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Abstract

Frequentist statistics and Bayesian statistics are the two main approaches to statistical inference. The frequentist
approach is commonly integrated into academic curricula, while the Bayesian approach is less frequently employed.
However a comparison of the approaches, further investigating their shortcomings and advantages, might give a
better comprehension of statistics and more insight in statistical inference. Therefore the current study applied
both the frequentist and Bayesian approach to multinomial logistic regression.

The multinomial logistic regression model can be described as a generalized linear model and as a random
utility model, and the current study has shown that these models generate an equivalent probability function.
Moreover, the method of estimating coefficients in the frequentist and in the Bayesian approach were described.
The multinomial logistic regression model was subsequently applied to data from educational research, conducted
by PRIME. Three different R packages were used to perform the multinomial logistic regression: the VGAM package
(frequentist, generalized linear model), the mlogit package (frequentist, random utility model) and the UPG

package (Bayesian, random utility model). The results of the analysis of one dependent variable were subsequently
compared.

The results indicated that the frequentist and Bayesian approach differ in their estimation time and model
fit: the Bayesian approach required more computational time, but resulted in a better model fit. The frequentist
95% confidence intervals and Bayesian 95% credible intervals are comparable, but the interpretation of these
is considerably different due to the philosophical underpinnings of both approaches. Moreover in the Bayesian
approach, existing knowledge and information can be incorporated by choosing the prior distribution. Further-
more the Bayesian approach gives a posterior distribution, which is more informative than only a point estimate.
In comparing the three different R packages it is noted that all three have a slightly different theoretical back-
ground. Since the packages all have their own shortcomings and advantages, combining them when conducting
multinomial logistic regression could be desirable.
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Chapter 1

Introduction

Frequentist statistics and Bayesian statistics are the two main approaches to statistical inference. The key
difference between the two approaches is their interpretation of the concept probability. In frequentist statistics,
probability is defined in connection to countable events, being the limit of the relative frequency of an event after
many trials [McElreath, 2020]. These frequencies can be calculated by conducting an experiment. For example if
one wants to investigate whether a coin is weighted, you can throw the coin 100 times. If the coin turns heads 80
times out of 100, then a frequentist calculates the probability of such a result occuring if the coin is unweighted.

On the other hand, in Bayesian statistics, probability expresses a degree of belief in an event [McElreath, 2020].
Hence the probability actually expresses the chance of an event happening. In doing so, Bayesian statistics includes
prior information, for example whether you have seen something weird about the coin. This allows researchers
to incorporate existing knowledge or information when making statistical inferences about the data. Another
important difference is that Bayesians view the unknown parameters as random variables, while frequentists see
these parameters as fixed values which can be determined by repeated sampling.

Both approaches can be used to conduct statistical analyses. Throughout history these has been a debate
surrounding the use of Bayesian or frequentist statistics. In 1925, R.A. Fisher, a statistician who can be con-
sidered frequentist and who had much influence on the development of statistics as a field, even announced that
“The theory of inverse probability [which is used in Bayesian statistics] is founded upon an error and must be
wholly rejected” [Fisher, 1925]. The frequentist approach has mainly been developed in the early 20th century
[McElreath, 2020] and Fisher wrote two books that were very influential in these times: Statistical Methods for
Research Workers (1925) and The Design of Experiments (1935). These books led to an enormous increase in
the popularity of the use of frequentist statistics and concepts like the p−value [Lehmann, 2011]. His influence
amongst other factors led to the frequentist approach becoming the dominant statistical paradigm in scientific
literature [McElreath, 2020].

The Bayesian approach to statistical inference is much older: versions of it were already used in the 18th
and 19th century [McElreath, 2020]. But it was successfully marginalized in the beginning of the 20th century,
mostly due to the philosophical debate surrounding statistics. Moreover, the computations that needed to be
performed in Bayesian statistics were so difficult that it was extremely challenging or even impossible to do these.
However, due to increased use of computers, beginning in the 1990s, the application of Bayesian statistics has
grown rapidly [McElreath, 2020]. Moreover, since statisticians recognized shortcomings in frequentist statistics,
it has been advocated as an alternative approach of statistics.

However, Bayesian statistics is not commonly integrated into the curriculum of most studies yet: often
students first learn to apply frequentist statistics. Furthermore, when scholars are doing statistical analyses,
they often apply either the Bayesian or the frequentist approach in their studies, but not both. However,
comparing both approaches, looking at their shortcomings and advantages, might give a better comprehension
of statistics and more insight in the problem that is currently investigated. As McElreath (2020) mentions in
his book Rethinking statistics: “Changing the representation of a problem often makes it easier to address or
inspire new ideas that were not available in the old representation. (...) Switching teaches us new things about
both approaches.” Therefore in the current study both a frequentist and Bayesian approach is used to perform
multinomial logistic regression. Subsequently the results of these approaches are compared.
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CHAPTER 1. INTRODUCTION 5

1.1 Multinomial logistic regression

Multinomial logistic regression is used to predict the probability of the different possible outcomes of a categorical
dependent variable. For example, in countries where there are multiple political parties, such as the Netherlands,
logistic regression can be used to predict which of the parties a person is likely to vote for. Several independent
variables can be used to make these predictions. These variables can be either continuous or categorical. For
example, voting behavior can be predicted by looking at the independent variables age (continuous), gender
(categorical) and income (continuous).

Multinomial logistic regression is used in a lot of fields, for example in health science, marketing research and
social science. In the current study we are looking at study habits and beliefs and whether we can predict those
by looking at grade goals, prior math grade and self-efficacy. Since these study habits and beliefs are categorical
dependent variables, insight in this can be provided by multinomial logistic regression.

1.2 Overview of the current study

The main aim of this study is to compare the frequentist and Bayesian approach to multinomial logistic regression.
Another aim of this study is to compare several packages in R for doing multinomial logistic regressions, such
that it can serve as a guide for researchers or students who need to perform these. Thus it has two research aims:

1. Comparison of frequentist and Bayesian approach in performing multinomial logistic regression

2. Comparison of three different R packages to perform multinomial logistic regression

Generalized linear model

Random utility model

MLR

frequentist approach

Bayesian approach

VGAM package

mlogit package

UPG package

MLR:
PRIME data

PART I PART II

Figure 1.1: Overview of the current study: Part I (theoretical background) and Part II (application to PRIME
data.

In order to achieve these aims, the study is split into two parts, which are depicted in the overview in
figure 1.1. In part I of the study, the theoretical background of multinomial logistic regression is presented.
Firstly in chapter 2 the multinomial logistic regression model is described as a generalized linear model and as
a random utility model and in section 2.3 it is shown that these models both generate the same probability
function for MLR. The assumptions used in both the derivation of the probability function and the estimation
of the coefficients are outlined in section 2.4. Moreover, in chapter 3 the method of estimating the coefficients
is outlined for both the frequentist and Bayesian approach, along with some more information about important
concepts in both approaches. Statistical guides often outline the interpretation of these coefficients, but do not
really explain what happens in the ’black box’, which is the statistical program. Therefore, chapter 3 also aims
to shed some light on the numerical methods that are used in the statistical programs.
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In the second part of the study, multinomial logistic regression is applied to a data set from PRIME. This
data set is described in chapter 4. Three different R packages are utilized to perform the multinomial logistic
regression and in chapter 5 the results of these are given. These results are subsequently compared in chapter 6,
where both attention is given to the differences between the frequentist and Bayesian approach to multinomial
logistic regression and also to the differences between the different R packages. Lastly in chapter 7 the findings
are summarized, followed by a discussion of the limitations and suggestions for future research.



Chapter 2

Multinomial logistic regression

The model underlying multinomial logistic regression can be described in several equivalent ways. In the literature
these models are often intertwined and no clear distinctions are made. This is not very problematic, since it can be
shown that the probability function that is generated by both models is equivalent. However, since they both have
different backgrounds, understanding them provides a better understanding of the multinomial logistic regression.
Hence in this section, two models underlying multinomial logistic regression are presented: the generalized linear
model (GLM) and random utility model (RUM). Moreover it will be shown that they generate an equivalent
probability function. Lastly the assumptions are outlined in section 2.4, where a distinction is made between the
assumptions used in the derivation of the probability function and those used in the estimation of the coefficients.

2.1 Generalized linear model (GLM)

A first method to describe the multinomial logistic regression is as a generalized linear model (GLM). The
GLM was proposed in 1972 by Nelder and Wedderburn who provided a unified framework for several regression
models [Fox, 2016], such as linear regression and logistic regression. According to Fox (2016), their paper is
the “the “bible” of GLMs, a rich and interesting—if generally difficult—text.” In the original paper of Nelder
and Wedderburn, four different distributions of the dependent variable are considered: the normal distribution,
binomial distribution, Poisson distribution and gamma distrbution [Nelder and Wedderburn, 1972]. Further work
has included other distributions into the generalized linear model, such as the multinomial distribution [Fox, 2016].

2.1.1 General formulation of the model

Suppose we have k independent variables and n different observations. The GLM has three important components
that are necessary to estimate the dependent variable [Fox, 2016]:

1. Firstly a random component, which specifies the conditional distribution of the dependent variable Yi

(given the values of the k independent variables Xik in the model). The most common distributions used in
statistical modelling are members of the exponential family, such as the gamma, normal, Poisson, binomial
and multinomial distribution.

2. Moreover a linear predictor, which is a linear function of k independent variables and unkown coefficients
β0, . . . , βk. This gives the linear predictor ηi = β0 + β1Xi1 + · · ·+ βkXik, for observation i ∈ {1, . . . , n}.

3. Lastly a linearizing link function g that specifies the link between the random component and the linear
predictor. The link function is smooth and invertible and relates the expectation of the dependent variable,
πi = E(Yi), to the linear predictor, giving:

g(πi) = ηi = β0 + β1Xi1 + · · ·+ βkXik

The coefficients β0, . . . , βk subsequently need to be estimated.

7
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2.1.2 Derivation of the probability function

The three components of the GLM can be used to describe the multinomial logistic regression model. In this
multinomial logistic regression model it is assumed that there are k independent variables, X1, . . . , Xk and m
different categories of the dependent variable Y , which we number 1, 2, . . . ,m. Lastly, n observations are included
in the model. Multinomial logistic regression is then described with the following three components:

Firstly the random component is chosen as the multinomial distribution, since the dependent variable in
multinomial logistic regression has several possible categories.

Secondly the linear predictor is defined as ηij = β0j +β1jXi1+ · · ·+βkjXik, for observation i ∈ {1, . . . , n}
and category j ∈ {1, . . . ,m}.

Lastly the logit function is chosen as the link function. Let πij denote the probability that the ith
observation falls into the jth category of the dependent variable. The logit function for binomial logistic regression
is defined as the logarithm of the probability of an event happening, divided by the probability of an event not
happening:

g(πi) = log
πi

1− πi
= ηi = β0 + β1Xi1 + · · ·+ βkXik

(Remark: with two categories of the dependent variable, therefore no subscript j)

This logit function is also the link function in multinomial logistic regression. Suppose category m is chosen as
the baseline category. Subsequently, independent binary logistic regressions will be performed for the remaining
m− 1 categories [Firth, 1991]. The multinomial logit function is then defined as g(πi) = (g1(πi), . . . , gm−1(πi))
[Firth, 1991], with for j = 1, . . . ,m− 1:

gj(πi) = log
πij

πim
= ηij = β0j + β1jXi1 + · · ·+ βkjXik (2.1)

The choice of the baseline category is arbitrary.

Lemma 2.1 (GLM) The probability that observation i falls into category j is equal to:

πij =
eβ0j+β1jXi1+···+βkjXik

1 +
∑m−1

l=1 eβ0l+β1lXi1+···+βklXik

for j = 1 . . .m− 1 (2.2)

πim =
1

1 +
∑m−1

l=1 eβ0l+β1lXi1+···+βklXik

for j = m

Proof. Firstly exponentiate both sides of the link function (equation 2.1) giving for j = 1, . . . ,m− 1

πij

πim
= eβ0j+β1jXi1+···+βkjXik (2.3)

πij = πimeβ0j+β1jXi1+···+βkjXik (2.4)

The m probabilities must sum to 1, hence

πim +

m−1∑
l=1

πil = 1

πim +

m−1∑
l=1

πimeβ0l+β1lXi1+···+βklXik = 1

πim(1 +

m−1∑
l=1

eβ0j+β1lXi1+···+βklXik) = 1

πim =
1

1 +
∑m−1

l=1 eβ0l+β1lXi1+···+βklXik

(2.5)
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And for j = 1, . . . ,m− 1:

πij = πimeβ0j+β1jXi1+···+βkjXik

=
eβ0j+β1jXi1+···+βkjXik

1 +
∑m−1

l=1 eβ0l+β1lXi1+···+βklXik

(2.6)

The last category m acts as a type of baseline, due to which the probabilities of the dependent variable
categories for each observation sum to 1. The baseline category has coefficients β0m = β1m . . . βkm = 0.

2.2 Random utility model (RUM)

In the current section the random utility model will be outlined. The economist Daniel McFadden (1974)
contributed largely to the theory of random utility models: in 2000 he even received a Nobel Prize for his work.
In economics, utility refers to the satisfaction or happiness that a consumer derives from consuming a good or
service. It is a measure of the usefulness or value that a consumer places on a particular choice. The aim of
random utility models is to model the probability of discrete choices, by looking at the utility of the different
alternatives. In the model we have a decision maker, labeled i ∈ {1, . . . , n}, who faces m different alternatives.
For each alternative j ∈ {1, . . . ,m}, there is a utility Uij , which consists of two parts: Vij , which is the part that
is known by the researcher, and an unobservable part εij , which is treated by the researcher as random. Hence
we have ∀i, j : Uij = Vij + εij . The decision maker chooses the alternative with the highest level of utility, hence
chooses alternative j if and only if Uij > Uil ∀l ̸= j. The level of utility for one alternative does not matter from
the perspective of the researcher, only the difference between utility levels for different alternatives matters. Even
though the model is derived with this utility maximization, it can be used to simply model decision-making by
describing the relation of explanatory variables to the outcome of a choice [Train, 2009].

2.2.1 Derivation of the model

The random utility model for multinomial logistic regression will be derived in this section. As for the generalized
linear model, it is assumed that there are k independent variables, X1, . . . , Xk and m different categories of the
dependent variable Y , which we number 1, 2, . . . ,m. Lastly, n decision makers (or observations) are included in
the model. Suppose we have a decision maker i, who faces m different alternatives. For the decision maker i the
level of utility is defined for each alternative j ∈ {1, . . . ,m}:

Ui1 = Vi1 + εi1

Ui2 = Vi2 + εi2
...

Uim = Vim + εim

Where
Vij = β0j + β1jXi1 + · · ·+ βkjXik (2.7)

For the sake of simplicity, we use Vij in the derivation but it is important to note that just as in GLM, Vij is a
linear function of the different observed variables (see equation 2.7). The decision maker i chooses the alternative
with the highest level of utility, hence chooses alternative j if and only if ∀j ̸= l : Uij > Uil The probability
that decision maker i chooses alternative j is again denoted by πij and thus is:

πij = P(Uij > Ui1, Uij > Ui2 . . . , Uij > Uil) (2.8)

= P(Uij > Uil ∀l ̸= j)

= P(Vij + εij > Vil + εil ∀l ̸= j)

= P(εil < εij + Vij − Vil ∀l ̸= j)
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Now suppose that εij is given. Then assumption 3 from section 2.4 can be used, which states that the

expression of the cumulative distribution of each εil evaluated at εij +Vij −Vil is given by e−e−(εij+Vij−Vil) ∀j =
1, . . . ,m. Moreover it is assumed in section 2.4 that the ε’s are independent, hence the cumulative distribution
over all l ̸= j is the product of the marginal cumulative distributions:

P(εil < εij + Vij − Vil ∀l ̸= j|ϵij) =
∏
l ̸=j

e−e−(εij+Vij−Vil)

(2.9)

However εij is not given, so in order to compute the choice probability we have to take the integral of
equation 2.9 over all values of εij , weighted by its density [Train, 2009] giving:

πij =

∫
(
∏
l ̸=j

e−e−(εij+Vij−Vil)

)e−εije−e−εij
dεij

.

Lemma 2.2 (RUM) If we assume that the unobserved component εij is identically and independently

distributed for each alternative, with cumulative distribution F (εij) = e−e−εij
and density f(εij) = e−εije−e−εij

,
then we have that the probability that observation i falls into category j is equal to:

πij =
eVij∑
l e

Vil
(2.10)

Proof.

πij =

∫ ∞

εij=−∞
(
∏
l ̸=j

e−e−(εij+Vij−Vil))e−εije−e−εij
dεij note: Vij − Vij = 0

=

∫ ∞

εij=−∞
(
∏
l

e−e−(εij+Vij−Vil))e−εijdεij sum terms exponent

=

∫ ∞

εij=−∞
(e−(

∑
l e

−(εij+Vij−Vil)

)e−εijdεij set t = e−εij such that dt = −e−εijdεij

=

∫ 0

∞
e−t

∑
l e

−(Vij−Vil)

(−dt)

=

∫ ∞

0

e−t
∑

l e
−(Vij−Vil)

dt

=
e−t

∑
l e

−(Vij−Vil)

−
∑

l e
−(Vij−Vil

∣∣∣∞
0

=
1∑

l e
−(Vij−Vil)

=
eVij∑
l e

Vil
(2.11)

The two characteristics of probabilities are satisfied: 0 ≤ πij ≤ 1 ∀i = 1, 2, 3, . . . and
∑

πij = 1.
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2.3 Equivalence of generalized linear model and random utility model

Proposition 2.3 (Equivalence GLM and RUM) The probability functions for multinomial logistic
regression derived by the generalized linear model and random utility model are equivalent.

Proof. As proven in lemma 2.1 for GLM the probability function is given by:

πij =
eβ0j+β1jXi1+···+βkjXik

1 +
∑m−1

l=1 eβ0l+β1lXi1+···+βklXik

for j = 1, . . . ,m (2.12)

πim =
1

1 +
∑m−1

l=1 eβ0l+β1lXi1+···+βklXik

for j = m (2.13)

We will show that equations 2.12 and 2.13 can be derived from the probability function of MLR derived by
RUM. As proven in lemma 2.2 for RUM the probability function is given by:

πij =
eVij∑m
l=1 e

Vil
for j = 1, . . . ,m

=
eβ0j+β1jXi1+···+βkjXik∑m
l=1 e

β0l+β1lXi1+···+βklXik
Plug in Vij = β0j + β1jXi1 + · · ·+ βkjXik (equation 2.7) (2.14)

If we take equation 2.14 and choose category m as the baseline category we can show that equation 2.14 is
equivalent to equations 2.12 and 2.13. This means that we set β0m = β1m = · · · = βkm = 0. Hence for j = m:

πim =
eβ0m+β1mXi1+···+βkmXik∑m
l=1 e

β0l+β1lXi1+···+βklXik

=
e0

e0 +
∑m−1

l=1 eβ0l+β1lXi1+···+βklXik

=
1

1 +
∑m−1

l=1 eβ0l+β1lXi1+···+βklXik

And for j = 1, . . . ,m− 1, we similarily have:

πij =
eβ0j+β1jXi1+···+βkjXik∑m
l=1 e

β0l+β1lXi1+···+βklXik

=
eβ0j+β1jXi1+···+βkjXik

e0 +
∑m−1

l=1 eβ0l+β1lXi1+···+βklXik

=
eβ0j+β1jXi1+···+βkjXik

1 +
∑m−1

l=1 eβ0l+β1lXi1+···+βklXik

Hence the random utility model and the generalized linear model both generate the same function for the
probability of i choosing j. In the following section the assumptions of the multinomial logistic regression model
are discussed.

2.4 Assumptions

In the previous section it is shown that both models generate the same probability function. In most statistics
books there is no clear distinction between the derivations of the model and therefore the assumptions are
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presented jointly in this section. The first three assumptions are used in the derivation of the probability function,
while the last three assumptions are important for the estimation of the regression coefficients.

1. Dependent variable: Firstly it is assumed that the dependent variable has a multinomial distribution,
meaning that it takes on a number of finite values, which are unordered. This is fulfilled if the dependent
variable is categorical [Fox, 2016].

2. Linearity in the logit: Moreover logistic regression assumes a linear relationship between the continuous
independent variables and the logit transformation of the dependent variable, or in equation form:

log
πij

πim
= ηij = β0j + β1jXi1 + · · ·+ βkjXik (2.15)

3. Independence of errors: Additionally logistic regression assumes that responses of different cases are
independent of each other. That is, it is assumed that each response comes from a different, unrelated case
[Field et al., 2012], giving that the error terms in the model are independent of each other.

In the random utility model, it is specifically noted that each unobserved part εij is independent, identically
distributed, with the Gumbel distribution [Train, 2009]. This implies that the cumulative distribution
function of εij is given by

F (εij) = e−e−εij ∀j = 1, . . . ,m (2.16)

and that the density function of εij is given by

f(εij) = e−εije−e−εij ∀j = 1, . . . ,m (2.17)

The variance of this distribution is π2

6 [Train, 2009]. Hence the unobserved part of each alternative, εij ,
follows the same distribution, is independent and has the same variance.

4. Multicollinearity: Furthermore there should be no multicollinearity among the predictor variables. Mul-
ticollinearity occurs when two or more predictor variables are highly correlated, which can lead to unstable
and unreliable estimates of the regression coefficients [Fox, 2016].

5. Separability: However, problems also occur when the independent variables are very strong predictors of
the dependent variable. There should be no perfect separation of the predictor variables, which occurs when
one predictor variable can perfectly predict the response variable. This can lead to singularity in the model,
resulting in estimates that are not unique. If there are k independent variables, then this assumption
is checked by seeing if there is no hyperplane separating one category of the dependent variable. More
specifically, if there are k independent variables, then we check if there is no separating linear surface of
dimension k − 1 in the k−dimensional X space [Fox, 2016].

6. Independence of irrelevant alternatives: Lastly it is assumed that there is independence of irrelevant
alternatives. The assumption of independence of irrelevant alternatives is satisfied when the choice between
two alternatives does not depend on any other alternatives. More specifically, if we look at the ratio of the
probabilities of two alternatives i and s, using lemma 2.2.1 we have:

πij

πis
=

eVij∑
l e

Vil

eVis∑
l e

Vil

= eVij−Vis (2.18)

Where we used the formula πij = eVij∑
l e

Vil
which is derived in the previous section. The ratio of the two

probabilities does not depend on any other alternatives, hence the relative odds of choosing i over s is
independent of other alternatives.

A famous example of a situation in which this assumption is not satisfied is the red-bus-blue-bus-problem
[Train, 2009]. Suppose a traveler can go to work by car or by taking the blue bus and that those options
both have probability of 1

2 , hence P(car) = P(blue bus) = 1
2 . We now see that the ratio of the probabilities

is 1: P(car)
P(blue bus) = 1. When a red bus is also added as a third alternative, the probability of taking the red
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bus is likely to be the same as the probability of taking the blue bus, hence the ratio of the probabilities is

likely to be 1: P(red bus)
P(blue bus) = 1. Also, by the assumption of irrelevant alternatives we have that the ratio of the

probabilities of taking the blue bus and the car remains the same when a third alternative is added, hence

we still have P(car)
P(blue bus) = 1. Thus by combining these two ratios, we see that the only possible distribution

of probabilities is P(car) = P(blue bus) = P(red bus) = 1
3 . However: in a real-life situation it would be very

unlikely that introducing another colour of a bus would change the probabilities so dramatically. Hence it
would be more likely that P(car) remains 1

2 and P(blue bus) = P(red bus) = 1
4 . Thus the assumption of

independence of irrelevant alternatives is not satisfied in this example.

All in all, several assumptions are made in the multinomial logistic regression model. The first three are
necessary for the derivation of the probability function, while the last three are important for the estimation of
coefficients. Failure to meet these assumptions may result in very large coefficients (or standard errors) or in
failure of the software to converge to values for the coefficients. In section 4.3 an assumption check is described
for the assumptions that enable this. The coefficients β0j , . . . , βkj can subsequently be estimated in several ways,
either adopting a frequentist or a Bayesian approach.



Chapter 3

Estimating the regression coefficients

In the current section the methods of estimating coefficients will be outlined. The multinomial logistic regression
model will firstly be presented in matrix notation. This enables a clear derivation of the likelihood function, which
is used in both the frequentist and the Bayesian approach. Subsequently the concept of maximum likelihood
estimation is explained, which is used in the frequentist approach. Lastly the Bayesian approach to computing
the coefficients is described. For both methods the numerical approximation methods are outlined, so that it is
conceptually clear what happens inside the ‘black box’ of the statistical programs.

3.1 Model in matrix notation

To derive the likelihood function, it is useful to present the model in matrix notation. In the multinomial logistic
regression model it is assumed that there are k independent variables and m different categories of the dependent
variable. As proved in proposition 2.3 the probability function of i falling into category j ∈ {1, . . . ,m} is given
by:

πij =
eβ0j+β1jXi1+···+βkjXik

1 +
∑m−1

l=1 eβ0l+β1lXi1+···+βklXik

for j = 1, . . . ,m− 1 (3.1)

πim = 1−
m−1∑
j=1

πij for category m (3.2)

The log odds are given by:

log
πij

πim
= β0j + β1jXi1 + · · ·+ βkjXik for j = 1, . . . ,m− 1 (3.3)

Therefore the regression coefficients represent the effect on the log-odds of membership in category j versus
the baseline categorym. The coefficients form a vector βj = (β0j , . . . , βkj)

T . Moreover if we denote the number of
observations by n, then we defineXi

′ = (1, Xi1, . . . , Xik) for i = 1, . . . , n. The model matrix is a (n×k+1)-matrix
X, where k is the number of independent variables:

X =


X′

1

X′
2
...

X′
n

 (3.4)

Giving as the probability function

πij =
eX

′
iβj

1 +
∑m−1

l=1 eX
′
iβj

for j = 1, . . . ,m− 1 (3.5)

14
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πim = 1−
m−1∑
j=1

πij for category m (3.6)

(3.7)

The aim of multinomial logistic regression is to determine the values of the βj for all j = 1, . . . ,m− 1. The
value of βm is 0, since this is the reference category. Each vector βj contains a regression coefficient for all
independent variables plus the intercept, hence each vector has k + 1 entries. Thus in total (m − 1) · (k + 1)
parameters need to be determined, which are contained in the large vector β, which has (m− 1) · (k+1) entries.

3.2 Likelihood function

The likelihood function is used in both the frequentist and Bayesian approach to estimate the parameters. In
order to derive the likelihood function we recall that it is assumed that there are m different categories of the
independent variable. Let Y = (Y1, . . . , Yn) be the observed data set with sample size n. The probability that
Yi takes on one of the possible values j ∈ {1, . . . ,m} is denoted by πi1, πi2, . . . , πim. This probability can be
rewritten by defining indicator variables Wi1, . . . ,Wim.

Definition 3.1 The indicator variables Wi1, . . . ,Wim are defined as:

Wij =

{
1 if Yi = j

0 if Yi ̸= j
(3.8)

with
∑m

j=1 Wij = 1.

Proposition 3.2 The conditional likelihood function of n independently sampled observations of Y condi-
tional on X in multinomial logistic regression is given by:

p(y1, . . . , yn|X) =

n∏
i=1

m∏
j=1

(
eX

′
iβj

1 +
∑m−1

l=1 eX
′
iβj

)Wij (3.9)

Proof. The dependent variable Yi can take on only one of the possible values. This gives

p(yi) = πWi1
i1 πWi2

i2 · · ·πWim
im

=

m∏
j=1

π
Wij

ij (3.10)

Since it is assumed that the observations are sampled independently, the joint probability distribution of the
observations is given by the product of the marginal probabilities, hence

p(y1, . . . , yn) = p(y1)p(y2) . . . p(yn)

=

n∏
i=1

m∏
j=1

π
Wij

ij (3.11)

The conditional likelihood function of n independently sampled observations of Y conditional on X is there-
fore:

p(y1, . . . , yn|X) =

n∏
i=1

m∏
j=1

(
eX

′
iβj

1 +
∑m−1

l=1 eX
′
iβj

)Wij use lemma 2.3 (3.12)
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This likelihood function is used in both the frequentist and the Bayesian approach. The difference between
both methods is the way how they infer the parameters. In the frequentist approach it is assumed that the value of
these parameters is a fixed value which can be approximated. Numerical methods are often used to approximate
the value of these parameters. However, in the Bayesian setting we instead seek a posterior distribution for the
parameters, by for example employing Markov Chain Monte Carlo methods. Both approaches will be discussed
in the following sections.

3.3 Frequentist: Maximum likelihood estimation

In the frequentist approach the parameters are estimated with maximum likelihood estimation, which will be
outlined in this section. This method maximizes the likelihood function such that, under the assumed statistical
model, the observed data is most probable. The vector βj that assigns the greatest probability to the observed
values of the dependent variables is the maximum likelihood estimate.

The logarithm of the likelihood is taken firstly, since this limits the necessary calculations. The lograrithm
is a monotone function, hence the value βj maximizes the likelihood function if and only if this value maximizes
the log-likelihood function. Therefore the logarithm of the likelihood function can be used to determine the
maximum.

Proposition 3.3 The log-likelihood function of multinomial logistic regression is given by

log(p(y1, . . . , yn|X)) =

n∑
i=1

m−1∑
j=1

WijX
′
iβj −

n∑
i=1

log(1 +

m−1∑
l=1

eX
′
iβj )

Proof.

log(p(y1, . . . , yn|X)) = log(

n∏
i=1

m∏
j=1

(
eX

′
iβj

1 +
∑m−1

l=1 eX
′
iβj

)Wij )

=

n∑
i=1

m∑
j=1

Wij log(
eX

′
iβj

1 +
∑m−1

l=1 eX
′
iβj

)

=

n∑
i=1

m∑
j=1

Wij(X
′
iβj − log(1 +

m−1∑
l=1

eX
′
iβj ))

=
n∑

i=1

m∑
j=1

WijX
′
iβj −

n∑
i=1

m∑
j=1

Wij log(1 +

m−1∑
l=1

eX
′
iβj )

=

n∑
i=1

m−1∑
j=1

WijX
′
iβj −

n∑
i=1

m∑
j=1

Wij log(1 +

m−1∑
l=1

eX
′
iβj ) βm = 0, baseline category

=

n∑
i=1

m−1∑
j=1

WijX
′
iβj −

n∑
i=1

log(1 +

m−1∑
l=1

eX
′
iβj ) since

m∑
j=1

Wij = 1

To find the critical points of the log-likelihood function, the partial derivatives of the log-likelihood with
respect to βj need to be determined, giving a system of m − 1 equations. The vector of partial derivatives is
subsequently set to 0, giving a vector β. The log-likelihood function is globally concave, hence the vector is the
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unique global maximum [Croissant, 2010]. Helpful in the differentiation is that:

∂

∂βj

m−1∑
j=1

X′
iβj = X′

i (3.13)

since the other terms in the summation do not depend on βj and can thus be treated as constants. Differentiating
the log-likelihood function with respect to each βj gives:

∂ log(p(y1, . . . , yn|))
∂βj

=

n∑
i=1

WijX
′
i −

n∑
i=1

1

1 +
∑m−1

l=1 eX
′
iβj

∂

∂βj

(1 +

m−1∑
l=1

eX
′
iβj ) Use:

∂

∂x
log(y) =

1

y

∂y

∂x

=

n∑
i=1

WijX
′
i −

n∑
i=1

eX
′
iβj

1 +
∑m−1

l=1 eX
′
iβj

∂

∂βj

(

m−1∑
l=1

X′
iβj) Chain rule

=

n∑
i=1

WijX
′
i −

n∑
i=1

eX
′
iβj

1 +
∑m−1

l=1 eX
′
iβj

X′
i (3.14)

Setting these partial derivatives to zero and determining the βj ’s gives the unique maximum likelihood
estimate. However, there is often not an explicit solution for β and therefore we need a method for numerical
approximation.

3.3.1 Estimating coefficients by the Newton-Raphson method

The numerical Newton-Raphson method is used in the frequentist approach to approximate β. The Newton-
Raphson method is an iterative algorithm for finding the roots of a nonlinear equation. In history, this method
was supposedly already used by the ancient Babylonians, but the first well-known use of the method was in 1669
by Newton [Epperson, 2013]. The method will be explained for a general function f(x).

The Newton-Raphson method can be used to approximate the solution of an equation of the form f(x) = 0
where f : X ⊆ R → R is a differentiable function. The method will firstly be outlined for determining a single
estimate, since this can be graphically illustrated. Hence we want to find a number x such that f(x) = 0. The
following steps are taken:

1. Make an initial guess of the root, namely x0.

2. To improve the guess, draw the tangent line to the curve f(x) at the point (x0, f(x0)). This line is denoted
by f ′(x0)

3. The point where the tangent line crosses the x−axis is denoted as (x1, 0) and x1 is taken as the revised and
improved approximation of the root x.

In order to find x1, we look at the equation of the tangent line, y = f(x0) + f ′(x0)(x1 − x0). We set
y = 0 to find where this line crosses the x−axis, giving 0 = f(x0) + f ′(x0)(x1 − x0). Solving this for x1 gives

x1 = x0 − f(x0)
f ′(x0)

. This process is repeated to find x2, which is an even better approximation of the root. This

process is repeated, giving xn+1 = xn− f(xn)
f ′(xn)

, until the values x1, x2, . . . converge to a fixed value x, which is the

root of the equation [Colley, 2012]. The xn do not necessarily have to converge, but when they do, they converge
to the root.

However, in the multinomial logistic regression we want to find the vector β that maximizes the log-likelihood
function. Since this is a vector, we are not considering only one function, but m− 1 different functions. In this
situation the Newton-Raphson method can also be used in order to approximate the solution of an equation of
the form f(x) = 0, where f : X ⊆ Rm → Rm. We have to find x such that f(x) = 0. We again make an initial
guess of the root, namely x0. If f is differentiable, then the tangent plane y = f(x) is approximated by the
following equation, which is again set to 0:

y = f(x0) + Jf (x0)(x1 − x0) = 0 (3.15)
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Figure 3.1: Graphical illustration of the Newton-Raphson method for f : X ⊆ R → R.

where Jf is the Jacobian matrix, which is the matrix of all first-order partial derivatives. We suppose that the
Jacobian matrix is invertible and solve this for x1:

0 = f(x0) + Jf (x0)(x1 − x0)

Jf (x0)(x1 − x0) = −f(x0)

(Jf (x0))
−1Jf (x0)(x1 − x0) = (Jf (x0))

−1(−f(x0))

I(x1 − x0) = −(Jf (x0))
−1(f(x0))

x1 = x0 − (Jf (x0))
−1(f(x0))

Where invertibility of the matrix Jf (x0) is used in the third step. This can again be generalized, giving the
following formula:

xn+1 = xn − (Jf (xn))
−1(f(xn)) (3.16)

The sequence of numbers which is generated does not always converge, but when it does it converges to
the root of the equation. The iterations continue until the value is a good approximation of the root. Multiple
numerical methods exist that are closely related to the Newton-Raphson method and all work in a similar manner.
For example Fisher’s scoring is used in the R package VGAM (one of the packages which will be used in the current
study) [Yee, 2008]. Fisher’s scoring is a Newton-like method but uses Fisher’s information instead of the first
derivative to approximate the root.

3.3.2 Important concepts: NHST, Wald statistic, p−value and confidence intervals

In the frequentist approach to statistics, null hypothesis significance testing (NHST) is very common. In NHST
a null hypothesis H0 is formulated, which is a hypothesis of no effect or no relationship [Pernet, 2016]. The
statistical analysis can lead to two possible conclusions: rejecting H0 (and accepting Halternative) or not rejecting
H0 (but not accepting H0 as correct) [van der Vaart et al., 2017].

In logistic regression, the null hypothesis that is commonly tested for each coefficient is that the value of
the coefficient is 0, hence that there is no effect of the independent variable on the dependent variable. For each
estimated coefficient the null hypothesis H0 : βkj = 0 is tested by calculating the Wald statistic [Fox, 2016],
which is the value of the regression coefficient divided by its associated standard error.
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Definition 3.4 The Wald statistic for an individual coefficient βkj and the null hypothesis H0 : βkj = β
(0)
kj

is defined as:

Z0 =
β̂kj − β

(0)
kj

SE(β̂kj)

with SE(β̂kj) the standard error of the estimated coefficientβ̂kj .

Hence when testing H0 : βkj = 0, which is commonly used, we look at the Wald statistic Z0 =
β̂kj

SE(β̂kj)
.

p-value

“A p-value is the probability under a specified statistical model that a statistical summary of the data (e.g., the
sample mean difference between two compared groups) would be equal to or more extreme than its observed
value.” [Wasserstein and Lazar, 2016] The p-value is often combined with Null hypthesis significance testing.
According to van der Vaart et al. (2017), under the null hypothesis, the p−value is the maximum over all
possible values of the probability that an identical experiment gives a more extreme value for the test statistic
than the value that has been found in the experiment. It is a common convention to consider values of p that
are below 0.05 as (statistically) significant. This originated since Fisher once mentioned using 0.05 as a treshold
value. Since the p−value does not give very much information, it is recommended to also always report confidence
intervals.

Confidence intervals

A confidence interval is a stochastic subset of the parameter space that has a “high probability” of containing
the true parameter [van der Vaart et al., 2017]. Often a 95%-confidence interval is reported. In the frequentist
interpretation, the true value of the parameter is assumed to be fixed. Therefore the true value is either in the
confidence interval, or it is not. The confidence interval can be interpreted in the sense that if we independently
repeat an experiment 100 times and compute the confidence interval 100 times, then we may expect that at least
95% of the intervals include the true parameter value.

The computation of the confidence interval depends on the test statistic for which it is computed. The Wald
statistics follows an asymptotic standard-normal distribution under the null hypothesis, an approximation that
is usually reasonable except if the sample size is small [van der Vaart et al., 2017]. An asymptotic 100(1 − α)%
confidence interval for βkj is given by

βkj = β̂kj ± zα/2SE(β̂kj)

where zα/2 is the value of Z ∼ N(0, 1) with probability α/2. For a 95% confidence interval, the value of z2.5 is
obtained from the table of the normal distribution in van der Vaart et al. (2017), which gives:

βkj = β̂kj ± 1.96SE(β̂kj)

.

3.4 Bayesian: Infer posterior distribution

As mentioned before, the frequentist approach supposes that the values of βj are fixed and that these can be
approximated. However in the Bayesian approach it is supposed that the parameters βj are not fixed values, but
rather random variables. The Bayesian approach has three important components, namely [McElreath, 2020]:

1. Likelihood The likelihood function, which is the first and most influential component of the Bayesian
model. This function is similar to the one used in the frequentist approach and is denoted by P(X|β), with
X denoting the observed data and β denoting the coefficients [Lee, 2012].
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2. Prior distribution For every coefficient that one aims to estimate, a prior distribution has to be cho-
sen [van der Vaart et al., 2017]. This prior distribution can be chosen as ’uninformative’, when not much
information is available. However, if there is reason to assume that a parameter has a certain distribu-
tion, then this can be reflected in choosing an informative prior distribution, which reflects the information
[McElreath, 2020].

3. Posterior distribution The posterior distribution is subsequently computed. Given the prior distribution
on the parameters we seek the posterior distribution.

The derivation of the posterior is based on Bayes’ theorem [Grimmett and Welsh, 2014]. To prove Bayes’
theorem, the definition of conditional probability is required.

Definition 3.5 The conditional probability is a measure of the probability of event A occurring, given
that event B has occurred, hence P(B) > 0. It is defined as

P(A|B) =
P(A ∩B)

P(B)
(3.17)

where P(A ∩B) denotes the probability of both event A and event B occurring.

Theorem 3.6 (Bayes’ theorem) Let A and B be events and P(B) > 0, then

P(A|B) =
P(B|A)P(A)

P(B)
(3.18)

Proof. We use the definition of conditional probability, which gives

P(A|B) =
P(A ∩B)

P(B)

and also

P(B|A) =
P(A ∩B)

P(A)

Hence P(A ∩B) = P(B|A)P(A). Substituting this into P(A|B) gives

P(A|B) =
P(A ∩B)

P(B)
=

P(B|A)P(A)

P(B)
(3.19)

By conditioning on the observed data X, the posterior distribution of each component of β can be computed
by Bayes theorem, giving:

Posterior = P(β|X) =
P(X|β)P(β)

P(X)
=

Likelhood× Prior

P(X)
(3.20)

where 1
P(X) is a standardizing aspect and considered as the average likelihood of the data, which ensures

that the posterior acts as a probability function (summing to 1) [McElreath, 2020]. Therefore it can be
neglected and stated that the posterior distribution is proportional to the product of the likelihood and the
prior distribution:

Prior× Likelihood ∝ Posterior (3.21)
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The posterior distribution represents our updated beliefs about the model parameters, taking into account
the data that we have observed. As an example, see figure 3.2. The likelihood function is the same in every row,
but the priors differ. For example in the first row a uniform distribution is chosen as the prior distribution, leading
to a posterior that is proportional to the likelihood. The second and third row both have an informative prior,
representing the information that one assumes to have about the posterior probability. This leads to different
posterior distributions.

Figure 3.2: The posterior distribution is proportional to the product of the likelihood and the posterior distribu-
tion (from McElreath(2020))

In general, the posterior distribution cannot be found in closed form and must be approximated, usually
using some type of Markov Chain Monte Carlo method.

3.4.1 Determine posterior distribution by MCMC sampling

The posterior distribution can be computed analytically in only a few cases. In most cases, the posterior distri-
bution is numerically computed. To numerically obtain the posterior distributions of the regression coefficients
β, Markov Chain Monte Carlo (MCMC) sampling is a commonly used technique. The general idea is to start
with the probability distribution that is proportional to the posterior distribution. By drawing samples from this
distribution, the desired posterior distribution can be approximated. It is often easier to draw a large random
sample of a distribution than to calculate properties directly. MCMC sampling combines both Monte Carlo
methods and Markov chains, which are shortly introduced.

Monte Carlo methods can be used to estimate the distribution of probability for a given problem by simulating
a large number of random samples according to a probability distribution. Subsequently the statistical properties
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of those samples are used to make predictions about the underlying distribution [Bolstad and Curran, 2016]. The
histogram of the drawn random sample approaches the posterior distribution when the sample size is large. It
is not necessary to know the exact posterior distribution, only knowing the shape of the posterior distribution is
enough to draw samples from it [Bolstad and Curran, 2016].

Furthermore Markov chains are used in MCMC sampling. A Markov chain is a sequence of random variables
that follows the Markov property. The Markov property states that the probability of a future state depends
only on the current state and not on the past states. In MCMC algorithms, a Markov chain is constructed,
where the next sample that is drawn, only depends on the last drawn sample. Furthermore the Markov Chain
is designed such that it is ensured that the stationary distribution of the chain is the posterior distribution
[Zens et al., 2021]. The quality of the sample increases as more steps are included, resulting in a sample that
more closely approximates the actual desired distribution.

MCMC sampling allows the estimation of the posterior distribution that would be difficult or even impossible
to approach analytically. MCMC methods can be used for quite complicated models having a large number of
parameters [Bolstad and Curran, 2016]. In the last decades of the twentieth century, Bayesian statistics became
increasingly popular since sufficient computing power enabled their use.

3.4.2 Credible intervals

In Bayesian statistics, the posterior distribution represents all of the information that can be inferred about the
parameters of a model after analyzing the data. Subsequently, point estimates and credible intervals can be
obtained from the posterior distribution. A Bayesian credible interval is an interval of the posterior probability
which is the Bayesian equivalent of the frequentist confidence interval. A credible interval is defined by two
parameter values that contain between them a certain amount of posterior probability [McElreath, 2020]. The
amount of probability can for example be chosen as 80%: in figure 3.3 two types of corresponding credible intervals
are shown.

Figure 3.3: Two types of 80% credible intervals: middle and lower (from McElreath(2020))

In the current study a middle 95% credible interval is chosen as the credible interval, since this is most
comparable to the 95% confidence interval from the frequentist approach. However, it is important to note that
other types of credible intervals are also possible.

Since the Bayesian parameter estimate is the entire posterior distribution, there is not one point estimate.
However, since scientists often want to report some sort of point estimate, it is common to include the posterior
mean as an point estimate [McElreath, 2020].



Chapter 4

Application to data from PRIME

In order to compare different approaches and R packages, multinomial logistic regressions are performed with three
different packages: the VGAM package (frequentist, generalized linear model), the mlogit package (frequentist,
random utility model) and the UPG package (Bayesian, random utility model), as depicted in figure 4.1. The
data that is analyzed is part of a study of PRIME. In the current chapter this study is described. Moreover it
is noted how the data was prepared for analysis. Lastly the assumptions that allow a check, either visually or
computationally, are checked and reported in the last section.

Generalized linear model

Random utility model

πij

VGAM package (frequentist)

mlogit package (frequentist)

UPG package (Bayesian)

Figure 4.1: The same probability equation πij is derived with the Generalized linear model and Random Utility
model. The analysis will be performed with three different R packages (either frequentist or Bayesian, colours
indicating GLM or RUM)

4.1 Description of PRIME study

The PRogramme of Innovation in Mathematics Education (PRIME) is part of the Interfaculty Teaching from the
department of Applied Mathematics at the TU Delft and aims to redesign mathematics courses for engineers
[PRIME TU Delft, 2022]. Besides developing education, PRIME also investigates the mathematics education
through several studies, giving rise to possible improvements for further development of courses. The current
data set is from such a study, which was conducted among students who did a mathematics course. The study
aimed to examine the influence of prior math grades, mathematics self-efficacy and grade goal on study beliefs
and habits.

4.1.1 Participants

The participants in the study were first-year students at the TU Delft, who were enrolled in a mathematics
course. In total 286 students filled in the survey. After deletion of 7 cases who did not finish the survey, data
from 279 students were available for analysis. The mean age is 19.53 years old (standard deviation: 2.91) and

23
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the median is 19. The youngest participant is 17 years old and the oldest 41 years old. Three students did not
report their age. Mostly male participants participated in the study, namely 215, and 62 female participants.
The percentage of female participants who completed the survey is 22.2%, which seems little, but it quite in line
with the percentage of female students at TU Delft, which is 29.8%. Two students identified as non-binary.

4.1.2 Dependent variables: study beliefs and habits

The study beliefs and habits are the dependent variables in the multinomial logistic regressions. The survey
included eight questions to assess study habits, adapted from [Kornell and Bjork, 2007]. The following questions
were asked, of which the first three assess study beliefs and the other five assess scheduling habits:

1. When you study, do you typically read a textbook/article/other source material more than once? (three
possible answers)

2. Imagine that while you are studying a type of problem and you become convinced that you know the answer
to the problem (e.g. the solutions). What would you do next? (three possible answers)

3. If you quiz yourself while you study (either using a quiz at the end of a chapter, or a practice quiz, or
flashcards, or something else), why do you do so? (four possible answers)

4. How do you usually decide what to study next? (five possible answers)

5. All other things being equal, what type of exams do you study more for? (four possible answers)

6. Which of the following best describes your pattern of study? (three possible answers)

7. What time of day do you most often do your studying? (four possible answers)

8. During what time of the day do you believe your studying is (or would be) most effective? (four possible
answers)

Every question corresponds to a separate dependent variable and the possible answers correspond to the
different categories of each dependent variable. For each question a separate multinomial logistic regression is
performed. A study overview is shown in figure 4.2. The independent variables are mathematics self-efficacy,
grade goal and prior math grade and will be discussed shortly in the next section.

Mathematics self-efficacy

Grade goal

Prior math grade

Study habits and beliefs

Figure 4.2: The independent variables are mathematics self-efficacy, grade goal & prior math grade. The depen-
dent variable is study habits and beliefs
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4.1.3 Independent variables

Mathematics self-efficacy : Self-efficacy is a construct which was introduced by Albert Bandura (1977) and is
defined as “an individual’s belief in his or her capacity to execute behaviors necessary to produce specific per-
formance attainments” [Bandura, 1977]. Hence mathematics self-efficacy can be seen as a student’s judgments
about their capabilities to perform specific math-related tasks [Grigg et al., 2018]. Five items were included in
the current questionnaire to assess mathematics self-efficacy, adapted from Grigg, Perera, McIlveen, and Svetleff
(2018). Students were asked to rate each item on a 5-point scale ranging from 1 (strongly disagree) to 5 (strongly
agree). The variable ‘Self-efficacy’ is constructed by averaging those five items.

Grade goal : Three items were used to measure grade goal, adapted from [Locke and Bryan, 1968]. Students
were asked which grade they aimed to achieve, which grade they would be satisfied with and which grade they
expected to obtain in the mathematics course. The answer had to be given on a scale of 1 to 10. The variable
‘Grade goal’ is constructed by averaging those three items.

Prior math grade: In order to estimate prior mathematics achievement, the participants were asked which
grade they received in high school mathematics. The answer had to be given on a scale of 1 to 10. The score
that was given is the variable ‘Prior math grade’.

4.2 Preparing data for analysis

We will treat all three independent variables (self-efficacy, grade goal and prior math grade) as continuous
variables. For the mlogit and UPG package it is required to reshape the data into a specific dataframe in order
to be able to run the analysis, Details of the required format can respectively be found in [Croissant, 2010] and
[Zens et al., 2021]. The R-code to reshape the data is included in appendix A.

4.2.1 Internal consistency: Cronbach’s alpha

To measure self-efficacy and grade goal, different questions were asked in the questionnaire. These items should
all measure the same thing, hence they should be correlated with each other. To assess this internal consistency
we can use Cronbach’s alpha [Cronbach, 1951], which can be computed with the following formula:

α =
k

k − 1
(1−

∑
s2i

s2T
) (4.1)

Where k is the number of items, s2i is the variance of the ith item and s2T is the variance of the total score, formed
by summing all the items. The variance is the standard deviation squared.

To understand the values of Cronbach’s alpha, two cases are illustrated. Firstly suppose the items are
all different and have no internal consistency. This implies that the items are all independent. For indepen-
dent variables, the variance of the total score (formed by summing the items) is the sum of their variances

[Bland and Altman, 1997], i.e. s2T =
∑

s2i . Thus in this case α = k
k−1 (1−

∑
s2i

s2T
) = k

k−1 · (1−1) = 0. On the other

hand, suppose the items are all identical and thus have perfect internal consistency, then the standard deviation,

si for each item will be identical. This gives sT = k · si and s2T = k2s2i . Resulting in
k·s2i
s2T

=
∑

s2i
s2T

= 1
k and

α = k
k−1 (1−

∑
s2i

s2T
) = k

k−1 · (1−
1
k ) =

k
k−1 ·

k−1
k = 1. All in all, values close to 1 indicate high internal consistency,

while values close to 0 indicate that none of the items are related.

Self-efficacy

Cronbach’s alpha is computed to assess the internal consistency of the items measuring self-efficacy. In the
following table the mean score and the variance is included for all the items. The mean of the total score is 19.129
and s2T = 15.106.

Cronbach’s alpha is computed using two methods: firstly the in-built R-function from the psych package.
And secondly it is computed with formula 4.1. The code of which can be found in appendix B Both methods give
approximately the same value for alpha, namely α = 5

4 (1−
4.377
15.106 ) = 0.888, indicating high internal consistency.
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SE1 SE2 SE3 SE4 SE5

mean s21 mean s22 mean s23 mean s24 mean s25

3.685 1.008 3.867 0.856 3.857 0.850 3.552 1.054 4.168 0.608

Grade goal

Cronbach’s alpha is also computed to assess the internal consistency of the items measuring grade goal. In
the following table the mean score and the variances are included for all items.

Grade aim Grade lowest satisfied Grade expected Total score

mean s2aim mean s2lowest mean s2expect mean s2T

8.466 1.422 6.560 0.823 7.505 1.467 22.530 8.674

Cronbach’s alpha is again computed with two methods: the in-built R-function and with the formula. Both
methods give approximately the same value for alpha, namely α = 3

2 (1−
3.712
8.674 ) = 0.858, which indicates a high

degree of internal consistency.

Thus the items measuring both grade goal and self-efficacy seem to be highly correlated and therefore it
seems appropriate to include the mean scores as the independent variables in the analysis.

4.3 Assumptions

Before doing analyses the assumptions should be checked. Since if the assumptions are not met, the results should
be interpreted with caution. However, not all assumptions can be checked, but failure to meet them often exhibits
in the analysis itself: for example by failure to converge or wildly large values for coefficients [Field et al., 2012].

4.3.1 Dependent variables

The dependent variables have a multinomial distribution, since there are either 3, 4 or 5 possible categories,
which are unordered. Hence this assumption is fulfilled.

4.3.2 Multicollinearity

Moreover multicollinearity is checked, which occurs when two or more predictor variables are highly correlated.
Multicollinearity can be checked both visually with a scatterplot and by computing the correlation coefficient
between two variables. The correlation coefficient that is computed is Pearson’s correlation coefficient, which is
computed by the following formula [Schober et al., 2018].

r =

∑
(xi − x̄)(zi − z̄)√∑
(xi − x̄)2(zi − z̄)2

(4.2)

where x and z are the two independent variables for which the coefficient is computed. The mean values are
denoted by x̄ and z̄ and the xi and zi are the different values over which is summed. The value of Pearson’s
correlation coefficient can range between -1 and 1, where values close to -1 and 1 indicate high degree of correlation.
In this case, the data points are all on one line. Values close to 0 indicate a low degree of correlation. In this
case, the data points are scattered around without a pattern.

Self-efficacy and grade goal For self-efficacy and grade goal the value of Pearson’s correlation coefficient is
given by r = 0.662, which indicates that the correlation is quite strong. However, Tabachnick et al. (2007)
suggest that as long correlation coefficients among independent variables are less than 0.90, the assumption is
met.
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Also visually, it can be seen that the data points are quite strongly correlated. As shown in figure 4.3, the
data points seem to be close to a line, although also scattered.

Figure 4.3: Scatter plot of prior math grade and self-efficacy

Prior math grade and grade goal For prior math grade and grade goal the value of the Pearson’s correlation
is also quite high, namely r = 0.689. Also visually it can be seen that the data points seem to be scattered
around a line.

Figure 4.4: Scatter plot of prior math grade and grade goal

Prior math grade and self-efficacy For prior math grade and self-efficacy the value of the Pearson’s correlation
is also quite high, namely r = 0.551. Again the data points seem to follow a line, but this time they appear a
little more scattered, which is also reflected in the correlation coefficient.

Figure 4.5: Scatter plot of prior math grade and self-efficacy

Hence by looking at these correlation coefficients and plots, it can be concluded that the independent variables
are moderately correlated. But according to Tabachnick et al. (2007), since the correlation coefficients are less
than 0.90, the assumption is still met.
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4.3.3 Separability

Separability is another assumption which can be checked visually. According to Fox (2016), in the case of three
independent variables X1, X2, X3 the data are separable if there is a separating plane in the three-dimensional
space of the Xs, which separates the outcomes. In order to assess this, a 3D plot can be made, in which the
points are coloured according to their outcome category. Hence in figure 4.6, the points are coloured according
to the four categories of the dependent variable ’why quiz’. If the data are separable, the data points of one
category would be clustered in a group that can be separated from the other points by a 2-dimensional plane. A
visual inspection of all angles of the 3D plot of the dependent variable ‘why quiz’ seems to indicate that no such
2-dimensional plane exists and hence that the data are not separable. In figure 4.6 two different angles of the 3D
plot are included. With the code included in appendix C, this 3D plot can be generated in R.

Figure 4.6: Two angles of 3D-plot to assess separability for the dependent variable why quiz



Chapter 5

Results

To compare the different approaches and packages the results of the multinomial logistic regression with one
dependent variable are discussed in this chapter. In the original study eight different variables are included, but
discussing the results of all eight, would be very elaborate and not necessary for answering the research questions
of the current study. However, the code to perform the analyses is included in Appendix A and all code is made
such that one can choose the preferred dependent variable in the first line of the code and then subsequently
the analyses and assumption checks are performed for the dependent variable. Hence the results can easily be
computed for all other dependent variables.

5.1 Descriptive statistics

Firstly the descriptive statistics of the independent variables are shortly discussed. In the following figures, the
histograms are shown with a line indicating the mean value of the independent variables. For grade goal the mean
value is given by 7.510 (standard deviation 0.981), with 5.333 as the minimum and 9.677 as the maximum. The
histogram indicates that the distribution is positively-skewed, due to the modus being grade 7. For self-efficacy
the mean value is given by 3.826 (standard deviation 0.777) with 1.600 as the minimum value and 5.000 as the
maximum value. This distribution is negatively-skewed, with the modus being mean score 4. Lastly the mean
value of prior math grade is 8.193 (standard deviation 1.208) with 4.000 as the minimum value and 10.000 as the
maximum value. This distribution is also negatively-skewed, with the modus being grade 8.

Figure 5.1: Histogram grade goal

29
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Figure 5.2: Histogram self-efficacy

Figure 5.3: Histogram prior math grade

5.2 Elaborate results for one variable

A detailed analyses of the dependent variable ‘why quiz’ is included in this section. For ‘why quiz’ the following
question was included in the survey: “If you quiz yourself while you study (either using a quiz at the end of a
chapter, or a practice quiz, or flashcards, or something else), why do you do so?” Four different answers could be
chosen, thus there are four different categories of the dependent variable. The percentages of the responses can
be found in table 5.1. Most students quiz themselves to figure out how well they have learned the information
they are studying. The lowest percentage of students quizzes themselves since they think it is more enjoyable
then reading.

I learn more that way than I would through rereading 27.60%

To figure out how well I have learned the information I’m studying 43.40%

I find quizzing more enjoyable than reading 7.53%

I usually do not quiz myself 21.51%

Table 5.1: Possible answers and response percentages

Multinomial logistic regression was used to analyze the relationship between the dependent variable ‘why quiz’
and the independent variables self-efficacy, grade goal and prior math grade. The analysis was performed with
three different R packages, namely mlogit, VGAM and UPG. The results are discussed in the following sections.
The command ‘summary’ was used in order to get the main results from the packages, which are often firstly
obtained when running an analysis.
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5.2.1 mlogit (frequentist)

The first results are from the mlogit package, which is a package that adopts the frequentist approach. Moreover
the package is built upon the random utility model. The summary of the output of this analysis can be found in
appendix D and will be outlined in this section.

In the summary firstly the frequencies of the alternatives are given in a table, similar to table 5.1. Moreover
it is mentioned that the Newton-Raphson method needed 5 iterations to estimate the coefficients, taking less
than 1 second. Additionally the gradient of the last iteration of the Newton-Raphson method is given, which is
close to zero (1.63 · 10−7). Subsequently the value of the log-likelihood function is given, which is the value that
is maximized by the Newton-Raphson method, as described in section 3.3.1 The value of the log-likelihood in the
current model is −333.65. Furthermore the following estimates are reported:

McFadden R2

In linear regression, when the dependent variable is continuous, R2 is called the coefficient of determination.
This can be interpreted as the proportion of the variance explained by the model [van der Vaart et al., 2017].
To determine R2 a numerical estimate of the dependent variable is required (since the residual sum of squares
and total sum of squares are needed). However, in logistic regression the dependent variable is categorical
and therefore this cannot be calculated. Therefore McFadden (1974), who won the Nobel Prize for his work
on random utility models, introduced R2

McFadden to assess the proportion of variance explained by the model
(originally denoted by him as ρ2) [McFadden, 1974]. This value is defined by the following formula:

R2
McFadden = 1− log(Lc)

log(Lnull)

where Lc denotes the likelihood value from the current model and Lnull denotes the likelihood value from the
null model with only an intercept. The null model is the baseline model, which only includes a constant value
for the intercept. To determine this constant, we look at the frequencies of the outcomes. Our best guess of the
outcome will be that the category with the largest frequency is chosen. Therefore, the baseline model includes
the outcome that occurs most often as the intercept and further all coefficients equal to zero [Field et al., 2012].

For the original R2 value, a value close to 0 indicates that the model does not explain much variance, while
a value close to 1 indicates that the proportion of variance explained by the model is large. However McFadden
states in 1977 that “Those unfamiliar with R2

McFadden should be forewarned that its values tend to be considerably
lower than those of the R2 index and should not be judged by the standards for a “good fit” in ordinary regression
analysis. For example, values of 0.2 to 0.4 for R2

McFadden represent an excellent fit.” [McFadden, 1977] However,
in the current model the value of R2

McFadden is 0.031, indicating that the model does not explain much variance.

Likelihood ratio χ2-test

In addition the likelihood ratio χ2 test is reported, which also compares the fit of the fitted model and the null
model. This is computed by

χ2 = −2(log(Lnull)− log(Lc))) = 2 log(Lc)− 2 log(Lnull)

where Lc denotes the likelihood value from the current model and Lnull denotes the likelihood value from the
null model with only an intercept. A statistically significant value of the likelihood ratio test indicates that at
least one of the regression coefficients in the model is not equal to zero. In the current model χ2 = 26.188, with
p = 0.002, indicating that at least one of the regression coefficients in the model is not equal to zero. Hence the
model including the predictors is statistically significantly better than the model without those predictors.

Wald statistic and estimated coefficients

For each estimated coefficient the null hypothesis H0 : βkj = 0 is tested by calculating the Wald statistic
[Fox, 2016], denoted by z (see section 3.3.2 for the definition of this statistic). The resulting z−statistic and
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p−value are reported in the table. These values tell us whether the coefficient for that predictor is significantly
different from zero. If it is, we can assume the predictor is making a statistically significant contribution to the
prediction of the outcome [Field et al., 2012].

Estimate βkj Standard Error z−value p−value

Intercept(2) β02 1.430 1.246 1.147 0.251

Intercept(3) β03 −3.656 2.148 −1.702 0.089

Intercept(4) β04 3.985 1.489 2.676 0.007 *

Self-efficacy(2) β12 −0.747 0.286 −2.609 0.009 *

Self-efficacy(3) β13 −0.366 0.502 −0.729 0.466

Self-efficacy(4) β14 −0.899 0.328 −2.738 0.006 *

Prior math grade(2) β22 0.011 0.168 0.067 0.947

Prior math grade(3) β23 −0.159 0.284 −0.558 0.577

Prior math grade(4) β24 −0.068 0.200 −0.339 0.735

Grade goal(2) β32 0.246 0.234 1.052 0.293

Grade goal(3) β33 0.664 0.396 1.678 0.093

Grade goal(4) β34 −0.037 0.288 −0.127 0.899

Table 5.2: Coefficients mlogit with category 1 as the reference category, * denotes statistical significance

To obtain more insight in the meaning of these coefficients, we look at the probability function and odds
ratio:

Interpretation of the results: probability function

Firstly the obtained estimates can be filled in as the coefficients βkj in the probability equation, with j denoting the
categories of the dependent variable to which the reference category is compared and k denoting the independent
variable. Category 1 is the reference category, hence β01 = β11 = β21 = β31 = 0

π12 =
eβ02+β12X11+β22X12+β32X13

1 +
∑m−1

l=1 eβ0l+β1lX11+β2lX12+β3lX13

for j = 2 (5.1)

π13 =
eβ03+β13X11+β23X12+β33X13

1 +
∑m−1

l=1 eβ0l+β1lX11+β2lX12+β3lX13

for j = 3 (5.2)

π14 =
eβ04+β14X11+β24X12+β34X13

1 +
∑m−1

l=1 eβ0l+β1lX11+β2lX12+β3lX13

for j = 4 (5.3)

π11 = 1−
m−1∑
j=1

πij for category 1 (5.4)

Subsequently the model can be used to predict probabilities. Suppose that a person has the same scores as
the first participant of the PRIME study who chose category 2 of the dependent variable. Now we are going to
see how well the model predicts this outcome, by filling in the coefficients. Therefore we look at the probability
of choosing each category of the dependent variable, according to the model. The values for the independent
variables of the first participant are: X11 = 4 (self-efficacy), X12 = 8 (prior math grade) and X13 = 7.333 (grade
goal). The estimated coefficient βkj are used to predict the probabilities.

π12 =
eβ02+β12X11+β22X12+β32X13

1 + eβ01+β11X11+β21X12+β31X13 + eβ02+β12X11+β22X12+β32X13 + eβ03+β13X11+β23X12+β33X13
for j = 2 (5.5)
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= 0.426

π13 =
eβ03+β13X11+β23X12+β33X13

1 + eβ01+β11X11+β21X12+β31X13 + eβ02+β12X11+β22X12+β32X13 + eβ03+β13X11+β23X12+β33X13
for j = 3

= 0.067

π14 =
eβ04+β14X11+β24X12+β34X13

1 + eβ01+β11X11+β21X12+β31X13 + eβ02+β12X11+β22X12+β32X13 + eβ03+β13X11+β23X12+β33X13
for j = 4

= 0.201

π11 = 1− 0.426− 0.067− 0.201 for j = 1

= 0.306

Hence the model would also estimate that the probability of choosing category 2 is the biggest, namely 0.426.
When comparing the first six participants in the same way, we find the following probabilities:

πi1 πi2 πi3 πi4 Actual chosen category Highest probability for chosen category?

i = 1 0.306 0.426 0.067 0.201 2 ✓

i = 2 0.285 0.426 0.091 0.198 2 ✓

i = 3 0.291 0.441 0.079 0.189 2 ✓

i = 4 0.130 0.470 0.026 0.373 4

i = 5 0.308 0.393 0.107 0.191 2 ✓

i = 6 0.274 0.398 0.042 0.286 1

Table 5.3: Predicted probabilities of choosing each category for the first six participants of the PRIME study,
where i ∈ 1, . . . n denotes the particpant

For the participants that choose category 2, the probabilities of choosing this category is also the highest.
However, even though this is the highest probability, choosing the other categories also still have considerably
high probabilities. Moreover, for the participants who did not choose category 2, this category also has the
highest predicted probability, which is not in line with their actual behavior. These imperfect predictions can be
explained by the fact that the model is not very well fitted to the data, since only three coefficients are statistically
significant and the R2

McFadden is not very high.

Interpretation of the results: odds ratio

The odds ratio is commonly only interpreted for the values that are significant [Tabachnick et al., 2007]. The
value of the odds ratio, is the exponential of the coefficient and is an indicator of the change in odds resulting
from a unit change in the predictor. In order to understand the odds ratio, we look again at the log odds, which
are given by:

log
πij

πim
= β0j + β1jXi1 + · · ·+ βkjXik for j = 1, . . . ,m− 1 (5.6)

Hence regression coefficients represent the effect on the log-odds of membership in category j versus the
baseline category m. It should be noted that the log-odds can be determined for any pair of categories. The
log-odds can be exponentiated, giving

πij

πim
= exp(β0j + β1jXi1 + · · ·+ βkjXik) for j = 1, . . . ,m− 1 (5.7)

= exp(β0j) exp(β1j)Xi1 · · · exp(βkj)Xik for j = 1, . . . ,m− 1 (5.8)

The exponentiated coefficients exp(βkj) are called the ‘odds ratios’ since they represent the ratio of the odds
of a response at two X−values: if Xik is one unit larger, this multiples the odds of the outcome category j
occurring by exp(βkj), compared to the baseline category. If the odds ratio is greater than 1 it indicates that
as the predictor increases, the odds of the outcome occurring increase. Conversely, a value less than 1 indicates



CHAPTER 5. RESULTS 34

Odds ratio Odds ratio

Intercept(2) β02 4.177 Prior math grade(2)β22 1.011

Intercept(3) β03 0.026 Prior math grade(3)β23 0.853

Intercept(4) β04 53.797 Prior math grade(4)β24 0.934

Self-efficacy(2) β12 0.474 Grade goal(2)β32 1.278

Self-efficacy(3 β13 0.693 Grade goal(3)β33 1.942

Self-efficacy(4) β14 0.407 Grade goal(4)β34 0.964

Table 5.4: Odds ratio for the coefficients computed with mlogit, category 1 as the reference category

that as the predictor increases, the odds of the outcome occurring decreases. The closer the odds ratio is to 1,
the smaller the effect. The odds ratios are as follows:

Hence for example, keeping all other coefficients equal, then a one unit increase in self-efficacy decreases the
odds of choosing category 2 (compared to category 1) by 0.474.

5.2.2 VGAM (frequentist)

The results for mlogit have been discussed quite elaborately. Another package in line with the frequentist apprach
is the VGAM package. This package contrarily has the generalized linear model as the theoretical background. The
results of VGAM and mlogit are actually very similar, so these will only be discussed generally. The results are
included in appendix E.

It is firstly reported that 5 Fisher scoring iterations are performed. The log-likelihood logLc is -333.655,
the same as in the mlogit package. Besides this the residual deviance is given, instead of R2

McFadden in mlogit.
Residual deviance is computed as [Fox, 2016]

residual deviance = −2 logLc = 667.309

Estimate βkj Standard Error z−value p−value

Intercept(2) β02 1.430 1.246 1.147 0.251

Intercept(3) β03 −3.656 2.148 NA NA

Intercept(4) β04 3.985 1.489 2.676 0.007 *

Self-efficacy(2) β12 −0.747 0.286 −2.609 0.009 *

Self-efficacy(3) β13 −0.366 0.502 −0.729 0.466

Self-efficacy(4) β14 −0.899 0.328 −2.738 0.006 *

Prior math grade(2) β22 0.011 0.168 0.066 0.947

Prior math grade(3) β23 −0.159 0.284 −0.558 0.577

Prior math grade(4) β24 −0.068 0.200 −0.339 0.735

Grade goal(2) β32 0.246 0.234 1.052 0.293

Grade goal(3) β33 0.664 0.396 1.678 0.093

Grade goal(4) β34 −0.037 0.288 −0.127 0.899

Table 5.5: Coefficients VGAM with category 1 as the reference category, * denotes statistical significance

The coefficients are presented again. These are displayed in table 5.5 and it can be noted that these are
approximately the same as the coefficients and estimates obtained by mlogit. However, the value for the Wald
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statistic and p−value is NA due to the Warning: Hauck-Donner effect detected in the following estimate(s):
Intercept(2). The Hauck Donner-effect is a shortcoming of the Wald test which occurs when a Wald test statistic
is no longer monotone increasing as a function of increasing distance between the parameter estimate and the
null value [Yee, 2021]. When this effect occurs, it might indicate that the data is separable [Yee, 2015], violating
one of the assumptions of multinomial logistic regression. This was not directly visible in the 3D plots assessing
this assumption.

The interpretation of these coefficients is equivalent to the interpretation of the coefficients in mlogit.

5.2.3 UPG (Bayesian)

The third package that is used to conduct the multinomial logistic regression is the UPG package, which is built
upon the random utility model. UPG is in line with the Bayesian approach and therefore a prior distribution can
be specified for each coefficient βkj . However, in the official documentation of the UPG package, only one sentence
is devoted to the prior distribution and not much emphasis is put on this aspect of Bayesian analysis. Moreover,
no guidelines of choosing a prior are given. Instead, a default prior is given and since no real information or
knowledge exists to motivate another choice, the default option is also used in the current study. This default
prior is a normal distribution, for which the default parameter values are A0 = 4 and B0 = 4.

Subsequently the MCMC algorithms compute the posterior distribution of each coefficient. Every run of the
Bayes model gives different values. One can specify how many draws and burn-in one wants in the UPG package.
The burn-in draws from the posterior distribution are meant as a ‘training phase’, aimed to already let the chain
converge to the posterior distibution. In the package manual of UPG it is stated that for a model run it is good
to use 10000 as the draws and 2000 as the burn-in [Zens et al., 2021]. This is done in the current study. In the
summary of the output it is noted that the MCMC sampling took a total of 35.95 seconds. The results of one
MCMC sampling instance are given, but these do not vary a lot when doing the analysis again. To support
this claim, in appendix G the outcomes of five model runs are given and it can be seen that the results are
approximately the same. Therefore it can be concluded that the Markov chains indeed converge to the posterior
distributions.

Mean estimate βkj SD Q2.5 Q97.5 95% CI excl. 0

Intercept(2) β02 1.089 0.983 −0.833 3.206

Intercept(3) β03 −1.470 1.371 −4.235 1.123

Intercept(4) β04 2.754 1.100 0.626 4.942 *

Self-efficacy(2) β12 −0.753 0.255 −1.261 −0.258 *

Self-efficacy(3) β13 −0.360 0.440 −1.223 0.499

Self-efficacy(4) β14 −0.946 0.302 −1.551 −0.363 *

Prior math grade(2) β22 0.022 0.152 −0.281 0.317

Prior math grade(3) β23 −0.270 0.267 −0.810 0.249

Prior math grade(4) β24 −0.054 0.174 −0.400 0.282

Grade goal(2) β32 0.282 0.211 −0.127 0.698

Grade goal(3) β33 0.495 0.350 −0.175 1.190

Grade goal(4) β34 0.137 0.248 −0.348 0.625

Table 5.6: Coefficients UPG with category 1 as the reference category

The summary output of the UPG package provides estimates by giving the mean of the posterior distribution
and its corresponding standard error, credible regions and even a asterix when a credible region does not contain
the value 0. This output hence seems very similar to the output of frequentist logistic regression, especially since
the coefficients with an asteriks are also the ones that are statistically significant in the frequentist method. The
interpretation of the mean estimates is hence also similar to the interpretation of the coefficients in the frequentist
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Figure 5.4: Posterior estimates of UPG

method.

A plot of the posterior estimates and credible regions is also provided to visualize the results, see figure 5.4.
No other statistics or values are given in the default summary output of UPG.



Chapter 6

Comparison

In the current chapter the Bayesian and the frequentist approach to multinomial logistic regression will be
compared. Moreover in the second part of this chapter the specific differences in the use of the three R packages
will be outlined.

6.1 Comparison Bayesian and Frequentist

A first difference is the estimation time in the frequentist and the Bayesian approach. Both frequentist packages
(mlogit and VGAM) estimate the model in less than 1 second, while the MCMC estimation of the Bayesian UPG

package takes approximately 35 seconds. Moreover the parameters in the frequentist package are fixed and hence
the same every time a model is computed, while the posterior distributions computed in the Bayesian approach
are different in every run (although the differences get neglectable when enough samples are drawn, as is done in
the current study).

Another difference is that in the Bayesian approach a prior distribution can be chosen for each coefficient.
However, not much information is available about choosing priors in multinomial logistic regression and therefore
the default prior is chosen in this study. In the following sections the model fit will be discussed and also the
interpretation of the results of both approaches.

6.1.1 Model fit comparison

To compare the models two criterions are used. Firstly the Akaike information criterion (AIC) and secondly the
Bayesian information criterion (BIC). Both are commonly used to compare models. They balance the goodness
of fit by the number of parameters. A lower AIC or BIC value indicates a better fit. They are computed in the
following way [Fox, 2016]:

AIC = −2 log(L) + 2k

BIC = −2 log(L) + 2 log(n)k

where log(L) is the maximized log-likelihood under the model, n is the number of recorded measurements and k
is the number of estimated parameters.

AIC BIC

mlogit (frequentist) 703.309 734.884

VGAM (frequentist) 703.309 734.884

UPG (Bayesian) 468.399 499.974

37
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As can be seen in the table 6.1.1, both mlogit & VGAM generate the same values for the AIC and BIC, which
comes as no surprise since the estimated coefficients are also approximately the same. However, the UPG generates
much lower AIC and BIC, indicating that the model is a better fit to the data.

6.1.2 Confidence and credible intervals

The frequentist packages do not provide confidence intervals in the summary, however these can easily be ex-
tracted. The Bayesian UPG package provides the credible intervals. The credible intervals are very much in line
with the confidence intervals, as shown in the following plot:

Figure 6.1: 95% confidence (black, frequentist) and 95 % credibile intervals (red, Bayesian) for the dependent
variable why quiz

Therefore the results of the frequentist approach and Bayesian approach seem quite similar, especially since
the statistically significant coefficients of the frequentist approach correspond to the coefficients of the Bayesian
approach that have a credible interval which does not contain zero (and are hence indicated with an asteriks in
the UPG package, just like statistical significance is always indicated).

However, the interpretation of the confidence interval and credible interval is considerably different. In the
frequentist approach it is assumed that the parameter value of the coefficients is fixed and can be estimated
by an experiment. In this approach, a confidence interval is based on repeated sampling theory, which means
that if this experiment is repeated many times, then 95 percent of the confidence intervals of exactly the same
experiment will capture the ’true’ value of the coefficient [van de Schoot et al., 2021]. In the Bayesian approach
it is assumed that the coefficient has a certain distribution, which is a random variable and hence not fixed. The
credible interval denotes the interval within which the value of the coefficient falls with 95% probability and is
computed by looking at the posterior distribution. The Bayesian interpretation of the credible interval is more
intuitive than the frequentist interpretation of the confidence interval. Furthermore the posterior distribution
can provide much more information about the coefficients, compared to the point estimates of the frequentist
approach.
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6.1.3 Posterior distribution

Hence an advantage of the Bayesian approach is that the posterior distributions of all simulated Markov Chains
can also be extracted from the model. The model contains a (k + 1) · j · #draws-matrix with all estimated
parameters βkj , where k denotes the number of independent variables and j the number of categories of the
dependent variable. Thus for the variable ‘why quiz’ a 4 · 4 · 10000-matrix is extracted. This can be rearranged
such that the bayesplot package can be used for visualizations of the Markov Chains. The code for rearranging
and visualization can be found in appendix H.

This can give for example histograms, such as figure 6.2. This provides the posterior distribution of the
estimates. It can be seen that for chain 1 (representing category 2) and chain 3 (representing category 4) the
effect of self-efficacy on the probability of the outcome seems to have a negative effect for choosing these two
categories. Moreover it can be seen that for the second chain (representing category 3), self-efficacy is much more
spread and closer to zero. Lastly for the fourth chain (representing the baseline category, category 1), the beta
is zero, which is indeed assumed in the model. The histograms for the other independent variables are included
in appendix H.

Figure 6.2: Histograms of posterior distribution Self-efficacy, histograms are often used to visualize the posterior
distribution

Moreover scatterplots can be created, which can also be found in appendix H. As an example we include the
following scatterplots:

Figure 6.3: Self-efficacy(3) and grade goal(3)

In these scatterplots it is shown that when doing a binomial logistic regression comparing category 3 to
category 1 (baseline category), it seems that there is a negative relationship between the coefficients of self-
efficacy and grade goal. Meaning that if the effect of self-efficacy is lower, the effect of grade goal is higher.
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All in all, the posterior distribution that is computed by the Bayesian approach, can provide more insight in
the actual distribution of the data and relations between variables. Additionally, the model fit of the Bayesian
approach is considerably better than the frequentist models, as indicated by the AIC and BIC values. Lastly the
confidence and credible intervals are very similar, but the interpretation of these is considerably different, with
the Bayesian interpretation being more intuitive.

6.2 Comparison packages

Three different R were used in the current study: mlogit, VGAM and UPG. Of course the frequentist packages differ
considerably in their results compared to the Bayesian package, since both adopt a different approach. However
the differences between the frequentist and Bayesian approach have already been discussed in the previous section,
hence these will not be detailed anymore. Moreover it should be noted that the results of both frequentist packages
are very similar, although both report different model statistics. In table 6.1 the main differences in the packages
are summarized.

Frequentist or
Bayesian
approach

Based on
GLM or
RUM

Reordering
data

required

Detection
Hauck-Donner

effect

Inclusion
different
variables

Estimation
time

VGAM Frequentist GLM No ✓ ✗ < 1 seconds

mlogit Frequentist RUM Yes ✗ ✓ < 1 seconds

UPG Bayesian RUM Yes Not relevant* ✗ ≈ 35 seconds**

Table 6.1: Comparison of the three packages

* The detection of the Hauck-Donner effect is not relevant for the UPG package since the Hauck-Donner
effect occurs when computing the Wald statistic, which is only used in the frequentist approach to statistics.
The Hauck-Donner effect can indicate separability in the data. In the paper introducing the UPG package it is
mentioned that the applied method solves the issue of perfect separation [Zens et al., 2021].

** The estimation time of the UPG package is based on a run with 2000 burn-in and 10000 draws.

6.2.1 Different variables

The inclusion of different variables is explained in this section. The random utility model is very well suited
for including other types of variables, which is thus included in the package based on the random utility model:
mlogit. This might be very interesting in some specific research questions. As mentioned before, the utility
function is a sum of a observed (Vij) and unobserved (εij) part. In the previous sections the observed part of the
utility function, Vij , was not yet specified. This is a linear combination of independent variables. Three types of
variables can be included in the random utility model, in addition to the intercept [Croissant, 2010], namely:

1. Alternative specific variables with a generic coefficient. These are variables that are specific to an alternative,
for example when you are comparing travel modes, the price per alternative travel mode differs and is hence
alternative specific.

2. Alternative specific variables with alternative specific coefficients. These are variables that are also specific
to an alternative, but also have an different impact. For example when comparing travel modes, this can be
the travel time. The effect that travel time has on the utility function can be different across alternatives:
ten minutes in the car can have a different utility effect than ten minutes in a train.

3. Individual specific variables with alternative specific coefficients. These are variables that are specific for
an individual, hence when comparing travel modes this could be the age of the traveler.

In the generalized linear model, and hence in packages VGAM and UPG, the inclusion of these other types of
variables is not introduced and it seems like only individual specific variables are possible to include. In the
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current study, this was also done in the package mlogit, but the possibility of including more variables can be
very useful in some study designs.

All in all, the main differences between the packages are: need for reordering the data, detection of the
Hauck-Donner effect and the inclusion of different types of variables. Since all packages have their shortcomings
and advantages, combining them when conducting a multinomial logistic regression could be desirable.



Chapter 7

Discussion and conclusion

The aim of the current study was to compare the two main approaches of statistics, namely Bayesian and
frequentist statistics, when performing a multinomial logistic regression. In addition, the aim was to compare
three different R packages for performing such a multinomial logistic regression. Lastly an aim was to shed some
more light on the ‘black box’ that statistical programs sometimes seem to be: requiring input and producing
standard output. In order to do so, firstly the theory behind multinomial logistic regression was outlined based
on two different models: the generalized linear model and the random utility model. Both models generated an
equivalent probability function, which is shown in section 2.3. Subsequently this probability function is used in
both the frequentist and the Bayesian approach, for which the methods of estimating coefficients were outlined in
section 3. Following this the PRIME study was introduced, along with data preparation and assumption checks.
In the fifth chapter, the results of the mlogit, VGAM and UPG are described, along with an interpretation of the
coefficients. Lastly in the sixth chapter the Bayesian and frequentist approach to multinomial logistic regression
are compared. In addition also a comparison of the use of the different packages is given, which might serve as a
useful guide for researchers who want to choose a package for conducting their analyses.

In comparing the frequentist and Bayesian approach, the first thing that is noticed is that the point estimates
and intervals provided by both methods are actually quite comparable. However, the interpretation of the
Bayesian credible interval is more intuitive than the frequentist confidence interval. Furthermore the p−value is
often taken as some measure for ‘certainty’, while it cannot be interpreted as such. As McElreath (2020) notes:
“the p−value plays into the human need for certainty, but it may be time for both scientists and the public to
embrace the comfort of being unsure”. In my opinion the Bayesian statistics reflects this unsureness more, since
the estimates of coefficients are also not seen as fixed values but rather as random variables. However, on the
other hand, Bayesian statistics can be seen as more subjective, since the prior can be chosen by the researcher,
and can influence the results.

When comparing the three packages, it is clear that both frequentist packages (mlogit and VGAM) give almost
the same results. However, the theoretical background of both differs: mlogit is based on the random utility
model, while VGAM is based on the generalized linear model. This provides a subtle difference between both
packages and therefore it is suggested to use the random utility model in problems that include students, since
this theory is mostly based on modelling choices of customers (or in this case: choices of students). An advantage
of RUM is that alternative specific variables can be included, which can provide better models. However, to
achieve this specific questions should be included into questionnaires to assess alternative specific variables. The
generalized linear model is more common for making predictions and assessing relationships between variables.
The Bayesian package (UPG) does not provide an elaborate summary of the results, but when playing around
in R with the computed posterior distribution, interesting results can be visualized, such as scatterplots and
histograms of the posterior distributions (see appendix H).

42
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7.1 Limitations and future research

A limitation is that there was no correction for imbalanced data in the current study. Some categories of
dependent variables were less frequently chosen by participants, leading to imbalanced data. For example, the
analyzed dependent variable ‘why quiz’ has one category that less than 8% of the participants chose. Both in the
frequentist and Bayesian approach there are methods to correct for this imbalance. In the frequentist approach
it is often suggested to incorporate a penalized likelihood, while the Bayesian equivalent consists of choosing a
regularizing prior to correct for the implausibility of some parameter values [McElreath, 2020]. The current study
aimed to thoroughly comprehend the theory behind multinomial logistic regression, and as such, incorporating
penalized likelihood and a regularizing prior were not included in the scope. Future research can expand on this
theoretical framework.

Another suggestion for future research is to run the analysis for all dependent variables and propose practical
implications based on these results. The current study is mostly focused on the statistical background of multi-
nomial logistic regression and therefore less on the practical implications for PRIME. In addition, the analysis
of only one dependent variable is included. However, with the R code that is also included in appendix A, the
analyses for all dependent variables can be run and interpreted.

Additionally a suggestion for future research is to not compute averages for the variables ‘grade goal’ and
‘self-efficacy’. By averaging these variables, information in variance gets lost. Therefore it might be better to not
include the average, but instead for example use multilevel modelling [McElreath, 2020].

Lastly, for future research adapting the Bayesian approach it is suggested to do proper sensitivity analyses
for different priors. In doing so, the ‘subjectivity’ of Bayesian analysis might be considerably less. Moreover
it might be good to include informative priors. In the current study not much information was available to
motivate the choice of particular priors, hence the default priors were chosen. However, when a new study would
be conducted, the current posterior distributions of the coefficients could be used as prior distributions.



Appendix A

Appendix: Main program to run
analysis one dependent variable

1 library(car)

2 library(MASS)

3 library(knitr)

4 library(readxl)

5 library(stringr)

6 library(survival)

7 library(plotly)

8 library(EnvStats)

9 library(dplyr)

10 library(arsenal)

11 library(psych)

12 library(summarytools)

13 library(stargazer)

14 library(mlogit)

15 library(ggplot2)

16 library(scatterplot3d)

17 library(GGally)

18 library(Formula)

19 library(UPG)

20 library(VGAM)

21 library(bamlss)

22 library(bayesplot)

23 library(rstanarm)

24 library(base)

25 library(ltm)

26 library(rgl)

27 library(magick)

28 library(hexbin)

29

30 ##### data loading and preparation

31 my_data_all = read_excel("C:/Users/sterr/OneDrive/Documents/Studie/Technische wiskunde/BEP/R/

StudyHabits_286v3.xls")

32

33 #remove columns with information about study strategies

34 my_dataall = my_data_all %>%

35 select (16, 51:66)

36

37 #remove rows with missing data (total is 286, of which 7 incomplete questionnaires)

38 my_data = data.frame(my_dataall[complete.cases(my_dataall[ , 16]) ,])

39

40 #format all dependent variables as categorical variables

41 dv = c("study_next","study_more_for","material_more_than_once","convinced_do_next","why_quiz","

pattern_of_study","time_of_day","time_of_day_belief")

42 for (variable in dv) {mydatavar = paste("my_data$",variable ,sep="")
43 mydatavar = factor(mydatavar)}

44

44
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45 #Create variable for grade goal as the third independent variable

46 my_data$grade_goal = (as.numeric(my_data$grade_aim)+as.numeric(my_data$grade_expected)+as.
numeric(my_data$grade_lowest_satisfied))/3

47

48 #format all independent variables as numeric (categories undesirable for multinomial logistic

regression)

49 ivnumbers = c(1,2,18)

50 for (iv in ivnumbers) {

51 my_data[, iv] <- as.numeric(my_data[, iv])

52 }

53

54 ##### Define dependent variables and independent variables

55 dependent_var = c("Study next", "Study more for","Material more than once","Why quiz","Convinced

do next","Pattern of study","Time of day","Time of day belief")

56 independent_var = c("Prior math grade","Grade goal","Self -efficacy score")

57

58 #check class of other variables -> change class from character to numeric

59 sapply(my_data , class)

60 my_data$age= as.numeric(my_data$age)
61

62 ##### Descriptive statistics

63

64 ggplot(my_data , aes(grade_goal)) +

65 geom_histogram(color = "#56 B4E9", fill = "#0099F8", alpha = 0.5) +

66 geom_vline(aes(xintercept = mean(grade_goal)), color = "#000000", size = 0.5) + labs(x = "

Grade goal (Scale: 1-10)")

67

68 summary(my_data$grade_goal)
69 sd(my_data$grade_goal)
70

71 ggplot(my_data , aes(SE_mean)) +

72 geom_histogram(color = "#56 B4E9", fill = "#0099F8", alpha = 0.5) +

73 geom_vline(aes(xintercept = mean(SE_mean)), color = "#000000", size = 0.5) + labs(x = "Self -

efficacy (Scale: 1-5)")

74

75 summary(my_data$SE_mean)
76 sd(my_data$SE_mean)
77

78 ggplot(my_data , aes(prior_math_grade)) +

79 geom_histogram(color = "#56 B4E9", fill = "#0099F8", alpha = 0.5) +

80 geom_vline(aes(xintercept = mean(prior_math_grade)), color = "#000000", size = 0.5) + labs(x =

"Prior math grade (Scale: 1-10)")

81

82 summary(my_data$prior_math_grade)
83 sd(my_data$prior_math_grade)
84

85 ######## ANALYSIS ONE VARIABLE #######

86 ### Choose variable (study_next , study_more_for , material_more_than_once , why_quiz , convinced_do_

next , pattern_of_study , time_of_day , time_of_day_belief):

87 dependentvar = "why_quiz"

88 ###The code is written such that the baseline category is always category 1, in all three

packages.

89

90

91 #### mlogit package

92 mlogitdata = my_data %>%

93 select (1 ,2 ,3:10 ,18)

94 mlogitdata$choiceid = 1:nrow(my_data) # First preparing the data for mlogit

95

96 mldata = dfidx(mlogitdata , shape = "wide", choice = dependentvar , idx = list(c("choiceid")),pkg=

"mlogit")

97 mlogitformula = as.formula(paste(dependentvar , "~ 0 | SE_mean + prior_math_grade + grade_goal |

0", sep = ""))

98 ml.iv = (mlogit(mlogitformula , mldata ,reflevel="1"))

99 summary(ml.iv)

100

101 #### vgam package

102 GLMformula = as.formula(paste(dependentvar , "~ SE_mean + prior_math_grade + grade_goal", sep = "

"))
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103 glm.iv =vglm(GLMformula , data=my_data , family = multinomial(refLevel =1))

104 summary(glm.iv)

105

106

107 ####UPG package

108 ivnumber = which(colnames(my_data)== dependentvar)+1 #picking the right column as dependentvar

109 print(ivnumber)

110

111 bayesdata = my_data %>%

112 select (1 ,2 ,3:10 ,18)

113 bayesdata= data.matrix(bayesdata) #first preparing the data for UPG

114 intercept = rep(1,nrow(bayesdata))

115 bayesdata=cbind(intercept ,bayesdata)

116

117 #Default values are: A0 = 4, B0 = 4, burnin = 1000, draws = 1000. Baseline category is by

default chosen as category that occurs most often. Pick category 1 with "baseline ".

118

119 y = bayesdata[,ivnumber] #Pick number of the right dependent variable for in the analysis (

represented as y)

120 X = data.matrix(bayesdata[,c(1,2,3,12)])

121 bayes.iv = UPG(y=y,X=X,model=’mnl’,baseline="1",draws =10000 , burnin =2000 ,A0=4,B0=4)

122 summary(bayes.iv)

123 plot(bayes.iv)

124

125

126 ### Determine model fit with loglikelihood , AIC and BIC.

127 AIC=AIC(ml.iv,k=3)

128 BIC = AIC(ml.iv, k=log(nrow(my_data)))

129 loglikelihood = logLik(ml.iv)[1]

130 print(paste0("For the dependent variable and the package mlogit ", dependentvar , " the AIC is ",

AIC , " and BIC is ", BIC , " and the loglikelihood is ", loglikelihood))

131

132

133 AIC2=AIC(glm.iv,k=3)

134 BIC2 = AIC(glm.iv, k=log(nrow(my_data)))

135 loglikelihood2 = logLik(glm.iv)[1]

136 print(paste0("For the dependent variable and the package VGAM ", dependentvar , " the AIC is ",

AIC2 , " and BIC is ", BIC2 , " and the loglikelihood is ", loglikelihood2))

137

138 AIC3=AIC(bayes.iv ,k=3)

139 BIC3 = AIC(bayes.iv , k=log(nrow(my_data)))

140 loglikelihood3 = logLik(bayes.iv)[1]

141 print(paste0("For the dependent variable and the package UPG ", dependentvar , " the AIC is ",

AIC3 , " and BIC is ", BIC3 , " and the loglikelihood is ", loglikelihood3))

142

143

144 ###Plot confidence and credible intervals

145 confidence= confint(ml.iv) #confidence intervals

146 credint = coef(bayes.iv , q = c(0.025 , 0.975)) #credible intervals

147

148

149 ## Voor 4 c a t e g o r i e n uitkomstvariable

150 ##Rood is confidence , zwart is credible

151 sp = ggplot ()

152 sp + geom_segment(aes(x = credint [[1]][ ,1][1] , y = 15, xend = credint [[3]][ ,1][1] , yend = 15)) +

annotate(geom="text", x=-5, y=15, label="Intercept (2)",color="blue")+ geom_segment(aes(x =

credint [[1]][ ,1][2] , y = 14, xend = credint [[3]][ ,1][2] , yend = 14)) + annotate(geom="text"

, x=-5, y=14, label="Intercept (3)",color="blue") + geom_segment(aes(x = credint

[[1]][ ,1][3] , y = 13, xend = credint [[3]][ ,1][3] , yend = 13)) + annotate(geom="text", x=-5,

y=13, label="Intercept (4)",color="blue")+ geom_segment(aes(x = credint [[1]][ ,1][4] , y = 12,

xend = credint [[3]][ ,1][4] , yend = 12)) + annotate(geom="text", x=3.5, y=12, label="Self -

efficacy (2)",color="blue")+ geom_segment(aes(x = credint [[1]][ ,2][1] , y = 11, xend =

credint [[3]][ ,2][1] , yend = 11)) + annotate(geom="text", x=3.5, y=11, label="Self -efficacy

(3)",color="blue") + geom_segment(aes(x = credint [[1]][ ,2][2] , y = 10, xend = credint

[[3]][ ,2][1] , yend = 10)) + annotate(geom="text", x=3.5, y=10, label="Self -efficacy (4)",

color="blue")+ geom_segment(aes(x = credint [[1]][ ,2][3] , y = 9, xend = credint [[3]][ ,2][3] ,

yend = 9)) + annotate(geom="text", x=-5, y=9, label="Prior math grade (2)",color="blue") +

geom_segment(aes(x = credint [[1]][ ,2][4] , y = 8, xend = credint [[3]][ ,2][4] , yend = 8)) +

annotate(geom="text", x=-5, y=8, label="Prior math grade (3)",color="blue")+ geom_segment(
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aes(x = credint [[1]][ ,3][1] , y = 7, xend = credint [[3]][ ,3][1] , yend = 7)) + annotate(geom="

text", x=-5, y=7, label="Prior math grade (4)",color="blue") + geom_segment(aes(x = credint

[[1]][ ,3][2] , y = 6, xend = credint [[3]][ ,3][2] , yend = 6)) + annotate(geom="text", x=-5, y

=6, label="Grade goal (2)",color="blue") + geom_segment(aes(x = credint [[1]][ ,3][3] , y = 5,

xend = credint [[3]][ ,3][3] , yend = 5)) + annotate(geom="text", x=-5, y=5, label="Grade goal

(3)",color="blue") + geom_segment(aes(x =credint [[1]][ ,3][4] , y = 4, xend = credint

[[3]][ ,3][4] , yend = 4)) + annotate(geom="text", x=-5, y=4, label="Grade goal (4)",color="

blue") + geom_segment(aes(x = confidence [1,1], y = 14.5, xend = confidence [1,2], yend =

14.5), colour="red") + geom_segment(aes(x = confidence [7,1], y = 13.5, xend = confidence

[7,2], yend = 13.5), colour="red") + geom_segment(aes(x = confidence [4,1], y = 12.5, xend =

confidence [4,2], yend = 12.5), colour="red") + geom_segment(aes(x = confidence [10,1], y =

11.5, xend = confidence [10,2], yend = 11.5), colour="red") + geom_segment(aes(x =

confidence [2,1], y = 10.5, xend = confidence [2,2], yend = 10.5), colour="red") + geom_

segment(aes(x = confidence [8,1], y = 9.5, xend = confidence [8,2], yend = 9.5), colour="red")

+ geom_segment(aes(x = confidence [5,1], y = 8.5, xend = confidence [5,2], yend = 8.5),

colour="red") + geom_segment(aes(x = confidence [11,1], y = 7.5, xend = confidence [11,2],

yend = 7.5), colour="red") + geom_segment(aes(x = confidence [3,1], y = 6.5, xend =

confidence [3,2], yend = 6.5), colour="red") + geom_segment(aes(x = confidence [9,1], y =

5.5, xend = confidence [9,2], yend = 5.5), colour="red") + geom_segment(aes(x = confidence

[6,1], y = 4.5, xend = confidence [6,2], yend = 4.5), colour="red") + geom_segment(aes(x =

confidence [12,1], y = 3.5, xend = confidence [12,2], yend = 3.5), colour="red") + xlab(paste0

("Confidence intervals (red) and credible intervals (black) for ", dependentvar))
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Appendix: Cronbach’s alpha

1 #Select relevant data gradegoal

2 gradedata = my_data %>%

3 select (12:14)

4 #Select relevant data for self -efficacy

5 SEcdata = my_data_all %>%

6 select (16, 45:66)

7 #Remove rows with missing data (total is 286, of which 7 incomplete questionnaires)

8 SEc_data = data.frame(SEcdata[complete.cases(SEcdata[ , 22]) ,])

9 SE_data = SEc_data %>%

10 select (2:6)

11

12 #Cronbach alpha: define own function to compute Cronbach alpha

13 cronbachalpha <- function(dataframe){

14 k = length(dataframe)

15 totalsum = rowSums(dataframe)

16 sd_total_squared = sd(totalsum)^2

17 if (k == 5){ #for Self -efficacy , 5 items

18 sd_sum_squared = sd(dataframe [,1])^2 + sd(dataframe [,2])^2 + sd(dataframe [,3])^2 + sd(

dataframe [,4])^2 + sd(dataframe [,5])^2

19 }

20 else{ #for Grade goals , 3 items

21 sd_sum_squared = sd(dataframe [,1])^2 + sd(dataframe [,2])^2 + sd(dataframe [,3])^2

22 }

23 alpha = k/(k-1) * (1 - sd_sum_squared/sd_total_squared)

24 print(alpha)

25 }

26

27 #Cronbach alpha: gradedata

28 cronbachalpha(gradedata) #with own function

29 cronbach.alpha(gradedata) #with R-function

30

31 #Cronbach alpha: self -efficacy

32 cronbachalpha(SE_data) #with own function

33 cronbach.alpha(SE_data) #with R-function
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Appendix: Assumption check - code to
generate 3D plots & scatterplots

1 ###3D plots for each dependent variable to assess separability

2 ### Choose variable (study_next , study_more_for , material_more_than_once , why_quiz , convinced_do_

next , pattern_of_study , time_of_day , time_of_day_belief):

3 dependentvar = "study_next"

4

5 #define colors

6 color3 = c("coral","cornsilk", "midnightblue")

7 colors4 = c("coral","cornsilk", "limegreen","midnightblue")

8 colors5 = c("coral","cornsilk", "limegreen","midnightblue","black")

9

10 if (dependentvar == "material_more_than_once" || dependentvar == "pattern_of_study" ||

dependentvar == "convinced_do_next") { print(paste0("This 3D plot is for the dependent

variable ",dependentvar)) #For dependent variables with 3 categories

11 numberdv = which(colnames(my_data) == dependentvar)

12 dv_df = as.numeric(unlist(my_data[numberdv ]))

13 my_data$color = colors[as.numeric( as.factor(dv_df)) ]

14 plot3d(

15 x=my_data$prior_math_grade ,
16 y=my_data$SE_mean ,
17 z=my_data$grade_goal ,
18 col = my_data$color ,
19 type = ’s’,

20 radius = .1,

21 xlab="Prior math grade", ylab="Self -efficacy", zlab="Grade goal")

22 rglwidget ()

23 } else if(dependentvar == "study_more_for" || dependentvar == "why_quiz" || dependentvar == "

time_of_day" || dependentvar == "time_of_day_belief"){

24 print(paste0("This 3D plot is for the dependent variable ",dependentvar)) #For dependent

variables with 4 categories

25 numberdv = which(colnames(my_data) == dependentvar)

26 dv_df = as.numeric(unlist(my_data[numberdv ]))

27 my_data$color = colors4[ as.numeric(as.factor(dv_df) ) ]

28 plot3d(

29 x=my_data$prior_math_grade ,
30 y=my_data$SE_mean ,
31 z=my_data$grade_goal ,
32 col = my_data$color ,
33 type = ’s’,

34 radius = .1,

35 xlab="Prior math grade", ylab="Self -efficacy", zlab="Grade goal")

36 rglwidget ()

37 } else { #For dependentvar study_next (only one with 5 categories)

38 print(paste0("This 3D plot is for the dependent variable ",dependentvar))

39 numberdv = which(colnames(my_data) == dependentvar)

40 dv_df = as.numeric(unlist(my_data[numberdv ]))

41 my_data$color = colors5[as.numeric( as.factor(dv_df) )]
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42 plot3d(

43 x=my_data$prior_math_grade ,
44 y=my_data$SE_mean ,
45 z=my_data$grade_goal ,
46 col = my_data$color ,
47 type = ’s’,

48 radius = .1,

49 xlab="Prior math grade", ylab="Self -efficacy", zlab="Grade goal")

50

51 rglwidget ()

52

53 }

54

55 ### Assumption multicollinearity: Pearson ’s correlation coefficient and scatterplots. Check all

pairs of independent variables (hence self -efficacy , grade goal and prior math grade)

56

57 corr = round(cor(my_data[, c(1,2,18)], method = "pearson") ,5) #Create dataframe IV’s

58 cor_SE_pmg = paste("Pearson ’s correlation coefficient: ", corr [1,2]) #Self -efficacy and prior

math grade

59 cor_SE_gg = paste("Pearson ’s correlation coefficient: ", corr [1,3]) #Self -efficacy and grade

goal

60 cor_pmg_gg = paste("Pearson ’s correlation coefficient: ", corr [2,3]) #Grade goal and prior math

grade

61

62

63

64 ggplot(my_data , aes(x=SE_mean ,y=prior_math_grade)) + geom_point(position = "jitter") + annotate(

"text", x=4, y=5, label= cor_SE_pmg) + xlab("Self -efficacy mean score (Scale: 1-5)") + ylab(

"Prior math grade (Scale: 1-10)")

65 ggplot(my_data ,aes(x=SE_mean ,y=grade_goal)) + geom_point(position=position_jitter(h=0.1, w=0.1))

+ annotate("text", x=4, y=5, label= cor_SE_gg) + xlab("Self -efficacy mean score (Scale:

1-5)") + ylab("Grade goal (Scale: 1-10)")

66 ggplot(my_data ,aes(x=grade_goal ,y=prior_math_grade)) + geom_point(position = "jitter")+ annotate

("text", x=8, y=5, label= cor_pmg_gg) + xlab("Grade goal (Scale: 1-10)") + ylab("Prior math

grade (Scale: 1-10)")
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Appendix: Output of mlogit

1

2 Call:

3 mlogit(formula = why_quiz ~ 0 | SE_mean + prior_math_grade +

4 grade_goal | 0, data = mldata , reflevel = "1", method = "nr")

5

6 Frequencies of alternatives:choice

7 1 2 3 4

8 0.275986 0.433692 0.075269 0.215054

9

10 nr method

11 5 iterations , 0h:0m:0s

12 g’(-H)^-1g = 1.63E-07

13 gradient close to zero

14

15 Coefficients :

16 Estimate Std. Error z-value Pr(>|z|)

17 (Intercept):2 1.429528 1.245902 1.1474 0.251223

18 (Intercept):3 -3.655668 2.148428 -1.7016 0.088839 .

19 (Intercept):4 3.985226 1.489282 2.6759 0.007452 **

20 SE_mean:2 -0.747113 0.286382 -2.6088 0.009086 **

21 SE_mean:3 -0.366232 0.502425 -0.7289 0.466045

22 SE_mean:4 -0.899107 0.328348 -2.7383 0.006176 **

23 prior_math_grade :2 0.011188 0.168281 0.0665 0.946993

24 prior_math_grade :3 -0.158517 0.283995 -0.5582 0.576729

25 prior_math_grade :4 -0.067749 0.199946 -0.3388 0.734734

26 grade_goal:2 0.245657 0.233603 1.0516 0.292982

27 grade_goal:3 0.663917 0.395737 1.6777 0.093411 .

28 grade_goal:4 -0.036622 0.287937 -0.1272 0.898790

29 ---

30 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

31

32 Log -Likelihood: -333.65

33 McFadden R^2: 0.037763

34 Likelihood ratio test : chisq = 26.188 (p.value = 0.001903)
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Appendix: Output of VGAM

1

2 Call:

3 vglm(formula = GLMformula , family = multinomial(refLevel = 1),

4 data = my_data)

5

6 Coefficients:

7 Estimate Std. Error z value Pr(>|z|)

8 (Intercept):1 1.42953 1.24590 1.147 0.25122

9 (Intercept):2 -3.65567 2.14836 NA NA

10 (Intercept):3 3.98523 1.48928 2.676 0.00745 **

11 SE_mean:1 -0.74711 0.28638 -2.609 0.00909 **

12 SE_mean:2 -0.36623 0.50241 -0.729 0.46603

13 SE_mean:3 -0.89911 0.32835 -2.738 0.00618 **

14 prior_math_grade :1 0.01119 0.16828 0.066 0.94699

15 prior_math_grade :2 -0.15852 0.28399 -0.558 0.57672

16 prior_math_grade :3 -0.06775 0.19995 -0.339 0.73473

17 grade_goal:1 0.24566 0.23360 1.052 0.29298

18 grade_goal:2 0.66392 0.39573 1.678 0.09340 .

19 grade_goal:3 -0.03662 0.28794 -0.127 0.89879

20 ---

21 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

22

23 Names of linear predictors: log(mu[,2]/mu[,1]), log(mu[,3]/mu[,1]), log(mu[,4]/mu[,1])

24

25 Residual deviance: 667.3093 on 825 degrees of freedom

26

27 Log -likelihood: -333.6547 on 825 degrees of freedom

28

29 Number of Fisher scoring iterations: 5

30

31 Warning: Hauck -Donner effect detected in the following estimate(s):

32 ’(Intercept):2’

33

34 Reference group is level 1 of the response
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Appendix: Output of UPG

1

2 Checking data & inputs ...

3 Initializing Gibbs Sampler ...

4 Simulating from posterior distribution ...

5 |=========================================================================================|

100%

6 Sampling succesful!

7 Saving output ...

8 Finished! Posterior simulation took 35.95 seconds.

9

10 --- Bayesian Multinomial Logit Results ---

11

12 N = 279

13 Analysis based on 10000 posterior draws after

14 an initial burn -in period of 2000 iterations.

15 MCMC sampling took a total of 35.95 seconds.

16

17 Category ’1’ is the baseline category.

18

19

20 | | Mean| SD| Q2.5| Q97.5| 95% CI excl. 0 |

21 |:----------------|-----:|----:|-----:|-----:|:--------------:|

22 |Category ’2’ | | | | | |

23 |intercept | 1.11| 0.98| -0.77| 3.02| |

24 |prior_math_grade | 0.02| 0.15| -0.27| 0.32| |

25 |SE_mean | -0.75| 0.25| -1.25| -0.26| * |

26 |grade_goal | 0.28| 0.21| -0.14| 0.71| |

27 | | | | | | |

28 |Category ’3’ | | | | | |

29 |intercept | -1.41| 1.38| -4.20| 1.24| |

30 |prior_math_grade | -0.28| 0.26| -0.80| 0.23| |

31 |SE_mean | -0.34| 0.45| -1.21| 0.57| |

32 |grade_goal | 0.49| 0.36| -0.21| 1.19| |

33 | | | | | | |

34 |Category ’4’ | | | | | |

35 |intercept | 2.77| 1.08| 0.67| 4.89| * |

36 |prior_math_grade | -0.04| 0.18| -0.39| 0.31| |

37 |SE_mean | -0.95| 0.30| -1.54| -0.39| * |

38 |grade_goal | 0.13| 0.25| -0.37| 0.62| |
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Appendix: Different runs of UPG

These runs are performed with 2000 burn-in and 10000 draws and A0 = 4, B0 = 4 as the parameters of the prior
distribution. Only the point estimates of four coefficients are included to provide a clear overview. It can be seen
that the values provided by all five runs are approximately the same, hence the Markov chains in the different
runs all seem to converge to the desired posterior distributions.

Run 1 Run 2 Run 3 Run 4 Run 5

AIC 472.459 470.267 469.545 471.424 470.211

BIC 504.033 501.841 501.119 503.120 502.983

Time posterior simulation 34.72 34.39 33.89 33.94 34.92

Intercept (2) β02 1.111 1.106 1.123 1.121 1.109

Self-efficacy (2) β12 0.027 0.020 0.022 0.024 0.025

Prior math grade (2) β22 -0.751 -0.742 -0.750 -0.748 -0.750

Grade goal (2) β32 0.273 0.276 0.276 0.285 0.277
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Appendix: Visual display of posterior
distribution

1 #### Constructing visuals posterior distribution UPG - for dependent variable with 4 categories

2

3 ###### Rearranging the matrix

4 #The element with the posterior distribution returned from UPG (bayes.iv$posterior$beta) is a 3D

-matrix

5 #Columns of matrix: Intercept , prior_math_grade , SE_mean , grade_goal

6 #Layers of matrix: First layer = Category 2, Second layer = Category 3, Third layer = Category

4, Fourth layer = Reference category 1

7 posterior = as.array(bayes.iv$posterior$beta)
8 column.names = c("intercept","prior_math_grade","SE_mean","grade_goal")

9 matrix.names=c("2","3","4","1")

10 #rename and rearrange the structure of the matrix such that the histograms can be constructed

with function mcmc_hist_by_chain

11 dimnames(posterior)[[2]]= column.names

12 dimnames(posterior)[[3]]= matrix.names

13 newdata = aperm(posterior , c(1,3,2))

14

15 ##Histograms , binwidth can be specified

16 mcmc_hist_by_chain(newdata , pars = c("intercept"), binwidth =0.1)

17 mcmc_hist_by_chain(newdata , pars = c("prior_math_grade"),binwidth =0.02)

18 mcmc_hist_by_chain(newdata , pars = c("SE_mean"),binwidth =0.03)

19 mcmc_hist_by_chain(newdata ,pars = c("grade_goal"), binwidth =0.02)

20

21

22 ##Scatter plots for all coefficients , first extract right columns from the 3D matrix

23 intercept2 = bayes.iv$posterior$beta[,,1][,1]
24 intercept3 = bayes.iv$posterior$beta[,,2][,1]
25 intercept4 = bayes.iv$posterior$beta[,,3][,1]
26 intercept1 = bayes.iv$posterior$beta[,,4][,1]
27 priormath2 = bayes.iv$posterior$beta[,,1][,2]
28 priormath3 = bayes.iv$posterior$beta[,,2][,2]
29 priormath4 = bayes.iv$posterior$beta[,,3][,2]
30 priormath1 = bayes.iv$posterior$beta[,,4][,2]
31 SE2 = bayes.iv$posterior$beta[,,1][,3]
32 SE3 = bayes.iv$posterior$beta[,,2][,3]
33 SE4 = bayes.iv$posterior$beta[,,3][,3]
34 SE1 = bayes.iv$posterior$beta[,,4][,3]
35 gradegoal2 = bayes.iv$posterior$beta[,,1][,4]
36 gradegoal3 = bayes.iv$posterior$beta[,,2][,4]
37 gradegoal4 = bayes.iv$posterior$beta[,,3][,4]
38 gradegoal1 = bayes.iv$posterior$beta[,,4][,4]
39

40 #create dataframe for scatterplots (not for reference category): total 18 scatterplots

41 dataframe = data.frame(intercept2 ,intercept3 ,intercept4 ,intercept1 ,priormath2 ,priormath3 ,

priormath4 ,priormath1 ,SE2 ,SE3 ,SE4 ,SE1 ,gradegoal2 ,gradegoal3 ,gradegoal4 ,gradegoal1)

42 #two possibilities for the scatterplots: ’heat map ’ and regular scatter plot
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43 ggplot(dataframe ,aes(x=intercept2 ,y=priormath2)) + geom_hex() +scale_fill_viridis_c()

44 ggplot(dataframe ,aes(x=intercept2 ,y=priormath2)) + geom_point(alpha = 0.1)+ geom_rug(alpha =

0.01)

45

46 ggplot(dataframe ,aes(x=intercept2 ,y=SE2)) + geom_hex() +scale_fill_viridis_c()

47 ggplot(dataframe ,aes(x=intercept2 ,y=SE2)) + geom_point(alpha = 0.3)

48

49 ggplot(dataframe ,aes(x=intercept2 ,y=gradegoal2)) + geom_hex() +scale_fill_viridis_c()

50 ggplot(dataframe ,aes(x=intercept2 ,y=gradegoal2)) + geom_point(alpha = 0.3)

51

52 ggplot(dataframe ,aes(x=SE2 ,y=gradegoal2)) + geom_hex() +scale_fill_viridis_c()

53 ggplot(dataframe ,aes(x=SE2 ,y=gradegoal2)) + geom_point(alpha = 0.3)

54

55 ggplot(dataframe ,aes(x=SE2 ,y=priormath2)) + geom_hex() +scale_fill_viridis_c()

56 ggplot(dataframe ,aes(x=SE2 ,y=priormath2)) + geom_point(alpha = 0.3)

57

58 ggplot(dataframe ,aes(x=gradegoal2 ,y=priormath2)) + geom_hex() +scale_fill_viridis_c()

59 ggplot(dataframe ,aes(x=gradegoal2 ,y=priormath2)) + geom_point(alpha = 0.3)

60

61 ggplot(dataframe ,aes(x=intercept3 ,y=priormath3)) + geom_hex() +scale_fill_viridis_c()

62 ggplot(dataframe ,aes(x=intercept3 ,y=priormath3)) + geom_point(alpha = 0.3)

63

64 ggplot(dataframe ,aes(x=intercept3 ,y=SE3)) + geom_hex() +scale_fill_viridis_c()

65 ggplot(dataframe ,aes(x=intercept3 ,y=SE3)) + geom_point(alpha = 0.3)

66

67 ggplot(dataframe ,aes(x=intercept3 ,y=gradegoal3)) + geom_hex() +scale_fill_viridis_c()

68 ggplot(dataframe ,aes(x=intercept3 ,y=gradegoal3)) + geom_point(alpha = 0.3)

69

70 ggplot(dataframe ,aes(x=SE3 ,y=gradegoal3)) + geom_hex() +scale_fill_viridis_c()

71 ggplot(dataframe ,aes(x=SE3 ,y=gradegoal3)) + geom_point(alpha = 0.3)

72

73 ggplot(dataframe ,aes(x=SE3 ,y=priormath3)) + geom_hex() +scale_fill_viridis_c()

74 ggplot(dataframe ,aes(x=SE3 ,y=priormath3)) + geom_point(alpha = 0.3)

75

76 ggplot(dataframe ,aes(x=gradegoal3 ,y=priormath3)) + geom_hex() +scale_fill_viridis_c()

77 ggplot(dataframe ,aes(x=gradegoal3 ,y=priormath3)) + geom_point(alpha = 0.3)

78

79 ggplot(dataframe ,aes(x=intercept4 ,y=priormath4)) + geom_hex() +scale_fill_viridis_c()

80 ggplot(dataframe ,aes(x=intercept4 ,y=priormath4)) + geom_point(alpha = 0.3)

81

82 ggplot(dataframe ,aes(x=intercept4 ,y=SE4)) + geom_hex() +scale_fill_viridis_c()

83 ggplot(dataframe ,aes(x=intercept4 ,y=SE4)) + geom_point(alpha = 0.3)

84

85 ggplot(dataframe ,aes(x=intercept4 ,y=gradegoal4)) + geom_hex() +scale_fill_viridis_c()

86 ggplot(dataframe ,aes(x=intercept4 ,y=gradegoal4)) + geom_point(alpha = 0.3)

87

88 ggplot(dataframe ,aes(x=SE4 ,y=gradegoal4)) + geom_hex() +scale_fill_viridis_c()

89 ggplot(dataframe ,aes(x=SE4 ,y=gradegoal4)) + geom_point(alpha = 0.3)

90

91 ggplot(dataframe ,aes(x=SE4 ,y=priormath4)) + geom_hex() +scale_fill_viridis_c()

92 ggplot(dataframe ,aes(x=SE4 ,y=priormath4)) + geom_point(alpha = 0.3)

93

94 ggplot(dataframe ,aes(x=gradegoal4 ,y=priormath4)) + geom_hex() +scale_fill_viridis_c()

95 ggplot(dataframe ,aes(x=gradegoal4 ,y=priormath4)) + geom_point(alpha = 0.3)

This code produces histograms of the posterior distribution.

Moreover it produces scatter plots for the pairs of coefficients. The baseline category is not included, since
the values for the baseline coefficients are all 0, hence it does not produce informative scatterplots, as seen in
figure H.

The scatter plots of the other baseline coefficient pairs are displayed below. Only pairs of the same categories
are plotted, hence for example in figure H.6 the relation between the effect of intercept and prior math grade for
category 2 are plotted.
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Figure H.1: Histograms of posterior distribution Intercept

Figure H.2: Histograms of posterior distribution Self-efficacy
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Figure H.3: Histograms of posterior distribution Prior math grade

Figure H.4: Histograms of posterior distribution Grade goal

Figure H.5: Scatterplot of baseline category, uninformative since all coefficients are set to 0



APPENDIX H. APPENDIX: VISUAL DISPLAY OF POSTERIOR DISTRIBUTION 59

Figure H.6: Intercept(2) and prior math grade(2)

Figure H.7: Intercept(2) and self-efficacy(2)

Figure H.8: Intercept(2) and grade goal(2)

Figure H.9: Self-efficacy(2) and prior math grade(2)
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Figure H.10: Grade goal(2) and prior math grade(2)

Figure H.11: Self-efficacy(2) and grade goal(2)

Figure H.12: Intercept(3) and prior math grade(3)

Figure H.13: Intercept(3) and self-efficacy(3)
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Figure H.14: Intercept(3) and grade goal(3)

Figure H.15: Self-efficacy(3) and prior math grade(3)

Figure H.16: Grade goal(3) and prior math grade(3)

Figure H.17: Self-efficacy(3) and grade goal(3)
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Figure H.18: Intercept(4) and prior math grade(4)

Figure H.19: Intercept(4) and self-efficacy(4)

Figure H.20: Intercept(4) and grade goal(4)

Figure H.21: Self-efficacy(4) and prior math grade(4)
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Figure H.22: Grade goal(4) and prior math grade(4)

Figure H.23: Self-efficacy(4) and grade goal(4)
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