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 A B S T R A C T

Wrinkling is the phenomenon of out-of-plane deformation patterns in thin walled structures, 
as a result of a local compressive (internal) loads in combination with a large membrane 
stiffness and a small but non-zero bending stiffness. Numerical modelling typically involves thin 
shell formulations. As the mesh resolution depends on the wrinkle wave lengths, the analysis 
can become computationally expensive for shorter ones. Implicitly modelling the wrinkles 
using a modified kinematic or constitutive relationship based on a taut, slack or wrinkled 
state derived from a so-called tension field, a simplification is introduced in order to reduce 
computational efforts. However, this model was restricted to linear elastic material models in 
previous works. Aiming to develop an implicit isogeometric wrinkling model for large strain 
and hyperelastic material applications, a modified deformation gradient has been assumed, 
which can be used for any strain energy density formulation. The model is an extension of 
a previously published model for linear elastic material behaviour and is generalised to other 
types of discretisation as well. The extension for hyperelastic materials requires the derivative of 
the material tensor, which can be computed numerically or derived analytically. The presented 
model relies on a combination of dynamic relaxation and a Newton–Raphson solver, because 
of divergence in early Newton–Raphson iterations as a result of a changing tension field, which 
is not included in the stress tensor variation. Using four benchmarks, the model performance 
is evaluated. Convergence with the expected order for Newton–Raphson iterations has been 
observed, provided a fixed tension field. The model accurately approximates the mean surface 
of a wrinkled membrane with a reduced number of degrees of freedom in comparison to a shell 
solution.

1. Introduction

Wrinkling is a phenomenon that is omnipresent around us and appears at different scales: it influences the thermo-conductivity 
of graphene on the nanoscale [1] and the reflectivity of solar sails on the metre scale [2]. Wrinkling shapes floating leaves [3] 
and plays an important role in cosmetics, for example in wound healing processes [4]. In engineering, the wrinkling simulation is 
relevant in the design of airbags [5,6], sails [7], parachutes [8], and floating solar platforms [9]. Membrane wrinkling is influenced 
by balancing potential energy stored in bending deformations, membrane deformations, or in fluid or solid foundations, as discussed 
in the seminal works of [10] and [11]. For further reference on the study of wrinkling from a physics perspective, the reader is 
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referred to the review papers by [12] on tension-induced wrinkles, by [13] on wrinkles in curved surfaces, by [14] on wrinkles in 
membranes with elasticity gradients, by [15] on wrinkles in membranes with low bending stiffness and high membrane stiffness, 
and by [16] for a complete but less recent review on wrinkling.

For engineering applications where wrinkling is an relevant factor, accurate and efficient numerical modelling of wrinkling 
patterns becomes of great importance. In general, the numerical modelling can be done in different ways: by explicitly modelling 
the wrinkling amplitudes and wave lengths using shell models, by using reduced-order models based on the Föppl–Von Kármán 
plate equations, or by implicitly embedding the effects of wrinkling in element formulations.

Firstly, the modelling of membrane wrinkling can be done using mathematical models that account for the physics of thin 
films, including both membrane and bending effects. Plate and shell models are particularly suited to simulate wrinkling patterns, 
whereas membrane models lacking bending stiffness cannot capture wrinkle formations. Many studies on the physics of wrinkling 
employed commercial finite element methods to numerically investigate wrinkling under different conditions [17–29]. In addition, 
dedicated numerical models for the modelling of wrinkling patterns have been developed. For initially flat geometries, the Föppl–
Von Kármán (FvK) model incorporating out-of-plane displacements and linear bending strains has been applied [12,30–36]. This 
FvK model has been extended for hyperelastic materials, orthotropy, and general anisotropic properties [37–42]. Another model 
based on Koiter’s non-linear plate theory, proposed by [43], has been used to compute wrinkling cases involving shear, holes, 
annuli, graphene, and reinforced plates [44–49]. In order to find wrinkling patterns, different algorithms searching for equilibrium 
solutions have been used, including static methods like the dynamic relaxation method and Newton–Raphson, as demonstrated by 
Taylor [44], or continuation methods such as the Arc-Length Method [50,51] and the Asymptotic Numerical Method (ANM) [52–56]. 
In general, the advantage of explicitly modelling wrinkling amplitudes and wave lengths is that they resemble actual physics. 
However, when wrinkling wave lengths decrease, the mesh size required to find the solutions typically decreases as well, implying 
increased computational costs.

Secondly, the so-called Fourier reduced model is a technique where the Föppl–Von Kármán model is discretised using Fourier 
series expansions. Consequently, the model provides a multi-scale model where the large Fourier modes capture the macroscopic 
deformations and the high-frequency content captures the wrinkling patterns. This technique, introduced by [57–59], is efficient as 
it can predict wrinkling patterns with few degrees of freedom, but it is inaccurate along boundaries. A remedy to that is to combine 
it with full shell models [60]. Detailed reviews of this approach are given by [61] and [60]. And recent works include the extension 
to cases with non-uniform wrinkling orientations [62] and the combination with the ANM path following method [63]. Although 
the Fourier reduced model provides a reduction in degrees of freedom, potentially independent of the wrinkling wave length, the 
applicability of the method has not been fully demonstrated yet.

Thirdly, when modelling wrinkles implicitly, the goal is not necessarily to establish the actual wrinkling pattern, but to estimate 
wrinkling sensitive parts of the structure instead. Such models are typically driven by a so-called tension field [64,65,65–69], 
describing the state of parts of a membrane by being either taut, slack, or wrinkled. Tension fields can be defined based on principal 
stresses, principal strains, or a combination of those, as discussed by [70,71] and [72], among others. Depending on the tension field, 
constitutive or kinematic equations can be modified to embed wrinkling effects into numerical methods; see the works of [73] and 
[74] for an overview. For example, [75,76] and [77] proposed to modify the strain energy density function based on the tension 
field, for which variational methods [78–80] and interior point models [81] have been derived, and extensions for anisotropic 
and hyperelastic models have been proposed [82–85]. In addition, material matrix modifications instead of strain energy density 
modifications have been developed [70,71,86–89]. Alternatively, modification schemes based on deformation tensor modifications 
instead of constitutive relation modifications were proposed by [72,90,91], and applied to orthotropic materials [92,93]. Efficient 
implementations of this model were presented by [94] and [95], the latter authors applying it to isogeometric membrane elements 
as well [96]. Although the model based on modifications of the deformation tensor provides a more generic approach, it has 
not been applied to hyperelastic material modelling, to the best of the authors’ knowledge. Although implicit models do not 
provide wrinkling amplitudes, post-processing methods for recovering wrinkling amplitudes have been proposed in the computer 
graphics community [97–101]. Finally, [102] recently presented a novel, variationally consistent wrinkling model for isogeometric 
membranes, employing a split of the strain tensor, restricted to linear elastic materials. The latter model does not require to evaluate 
a wrinkling criterion and to solve a root-finding problem at each quadrature point, as is the case for the model of [96].

In this paper, the wrinkling model of [95,96] is extended to hyperelastic materials. To this end, the model of [90] is used, where 
the deformation gradient is modified for a wrinkled material and, as a consequence, the stress and material tensors are modified 
based on the tension field in the membrane. The extension to hyperelastic materials introduces extra terms in the modified material 
tensor due to the dependency of the wrinkling stresses on the strain tensor. Although the formulations derived in the present work 
apply to finite element methods, they are applied in the context of isogeometric analysis [103], as has been done by [96]. Since 
finite bending stiffness is essential in the modelling of wrinkling amplitudes, reference solutions are computed using the isogeometric 
Kirchhoff–Love shell model [104] with extensions to hyperelasticity [105,106].

The paper is outlined as follows: In Section 2, the isogeometric membrane formulation is introduced. This element is equivalent 
to an isogeometric Kirchhoff–Love shell [104] without bending contributions. Section 3 recalls the original model by [95,96] for 
linear elastic materials to introduce the original concept. Thereafter, in Section 4, the model of [96] is extended for hyperelastic 
materials. In Section 5, the numerical implementation of the model is discussed, and in Section 6, numerical benchmark results are 
provided. Lastly, Section 7 provides conclusions and recommendations for future work.
2 
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2. Isogeometric membrane formulation

In this section, the isogeometric membrane formulation is derived. The primary purpose is to introduce the notations for 
geometric, kinematic, and constitutive quantities together with the variational formulation for a membrane. Since the membrane 
closely relates to parts of the Kirchhoff–Love shell, the notations are based on the ones used in [105,106]. That is, basis vectors are 
denoted by lower-case bold and italic letters, e.g., 𝒂; second-order tensors are denoted by upper-case bold letters, e.g., 𝐀; discrete 
vectors or second-order tensors in Voigt notation are denoted by upper-case bold and italic letters, e.g., 𝑨; and matrices are denoted 
by upper-case letters, e.g., 𝐴. If needed, the notation [𝐴] is used to emphasise a matrix. Lastly, Greek sub- and superscripts take 
values of 1,2, while Latin sub- and superscripts take values of 1, 2, 3.

Consider surfaces 𝒙̊(𝜃1, 𝜃2) and 𝒙(𝜃1, 𝜃2) = 𝒙̊(𝜃1, 𝜃2) + 𝒖(𝜃1, 𝜃2) denoting points in the undeformed and deformed configurations 
of a membrane, respectively, with 𝜃𝛼 , 𝛼 = 1, 2 the parametric coordinates of the surface and 𝒖(𝜃1, 𝜃2) the deformation vector field. 
Consequently, the covariant basis vectors of the deformed and undeformed configurations are defined by 𝒂̊𝛼 and 𝒂𝛼 , respectively, 
given by 

𝒂̊𝛼 = 𝜕𝒙̊
𝜕𝜃𝛼

, (1)

and similar for the deformed configuration 𝒙. In addition, 𝑎̊𝛼𝛽 = 𝒂̊𝛼 ⋅𝒂̊𝛽 are the coefficients of the covariant metric tensor. The vectors 
𝒂̊𝛼 and 𝒂𝛼 denote the contravariant basis vectors of the undeformed and deformed membrane surfaces, with identity 𝒂̊𝛼 ⋅ 𝒂̊𝛽 = 𝛿𝛽𝛼
(similar for the basis vectors 𝒂𝛼) with 𝛿𝛽𝛼 = 1 if 𝛼 = 𝛽 and 0 otherwise. The contravariant basis vectors are constructed via the metric 
tensor: 

𝒂̊𝛼 = [𝑎̊𝛼𝛽 ]−1𝒂̊𝛽 , (2)

where [𝑎̊]−1 denotes the inverse of the metric tensor coefficient matrix [𝑎̊]. For the deformed configuration, the same relation holds 
between 𝒂𝛼 and 𝒂𝛼 .

Remark 1.  Contrary to the coordinate system for Kirchhoff–Love shells [104], the through thickness coordinate 𝜃3 is omitted for 
the isogeometric membrane, assuming small thickness. Therefore, it is assumed that deformations are constant through the thickness 
of the membrane.

2.1. Kinematic equation

The deformation gradient 𝐅 or the deformation tensor 𝐂 relate 𝒙̊ with 𝒙 as follows: 

𝐅 = 𝒂𝛼 ⊗ 𝒂̊𝛽 , 𝐂 = 𝐅⊤𝐅 = 𝑎𝛼𝛽 𝒂̊𝛼 ⊗ 𝒂̊𝛽 . (3)

Using these quantities, the Green–Lagrange strain tensor 𝐄 is defined by 

𝐄 = 1
2
(

𝐅⊤𝐅 − 𝐈
)

= 1
2
(𝐂 − 𝐈) = 1

2
(

𝑎𝛼𝛽 − 𝑎̊𝛼𝛽
)

= 𝐸𝛼𝛽 𝒂̊𝛼 ⊗ 𝒂̊𝛽 , (4)

where 𝐈 = 𝑎̊𝛼𝛽 𝒂̊𝛼 ⊗ 𝒂̊𝛽 is the identity tensor. The second Piola–Kirchhoff stress tensor 𝐒 is defined through the constitutive relation; 
see Section 2.2.

2.2. Constitutive relation

The relation between the Green–Lagrange strain tensor 𝐄 to the second Piola–Kirchhoff stress tensor 𝐒. In the following, the 
indices 𝑖, 𝑗, 𝑘, 𝑙 = 1,… , 3 are used, representing the covariant and contravariant bases related to three parametric directions: 
parameters 𝜃1 and 𝜃2 represent the in-plane surface coordinates, and 𝜃3 represents the through-thickness coordinate in the direction 
of the unit normal vector 𝒂̂3.

For linear elastic materials, the stress and strain tensors are simply related via the following relation: 

𝐒 = C ∶ 𝐄 = 𝑆 𝑖𝑗 𝒂̊𝑖 ⊗ 𝒂̊𝑗 , (5)

where the coefficients of the stress tensor, 𝑆𝑖𝑗 , are given by 𝑆𝑖𝑗 = C𝑖𝑗𝑘𝑙𝐸𝑘𝑙. For a Saint Venant-Kirchhoff material with Lamé 
parameters 𝜆 and 𝜇, the coefficients of the material tensor are given by: 

C𝑖𝑗𝑘𝑙 =
2𝜆𝜇

𝜆 + 2𝜇
𝑎̊𝑖𝑗 𝑎̊𝑘𝑙 + 𝜇

(

𝑎̊𝑖𝑘𝑎̊𝑗𝑙 + 𝑎̊𝑖𝑙 𝑎̊𝑗𝑘
)

. (6)

For hyperelastic materials, the constitutive relationship is defined through the strain energy density function 𝛹 (𝐂) or 𝛹 (𝐄). In 
particular, the coefficients of the second Piola–Kirchhoff stress tensor are given by 

𝑆 𝑖𝑗 = 2 𝜕𝛹 = 𝜕𝛹 . (7)

𝜕𝐶𝑖𝑗 𝜕𝐸𝑖𝑗

3 
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The material tensor C𝑖𝑗𝑘𝑙 is not required in the derivation of the tensor 𝐒; however, it plays a role in the definition of the variation 
of the stress tensor, 𝛿𝐒, as shown in Eq.  (21). In terms of the strain energy density function, the coefficients of the material tensor 
are defined by 

C𝑖𝑗𝑘𝑙 = 𝜕𝑆𝑖𝑗

𝜕𝐶𝑘𝑙
= 4 𝜕2𝛹

𝜕𝐶𝑖𝑗𝜕𝐶𝑘𝑙
. (8)

As for the isogeometric Kirchhoff–Love shell, through thickness deformation is being neglected, meaning that 𝐶33 = 1. This violates 
the plane stress condition (𝑆33 = 0) since 𝑆33 = 𝜕𝛹

𝜕𝐶33
≠ 0. To satisfy the plane stress condition, the normal deformation 𝐶33 needs 

to be modified. As described for hyperelastic shells in [105], this can be done analytically for incompressible materials using the 
property that the Jacobian determinant, given by: 

𝐽 =

√

|𝑎𝛼𝛽 |
|𝑎̊𝛼𝛽 |

√

𝐶33, (9)

is unity, i.e., 𝐽 = 1. For compressible materials, the plane stress condition is iteratively satisfied, as discussed in [105]. Finally, static 
condensation of the material tensor results in the in-plane material tensor Ĉ𝛼𝛽𝛾𝛿[105]: 

Ĉ𝛼𝛽𝛾𝛿 = C𝛼𝛽𝛾𝛿 − C𝛼𝛽33C33𝛾𝛿

C3333
. (10)

For incompressible materials, it can be found that the coefficients of the statically condensed material tensor are [105]:

C𝛼𝛽𝛾𝛿 = 4 𝜕2𝛹
𝜕𝐶𝛼𝛽𝜕𝐶𝛾𝛿

+ 4 𝜕2𝛹
𝜕𝐶2

33

𝐽−4
0 𝑎𝛼𝛽𝑎𝛾𝛿 − 4 𝜕2𝛹

𝜕𝐶33𝜕𝐶𝛼𝛽
𝐽−2
0 𝑎𝛾𝛿 − 4 𝜕2𝛹

𝜕𝐶33𝜕𝐶𝛾𝛿
𝐽−2
0 𝑎𝛼𝛽

+2 𝜕𝛹
𝜕𝐶33

𝐽−2
0

(

2𝑎𝛼𝛽𝑎𝛾𝛿 + 𝑎𝛼𝛾𝑎𝛽𝛿 + 𝑎𝛼𝛿𝑎𝛽𝛾
)

(11)

Lastly, the tensor 𝝈 = 𝐽−1𝐅⊤𝐒𝐅 is the Cauchy stress tensor, which is used for stress recovery.

Example 1.  For a Neo-Hookean material model with 𝛹 (𝐂) = 1
2𝜇(𝐼1(𝐂)−3), where 𝜇 is Lamé’s second parameter, Eq.  (11) simplifies 

to 

Ĉ𝛼𝛽𝛾𝛿 = 𝜇𝐽−2
0

(

2𝑎𝛼𝛽𝑎𝛾𝛿 + 𝑎𝛼𝛾𝑎𝛽𝛿 + 𝑎𝛼𝛿𝑎𝛽𝛾
)

. (12)

2.3. Variational formulation

The variational formulation for membranes follows from a variation of the internal and external energy contributions. For deriva-
tion of the variational formulation for isogeometric membranes, the reader is referred to [96] or to works on the Kirchhoff–Love 
shell [104,105] omitting the bending stiffness contributions. The elastic energy is given by 

Wint = −1
2 ∫𝛺⋆

𝐒 ∶ 𝐄 d𝛺⋆ . (13)

Here, 𝛺⋆ = 𝛺× [−𝑡∕2, 𝑡∕2] denotes the integration domain, with 𝑡 the thickness of the membrane and 𝛺 the surface domain. Taking 
the Gateaux derivative with respect to the displacements 𝒖, the variation of the internal elastic energy is: 

𝛿Wint = −∫𝛺⋆
𝐒 ∶ 𝛿𝐄 d𝛺⋆ = −∫𝛺⋆

𝐍 ∶ 𝛿𝐄 d𝛺⋆ , (14)

where the tensor 𝐍 denotes the membrane force tensor, obtained by integrating the stress tensor 𝐒 through the thickness of the 
membrane. Since the thickness of the membrane is small (see Remark  1), the thickness integral becomes: 

𝐍(𝜃1, 𝜃2) = ∫[−𝑡∕2,𝑡∕2]
𝐒(𝜃1, 𝜃2, 𝜃3) d𝜃3 ≈ 𝑡𝐒(𝜃1, 𝜃2, 0). (15)

The external virtual work is provided by the following expression: 

𝛿Wext = ∫𝛺
𝛿𝒖 ⋅ 𝒇 (𝒖) d𝛺 + ∫𝜕𝛺

𝒈 ⋅ 𝛿𝒖 d𝛤 , (16)

where 𝒇 (𝒖) is a vector representing a follower-load acting on a point on the deformed surface 𝒙(𝜃1, 𝜃2) and 𝒈 is a line load acting 
on the boundary 𝜕𝛺. When the sum of the internal and external virtual work is zero, i.e. 

𝛿W(𝒖, 𝛿𝒖) = 𝛿Wint − 𝛿Wext = 0, (17)

equilibrium is found. Since 𝛿W(𝒖, 𝛿𝒖) is non-linear, solving the equation requires linearisation. The second variation of the internal 
energy Wint in the system is given by: 

𝛿2Wint(𝒖, 𝛿𝒖, 𝛥𝒖) = − 𝛿𝐍 ∶ 𝛿𝐄 + 𝐍 ∶ 𝛿2𝐄 d𝛺 . (18)
∫𝛺

4 
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Here, 𝛿2𝐄 denotes the second variation of the Green–Lagrange strain tensor. Since the external virtual work from Eq.  (16) depends 
on the solution 𝒖, its second variation is non-zero and given by: 

𝛿2Wext(𝒖, 𝛿𝒖, 𝛥𝒖) = ∫𝛺
𝛿𝒖 ⋅ 𝒇 ′(𝒖, 𝛥𝒖) d𝛺 . (19)

For a follower pressure, 𝒇 = 𝑝𝒂̂3, and its variation is 𝒇 ′ = 𝑝𝒂̂′3(𝒖, 𝛥𝒖). Here 𝒂̂3(𝒖) and 𝒂̂′3(𝒖, 𝛥𝒖) are the unit normal vector and its 
variation, respectively, which can be found in the derivation of the Kirchhoff–Love shell [104]. Furthermore, the variation of the 
normal force tensor is: 

𝛿𝐍 = ∫𝛺
𝛿𝐒 d𝛺 . (20)

Here, the variation of the second Piola–Kirchhoff stress tensor is defined as: 
𝛿𝐒 = C ∶ 𝛿𝐄. (21)

Eqs.  (18) and (21) show that given the variations 𝛿𝐄 and 𝛿2𝐄, the first and second variations of the internal energy 𝛿𝑊int and 𝛿2Wint
from Eqs.  (17) and (18) can be found. Since the deformed configuration 𝒙 is unknown, the problem needs to be discretised such 
that the variations of 𝐄 can be defined.

2.4. Discretisation

Discretisation of the variational problem in Eq.  (17) is achieved by discretising the undeformed and deformed configurations 𝒙̊
and 𝒙, respectively. In the context of isogeometric analysis, this is done by choosing splines as a basis for the geometry, i.e., by 
describing the geometries as a weighted sum of basis functions 𝜑𝑖(𝜃1, 𝜃2) and control points 𝒙̊ℎ𝑖  and 𝒙ℎ𝑖 , respectively: 

𝒙̊ℎ(𝜃1, 𝜃2) =
∑

𝑘
𝜑𝑘(𝜃1, 𝜃2)𝒙̊ℎ𝑘 ,

𝒙ℎ(𝜃1, 𝜃2) =
∑

𝑘
𝜑𝑘(𝜃1, 𝜃2)𝒙ℎ𝑘 .

(22)

The superscript ℎ indicates a discretisation of the undeformed and deformed geometries, 𝒙̊ and 𝒙, respectively. Using the same 
basis for 𝒙̊ℎ and 𝒙ℎ, the discrete displacement vector 𝒖ℎ is given as the difference between the two, i.e., 𝒖ℎ = 𝒙ℎ − 𝒙̊ℎ. Since the 
variational formulation is expressed in terms of the displacement field 𝒖, the variations of the control points of the field 𝒖ℎ are the 
virtual displacements in the discrete system, hence the unknowns. In the sequel, the subscripts 𝑟 and 𝑠 denote the indices of the 
components of conveniently numbered degrees of freedom of 𝒖ℎ incorporating the spatial dimensions of the surface. Furthermore, 
the notation (⋅)𝑟 = 𝜕(⋅)𝜕𝑢𝑟 is used for derivatives, and the superscript ℎ is omitted. Following from Eq.  (22), the variation of the 
deformed geometry is given by 

𝒙,𝑟 =
∑

𝑘

(

𝒙̊𝑘,𝑟 + 𝒖𝑘,𝑟
)

=
∑

𝑘
𝜑𝑘𝒖𝑘,𝑟 = 𝒖,𝑟, (23)

where the last equality follows from the fact that the undeformed configuration is trivially independent of the deformation field 𝒖. 
Similarly, the derivatives of the covariant basis vectors 𝒂𝛼 of the discrete deformed configuration 𝒙ℎ, see Eq.  (23), are: 

𝒂𝛼,𝑟 =
(

𝜕𝒙𝑘
𝜕𝜃𝛼

)

,𝑟
=
∑

𝑘

𝜕𝜑𝑘
𝜕𝜃𝛼

𝒖𝑘,𝑟. (24)

As a consequence, the variation of the surface metric tensor of the deformed configuration, 𝑎𝛼𝛽 , becomes: 

𝑎𝛼𝛽,𝑟 =
(

𝒂𝛼 ⋅ 𝒂𝛽
)

𝑟 = 𝒂𝛼,𝑟 ⋅ 𝒂𝛽 + 𝒂𝛼 ⋅ 𝒂𝛽,𝑟. (25)

Since the undeformed configuration is invariant to the deformation field 𝒖, the first variation of the membrane strain tensor 𝜺
from Eq.  (4) becomes 

𝐸𝛼𝛽,𝑟 =
1
2
𝑎𝛼𝛽,𝑟. (26)

Similarly, the second variation of the deformed configuration, the deformed surface metric tensor, and the membrane strain can be 
derived. Starting with the first variation of the deformed configuration from Eq.  (23), the second variation becomes 

𝒙,𝑟𝑠 =
∑

𝑘
𝜑𝑘𝒖𝑘,𝑟𝑠 = 𝟎. (27)

The second variation of 𝒖𝑘 is zero since the components of these nodal weights are linear in 𝑢𝑟. Similarly, 𝒂𝛼,𝑟𝑠 = 𝟎. As a consequence, 
the second variation of the surface metric tensor in the deformed configuration, 𝑎𝛼𝛽 , becomes 

𝑎𝛼𝛽,𝑟𝑠 = 𝒂𝛼,𝑟𝑠 ⋅ 𝒂𝛽 + 𝒂𝛼,𝑟 ⋅ 𝒂𝛽,𝑠 + 𝒂𝛼,𝑠 ⋅ 𝒂𝛽,𝑠 + 𝒂𝛼 ⋅ 𝒂𝛽,𝑟𝑠,= 𝒂𝛼,𝑟 ⋅ 𝒂𝛽,𝑠 + 𝒂𝛼,𝑠 ⋅ 𝒂𝛽,𝑠. (28)

Again, since the undeformed configuration is invariant to the deformation field 𝒖, the second variation of the membrane strain 
tensor becomes 

𝐸 = 1𝑎 (29)
𝛼𝛽,𝑟𝑠 2 𝛼𝛽,𝑟𝑠
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Since 𝐸𝛼𝛽,𝑟 and 𝐸𝛼𝛽,𝑟𝑠 are the discrete variations of 𝛿𝐄 and 𝛿2𝐄, respectively, the discrete residual and Jacobian can be derived. 
The discrete residual vector follows from Eq.  (17) with Eqs.  (14) to (16) and (26): 

𝑅𝑟(𝒖) = ∫𝛺
𝐍(𝒖) ∶ 𝐄,𝑟(𝒖) d𝛺 − ∫𝛺

𝒇 (𝒖) ⋅ 𝒖,𝑟 d𝛺 . (30)

Furthermore, the discrete Jacobian matrix follows from Eq.  (18) with Eqs.  (14), (15), (19), (20), (26) and (29): 

𝐾𝑟𝑠 = ∫𝛺
𝐍,𝑠(𝒖) ∶ 𝐄,𝑟(𝒖) + 𝐍(𝒖) ∶ 𝐄,𝑟𝑠(𝒖) d𝛺 − ∫𝛺

𝒇 (𝒖),𝑠 ⋅ 𝒖,𝑟 d𝛺 . (31)

Here, the product 𝐀 ∶ 𝐁 denotes an inner product of two second-order tensors. Furthermore, the contribution of the displacement-
dependent load 𝒇 (𝒖) requires a derivative, defined as 𝒇 (𝒖),𝑠 = 𝑝𝒂̂3,𝑠 for a follower pressure, where 𝒂̂3,𝑠(𝒖) is the discrete derivative 
of the surface normal vector 𝒂̂3(𝒖), which can be found in the derivations of the Kirchhoff–Love shell [104]. The contribution 
𝒇 (𝒖) ⋅ 𝒖,𝑟𝑠 = 0 since 𝒖,𝑟𝑠 = 𝟎 [107]. Given the discretisation of 𝒙 and 𝒙̊ using splines, see Eq.  (22), and given the residual and 
Jacobian from Eqs.  (30) and (31), respectively, only the definition of the stress tensor 𝐒 and the material tensor C are remaining 
undefined. In Sections 3 and 4, definitions for 𝐒 and C are provided, incorporating the wrinkling model of [95] for linear elasticity 
and incorporating the extension for hyperelastic materials, which is the novelty of this paper.

2.5. Implementation

Since the tensors 𝐄 and 𝐒 are symmetric second-order tensors, they can be written in Voigt notation: 

𝑺 =
[

𝑆11 𝑆22 𝑆12]⊤ , 𝑬 =
[

𝐸11 𝐸22 2𝐸12]⊤ . (32)

As a consequence, the material tensor is represented in Voigt notation as well, using Eq.  (21): 

𝑪 =
⎡

⎢

⎢

⎣

C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212

⎤

⎥

⎥

⎦

. (33)

Using Voigt notation for the tensors 𝐄, 𝐒, and C, the second-order tensor inner products ∶ in Eqs.  (21), (30) and (31) can simply 
be evaluated as matrix–vector products and vector inner-products. In Sections 3.4 and 4.3, the elastic and hyperelastic constitutive 
laws for wrinkling are provided in Voigt notations for fast computer implementation.

3. Linear elastic wrinkling model

In the linear elastic wrinkling model, the taut, wrinkling, and slack conditions are governed by a modification of the deformation 
gradient and consequently the strain, stress, and material tensors, following the model originally proposed by [72,90]. This model 
lays the foundation of the wrinkling model proposed by [95], which was later implemented for isogeometric membranes [96]. This 
model is presented with the assumption that the material behaviour is linear; therefore, it is referred to herein as the linear elastic 
wrinkling model. In this section, an overview of the linear elastic wrinkling model proposed by [95] is provided. In Section 4, the 
linear elastic wrinkling model will be extended to hyperelastic material models.

In general, tension field-based models rely on the definition of a tension field 𝜙 over the domain. A tension field classifies the 
stress state in a membrane as either slack, taut, or wrinkled, depending on the deformation tensor 𝑪. In general, three different 
definitions of the tension field are used in the literature: based on principal strains, principal stresses, or combinations of those 
(mixed), in this paper represented by 𝜙𝐸 , 𝜙𝑆 , and 𝜙𝑀 , respectively. These tension fields are defined as: 

𝜙𝐸 =

⎧

⎪

⎨

⎪

⎩

Taut if 𝐸𝑝,1 > 0
Slack if 𝐸𝑝,2 ≤ 0
Wrinkled otherwise

, 𝜙𝑆 =

⎧

⎪

⎨

⎪

⎩

Taut if 𝑆𝑝,1 > 0
Slack if 𝑆𝑝,2 ≤ 0
Wrinkled otherwise

, 𝜙𝑀 =

⎧

⎪

⎨

⎪

⎩

Taut if 𝑆𝑝,1 > 0
Slack if 𝐸𝑝,2 ≤ 0
Wrinkled otherwise

, (34)

where 𝑆𝑝,1 and 𝑆𝑝,2 are the principal stresses such that 𝑆𝑝,1 ≤ 𝑆𝑝,2 and 𝐸𝑝,1 and 𝐸𝑝,2 are the principal strains such that 𝐸𝑝,1 ≤ 𝐸𝑝,2. 
Given the tension field, tension field models typically modify the stress tensor 𝐒 and consequently the material tensor C based on 
the tension field: 

𝐒 =

⎧

⎪

⎨

⎪

⎩

𝟎 if 𝜙 =  Slack
𝐒 if 𝜙 =  Taut
𝐒′ if 𝜙 =  Wrinkled

, C =

⎧

⎪

⎨

⎪

⎩

𝟎 if 𝜙 =  Slack
C if 𝜙 =  Taut
C′ if 𝜙 =  Wrinkled

, (35)

where 𝐒′ is a modified stress tensor. This modified stress tensor can be obtained in different ways, either by adjusting the constitutive 
or kinematic equations provided by the tension field. For example, the work of [108] modifies the Ogden constitutive relation based 
on the tension field 𝜙𝑆 , whereas [95] modifies the kinematic equation based on 𝜙𝑀 . In this paper, the approach of [95] is followed. 
As discussed in the work of [70], the definition of the tension field using 𝜙𝑀  has advantages over 𝜙  and 𝜙 .
𝐸 𝑆
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3.1. Kinematic equation

Given the deformation gradient 𝐅, the modified deformation gradient [72,90] is given by 
𝐅′ = (𝐈 + 𝑏𝒘̂⊗ 𝒘̂) ⋅ 𝐅. (36)

Here, 𝐈 is the second-order identity tensor, and 𝑏 is the measure of the amount of ‘wrinkliness’ [72,94,95], by definition 𝑏 > 0. 
Furthermore, 𝒘̂ is the unit vector transverse to the wrinkles. Using the modified deformation tensor, the modified strain tensor can 
be computed, given by: 

𝐄′ = 𝐸′
𝛼𝛽 𝒂̊

𝛼 ⊗ 𝒂̊𝛽 = 1
2
(

𝐅′⊤ ⋅ 𝐅′ − 𝐈
)

= 𝐄 + 𝐄𝑊 , (37)

where 𝐄 = 𝐅⊤𝐅 − 𝐈 = 𝐂 − 𝐈 is the Green–Lagrange strain with 
𝐂 = 𝐶𝛼𝛽 𝒂̊𝛼 ⊗ 𝒂̊𝛽 = 𝑎𝛼𝑎𝛽 𝒂̊𝛼 ⊗ 𝒂̊𝛽 , (38)

being the deformation tensor. 𝐄𝑊  is the wrinkling strain, given by 

𝐄𝑊 = 1
2
𝑏(𝑏 + 2)𝒘̂⊗ 𝒘̂. (39)

Here, 𝒘̂ = 𝒘 ⋅ 𝐅 = 𝑤𝑎𝒂̊𝛼 is the projection of 𝒘̂ onto the undeformed contravariant basis. Introducing the rotation 𝜗 and magnitude 
𝑎 ≠ 0 of the projected wrinkling direction 𝒘̂ using 𝒘̂1 = 𝑎𝑛1 and 𝒘̂2 = 𝑎𝑛2 using 𝑛1 = cos 𝜗 and 𝑛2 = sin 𝜗, the coefficients of the 
wrinkling strain tensor can be written as 

𝐸′
𝛼𝛽 = 𝐸𝛼𝛽 +

1
2
(

𝐅′⊤𝐅′ − 𝐈
)

= 𝐸𝛼𝛽 + 𝛾𝑛𝛼𝑛𝛽 , (40)

where 𝛾 = 1
2𝑎

2𝑏(𝑏+1). In this definition of the strain tensor 𝐄′, the wrinkling strain amplitude 𝛾 and the angle of the wrinkles 𝜗 are 
unknown. Through the uniaxial tension condition for wrinkled materials, these unknowns will be determined in the next subsection.

3.2. Constitutive relation

Since the definition of the strain tensor 𝐄 changes for the wrinkled state of the membrane, the constitutive relation from Eq.  (5) 
also changes. For linear materials, the wrinkled stress tensor 𝐒′ simply becomes: 

𝐒′ = C ∶ 𝐄′ = C ∶
(

𝐄 + 𝐄𝑊
)

, (41)

where 𝐄𝑊  depends on the unknowns 𝛾 and 𝜗, as in Eq.  (40). This equation can also be written in terms of the component of the 
stress tensor 𝐒′ = 𝑆′𝛼𝛽 𝒂̊𝛼 ⊗ 𝒂̊𝛽 : 

𝑆′𝛼𝛽 = C𝛼𝛽𝛾𝛿(𝐸𝛾𝛿 + 𝛾𝑛𝛾𝑛𝛿) = 𝑆𝛼𝛽 + 𝛾C𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿 . (42)

For a wrinkled membrane, an uniaxial tension state is assumed [87], meaning the stress orthogonal to the wrinkles should vanish, 
𝜎′ ⋅𝒘 = 0, (43)

and the stress parallel to the wrinkles should be positive 
𝒕 ⋅ 𝜎′ ⋅ 𝒕 > 0. (44)

Here, 𝜎′ = 1
det 𝐅′ 𝐅

′𝐒′𝐅′⊤ is the modified Cauchy stress tensor. The uniaxial tension condition in Eq.  (43) can be written as 

𝐒′ ⋅𝒘 = 0, (45)

using the components 𝑛𝛼 and 𝑛𝛽 , the conditions Eqs.  (43) and (44) can be written as [94,95]: 
𝑆′𝛼𝛽𝑛𝛼𝑛𝛽 = 0,

𝑆′𝛼𝛽𝑚𝛼𝑛𝛽 = 0,

𝐸′𝛼𝛽𝑚𝛼𝑚𝛽 > 0.

(46)

Here, 𝑚𝛼 = 𝜕𝑛𝛼∕𝜕𝜗. From Eq.  (42), the uniaxial tension condition Eq.  (46) becomes: 
𝑆𝛼𝛽𝑛𝛼𝑛𝛽 + 𝛾C𝛼𝛽𝛾𝛿𝑛𝛼𝑛𝛽𝑛𝛾𝑛𝛿 = 0,

𝑆𝛼𝛽𝑚𝛼𝑛𝛽 + 𝛾C𝛼𝛽𝛾𝛿𝑚𝛼𝑛𝛽𝑛𝛾𝑛𝛿 = 0.
(47)

From the first line of Eq.  (47), the variable 𝛾 can be found as: 

𝛾 = −
𝑆𝛼𝛽𝑛𝛼𝑛𝛽

C𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽
, (48)

and substituting 𝛾 in the second line of Eq.  (47), the following equation is found: 
𝑓 (𝜗) ≡ 𝑆𝛼𝛽𝑚 𝑛 + 𝛾C𝛼𝛽𝛾𝛿𝑚 𝑛 𝑛 𝑛 = 0. (49)
𝛼 𝛽 𝛼 𝛽 𝛾 𝛿
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The only unknown in this equation is the angle 𝜗, thus the equation can be solved by root finding. The root 𝜗 of 𝑓 (𝜗) = 0 must 
satisfy the uniaxial tension conditions Eqs.  (43) and (44). Since 𝑓 (𝜗) follows from Eq.  (43), the first uniaxial tension condition is 
satisfied when the root is found. The condition for positive stress along the wrinkling direction, i.e., Eq.  (44), is satisfied by selecting 
the feasible root. In the work of [87], the bounds of an interval for the root that satisfies Eq.  (44) are derived, such that a bounded 
root finding algorithm, e.g., Brent’s method [109], can be used. If the procedure to find the root 𝜗 fails on the prescribed interval, 
the domain [0, 2𝜋] can be subdivided into sub-intervals [𝜗𝐴, 𝜗𝐵) ⊂ [0, 2𝜋], and Brent’s method can be started for each sub-interval 
[𝜗𝐴, 𝜗𝐵) ⊂ [0, 2𝜋] that satisfies 𝑓 (𝜗𝐴)𝑓 (𝜗𝐵) < 0. The root 𝜗 = 0 is a root if and only if lim𝜗→0 𝑓 (𝜗)𝑓 (2𝜋 − 𝜗) < 0. As soon as the root 𝜗
is found, the wrinkling strain 𝐄′ from Eq.  (40) and the wrinkling stress 𝐒′ from Eq.  (42) can be computed.

3.3. Variational formulation

In the variational equation from Eq.  (17), the variation of the strain tensor 𝐄 and stress tensor 𝐒, respectively 𝛿𝐄 and 𝛿𝐒, are 
required. For the taut state, the variations remain unchanged, as seen in Eq.  (35). In the slack state, the stress tensor and its variation 
are equal to zero, hence the variation of the internal energy becomes zero. For the wrinkling state, the variations of 𝐄′ and 𝐒′ need 
to be found.

Firstly, the variation of 𝐄′ is independent of the constitutive law [95]. Here, it is shown that the contribution of the virtual 
wrinkling strain, 𝛿𝐄𝑊 , in the variational formulation is zero, since the product of the wrinkling stress tensors 𝐒′ and 𝛿𝐄𝑊  is zero. 
Physically, this means that the wrinkling strain corresponds to the rigid body movements to stretch the wrinkled membrane, hence 
not altering the strain energy.

Secondly, the variation of 𝐒′ needs to be found. Taking the variation of Eq.  (42), it follows that: 

𝛿𝑆′𝛼𝛽 (𝐄) = d𝑆′𝛼𝛽

d𝐸𝜎𝜏
𝛿𝐸𝜎𝜏 = C′𝛼𝛽𝜎𝜏𝛿𝐸𝜎𝜏

=
(

𝜕𝑆𝛼𝛽

𝜕𝐸𝜎𝜏
+

d𝛾
d𝐸𝜎𝜏

C𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿 + 𝛾C𝛼𝛽𝛾𝛿 d(𝑛𝛾𝑛𝛿)
d𝐸𝜎𝜏

)

𝛿𝐸𝜎𝜏 .
(50)

The full derivative of 𝛾 with respect to 𝐸𝜎𝜏 can be found using the definition of 𝛾 from Eq.  (48): 
d𝛾

d𝐸𝜎𝜏
=

𝜕𝛾
𝜕𝐸𝜎𝜏

+
𝜕𝛾
𝜕𝜗

𝜕𝜗
𝜕𝐸𝜎𝜏

. (51)

The derivative of (𝑛𝛾𝑛𝛿) to 𝐸𝜎𝜏 directly follows from the definitions of 𝑛𝛼 , 𝑚𝛼 and the chain rule, 
d(𝑛𝛾𝑛𝛿)
d𝐸𝜎𝜏

=
𝜕(𝑛𝛾𝑛𝛿)
𝜕𝜗

𝜕𝜗
𝜕𝐸𝜎𝜏

=
(

𝑚𝛾𝑛𝛿 + 𝑛𝛾𝑚𝛿
) 𝜕𝜗
𝜕𝐸𝜎𝜏

. (52)

The derivative of 𝛾 with respect to 𝜗 follows from Eq.  (48): 

𝜕𝛾
𝜕𝜗

= −

(

C𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽
)

(

𝑆𝛼𝛽 𝜕(𝑛𝛼𝑛𝛽 )
𝜕𝜗

)

−
(

𝑆𝛼𝛽𝑛𝛼𝑛𝛽
)

(

C𝛼𝛽𝛾𝛿
( 𝜕(𝑛𝛾 𝑛𝛿 )

𝜕𝜗 𝑛𝛼𝑛𝛽 + 𝑛𝛾𝑛𝛿
𝜕(𝑛𝛼𝑛𝛽 )

𝜕𝜗

))

(

C𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽
)2

= −
𝛾C𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿

𝜕(𝑛𝛼𝑛𝛽 )
𝜕𝜗

C𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽
,

(53)

where Eqs.  (47), (48) and (52) are used in the second equality. Furthermore, the derivative 𝜕𝛾
𝜕𝐸𝛼𝛽

 follows directly from Eq.  (48)

𝜕𝛾
𝜕𝐸𝜎𝜏

= −
C𝛼𝛽𝜎𝜏𝑛𝛼𝑛𝛽

C𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽
. (54)

Lastly, the derivative of the angle 𝜗 with respect to the strain tensor component 𝐸𝜎𝜏 can be found by using Eq.  (49)
𝜕𝑓
𝜕𝐸𝜎𝜏

+
𝜕𝑓
𝜕𝜗

𝜕𝜗
𝜕𝐸𝜎𝜏

= 0, (55)

giving: 
𝜕𝜗

𝜕𝐸𝜎𝜏
= −

𝜕𝑓
𝜕𝐸𝜎𝜏

(

𝜕𝑓
𝜕𝜗

)−1
. (56)

The derivative of 𝑓 with respect to 𝐄 directly follows from Eq.  (49): 
𝜕𝑓
𝜕𝐸𝜎𝜏

= C𝛼𝛽𝜎𝜏𝑚𝛼𝑛𝛽 −
𝜕𝛾

𝜕𝐸𝜎𝜏
C𝛼𝛽𝛾𝛿𝑚𝛾𝑛𝛿𝑛𝛼𝑛𝛽 , (57)

and the derivative of 𝑓 with respect to 𝜗 follows from Eq.  (49) as well: 
𝜕𝑓
𝜕𝜗

= 𝑆𝛼𝛽 𝜕(𝑚𝛼𝑛𝛽 )
𝜕𝜗

+
𝜕𝛾
𝜕𝜗

C𝛼𝛽𝛾𝛿𝑚𝛼𝑛𝛽𝑛𝛾𝑛𝛿 + 𝛾C𝛼𝛽𝛾𝛿
( 𝜕(𝑚𝛼𝑛𝛽 )

𝜕𝜗
𝑛𝛾𝑛𝛿 + 𝑚𝛼𝑛𝛽

𝜕(𝑛𝛾𝑛𝛿)
𝜕𝜗

)

, (58)

where the derivative of 𝑚𝛼𝑛𝛽 with respect to 𝜗 can be easily obtained from the definitions of 𝑚𝛼 and 𝑛𝛼 : 
𝜕(𝑚𝛼𝑛𝛽 )

𝜕𝜗
= −𝑛𝛼𝑛𝛽 + 𝑚𝛼𝑚𝛽 . (59)

Using Eqs.  (53) to (58), the variation of 𝐒 from Eq.  (50) is found, as well as the definition of the modified material tensor C′.
8 
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3.4. Implementation

As discussed in the work of [95], the modifications of the stress and material tensor for the wrinkling model, see Eqs.  (42) and 
(50), can be expressed in terms of matrix–vector multiplications when employing Voigt notation for the stress and strain tensors, 𝐒
and 𝐄, respectively, see Eqs.  (32) and (33). Following the notation of Nakashino and Natori [95], the terms 𝑛𝛼 and 𝑚𝛼 are collected 
in the following vectors: 

𝒏1 =
[

𝑛1𝑛1 𝑛2𝑛2 2𝑛1𝑛2
]⊤ ,

𝒏2 =
[

𝑛1𝑚1 𝑛2𝑚2 𝑛1𝑚2 + 𝑚1𝑛2
]⊤ = 1

2
𝜕𝒏1
𝜕𝜗

𝒏3 =
[

𝑚1𝑚1 − 𝑛1𝑛1 𝑚2𝑚2 − 𝑛2𝑛2 2
(

𝑚1𝑚2 − 𝑛1𝑛2
)]⊤ =

𝜕𝒏2
𝜕𝜗

,

𝒏4 =
[

𝑚1𝑚1 𝑚2𝑚2 2𝑚1𝑚2
]⊤ = 𝒏3 + 𝒏1.

(60)

Using Eq.  (60), the wrinkled stress and strain tensors from Eqs.  (40)–(42) are written as
𝑺′ = 𝑺 + 𝛾𝑪 ⋅ 𝒏1, (61)

𝑬′ = 𝑬 + 𝛾𝒏1. (62)

Furthermore, using the stress and strain tensor coefficients (Eq.  (32)) together with Eq.  (60), the formulations in Eq.  (46) become: 
𝑺′ ⋅ 𝒏1 = 0,

𝑺′ ⋅ 𝒏2 = 0,

𝑬′ ⋅ 𝒏4 > 0.

(63)

Following from these relations, the equations Eqs.  (48) and (49) are written as

𝛾 = −
𝑺 ⋅ 𝒏1

𝒏⊤1 ⋅ 𝑪 ⋅ 𝒏1
, (64)

𝑓 (𝜗) = 𝑺 ⋅ 𝒏1 − 𝛾𝒏⊤2 ⋅ 𝑪 ⋅ 𝒏1. (65)

To compute the wrinkling material tensor 𝑪 ′, the derivatives from Eqs.  (53) to (55) need to be expressed in terms of 𝑬, 𝑺, 𝑪 , and 
𝒏𝑘, 𝑘 = 1,… , 4; see Eqs.  (32), (33) and (60). The derivative of 𝛾 with respect to 𝜗 from Eq.  (53) becomes: 

𝜕𝛾
𝜕𝜗

= −2𝛾
𝒏⊤2 ⋅ 𝑪 ⋅ 𝒏1
𝒏⊤1 ⋅ 𝑪 ⋅ 𝒏1

. (66)

Furthermore, the derivative of 𝛾 with respect to 𝑬 becomes (see Eq.  (54)): 
[

𝜕𝛾
𝜕𝑬

]

= −
𝑪 ⋅ 𝒏1

𝒏⊤1 ⋅ 𝑪 ⋅ 𝒏1
, (67)

where the bracket [⋅] is used to stress that 𝜕𝛾
𝜕𝑬  is a vector with the derivatives of 𝛾 with respect to 𝐸𝛼𝛽 . To obtain the derivative of 

𝜗 with respect to 𝑬, the derivatives of 𝑓 with respect to 𝜗 and 𝑬 are used, as in Eq.  (56). The derivative of 𝑓 with respect to 𝑬 is 
a vector as well. Following from Eq.  (55), it is given by: 

[

𝜕𝑓
𝜕𝑬

]

= 𝑪 ⋅ 𝒏2 +
(

𝒏⊤2 ⋅ 𝑪 ⋅ 𝒏1
)

[

𝜕𝛾
𝜕𝑬

]

, (68)

and the derivative of 𝑓 with respect to 𝜗 is obtained from Eq.  (58): 
𝜕𝑓
𝜕𝜗

= (𝒏⊤4 ⋅ 𝐒) + 𝜕𝛾
𝜕𝜗

(

𝒏⊤2 ⋅ 𝑪 ⋅ 𝒏1
)

+ 𝛾
(

𝒏⊤4 ⋅ 𝑪 ⋅ 𝒏1 + 2𝒏⊤2 ⋅ 𝑪 ⋅ 𝒏2
)

. (69)

Using Eqs.  (68) and (69), the derivative of 𝜗 with respect to 𝑬 is simply obtained by scalar division, using Eq.  (56): 
[ 𝜕𝜗
𝜕𝑬

]

=
[

𝜕𝑓
𝜕𝑬

]

∕
𝜕𝑓
𝜕𝜗

. (70)

Using the definition of C′ from Eq.  (50), the matrix 𝑪 ′ can be expressed in linear algebra operations using the scalars and vectors 
defined in Eqs.  (66), (67) and (70): 

𝑪 ′ = 𝑪
(

𝐈 + 𝒏1 ⊗
[

𝜕𝛾
𝜕𝑬

]

+
𝜕𝛾
𝜕𝜗

𝒏1 ⊗
[ 𝜕𝜗
𝜕𝑬

]

+ 2𝛾𝒏2 ⊗
[ 𝜕𝜗
𝜕𝑬

]

)

. (71)

By using the definition of the tension field 𝜙 from Eq.  (34), the stress and material tensors are defined using Eq.  (35). Therefore, 
the assembly of the residual and Jacobian from Eqs.  (30) and (31), respectively, involves computing the tension field and inserting 
the corresponding option from Eq.  (35) on each integration point.

Remark 2.  The modification scheme presented in this section, originally proposed by [95], provides an analytical derivation of the 
derivative C′ of the wrinkling stress tensor 𝐒′. Consequently, the definitions in Eq.  (35) are consistent and should provide optimal 
9 
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convergence in Newton–Raphson iterations. However, the definition of 𝐒′ in Eq.  (35) depends on the tension field 𝜙 from Eq.  (34). 
The dependency of 𝐒′ on 𝜙 is not included in its derivative, and therefore the convergence behaviour of Newton–Raphson iterations 
can be suboptimal or diverging.

4. Hyperelastic wrinkling model

In this section, the novelty of this paper is presented. The theory from [95], recalled in the previous section, is extended to 
hyperelastic materials. The outline of this section is similar to that of Section 3, but since the assumption for hyperelastic materials 
only affects the constitutive relation, the kinematic equations are as before, hence not included in this section. The present section 
primarily presents the differences with the elastic theory from Section 3, first for the constitutive relation for the wrinkled membrane 
and then for the variational formulation.

4.1. Constitutive relation

The derivation in Section 3 assumes a linear elastic constitutive model in Eq.  (42). In the case of non-linear hyperelastic material 
models, the constitutive relation is defined by a strain energy density function 𝛹 (𝐂) (see Eq.  (7)), where 𝐂 = 𝐅⊤𝐅 = 𝑎𝛼𝛽 𝒂̊𝛼 ⊗ 𝒂̊𝛽 is 
the deformation tensor (see Eq.  (38)). In order to derive the wrinkling stress for hyperelastic materials, denoted by 𝐒′ = 𝐒(𝐄′), the 
stress tensor is linearised around the Green–Lagrange strain 𝐄, i.e. 

𝐒′ = 𝐒(𝐄′) = 𝐒(𝐄 + 𝐄𝑊 ) = 𝐒(𝐄) + 𝜕𝐒
𝜕𝐄

∶ 𝐄𝑊 + O(𝐄2
𝑊 ), = 𝐒(𝐄) + C(𝐄) ∶ 𝐄𝑊 + O(𝐄2

𝑊 )

≈ 𝐒(𝐄) + C(𝐄) ∶ 𝐄𝑊 .
(72)

In the second last equality, the definition of the material tensor C(𝐄) from Eq.  (8) is used. The definition in Eq.  (72) is similar to Eq. 
(42) when the Taylor expansion is truncated and the contribution of O(𝐄2

𝑊 ) is neglected under the assumption that 𝐄2
𝑊  is small. 

Therefore, equivalent to Eq.  (42), the coefficients of the wrinkling stress tensor 𝐒′ are given by: 
𝑆′𝛼𝛽 (𝐄) = 𝑆𝛼𝛽 (𝐄) + 𝛾C(𝐄)𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿 . (73)

Following from the hyperelastic modified wrinkling strain tensor from Eq.  (72), the hyperelastic counterpart of Eq.  (47) is derived: 
𝑆𝛼𝛽 (𝐄)𝑛𝛼𝑛𝛽 + 𝛾C(𝐄)𝛼𝛽𝛾𝛿𝑛𝛼𝑛𝛽𝑛𝛾𝑛𝛿 = 0,

𝑆𝛼𝛽 (𝐄)𝑚𝛼𝑛𝛽 + 𝛾C(𝐄)𝛼𝛽𝛾𝛿𝑚𝛼𝑛𝛽𝑛𝛾𝑛𝛿 = 0.
(74)

From these equations, the derivation of the hyperelastic counterpart of Eq.  (48) is straightforward: 

𝛾(𝐄) = −
𝑆𝛼𝛽 (𝐄)𝑛𝛼𝑛𝛽

C𝛼𝛽𝛾𝛿(𝐄)𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽
, (75)

as well as the equation for 𝑓 (𝜗): 
𝑓 (𝜗,𝐄) ≡ 𝑆𝛼𝛽 (𝐄)𝑚𝛼𝑛𝛽 + 𝛾(𝐄)C𝛼𝛽𝛾𝛿(𝐄)𝑚𝛼𝑛𝛽𝑛𝛾𝑛𝛿 = 0. (76)

Like in the linear expression in Eq.  (49), the result in Eq.  (76) is also dependent on 𝐄, which is fixed while finding the root. In this 
way, the same root-finding procedure can be applied as discussed for the linear elastic model.

4.2. Variational formulation

For the hyperelastic model, the variation of the wrinkling stress tensor 𝐒′ is derived from Eq.  (73): 

𝛿𝑆′𝛼𝛽 (𝐄) = 𝜕𝑆′𝛼𝛽

𝜕𝐸𝜎𝜏
𝛿𝐸𝜎𝜏 = C′𝛼𝛽𝜎𝜏𝛿𝐸𝜎𝜏

=
(

𝜕𝑆𝛼𝛽

𝜕𝐸𝜎𝜏
+

𝜕𝛾
𝜕𝐸𝜎𝜏

C𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿 + 𝛾 𝜕C
𝛼𝛽𝛾𝛿

𝜕𝐸𝜎𝜏
𝑛𝛾𝑛𝛿 + 𝛾C𝛼𝛽𝛾𝛿 𝜕(𝑛𝛾𝑛𝛿)

𝜕𝐸𝜎𝜏

)

𝛿𝐸𝜎𝜏 .
(77)

Compared to Eq.  (50), the expression in Eq.  (77) contains an extra term with the derivative of the material tensor C with respect 
to the strains 𝐄. This derivative can be written in terms of the deformation tensor 𝐂 following Eq.  (4)

𝜕C𝛼𝛽𝛾𝛿

𝜕𝐸𝜎𝜏
= 2 𝜕C

𝛼𝛽𝛾𝛿

𝜕𝐶𝜎𝜏
. (78)

Considering Eqs.  (52) and (54), the derivatives of 𝛾 and 𝑓 with respect to 𝐄, see Eqs.  (53) to (56) and (58), need to be re-defined 
due to the dependency of 𝐒 and C on 𝐄. Starting with 𝛾, the derivative with respect to the strain tensor 𝐄 becomes: 

𝜕𝛾
𝜕𝐸𝜎𝜏 = −

(C𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽 )(C𝛼𝛽𝜎𝜏𝑛𝛼𝑛𝛽 ) −
(

𝑆𝛼𝛽𝑛𝛼𝑛𝛽
)

(

𝜕C𝛼𝛽𝛾𝛿

𝜕𝐸𝜎𝜏
𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽

)

(

C𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽
)2

= −
C𝛼𝛽𝜎𝜏𝑛𝛼𝑛𝛽 + 𝛾 𝜕C𝛼𝛽𝛾𝛿

𝜕𝐸𝜎𝜏
𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽

𝛼𝛽𝛾𝛿 .

(79)
C 𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽

10 
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Furthermore, the derivative of the root Eq.  (76) with respect to the strain becomes: 
𝜕𝑓
𝜕𝐸𝜎𝜏

=
(

C𝛼𝛽𝜎𝜏𝑚𝛼𝑛𝛽 +
𝜕𝛾

𝜕𝐸𝜎𝜏
C𝛼𝛽𝛾𝛿𝑚𝛾𝑛𝛿𝑛𝛼𝑛𝛽 + 𝛾 𝜕C

𝛼𝛽𝜎𝜏

𝜕𝐸𝜎𝜏
𝑚𝛾𝑛𝛿𝑛𝛼𝑛𝛽

)

. (80)

Since the other derivatives with respect to 𝜗 (see Eqs.  (53) and (58)) do not change for hyperelastic materials, Eqs.  (52) and (56) 
can be evaluated using Eqs. (53), (58), (79) and (80), given the derivative of C with respect to 𝐄. Since C depends on the strain 
energy density function 𝛹 (𝐂) (see Eq.  (8)), its derivative can be computed analytically. However, when static condensation to 
satisfy the plane-stress criterion is performed numerically, which could be the case for compressible materials [105,106], it is 
not straightforward to compute the derivative of C. Alternatively, the analytical expression for the statically condensed material 
tensor (see Eq.  (10)) can become lengthy, making the analytical derivation of its derivative a tedious exercise. As an alternative to 
analytical derivation of the material tensor, it can therefore be opted to use finite differences or automatic differentiation to obtain 
the derivative of C with respect to the strain. In Example  2, the analytical derivative of C with respect to 𝐄 for a statically condensed 
incompressible Neo-Hookean material model is provided.

Example 2.  From Example  1, it follows that for an incompressible Neo-Hookean material model, 
𝜕C𝛼𝛽𝛾𝛿

𝜕𝐸𝜎𝜏
= 2 𝜕C

𝛼𝛽𝛾𝛿

𝜕𝐶𝜎𝜏

= 𝜇
𝜕(𝐽−2

0 )
𝜕𝐶𝜎𝜏

(

2𝑎𝛼𝛽𝑎𝛾𝛿 + 𝑎𝛼𝜉𝑎𝛽𝜂 + 𝑎𝛼𝜂𝑎𝛽𝜉
)

+ 𝜇𝐽−2
0

𝜕
𝜕𝐶𝜎𝜏

(

2𝑎𝛼𝛽𝑎𝛾𝛿 + 𝑎𝛼𝜉𝑎𝛽𝜂 + 𝑎𝛼𝜂𝑎𝛽𝜉
)

.
(81)

Since 𝐽 2
0 = |𝑎𝛼𝛽 |∕|𝑎̊𝛼𝛽 | and since 𝜕𝐽0𝜕𝜎𝜏 = 𝐽

2 𝑎
𝜎𝜏 [110], the derivative of 𝐽−2

0  is 
𝜕(𝐽−2

0 )
𝜕𝐶𝜎𝜏

= −𝐽−2
0 𝑎𝜎𝜏 . (82)

Furthermore, the derivative of the contravariant metric tensor 𝑎𝛼𝛽 is given by 
𝜕𝑎𝛼𝛽

𝜕𝐶𝜎𝜏
= −1

2
(

𝑎𝛼𝜎𝑎𝛽𝜏 + 𝑎𝛼𝜏𝑎𝛽𝜎
)

. (83)

Using Eqs.  (82) and (83), the derivatives in Eq.  (81) can be evaluated, and the analytical expression for 𝜕C𝛼𝛽𝛾𝛿∕𝜕𝐸𝜎𝜏 for the 
incompressible Neo-Hookean material is found.

4.3. Implementation

As for the linear elastic model, the modified wrinkling model for hyperelastic materials can be expressed in terms of linear 
algebra operations using the Voigt notation of the strain, stress, and material tensor as a basis (see Eqs.  (32) and (33)). First of all, 
the derivative of 𝛾 with respect to the strain tensor 𝐄 for hyperelastic materials becomes, following from Eq.  (79), 

[

𝜕𝛾
𝜕𝑬

]

= −
𝑪 ⋅ 𝒏1 + 𝛾𝒏⊤1 ⋅

[

𝜕C
𝜕𝐄

]

⋅ 𝒏1

𝒏⊤1 ⋅ 𝑪 ⋅ 𝒏1
. (84)

Moreover, using Eq.  (80), the derivative of 𝑓 with respect to 𝐄 for hyperelastic materials becomes: 
[

𝜕𝑓
𝜕𝑬

]

= 𝑪 ⋅ 𝒏2 +
(

𝒏⊤2 ⋅ 𝑪 ⋅ 𝒏1
)

[

𝜕𝛾
𝜕𝑬

]

+ 𝛾𝒏⊤2 ⋅
[

𝜕C
𝜕𝐄

]

⋅ 𝒏1. (85)

Both expressions in Eqs.  (84) and (85), as well as the extra contribution of [𝜕C∕𝜕𝐄] in Eq.  (77), contain the inner-product of 𝜕C∕𝜕𝐄
with 𝒏1. Instead of storing 

[

𝜕C∕𝜕𝐄
] and multiplying it in both expressions with 𝒏1, the product 

[

𝜕C∕𝜕𝐄
]

⋅ 𝒏1 can also be stored as a 
matrix: 

[

𝜕C
𝜕𝐄

⋅ 𝒏1
]

=
[

𝜕C
𝜕𝐸11

⋅ 𝒏1
𝜕C
𝜕𝐸22

⋅ 𝒏1
𝜕C
𝜕𝐸12

⋅ 𝒏1
]

. (86)

Using Eqs.  (84) to (86) together with Eqs.  (66), (69) and (70), the modified material tensor for hyperelastic wrinkled materials 
employing Voigt notations, 𝑪 ′, can be computed, based on Eq.  (77): 

𝑪 ′ = 𝑪
(

𝐈 + 𝒏1 ⊗
[

𝜕𝛾
𝜕𝑬

]

+
𝜕𝛾
𝜕𝜗

𝒏1 ⊗
[ 𝜕𝜗
𝜕𝑬

]

+ 2𝛾𝒏2 ⊗
[ 𝜕𝜗
𝜕𝑬

]

)

+ 𝛾
[

𝜕C
𝜕𝐄

⋅ 𝒏1
]

. (87)

Similar to the linear elastic wrinkling modification scheme from Section 3, the modified tensors 𝑺′ and 𝑪 ′ can be used in the 
definition in Eq.  (35) depending on the tension field, evaluated per quadrature point. In addition, Remark  2 regarding the variation 
of the stress tensor with respect to the tension field also applies for the hyperelastic model.

5. Numerical solution strategies

To obtain the solution 𝒖 to the variational formulation Eq.  (17), discretised by the residual from Eq.  (30), different solution 
strategies can be adopted. In this section, a brief overview of the Newton–Raphson and the Dynamic Relaxation methods employed 
in the numerical examples is given.
11 
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5.1. Newton–Raphson method

Firstly, the Newton–Raphson method solves the system of equations 

𝐾(𝒖𝑘)𝛥𝒖𝑘+1 = −𝑹(𝒖𝑘), (88)

for 𝛥𝒖𝑘+1 given 𝒖𝑘 and updating 𝒖𝑘+1 = 𝒖𝑘 + 𝛥𝒖𝑘+1 in iteration 𝑘. Here, 𝐾 is the Jacobian of the system from Eq.  (31) and 𝑹 is the 
residual vector from Eq.  (30). Typically, the iterations are terminated if the update norm is ‖𝛥𝒖𝑘‖∕‖𝛥𝒖0‖ < 𝜖𝛥𝒖 or if the relative 
residual norm is ‖𝑹(𝒖𝑘)‖∕‖𝑹(𝒖0)‖ < 𝜖𝑹. Although the Newton–Raphson iterations provide second-order convergence towards the 
solution 𝒖, the convergence region is bounded, meaning that the method is guaranteed to converge only for an initial guess 𝒖0
sufficiently close to the final solution 𝒖. Furthermore, if the Jacobian matrix 𝐾 is not exact, the speed of convergence can be 
decreased. In the case of the methods presented by [95] and in this paper, the variation of the stress tensor with respect to the 
tension field is not included in the Jacobian (see Remark  2), possibly deteriorating the convergence behaviour.

5.2. Dynamic relaxation method

A commonly used alternative for Newton–Raphson iterations for solving problems involving wrinkling stabilities is the Dynamic 
Relaxation (DR) method [111]. In this method, a dynamic system with artificial stiffness and damping is solved. The advantages of 
the dynamic relaxation method are that it is robust given a sufficiently small step size and that it only requires the residual vector 𝑹. 
However, its convergence is very slow. The dynamic relaxation method is based on the solution of the structural dynamics equation:

𝑀 𝒖̈(𝑡) + 𝐶𝒖̇(𝑡) −𝑹(𝒖(𝑡)) = 𝟎, (89)

where 𝑀 is the mass matrix, 𝒖̈ is the vector of discrete accelerations, 𝐶 is the damping matrix, 𝒖̇ is the vector of discrete velocities, 
and 𝑹(𝒖) is the residual vector. Using central finite differences, the acceleration vector 𝒖̈ can be expressed in terms of the velocity 
vector 𝒖̇ and a time step 𝛥𝑡: 

𝒖̈𝑡 =
𝒖̇𝑡+𝛥𝑡∕2 − 𝒖̇𝑡−𝛥𝑡∕2

𝛥𝑡
, (90)

where the notation 𝑢𝑡 = 𝑢(𝑡) is adopted for the sake of clarity. A common assumption in dynamic relaxation methods is to define the 
damping matrix proportional to the mass matrix, i.e., 𝐶 = 𝑐𝑀 or by other appropriate scaling techniques [112,113]. Since these 
approaches involve an extra parameter in the solver, an alternative approach is to use the so-called kinetic damping approach [114]. 
In this approach, the kinetic energy in the system is traced, and the nodal velocities 𝒖̇ are set to zero when a peak in kinetic energy 
is detected. The advantage of this method is that no parameter for damping is required and that it provides robustness [115–117]. 
Firstly, the kinetic energy in the system is defined by: 

𝐸𝐾
𝑡 = 1

2
𝒖̇⊤𝑀 𝒖̇. (91)

Hence, a peak is detected if 𝐸𝐾
𝑡 > 𝐸𝐾

𝐾,𝑡+𝛥𝑡 for 𝛥𝑡 > 0. It is assumed that a peak occurs in the middle of the interval [𝑡 − 𝛥𝑡, 𝑡], hence 
at 𝑡 − 𝛥𝑡∕2 if 𝐸𝐾

𝑡−3𝛥𝑡∕2 < 𝐸𝐾
𝑡−𝛥𝑡∕2 and 𝐸𝐾

𝑡−𝛥𝑡∕2 > 𝐸𝐾
𝑡+𝛥𝑡∕2 [118]. In that situation, the displacement vector 𝒖𝑡+𝛥𝑡 and the velocity vector 

𝒖̇𝑡+𝛥𝑡∕2 are known. Using these solutions, the displacements at the peak can be computed by: 

𝒖𝑡⋆ = 𝒖𝑡+𝛥𝑡 −
3
2
𝒖̇𝑡+𝛥𝑡∕2 +

𝛥𝑡
2
𝑀−1𝑹(𝒖𝑡), (92)

Where the peak time is denoted by 𝑡⋆. Using the displacement vector 𝒖𝑡⋆ , the method is re-initiated using 𝒖𝑡⋆ . Since the velocities 
are fully damped after a kinetic energy peak, they are set to zero upon re-initialisation. Hence, to compute the next step after the 
restart at a peak on 𝒖𝑡⋆ , the velocity vector for 𝒖𝑡⋆+𝛥𝑡∕2 becomes: 

𝒖̇𝒖𝑡⋆+𝛥𝑡∕2
= 𝛥𝑡

2
𝑀−1𝑹(𝒖𝑡⋆ ) (93)

Using Eq.  (93), the displacement vector 𝒖𝑡⋆+𝛥𝑡 can be found using Eq.  (92). This kinematic damping procedure is successfully applied 
in [44,113,115,116], among others, showing the robustness of the method while eliminating the need to determine the damping 
coefficient 𝑐.

The equations above can be solved if and only if the mass matrix 𝑀 is invertible. However, having a full mass matrix drastically 
increases the computational costs of the method, since it involves solving a linear system. Therefore, alternatives include to select 
𝑀 = 𝜌 diag(𝐾) with linear stiffness matrix 𝐾 [119] to use a diagonal lumped mass matrix [115,116,118,120–122] or to use a 
column-sum of the stiffness matrix [123].

In this paper, the dynamic relaxation method is equipped with the kinetic damping approach and a diagonal lumped mass matrix. 
The latter is assembled based on a unit-density and scaled with a parameter 𝛼 as in, tuning the speed of convergence of the DR 
iterations. In the work of [124], a brief study on the tuning of the parameter 𝛼 is provided. In brief, a too low value of 𝛼 leads to 
divergence of the DR method, whereas a too high value leads to slow convergence. Typically, the DR iterations are terminated if 
the relative residual norm is below a tolerance ‖𝑹(𝒖𝑘)‖∕‖𝑹(𝒖0)‖ < 𝜖𝑹, or if the relative kinetic energy is below a certain tolerance 
𝐸𝐾∕𝐸𝐾 < 𝜖 .
𝑘 0 𝐸𝐾
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6. Benchmarks

In this section, four benchmarks are presented for verification of the model presented in this paper. The benchmarks are selected 
from previous works on hyperelastic wrinkling simulations. Firstly, an uniaxial tension test is performed to verify the implementation 
of the model, based on the examples in the works of [105] and [106]. In this case, the full domain is in wrinkling condition, hence 
the tension field does not change during the iterations. Secondly, the inflation of a square membrane is modelled in Section 6.2, 
inspired by [125]. Thirdly, Section 6.3 provides an example of a planar annular sheet in which the inner boundary is pulled out 
of the plane and twisted. This benchmark is inspired by the example given by [44] for linear elastic materials modified using 
a hyperelastic material model. Lastly, Section 6.4 models a cylindrical surface subject to large axial strain and a radial twist to 
demonstrate the capabilities of the present model on conic surfaces under large strains. For all benchmarks, a wrinkling simulation 
resolving wrinkling amplitudes is provided as a reference, along with results from the literature if available. The former are generated 
using isogeometric Kirchhoff–Love shells with hyperelastic constitutive models [104–106].

In the sequel, different hyperelastic material models are used. The compressible and incompressible Neo-Hookean (NH) and 
Mooney–Rivlin (MR) material models are given by the following strain energy density functions:

𝛹 (𝐂) = 𝜇
2

(

𝐽− 2
3 𝐼1 − 3

)

+ 𝛹vol(𝐽 ) NH Compressible, (94)

𝛹 (𝐂) = 𝜇
2
(

𝐼1 − 3
)

, NH Incompressible, (95)

𝛹 (𝐂) =
𝑐1
2

(

𝐽− 2
3 𝐼1 − 3

)

+
𝑐2
2

(

𝐽− 4
3 𝐼2 − 3

)

+ 𝛹vol(𝐽 ), MR Compressible, (96)

𝛹 (𝐂) =
𝑐1
2
(

𝐼1 − 3
)

+
𝑐2
2
(

𝐼2 − 3
)

, MR Incompressible. (97)

Here, 𝜇 is the second Lamé parameter, defined as 𝜇 = 𝐸∕(2(1 + 𝜈)) and 𝑐1 and 𝑐2 are the coefficients controlling the Mooney–Rivlin 
model via 𝜇 = 𝑐1+ 𝑐2. Furthermore, 𝛹vol the volumetric strain energy density function using bulk modulus 𝐾 and parameter 𝛽 = −2:

𝛹vol = 𝐾G(𝐽 ) = 𝐾𝛽−2
(

𝛽 log (𝐽 ) + 𝐽−𝛽 − 1
)

. (98)

For the incompressible Neo-Hookean material model, the analytical derivative of the material tensor is implemented, whereas for 
the other material models a finite-difference technique is used to obtain this term.

6.1. Square subject to tension

As a first example, a uniaxial tension test is performed on a square membrane, see Fig.  1 for the model parameters inspired 
by [105] and [106]. The uniaxial tension test is performed both with an increasing load and with the value given in Fig.  1. The load 
stepping simulation provides a load displacement curve, which will be used against the implementation in our previous work [106], 
replicating analytical solutions. The simulation with the fixed value of the line load 𝑝 is used to assess the convergence in Newton–
Raphson iterations. This is used to confirm the correct derivation and implementation of the modified stress and material tensors 𝑺′

and C′. The tests are performed for compressible and incompressible Neo-Hookean (NH) and Mooney–Rivlin (MR) material models; 
see Eqs.  (94) to (97).

Fig.  2 presents the results of the uniaxial tension test. In the top plots, the stretch 𝜆 is plotted against the applied line load 𝑝
for the compressible and incompressible Neo-Hookean and Mooney–Rivlin material models. In the bottom plots, the convergence is 
presented using the current and previous relative residual norms, ‖𝑹𝑖+1‖∕‖𝑹0‖ and ‖𝑹𝑖‖∕‖𝑹0‖, respectively. The load–displacement 
curves (top) show that the tension field theory modification scheme accurately predicts the constitutive behaviour of the membrane 
compared with the original model. Furthermore, the convergence plots (bottom) show that for compressible and incompressible Neo-
Hookean and Mooney–Rivlin models, the convergence rate is optimal, i.e., quadratic, for Newton–Raphson iterations, but flattens 
out due to machine precision.

6.2. Square subject to inflation

In the next example, the inflation of a square membrane is modelled (see Fig.  3). This example is inspired by the works of [125], 
among others. In most previous works, the inflated square membrane was modelled using linear elastic models [71,89,96,126,127], 
but in the work of [125] the case was used with a hyperelastic Neo-Hookean material model, which is adopted in this paper as well. 
Furthermore, the inflation is modelled using a surface loading 𝒇 (𝒖) = 𝑝𝒏̂, see Eq.  (16), with the pressure 𝑝 = 5000[Pa]. The simulation 
is solved in two stages, inspired by [125], to ensure bounded equilibrium iterations for the membrane. First, an in-plane boundary 
load of 𝑝 = 5000 [Pa] orthogonal to the boundary is applied to 𝛤1 and 𝛤4 to pre-stretch the membrane. Thereafter, the pressure is 
applied to the pre-stretched domain, and the boundary load is removed. The equilibrium iterations are performed using a Dynamic 
Relaxation method with 𝜖𝑹 = 10−6. In addition, the solutions are computed on meshes with 8 × 8, 16 × 16 and 32 × 32 elements. 
For the membrane model, elements with degree 𝑝 ∈ {1, 2, 3} are used, whereas the Kirchhoff–Love shell model uses 𝑝 ∈ {2, 3} due 
to the 𝐶1 continuity requirement of the shell model.

Fig.  4 depicts the results of the inflated square membrane. As can be seen in Fig.  4(a), the membrane inflates into a pillow-shape 
with wrinkles along the free boundaries. Indeed, Fig.  4(b) shows that the tension field in the boundary regions indicates wrinkling, 
whereas the other parts are in a taut state, which is in line with similar observations as in [96]. The contour lines on the 𝑧 = 0-plane, 
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Fig. 1. Set-up for the uniaxial tension benchmark problem. In the figure on the left, the filled geometry represents the deformed configuration, and the dashed 
line indicates the undeformed geometry. The load 𝑝 indicates a line load acting on the undeformed geometry. The table on the right provides the parameter 
values for the specific benchmark problem for Neo-Hookean (NH) and Mooney–Rivlin (MR) materials.

Fig. 2. Results for the uniaxial tension benchmark problem from Fig.  1. The top plots depict the stretch 𝜆 versus the applied load 𝑝. The bottom plots present 
the convergence of the relative residual norm ‖𝑹𝑖‖∕‖𝑹0‖ for a load step with 𝑝 = 1.0 [MPa], with the triangle indicating second-order convergence. The results 
are depicted for Neo-Hookean (NH) and Mooney–Rivlin (MR) materials with the parameters from Fig.  1. The lines indicate the results without a tension field 
theory (TFT) modification, and the markers indicate the results including the modification proposed in this paper.
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Fig. 3. Problem definition for a square membrane with diagonal length 1.2 [m] subject to pressure 𝑝. The membrane is modelled using in-plane symmetry 
boundary conditions on 𝛤1 and 𝛤4. Furthermore, the sides 𝛤2 and 𝛤3 have restricted 𝑧-displacement. The square membrane has a Neo-Hookean material model 
with the parameters provided in the table on the right.

Table 1
Results for the inflated square membrane; see Fig.  3 for the problem parameters; for the Kirchhoff–Love (KL) shell resolving 
actual wrinkles; and for the membrane model using the tension field theory (TFT) modifications proposed in this paper. The 
reference results are provided as the vertical displacement in the mid-point 𝑀 , 𝑢𝑧,𝑀 , and as the horizontal displacement along 
the 𝑥-axis in the point 𝐴, 𝑢𝑥,𝐴. The results are compared with the work of [125].
 # elements KLShell Membrane (TFT) [125]

 8 × 8 16 × 16 32 × 32 8 × 8 16 × 16 32 × 32 5 × 5 25 × 25 
 
𝑢𝑧,𝑀

𝑝 = 1 0.2153 0.2181 0.2188 0.2144 0.2245  
 𝑝 = 2 0.2094 0.2161 0.2182 0.2198 0.2192 0.2191  
 𝑝 = 3 0.2133 0.2173 0.2205 0.2189 0.2190 0.2190  
 
𝑢𝑥,𝐴

𝑝 = 1 0.0357 0.0333 0.0315 0.0265 0.0307  
 𝑝 = 2 0.0236 0.0268 0.0282 0.0309 0.0302 0.0298  
 𝑝 = 3 0.0251 0.0270 0.0293 0.0302 0.0299 0.0296  

see Fig.  4(c), show large differences in the wrinkling pattern, varying the number of elements and the degree of the basis for the 
Kirchhoff–Love shell model. However, the membrane model using the tension field theory modification for hyperelastic materials as 
presented accurately captures the wrinkling mid-plane and is consistent across mesh refinement and degree elevation. The numerical 
results in Table  1 show that the mid-point and corner-point displacements of the membrane rapidly converge for the tension field 
membrane simulation, compared to the shell simulation. The final values of both simulations show small differences between the 
results obtained by the KL shell model and the membrane TFT model and slightly bigger differences with the results obtained by 
the shell model of [125], possibly because of the lower degree finite element method and the lower number of elements used there.

6.3. Annulus subject to tension and twist

As a next example, an annular planar surface subject to an out-of-plane translation and a twist of 90◦ of the inner-boundary 𝛤𝑖 is 
modelled, see Fig.  5. The example is inspired by the work of [44] using the same geometric dimensions but different material 
parameters. An incompressible Neo-Hookean material model with the strain energy density function from Eq.  (95) is used as 
constitutive model, with the parameters from Fig.  5. The geometry is modelled using 4 patches representing a quarter annulus of 
degree 𝑝 = 2 with maximum regularity. The interfaces of the patches are smoothened with 𝐶1 continuity over the interfaces using 
basic interface smoothing, i.e. by replacing every interface basis function with a weighted linear combination of its neighbours 
orthogonal to the patch interface. We refer to [128], where this approach is used for regular interface functions, for more details. 
Every patch consists of one element. For the tension field theory membrane simulation, quadratic or cubic splines with 8 × 8, 16 × 16 
or 32 × 32 elements per patch are used. The simulations are compared to Kirchhoff–Love on the same number of elements, but only 
with cubic degree to improve accuracy.

The example is solved using displacement controlled stepping for the rotation of the inner-boundary. In every displacement 
step, the example is solved using a Dynamic Relaxation method with tolerance 𝜖𝑹 = 10−4 and a Newton–Raphson method with 
tolerance 𝜖𝑹 = 10−6. In case of divergence or slow convergence (more than 50 iterations) of the Newton–Raphson iterations, the 
displacement step is bisected and re-started. After four subsequent failures of a displacement step, the solution obtained from the 
Dynamic Relaxation stage is accepted and the non-converged solution from the Newton–Raphson method is discarded.
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Fig. 4. Results for the square membrane subject to a pressure load from Fig.  3. (a) represents the deformed shape from a Kirchhoff–Love shell simulation, 
providing wrinkles. (b) provides the deformed shape from a membrane simulation with the proposed tension field theory modification scheme, together with the 
tension field. (c) provides the contours of the deformation for both models for different numbers of elements and degrees. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Problem definition for an annulus with inner radius 𝑅𝑖 and outer radius 𝑅𝑜 subject to a vertical translation 𝑢𝑧 and a rotation 𝛩 on the inner boundary 
𝛤𝑖 while being fixed on the outer boundary 𝛤𝑜. The annulus has a Neo-Hookean material model with the parameters provided in the table on the right.
16 
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In Fig.  6, the displacement fields are provided for the benchmark results obtained using the Kirchhoff–Love shell model, along 
with the displacement and tension fields obtained using the proposed membrane model. The results are provided for meshes with 
64 × 64 elements per patch and degree 𝑝 = 3. In addition, Fig.  6 provides selected contour lines of the displaced geometry with 
solid lines indicating the Kirchhoff–Love shell results and dashed lines indicating the membrane model results for different meshes 
and degrees. All results in Figs.  6 and 7 are provided for applied angles {0.35, 0.40, 0.45, 0.50} [𝜋 rad].

From the results in Figs.  6 and 7, multiple observations can be made. Firstly, Fig.  6(a) and Fig.  6(b) show a qualitatively good 
comparison between the wrinkled region given by the Kirchhoff–Love shell model and the tension field from the membrane model. 
Indeed, as shown by the contours in Fig.  7, the tension field theory membrane model accurately predicts the average of the wrinkles 
given by the wrinkling simulation using the shell model, which is as expected from the construction of the model. Furthermore, the 
performance of the membrane model is consistent across refinements and degree elevations, starting from coarse meshes compared 
to the Kirchhoff–Love shell model.

In addition, the resulting torque around the 𝑧-axis at the top boundary is given in Fig.  8. This quantity is computed by applying 
the variational formulation from Eq.  (17) on the relevant boundary, with the obtained solution 𝒖 and the distance to the centre of 
rotation as variation. As can be seen in the figure, the tension field membrane results provide a good approximation of the results 
obtained by the finest mesh of the Kirchhoff–Love shell simulation, even for the coarsest mesh. However, the resulting torque for the 
angle 𝜋 [rad] at the end of the simulation seems to be underestimated by the membrane model. An explanation for the substantial 
differences is unclear yet, but most likely the modelling assumption of a fully vanishing stress orthogonal to the wrinkle direction 
is invalid, e.g. because of remaining bending stiffness.

6.4. Cylinder subject to tension and twist

Similar to the previous example regarding the pulled hyperelastic annulus (see Section 6.3), the next benchmark models a cylinder 
subject to a translation along its length and a rotation around its centre axis (see Fig.  9). As for the annulus in Section 6.3, an 
incompressible Neo-Hookean material model is used. As in the previous benchmark, the geometry is modelled using quadratic 
patches with a smoothed basis over the interfaces. The degrees and mesh sizes of the bases used for the tension field membrane 
element and the Kirchhoff–Love shell are the same as in the previous benchmark. In addition, the solver setting is the same as in the 
previous benchmark, and the displacement of the top boundary is controlled. Although there are similarities in the problem set-up 
between the annulus from Section 6.3 and the cylinder benchmark, it should be noted that the case of the cylinder involves larger 
strains, hence this example is more suitable for hyperelastic material models.

Fig.  10 provides the results obtained using the Kirchhoff–Love shell model, along with the displacement and tension fields 
obtained using the proposed membrane model and Fig.  11 provides the contour line of the deformed geometries halfway the height 
at different load steps for both models. The results in Fig.  10 are obtained for meshes with 64 × 64 elements with degree 𝑝 = 3 and the 
results in Fig.  11 are obtained for meshes with 16 × 16, 32 × 32 and 64 × 64 elements of degree 𝑝 = 3 for the Kirchhoff–Love shell and 
degrees 𝑝 = 2 and 𝑝 = 3 for the proposed membrane model. All results are provided for applied angles {0.35, 0.40, 0.45, 0.50} [𝜋 rad].

From the results in Figs.  10 and 11, similar observations as for the previous benchmark problem can be made. From Fig.  11 it 
can be seen that the present model predicts the mid-plane of the wrinkled membrane. In addition, Fig.  12 shows great similarity 
between the load–displacement curves obtained by using the proposed tension field theory membrane model and the reference 
Kirchhoff–Love shell model, even for the coarsest mesh (16 × 16) and lowest degree (𝑝 = 2).

7. Conclusions

Aiming for efficient modelling of membrane wrinkling, this paper presents a modification strategy for hyperelastic membranes 
in an implicit way. The model extends the work of [95,96], who presented the modification scheme for linear elastic membranes 
based on tension fields. The modification scheme for hyperelastic membranes presented in this paper uses the assumptions from 
[72,90], implying a modification of the deformation tensor rather than the constitutive model. As a consequence, the kinematic 
equation changes. Assuming a non-linear constitutive relation, the introduction of the wrinkling strain tensor adds contributions to 
the stress and material tensors, including dependency on the derivative of the material tensor with respect to the strain tensor. Since 
the latter term can be difficult to obtain due to condensation of the through-thickness strains for incompressible and compressible 
material models, it is computed through finite differences in the present work. Since the modification scheme is defined through 
derivatives of the strain energy density function, it can be used for general hyperelastic materials.

The present model is verified using a series of benchmarks. The isogeometric Kirchhoff–Love shell formulation is used as a 
reference for wrinkling computations. The proposed tension field theory-based (TFT) membrane is implemented in isogeometric 
finite elements as well, although the formulations do not necessarily depend on high geometric continuity. The first benchmark 
problem involves an uniaxial tension test, verifying the speed of convergence for a fixed tension field. The second benchmark 
demonstrates application on an inflatable hyperelastic membrane, showing good mesh convergence in terms of displacements 
compared to the shell model. Third, the TFT model applied to an annular geometry subject to a controlled displacement and rotation 
of the inner boundary shows a good comparison with the shell model, similar to the linear model from [44]. The resulting torque 
on the inner boundary shows great similarity between the TFT model and the shell model, and the TFT model shows consistent 
results through mesh refinements. Similar to the annular membrane, a new benchmark problem is provided using a cylinder that is 
elongated and rotated along its central axis. In this case, the TFT membrane model provides great similarity with the shell model 
both in terms of the computed displacement field and the applied torque on the boundary. In this case, the proposed TFT model 
17 



H.M. Verhelst et al. Computer Methods in Applied Mechanics and Engineering 441 (2025) 117955 
Fig. 6. Results of the example with an annulus with fixed outer boundary and with an inner boundary subject to a translation and a rotation, see Fig.  5. A 
side view (a) and a top view (c) of the wrinkled membrane using the Kirchhoff–Love shell simulation are provided, as well as the deformed geometry from 
the tension field theory membrane simulation with the tension field for colouring (b). Furthermore, contour lines of the deformation for different parametric 
coordinates are provided; see (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Contour line for parametric coordinate 𝜉𝑟 = 0.9 such that 𝜉𝑟 = 0 corresponds to 𝑅𝑜 and 𝜉𝑟 = 1 with 𝑅𝑖. The solid lines represent the Kirchhoff-Love shell 
results, and the dashed lines represent the tension field theory membrane results. Note that the coarsest mesh for the shell simulation (blue solid line) results 
in a self-intersecting solution for 𝜋∕2 [rad]. See Fig.  7 for the legend. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

Fig. 8. Load–displacement curves of the torque 𝑀 applied on the inner boundary (vertical axis) versus the rotation of the inner boundary (horizontal axis). 
The full diagram up to a rotation of 𝜋∕2 radians is given in the left figure, while an inset of the final end of the curve is given in the right figure. The results 
are provided for different mesh sizes for the Kirchhoff–Love shell (KL-shell) and the tension field theory membrane (TFT-membrane) models fir the considered 
degrees.

Fig. 9. Problem definition for an cylinder with inner radius 𝑅 and length 𝐿 subject to an elongation 𝑢𝑥 and a rotation 𝛩 on the right boundary 𝛤𝑟 while being 
fixed on the left boundary 𝛤𝑙 . The cylinder has a Neo-Hookean material model with the parameters provided in the table on the right.
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Fig. 10. Results of the example with an cylinder with fixed bottom boundary and with a top boundary subject to a translation and a rotation, see Fig.  9. A 
side view (a) and a top view (c) of the wrinkled membrane using the Kirchhoff–Love shell simulation are provided, as well as the deformed geometry from the 
tension field theory membrane simulation with the tension field for colouring (d). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
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Fig. 11. Contour line for the deformed geometry in the middle of the cylinder. The solid lines represent the Kirchhoff-Love shell results, and the dashed lines 
represent the tension field theory membrane results. See Fig.  11 for the legend.

Fig. 12. Load–displacement curves of the torque 𝑀 applied on the top boundary (vertical axis) versus the rotation of the top boundary (horizontal axis) of the 
cylinder. The full diagram up to a rotation of 𝜋∕2 radians is given in the left figure, while an inset of the final end of the curve is given in the right figure. 
The results are provided for different mesh sizes for the Kirchhoff–Love shell (KL-shell) and the tension field theory membrane (TFT-membrane) models fir the 
considered degrees.

also shows consistency over mesh refinements. It should be noted that the use of the Dynamic Relaxation method in combination 
with the Newton–Raphson method is necessary in some situations due to evolving tension fields during the iterations, making the 
Newton–Raphson methods diverge with a poor initial guess. Concluding, the benchmarks demonstrate the validity and applicability 
of the proposed model, in addition they show that the proposed model provides accurate prediction of global structural response 
even on very coarse meshes.

As for the linear elastic model from [95], the present model relies on a tension field evaluated given a certain deformation. If the 
tension field is subject to large changes during iterations, the convergence behaviour of the model deteriorates since the changing 
tension field is not included in the variation of the wrinkling stress. In future work, it is recommended to incorporate the tension 
field into the derivative of the wrinkling stress. Furthermore, an equivalent for the Dynamic-Relaxation method combined with 
Newton–Raphson methods for quasi-static simulations could be investigated as well, starting with the explicit arc-length method 
from [124].
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