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with running scripts on the VRLab cluster and together with Nina Robbins he made the satellite images
more easily accessible for me. And to Martin, whose cloud metrics paper shaped the way I think about
mesoscale patterns and who showed big interest in my project from the start on. His technical help with
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Finally, my heartfelt gratitude to my parents, who supported me throughout my entire studies and who
I visit far too rarely. Thanks to my friends from the Applied Physics Master for welcoming me as an
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especially during challenging periods like the writing of this thesis.
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Summary

How clouds change due to global warming is a major source of uncertainty in global climate models. A
large part of this uncertainty originates from the feedback of low clouds over the subtropical ocean. The
processes that shape these clouds range from microphysical processes of condensation and evaporation
to the large-scale circulations spanning thousands of kilometers. While different models can resolve
the large scale circulations and the small scale of individual clouds increasingly well, there is a gap in
understanding the scale in between: the mesoscale with its fascinating patterns. They exhibit a large
continuous variability that affects not only their visual appearance, but also the amount of sunlight they
reflect.
This thesis aims to analyze the temporal evolution of the mesoscale cloudiness by following the clouds
on their path over the Atlantic along the trade winds and characterize their patterns by cloud metrics,
cloud cover and mean cloud object length, computed on geostationary satellite images. Both decrease
as the cloud fields move over warmer waters. The most prominent feature is the diurnal cycle in the
cloud metrics that can at least partially be explained by oscillations in the atmospheric stability and
the surface wind speed of the large-scale environment. Following the line of evidence found from these
cloud controlling factors, we conclude that the decrease in low cloud amount and size due to increase
in sea-surface temperature will most likely overcompensate the rise in cloud object size due to increase
of stability. Especially stratocumulus clouds might become much less and also smaller. However, there
remains a large, seemingly random variability in the cloud metrics that has little mean contribution to the
climatology. As we cannot expect this to be the case in a warmer climate, we still need to understand
what causes this variability. Therefore, the trade wind cloudiness needs to be further investigated with
higher temporal resolution of the cloud controlling factors, more trajectories to bin for a fixed large-scale
and better understanding of the interplay of governing processes both from models and observations.
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1
Introduction

The climate on Earth is strongly influenced by the presence of clouds. Clouds affect our

planets energy budget by reflecting shortwave solar radiation back into space and by absorbing

longwave (infrared) radiation from the surface and thereby contributing to the greenhouse

effect. The net cloud radiative effect (CRE) is the difference in outgoing short- and longwave

radiation between the so called all-sky (with clouds) and a potential clear-sky. Overall, the

clouds longwave warming effect of 28 W/m
2

is compensated by their shortwave cooling effect

of 47 W/m
2
, which results in a net cooling effect of 19 W/m

2
(Forster et al., 2021). Clouds

at higher altitudes have a stronger warming effect and clouds with a higher albedo are

cooling more as they reflect more sunlight. In a changing climate the altitude, albedo and

the amount of clouds are altered, causing a change in CRE, which leads to one of the most

important feedback mechanisms in the climate system. While the confidence increases that

cloud feedback is positive, the results from different global climate models (GCMs) still range

from a slightly negative feedback to one of the strongest positive feedbacks. This uncertainty

propagates into the equilibrium climate sensitivity which characterizes the increase in global

surface temperature for a doubling in CO2 concentration, which has a very likely range of

2–5 K with 3 K as a central value (cf. Tab. 7.13 in Forster et al. (2021). Though mitigation

of climate change remains crucial in all scenarios, a more accurate projection of climate

change is essential for the development of adaptation plans, that may take decades to imple-

ment. Thus, a reduction in the uncertainty of the cloud feedback is one big step towards this goal.

Depending on the location on the planet, clouds can exhibit various types (cf. Figure 1.1). In

the intertropical convergence zone (ITCZ) the moist air above the warm pools forms deep

convective towers that reach up to the tropopause, where the air masses flow polewards. Over

the colder subtropical ocean the air masses subside again, thereby lowering the inversion,

which leads to shallower convection like stratocumulus and shallow cumulus. This large-scale

circulation, named after its discoverer George Hadley and spanning between the equator and

30°N/S, is closed by the trade winds. Their movement towards the equator is deflected to the

west by the Coriolis force, leading to north-easterly trade winds on the northern hemisphere.

Over the last decades an advance in understanding the global cloud feedback came from

studying different cloud regimes and their main underlying processes separately (Gettelman

et al., 2016). The feedback of marine boundary layer clouds has been the one with the largest

uncertainty and was the main cause of the large inter-model spread in estimates on climate

sensitivity (Bony, 2005; Vial, Dufresne, et al., 2013). The sub-regimes of stratocumulus, located

at the eastern edge of the subtropical oceans, and shallow cumulus together cover 29 % of Earth’s

surface between 60°N/S with the largest fraction over the (sub-)tropical ocean (Scott et al.,

2020). The stratocumulus regime is characterized by strong subsidence and large tropospheric

stability. The large cloud decks transition along the trade winds into the shallow cumulus

3



4 Chapter 1. Introduction

Figure 1.1: Schematic cross section of diverse cloud responses to surface warming from the tropics to polar regions.

Thick solid and dashed curves indicate the tropopause and the subtropical inversion layer in the current

climate, respectively. Thin grey text and arrows represent robust responses in the thermodynamic structure

to greenhouse warming, of relevance to cloud changes. Text and arrows in red, orange and green show

the major cloud responses and their sign assessed with high, medium and low confidence, respectively.

Adapted from Fig. 7.9 from Forster et al. (2021).

regime (Sandu et al., 2010), which we therefore also refer to as trade cumulus. Their regime is

characterized by weaker subsidence and a smaller tropospheric stability, but also an increased

sea-surface temperature as the clouds move towards the equator. While stratocumulus have a

larger cloud cover than trade cumulus, the regime of trade cumulus is far larger (Medeiros and

Stevens, 2009), making both regimes and the transition from one to the other very important for

global cloud feedback estimates. As low clouds, they are both known to have a strong negative

effect onto the planets energy budget (Hartmann et al., 1992). On the other hand, they are likely

to have the strongest positive feedback of all cloud regimes and after tropical high clouds the

one with the largest uncertainty (Forster et al., 2021; Sherwood et al., 2020).

Ten years ago, Stevens and Bony (2013) stated that the GCMs cannot resolve processes that

couple cloud formation, moist convection and heating to the large-scale circulation. The marine

boundary-layer clouds are especially dependent on these unresolved processes and shallow

cumuli are not well represented by their parameterized versions in GCMs (Konsta et al., 2022).

The community reacted with two different lines of evidence to better resolve the cloudiness

in the trades. In order to understand the coupling of clouds to the large-scale circulation,

"cloud controlling factors" (CCFs) were defined, like sea-surface temperature 𝑆𝑆𝑇, estimated

inversion strength 𝐸𝐼𝑆, surface wind speed and free tropospheric vertical velocity (D. T. McCoy

et al., 2017; Myers and Norris, 2016; Qu et al., 2015). The tropical low cloud cover was found

to be sensitive to the temporal variability of these large-scale parameters, with a cloud cover

4
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reduction due to an increasing 𝑆𝑆𝑇, while a stronger inversion leads to a higher cloud cover

(Qu et al., 2015). Consequently, future cloudiness can be constrained by CCFs that are easier

to predict from GCMs, under the assumption that the relationship between cloudiness and

CCFs is timescale invariant, i.e. the relationship derived from short timescale data holds true

for climatological timescales, and the CCFs fully control cloudiness. For these assumptions

Klein et al. (2017) found a contribution of low clouds to the global mean cloud feedback of

(0.25 ± 0.18) W/(m
2

K) (90 % confidence). As the total feedback is positive this indicates that

the cloud cover reduction due to 𝑆𝑆𝑇 increase overrules the increased cloudiness due to the

stronger inversion.

The second line of evidence uses high resolution Large-Eddy Simulations (LESs) to resolve tur-

bulent processes in the boundary layer that affect cloudiness in the trades, while the large-scale

circulation is parameterized. The resulting cloud feedback summarized by Bretherton (2015) is

in line with the feedback found from the CCF analysis.

If the CCF analysis is divided into stratocumulus and trade cumulus regimes, the reduction in

low clouds cover is found to be stronger for stratocumulus than for trade cumulus, independent

of GCM or observation (Cesana et al., 2019). Radtke et al. (2021) concluded from LES modelling

of a trade cumulus cloud field that the cloud feedback of trade cumulus is close to zero.

However, both the CCF analysis and the LES models have their shortcomings as they mainly

represent one out of three scale ranges that influence trade cumulus clouds: the large-scale

environment is well represented by GCMs, the scale of individual clouds is well represented by

LES, but the mesoscale is not ideally resolved in both (Janssens, 2023).

This raised the question where to look for the unexplained variance in the regressions

from CCFs onto CRE (Scott et al., 2020). The long forgotten mesoscale, that roughly ranges

between 20–2000 km depending on the definition, posed a promising objective for further

investigations. The spatial organization of stratocumulus clouds due to mesoscale cellular

convection has already been studied for much longer (Krueger et al., 1961). For trade cumulus

the community mainly focused on the North Atlantic trades east of Barbados, where the

EUREC4A field campain (Bony, Stevens, et al., 2017) gave observational insights and the

region is known to be representative for other trade cumulus regimes on the planet (Medeiros

and Nuĳens, 2016). During boreal winter the regime’s large-scale conditions are the most

undisturbed because the ITCZ is the further south.

Motivated by the effect of mesoscale organization on the CRE of deep convective clouds (Tobin

et al., 2012), Stevens, Bony, et al. (2019) was the first to systematically classify mesoscale cloud

patterns in the trades from satellite images. Four patterns were classified as robustly identifiable

and named after their appearance: Sugar, Gravel, Fish and Flowers. Further, Nuĳens et al.

(2019) proposed the mesoscale organization of trade cumulus clouds as one of three fields that

require deeper understanding to reduce low-cloud feedback uncertainties.

While the first classification process was still based on subjective labelling of cloud field

images, there were also first attempts to characterize patterns more objectively. Janssens et al.

(2021) described the organization of cloud fields by human-defined metrics frequently used in

literature and showed that observed patterns are distributed unimodal and continuously in the

metric space. A subset of these metrics was used by Bony, Schulz, et al. (2020) to classify the

patterns objectively and correlate their occurrence with CCFs like wind speed and inversion

strength. Another approach to characterize the cloud patterns is to use machine learning

(Denby, 2020). Both, the classifications by cloud metrics and machine learning were used

by Vial, Vogel, et al. (2021) to study the diurnal cycle of pattern occurrence and their cloud

cover and of corresponding CCFs. So far only Eulerian snapshots of cloud fields were studied.

However, if we want to understand how the underlying processes change the cloud fields over

time and how they transition from one organizational pattern to another we need to follow

them along the trade winds.

Recently, transitions between closed and open cells in stratocumulus were observed by Eastman,

I. L. McCoy, et al. (2022) with a Lagrangian framework that was based on cloud field back

5



6 Chapter 1. Introduction

Figure 1.2: Illustration of the four cloud patterns of trade cumulus pointed out by Stevens, Bony, et al. (2019). The four

satellite images (48-58°W, 10-20°N) are derived from MODIS imagery. Reprint from Fig.1 a) in Bony, Schulz,

et al. (2020).

trajectories for 72 h and MODerate-resolution Imaging Spectroradiometer (MODIS) satellite

imagery with a temporal resolution of 12 h. A comparable study for the transition from

stratocumulus to trade cumulus was performed by Sandu et al. (2010) and showed that it is

controlled by the change in 𝑆𝑆𝑇 and 𝐿𝑇𝑆. An investigation of transitions between organizational

states of trade cumulus cloud fields is still missing also due to the fact that those transitions

happen on shorter timescales. Thanks to the Geostationary Operational Environmental Satellite

GOES-16, images every 10 min are available and the possibility to resolve the evolution of trade

cumulus cloud fields might be given now.

The scope of this thesis is to give an answer on how the mesoscale organization of trade

cumulus cloud fields evolves on timescales of hours up to a week along the trades. We use a

Lagrangian framework to follow the trajectories of cloud fields inferred from ERA5 wind fields

and compute a subset of cloud metrics from Janssens et al. (2021) on 5°×5° frames of brightness

temperature fields obtained every 10 min from GOES-16 for the period of January 1 to February

28, 2020. Further, the cloud metrics are related to CCFs and the remaining unexplained variance

is analyzed on possible mesoscale self-organization. More details on the methodology can be

found in chapter 2. The results are presented in chapter 3 and further implications as well

as possible solutions to limitations in our analysis are discussed in chapter 4. Finally, the

conclusions are summarized in chapter 5 and an outlook for future studies is given.

Understanding mesoscale processes dependent and independent of the large-scale might

close the gap between the coarse GCMs and the high resolution LES and narrow down the

uncertainty in low cloud feedback in a warmer climate.
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2
Research design and methods

In this chapter we first introduce what data was used in our analysis, how the trajectories for

the Lagrangian framework were built and how we identified low clouds from satellite images.

In section 2.4 we discuss and finally chose appropriate thresholds for high cirrus clouds, before

we describe the cloud metrics computation and discuss the subset of metrics we chose. Further,

our methods used for temporal and ensemble averaging, curve fitting and the computation

of the flow fields that show mean tendencies in the cloud metric space are explained. Finally,

we shortly introduce multilinear regressions and how they were used to remove large-scale

influence from our time series.

2.1. ERA5 trajectories
The trajectories analyzed in this thesis were obtained by Ryan Eastman using the latest reanalysis

of the European Centre for Medium-Range Weather Forecast (ECMWF), also called ERA5

(Hersbach et al., 2020). An atmospheric reanalysis assimilates both observational weather data

and forecast model output, which is initialized with the observational data. It also takes the

uncertainties in the observations and the model output into account and therefore provides a

stable analysis of weather data on smaller spatial or temporal grids than actually measured in

the past. ERA5 has a spatial resolution of 31 km and a temporal resolution of 1 h with a 3-hourly

ensemble uncertainty.

From this dataset the wind fields at 925 hPa were 3D-interpolated in latitude, longitude and

time and the corresponding values at planes of constant local hour were used to propagate

the trajectory points back and forth in time in steps of six local hours, matching with the pass

over times of polar orbiters. The trajectories were initiated on a grid of 2° lat/lon spacing in

the central Atlantic trades (12°-22°N and 38°-58°W) at 01:30 local time at every day between

January 01 and February 28, 2020. This produced a total of 3894 trajectories with a length of 6

days in local time. As most trajectories move west in the trades, they are longer than 6 days

in UTC time. The trajectory points were spline-interpolated from 6-hourly spacing to hourly

spacing in local time. Based on this dataset we interpolated the trajectory points again, this

time linearly, onto the exact UTC times of the GOES-16 satellite images every 10 min. Along the

trajectories the following ERA5 parameters were also 3D-interpolated and obtained every three

hours local time by Ryan Eastman:

• sea-surface temperature (𝑆𝑆𝑇)

• specific humidity at 700 hPa (𝑞700)

• lower troposheric stability (𝐿𝑇𝑆)

• wind speed at 10 m (𝑤𝑠𝑝10)

7



8 Chapter 2. Research design and methods

• subsidence at 700 hPa (𝜔700)

• relative humidity at 1000 hPa (𝑅𝐻1000)

The first five are frequently used cloud controlling factors (CCFs). The surface relative humidity

is replaced in most studies by the free-tropospheric humidity at 700 hPa ((Scott et al., 2020)).

Nevertheless, we will also analyze the covariance of the surface relative humidity with the cloud

metrics later on and evaluate whether it can control cloudiness.

The large-scale parameters and the 925 hPa wind fields were averaged on circles of 100 km

radius around the current lat/lon position of the trajectory, which includes on average 33 ERA5

data points.

The pressure levels 𝑝 of the given ERA5 parameters can be related to altitudes via the barometric

formula

𝑧 =
𝑇

ref

Γenv

(
1 −

(
𝑝

𝑝
ref

) 𝑅Γenv

𝑀𝑔

)
+ 𝑧0 (2.1)

with the reference pressure and temperature 𝑝
ref

and 𝑇
ref

, respectively, the altitude of this

reference 𝑧0, the environmental lapse rate Γenv = 6.5 K/km, the universal gas constant 𝑅, dry

air molar mass 𝑀 and standard gravity 𝑔. By using the ERA5 monthly mean temperature at

1000 hPa for January and February 2020 as a reference the altitudes were computed as shown in

Table 2.1. Note that the computed altitudes are strongly dependent on the pressure we assume

Table 2.1: Estimates of corresponding altitudes for given pressure levels following the barometric formula and the

environmental lapse rate of 6.5 K/km.

pressure level altitude

1000 hPa 𝑧0 =(113 ± 2) m

925 hPa (780 ± 12) m

700 hPa (3082 ± 49) m

at sea level, which in reality of course also varies spatially. The used 925 hPa level for measuring

the advection of clouds is reasonable when compared to measurements of cloud base height

and shallow cloud top heights (Albright et al., 2023).

As we want to study the evolution of mesoscale organization above the Atlantic ocean

and not above the land, the trajectories were cropped at 58°W and on a linear slope in front of

South America. The region that the trajectories were reduced to is shown in Figure 2.1. From

the 3894 trajectories, 931 (24 %) show clockwise loops, indicating a proximity to a high pressure

field, and 65 (2 %) exhibit counterclockwise loops probably caused by low pressure fields. From

the 2898 loop-free trajectories, 2794 are headed westward as expected in the trades. For the

further analysis we consider only those loop-free trajectories that move westerly. We can further

identify two interesting subgroups inside this set of trajectories. Trajectories that are originated

in the northwestern Atlantic (140 trajectories, cf. Figure 2.2a) and trajectories that are originated

in the eastern Atlantic close the African continent (1297 trajectories, cf. subset in Figure 2.2b).

The remaining trajectories cannot be sorted into one of these groups without doubt, but they

are considered in the main analysis of the full set of trajectories.

2.2. Satellite Data
The Geostationary Operational Environmental Satellite 16 (GOES-16, also GOES East) is part of

the latest generation of geostationary satellites by NOAA1 and NASA2. Its orbit is at a height of

35 786 km above the nadir at 0°N 75.2°W. The Advanced Baseline Imager (ABI) is a 16-channel

passive imaging radiometer onboard of GOES-16 and the primary instrument for observing

1National Oceanic and Atmospheric Administration

2National Aeronautics and Space Administration

8



2.2. Satellite Data 9

Figure 2.1: Map of the studied domain with the region the trajectories were reduced to (Atlantic ocean) shown in blue.

(a) (b)

Figure 2.2: Trajectories originated in the northwestern (a) and eastern (b) Atlantic.

the weather, oceans and environment of almost the entire western hemisphere. For weather

monitoring the full disk version of the Cloud and Moisture Imagery Product (CMIP) is used,

which provides the brightness temperature 𝑇𝐵 that relates to the spectral radiance 𝐿𝜆 as

𝐿𝜆 = 2ℎ𝑐2�̃�3

[
exp

(
ℎ𝑐�̃�

𝑘𝐵(𝑏𝑐1 + 𝑏𝑐2 · 𝑇𝐵)

)
− 1

]−1

(2.2)

with ℎ the Planck constant, 𝑐 the speed of light, 𝑘𝐵 Boltzmanns constant and �̃� the bands central

wavenumber. We recognize Planck’s law in this with the temperature

𝑇 = 𝑏𝑐1 + 𝑏𝑐2 · 𝑇𝐵 (2.3)

and band corrections 𝑏𝑐1 and 𝑏𝑐2. All 16 ABI-channels from visible to infrared are available

in the CMI data product, but for the observation of low clouds channel 13 with a center

wavelength of 10.33 µm is most suitable, as low clouds emit radiation with energy densities at

its maximum around this wavelength. The band corrections for this channel are 𝑏𝑐1 = 0.0755 K

and 𝑏𝑐2 = 0.999 75. Thus, in the range of low clouds, the difference between the cloud top

temperature 𝑇 and 𝑇𝐵 is negligible and we can assume

𝑇 ≈ 𝑇𝐵 . (2.4)

9



10 Chapter 2. Research design and methods

Figure 2.3: Effective resolution of GOES-16 images over the observed domain. The further away from the nadir at 0°N

75.2°W the more the altitude angle of the satellite varies from 90° and the lower the resolution effectively.

Together with the environmental temperature lapse rate this gives an indication for the cloud

top height, which makes it possible to classify low clouds (c.f. section 2.3).

The satellite data is localized on the ABI fixed grid with the scanning angles 𝑥 and 𝑦 as

coordinates. These coordinates can be translated to geographic latitude and longitde in order

to slice it into smaller scenes of cloud fields. At its nadir the data has a nominal resolution of

2 km. As our studied region is located further east between 20°W and 60°W and between 5°S

and 30°N, the altitude angles from those locations to the satellite are significantly smaller than

90°. Therefore, the resolution is in the range 2–3 km for most of the domain and is shown by

Figure 2.3.

The ABI in its default scanning mode provides a full disk image every ten minutes, which is

roughly the time it takes to scan the disk from north to south. As our region of interest is close to

the equator we can assume the timestamp of the image to be halfway between the start and end of

each scan. This leaves an error below 2 min, which is very accurate considered that we only need

the absolute times when comparing with ERA5 parameters that have a temporal resolution of 3 h.

The data can be accessed on AWS via a "json" object containing metadata of the corre-

sponding file. This reduces the required storage capacity from 3.2 GB for a full day netCDF file

to 37 MB for a daily json. Specific chunks of the data can then be accessed without downloading

the full dataset. However, slicing out by latitude and longitude requires us to compute those

coordinates on the full dataset, which renders this method very slow in comparison with the

fully downloaded netCDF file. Therefore the files for the studied period of two months were

downloaded on a daily basis.

A total of 26 images (0.3 %) is not available on AWS due to transmission failure from STAR3 or

server/network issues at the SSEC4 with the largest continuous lack of images being 2.5 h on

January 6 2020.

2.3. Cloud mask
With the brightness temperature we can identify individual pixels as the temperature of the

sea surface (no cloud) or the cloud top temperature. The sea surface temperature can range in

our region of interest between 293–302 K. In accordance with other studies (e.g. Bony, Schulz,

3Center of Satellite Applications and Research, NOAA

4Space Science and Engineering Center, University of Wisconsin-Madison
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et al., 2020) we define shallow cumulus clouds in the temperature range of 280–290 K leaving a

3 K buffer to the coldest sea surface temperatures, which should avoid misinterpretations on

the low cloud end. Everything above 290 K is not considered as shallow cumulus anymore.

The binary cloud mask identifies only the shallow cumulus range as cloudy and the rest as

non-cloudy. If we ignore higher (cirrus) clouds as we want to study shallow cumuli, we are still

left with the ambivalent interpretation of what is beneath a high cloud. In this thesis the region

below high clouds is assumed as cloud free, but there are certainly cases where cirrus clouds

move above shallow cumulus or clouds that convect deeper than usually can move out of the

temperature range. In fact, for two-dimensional brightness temperatures only the top cloud

layer can be observed. Our decision to ignore high clouds is discussed in section 4.2.

2.4. Threshold for fraction of high clouds
The decision of the cloud mask for or against low cloudiness under high clouds is ambivalent

and introduces errors into the cloud metrics that we want to avoid. If we imagine the extreme

case of 100 % high cloud cover, which is seen as a cloudless sky through the cloud mask, it

becomes clear that the cloud metrics can be biased depending on the fraction of high clouds.

Therefore, images with too many high clouds should be excluded to keep this error small.

We define two kind of thresholds: temperature thresholds and high cloud fraction thresholds.

With the temperature threshold we consider everything below that temperature as high clouds.

The logical choice is to set the threshold at 280 K as this is the lower temperature bound for the

shallow cumuli. Following Bony, Schulz, et al., 2020 a threshold of 285 K can also be used. A

third temperature threshold was concluded through analysis of ten days of data (01.02.20 to

10.02.20) on a 10°×10° domain east of Barbados (48°-58°W and 10°-20°N). In the distribution of

brightness temperatures of all pixels in all images it shows that the number of pixels decreases

with lower temperatures. If we plot the cumulative distribution, i.e. the amount of pixels below

a certain temperature, we find a linear trend in the range 283–290 K. By extrapolation we find

that around 282 K the amount of pixels below that threshold should drop to zero, although

in reality there are still few higher clouds. With this motivation 282 K was used as another

temperature threshold.

The second type of threshold defines the minimum fraction of high clouds, as defined by the

temperature threshold, where we disregard the image. This threshold should be chosen as low

as possible to not distort the cloud metrics. However, a too low threshold will exclude too much

of our time series decreasing the statistical relevance of the analysis. The temperature thresholds

282 K and 285 K exclude clouds that are actually considered as shallow cumuli. This can lead to

scenes full of shallow cumuli that are excluded from the time series just because the brightness

temperatures are rather low in the shallow cumuli range. To avoid this misinterpretation the

temperature threshold of 280 K was used in the analyses in this thesis.

Thus, we are left with the choice for a reasonable threshold for the fraction of high clouds.

We can see in Figure A.2.2 that cloud fraction and open sky are most affected by high clouds.

However, if we acknowledge that more high clouds can often coincide with more low clouds

as well, it is not surprising that cloud fraction initially increases with high cloud fraction and

the open sky index decreases. From Figure 2.4 we can conclude that indeed the cloud fraction

and open sky change drastically for small high cloud fractions. But following the logic of these

metrics, we can only say that they are obviously distorted if the mean cloud fraction decreases

with increasing high cloud fraction and the mean open sky increases. We see this happening

from 25 % high cloud fraction on, which is why we choose this as our threshold value. In scenes

of larger high cloud fraction we can expect the high clouds to start dominating the scene. By

removing them we still keep 80 % of our data and this threshold is even less restrictive than the

one chosen by Bony, Schulz, et al., 2020.

2.5. Cloud metrics computation
Out of the 21 cloud metrics used by Janssens et al., 2021 the mean length scale 𝐿mean and

cloud fraction 𝑐 𝑓 were chosen for our analysis. To capture as much variance as possible in a

11
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Figure 2.4: Mean values of open sky index and cloud fraction for different high cloud fractions. The mean is calculated

in an interval of Δℎ𝑐 𝑓 = 1 % below the given high cloud fraction.

two-dimensional metric space the gradients of the chosen pair of metrics should be orthogonal

in metric space. Preferably, a pair of metrics is therefore closely related to the first two principal

components (PCs) found by Janssens et al., 2021. The mean object length is a good choice to

align well with the first PC, while the open sky parameter is almost parallel to the second PC.

However, we chose cloud fraction instead of open sky because it is negatively correlated with

open sky and a more robust metric. Further, the two chosen cloud metrics are relevant for the

cloud radiative effect, as the mean length scale is correlated with the optical depth of the clouds

(Alinaghi et al., 2023; Janssens, 2023).

Other possible pairs of metrics would be 𝐿mean and 𝑜𝑠, 𝑁
objects

and 𝑐 𝑓 or 𝑐 𝑓 and fractal dimension.

All the computed metrics are listed in section A.1, but here we focus only on the two used in the

further analysis. Cloud fraction is simply the fraction of cloudy pixels from all pixels ignoring

undefined ones (NaNs). 𝐿mean is the square root of the mean object area in units of pixels of the

given satellite image. Thus, we need to scale it with the resolution shown in Figure 2.3 in order

to obtain 𝐿mean in km-units. For further information on the other cloud metrics it is referred to

the supplementary information of Janssens et al., 2021. The code used for computing the above

named metrics can be found on GitHub.

For the computation of the metrics we iterated over the satellite images one by one looking

for trajectories that are in our region of interest at the time of the image. Then the image is

loaded and for each trajectory a 5°× 5° frame is cut out, where the metrics are computed on and

attached to the trajectory point. The computation by image was preferred over the computation

by trajectory, because loading the image took most of the time in the process. As the images are

native on a fixed grid of viewing angles 𝑥 and 𝑦, the lat/lon based frames are slightly distorted

in the dataset, while the boundary contains undefined values. For almost all metrics the cloud

mask considered these undefined pixels as non-cloudy and only for the open sky index as

cloudy. This is no inconsistency because for cloud fraction and open sky the pixels outside the

frame are ignored this way.

The frame size was chosen in accordance with Janssens et al., 2021. For a better comparison

with the ERA5 parameters, which were averaged on circles of 100 km radius, one could use

smaller frame sizes down to 2°×2°. Because of the spatial range in mesoscale patterns between

20–2000 km the smaller frames would only capture the lower part, while very large frames like

10°×10° often contain different types of patterns Stevens, Bony, et al., 2019. The 5°×5° frames

are expected to capture patterns related to Sugar, Gravel or Flower. Fish are often too large, but

also not useful to capture with a square frame due to their shape.

12
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To get an idea of how the metrics behave on different frame sizes we performed a test with 10

trajectories on 2°×2° and 5°×5° frames. The comparison of the average cloud metric values for

both frame sizes reveals that there are roughly 5-6 times as many objects in the bigger frames

and the maximum object length scale is larger as well. This is intuitive because the large objects

tend to be cut off in smaller frames. Cloud cover and mean object length scale were found to be

roughly independent of frame size. Overall, the metrics were less noisy on the larger frames.

2.6. Data postprocessing
The time series of cloud metrics 𝑝(𝑡) along the trajectories can be expected to contain signal 𝑠(𝑡)
and noise 𝑛(𝑡):

𝑝(𝑡) = 𝑠(𝑡) + 𝑛(𝑡). (2.5)

There are multiple methods to extract a signal from this. To purely reduce the noise in the

time series, one can use filter functions like the Gaussian filter or the Savitzky-Golay filter.

The former gives a convolution of the time series with Gaussian kernel of width 𝜎, the latter

fits a low-degree polynomial to a subset of data points of length Δ𝑡 and by that estimates the

smoothed signal at the central point of the subset. A comparison of both filters showed that a

Savitzky-Golay filter has a lower error than a Gaussian filter with 𝜎 = Δ𝑡. However, a similar

smoothing effect is reached with significantly lower 𝜎 than Δ𝑡, making the Gaussian filter more

applicable as it is computationally more efficient.

Another method is to simply take a temporal average over time periods longer than 10 min. The

ERA5 parameters have a temporal resolution of 3 h and for comparison the cloud metrics can

also be averaged on 3 h intervals. Thereby we neglect possible signals on shorter timescales.

The signal-to-noise ratio can also be improved by averaging over an ensemble of trajectories.

Assuming that the cloud metric time series have similar signals 𝑠1 , 𝑠2 , . . . , 𝑠𝑁 but random noise,

taking the mean or the median of that ensemble at every time step increases the signal while the

noise cancels out more and more. We expect the signals to be similar for different trajectories, if

the trajectories are temporally or spatially aligned or both. This assumes that a possible trend

in the ensemble time series is due to the spatial and/or temporal propagation of the cloud

fields in the trade winds. While we neglect seasonal differences throughout the two months of

trajectories, the local time of the day and the days after the initialization of a trajectory do matter

for possible trends and diurnal signals in the time series. Therefore, the temporal alignment

chosen in the ERA5 trajectories is already sufficient, as the trajectories were all initiated at the

same local time of the day. The spatial alignment is given so far that we only include trajectories

that on average move in the south-west direction of the trades. The best spatial alignment is

in the region of initialization in the middle of the trajectories. Before and after that region the

trajectories converge and diverge, respectively, such that the spatial alignment is a less given

there.

2.7. Evolution analysis
We expect the median trajectories to show some kind of trend and eventually oscillations due

to diurnality or other reasons. In order to describe the median behavior of cloud metrics and

cloud controlling factors over time, we can fit them with analytical functions and compare the fit

parameters. To keep it simple, we permit a trend up to second order in time and an oscillation

of a given period, delay and amplitude. Although the fit functions are structurally the same, we

differentiate between the parameters that describe the cloud controlling factors and the ones

that describe the cloud metrics:

𝑐𝑖(𝑡) = 𝑎𝑖 cos

(
2𝜋

𝑡 − 𝑑𝑖

𝑇𝑖

)
+ 𝑘𝑖𝑡

2 + 𝑠𝑖𝑡 + 𝑟𝑖 for 𝑖 = 1, . . . , 𝑛 (2.6)

𝑝𝑖(𝑡) = 𝛼𝑖 cos

(
2𝜋

𝑡 − 𝛿𝑖
𝜏𝑖

)
+ 𝜅𝑖𝑡

2 + 𝜎𝑖𝑡 + 𝜌𝑖 for 𝑖 = 1, . . . , 𝑚 (2.7)

13
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Thereby we want to emphasize that the cloud metrics describe the mesoscale and eventually

change in a different way than the cloud controlling factors that are large-scale parameters and

mainly change because of the Lagrangian perspective.

Especially by comparing oscillation periods and delays of cloud metrics and CCFs we can get

insights into what causal relationships are likely and how much the effect in a cloud metric

might lag behind the cause in a CCF.

From individual cloud metric time series or their ensemble median we can find general

trends that the trajectories moving along the trades have in common. However, while these

trends could still be coupled to spatial movement and time, looking at short time tendencies in

the space spanned by two (or more) metrics can give us an even more general understanding of

how shallow clouds behave in the mesoscale.

In the two-dimensional case we can describe the state of a pattern as a vector 𝒑(𝑡) = [𝑝1(𝑡), 𝑝2(𝑡)]𝑇
with metrics 𝑝1 and 𝑝2. The tendency in between two subsequent time steps at time 𝑡 with a

temporal distance of 𝛿𝑡 is

𝛿𝒑(𝑡 , 𝛿𝑡) = 𝒑(𝑡 + 𝛿𝑡) − 𝒑(𝑡). (2.8)

If we couple the tendencies to their origins 𝒑(𝑡) in the metric space we can plot a flow field that

shows how the patterns evolve with respect to their current state. If this is done for multiple

trajectories, we can create bins in the metric space and compute the average of all tendencies

that are originated in that bin.

The obtained flow field can then be visually analyzed on its divergence which should have local

minima at (meta)stable states.

2.8. Multilinear regression
To investigate the influence of the ERA5 large-scale parameters on the cloud patterns, a multiple

linear regression (MLR) of each cloud metric onto the six CCFs was performed. Mathematically

this resembles the estimate of the regressors 𝛽 𝑗 in

𝑝𝑖 =

6∑
𝑗=1

𝛽 𝑗𝑐𝑖 𝑗 + 𝛽0 for 𝑖 = 1, . . . , 𝑛 (2.9)

with 𝑛 the total number of data points, 𝑝𝑖 the 𝑖th metric value and 𝑐𝑖 𝑗 the 𝑖th value of the 𝑗th
CCF. The regressors can vary between the different metrics. The estimate is done on basis of

ordinary least squares, thus the sum of the squared residuals

𝑆 =

𝑛∑
𝑖=0

©­«𝑝𝑖 −
6∑
𝑗=1

𝛽 𝑗𝑐𝑖 𝑗 − 𝛽0

ª®¬
2

(2.10)

is minimized. Let’s denote the regressors that minimize 𝑆(𝛽) as �̂� such that

�̂�𝑖 =
∑

�̂� 𝑗𝑐𝑖 𝑗 − �̂�0 (2.11)

with �̂�𝑖 the metric values predicted by the regression. To measure the fraction of cloud metric

variance explained by the CCFs variance we use the coefficient of determination

𝑅2 =

∑(�̂�𝑖 − 𝑝)2∑(𝑝𝑖 − 𝑝)2 . (2.12)

Due to possible nonlinear relations between certain CCFs and the cloud metrics we optimized

𝑅2
by replacing the 𝑐𝑖 𝑗 with exp (𝑎𝑐𝑖 𝑗) or 𝑐𝑎

𝑖𝑗
with some constant 𝑎. If 𝑅2

increases significantly

by this, we can assume that the relation is indeed nonlinear.

We call this regression simultaneous because we assume the values 𝑝𝑖 and 𝑐𝑖 𝑗 at the same time

14
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and no lags are included. As the metric values are 18 times as frequent as the three-hourly

CCFs we can use the instantaneous metric value closest in time to the CCFs or average over the

metric values in an interval of up to 3 h centered at the time of the CCFs. Here we chose for the

latter option.

Informed by the fit parameters from Equation 2.6 and 2.7 we can also introduce lags if CCFs

and cloud metrics with the same oscillation period are shifted against each other. If we then

perform the multiple linear regression of the cloud metrics onto the CCFs in question, we can

obtain regression coefficients that take the diurnal cycle and how it is transported from the

CCFs onto the cloud metrics better into account than the simultaneous regression.

Further, the CCF values were standardized to ensure that the computed regressors give an

indication, what CCF the cloud metric is most dependent on. Standardizing means subtracting

the mean and dividing by the standard deviation of each individual CCF.

2.9. Removal of large-scale influence
With the results of the MLR we can describe a part of the variance in the cloud metrics by the

variance in the CCFs 𝒄(𝑡) = [𝑐1(𝑡), . . . , 𝑐6(𝑡)]𝑇 . As long as 𝑅2 < 100 % there is a residual term

that cannot be explained by the large scale environment of the cloud field. We can assume that

there is always a certain portion of noise on the cloud metric time series which is an additive

term. The more important assumption however is, if and how the mesoscale self organization

attributes to the time series. As a simple guess, which will be discussed in section 4.3, we

assume the mesoscale term to be additive as well such that the time series are composed as

𝑝(𝑡) = �̂�(𝒄(𝑡)) + 𝑝res(𝑡) = �̂�(𝒄(𝑡)) + 𝑚(𝑡) + 𝑟noise (2.13)

with the function

�̂�(𝒄(𝑡)) =
6∑
𝑗=1

�̂� 𝑗𝑐 𝑗(𝑡) + �̂�0 (2.14)

and its coefficients �̂� 𝑗 as obtained from the MLR. This way, we can simply subtract the CCF-

explained part from 𝑝(𝑡) to be left with a mixture of mesoscale contribution and noise. The

absolute value of this residual does not contain information as the �̂� 𝑗 minimize the sum of

squared residuals by definition, but a positive (negative) 𝑝res(𝑡) corresponds to the mesoscale

and noise increase (decrease) the value of the cloud metric compared to the case where 𝑝(𝑡)
would be purely determined by CCFs. In the case where the signal to noise ratio in the residual

is good enough we can obtain information on the mesoscales state and its evolution 𝜕𝑚(𝑡)/𝜕𝑡.
As the function �̂� can be obtained with various options from different data averaging intervals

to lag regressions, the values of 𝑝res(𝑡) need to be standardized for better comparison.
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3
Results

We computed Lagrangian time series of cloud metrics along the ERA5 trajectories. First, we

are going to present the ensemble medians of these time series together with a few individual

examples. In section 3.2 we show the evolution of the ERA5 parameters, that are often referred

to as cloud controlling factors (CCFs). Further, we investigate the memory in the time series

by evaluating the decorrelation time scale. The mean tendencies in cloud metrics space are

shown in section 3.4 and we discuss the stability of the states in that space. Finally, we perform

multilinear regressions on temporally averaged data and on the fitted ensemble averages. We

use both to remove the large-scale influence from the time series and study the behavior of the

residual signal in section 3.6.

3.1. Ensemble time series of cloud metrics
We begin with presenting the time series we obtained from the cloud metrics computation. We

only have cloud metrics computed over the domain shown in Figure 2.1, but most trajectories

start and end outside of this domain. Therefore, the number of time steps per trajectory can

vary between zero, where the full trajectory is outside the domain or covered by high clouds,

up to 931 time steps of 10 min UTC increment (≈ 6.3 d in local time), while the average is 457

time steps (≈ 3 d in local time). Their alignment is shown in Figure A.2.1.

In this thesis both UTC time and local time are used because the trajectories were initially

aligned by local hours, which is advantageous for studying diurnal cycles, but the GOES-16

images are available at 10 min UTC time. Local hours obviously change with longitude and in a

Lagrangian study of cloud fields the passage of local hours depends on the movement. Here,

we assume the average movement of our trajectories of 6.5° westwards per day UTC, which

makes 24 local hours equal to 24.5 h UTC. We should mention that the local time obtained from

our simple formula by UTC time and longitude is 3–15 min ahead of the true solar time and

that the local hours are binned between full hours.

Individually the time series contain a lot of variability on sub-hourly time scales (see colorful

lines in Figure 3.1a and 3.1b), that we consider as microscale fluctuations. This is especially true

for the mean object length, which can change drastically if a cloud (dis-)appears or cloud objects

split/merge and only few cloud objects are present in the frame to equal out the statistics.

In order to get a more general image of the evolution of the time series, we look at the ensemble

median at each time step. This median shows a negative trend for the mean object length in the

first 72 h of the trajectories from 23 km to 12 km and on top of this a diurnal cycle with a period

of 25 local hours (cf. Table 3.1) and an amplitude of 1.2 km. The maxima of this diurnal cycle

occur around 05:30 local time in the first half of the trajectories and around 07:30 local time in

the second half of the trajectories, while the minima also shift from 20:30 to 21:30 local time (not

shown).

In comparison, Vial, Vogel, et al. (2021) found the Flower and Fish patterns peak in their

17
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(a)

(b)

(c)

Figure 3.1: a) Mean cloud object length and b) cloud fraction over time after start of the trajectory. The colorful lines

show the evolution along individual trajectories, while the black line is the median of all trajectories at

each time step and the interquartile range is shaded. The data points with more than 25 % high clouds

(brightness temperature lower than 280 K) were excluded (e.g. the red time series after 84 h). As a statistical

variable the mean object length becomes more robust if more objects are considered in the mean. Therefore,

the median for scenes with 𝑁𝑜𝑏 𝑗 > 30 is plotted dashed in comparison.

occurrence at 03:00 and 12:00 local time, while the Sugar and Gravel patterns peak at 14:00 and

00:00, respectively. Thus, our observed maximum in mean object length is between the peak

occurrences of the larger object patterns Flower and Fish and the minimum between the peak

occurrences of the smaller object patterns Sugar and Gravel.

At the beginning, some of the trajectories have very large mean object length caused by very

few objects (not shown). The maximum possible mean object length is related to the number of

18
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objects 𝑁𝑜𝑏 𝑗 by

max(𝐿mean) =
√

𝐴max

𝑁𝑜𝑏 𝑗
(3.1)

with 𝐴max = 556 km × 556 km being the largest possible area of a 5°×5° frame. If we make the

mean object length more robust by considering only frames with more than 30 cloud objects,

the median at the beginning of the trajectories is smaller because frames with a mean object

length of more than 100 km are not possible under this condition.

Table 3.1: Fit parameters for trigonometric term of fit function 2.7 on 3 h-averaged cloud metrics. The delay 𝛿 and

period 𝜏 are given in local hours.

𝑝𝑖 𝛼 𝛿 𝜏

𝐿mean (1.21 ± 0.09) km (4.3 ± 1.0) h (25.0 ± 0.3) h

𝑐 𝑓 0.042 ± 0.002 (2.6 ± 0.7) h (24.4 ± 0.2) h

For the cloud fraction we also see a negative trend from 50 % to less than 20 % mainly during

the first three days. On top of the trend is a diurnal cycle with a period of 24.4 local hours and

an amplitude of 4 p.p. (cf. Table 3.1). The maxima of the diurnal cycle is at 04:30 local time in

the first and at 05:30 in the second half of the trajectories while the minima shift from 15:30 to

16:30 local time. This is consistent with Vial, Vogel, et al. (2021), who found that independent

of the pattern the peak in cloud cover is during the night time. For LES simulating the trade

cumulus regime the results also compare well with the end of our trajectories (cf. Fig. 7.3g in

(Janssens, 2023)).

From the time series of mean object length and cloud fraction we learn that some time

series start with very large objects and very high cloud fractions, e.g. the light-blue time series

in Figure 3.1a and 3.1b. This is mainly the case for trajectories that start at the west coast of the

African continent (cf. Figure 2.2b). These can be categorized as transitions from stratocumulus

to trade cumulus clouds. They start at cloud fractions of 0.18 to 1 and end between 0.02 and

0.41 (90 % ranges), with a decrease of the median from 0.89 to 0.09 cloud fraction (not shown).

Further, the decrease in cloud fraction mainly happens during the first three days of the

trajectories. These results are consistent with the observations of Sandu et al. (2010) on the

stratocumulus-cumulus transition during the summer months. An example of this transition in

one of our trajectories is shown in Figure 3.2.

3.2. Evolution of large-scale parameters
In order to pursue a better understanding of how the cloud patterns are related to the large

scale environment, we investigate the evolution of the large-scale parameters. Their ensemble

median time series are displayed in Figure 3.3 to 3.5 together with fits of Equation 2.6 onto the

medians. We can identify three different types of signals: The ones without a diurnal cycle like

the sea surface temperature, the ones with a diurnal cycle (relative humidity, specific humidity,

𝐿𝑇𝑆, wind speed) and the semidiurnal subsidence. Whether the specific humidity really has a

diurnal cycle or not is open for discussion, but at least the relatively poor 𝑅2
is slightly increased,

if the cosine term is considered in the fit.

The ensemble median of 𝑆𝑆𝑇 (Figure 3.3a) has a clear trend to warmer temperatures, which

is also visible in the individual time series. The jump at the first time step is because many

trajectories do not contribute to the first time step yet, because they are not inside the studied

domain, and only trajectories that start already inside the domain (further south-west and

therefore over warmer waters) contribute. For the fit we disregard this jump. After roughly

100 h and an increase of 3.5 K the ensemble median reaches a maximum. After that many

trajectories move past Barbados and leave our domain and only trajectories that turn to the
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Figure 3.2: Series of snapshots that show the transition of a cloud field (green rectangular frame) from a stratocumulus

cloud deck into the trade cumulus regime. The colors show the brightness temperature of clouds at different

heights (white is lower, red is higher). Temperatures above 290 K are assumed to be ocean surface (blue).
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(a)

(b)

Figure 3.3: a) Sea surface temperature 𝑆𝑆𝑇 and b) lower tropospheric stability 𝐿𝑇𝑆 over time after start of the trajectory.

The colorful lines show the evolution along the same individual trajectories as in Figure 3.1a, while the

black line is the median of all trajectories at each time step. The interquartile range is shaded.

north are still taken into account. As the median position does not move far enough north to

encounter large changes in 𝑆𝑆𝑇, the median 𝑆𝑆𝑇 remains at a constant 299.5 K. These values

of 𝑆𝑆𝑇 are consistent with Scott et al. (2020), who found the interquartile range of 𝑆𝑆𝑇 in the

climatology of the trade cumulus regime to range between 296–300 K, while for stratocumulus

it is 290–296 K. Sandu et al. (2010) found a comparable trend in 𝑆𝑆𝑇, although the sea-surface

is roughly 1.5 K warmer during the summer months of their investigation. In Schulz et al.

(2021) ten different winter seasons are considered for 72 h back-trajectories and they find a

steeper 𝑆𝑆𝑇 trend, increasing from roughly 294 K to 299 K in only three days. Compared to our

median trajectory their back-trajectories reach much further north-east, thus covering more of

the transition regime between stratocumulus and cumulus.
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The 𝐿𝑇𝑆 (Figure 3.3b) decreases weakly from roughly 16.5 K to 15.5 K after four days and

increases back to the initial value in the last two days. We can visually recognize a weak diurnal

cycle, also in the interquartile range, but the fit is with a 𝑅2 = 0.73 not ideal.

The trend in 𝐿𝑇𝑆 is much weaker compared to Sandu et al. (2010), where it drops from 18 K

below 12 K in six days. If we only consider the trajectories that pass through the stratocumulus

regime on the eastern Atlantic (cf. Figure 2.2b) the median 𝐿𝑇𝑆 drops from 17 K to 15 K before

increasing again during the last day, presumably due to the median trajectory moving north.

The weaker decrease in stability might also be due to the difference between our observation

period in January/February and May until October (period in Sandu et al. (2010)), when the

ITCZ is further north.

Schulz et al. (2021) finds that all four classified patterns originate from regions of 15–17 K

𝐿𝑇𝑆 and after three days Sugar and Gravel patterns decrease to 14 K, while Fish stays rather

constant and Flower patterns increase slightly above 17 K. These results are consistent with our

interquartile range in the beginning of the trajectories and after 72 local hours.

The relative humidity (Figure 3.4a) below the cloud layer starts to increase after 72 h with a

dominant diurnal cycle with a period of 24 local hours and an amplitude of 2 p.p.. Throughout

the full time series it is much higher than the lower tropospheric relative humidity that is

mostly used in literature (Scott et al., 2020) and therefore hard to compare with. The surface

wind speed (Figure 3.4b) increases slightly during the first three days from 7 m/s to 8.5 m/s

and then decreases again to 5.5 m/s. The interquartile range of the climatology from Scott

et al. (2020) is between 6–7.5 m/s. In our case the upper quartile is at 9 m/s indicating that

2020 was a comparable windy year in the trade region. In contrast, Schulz et al. (2021) finds

wind speeds for Sugar and Fish patterns between 7–8 m/s and for Gravel and Flower between

8–9 m/s, which is more in the range of our values.

The subsidence (Figure 3.5a) shows a general negative trend from 50 mPa/s to 35 mPa/s with a

diurnal cycle of relatively high amplitude and a period of 12.1 local hours (cf. Table 3.2). This is

presumably the second harmonic of a solar atmospheric tide. The variability in individual time

series on the timescale of a day is much larger than the variability of the median over the full

time series. As for the wind speed, we find higher values for the subsidence than expected from

Scott et al. (2020), but roughly in line with the results of Schulz et al. (2021). This, again, might

be related to the restriction on the winter season, where the subsidence is expected higher than

the yearly average, because the ITCZ is further away.

The free-tropospheric specific humidity is constant at 1 g/kg during the first two days and

increases deeper in the trade cumulus regime (day 5) to almost 2 g/kg and then decreases again.

A diurnality is almost not visible and the fit parameters for 𝑞 in Table 3.2 have to be treated

with caution. From Sandu et al. (2010) we would expect much values and an increase from

4–7.5 g/kg for the transition into the trade cumulus regime. Our observation is more consistent

with the time series of Flower back-trajectories in Schulz et al. (2021).

Most of the fits show a relatively high 𝑅2
while the fits of 𝐿𝑇𝑆, subsidence and specific

humidity only roughly resemble the actual ensemble medians, which points out that for

these parameters more than a simple trend and a diurnal cycle is needed to understand them.

However, at least for the 𝐿𝑇𝑆 we will simplify it with the analytical fit in the following analysis.

The diurnal cycles of 𝐿𝑇𝑆 and surface wind were also investigated by Vial, Vogel, et al. (2021).

They found the climatological mean 𝐿𝑇𝑆 to peak around 03:00 local time, whereas in our

observation the peak shifts from 22:45 in the beginning to 3:15 in the end of the trajectories. This

is reasonable because the observed domain in Vial, Vogel, et al. (2021) is reached by most cloud

fields in the end of their trajectories. The diurnal cycle of the surface wind speed that peaks

at 00:45 in the beginning and around 02:15 in the end of the trajectories is also in agreement

with the paper that shows the peak in the climatology around 02:00 local time. The authors

further found a diurnal cycle of low amplitude in 𝑆𝑆𝑇 with a peak in the afternoon from ground

observations. This is not observed in the reanalysis data along the trajectories.

Now that we obtained parameters on the diurnal oscillations in cloud metrics (Table 3.1) and

the large-scale conditions (Table 3.2), we want to compare the two groups. First we want to
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(a)

(b)

Figure 3.4: Same as Figure 3.3 but for a) relative humidity of the sub-cloud layer and b) 10m wind speed. Interestingly

all example trajectories show wind speeds lower than the median. This is probably because we picked long

time series and the slower the wind speed the longer the trajectories remain in the observation domain.

Table 3.2: Fit parameters for trigonometric term of fit function 2.6 on CCFs. The delay 𝑑 and period 𝑇 are given in local

hours.

𝑐𝑖 𝑎 𝑑 𝑇

rel. hum. (2.0 ± 0.1) p.p. (3.6 ± 0.6) h (24.0 ± 0.1) h

𝐿𝑇𝑆 (0.11 ± 0.04) K (22.7 ± 3.2) h (24.9 ± 0.9) h

wind speed (0.18 ± 0.04) m/s (0.8 ± 1.9) h (24.3 ± 0.5) h

𝜔 (−8 ± 1) mPa/s (2.3 ± 0.4) h (12.05 ± 0.06) h

𝑞 (−4 ± 3) · 10
−2

g/kg (19.2 ± 4.7) h (24.8 ± 1.4) h
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(a)

(b)

Figure 3.5: Same as Figure 3.3 but for a) Subsidence 𝜔 and b) specific humidity.

discuss the observation that the oscillation periods of cloud metrics are above the expected 24

local hours. They might be caused by a shift in the times of solar illumination when moving

south during the winter months. If we assume memory or lag in the cloud metrics and CCFs as

a reason, the lag would need to increase along the trajectories to actually change the oscillation

period. However, if the large scale environment changes between the start and end of the

trajectories it is conceivable that the lag increases as well.

If we assume that the diurnal cycle in cloud metrics is caused by CCFs, they should match in

their oscillation periods, which are shown with errors in Figure 3.6. For 𝐿mean, that has a longer

oscillation period of 25 local hours, the 𝐿𝑇𝑆 is the only parameter that roughly matches the

period although it has a very large error and the fit is not very accurate. The oscillation of cloud

fraction is matched best by the period of wind speed. The relative humidity is the only one

with the expected oscillation period of 24 local hours, which is slightly too short to match with
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Figure 3.6: Oscillation periods of diurnal cloud metrics and CCFs obtained with errors from fits using non-linear least

squares.

the cloud fraction.

Oscillation periods above 24 h Next to the oscillation period the phase in the diurnal signal should

also match. If we assume that 𝐿𝑇𝑆 causes the diurnal cycle in 𝐿mean, the difference between the

two phases can be seen as a delay between the cause in 𝐿𝑇𝑆 and the effect in 𝐿mean. The median

of mean cloud object length is 5.6 ± 4.2 local hours delayed against the 𝐿𝑇𝑆 (cf. Table 3.1 and 3.2).

The delay between cloud fraction 𝑐 𝑓 and wind speed is not significant (1.8 ± 2.6 local hours).

We do not expect cloud controlling factors to lack behind the cloud metrics, but compared to

the three-hourly average the delay is short enough to not be used as proof against a causality

between relative humidity and cloud fraction. However, the lag and the different oscilla-

tion periods together place a question mark behind a causal effect that might just be a correlation.

3.3. Memory in time series
In any time series analysis looking at the autocorrelation in the time series is an important

component to see how a time series is correlated with its own lagged version, i.e. how much

memory it has of its previous values. The mean autocorrelation functions of the two cloud

metrics and our six large-scale parameters is shown in Figure 3.7.

From Figure 3.7 we can conclude that the memory in sea surface temperature is the longest while

the memory of the cloud metrics is significantly shorter. The other CCFs have a memory equal

or slightly longer than the memory of cloud fraction, except for the semidiurnal subsidence.

The errorbars in 3.7b show that the central 50 % of decorrelation times of the time series already

have a wide spread such that almost all of them overlap partially except 𝐿mean and 𝑆𝑆𝑇. Our

three-hourly averaged time series are still correlated slightly as the decorrelation times are all

longer than 3 h. Daily data would be uncorrelated, but it would not capture the change in cloud

metrics appropriately anymore, which happens on timescales of 4–9 h. Because 𝐿𝑇𝑆, relative

humidity and wind speed change almost as fast, timescale separation between these large-scale

parameters and the cloud patterns becomes unfeasible. We should note, that the displayed

decorrelation times might differ from the Eulerian decorrelation. They also contain information

of the spatial decorrelation length because of the movement of the cloud fields of 32 km/h on

average. Therefore, the short decorrelation time of the large-scale parameters might just be a
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(a)

(b)

Figure 3.7: a) Median of autocorrelation functions of cloud metrics and cloud controlling factors for lags from 0–15 h in

steps of 3 h as the three-hourly averaged time series were used to make the autocorrelations of cloud metrics

and CCFs comparable. The decorrelation time is reached when the autocorrelation falls below 0.5 (dashed

line). b) Median decorrelation time with the decorrelation times of the first and third quartile as errorbars.

short decorrelation length that shows as a time scale in the Lagrangian framework. On top of

that comes the diurnal solar forcing that keeps changing these parameters. Independent of the

reasons, the cloud metrics follow the change in their environment almost immediately.

3.4. Diurnal cycle in cloud metrics space
Mesoscale patterns exhibit far greater variance than any single cloud metric can capture. In

fact, Janssens et al. (2021) has shown that 82 % of their variance is explained by four principle

components, making the state space of a mesoscale patterns four dimensional. In our analysis

with two cloud metrics we therefore study the projection of this four dimensional space onto
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Figure 3.8: Mean tendencies in cloud metric space of mean object length and cloud fraction. The arrows show the mean

change per hour of cloud patterns that are located within the corresponding bin. The individual tendencies

were obtained for every 10 min increment along all trajectories. The background color displays the number

of data points per bin.

the plane spanned by mean object length and cloud fraction. According to Janssens et al. (2021)

the plane spanned by the mean object length scale and the void size (open sky) has a cumulative

explained variance of 31 %. As explained in section 2.5, we found cloud fraction to be more

robust than open sky and due to their negative correlation we assume that our two cloud

metrics capture a similar amount of variance.

We can show the mean short-timescale tendencies in a flow field, following the method

described in section 2.7. Looking at the mean flow field of cloud patterns in Figure 3.8, a large

cycle can be recognized. The cloud fields initially develop from small object sizes and low cloud

fractions to higher cloud fractions, whereby the object size also increases. After reaching a

maximum cloud fraction, the existing clouds merge to form even larger objects, while the cloud

fraction remains constant. Subsequently, both the object length and cloud fraction decrease,

with the cloud fraction reaching its minimum prior to the mean object length. If we compare

this cycle with the diurnal cycle seen in the ensemble medians, we can identify the upper right

corner as the morning hours the descend in both metrics as the hours around noon, the lower

left corner as the evening and the increase in both metrics as the night. However, the cycle in

the flow field has a larger amplitude than the actual diurnal cycle of most of the time series and

can be seen as a composite out of all diurnal cycles. From the upper right corner, cloud fields

with larger objects and higher cloud cover transition into the cycle. This transition extends in a

much longer tail than shown here. Once a cloud field reaches the large cycle it becomes very

unlikely to reach large mean object lengths again. Thus, this transition appears irreversible in

the time series along the trades and can be interpreted as the transition from Stratocumulus to

Cumulus again.

Cloud fields occur most frequent at the lower end of the cycle (small 𝐿mean and 𝑐 𝑓 ) and in

the center of the cycle, where the mean tendencies almost vanish. The bin population can

be disassembled into two factors: the amount of trajectories that pass through the bin and

the average time the trajectories spend inside the bin (cf. Figure A.2.4). Most trajectories pass

through the bins at roughly 12 km and 20 %, which is consistent with the ensemble medians,

and they stay in those bins on average 1 h. Below 6 km less trajectories pass through the bins

(by at least a factor of two), but the trajectories spend a significantly longer time inside the bins

up to 5 h.

The vanishing mean tendencies can have multiple reasons. One possibility is that all tendencies
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are almost zero, the state is rather stable and cloud fields develop only slowly. On the other

hand, they could cancel each other out on average, which would make the state (symmetrically)

unstable. If both are true, we could describe it as a (meta-)stable state. The bins with

small absolute tendencies start below 12 km mean object length, with the smallest absolute

tendencies around 5 km and below. At larger 𝐿mean the mean tendencies are small due to mutual

cancellation. Different trajectories pass here at different phases of their diurnal cycle. The most

stable bin is indeed the one with the highest bin population. This almost cloud-free state is

reached by 471 trajectories, presumably most of them during the evening of their diurnal cycle.

The same figure with mean tendencies after Gauss-filtering the sub-hour variabiliy1 is shown in

Figure A.2.3. The main difference is that the tendencies in 𝐿mean are significantly weakened

at some places in pattern space. Thus, the mean tendencies in those bins were dominated by

fast changes in 𝐿mean, which are averaged out by the filter, leaving a symmetric distribution of

tendencies that cancel each other.

3.5. Dependency on large scale environment
After analyzing the flow field of the evolution of mesoscale cloud fields in the trades, we want

to investigate what causes the patterns. The assumption in Equation 2.13 is that the three scales

of cloudiness are additive to each other. The large-scale conditions lay the foundation, the

mesoscale self-organization can add variance of higher frequencies and the microscale adds

variance on even shorter time scales, for our satellite mainly perceived as noise. We are going to

test this assumption as well. In this section, we analyze what part of the mesoscale variance is

imposed by the macroscale. Therefore, we perform multilinear regressions (MLR) from CCFs

onto the cloud metrics. In order to do that, we first average the cloud metrics over intervals of

three hours onto the UTC times of the three-hourly CCFs and perform the MLR on the resulting

dataset (subsection 3.5.1). In subsection 3.5.2 we then perform the MLR on the analytical fits

found in section 3.1 and 3.2.

3.5.1. Multilinear regression onto time series of cloud metrics
Multilinear regression as explained in section 2.8 can predict the coefficients {𝛽0 , 𝛽1 , . . . , 𝛽6} of

our CCFs (plus a constant 𝛽0) in a linear equation like 2.9. Because we can not assume all CCFs

have a linear relation with the cloud metrics we also investigated power laws and exponentials.

A significant increase in explained variance was found, if the contribution of 𝑆𝑆𝑇 is considered

to be exponential. Thus, in the following we try to find the coefficients in:

𝑝𝑖 = 𝛽1 exp (𝑎 · 𝑆𝑆𝑇) + 𝛽2𝐿𝑇𝑆 + 𝛽3𝑅𝐻 + 𝛽4𝑣wind
+ 𝛽5𝜔 + 𝛽6𝑞 + 𝛽0 (3.2)

with factor 𝑎 being optimized (maximize the 𝑅2
of the MLR) to −1 for 𝐿mean and to −0.4 for 𝑐 𝑓 .

This exponential relation reminds of Clausius-Clapeyron which tells us that the saturation

pressure of water vapor exponentially increases with temperature. As a consequence, warmer

air can contain more water vapor before condensation sets in and the probability of cloud

formation reduces exponentially with increasing temperature. To put it differently, although,

the latent heat flux (evaporation) increases with 𝑆𝑆𝑇, the heat that is set free at cloud height due

to condensation drives the entrainment of drier air from above, such that the clouds become

thinner.

In Figure 3.9 it becomes clear that the sea surface temperature plays a dominant role when it

comes to the instantaneous prediction of cloud metrics from CCFs. The explained variance

is 57 %, if we use all six regressors, but remains the same if we reduce it to just 𝑆𝑆𝑇 and 𝐿𝑇𝑆,

the second most influential one. For a linear 𝑆𝑆𝑇 the explained variance ist only 23 %. The

exponential 𝑆𝑆𝑇 is positively correlated with 𝐿mean while the stability is slightly negatively

correlated.

In contrast, in LESs of the idealized Botany cases (Jansson et al., 2023) subsidence and surface

1The bandwidth of the Gaussian filter is 30 min
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(a)

(b)

Figure 3.9: Results of multilinear regression of 𝐿mean onto a) all large-scale parameters and b) the two most important

ones. The contribution of 𝑆𝑆𝑇 is considered exponential with exp (−𝑆𝑆𝑇). On the left panel the standardized

regression coefficients are shown per CCF and on the right a density plot shows the distribution of data

points around the ideal line where the predicted metric is equal to the actual metric.

wind are found to be most influential for the cloud size of shallow cumuli, while temperature

and stability do not play a role2. The difference between our observations and the simulations

is, that we cannot fix the macroscale and let the system equilibrate, but our cloud fields see

a ongoing change in the macroscale. Further, the importance of 𝑆𝑆𝑇 might be reduced if

we reduce our domain to the trade cumulus regime, where the large cloud decks from the

stratocumulus to cumulus transition and the gradient in 𝑆𝑆𝑇 would disappear.

For the cloud fraction the 𝑆𝑆𝑇 is also dominant although less than for 𝐿mean (Figure 3.10). The

explained variance of 55 % is also reached after we reduce the regressors to the three most

important ones: relative humidity, wind speed and 𝑆𝑆𝑇. The exponential 𝑆𝑆𝑇 and the wind

speed are positively correlated with 𝑐 𝑓 while the relative humidity is negatively correlated.

If the 𝑆𝑆𝑇 contribution is assumed linear, 48 % of the variance is explained. Interestingly the

increase in 𝑅2
from linear to exponential regression in 𝑆𝑆𝑇 is much more significant in 𝐿mean. It

remains as a question for future analyses, if this has a physical reason.

In Botany, cloud fraction is positively correlated to wind speed, free-tropospheric humidity and

to second order larger stability. It is also negatively correlated with subsidence. However, the

2These results come from personal communication with P. Alinaghi and are not published by the end date of this

thesis.
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(a)

(b)

Figure 3.10: Results of multilinear regression of cloud fraction onto a) all large-scale parameters and b) the three most

important ones. The contribution of 𝑆𝑆𝑇 is considered exponential with exp (−0.4 · 𝑆𝑆𝑇). On the left panel

the standardized regression coefficients are shown per CCF and on the right a density plot shows the

distribution of data points around the ideal line where the predicted metric is equal to the actual metric.

subsidence in Botany is defined in the cloud layer and not in the free-troposphere as in our data.

Note that at larger wind speeds the cloud fraction increases. This is consistent with the results of

Bony, Schulz, et al. (2020), who showed that under conditions with stronger winds Flower and

Gravel occur and Fish and Sugar, if the winds are less strong. Flower and Fish have comparable

cloud fraction and mean object length, but Gravel patterns have larger cloud fractions than

Sugar patterns. If 𝐿mean, in contrast, is uncorrelated with wind speed we would expect Sugar

and Gravel to be equal in mean object length, which is the case if we follow Bony, Schulz, et al.

(2020).

In our further regressions we will neglect the specific humidity 𝑞 and subsidence 𝜔 as they

don’t explain much additional variance in the cloud metrics.

If we use the obtained 𝛽-coefficients to predict the time series of cloud metrics from the time

series of CCFs, we can compare the ensemble medians of the original time series and the ones

that were regressed. This is shown in Figure 3.11. For both cloud metrics the median of the

regressed time series stays inside the interquartile range, but it does not capture the diurnal

cycle of the metrics. This would not be surprising if some CCFs would not follow a diurnal

cycle themselves, as we demonstrate in section 3.2. The influence of CCFs with a diurnal cycle

is obviously underestimated in the regression over all temporally averaged time series.
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(a)

(b)

Figure 3.11: Comparison of the median of the original time series and the ones regressed from MLR on the 3-hourly

averaged data for a) mean object length and b) cloud fraction.

The same regression as above, with all CCFs, was performed onto datasets, where CCFs and

cloud metrics were averaged over intervals longer than 3 h, ranging up to averages over the

full time series (144 h) and thereby average out diurnal cycles in cloud metrics and large-scale

parameters. The change in 𝑅2
for these regressions is shown in Figure 3.12. The variance of

mean object length is best explained if we look at 24 h-averages. The value of 𝑅2
can increase, if

the variance in cloud metrics becomes smaller while the variance in the CCFs is constant or

decreases less than in the cloud metrics. Thus, at the timescale of a day we reduce the variance

in 𝐿mean more than the variance in CCFs. Because 𝑆𝑆𝑇 is the most important CCF, we can

explain this result by the absence of a diurnal cycle in 𝑆𝑆𝑇. For longer averaging intervals, the

explained variance decreases except at 96 h-averages. As we require longer averages, more and

more trajectories are not long enough anymore and are neglected in the regression. This can

reduce the variance in the cloud metrics as well, leading to a higher 𝑅2
, if the variance in CCFs

is not reduced by the same amount.
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Figure 3.12: Explained variance of MLR on temporally averaged time series data. Averages are computed over temporal

intervals of different lengths ranging from 3 h to the full trajectory length of almost a week in some cases.

Dashed are values for MLR with linear contribution of 𝑆𝑆𝑇 in comparison to the exponential ones.

For the cloud fraction as well as for the regressions linear in 𝑆𝑆𝑇 we see a maximum in 𝑅2
at

three- to four-day-averages. This indicates multi-day-variability that needs to be averaged out

to increase the 𝑅2
, but the reason for this is unknown.

3.5.2. Multilinear regression onto fitted ensemble medians
Now we will perform the regression onto the fits on the ensemble medians discussed in

section 3.2. The fits are reduced in complexity compared to the temporal averages of all time

series. First, taking the median removes noise and reduces the variance of the data significantly.

Second, by fitting a rather simple analytical function we reduce all the variables of the regression

to five independent fit parameters. Therefore, we expect a higher explained variability for this

regression, because we basically regress a climatology instead of the variability of individual

time series. On the other hand, three of the five fit parameters for each regressor and the

cloud metrics describe the diurnal cycle. This way the diurnal cycle plays a more important

role in finding a good regression here, which the previous regression still lacked (cf. Figure 3.11).

In Figure 3.13a the 6 hour delayed 𝐿𝑇𝑆 was used as a regression coefficient as the phase

difference between 𝐿𝑇𝑆 abd 𝐿mean is (5.6 ± 4.2) h (cf. Table 3.1 and 3.2), but CCFs are available

in steps of 3 h. Without the delay in 𝐿𝑇𝑆 the regression reaches an explained variability of 87 %

instead of 98 % (not shown), with a larger influence of 𝑆𝑆𝑇, comparable to Figure 3.9. This is

because of the phase shift of roughly 𝜋/2 between the diurnal cycles of the immediate 𝐿𝑇𝑆 and

𝐿mean that makes both seem rather uncorrelated (or even negatively correlated). The delayed

𝐿𝑇𝑆 has about equal influence with the exponential 𝑆𝑆𝑇. From the evolution of the two CCFs

we can conclude that 𝐿𝑇𝑆 causes the diurnality while the 𝑆𝑆𝑇 controls the trend.

The effect of 𝐿𝑇𝑆 on 𝐿mean is consistent with Bony, Schulz, et al. (2020). There, they found Flower

and Fish patterns prevail for a stronger inversion (thus higher 𝐿𝑇𝑆), which have larger mean

object lengths than Sugar and Gravel. Nevertheless, we need to mention that the uncertainty in

the phase shift between 𝐿𝑇𝑆 and 𝐿mean is very large, which is due to the relative poor fit of 𝐿𝑇𝑆.

For cloud fraction in Figure 3.13b we recognize that the exponential 𝑆𝑆𝑇 still has the largest

regression coefficient. The variance of the diurnal cycle is split up between wind speed and

relative humidity. One of them alone cannot fit the diurnal cycle of cloud fraction very well,

as the oscillations in wind speed are too small in amplitude and the relative humidity is

slightly delayed to cloud fraction and has a small frequency mismatch. However, taken together
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(a)

(b)

Figure 3.13: Result of MLR on fitted ensemble medians for a) mean object length and b) cloud fraction. On the left

panel the standardized regression coefficients are shown per CCF and on the right a density plot shows the

distribution of data points around the ideal line where the predicted metric is equal to the actual metric.

they give an almost perfect regression on the fitted functions. Let us now use the regression

coefficients of this regression, where diurnality is more pronounced and the resulting signs of

the correlations are consistent with other studies, and try to predict the three-hourly averaged

cloud metrics from the corresponding CCFs. In Figure 3.14 the medians of the temporally

averaged metrics are shown together with their fits and compared to the ensemble medians of

the time series that we predicted from the regression coefficients found in Figure 3.13. For the

mean length scale the regression with the delayed 𝐿𝑇𝑆 and 𝑆𝑆𝑇 follows the trend rather well

and also captures some features of the diurnal cycle, due to the larger regression coefficient of

the delayed 𝐿𝑇𝑆 that matches the frequency of diurnal oscillation with the mean object length.

It only starts at later times, because before we have no information on the six-hourly lagged

𝐿𝑇𝑆 before. The trend in 𝐿𝑇𝑆, however, causes a positive bias for the second and third day of

the time series. This might be because of using the same regression on the stratocumulus and

the cumulus regime. This would only be valid, if the processes that control the clouds are the

same in both regimes. Here we find another indication that this is not the case.

The median cloud fraction is followed very well by the median of regressed time series,

especially in the center of the time series, where noise is the lowest as the most trajectories

are considered in the medians. We recognize only a small phase difference between the two

medians at the end of the time series, that is caused by the slight frequency mismatch of
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(a)

(b)

Figure 3.14: Comparison of the median of the original time series (black) with its fit (orange) and the median of the

ensemble of regressed time series using the same regression coefficients (green). For both cloud metrics the

fit ignored the first data point, as the jump in the metric value is due to a sudden increase in the number of

trajectories considered in the ensemble median (for most trajectories the first few hours are cut off). The fit

parameters are shown in Table 3.1.

the relative humidity. From these results we can conclude that we are able to explain the

trend mainly by a change in sea surface temperature and the diurnal oscillations of the mean

object size by the lower tropospheric stability and of the cloud fraction by wind speed with an

uncertain contribution of relative humidity. With this knowledge we can look at the residual

variance in the mesoscale patterns.

3.6. Residual evolution in cloud metrics
We performed two regressions, one on temporally averaged time series data and one on the

fitted ensemble median of these time series with reduced noise and increased importance of

diurnality as explained in the previous section. For both we want to see how the residual signal
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(a)

(b)

Figure 3.15: Residual cloud metrics a) mean object length and b) cloud fraction over time after the start of the trajectory,

where the metrics predicted from the full data regression are subtracted from each time series. The colorful

lines show the evolution along individual trajectories, while the black line is the median of all trajectories

at each time step and the interquartile range is shaded.

in cloud metrics space looks like and what we can conclude from that for a possible mesoscale

self organization.

First, we look at the residual of the full data regression. In Figure 3.15 we see again that the

full data regression does not capture the diurnal cycle of the cloud metrics that still occurs

strongly in the residual signals. The trend is removed very well, such that the oscillations are

now around zero with a very slight increase in residual 𝐿mean and decrease in residual 𝑐 𝑓 over

the full length of the time series. From the individual time series we can see that the very large

objects are overestimated in size by the regression as well as smaller mean object sizes that

happened to be above colder 𝑆𝑆𝑇. This hints, that although the trend of 𝑆𝑆𝑇 is removed rather

well, the exponential might be too steep for 𝐿mean. On the other hand, large objects tend to be

cut off by the boundary of the frame and thereby be negatively biased in the metrics.

If we compare the residual signals after removing the regression on the fitted medians, displayed
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(a)

(b)

Figure 3.16: Residual cloud metrics a) mean object length and b) cloud fraction over time after the start of the trajectory,

where the metrics predicted from the regression on fitted ensemble medians are subtracted from each

time series. The colorful lines show the evolution along individual trajectories, while the black line is the

median of all trajectories at each time step and the interquartile range is shaded.

in Figure 3.16, we can only recognize few remnants of the diurnal cycle and no general trend.

We see larger residual signals in cloud fraction compared to the residual shown in Figure 3.15.

If we compare the variance that is left in the data, the residuals of both cloud metrics after

removing the regression on all time series still have a variance of 43 % compared to the variance

before the removal of large-scale influence. The residuals of the regression on fitted ensemble

medians still contain 41 % of the variance in 𝐿mean and 95 % of the variance in 𝑐 𝑓 . Although we

can capture the diurnal cycle in 𝑐 𝑓 very well, the prediction still deviates a lot both positively

and negatively from the true cloud fraction.

Looking back at the flow fields, we can compare the original flow field in its standardized

version (Figure 3.17) with the ones resulting from the residual cloud metrics (Figure 3.18). In

both of the flow fields of residual cloud metric tendencies we see a convergence towards the

center, which is in both cases slightly below the mean in both cloud metrics. The center in
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Figure 3.17: Gauss-filtered mean tendencies in cloud metric space of both standardized mean object length and cloud

fraction. Standardization was done by subtracting the mean and dividing by the standard deviation. The

arrows show the mean change per hour of cloud fields that are located within the corresponding bin. The

tendencies were obtained for every 10 min increment along all trajectories. The background color displays

the number of data points per bin.

Figure 3.18a is more widespread because the diurnal cycle is still left in the residual cloud

metrics. In Figure 3.18b the center is more circular as the diurnal cycle is largely removed and

the residual metrics vary in all directions in metric space. The bin population is higher for

residual mean object length that are slightly smaller than the mean value, which can be caused

by the positive bias of our regression seen in Figure 3.14.

Both flow fields resemble the behavior of noise, where the mean tendencies point towards the

mean value in the center of the standardized space. Thus, we are not able to see a systematic

mesoscale self organization after we removed the influence of the macroscale. To find this

self organization, we would need to gain an even better understanding of the processes of the

large scale influence in order to not remove variance that is actually unrelated to to it. On the

other hand, we need to select the right cloud controlling factors, which might be at different

pressure levels in reality compared to LES. For example the sub-cloud relative humidity can

explain variance in cloud fraction, but it is questionable if it actually controls the clouds. The

best regression does not always inform us about the true physical relations, but from our

point of knowledge it is not possible to identify mesoscale self-organization from removing the

large-scale influence from the mesoscale signal.
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(a)

(b)

Figure 3.18: Residual mean tendencies in cloud metric space of standardized mean object length and cloud fraction

after subtracting the predicted cloud metrics from a) the full data regression and b) the regression on

fitted medians. The arrows show the mean change per hour of cloud fields that are located within the

corresponding bin. The tendencies were obtained for every 3 local hour increment along all trajectories.

The background color displays the number of data points per bin.
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4
Discussion

In this section we want to discuss some of the limitations of the study and possible solutions

as well as implications that we can draw from the results. It is meant to shine a critical light

on the findings and their robustness and to show how it could be improved and to what cost.

First, we discuss other methods to track cloud fields in a Lagrangian framework (section 4.1),

then we review possibilities to identify patterns of shallow cumulus clouds. Subsequently,

in section 4.3 we discuss possible ways how the large scale circulation could couple with the

mesoscale. Finally, we look at implications of our results for the cloud radiative effect and

discuss possible feedback mechanisms qualitatively.

4.1. Lagrangian tracking of cloud fields
Trajectories of air masses and their cloud fields obtained by reanalysis winds have been applied

in multiple studies for stratocumulus, trade cumulus and the transition between the two regimes

(Eastman and Wood, 2015; Sandu et al., 2010; Schulz et al., 2021). Bretherton et al. (2010) showed

that the ECMWF operational analysis output of wind components below the cloud layer is

consistent with real measurements. This indicates that we can trust this method at least for

temporal resolutions of 12 h where it has been applied so far. The spline interpolation on hourly

trajectory points and linear interpolation in between appears to have reasonable small errors if

we compare it to the frame size we compute the metrics on. However, to quantify the error in

the trajectories thoroughly, statistics about the drift of large cloud objects inside the Lagrangian

frame would need to be performed. Therefore, the Tracking and Object-Based Analysis of

Clouds (tobac) package can be used. It is identifying cloud objects based on (multiple) given

thresholds of, in our case, the brightness temperature and performing a segmentation. The

centroids of the cloud objects are then linked to the object in the subsequent image that is closest

to the objects original position or its position predicted from previous movement, depending

on the chosen method. This results in tracks of individual cloud objects. However, we find that

the results of this tracking method are very sensitive to cloud objects splitting and merging

and are more robust for larger cloud objects. While this makes it difficult to use tobac to obtain

trajectories for a whole field of clouds and even impossible if the sky is cloud free, the tracking

algorithm could be used to evaluate the statistics of cloud object drift relative to the frames

along the ERA5 trajectories. This could proof that the framework of Eastman and Wood, 2015 is

also applicable on shorter timescales.

Another option to track clouds from a computer science perspective is matching subsequent

cloud images using the so called Earth Mover Distance (EMD) as matching cost. The method

is originally developed for image retrieval (Rubner et al., 2000), but it can also be extended

to detecting the movement of features, for example clouds Ji et al., 2006. If the cloud objects

are considered a two-dimensional distribution the EMD is the minimal work that must be

performed to translate one distribution into the other. The method is promising to be more
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robust than the linking algorithm of tobac that is only based on minimal search distance between

the centriods of cloud features and the EMD could be minimized for a whole frame, such that

we can directly obtain the resulting movement of the entire cloud field. Even so, this method

has not been thoroughly tested on tracking cloud fields yet and would need to be compared to

ERA5 trajectories in their ability of following cloud fields and computational efficiency.

Though these methods are interesting alternatives and could be used to test how well the clouds

are following the trajectories, the method that best suits the Lagrangian approach is to follow

the air masses where the clouds are moving in (as done by the ERA5 trajectories), instead of the

objects themselves. Considering the vertical component would be the next step to gain more

accuracy, but especially along the strong trade winds the vertical component is negligible small

in comparison.

As a last note, for more robust statistics over ensembles of trajectories, the trajectories should

be chosen with the same length without loosing their alignment in local time to see diurnal

cycles. This was not possible in this study without reducing the amount of data to a minimum.

Therefore, if the number of trajectories is increased, we can sort more rigorously for the ones that

fulfill the conditions of a minimum length while staying in the studied domain and preferably

not enter storm tracks.

4.2. Identification of shallow cumulus and mesoscale pattern
The shallow cumulus clouds in this thesis are simply defined by the binary cloud mask described

in section 2.3, where shallow cumuli have cloud top brightness temperatures between 280–290 K.

This simple method is also applied in multiple other studies (Bony, Schulz, et al., 2020,Vial,

Vogel, et al., 2021) and has proven efficient in identifying the Sugar, Gravel, Fish and Flower

patterns. The problem remains that higher clouds are considered as non-cloudy pixels by the

cloud mask. While we do not want to include Cirrus clouds, clouds that experience deeper

convection and have tops that are colder than 280 K could be considered, for example by using

multiple thresholds and more levels in the cloud mask. This way more scenes with high clouds

could still be considered and the metrics could be computed on the different levels as well.

Further, instead of only considering the brightness temperature one could also measure the

cloud optical depth of the clouds as it is relevant for the cloud albedo and therefore the CRE.

The mean object length scale used in our analysis is correlated with the cloud optical depth

(Alinaghi et al., 2023; Janssens, 2023), but the direct measurement would certainly add value to

the analysis.

The classification of mesoscale patterns with cloud metrics has big advantages by being objective

and not limited to a subset of predefined states, but conveying the continuum of states in pattern

space. One disadvantage is that the scene size needs to be constant as some of the cloud metrics

are sensitive to the scene. Other methods, like the deep neural network trained on visual

images by Rasp et al., 2020 and extended on brightness temperature inputs by Schulz et al.,

2021, are able to identify patterns in scenes of variable size. This is especially usefull as we know

that patterns can differ a lot in size, like Fish and small extents of Sugar. The neural network

classification could even be used to link rectangles of patterns in subsequent images and thereby

tracking cloud fields. This would, however, only be applicable as long as the patterns do not

transition between the Sugar, Gravel, Fish and Flower classes. The transition states would likely

not be recognized by the neural network because it is only trained on distinct classes. The

training process makes the neural network as subjective as the labelling method of the training

data. Therefore, a deep neural network could be trained with scenes that are characterized by

cloud metrics before and sorted into classes that can still be consistently identified by the neural

network, but that leave no transitional states in the metric space. This way, we could combine

the advantages of both methods and objectively identify patterns of various sizes based on the

visual appearance of a certain cloud metrics state and track their spatial and metric evolution.

Though, this method would cost much training and testing effort and it is uncertain if it would

perform better than the pure classification by cloud metrics on frames of a reasonable size. The

ideal frame never contains more than one type of pattern, but is large enough to identify larger

patterns that only fit partially into the frame. Based on the experience of other studies Janssens
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et al., 2021 and our comparison with smaller frame sizes we chose the 5°×5° frames, but a more

systematic analysis can help to find the ideal frame size for a given set of cloud metrics.

4.3. Coupling between large scale and mesoscale
The question on how the different meteorological scales couple with each is other is a very

central question in cloud research. Because our observations cannot resolve the microscale

(GOES-16 resolution of 2 km), we constrain this discussion to the macroscale and the mesoscale.

The cloud controlling factors belong to the large scale circulation and prescribe by definition

the parameters that control the mesoscale to a certain extent. Our results imply that the mean

state of the mesoscale can be explained by the large-scale, but there is an unexplained variance

of more than 40 % left in the cloud metrics. This could be because other important CCFs are

missing in our regression, like the free-tropospheric humidity or the temperature advection.

Because our trajectories include the transition from stratocumulus to trade cumulus, the

regression coefficients could also be dependent on the sub-regime they are in. To consider

this, one could separate the regressions and perform them independently on both sub-regimes,

resulting in the regression functions 𝑓𝑆𝑐(ℒ) for stratocumulus and 𝑓𝐶𝑢(ℒ) for trade cumulus

that both depend on the large-scale conditions ℒ. The transition could then be included by a

third function 𝑡(ℒ) that gives the respective weight of the two regressions and is dependent on

large-scale variables that are known to control the transition (𝑆𝑆𝑇 and 𝐿𝑇𝑆 following Sandu

et al., 2010). The resulting regression from large scale onto the mesoscale would then be

𝑓 (ℒ) = 𝑡(ℒ) · 𝑓𝐶𝑢(ℒ) + (1 − 𝑡(ℒ)) · 𝑓𝑆𝑐(ℒ). (4.1)

As already discussed in subsection 3.5.2 for the lower tropospheric stability, lags between the

cloud controlling factors and their effect onto the cloud metrics are likely to exist. Ideally,

the regressors would be weighted integrals over the history of the cloud controlling factors

with a maximum weight at some lag Δ𝑡. This would make the analysis a lot more sophis-

ticated. A simpler version would be to investigate the lags between all CCFs and the cloud

metrics, for example by introducing sudden changes in the large-scale conditions in LES models

and compare the resulting evolution of the cloud metrics to those in an unperturbed environment.

If we presume that the mesoscale can also develop on its own in the self-organization

process, the question arises how the two forcings are coupled. Both, the mesoscale state

imposed by the cloud controlling factors and the self-organization term are assumed linear and

additive separable in this thesis. This simple relation is motivated by simulations that keep

the large scale constant and find self-organization independent of what the chosen large-scale

parameters are (Jansson et al., 2023). It is assuming a linear dynamical system, where the

large-scale forcing and the mesoscale forcing are independent of each other. The residual cloud

metric state therefore describes only that part of the mesoscale that is completely independent

of the large scale. If we call the macroscale state ℒ, the observable mesoscale state ℳ and the

state of (in-)dependent mesoscale self organization ℳ𝑠 this translates to the equation

ℳ = 𝑓 (ℒ) +ℳ𝑠 , (4.2)

where the function f contains the linear regression on CCFs. This decomposition would result

in the equation of motion

dℳ
d𝑡

=
d 𝑓 (ℒ)

d𝑡
+ dℳ𝑠

d𝑡
= 𝑭ℒ + 𝑭ℳ𝑠

= 𝑭ℳ , (4.3)

where the large scale forcings 𝑭ℒ can further be separated into its CCF components. In our

analysis we assume the self-organizational forcing to be independent of the large scale, i.e.

𝑭ℳ𝑠
= 𝑭ℳ𝑠

(ℳ𝑠). However, we do not know about the physicality of ℳ𝑠 , while ℳ is observable

in the form of cloud metrics. Thus, one could argue that the forcing should be depending on

the mesoscale state 𝑭ℳ𝑠
= 𝑭ℳ𝑠

(ℳ), making it indirectly dependent on the large scale. This

could be analyzed by keeping the flow field in its original state (cf. Figure 3.8) and only change

the tendencies, by removing the large-scale forcing.
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Figure 4.1: Change in cloud metrics for four scenarios of global surface temperature increase assuming the observed

temperature increase of 1 K (cf. IPCC, 2021) already in equilibrium for the state of our analysis 2020

("no feedback"). Note that 𝑆𝑆𝑇 increase can take multiple decades, such that its feedback here might be

underestimated. The "strong 𝑆𝑆𝑇 feedback" case uses +2 std. dev. 1/K 𝑆𝑆𝑇 feedback and zero feedback

for 𝐿𝑇𝑆, the "strong 𝐿𝑇𝑆 feedback" case uses +1 std. dev. 1/K and 0.3 std. dev. 1/K for 𝑆𝑆𝑇 and 𝐿𝑇𝑆,

respectively, and the "most likely feedback" case uses 1.6 std. dev. 1/K and 0.2 std. dev. 1/K.

4.4. Implications for cloud radiative effect
Let us finally look at the implications of our results for the cloud radiative effect (CRE). Because

the cloud optical depth determines the cloud albedo and is correlated with the mean object

length (Alinaghi et al., 2023) we can qualitatively discuss the change in CRE caused by a change

in cloudiness predicted from our CCF regression.

We will consider the regression on the fits of ensemble median time series shown in Figure 3.13

and introduce different cloud-regime-averaged CO2-forced changes in the relevant CCFs

projected by GCMs and summarized in Myers, Scott, et al., 2021. The largest changes (in units

of standard deviation of natural variability per degree global warming) are in 𝑆𝑆𝑇 and and the

estimated inversion strength 𝐸𝐼𝑆, which is strongly correlated with 𝐿𝑇𝑆 (Bony, Schulz, et al.,

2020). Changes in 𝑆𝑆𝑇 are between 1 and 2 standard deviations per degree global warming

for stratocumulus and trade cumulus, while 𝐸𝐼𝑆 increases slightly between 0 and 0.3 standard

deviations. We assume the same change in 𝐿𝑇𝑆, which is linear in our regression for 𝐿mean

and with the standardized regression coefficient of about 12 km this translates to an increase

in mean object length of 0–3.6 km/K induced by 𝐿𝑇𝑆 change. On the other hand, both mean

object length and cloud fraction decrease exponentially with 𝑆𝑆𝑇 increase, such that it has a

stronger effect on stratocumulus than on trade cumulus and counteracts the increase in mean

length scale in both sub-regimes.

In Figure 4.1 four scenarios of global surface temperature increase are shown, each comparing
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Figure 4.2: Change in distribution of 𝐿mean · 𝑐 𝑓 as an indicator of CRE for same scenarios and cases as in Figure 4.1.

the cases of a most likely feedback, a strong 𝑆𝑆𝑇 feedback and a strong 𝐿𝑇𝑆 feedback with

the 2020 case without cloud feedback. In all four climate change scenarios the changes are

the strongest for a strong 𝑆𝑆𝑇 feedback and the weakest for a strong 𝐿𝑇𝑆 feedback, while the

most likely scenario is in between the two. If we compare the different scenarios for the same

case, we see the mean object length being almost invariant, while the cloud fraction decreases

roughly exponentially with the temperature increase. This is because the effects of 𝑆𝑆𝑇 and

𝐿𝑇𝑆 increase compensate each other in the regression of the mean object size. Even in the

strong 𝐿𝑇𝑆 feedback case we see the very large cloud objects with high cloud fraction become

less often. This is indicating less stratocumulus type of clouds and more trade cumulus clouds.

The implications for the cloud radiative effect can be estimated by looking at how the product

𝐿mean · 𝑐 𝑓 changes its distribution in the different scenarios (cf. Figure 4.2). Note that this

product is proportional to CRE and has no direct quantitative interpretation. We see that the

distribution is shifted to smaller values in all scenarios, indicating a negative change in CRE and

thus a positive cloud feedback. This effect is the strongest in the case of strong 𝑆𝑆𝑇 feedback

and the weakest in the case of strong 𝐿𝑇𝑆 feedback. In that case the peak occurrence does not

even shift significantly in all four scenarios. The most likely case is in between the other two

cases. We also see that the distribution changes the most between the 2 K and 3 K scenario and

is hardly distinguishable between the 4 K and 5 K scenario. This is due to our assumption of an

exponential decrease in both cloud metrics with increasing 𝑆𝑆𝑇. Small changes have a large

effect, but larger changes in global temperature reach a saturation. We should mention though,

that it is unlikely that our regression still holds in such a different climate scenario.

Further, only two cloud controlling factors were taken into account here. Myers, Scott, et al.,

2021 shows that the more cloud controlling factors are included in the projection of the cloud
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feedback, the more they compensate for each other and the smaller the overall feedback. Thus,

including more CCFs might lead to less significant changes in the CRE. Including the feedback

in windspeed in our analysis here does not change a lot as both its regression coefficient and

the proposed feedback by Myers, Scott, et al., 2021 are small compared to other effects.
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5
Conclusion and Outlook

We investigated the evolution of the mesoscale organization in trade cumulus clouds within a

Lagrangian framework by computing time series of cloud metrics on GOES-16 images along

ERA5 trajectories. The cloud metrics were computed every 10 min on 5°×5° frames and ERA5

cloud controlling factors were available every 3 h.

The mean cloud object length and the cloud fraction both show a transition from stratocumulus

to trade cumulus during the first three days as some of the trajectories start in the eastern

Atlantic, where stratocumulus prevail. Over the full six day length of the time series we found a

diurnal cycle in both cloud metrics. The cycle of the cloud fraction is on average 2 h ahead of

the cycle of the mean cloud object length, but the distance increases as the period of the object

length is slightly longer than that of the cloud fraction. Both have a period longer than the

expected 24 local hours, which also indicates that the processes connected to the diurnal cycle

change with the transition from stratocumulus to trade cumulus.

The diurnal cycle is also a prominent feature in the evolution of cloud fields in cloud metrics

space. Actual stable states were not found, but an almost cloud-free sky with few small

clouds lasts the longest. Once the mean cloud objects become small after the transition from

stratocumulus only very few grow to larger mean objects lengths than 30 km again. Most cloud

fields remain in a limit cycle that shifts to smaller cloud sizes and cloud fractions. In the diurnal

cycle during the night small clouds form before they grow to larger objects. During the day the

clouds evaporate again until only few small clouds remain.

From the decorrelation times we can conclude that the cloud fraction has a slightly longer memory

than the mean cloud object length, but both of them change roughly on the same timescales as

the cloud controlling factors that exhibit a diurnal cycle. The sea-surface temperature which

does not show diurnality in our time series has a decorrelation time twice as long compared to

the cloud metrics. In order to separate the timescales of cloud controlling factors and cloud

metrics we would need the decorrelation times to be significantly longer for all cloud controlling

factors. The cloud metrics, that we use to quantify the mesoscale organization, change almost

simultaneously with the large scale. Thus, in contrast to simulations, the evolution of the

mesoscale in an approximately constant environment is very difficult to observe.

Assuming a linear coupling between the large-scale forcing and the forcing of the mesoscale

self-organization, we regressed the large-scale influence to remove it from our timeseries and

obtain only the mesoscale forcing. We conclude that the sea-surface temperature is controlling

the stratocumulus-cumulus-transition, while the lower tropospheric stability most likely controls

the diurnal cycle in mean cloud object length and the surface wind speed is positively correlated

with the cloud fraction. The role of the surface relative humidity remains unclear as it likely

only co-evolves with the cloud fraction. Future studies should include the free tropospheric

relative humidity to see if it can better explain the diurnality in cloud fraction together with the

surface wind speed.

The variability in cloud metrics explained by cloud controlling factors is larger than 50 % if
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the regression is performed on the individual time series. This value increases if we compute

temporally averages that remove the diurnal cycle in the time series. By only using the analytical

fits on the ensemble median time series of cloud controlling factors and metrics in the regression,

the explained variability increased to almost 100 %

Still, after removing the large-scale forcing more than 40 % of the variance in the cloud metrics

remained. This indicates that more processes, possibly on the mesoscale, play a role in

controlling the cloudiness, if the remaining variance is not solely due to random noise. However,

from the analysis of the residual signal in the cloud metrics, we can only derive that the cloud

fields are forced into the mean state that is explained by the large scale, a result we expect from

random noise. Based on our regressions we can estimate that the low cloud feedback is positive

and stronger for stratocumulus than for trade cumulus.

The question, whether processes on the mesoscale can lead to organization independent

of the large-scale, as shown in simulations, can not be finally answered. As our goal is to

predict the cloudiness in the trades for warmer climates, the large remaining variance in the

mesoscale should be further investigated. The timescales for observing the mesoscale evolving

independently from the large-scale are very short and presumably not captured by the 3 h

averaged data we used. Therefore, following studies should interpolate the cloud controlling

factors onto shorter timescales or even use data with a higher temporal resolution, like hourly

ERA5 variables. Further, the dataset should be expanded in the number of trajectories and

spread over multiple winter seasons. This way, not only the statistics can become more robust,

but also the interannual variability can be investigated, leading to better climate feedback

projections. Finally, the processes that control the stratocumulus-cumulus-transition can be

studied closer, now that Lagrangian analyses with high temporal resolution are possible. A

separate study should exclusively focus on the trade cumulus regime, such that the gained

knowledge of both can contribute to a full picture of the low subtropical marine cloudiness.

Based on these observations climate models could be better constrained and the intermodel

spread could be reduced, which would result in a more accurate estimate of the climate

sensitivity of our planet.
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A
Appendix

A.1. List of computed metrics
Out of the 21 cloud metrics used by Janssens et al., 2021 the following ones were computed

along the trajectories:

• Maximum object length scale (𝐿max)

• Mean object length scale (𝐿mean)

• Cloud fraction (𝑐 𝑓 )

• Number of objects (𝑁
objects

)

• Mean object perimeter

• Open sky (𝑜𝑠)

• Orientation

• Fractal dimension

• 𝐼𝑜𝑟𝑔

• 𝑆𝐶𝐴𝐼

• 𝐶𝑂𝑃

A.2. Additional figures
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(a)

(b)

Figure A.2.1: a) Alignment of the trajectories after dropping time steps outside of the domain of observation as shown

in Figure 2.1. On the x-axis the trajectory time steps are shown up to 933, which corresponds to 6.3 d in

local time, and on the y-axis we see the trajectory numbers up to 2794. In yellow are time steps, where

cloud metrics are computed, and in dark, where no data is available. In b) the time steps with high cloud

fraction above 25 % are dropped as well. Note that for the ensemble medians the amount of trajectories

that are taken into account changes over the time steps.
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Figure A.2.2: Relative difference in mean metric values for different chosen high cloud fractions to scenes almost free of

high clouds. We took the mean metric value up to the given high cloud fraction and took the ratio with

the mean metric value for a high cloud fraction of less than 1 %, considered as the "undisturbed" mean.

The relative difference is then shown in percent as well.

Figure A.2.3: Gauss-filtered mean tendencies in cloud metric space of mean object length and cloud fraction. The

arrows show the mean change per hour of cloud fields that are located within the corresponding bin.

The tendencies were obtained for every 10 min increment along all trajectories. The background color

displays the number of data points per bin. The Gauss-filter was implemented with a width of 𝜎 = 30 min

under the assumption that this averages out changes in the microscale and noise in the metrics, while

keeping the meso- and large scale evolution unchanged.
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(a)

(b)

Figure A.2.4: Same as Figure 3.8 but colors indicate mean time that cloud fields spend in the corresponding bin (a), and

number of trajectories that pass through the bin (b).
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Figure A.2.5: Same as Figure 3.8 but colors indicate mean length of the arrows in each bin relative to the bin size.
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