UA(P̃cr) (robustness measure) of the
fuzzy buckling load P̃cr is evaluated using the trained ANN
at 361 design points (19×19 grid), where the fuzzy input and
output variables are discretized into 10 α-levels. In Fig. 41,
contour plots, the Pareto front, and fuzzy output variables of
the extreme values are provided. The Pareto front contains
only a few design points and shows no conflict between the
two objectives. Furthermore, Fig. 41 includes the result of
the test cylinder as one feasible solution. It can be observed
that the performanceMxS of the test cylinder is low, whereas
the robustness UA is quite high. This illustrates how taking
into account of uncertainties in an optimization approach
can lead to additional statements about the structure. Opti-
mal design points compared to the classical (deterministic)
optimization result max Pcr are summarized in Table 7. The
laminate configurations are quite similar. However, for some
configuration the robustness is very low. In Fig. 41 (bot-
tom), the fuzzy buckling load assigned to maxUA shows
a large support length S(P̃cr) of approximately 45kN. Even
small deviations in the fiber path here also result in signifi-
cant differences in the buckling loads. This emphasizes the
importance of accounting for uncertainty in the optimization
process of VAT composite shells.

6 Conclusions

This paper proposes a methodology to consider aleatory and
epistemic uncertainties within amulti-objective optimization
framework for tow-steered composite shells. An optimiza-
tion under uncertainties requires a considerable amount of
computational effort, for which a multi-loop computational
model based on neural networks is presented. The robustness
and performance of a VAT composite structure are discussed
based on the IRMs of the uncertain output quantities such
as mean value, coefficient of variation, area, and centroid of
a fuzzy variable. The conflicts between these objectives are
shown by Pareto fronts. In the first example, random geo-
metric imperfections are applied on a VAT composite panel.
It is demonstrated that conflicts may occur depending on the
boundary conditions. The performance, represented by the
mean value of the buckling load, can only be enhanced at the
expense of decreased robustness, indicated by an increase
in the variation of the buckling load. Such results have to
be considered in a decision-making process for highly opti-
mized structures. Only then can an appropriate level of safety
be guaranteed.

One highlight of the paper is the uncertain fiber path def-
inition with fuzzy functions to consider the deviations of the
fiber path, for which usually only a few measurements are
available. This epistemic uncertainty of the fiber orientation
angles can significantly influence the optimization results.
It’s worth noting that despite minor deviations of the fiber
orientation angles, significant discrepancies in the buckling
load can occur, even with high accuracies achieved through
modern manufacturing processes. That is further confirmed
by the second example: the VAT composite cylindrical shell.
This example involves a test cylinder for which imperfec-
tion measurements are available and provided in the paper
to replicate the results. It serves as a demonstration of the
methods applied to manufactured structures.

The proposed approach aims to initiate a paradigm shift
moving away from the classical optimization with deter-
ministic design variables of aerospace structures. This shift
contributes to paving the way for the next generation of
aircraft to be lighter and more sustainable. To maintain
or enhance safety standards, it is absolutely essential to
account for the inherent aleatory and epistemic uncertain-
ties in numerical design optimization. Hence, future work
should focus on how to address uncertainties in advanced
modeling and design tool, extending beyond VAT compos-
ite structures. New ideas for further research and possible
applications of the proposed methods can be summarized as
follows:

• Improved uncertain fiber path definition with respect to
the manufacturing process (AFP, CTS)
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Fig. 41 VAT composite cylindrical shell considering epistemic uncer-
tainties of the fiber path: contour plot of centroid MxS (P̃cr) and area
UA(P̃cr) of the fuzzy buckling load Pcr via the fiber orientation angles

T e
0 , T

e
1 (top), Pareto front with corresponding design points (middle)

and corresponding fuzzy buckling loads Pcr to the extreme values and
the test cylinder (bottom)
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• Additional uncertainty quantification of thickness distri-
butions and overlaps from tow-steering

• Optimization under uncertainty with regard to the post-
buckling behavior

• Exploration of various boundary conditions and load
cases to identify potential conflicts between robustness
and performance objectives, especially for cylindrical
shells

• Extension to polymorphic uncertainty modeling to con-
sider aleatory and epistemic uncertainty simultaneously

• Development of specific surrogate models for buckling
design optimization

• Optimization under polymorphic uncertainties in real
tow-steered structures with significantly higher number
of degrees of freedom.

• Application to various structures, such as stiffened pan-
els, conical shells, large-scale structures, morphing adap-
tive structures, etc.

Appendix A: Fourier coefficients of
measured geometric
imperfections of the VAT
composite shell

Themeasured geometric imperfections of theVATcomposite
cylindrical shell, as presented in Sect. 5.3, are approximated
using the half-wave cosine formulation, defined as follows
[7, 43]:

wrad(x, y) =
Nm∑
m=0

Nn∑
n=0

cos
(mπx

L

)
[
Amn cos

(n · y
R

)
+ Bmn sin

(n · y
R

)]
, (A1)

where wrad(x, y) represents the geometric deviations in the
radial direction of nodes, depending on the coordinates on the
shell surface in the axial (x) and circumferential (y) direc-
tions. R denotes the radius and L the length of the cylinder.
Moreover, Amn and Bmn denote the Fourier coefficients for
m half waves in the axial direction and n full waves in the cir-
cumferential direction. These coefficients can be calculated
as follows:

Amn = 2α

πL

2πR∫
0

L∫
0

w̄rad(x, y) cos
(mπx

L

)
cos

(n · y
R

)
dx dy

(A2)

Fig. 42 Measured geometrical imperfection on the unwrapped surface
of the VAT composite cylindrical shell

Bmn = 2α

πL

2πR∫
0

L∫
0

w̄rad(x, y) cos
(mπx

L

)
sin

(n · y
R

)
dx dy,

(A3)

where w̄rad(x, y) are measured geometric imperfections and
α is a numerical substitutor defined with Boolean operations

α = 1 if m = 0 and n = 0 (A4)

α = 2 if m > 0 or n > 0 (A5)

α = 4 if m > 0 and n > 0. (A6)

The integrals in Eq. (A3) are solved using the trapezoidal
rule. Figure 42 depicts the geometric imperfection on the
unwrapped surface of the investigated test cylinder.

The test cylinder measures L = 790mm in length and
has a radius of R = 300mm. To reproduce its geomet-
ric imperfections, the Fourier coefficients Amn and Bmn of
the half-wave cosine representation in Eq. (A1) are available
open access in a data repository at https://doi.org/10.35097/
km10c39fd3qa12kk.
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