Glass Vaults

Introducing an adjustable mould for casting glass voussoirs for transparent shell structures

Felix van der Weijst

Cast glass

High compressive strength Low tensile strength Resistance to buckling

Cast glass is a suitable material for shell structures

Traditional shells are dark and form enclosed spaces

Tennishalle Grenchen (Source: Oliver Menge)

(Tang, 2015)₄

Little research is done on glass shell structures

How can a transparent shell structure out of cast glass components be engineered to be fabricated in an efficient way?

Connection methods

(Oikonomopoulou et al., 2018)₈

Mechanical connection

- Substructure resists lateral loads

- Easily assembled

- Interlayer accomodates tolerances

Mechanical connection

- Compromised transparency - Reversable

Adhesive connection

- Requires low tolerances (± 0.25 mm)

- Meticulous construction
- Time-consuming

nces (± 0.25 mm) ction

Adhesive connection

High transparencyNon-reversible

12

Dry-assembly

- Interlocking geometry

- Easy construction

- Interlayer accomodates tolerances

Dry-assembly

- High transparency
- Reversable
- Safe structure

Shell structures

Freeform

Mathematical

Funicular

(Adriaenssens et al., 2014) 15

Physical form finding

Computational form finding

Thrust network analysis (Source: Block Research Group)

Construction methods

Monolithic

Discrete with mortar

Hôtel de Ville (Source: Destination811375)

Dry-assembled discrete

Voussoir terminology

19

Interfaces perpendicular to the force flow

(Rippmann & Block, 2018)₂₀

Cast glass shell structures

Dome

(Bristogianni et al., 2016)

Arch

(Aurik, 2017)

Dome

(Janssens, 2018) 22

One voussoir geometry

Spherical dome or circular arch

Funicular shells have varying curvature

Voussoirs of different geometry

An adjustable mould could be used to cast all these different voussoirs

Adjustable mould variables - Intrados/extrados

- Interfaces

Interface variables - Voussoir joining angle

Interfaces

Interfaces

- Interlocking geometry
- Large contact area
- One geometry for all voussoir joining angles
- Act as a hinge

- All hinge lines are parallel
- Unstable equilibrium

Convex-concave

Planar

Load locations

Point loads

Distributed load

Test 1 results

Failure due to destabilizing the equilibrium

Test 1 results

Convex-concave Planar Maximum load 57 N

200 N

Test 2 results

Test 2 results

Convex-concavePlanarMaximum load1011 N88 N

Test 2 results

Failure due to stresses exeeding the yield strength

Ideal interface - Interlocking geometry

- Non-hinging

Interface variables - Voussoir joining angle

- Tongue or groove

Intrados/extrados variables

- Edge count (triangular, quadrangular etc.)
- Edge length
- Interior angle

Planarity

These moulds are only suitable for voussoirs with planar intrados and extrados

These moulds do not have ajustable interface features

Edge modules

Groove edge module

Tongue edge module

Tongue edge module

Holes at the nodes

Spherical vertex modules

Groove vertex modules

Tongue vertex modules

Spherical holes at the nodes

Node components

Small angles

Problem only occurs with tongue to tongue edge module connections

Small angles

$$r_{v} > \frac{t_{v}}{2\sin\left(\frac{1}{2}\alpha_{i,min}\right)}$$

The smaller the minimum interior angle, the larger the radius The larger the voussoir thickness, the larger the radius

Large angles

Problem only occurs with groove to tongue edge module connections

 $r_{v} > \frac{t_{v}}{2\cos\left(\frac{1}{2}\alpha_{i,max}\right)}$

The larger the maximum interior angle, the larger the radius The larger the voussoir thickness, the larger the radius

Radius of the vertex module

 Tongue to tongue edge connection

 Groove to tongue edge connection

Wax casts

Lost-wax casting

Cast glass voussoirs

Improved design

Draft angle for easier demoulding 1.5 mm offset to accommodate for a 3 mm thick interlayer

Summary

- Adjustable mould

- Planar convex intrados/extrados
- Tongue and groove interfaces
- Spherical compoment at the nodes
- Dimensions determined by the tessellation pattern

Tessellation pattern

Tessellation pattern

Triangular

Quadrangular

Hexagonal

Planarity

Yes

Not guaranteed

Not guaranteed

Planarity

(Wang & Liu, 2009)

68

Node components

Small

Large

Node components

Risk of sliding at edges

Risk of sliding at edges

Summary

- Polygons have to be planar and convex
- Edge length should be larger than twice the sphere radius
- Tessellation should be alligned with the force flow

Case study

Great Court at the British Museum (Foster + Partners)

Armamentarium Delft (cepezed projects)

TO DO

Plan

Concept

Form finding

Form finding

Structural validation

- Finite element method (FEM) analysis
 - Displacements
 - Stresses
- Discrete element method (DEM) analysis - Stability

FEM analysis

Thickness 100 mm

Density Young's modulus Shear modulus Yield strength

2500 kg/m³ 70 GPa 28 GPa 30 MPa

FEM analysis

LoadSafety factorDead load 2.5 kN/m^2 1.2Live load (concentrated)1.5 kN1.5Wind load (asymmetric) $0 - 0.48 \text{ kN/m}^2$ 1.5Snow load 1.1 kN/m^2 1.5

Displacement [mm]

0.0 0.00155 0.00311 0.00466 0.00622 0.00777 0.00933 0.0109 0.0124 0.014 0.0155 0.0171 0.0187 0.0202 0.0218 0.0233 0.0249

 $\Delta_{max} = 0.025 \text{ mm}$

Principal stress 1 [MPa]

σ_{min} = -0.30 MPa σ_{max} = 0.04 MPa

Principal stress 2 [MPa]

σ_{min} = -0.38 MPa σ_{max} = -0.02 MPa

- Fully supported along its boundary
- No risk of sliding between the voussoirs
- No need for allignment to the force flow

89

Tessellation constraints

- Maximize the smallest occuring edge length
- Maximize the smallest occuring interior angles
- Minimize area of each mesh face

ngth angles

Tessellation constraints

- Maximize the smallest occuring edge length
- Maximize the smallest occuring interior angles
- Minimize area of each mesh face

ength angles

- Tessellation generated using T.MAP
- Manual post-processing

Interior angle Edge length Area Voussoir joining angle

Minimium 34.2° 330 mm 0.051 m² -6.9° Maximum 97.3° 782 mm 0.186 m² 20.2°

Average 60.0° 538 mm 0.125 m² 2.1°

Voussoir generation

Avoid the assignment of two tongue edges on pairs of edges that form small interior angles

Check edges

Skip

100

Voussoir generation

Smallest angle at which two tongues are assigned Voussoir thickness

$$r_{v} > \frac{t_{v}}{2\sin\left(\frac{1}{2}\alpha_{i,min}\right)}$$

Minimum sphere radius of the vertex modules

44.8° 100 mm

132 mm

102

Voussoir generation

Adjustable mould input data list

- Voussoir index number
- Types of interfaces (tongue or groove)
- Edge lengths
- Voussoir joining angles
- Adjacent voussoir index numbers

list)

Cast glass shell structure

Mass

Minimium 5.41 kg

Average 24.6 kg

Maximum 38.5 kg

Connection with existing structure

Connection with existing structure

Interrupted boundary

111

Continuous boundary

Support

Voussoir (groove interface)

Boundary node component

1. Construct scaffolding

2. Install supports

3. Build formwork

4. Assemble shell structure

Bottom keystone

Top keystone

Keystone

1. Place bottom keystone

Keystone

2. Place adjacent voussoirs

Keystone

3. Place top keystone

This research resulted in a set of **design rules** and a **production process** for the construction of fully transparent shell structures

Design rules

- The shell needs to have a funicular shape
- Tessellating occording to certain constraints

Tessellating constraints

- Convex polygons
- Planar polygons
- Very large or small angles should be avoided
- Edge lenghts larger than twice the sphere radius
- Tesellation pattern should be alligned to the force flow
- The face area should be kept to a minimum

- Edge count

- Edge length
- Interior angles
- Interface type (tongue or groove)
- Voussoir joining angle

9

126

Node components

- Watertightness
- Identical component for every node
- Boundary node component

Comparison

Fully transparent €€€ Formwork needed

Limited transparency € No formwork required

Restoration

Cast glass can show a historic building in its original and in its ruined state

in its ruined state (Barou, 2016)₁₃₀

Restoration

- Can withstand a bending moment

- How much?
- FEM analysis and physical testing

- Not optimized - Algorithm

Structural analysis

- Interlayer

- DEM analysis

Voussoir mass

- Renders the shell economically infeasible

- Reduce weight by improving the tessellation pattern

What's next?

GlassTec 2020

- Span ~1 m
- 25 voussoirs
- 30 mm thick
- 2.3 5.6 kg

