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Abstract

Tests of General Relativity are often done in the Solar System by using tracking data from interplanetary space
missions, to measure the perturbation on the orbits of the planets that is predicted by General Relativity. The
next best opportunity for such a test is the BepiColombo spacecraft by the European Space Agency, which
will arrive at Mercury in late 2025.

However, a very similar perturbation is also produced by the gravitational oblateness of the Sun through
the zonal coefficient J2¯. The exact value of this coefficient has been hard to determine despite centuries
of observations of the solar shape, and besides the accuracy of the tracking data it is the main source of
uncertainty for the tests of gravitational theory. Recent publications in heliophysics suggest that higher order
effects might also be of relevant influence too, such as coefficient J2¯ being dynamic along the solar cycle, or
the fourth zonal coefficient J4¯.

This thesis project attempts to bring together two fields of research: the field that tries to test General
Relativity (GR) in the Solar System, and the field of heliophysics that tries to unravel the structure of the
Sun. The orbit of Mercury, as well as the observations of BepiColombo and it predecessor MESSENGER, are
simulated in a virtual reality where settings of the solar shape are varied. Relevant parameters to tests of
gravity are then estimated using a least-squares algorithm and their error is analysed.

It is found that the amplitude of a periodic component of the solar oblateness can be found with an un-
certainty of 0.02% of the value of J2¯. It is also found that if a periodic component exists with an amplitude
higher than 1%, it can lead to errors in the experiments of GR to the point that results oppose the theory of
General Relativity. Expected values for J4¯ from heliophysics currently do not influence the orbit of Mercury
by a measurable amount.

Based on this work, it is recommended to those in the field who test General Relativity using data from
BepiColombo, to take this effect into consideration to prevent getting results in their experiments that can
lead physicists in the wrong direction concerning the development of gravitational theory.
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1
Introduction

In 1859 French astronomer Urbain Le Verrier discovered that the perihelion of Mercury shifts over time by an
amount which could not be accounted for only by calculating the perturbations caused by the planets [34].
Le Verrier did not get the right value at that point but presently it is known that the anomalous advance is 43
arcseconds per century. Many proposals were made to solve the problem by suggesting undiscovered planets
or a large solar gravitational oblateness [51], but any evidence was never found.

In the 19th century, laws of electromagnetism were developed, which lead to the formulation of the theory
of Special Relativity in 1905 [11]. This theory was not compatible with Newton’s laws of gravity, which lead
Einstein to develop a new, relativistic, theory of gravity. In 1915 the result was published: the theory of General
Relativity [12]. To support the theory, it was calculated that the anomalous advance could exactly be explained
with General Relativity, which predicted the first post-Newtonian acceleration correction exerted by the Sun
to be exactly 43 arcseconds per century.

Ever since, the experiment of Mercury’s perihelion has become famous. Due to better observations over
the course of the 20th century, the anomalous precession could be measured with increasing precision. Even
smaller effects could now be measured as well, and the question was raised: what perturbations contribute to
end up with this measured advance of Mercury’s perihelion? The perturbations caused by the planets could
be calculated with sufficiently high accuracy, but one other perturbation was hard to predict: the advance
due to the solar gravitational oblateness of the Sun around its equator, i.e. the zonal harmonic of degree 2.
This effect is dictated by zonal coefficient J2¯. Measuring this parameter is difficult, because among other
reasons the interior (i.e. mass distribution) is unknown, the surface rotation is not the same for all latitudes
and the visual shape of the Sun is hard to observe due to magnetic surface activity [38, 48]. Due to uncertainty
about the value of J2¯, it could not be calculated with confidence how much of the 43 arcseconds was caused
by the solar oblateness and how much had to be caused by something else, presumably a post-Newtonian
term of relativistic gravitational theory.

It is for that reason, that scientists in the 1960’s briefly started to doubt General Relativity. A considerably
higher value for the solar oblateness was measured, which resulted in the statement that the perturbation
predicted by General Relativity was off by 8% [9]. This resulted in a lot of controversy, and after years of
discussion the observations were rejected by the community [48]. The search for the right value for J2¯ con-
tinued, but there were still large discrepancies between measurements. A sufficiently accurate input for the
perihelion advance caused by solar oblateness could not be found by observing the Sun, hampering the proof
of the effect predicted by General Relativity.

Experiments to prove General Relativity using planetary orbits have been ongoing in the meantime. While
it is commonly accepted in the scientific community as the leading theory of gravity and it has survived count-
less experiments, many questions remain unanswered. For example, General Relativity is not compatible
with quantum physics, and the field of particle physics has been searching for a way to explain gravitational
interactions at a microscopical level [35]. In addition, many questions are still open about the evolution of
the universe in the field of cosmology [51, 56]. Therefore, one hundred years after its formulation, there still
is a demand for more accurate tests of General Relativity.

The problem of the solar oblateness was however still present. In the 21st century, experiments of General
Relativity were developed which took into account hundreds of thousands of observations of planet positions
over decades, and constraints on both parameters of General Relativity and J2¯ could be determined along-
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2 1. Introduction

side each other through estimation, eliminating the need for a good value of J2¯ from solar observations.
The estimation is however held back by high correlation between the parameters that dictate the relativistic
perturbation and J2¯, because they both produce the same effect: an advance in the perihelion of planets.
Nevertheless, the results of such experiments are often presented very confidently: for J2¯, reported uncer-
tainties of experiments got to a 1σuncertainty of 1% recently [17]. It is however not uncommon that estimates
of the value of J2¯ vary between experiments within 10% (see [48] or figure 1 of the upcoming journal paper
for recent results). Therefore, it can be questioned whether estimates of J2¯, and in extension the parameters
of General Relativity, are published with overconfident uncertainty.

In heliophysics, observing the Sun and its shape has continued nevertheless, because about the interior
and dynamics of the Sun there are still many questions to be answered. In the last two decades, it has more
than once been suggested based on oblateness observations that the solar oblateness might not be a constant
value, but varies over time along with the solar magnetic activity cycle (e.g. [3, 28, 46, 48]), although the theory
is also contested [32]. It was calculated that a dynamic value for J2¯ could cause perturbations in the rate that
the advance of Mercury’s perihelion occurred in the order of 1% [58], the same magnitude as the claimed
uncertainty of recent estimations of the parameter. Furthermore, theories and measurements considering
the fourth order zonal coefficient J4¯ have come up [1, 3, 37, 38, 48], which could also influence the orbit of
Mercury at a measurable amount if large enough. The impact of these recent suggestions about the gravity
perturbations caused by the solar shape have never been included or investigated in the experiments made
to prove General Relativity. Because estimations with planetary observations proved to be more effective in
estimating J2¯, the solar physics side of the story behind the solar oblateness seems to be a bit separated from
the gravity experiments, at least when compared to the past.

Currently speaking, the next best chance to do such a test is currently on its way to Mercury: the Bepi-
Colombo mission, a collaboration between the European Space Agency (ESA) and the Japanese Aerospace
Exploration Agency (JAXA), which will arrive in December 2025. One of the two spacecraft that will orbit
Mercury has dedicated hardware, the Mercury Orbiter Radioscience Experiment (MORE, [20]), on board to
improve the constraints on the parameters that are associated with the perturbation caused by General Rela-
tivity. The aim is to improve the uncertainty with two orders of magnitude [26, 39, 49].

The solar gravitational oblateness could stand in the way of achieving this goal. In the new regime of ac-
curacy that BepiColombo will provide, what kind of phenomena will be encountered for the solar oblateness,
as suggested in the past 2 decades in heliophysics? In this work, it is attempted to address this question. The
aim is to research what kind of scenarios for the solar shape are presented by literature in heliophysics, and
see what the impact would be on the experiments of General Relativity using BepiColombo data. In general,
the hypothesis that is to be proven right or wrong in this work is:

The time variable gravitational oblateness or higher order zonal effects of the Sun can have a
relevant effect on the tests of general relativity that will be done using BepiColombo data, and
it should be taken into account in experiments of gravity that use BepiColombo data.

The following research questions have been formulated that need to be answered to achieve this goal: Using
combined tracking data of the MESSENGER and BepiColombo missions in a parameter estimation algo-
rithm,

1. to what accuracy can parameters of General Relativity and the solar quadrupole moment J2¯ be de-
termined?
In the past, parameters were estimated with MESSENGER data [21, 43], and predictions have been
made by simulating BepiColombo data [4, 26, 27, 39, 49], but the two data sets have never been com-
bined before. It is of interest to know if this long-term combined data set has considerable advantages
for long-term effects. Furthermore, this will set a baseline of what the algorithm made in this project is
capable of when not including any higher order effects in the solar shape.

2. what dynamic values for J2¯ can be detected?
Periodic variations of a variety of magnitudes are suggested by publications in heliophysics, what the-
orethical values could be detected with this data set?

3. can higher order effects due to other zonal coefficients Jn¯ be detected?
Again, a variety of values is suggested in literature, which ones can be detected?
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4. if higher order effects do exist but are not considered in gravitational experiments, what will be the
impact in the estimation of relativistic parameters?
It can be imagined that a mismodelling of the solar oblateness can lead to large errors in gravitational
experiments. Just like 1960’s, this could lead to controversy if measurements start to conflict with Gen-
eral Relativity.

This report is structured as follows. The thesis work has been written down in the shape of a scientific
journal article, which will be presented next in the second chapter of this report. In chapter 3 extensive
conclusions and recommendations will be given for the thesis. To support the methods developed during
this thesis, which are only briefly explained in the journal article, Appendix A will elaborate further upon the
acceleration models used and appendix B will give a detailed description of how observations are simulated.
Finally, verification and validation of the software will be elaborated upon in appendix C and D, respectively.

For those interested, the software used for this thesis project is made available. All simulations are performed in
TUDAT ([10], https://tudat.tudelft.nl/), for the libraries the most recent version was taken on February
2020. Post-processing is done in Python 3.6. All written code is uploaded to the following github repositories:

• The main applications, custom functions, inputs and post-processing procedures:
https://github.com/RensZ/thesis2

• Changes made in the acceleration and estimation models in the /tudatBundle/tudat/Tudat/ folder:
https://github.com/RensZ/Tudat

It is a large piece of code made to run a large variety of simulations, I would be happy to help you along or an-
swer any questions that you may have regarding the code, just shoot me a message: rensvanderzwaard@gmail.com.

https://tudat.tudelft.nl/
https://github.com/RensZ/thesis2
https://github.com/RensZ/Tudat
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Abstract

When the BepiColombo spacecraft arrives at Mercury in late 2025, it will be able to measure the orbit of the
planet with unprecedented accuracy, allowing for more accurate measurements of the perihelion advance of the planet
as predicted by the theory of General Relativity (GR). A similar effect is produced by the gravitational oblateness
of the Sun through the zonal coefficient J2�. The shape of the Sun has been hard to determine despite centuries
of observations, causing high uncertainties in the experiments of GR. Recent publications in heliophysics suggest
that J2� is not a constant but a dynamic value that varies with solar magnetic activity, and that the next zonal
effect J4� could also be of relevant influence. The aim of this paper is to analyse what the effect is of suggested
higher-order effects of the solar shape on experiments of the perihelion advance of Mercury as predicted by GR. The
orbit of Mercury and observations of the MESSENGER and BepiColombo spacecraft are simulated, and parameters
corresponding to gravitational theory as well as the oblateness J2� including a time-variable component are estimated
using a least-squares approach. The result of the estimation is that the amplitude of a periodic component can be
found with an uncertainty of 3.7 · 10−11, equal to 0.017% the value of J2�. It is also found that if a periodic
component exists with an amplitude higher than 1% the value of J2� and it is not considered, it can lead to errors
in the experiments of GR using BepiColombo data to the point that results falsely confirm or oppose the theory of
General Relativity. Expected values for J4� from heliophysics currently do not influence the orbit of Mercury by a
measurable amount.

1. Introduction

The Solar System has always been a suitable labora-
tory for testing gravitational theory. An often-used
test is the secular precession of Mercury’s perihelion,
of which it was discovered in the 19th century that it
could not be explained just by using Newtonian gravity
and third-body interactions of other planets (Le Verrier,
1859). Albert Einstein used the observed precession of
Mercury’s perihelion as a key test to confirm his The-
ory of General Relativity (GR, Einstein, 1916). Ever
since, experiments on gravitational interactions have
only confirmed General Relativity with increasing accu-
racy. General Relativity is however not able to provide
all the answers about gravitational interactions yet in
fundamental physics, especially on the scales of quan-
tum mechanics or cosmology (Shapiro, 1999; Mattingly,
2005; Will, 2014). Therefore, more than one hundred

years after the theory was introduced, testing General
Relativity and its underlying principles is still a hot
topic. Finding absolute correctness or microscopic de-
viations of General Relativity is of high relevance in the
search for a universal theory in fundamental physics.
The current state, future outlook and relevance of ex-
periments on General Relativity is provided in great
detail by (Will, 2014). In this paper the relativistic in-
fluence on the secular precession of Mercury’s orbit will
be the focus.

The commonly used tool for experiments on grav-
ity is the Parameterised Post-Newtonian (PPN) frame-
work (Will & Nordtvedt, 1972), which uses ten param-
eters (γ, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3, ζ4). In General Rela-
tivity these parameters take on the values γ, β = 1 and
ξ, α1, α2, α3, ζ1, ζ2, ζ3, ζ4 = 0, however many alternative
theories of gravity have been formulated which predict
different values for the parameters (see Will, 2014). The
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determination of the PPN parameters through experi-
ment is a method to test which gravitational theories
are viable.

The orbit of Mercury is a test subject for such an ex-
periment. The first order post-Newtonian perturbation
is the perihelion advance, which can be expressed as a
function of the PPN parameters. Per orbit of Mercury
around the Sun, the precession is equal to ∆ω̃ (Will,
2014, eq. 66):

∆ω̃ =
6π

p

[
1

3
(m� +mM )(2 + 2γ − β)

+
1

6
(2α1 − α2 + α3 + 2ζ2)

(
m�mM

m� +mM

)] (1)

where m� and mM are the masses of the Sun and Mer-
cury and p is the semi-latus rectum of the orbit of Mer-
cury around the Sun. With accurate observations of
the orbit of Mercury the values of the PPN parameters
can be constrained. However, the second order zonal
effect of the Sun, caused by the mass bulge at the equa-
tor, produces a similar effect which has to be considered
(Park et al., 2017, eq. 3):

∆ω̃ =
6π

p

(
J2�R2

2p

)(
1 − 3

2
sin2 i

)
(2)

J2� is the normalised zonal coefficient of degree 2 of the
Sun, R is the mean radius of the Sun and i is the incli-
nation of the orbit of Mercury with respect to the solar
equator. A major source of uncertainty in experiments
of the PPN parameters is caused by the uncertainty of
J2�.

Attempts to determine the shape of the Sun date back
to the 19th century. The determination of the visual
oblateness (the visual radius difference between equa-
tor and poles) has turned out to be challenging, be-
cause among other reasons the interior (i.e. mass dis-
tribution) is unknown, the surface rotation is not the
same for all latitudes and the visual shape of the Sun
is hard to observe due to magnetic surface activity. A
comprehensive overview of experiments and their chal-
lenges is provided by Rozelot and Damiani (2011), see
also discussions by (Damiani et al., 2011; Meftah et al.,
2016). Zonal coefficient J2�, which influences bodies
orbiting the Sun, appears to not relate directly to its
visual shape and its rotation rate (Rozelot & Damiani,
2011; Will, 1981), and therefore the field of heliophysics
has had trouble to come up with constraints on J2� that
are useful as input for tests on gravitational physics. It
is for that reason that in experiments that use plane-
tary orbits, parameter J2� is usually estimated along-
side the PPN parameters. This limits the precision of
the experiment, as γ, β and J2� are all linearly propor-
tional to the precession rate of Mercury’s perihelion. γ
can be distinguished through other experiments due to
its effect on the propagation of light (see Bertotti et al.,
2003), but for β or J2� no other experiment is avail-
able. This causes a high correlation between β and J2�
in their estimation. Because of this, the uncertainty of
the solar oblateness can be considered a bottleneck for
testing gravitational theory.

To illustrate the challenge of determining J2�, fig-
ure 1 shows selected attempts to determine the value
of J2� both by estimation using planetary orbits and
by the field of heliophysics. It can be observed that

Figure 1: Selected attempts to determine J2� over the last 25 years. Errorbars indicate the 2σ uncertainty, corresponding
to a 95% confidence level. Where no error bars are drawn, uncertainties were not provided. All entries in this
plot are provided at the end of the paper in table 5.
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uncertainties are often quite optimistic and results are
not consistent with each other, presumably due to the
correlation of J2� and other parameters, or other as-
sumptions that are made in the determination of the
parameter and its uncertainty.

To complicate matters further, it is suggested that
higher order zonal effects such as J4� could also be of
significant value to affect planetary orbits at a mea-
surable level (Antia et al., 2007; Rozelot & Damiani,
2011). In addition, recent publications in heliophysics
state that the visual solar oblateness varies along the
11-year solar activity cycle, and a similar periodic vari-
ation in the value of J2� is suggested (Rozelot et al.,
2009; Irbah et al., 2019), although this theory has also
been contested (Kuhn et al., 2012). The effect that a dy-
namic value of J2� would have on the planetary orbits
has been calculated by Xu et al., 2017 and the impor-
tance of considering it in gravitational experiments has
been mentioned by Pireaux & Rozelot, 2003, in both
cases it is concluded that the dynamic effect can have
relevant influence on tests of General Relativity. Never-
theless, a dynamic oblateness has so far never been con-
sidered in publications about solar system ephemerides
or experiments of gravitational physics.

The aim of this study is to bridge the gap between
heliophysics and gravitational physics, by investigating
the different configurations that are suggested for the
solar gravity field. The central question of this study
is: with the observational capabilities of Mercury that
are expected in the foreseeable future, can the various
hypotheses about the solar gravity field be confirmed
or rejected, and do they have a relevant influence on
tests of General Relativity? If certain hypotheses can
be confirmed or rejected, it is of great value to both
fields to refine their theoretical models further.

The best test subject for such a study is the orbit
of Mercury. To date, the best experiments use data
from the MESSENGER spacecraft by NASA which or-
bited Mercury from 2011 until 2015, see e.g. (Verma et
al., 2014; Park et al., 2017; Genova et al., 2018). The
best next opportunity will be the BepiColombo mis-
sion by ESA, which is currently in cruise phase and will
be inserted into Mercury orbit in 2025 for a nominal
mission of one year. It will provide tracking data with
unprecedented accuracy with its dedicated instrument:
the Mercury Orbiter Radioscience Experiment (MORE,
Genova et al., 2008), due to its dual-frequency tracking
in the X and Ka bands. Simulations of relativity ex-
periments using simulated BepiColombo tracking data
show 1 to 2 orders of magnitude improvements for con-

straints on β (Milani et al., 2002; Ashby et al., 2007;
Iess et al., 2009; Schettino et al., 2015; Imperi, Iess,
& Mariani, 2018). Neither the experiments with MES-
SENGER data or the simulations of experiments with
BepiColombo data have ever considered perturbations
due to higher order effects due to the solar shape besides
a constant J2�. In this work, a similar experiment will
be set up which will consider such higher order effects.
Tracking data of both MESSENGER and BepiColombo
will be simulated, resulting in one combined data set
which will span 20 years, allowing to track the effect
of small perturbations on the orbit of Mercury over the
long term.

2. Method

At the top level our experiment is set up as follows. A
virtual reality is created by integrating the orbit of Mer-
cury from 2008 to 2028, with the acceleration model de-
scribed in section 2.1 and all parameters set correspond-
ing to the theory of General Relativity being correct.
Using the numerically integrated position of Mercury
in the virtual reality, range observations are simulated
according to the methods described in section 2.2. The
observations are used as input to estimate a set of pa-
rameters in a least-squares algorithm, which will be ex-
plained in section 2.3. The software used for simulation
and estimation is the TU Delft Astrodynamics Toolbox
(TUDAT, Dirkx et al., 2019).

2.1. Accelerations acting on Mercury

For the numerical integration of Mercury, an accelera-
tion model is set up to take into account all perturba-
tions that can produce an effect that is measurable using
the MESSENGER and BepiColombo tracking data. In
general these perturbations are: central gravity acceler-
ations by celestial bodies in the Solar System, figure ef-
fects of the Sun, first-order post-Newtonian relativistic
effects caused by the Sun and finally possible deviations
of General Relativity.

The point mass accelerations are included of all rele-
vant Solar System bodies which are the Sun, the 7 plan-
ets, the Moon and the 300 most influential asteroids.
Positions of the bodies are obtained from ephemeris
DE430 (Folkner et al., 2014) using SPICE.

For the accelerations due to figure effects of the Sun,
dictated by normalised zonal coefficients J2� and J4�,
spherical harmonics are used (see e.g. Montenbruck &
Gill, 2000). To model a time variable zonal coefficient, a
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simple sine function is taken as a correction cJd(t) that
is added to the zonal coefficient:

cJd(t) = AJ2� sin

(
2π

P
t+ ϕ

)
(3)

AJ2� is the amplitude of the periodic variation and will
be included as a parameter in the estimation. Period P
and phase ϕ are chosen such that the correction aligns
with the solar activity cycle. In figure 2 the monthly
smoothed sunspot number has been plotted, and the
mission durations of MESSENGER and BepiColombo
have been indicated on the x-axis. A period of 11 years
is chosen with a phase tuned such that the correction
reaches a minimum in December 2008 and December
2019. The sunspot number is commonly accepted as
the measure for solar magnetic activity. Therefore it
should be noted that, under the assumption that the
variations in oblateness mainly depend on solar mag-
netic activity (as also shown in (Irbah et al., 2019)), a
sinusoidal correction is only a first order approximation.

For the gravitational force exerted by the Sun the
post-Newtonian relativistic acceleration is implemented
according to equation 7.42 of (Will, 1981). The assump-
tion is made that the mass of Mercury mM is negligibly
small to the mass of the Sun m�. Furthermore, we
only consider gravitational theories that comply with
conservation laws for total momentum, meaning PPN
parameters α3, ζ1, ζ2, ζ3 and ζ4 are all zero, because the-
ories that violate total momentum lack experimental
evidence and are therefore unlikely candidates for de-
scribing gravitational interactions (Will, 2014). The re-
sulting acceleration term for Mercury is the following:

aPN =
Gm�
c2r3

{[
2(β + γ)

Gm�
r

− γ(v · v)

+ (2 + α1)
GmM

r
− 1

2
(6 + α1 + α2)

mM

m�
(v · v)

+
3

2
(1 + α2)

mM

m�

(
v · r

r

)2
]
r

+

[
2(1 + γ) − mM

m�
(2 − α1 + α2)

]
(r · v)v

}

(4)
where r and v are the relative position and velocity
vectors of Mercury with respect to the Sun, G is the
universal gravitational constant and c is the speed of
light in vacuum.

Furthermore, the angular momentum of the Sun S�
produces the perturbation known as the Lense-Thirring
effect, which is included as follows (Petit & Luzum,
2010):

aLT = (1 + γ)
Gm�
c2r3

[
3

r2
(r× v)(r · S�) + (v × S�)

]

(5)
In addition, the Strong Equivalence Principle (SEP)

is considered, of which the validity is an important
building block of General Relativity. The SEP states
that the inertial and gravitational masses are consid-
ered to be equal in any experiment in a gravity field,
e.g. planets in the gravity field of the Sun, and that the
self-gravitational energy Ωi of the bodies themselves do
not play a role (Kopeikin et al., 2011). To parameterise

Figure 2: Monthly smoothed sunspot numbers from January 2008 to August 2020 in blue (SILSO World Data Center, 2020)
and the prediction of solar cycle 25 in orange (NOAA Space Weather Prediction Center, 2020), which expects
the next solar maximum in July 2025 with an uncertainty of 8 months. The periods that MESSENGER and
BepiColombo are in orbit around Mercury are indicated in red on the x-axis. The period indicated for BepiColombo
is the nominal mission duration of 1 year.
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the SEP, the Nordtvedt parameter η is used which can
be expressed as a function of PPN parameters (Will,
1981, sec. 8.1):

η = 4(β − 1) − (γ − 1) − α1 −
2

3
α2 (6)

where it is again assumed that α3, ζ1, ζ2, ζ3, ζ4 = 0. If
the SEP and therefore General Relativity is correct, η =
0. If the SEP is violated, η has a nonzero value. It was
determined by (Milani et al., 2002; Genova et al., 2018)
that for Mercury the highest perturbation that is caused
by a SEP violation, is the fact that the location of the
Solar System Barycenter (SSB) changes when the SEP
is violated. This means that the the position of the Sun
with respect to the SSB has to be redefined:

rSEP� = − 1

µ�
(

1 − η Ω�
m�c2

)
∑

j 6=�

(
1 − η

Ωj
mjc2

)
µjrj

(7)
which induces a change in the point-mass acceleration
term exerted by the Sun on Mercury due to the change
in the distance between the bodies.

Finally, the variation of the gravitational parameter
µ� = Gm� is considered. General Relativity predicts
that the gravitational constant G is constant across
space and time, but other theories have suggested that
G may vary with the evolution of the universe (Will,
2014; Uzan, 2011). In addition, the solar mass m�
changes over time due to the radiative output of the
Sun and solar winds. The combination of the variation
of these two parameters is expressed as:

µ̇�
µ�

=
˙Gm�

Gm�
=
Ġ

G
+
ṁ�
m�

(8)

In this study a constant time variation ˙Gm�/Gm� is
assumed.

2.2. Simulated observations

To perform the estimation of parameters of interest,
observations of the position of planet Mercury over time
are required. In reality, these observations are obtained
from spacecraft tracking data, which provide a range
measurement between a ground station on Earth and
the spacecraft. To obtain a measurement of the range
to the centre of gravity of the planet, the distance of the
spacecraft with respect to Mercury has to be considered
as well. The sum of these two distances is the distance

from an Earth ground station to Mercury, which are the
observations used as input for gravity experiments:

dE−M = dE−S/C + dS/C−M (9)

where subscript E stands for Earth, M stands for Mer-
cury and S/C stands for spacecraft. Similarly, both
measurements contain errors. To obtain the error level
of the observation of Mercury with respect to Earth,
the root mean square is taken of the error levels of the
individual terms:

σ2
dE−M

= σ2
dE−S/C

+ σ2
dS/C−M

(10)

The errors of the simulated observations are an impor-
tant input for our experiment, they dictate the uncer-
tainty at which parameters can be estimated. Therefore
it is explained below how errors σ2

dE−S/C
and σ2

dS/C−M
are

simulated to match as closely as possible to the errors
that are encountered during the space missions.

As range observations from Earth to the spacecraft
(dE−S/C) two-way range data is simulated for which the
following inputs were taken. For MESSENGER, the
range accuracy depends on the Sun-Probe-Earth (SPE)
angle. The errors increase considerably at lower angles
due to interference caused by solar plasma (Genova et
al., 2018). A two-way noise level of 0.5 to 3.0 meters
is used, depending linearly on the SPE angle with min-
imum noise at 180◦ and maximum noise at 35◦. Ob-
servations are not simulated when the SPE angle is be-
low 35◦ as its errors are too high to be of use in this
experiment. BepiColombo range data does not suffer
from interference due to solar plasma due to its multi-
frequency radio links and therefore the noise level is
constant and data at any SPE angle can be used (Iess
et al., 2009). The target two-way noise level for Bepi-
Colombo is 20 to 30 centimetres (Iess & Boscagli, 2001),
first reports from the cruise phase of BepiColombo even
give centimetre-level errors (Cappuccio et al., 2020). A
conservative range noise level of 30 centimetres is chosen
for range simulations in this work.

The distance from the spacecraft to Mercury and its
error (σ2

dS/C−M
) are usually determined through orbit

determination of the spacecraft with respect to Mer-
cury. For this purpose range-rate (doppler) measure-
ments are especially useful. Because of constraints in
computational power during this project, the MESSEN-
GER and BepiColombo spacecraft could not be numer-
ically integrated alongside Mercury. The consequence
is that orbit determination cannot be performed and
the distance including error could not be obtained in
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the traditional way. Instead, it is chosen to artificially
generate errors which are added to the observations.
To achieve a realistic error, it was analysed what typi-
cal spacecraft position errors are by simulating various
benchmark tracking arcs along the mission duration and
performing orbit determination. It was found that the
position errors of the spacecraft with respect to Mer-
cury are largely based on two factors: the geometry
between the spacecraft and Earth in the Solar System
(which varies over months) and the true anomaly of
the spacecraft in its orbit around Mercury (which varies
over minutes). Through interpolation, set up to depend
on these two factors, distance errors σ2

dS/C−M
are gen-

erated from typical error levels that were found in the
analysis of the benchmark tracking arcs. The results for
the obtained error levels match with those reported for
both missions (Genova et al., 2018; Verma et al., 2014;
Alessi et al., 2012)

Having obtained the error level σ2
dE−M

, a random
Gaussian error sample is generated and added to the
observation. The tracking schedules (frequency of ob-
servations) are taken similarly to (Mazarico et al., 2014)
for MESSENGER and (Cicalo et al., 2016) for Bepi-
Colombo. For both missions, one range observation is
simulated as well as for each Mercury flyby that was
performed during the cruise phase.

2.3. Parameter estimation

The goal of the estimation is to determine with what
precision the initial state of Mercury and parameters
γ, β, η, ˙Gm�/Gm�, J2�, J4�, AJ2� can be constrained
using the observations. The estimation is performed
using a batch non-linear least-squares algorithm, as de-
scribed in (Montenbruck & Gill, 2000, chapter 7 and
8). Before starting the least-squares algorithm, model
observations are generated by integrating the orbit of
Mercury with a perturbed initial state, such that the
observations differ from the ”real” observations simu-
lated using the virtual reality. The least-squares algo-
rithm calculates a correction on the initial state and
parameters according to the following equation:

∆xlsq0 =
(
P−1

0 + HTWHx

)−1 (
P−1

0 ∆xapr0 + HT
x W∆z

) (11)

where ∆xlsq0 is the update on the parameter vec-
tor x which includes the initial state of Mercury and
the estimatable parameters, P0 is the apriori covari-
ance matrix, Hx is a matrix with partial derivatives

of the observations with respect to the parameters and
∆z is the difference between the real observations and
modelled observations. W is the observation weight
matrix, which represents the measurement error covari-
ance, where the final error level is used as input (see
section 2.2). Independent observations are assumed, i.e.
W is a diagonal matrix.

2.3.1 Apriori information

To take past results of gravitational experiments into
account, the estimation is provided with apriori in-
formation about the uncertainties on the parameters
through apriori covariance matrix P0. The current best
results for parameters are given in table 1. From the
table, the top entry is taken for each parameter. Even
though this is not always the best result published, apri-
ori values are chosen to depend as much as possible
on experiments that are not similar to ours (specifi-
cally, using past results based on MESSENGER data is
avoided).

For PPN parameter γ the present known accuracy
is 2.3 · 10−5 from the Cassini solar superior conjunc-
tion experiment (Bertotti et al., 2003). It is suggested
that BepiColombo could carry out similar superior con-
junction experiments during its mission (Imperi & Iess,
2017), of which it is expected that at maximum an un-
certainty of 1.1 · 10−6 can be attained for γ (Imperi
et al., 2018), a factor 20 increase with respect to the
Cassini experiment. For both the current known value
and hypothetical value of the apriori uncertainty results
will be presented in section 3.

For parameter J2�, choosing a result from any partic-
ular previous experiment is not sensible, because many
seem too optimistic as is evident from figure 1. A value
of 2.25 · 10−7 is chosen, which is about average of the
recent results. A conservative apriori uncertainty of
1 · 10−7 is taken.

2.3.2 Consider covariance analysis

Ideally, every single parameter that can influence the
dynamics of Mercury is included in the least-squares es-
timation, because very few variables are truly constant
with no uncertainty. Assuming certain parameters are
constant with no uncertainty is an option, but it could
cause overly optimistic results in the end for the param-
eters that are estimated. As a compromise, a consider
covariance analysis is used in this study (Montenbruck
& Gill, 2000, section 8.1.4). Use is made of consider pa-
rameters: parameters that are not included in the pa-
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Table 1: Results of parameters from recent experiments. 1σ values are given for uncertainties.

parameter result method

γ 1 + (2.1± 2.3) · 10−5 Cassini solar conjunction (Bertotti et al., 2003)

β

1 + (1.2± 1.1) · 10−4 Lunar Laser Ranging (Williams et al., 2012)
1 + (−2.7± 3.9) · 10−5 MESSENGER tracking data (Park et al., 2017)
1 + (−1.6± 1.8) · 10−5 MESSENGER tracking data (Genova et al., 2018)
1 + (0± 7) · 10−5 INPOP13c (Fienga et al., 2015)

α1
(0.8± 4) · 10−6 Planetary perihelion precession (Iorio, 2014)
(−0.4± 1.9) · 10−5 Small-eccentricity binary pulsars (Shao & Wex, 2012)

α2
(0± 8) · 10−10 Millisecond pulsars (Shao et al., 2013)
(4± 6) · 10−6 Planetary perihelion precession (Iorio, 2014)

η
(3.1± 3.6) · 10−4 INPOP17a & Lunar Laser Ranging (Viswanathan et al., 2018)
(−6.6± 7.2) · 10−5 MESSENGER tracking data (Genova et al., 2018)

Gm�
[
m3s−2

]
(132712440040.042± 0.010) · 109 INPOP19a (Fienga et al., 2019)

S�
[
kgm2s−1

]
(190± 1.5) · 1039 Helioseismology (Pijpers, 1998)

˙Gm�
Gm�

[
year−1

] (0± 7) · 10−14 INPOP13c (Fienga et al., 2015)
(−6.3± 2.2) · 10−14 EPM2011 (Pitjeva & Pitjev, 2013)

rameter estimation, but of which the uncertainty is to
be considered when computing the formal uncertainty
of estimated parameters.

The parameter covariance matrix including consider
covariance matrix is expressed as follows (Montenbruck
& Gill, 2000, eq. 8.42):

P c = P +
(
PHT

x W
) (

HcCHT
c

) (
PHT

x W
)T

(12)

where P is the final covariance matrix of the least-
squares algorithm, Hc is a matrix with linearised partial
derivatives of the observations with respect to the con-
sider parameters and C is the apriori covariance matrix
of the consider parameters (independence of consider
parameters is assumed, i.e. C is diagonal).

In this study, the following parameters are imple-
mented as consider parameters:

• The gravitational parameter of the Sun Gm�.
• PPN parameters α1 and α2.
• Solar angular momentum S�.
• The gravitational parameters of the 300 most influ-

ential asteroids (a good discussion on the pertur-
bations and uncertainties caused by the asteroids
is given in (Park et al., 2017)).

For the first three bullets the apriori knowledge (value
and uncertainty) is taken from table 1, for the asteroids
the apriori knowledge is taken from INPOP19a (Fienga
et al., 2019).

These parameters are selected as consider parame-
ters because they have a significant influence on the
formal errors of the parameters that are of interest in

this study. However, estimating these parameters them-
selves is not of interest and significantly increases com-
putational effort.

2.3.3 Estimation output

The covariance matrix P c of the estimated parameters
is an important piece of output. The square root of
the diagonal entries represent the formal errors of the
parameters. The formal error of a parameter is a 1σ
uncertainty and should be interpreted as the 1σ confi-
dence that the least-squares algorithm has in the result
of the parameter estimation.

The formal error does not necessarily have to be in-
dicative of the true error of the estimation. Relatively
high true errors compared to formal errors often occur
when dynamical effects in the acceleration model are
mismodelled (which usually also results in high obser-
vation residuals) or when the observation weight matrix
W does not represent the real observation errors. When
the model is correct and the estimation algorithm is suc-
cessful, true and formal errors are usually of the same
magnitude or the true errors are smaller. Because in
this work a simulated reality is used where each esti-
mated parameter is assigned a ”true value”, it is possi-
ble to calculate the true errors for our results by com-
paring the estimation output with the virtual reality. In
parameter estimation problems with real satellite track-
ing data this will not be possible and high true errors
compared to formal errors lead to wrong estimates of
parameters and phenomena.
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2.3.4 Nordtvedt constraint

The Nordtvedt constraint (eq. 6) is an extra piece of
information that can help the estimation algorithm. In
particular, exploiting this relation prevents high cor-
relation between the PPN parameters with each other
and other parameters in the estimation (Genova et al.,
2018; Imperi et al., 2018). To implement this equa-
tion, parameter η is not estimated in the least-squares
algorithm but is calculated through the Nordtvedt con-
straint. In the results in section 3 the formal error of η
is calculated using the property that the variance of a
linear equation of parameters is (Dekking et al., 2005):

Var

(
m∑

i=1

aiXi

)
=

m∑

i=1

n∑

j=1

aiaj Cov (Xi, Xj) (13)

The formal variance of η can be calculated by applying
this property to the Nordtvedt constraint:

Var (η) = Var (γ) + 16Var (β) + Var (α1) +
4

9
Var (α2)

− 8Cov (γ, β) + 2Cov (γ, α1) +
4

3
Cov (γ, α2)

− 8Cov (β, α1) − 16

3
Cov (β, α2) +

4

3
Cov (α1, α2)

(14)
However, the covariance terms with one or both of α1

and α2 (last 5 terms) are neglected, as these terms can-
not be calculated from the estimation output if α1 and
α2 are included as consider parameters (see next sec-
tion). The consequence is that the formal error of the
Nordtvedt parameter is a bit on the higher side in our
results, as the largest neglected covariance term is the
one between β and α1. This covariance is positive which
causes a negative term in equation 14, decreasing the
variance of η.

3. Results

3.1. Validation

Prior to generating results, the software has been ver-
ified and validated. The numerical integration error of
Mercury’s orbit is approximately 1 centimetre after 20
years of integration, which is assumed to be sufficient
considering the noise level of BepiColombo observations
is a factor 30 higher. Validation has been done by
comparing the simulation to selected publications for
MESSENGER (Genova et al., 2018) and BepiColombo

(Schettino et al., 2015; Imperi et al., 2018). When us-
ing the same inputs and acceleration models (as far as
possible), the formal error of our estimation can be seen
in table 2. Our reproduction of these publications give
uncertainties within a factor 2 for all parameters when
compared to the result from the publication itself. As
there are many design choices to be made in the setup of
such a simulation, and it is not unusual to see differences
of a factor 2 or more between similar experiments, this
reproduction is considered successful. This validation
procedure shows that, despite the simplifications that
had to be made in the simulation of observations, our
setup serves as a valid method for simulating a gravity
experiment of Mercury tracking data.

The simulations in the validation stage were per-
formed with models and inputs matching those pre-
sented in the respective publications, to reproduce the
results as closely as possible. Results presented in the
remainder of this paper follow the methods presented in
section 2. In case of the formal errors presented in tables
2 to 4, true errors are in the same order of magnitude
as the formal errors, indicating a good fit for the esti-
mation. Range residuals are in the order of hundreds
of meters for the MESSENGER data, and in the or-
der of decimetres for the BepiColombo measurements,
which are the minimum achievable values considering
the simulated errors (see section 2.2) and an indication
of a good least-squares fit. The state errors of planet
Mercury follow the same pattern, having a formal un-
certainty in the order of decimetres when BepiColombo
data is used.

3.2. Estimation with a static solar oblateness

Before going into results with higher-order effects of the
solar shape, we first present the results of an estimation
with settings that are conventional in comparable ex-
periments previously reported in literature: a static pa-
rameter J2� and no other perturbations of the Sun due
to spherical harmonics. These settings are implemented
both for the simulated reality and the estimation. For-
mal uncertainties of estimated parameters are reported
in table 3. Results of the estimation are shown when
only using either MESSENGER or BepiColombo data
and also when using a combined data set.

Formal errors for PPN parameters γ and β and
Nordtvedt parameter η are comparable to the estima-
tion when only using BepiColombo data, indicating that
the estimation does not benefit from the combined data
approach. These three parameters all cause a perihelion
shift in the orbit of Mercury. The short but accurate
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data set of BepiColombo is well suited to detect this
effect. Even though the cumulative perihelion advance
rise when observing over the long term, the errors of
the MESSENGER observations are too high to be able
to provide a better estimate than just with the Bepi-
Colombo data on the short term.

The long-term data set does however have an advan-
tage for estimating the time variable gravitational pa-
rameter ˙Gm�/Gm�, as an improvement of one order of
magnitude can be found with respect to the estimation
that only uses BepiColombo tracking data. The effect
caused by the time variable gravitational parameter is a
weakening of gravitational interactions causing Mercury
to slowly drift away from the Sun, which is different to
the perihelion shift which only changes the orientation
of the elliptical orbit compared to the Sun but does not
change it. Using the combined data set helps to decorre-

late these effects: correlation coefficients of ˙Gm�/Gm�
with the other three parameters are around 0.1 com-
pared to 0.5-0.6 in the case of only using BepiColombo
data.

To show the potential of the suggested BepiColombo
superior conjunction experiment (see section 2.3.1), re-
sults are also shown in table 3 when an improved apri-
ori uncertainty of γ is used corresponding to the ex-
pected outcome of such an experiment: σγ = 1.1 · 10−6.
The strength of the superior conjunction experiment is
clear from the results: improvements of a factor two
can be obtained for both β and J2�. The formal uncer-
tainty of γ from the parameter estimation with apriori
σγ = 2.3 · 10−5 cannot beat the result of the superior
conjunction experiment.

Table 2: Formal uncertainties (1σ) reported by recent gravity experiments using tracking data of MESSENGER or simulated
tracking data of BepiColombo, and a reproduction of the formal uncertainties (1σ) of the publications using our
software and similar inputs, compared for validation purposes.

γ β η J2�
˙Gm�

Gm�

[
y−1

]

results from (Genova et al., 2018) 2.3 · 10−5 1.8 · 10−5 7.2 · 10−5 2 · 10−9 1.5 · 10−14

reproduction of (Genova et al., 2018) 2.3 · 10−5 2.0 · 10−5 8.4 · 10−5 3.4 · 10−9 2.1 · 10−14

results from (Schettino et al., 2015) 8.9 · 10−7 3.8 · 10−7 2.0 · 10−6 3.7 · 10−10 2.0 · 10−14

reproduction of (Schettino et al., 2015) 2.0 · 10−6 7.7 · 10−7 4.5 · 10−6 3.8 · 10−10 9.1 · 10−15

results from (Imperi et al., 2018) 1.1 · 10−6 1.0 · 10−6 3.3 · 10−6 3.2 · 10−9 2.9 · 10−14

reproduction of (Imperi et al., 2018) 1.1 · 10−6 7.5 · 10−7 4.8 · 10−6 2.5 · 10−9 3.4 · 10−14

Table 3: Formal uncertainties (1σ) of estimated gravity parameters and solar oblateness when using the method described in
section 2, except that only a static J2� is included in the virtual reality and the estimation and no other spherical
harmonics effects. Simulations are performed for various types of inputs as indicated in the first column.

γ β η J2�
˙Gm�

Gm�

[
y−1

]

only using MESSENGER data 2.3 · 10−5 1.9 · 10−5 7.2 · 10−5 4.8 · 10−9 2.9 · 10−14

only using BepiColombo data 4.0 · 10−6 1.2 · 10−6 4.8 · 10−6 7.9 · 10−10 5.0 · 10−15

combined data, apriori σγ = 2.3 · 10−5 3.8 · 10−6 1.2 · 10−6 4.9 · 10−6 7.4 · 10−10 6.6 · 10−16

combined data, apriori σγ = 1.1 · 10−6 1.1 · 10−6 7.1 · 10−7 5.0 · 10−6 3.0 · 10−10 6.5 · 10−16

Table 4: Formal uncertainties (1σ) of estimated gravity parameters and solar oblateness when using the method described
in section 2. For the solar spherical harmonics, the time-variable J2� is implemented in the virtual reality and the
estimation as dictated by the amplitude AJ2� . Simulations are performed for various types of inputs as indicated
in the first column.

γ β η J2�
˙Gm�

Gm�

[
y−1

]
AJ2�

only using MESSENGER data 2.3 · 10−5 1.9 · 10−5 7.2 · 10−5 4.8 · 10−9 6.0 · 10−14 3.1 · 10−10

only using BepiColombo data 3.8 · 10−6 1.1 · 10−6 4.8 · 10−6 8.1 · 10−10 5.4 · 10−15 1.0 · 10−10

combined data, apriori σγ = 2.3 · 10−5 3.8 · 10−6 1.2 · 10−6 4.9 · 10−6 7.4 · 10−10 1.7 · 10−15 3.7 · 10−11

combined data, apriori σγ = 1.1 · 10−6 1.1 · 10−6 7.0 · 10−7 5.0 · 10−6 3.0 · 10−10 1.8 · 10−15 3.8 · 10−11

13



3.3. Perturbations due to J4�

For J4�, values in the range from 10−9 to 10−7 are sug-
gested from heliophysics publications (Rozelot & Dami-
ani, 2011). Even though suggested values for J4� can
get as high as the values of J2�, the perturbation is
much smaller as it drops off quicker with distance from
the Sun (Montenbruck & Gill, 2000). If both zonal co-
efficients are in the order of magnitude 10−7, the per-
turbation of J4� results in an acceleration acting on
Mercury in the order of 10−15 m/s2, whereas J2� pro-
duces an acceleration in the order of 10−12 m/s2.

Figure 3 has been made to analyse what values of
J4� produce a detectable change with our observational
data. The maximum value of J4� suggested in literature
is 6.2924 · 10−7 (Ajabshirizadeh et al., 2008), at which
point the change in orbit after 20 years is a few meters,
equal to the 1σ noise of MESSENGER observations.
The effect that the perturbation produces on the orbit
of Mercury is equal to or smaller than noise for realistic
values of J4�. Therefore, it is not possible to distinguish
it in the estimation, the effect of the small perturbation
can be easily absorbed by the observation noise.

It was attempted to estimate J4� when the high es-
timate of 6.2924 · 10−7 was implemented. The resulting
formal uncertainty on J4� came out higher than 100%
the value of J4�, confirming that the perturbation is too
small to be constrained with any significant confidence.

Figure 3: The difference in final position after 20 years of
numerical integration caused by a nonzero value
for J4�. The benchmark orbit used for the com-
parison is integrated with J4� = 0.

3.4. Estimation with a dynamical solar oblate-
ness

Formal uncertainties of the estimated parameters are
reported when the periodic component of J2� is im-
plemented in our virtual reality. An amplitude A =
0.563 · 10−7 was used, a quarter of the value of J2� as
suggested by (Xu et al., 2017), and it was attempted
to estimate AJ2� alongside the parameters that were
estimated in the previous section. The results for the
formal uncertainties are reported in table 4.

The resulting formal uncertainty for AJ2� is 3.7 ·
10−11, 0.017% the value of the zonal coefficient J2�
itself. The simulation and estimation in this section
have been tested for a range of other amplitudes, from
AJ2� = 0 to unrealistically high values of AJ2� =
1000 · J2�. The resulting true and formal errors are
practically identical for any AJ2� , indicating that the
ability to constrain the parameter is the same whatever
the real value of the periodic component may be. Even
if a time-variable component does not exist, the con-
stancy of J2� can be constrained to a level of 0.017%.

Compared to the estimation of a static J2� in the
previous section, the formal uncertainties of the PPN
parameters stay unaffected. The time variable gravita-
tional parameter of the Sun ˙Gm�/Gm� has a formal
error double in value with respect to table 3. The reason
is the correlation of 0.92 between the two parameters,
indicating that the separate effects are more difficult to
distinguish as they have a similar perturbation on the
orbit of Mercury. The correlation matrix of the esti-
mated parameters is shown in figure 4.

Figure 4: Correlation matrix between estimated parame-
ters, when apriori σγ = 2.3 ·10−5 and estimating
the amplitude.
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3.5. What if J2� is periodic, but it is not esti-
mated?

With the suggestion that J2� is a dynamic value ac-
cording to the solar activity cycle, the question can be
raised: what happens if a periodic change exists, but it
is not estimated? In past experiments it has never been
estimated. What are the consequences for the tests of
the parameters corresponding to gravitational theory?

Our estimation is executed to test this hypothesis, by
setting a dynamic J2� in the virtual reality with a mean
value 2.25 ·107. The simulation is performed for a range
of amplitudes AJ2� from 0.1% to 100% the value of J2�.
In the estimation algorithm, only a constant value for
J2� is estimated and a time-variable component is not
considered. The resulting true errors of the estimated
parameters are plotted against the implemented ampli-
tude in figure 5.

In all of the plots two distinct regions can be iden-
tified. At first, for lower values of the amplitude the
true error is around the formal error, which is what we
would expect of a successful estimation. This indicates
that the time-variable perturbation of J2� has a neg-
ligible effect and no problems will be encountered in
the experiment because of it. In the case of only using
MESSENGER data this behaviour can be identified in
the majority of the plots, because the change in orbit
caused by the amplitude is small enough to go unde-
tected when the observation noise is higher.

Secondly, with increasing amplitude the formal er-
rors stay the same while the true errors rise. When
using only the BepiColombo or combined data, a clear
linear trend in true error can be seen starting from an
amplitude of 1% of the value of J2�. As mentioned
in section 2.3.3, high true to formal error ratios are a
sign of a bad estimation result, as the true error moves
outside the confidence interval indicated by the formal
uncertainty.

To give an indication of where formal uncertainties
are not reliable any more when using the combined data
set (green), we look at the point that the true error is an
order of magnitude higher than the formal uncertainty
(which means the true estimation error is a value of
ten times the formal uncertainty, 10σ). For amplitudes
AJ2� as low as 5% relative to J2�, the true errors of
parameters γ, β are one order of magnitude above the
formal uncertainties, and the same holds for the zonal
coefficient J2� itself. For time-variable gravitational pa-
rameter ˙Gm�/Gm� this point is already reached at
0.2%. It is affected at much lower amplitudes due to
the correlation between the parameters (see previous

Figure 5: True estimation errors (absolute values) of pa-
rameters when not taking into account a dy-
namic J2�, versus the amplitude AJ2� taken rel-
ative to J2�. The apriori σγ = 2.3 · 10−5. The
dashed horizontal lines indicate the formal er-
rors, of which the value remains unchanged (up
to a relative change of 10−5) independent of am-
plitude. In all plots except the middle the formal
errors of only BepiColombo (orange) and com-
bined data (green) are very similar and therefore
the horizontal lines overlap.
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section). Nordtvedt parameter η is the least affected,
and the one order of magnitude difference in true and
formal errors does not occur until AJ2� is more than
roughly 10% the value of J2�.

4. Discussion

Before answering the questions about the solar gravity
field, the situation without higher-order effects due to
the solar shape besides J2� was studied. The param-
eters γ, β, η, J2�, ˙Gm�/Gm�, that are conventionally
included in similar studies, were estimated using com-
bined data from MESSENGER and BepiColombo. To
date, no study has been published that combines the
tracking data of both missions in one long-term data
set. The first four parameters do however not benefit
from this data set compared to only using BepiColombo
data. For the time-variable gravitational parameter of
the Sun ˙Gm�/Gm� an improvement of one order of
magnitude was found. An improvement in this param-
eter can be used to test gravitational theories that pre-
dict a varying value for the Newtonian constant G such
as scalar-tensor theories, and provide more information
about the evolution of the universe (Will, 2014; Uzan,
2011).

For realistic values of J4� in the range 10−9 − 10−7,
changes in the orbit of Mercury are at most a few meters
after 20 years. Because MESSENGER tracking data
has its noise level in the order of meters, the effect of
the zonal effect of degree 4 is not measurable with our
data set. It has to be considered too that the uncer-
tainty of other parameters can also easily make up for
a change of a few meters, and therefore it is expected
that estimating J4� with any relevant precision will be
hard. It can be concluded that until a mission with
similar observational accuracy as BepiColombo reaches
Mercury, this effect does not need to be considered.

Next, it is shown that an amplitude AJ2� of a hypo-
thetical periodic zonal coefficient J2� can be estimated
with a formal uncertainty of 3.7 · 10−11, or 0.017% the
value of J2�. The true and formal errors for the ampli-
tude are obtained regardless of the actual value of the
amplitude implemented in our virtual reality, meaning
that whatever the amplitude is, it can be constrained
to this uncertainty. Even if J2� is actually constant,
its constancy can be constrained to the same uncer-
tainty. The only compromise of estimating the ampli-
tude is that the formal uncertainty of ˙Gm�/Gm� in-
creases with a factor 2 due to a high correlation between

˙Gm�/Gm� and AJ2� .

However, the consequences of not including a peri-
odic change of zonal coefficient J2� should be seriously
considered, as even a small periodic effect can have
large consequences in tests of General Relativity. An
amplitude of more than a few percent is likely to ex-
ist based on publications in heliophysics (Pireaux &
Rozelot, 2003; Antia et al., 2007; Rozelot & Damiani,
2011; Xu et al., 2017; Irbah et al., 2019). The results in
section 3.5 show that for amplitudes as low as a few per-
cent of J2�, true errors in the order of 10−5 are present
in the estimation of PPN parameters γ and β. In past
tests of General Relativity using Mercury’s perihelion
advance, this has not presented a problem, as the for-
mal uncertainties were at best at the same level (e.g.
see the results in this work when only using MESSEN-
GER data). However, with the increased accuracy that
can be reached with BepiColombo tracking data, the
formal uncertainty of PPN parameters γ and β can be
brought down by one order of magnitude to the level
10−6. If true errors of order 10−5 are caused by not
including a periodic J2�, they can cause problems for
the first time when the results come in of the tests using
BepiColombo data.

The PPN parameters, which are widely used to test
General Relativity, could take on wrong values and be
biased towards values that violate General Relativity,
while showing a relatively high level of confidence by
means of a considerably lower formal uncertainty. The
reverse situation could also be imagined: what if the
sought-for deviations of General Relativity do exist at
the level of accuracy that BepiColombo can measure,
but the PPN parameters are biased towards General
Relativity due to the periodic change in the solar shape?
In any case, the scientific community studying gravita-
tional physics would be put on the wrong path.

It is therefore strongly advised to estimate a periodic
change of the solar oblateness in experiments of gravi-
tational physics. Even if the periodic change is too low
and negligible, constraining it would confirm that there
is no risk of getting biased results for experiments of
General Relativity. In addition, constraining the value
for parameter J2� and a possible variation along the
solar cycle is of importance to research in heliophysics.
Much is unknown about the interior and dynamics of
the Sun, and getting stringent bounds on the oblate-
ness will help confirm or reject models for the structure
of the Sun.
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5. Conclusion

The aim of this study is to investigate different config-
urations of the solar spherical harmonics gravity field
that are suggested in the field of heliophysics, and at-
tempt to determine whether or not it is possible to con-
firm or deny their existence with tracking data from
MESSENGER and BepiColombo missions to Mercury.
In addition, it is investigated what the consequence is
of ignoring this effect.

To achieve this goal, a numerical simulation of Mer-
cury’s trajectory and the spacecraft tracking was set up
as well as a parameter estimation algorithm. In spite
of simplifications that had to be done because of lim-
ited resources, validation showed that our setup is of
comparable quality to other publications on the subject
(Genova et al., 2018; Schettino et al., 2015; Imperi et
al., 2018).

Combining the data set of MESSENGER and Bepi-
Colombo results in a factor 2 decrease of the formal
uncertainty of a time-variable gravitational parameter
of the Sun. Because the resulting formal uncertainties
for the other parameters are unchanged, it can be con-
cluded that it is worthwhile to include the MESSEN-
GER data set in relativity experiments based on Bepi-
Colombo data.

The effect of a zonal coefficient J4� is lower than the
noise level of the tracking data, and therefore higher
order zonal effects of the Sun can be safely ignored in
experiments of gravitational physics with BepiColombo
data.

A periodic change in the zonal coefficient J2� based
on the solar magnetic activity cycle does however have
significant effects on the orbit of Mercury, to the point
that it can influence results of gravitational experiments
done with BepiColombo data. It is urged to estimate
the periodic change in the coefficient J2� in such exper-
iments, as suggested values for a periodic change from
heliophysics can have a significant effect on the esti-
mation of relativity parameters. This could lead to a
false confirmation or rejection of the perihelion advance
effect as predicted by General Relativity.
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Table 5: Selected attempts to determine J2� over the last
25 years, as shown graphically in figure 1. ”H”
and ”P” are labels to indicate whether a value was
found in the field of heliophysics (H) or by using
observations of planetary orbits (P). For compre-
hensive lists of attempts, see (Pireaux & Rozelot,
2003) and (Rozelot & Damiani, 2011).

Publication J2� 1σ

Fienga et al., 2019 P 2.01 · 10−7 1 · 10−9

Genova et al., 2018 P 2.25 · 10−7 2 · 10−9

Park et al., 2017 P 2.25 · 10−7 9 · 10−9

Pitjeva & Pavlov, 2017 P 2.37 · 10−7 -
Verma et al., 2014 P 2.4 · 10−7 2 · 10−8

Fienga et al., 2015 P 2.3 · 10−7 2.5 · 10−8

Folkner et al., 2014 P 2.11 · 10−7 -
Pitjeva & Pitjev, 2014 P 2.22 · 10−7 2.3 · 10−8

Fienga et al., 2011 P 2.4 · 10−7 2.5 · 10−8

Fienga et al., 2009 P 1.82 · 10−7 4.9 · 10−8

Mecheri et al., 2009 H 2.21 · 10−7 -
Fivian et al., 2008 H 1.65 · 10−7 9.73 · 10−8

Antia et al., 2007 H 2.22 · 10−7 9 · 10−10

Pitjeva, 2005 P 1.9 · 10−7 3 · 10−5

Roxburgh, 2001 H 2.21 · 10−7 -
Godier & Rozelot, 1999 H 1.6 · 10−7 4 · 10−9

Armstrong & Kuhn, 1999 H 2.22 · 10−7 -
Pijpers, 1998 H 2.18 · 10−7 6 · 10−9
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3
Conclusions and Recommendations

3.1. Conclusions
In the discussion of the journal article, the answers to the four research questions are given. In this conclusion
of the thesis work, the answers will be quickly repeated and afterwards, conclusions will be given in the greater
context of the introduction given in chapter 1. The research questions were: Using combined tracking data
of the MESSENGER and BepiColombo missions in a parameter estimation algorithm,

1. to what accuracy can parameters of General Relativity and the solar quadruple moment J2¯ be de-
termined?
Using the combined data set does not have any advantage for the estimation of the parameters, com-
pared to only using BepiColombo data. The only exception is the time variable gravitational parameter
Gm¯, of which the formal uncertainty is two orders of magnitude lower.

2. what dynamic values for J2¯ can be detected?
The estimation of the amplitude has a true error of 4 · 10−11, or about 0.017% the value of J2¯ itself,
regardless of the value of the amplitude.

3. can higher order effects due to other zonal coefficients Jn¯ be detected?
The next zonal effect, J4¯, causes a difference in the orbit of Mercury between the two missions that is
too small to be detected using the observations of the missions.

4. if higher order effects do exist but are not considered in gravitational experiments, what will be the
impact in the estimation of relativistic parameters?
If the amplitude is higher than 1% of the value of J2¯ and it is not considered in an estimation, it will
lead to true errors for parameters of gravitational theory that are higher than twice the formal errors,
meaning that the actual value of the parameter lies outside of a 95% confidence interval.

To conclude, the hypothesis from the introduction has a positive result in the case of the time variable
gravitational oblateness of the Sun: it can have a relevant effect on the tests of General Relativity that will be
done using BepiColombo data, and it should be taken into account in experiments that use BepiColombo
data. If not modelled correctly, it is possible that the experiments to prove General Relativity can have a result
that is a false negative. The consequences of such results could be comparable to the controversy around
General Relativity that was present in the 1960’s, where whole other theories of gravity were developed to do
so. In order to prevent this, and in the interest of testing gravity as accurately as possible, the solar shape
should be further studied and included in such experiments.

Only if the time-variable component is smaller than approximately 1% the value of J2¯, the general hy-
pothesis is false: the variability does not matter and it can be safely ignored. However, because a decent
estimate for an upper limit of the variability of the oblateness is not known at this time, it should always be
considered in future experiments, at the very least to obtain such an upper limit and the effect can be ruled
out.

Of course, the assumption of General Relativity being right is implied in this work, as it often is done
in such publications until proven wrong. The conclusions however work in any way in this paper, if the
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parameters are not the values predicted by General Relativity, a high true error could coincidentally lead us
to believe that they are. Correct modelling and measuring eventually will bring out the truth.

3.2. Recommendations
Based on the results and conclusions presented in this work a few recommendations can be made:

• First and foremost, as is clear from the conclusion, it is urged to colleagues in this field of research, as
well as developers of ephemerides, to take note of the possibility of a time-variable solar oblateness.
At this point the possibility of this effect cannot be ruled out, and finding constraints of it based on
observational data would be very valuable to rule out the possibility of false results of experiments.

• Concerning the zonal effects of degree four or higher, there is currently less reason for concern, al-
though it is recommended to keep an eye on any developments from the field of heliophysics. In the
future, if tracking data becomes available of the accuracy of BepiColombo or better, it should be re-
analysed whether the J4¯ effect could play a role. Figure 3 of the journal article indicates what accuracy
is needed to constrain the effects of certain J4¯ values. This figure indicates the change in 20 years,
however it can be interpolated or extrapolated as the position change scales linearly with time.

• In general, a recommendation can be made to those who design experiments to test gravitational the-
ory in the solar system, to work more closely together with the field of heliophysics. In this way, true
understanding of the problem of the solar shape can be created. In that case it will hopefully not be
written off just a nuisance for which an assumption has to be made, but proper attention will be de-
voted to it in experiments of gravity. Good modelling of the problem and good experiments to measure
the phenomena will ultimately benefit both fields in their individual research.

• In this work uncertainties in certain parameters were studied could affect the experiments of gravity.
When studying the effects during this work it was found that two in particular can have a significant
effect on the results:

– The first is the angular momentum of the Sun, for which in most experiments a constant value is
used from one reference [45], but not much research is published on the solar anular momentum.
The uncertainty from [45] is only 1%, but it is a dominant factor in the Lense-Thirring effect, which
is known to correlate with PPN parameter β.

– The uncertainties of the masses of the asteroids have very high values relative to the masses them-
selves, due to which the magnitude point mass accelerations of the asteroids have a very high un-
certainty. Like many effects the asteroids also cause an advance in the perihelion of Mercury, and
formal errors of all parameters are affected by it.

Improving the apriori uncertainty on these two types of parameters can improve the results of gravita-
tional tests by a significant amount, and therefore dedicated research to further measure them can be
of great value. This would perhaps be one of the only ways to obtain smaller bounds for various gravity
parameters in the future without sending new space missions to Mercury or other planets.

• The periodic part of the solar gravitational oblateness is currently modelled as a simple sine. It should
be emphasised that this is a simplification of the real problem, which is that the magnetic solar activity
of the Sun drives the periodic part of the oblateness. Magnetic solar activity generally follows a cycle of
11 years, but individual cycles can be shorter or longer and the magnetic activity can be higher or lower
compared to others [22]. To properly model the activity cycle, the underlying parameter should not be
time but a measure of solar activity, for which often the sunspot number is used which is depicted in
figure 2 of the journal article. How this measure of solar activity relates to an increase in oblateness is a
challenge to tackle, but the relation between the two is being investigated [28]. The sinusoidal variation
was mainly used in this work as a means to show what the impact of a variable oblateness could be, but
its value at any specific points may certainly be off.

• This work has been done with Mercury as the only test body. Additional test bodies (planets or space-
craft in heliocentric orbit) can be added to extend the experiment. The advantage is that the relativistic
effects and perturbations due to the solar shape can be decorrelated, as they scale differently based on
semi-major axis and eccentricity of the planets’ orbit. The disadvantage is that both effects are weaker
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on test bodies because they scale inversely with distance from the Sun and therefore harder to pick up.
In addition, the state of more planets have to be estimated and if the observations of other planets are
not as accurate, this will harm the accurate estimation of Mercury’s state. Probably very large data sets
are needed to surpass the tests done only with Mercury. For certain, the developers of ephemerides are
eagerly waiting to add the BepiColombo data to improve their huge data sets, which can be used for
tests of gravity.

3.3. Testing General Relativity in the Solar System: a short outlook
The potential of the data brought by the BepiColombo mission has been elaborated to great detail in this
work. On the horizon that we can see currently, there are no missions planned dedicated to testing gravity
in the Solar System, and there seems to be no space mission planned of which the data is good enough to
produce a test of General Relativity that can surpass BepiColombo. However, tracking capabilities of inter-
planetary missions in general are improving in quality. This will produce a larger base of observations of
the whole Solar System which can work in synergy with the Mercury data. In addition, some upcoming op-
portunities can be identified specifically that could work very well in combination with the observations of
Mercury to produce even better estimates of PPN parameters or the solar oblateness, and as a very broad
recommendation they are shortly named in this section.

There is one other ESA mission currently returning data that promises to be very useful: GAIA. While the
GAIA mission is mainly focused on observing stars in our galaxy, tens of thousands asteroids are picked up
in the spacecraft observations as well, resulting in millions of observations. The variety of asteroid orbits
is much higher than the planets, for example the eccentricity or inclination of the orbits, which will help
decorrelate the effects due to the relativistic perturbation and the solar oblateness. The use of the GAIA data
has been explored already by [24], which shows that some exotic effects of gravitational theories can also be
detected using the variety of asteroid orbits, which the planets are less suitable for. Also, the first data of GAIA
is being included in the new version of the INPOP ephemeris [17]. At a first glance, it seems that there is a
lot more potential in the data, especially when the final data is released (currently planned in 20221). The
challenge is finding a way to include all the asteroids and their observations in an estimation. Numerically
integrating orbits of tens of thousands of asteroids and then performing the matrix operations for millions of
observations requires a huge amount of computational power, and perhaps new and innovative methods are
required to tackle this problem instead of the traditional way of parameter estimation that is already done for
decades.

Similarly, it can be expected that an increasing amount of test bodies in the Solar System can be added to
gravity experiments, because there seems to be a large focus in the future on space missions that visit small
bodies such as dwarf planets, comets and asteroids. While the GAIA observations are sparse, orbiters of small
bodies could provide large data sets of certain bodies to implement in gravity experiments. An advantage
of studying small bodies in general is that the uncertainty of the orbits and masses will decrease over time,
which will lead to an improvement in ephemerides of the planets as well.

1https://www.cosmos.esa.int/web/gaia/release





A
Acceleration Models

As described in section 2.1 of the journal article, the numerical integration of Mercury is done with a variety
of acceleration terms. In TUDAT, basic acceleration models were already present that are applicable in many
situations. However, some acceleration models had to be added to TUDAT for this project in particular. This
appendix aims to describe acceleration models that were added to TUDAT for this project. In particular,
partial derivatives of the acceleration terms are needed with respect to parameters that are to be estimated.
These partials have been analytically derived and will be described.

A.1. Lense-Thirring acceleration correction
The Lense-Thirring effect (also called frame-dragging or gravitomagnetic effect) is the effect that a spinning
body can warp spacetime around it and therefore influence test bodies in its vicinity. The Lense-Thirring ac-
celeration correction was already implemented in TUDAT, according to the following relation [44, eq. 10.12]:

aLT = (1+γ)
GM

c2r 3

[
3

r 2 (r×v)(r ·S¯)+ (v×S¯)

]
(A.1)

where gravitational parameter GM and mass-normalized angular momentum vector S¯ belong to the central
body, and the correction is calculated for the accelerated body. a,v and r stand for acceleration, velocity and
position respectively.

Partial derivatives were not yet implemented into TUDAT for this acceleration term. For the derivatives of
the cross products, use is made of the matrix notation of a vector such that the cross product can be written
as a dot product:

r×v =
 0 vz −vy

−vz 0 vx

vy −vx 0

r = [
v×

]T
r

∂

∂r
(r×v) = [

v×
]T

(A.2)

r×v =
 0 −z y

z 0 −x
−y x 0

v = [
r×

]
v

∂

∂v
(r×v) = [

r×
]

(A.3)

Using this result, the partial derivatives can be derived with respect to position, velocity, gravitational
parameter and PPN parameter γ respectively:

∂aLT

∂r
=3

(
1+γ) GM

c2r 5

[−2

r 2 (r×v)(r ·S¯)rT + (r ·S¯)
[
v×

]T + (r×v)ST
¯
]

−3(1+γ)
GM

c2r 3

[
3

r 2 (r×v)(r ·S¯)+ (v×S¯)

]
rT

r 2

(A.4)

∂aLT

∂v
= (1+γ)

GM

c2r 3

[
3

r 2 (r ·S¯)
[
r×

]+ [
S×̄]T

]
(A.5)

∂aLT

∂GM
= (1+γ)

1

c2r 3

[
3

r 2 (r×v)(r ·S¯)+ (v×S¯)

]
(A.6)
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∂aLT

∂γ
= GM

c2r 3

[
3

r 2 (r×v)(r ·S¯)+ (v×S¯)

]
(A.7)

In addition, the magnitude of the solar angular momentum S¯ is implemented as a consider parameter,
for which also partial derivatives are required. It shows up through S¯, the mass-normalised angular momen-
tum vector, which is calculated as follows:

S¯ = S¯
M¯

·nS (A.8)

where nS is the unit vector of the angular momentum vector of the Sun. The partial derivative with respect to
the angular momentum magnitude becomes:

∂aLT

∂S¯
= (1+γ)

GM

c2r 3

[
3

r 2 (r×v)

(
r · nS

M¯

)
+

(
v× nS

M¯

)]
(A.9)

A.2. Time-variable gravitational parameter
The acceleration due to the changing gravitational parameter of the Sun is given by the following equation
[21, eq. 11]:

aGṀ
M¯ ∼=−GM¯

(
GṀ¯
GM¯

∆t

)
rM¯
r 3

M¯
(A.10)

where GṀ¯
GM¯ is the term that is meant with the definition time-variable gravitational parameter and ∆t is the

time since reference epoch J2000. A minus-sign is added with respect to the equation given in [21], as in the
TUDAT definition of the relative position vector rM¯ acceleration due to central gravity should be negative for

a positive position input. With this changed sign, a decreasing gravitational parameter (negative GṀ¯
GM¯ ) causes

a positive acceleration, i.e. causes the accelerated body to move away from the Sun.
This expression only provides an approximation of what effects a time-variable gravitational parameter

would cause. More specifically, this expression corrects the central gravity acceleration of the Sun on Mercury
due to a change in gravitational parameter. Other changes caused by this effect are neglected, as the Solar
central gravity term is the most dominant acceleration term, and the next acceleration term due to the Sun
(Schwarzschild correction) is smaller by a factor of approximately 10−7. A correction on this term would not
have significant influence compared to the central gravity term.

The partial derivatives with respect to position, gravitational parameter, and time-variable gravitational
parameter are respectively:

∂aGṀ
M

∂rM¯
∼=−GM¯

(
GṀ¯
GM¯

∆t

)(
1

r 3
M¯

I−3rM¯
rT

M¯
r 5

M¯

)
(A.11)

∂aGṀ
M

∂GM¯
∼=

(
GṀ¯
GM¯

∆t

)
rM¯
r 3

M¯
(A.12)

∂aGṀ
M

∂
(

GṀ¯
GM¯

) ∼=GM¯∆t
rM¯
r 3

M¯
(A.13)

where I is the identity matrix of size 3×3.

A.3. Strong Equivalence Principle Violation
In conventional ephemeris models it is assumed that inertial and gravitational masses of bodies are equal, an
assumption that is only valid when the Strong Equivalence Principle (SEP) is correct. Violations of the SEP are
usually expressed using the Nordtvedt parameter η. The parameter can be expressed as a linear combination
of PPN parameters through the Nordtvedt equation [56, eq. 68]:

η= 4(β−1)− (γ−1)−α1 − 2

3
α2 (A.14)
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where it is assumed that total momentum is conserved, i.e. PPN parameters α3,ζ1,ζ2,ξ = 0. The largest
perturbation caused by a SEP violation is that SSB has to be redefined (see [21, 39]), which influences the
position of the Sun according to the following expression [21, eq. 9]:

rSEP
¯ =− 1

µ¯
(
1−η Ω¯

M¯c2

) ∑
j 6=¯

(
1−η Ω j

M j c2

)
µ j r j (A.15)

where the gravitational self-energiesΩi of the bodies are taken as described in [21].
Recalculating the SSB is not an option in our simulation, as the SSB and body positions are not calculated

but obtained from ephemeris DE430 [18]. Therefore, the approach is to get a correction on the position of the
Sun r¯, which can be derived by comparing with the situation η= 0:

∆rSEP
¯ = (r¯)η 6=0 − (r¯)η=0

=
− 1

µ¯
(
1−η Ω¯

M¯c2

) ∑
j 6=¯

(
1−η Ω j

M j c2

)
µ j r j

−
[
− 1

µ¯

∑
j 6=¯

µ j r j

]
(A.16)

The term containing η and properties of the Sun is usually very small. A Taylor series expansion around zero
can be used to simplify the equation and combine the terms:

1(
1−η Ω¯

M¯c2

) = 1+η Ω¯
M¯c2 +O

((
η
Ω¯

M¯c2

)2)
(A.17)

where it is assumed that O

((
η Ω¯

M¯c2

)2
)

and higher order terms can be neglected. From substitution follows:

∆rSEP
¯ =

−
(
1+η Ω¯

M¯c2

)
µ¯

∑
j 6=¯

(
1−η Ω j

M j c2

)
µ j r j
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[
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µ¯

∑
j 6=¯

µ j r j
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=− 1
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M¯c2

)(
1−η Ω j

M j c2

)
µ j r j −µ j r j

]
=− η

µ¯c2

∑
j 6=¯

(
Ω¯
M¯

− Ω j

M j

)
µ j r j

(A.18)

In the last step, the bracket multiplication result of the two terms containing η is neglected as it leads to an
insignificantly low value of O

(
η2c−4

)
. The results of equations A.16 and A.18 are compared in a simulation

with η=−7 ·10−5 and the simplification leads to an error that is at maximum 0.01% of ∆rSEP¯ , which verifies
that the simplification will not lead to significant errors in the simulation.

Because of the correction on the position of the Sun, the relative position vector of Mercury with respect
to the Sun (rM¯ = rM − r¯) changes as follows:

rSEP
M¯ = rM − rSEP

¯
= rM − (

r¯+∆rSEP
¯

)
= rM¯−∆rSEP

¯

(A.19)

The correction on the point-mass acceleration of Mercury with respect to the Sun is calculated by taking the
central gravity acceleration with the SEP corrected relative position and subtracting the conventional central
gravity solution:

aSEP
M¯ = (

aCG
M¯

)
η 6=0 −

(
aCG

M¯
)
η=0

=− µ¯(
r SEP

M¯
)3 rSEP

M¯ + µ¯
r 3

M¯
rM¯

=− µ¯(
rM¯−∆r SEP¯

)3

(
rM¯−∆rSEP

¯
)+ µ¯

r 3
M¯

rM¯

(A.20)

Using the following relation A.21:
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∂r n

∂r
= n · r n−2 · rT (A.21)

the partial derivatives of the acceleration correction with respect to position are described as:

∂aSEP
M¯

∂rM¯
=µ¯

[
∂

∂rM¯

(
− 1(

rM¯−∆r SEP¯
)3

(
rM¯−∆rSEP

¯
))+ ∂

∂rM¯

(
1

r 3
M¯

rM¯

)]

=µ¯
[
− 1(

rM¯−∆r SEP¯
)3 I+3

(
rM¯−∆rSEP

¯
) (

rM¯−∆rSEP¯
)T(

rM¯−∆r SEP¯
)5 + 1

r 3
M¯

I−3rM¯
rT

M¯
r 5

M¯

] (A.22)

Finally, the partial derivative with respect to η can be found by taking∆rSEP¯ = η·d in equation A.20, which
then gives:

∂aSEP
M¯
∂η

= 3µ¯d
[(

rM¯−ηd
) · (rM¯−ηd

)](
rM¯−ηd

)5 − µ¯d(
rM¯−ηd

)3 (A.23)

After the acceleration models are implemented, the Nordtvedt equation (eq. A.14) needs to be imple-
mented in the estimation model. It is not mentioned in any other publications with similar experiments how
exactly this linear relation between estimatable parameters is taken care of in the estimation, so there are un-
fortunately no other examples to build on. Two approaches have been tested when developing our estimation
algorithm:

1. Do not estimate η, but calculate it using the Nordtvedt equation when fetching the acceleration due to
a SEP violation. The formal error is calculated by applying the following property of the variance of a
linear equation:

Var

(
m∑

i=1
ai Xi

)
=

m∑
i=1

n∑
j=1

ai a j Cov
(
Xi , X j

)
(A.24)

The formal variance of η can be calculated by applying this property to the Nordtvedt constraint:

Var
(
η
)= Var

(
γ
)+16Var

(
β
)+Var(α1)+ 4

9
Var(α2)−8Cov

(
γ,β

)
+2Cov

(
γ,α1

)+ 4

3
Cov

(
γ,α2

)−8Cov
(
β,α1

)− 16

3
Cov

(
β,α2

)+ 4

3
Cov(α1,α2)

(A.25)

This approach is straightforward and easily verified, a disadvantage is that apriori information of the
uncertainty of η cannot be used as additional information in the estimation.

2. Estimate η and enforce the linear relation between estimatable parameter using a constrained least-
squares estimation algorithm (exact implementation is taken from [7, ch. 16]). This approach punishes
the parameters from drifting off the solution of the Nordtvedt equation by increasing the residual. With
this method the Nordtvedt equation is not strictly true after the estimation is done because the least-
squares method is linearised, but within the formal uncertainties of all parameters the solution should
be found. The approach of adding the Nordtvedt equation as a constraint is also used in some form in
[39], although the estimation methods are very different form ours.

The second approach could not be validated, its results contained high true to formal error ratio’s for β and η
due to a high correlation between the two. After many attempts to fix this the second approach was dropped,
because the first method did pass validation and therefore it is adopted in our work.

A consequence of the first approach is that η is not estimated and therefore equation A.23 is not used, but
the SEP violation correction does become a function of PPN parameters γ,β,α1 andα2, as η can be expressed
as a function of them. Using a chain rule, the following partial derivatives are implemented:

∂aSEP
M¯
∂γ

=−∂aSEP
M¯
∂η

∂aSEP
M¯
∂β

= 4
∂aSEP

M¯
∂η

(A.26)

∂aSEP
M¯
∂α1

=−∂aSEP
M¯
∂η

∂aSEP
M¯
∂α2

=−2

3

∂aSEP
M¯
∂η

(A.27)
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A.4. Relativistic correction due to PPN parametersα1 and α2
PPN parameters α1 and α2 are present in the Nordtvedt equation (see equation A.14). Many metric theo-
ries of gravity assume α1 and α2 to be equal to zero, including General Relativity. However, they are not
experimentally constrained to such a level that they can be neglected compared to γ and β. Therefore, if η is
estimated, α1 and α2 are included in the estimation alongside. This is also done in more recent publications
about estimations done with BepiColombo tracking, for example [49] and [27].

In the relativistic equations of motion, α1 and α2 show up in the first-order Schwarzschild relativistic
term. Currently, in TUDAT the calculation of the Schwarzschild term is taken as a two-body acceleration
from [44, eq. 10.12] and only includes γ and β. For a body B accelerating body A:

aS,γβ =
GMB

c2r 3

{[
2(β+γ)

GMB

r
−γ(v ·v)

]
r+ [

2(1+γ)
]

(r ·v)v
}

(A.28)

This two-body acceleration is also given by [55, eq. 7.42] in a more general form, where the PPN parameters
besidesγ andβ are included in the derivation, which is adopted for this work. For our implementation MB >>
MA and therefore the simplification is made that MA + MB ≈ MB . The complete Schwarzschild correction
including all PPN parameters is then defined as follows:

aS = GMB

c2r 3

{[
2(β+γ)

GMB

r
−γ(v ·v)+ (2+α1 −2ζ2)

GMA

r

− 1

2
(6+α1 +α2 +α3)

MA

MB
(v ·v)+ 3

2
(1+α2)

MA

MB

(
v · r

r

)2
]

r

+
[

2(1+γ)− MA

MB
(2−α1 +α2)

]
(r ·v)v

} (A.29)

PPN parameters α3 and ζ2 are neglected (see section A.6), and the correction can be slightly simplified:

aS = GMB

c2r 3
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2
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]

r

+
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MB
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]
(r ·v)v

} (A.30)

For convenience of analysing the impact of α1 and α2 in the propagation and estimation, the terms that are
not considered in TUDAT by default are modelled as a separate correction alongside equation A.28, which
takes the form:

aS,α1α2 =
GMB

c2r 3

{[
(2+α1)

GMA

r
− 1

2
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r
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r

− MA

MB
(2−α1 +α2) (r ·v)v

} (A.31)

For the estimation, the following partial derivatives are derived, which are very similar to the partial
derivatives for the correction in equation A.28 as already implemented in TUDAT. The partial derivative with
respect to position:

∂aS,α1α2

∂r
= GMB

c2r 3

{
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r
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r 2
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r 2 · r · rT + (v · r) · I
]

− MA
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(2−α1 +α2) (v ·vT )

}
−3

aSS,α1α2 · rT

r 2

(A.32)

The partial derivative with respect to velocity:
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∂aS,α1α2

∂v
= GMA

c2r 3
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r 2 (v · r) · r · rT
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(
r ·v · I+v · rT )} (A.33)

The partial derivative with respect to gravitational parameter of the accelerating body GMB :

∂aS,α1α2

∂GMB
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The partial derivative with respect to α1:

∂aS,α1α2

∂α1
= GMB

c2r 3

{[
GMA

r
− 1

2

MA
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(v ·v)

]
r+ MA

MB
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(A.35)

The partial derivative with respect to α2:

∂aS,α1α2

∂α2
= GMA

c2r 3
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− 1

2
(v ·v)+ 3

2

(v · r

r
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]

r− (r ·v)v
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(A.36)

A.5. Time variable gravitational moments
The aim of this thesis project is to investigate the influence of time variable gravitational moments. To imple-
ment this effect, a small addition is made to the spherical harmonics library of TUDAT. Following literature
which indicates that the oblateness varies in a sinusoidal pattern (e.g. [3, 28, 58]), a correction on the spher-
ical harmonics coefficients with degree d and order 0 is modelled with a sine around the mean value of the
coefficient Jd . The correction c Jd that will be added is expressed as follows:

c Jd (t ) = A sin

(
2π

P
t +ϕ

)
(A.37)

The coefficient which will then be used for the spherical harmonics acceleration at a certain time t is then:

Jd ,corrected(t ) = Jd + c Jd (t ) (A.38)

Three parameters are used to manipulate the correction. The period P and phase ϕ are configured such
that the correction is in sync with the solar cycle: a period of 11 years with the phase set such that a minimum
occurs at the 15th of December 20081. The amplitude A will be implemented as an estimatable parameter
in the least-squares estimation. For the implementation, the partial derivative of the spherical harmonics
acceleration with respect to the A has to be included. Use will be made of the fact that the partial derivative
with respect to the coefficient itself is already implemented in TUDAT. A simple chain rule gives the following
partial derivative:

∂aSH

∂A
= ∂aSH

∂Jd

∂Jd

∂A
= ∂aSH

∂Jd
sin

(
2π

P
t +ϕ

)
(A.39)

A.6. Excluded accelerations
A key point of this work is to critically look at all effects that could influence the orbit of Mercury and ignore no
acceleration that could have an effect that is noticeable in the estimation (i.e. causes a position change higher
than the observational noise level, approximately 30cm). Many effects were analysed prior to setting up the
simulation, also ones that are not included in similar studies, for example effects caused by gravitational
theories other than GR.

In the following list, effects that were considered but not included will be mentioned with a brief de-
scription. For additional information on the effects and their impact the reader is referred to the mentioned
references.

1Solar cycle data taken from http://sidc.oma.be/silso/

http://sidc.oma.be/silso/
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• It is chosen to ignore PPN parameters α3,ζ1,ζ2,ζ3,ζ4 because they correspond to theories that violate
the conservation of total momentum. Such theories are proposed but struggle to find experimental
evidence, see [56, ch. 3] for a discussion. While it would be interesting to study exotic theories of
gravity, including them would very likely require a lot of work and therefore it is outside of the scope of
this thesis project.

The consequence of this assumption is the following: parameters α3 and ζ2 show up in equation A.29,
and therefore their presently known uncertainty could be considered. α3 is constrained to a value of
0 with an uncertainty of 10−20 [56] and therefore can be safely neglected considering the uncertainty
of the other PPN parameters. ζ2 has constraints similar to γ and β, but its effect in equation A.29 is
smaller, such that the results of our work will not change noticeably when it is considered.

• The central assumption of the PPN framework is that the Einstein Equivalence Principle (EEP) is true
[30, 56]. One of the building blocks of the EEP is Local Lorentz Invariance (LLI), which states that "the
output of any local non-gravitational experiment is independent of the freely-falling reference frame
in which it is performed" [56]. While it is tested to be correct to an astonishing level of 10−22 [33],
much attention is devoted to proving or disproving LLI from the field of particle physics, as it plays an
important role in the search for quantum gravity [35].

To quantify violations and describe their effects on gravitational interactions, the Standard Model Ex-
tension (SME) formalism was developed [5], which uses twenty coefficients to describe the effects that
can be determined through experiments (for an extensive overview see [31, 35]). Also Solar System
dynamics can be used to constrain the perturbations caused by SME coefficients. This is for example
done in [25] by using supplementary advances of perihelia from INPOP10a [15]. The analysis benefits
from a large variety of observations from many Solar System bodies. Better tracking data of Mercury
will of course improve this data set (as explicitly mentioned in [25]), and even more valuable data will
be the tracking of asteroids using GAIA [24]. However, is not expected that an independent experiment
of Mercury is able to find competitive bounds, and therefore including SME coefficients is considered
to be out of the scope of this work.

• It has been suggested that the gravitational pull of dark matter in the Solar System can provide a rel-
evant perturbation on the planetary orbits. The density and distribution of dark matter in the Solar
System is not measured, so the exact gravitational pull is unknown. An upper bound has been found
by studying the perihelion precession of planets in ephemeris EPM2011 [47]. The upper limit is still
orders of magnitude higher than the suggested density of dark matter in the Solar System [19], even for
theories which suggest that dark matter clumps in the Solar System due to gravitational interactions
[29, 57]. Especially Jupiter and Saturn are good candidates to study this perturbation as they have a
larger mass of dark matter within their orbits, which is a leading factor in the perturbation. With a
Mercury-based experiment it is not expected that gravitational interactions due to dark matter can be
detected considering the current upper bound.

• Modified Newtonian Dynamics (MOND) [13, 40] is a theory of gravity formulated in an attempt to solve
the missing mass problem in a variety of astronomical observations (dark matter is currently the most
popular answer to this problem). MOND reformulates Newton’s law of gravity such that on galactic
scales the magnitude of the force is different. The most important consequence on Solar System dy-
namics is that the gravitational potential of the Milky Way can cause an additional perturbation (this
is called the external field effect). The effect however increases with distance from the Sun and current
upper bounds on this effect have been estimated with Cassini tracking data [23]. Therefore, similarly to
the last bullet, it is not expected that this effect is detectable using Mercury as a test body.

• Effects on the propagation of radio signals, such as the relativistic delay and deflection of light [55, 56]
the influence of solar or interplanetary plasma (e.g. [53]), or errors caused by the uncertainty in the
Earth’s ephemeris or ground station locations are not taken into account in any way. The observational
accuracy of MESSENGER and BepiColombo tracking data is directly adopted from literature (which will
be elaborated in section B.1) under the assumption that in the calculation of the noise level all relevant
effects on the transmission of electromagnetic signals are considered.





B
Observation construction

All observational data is simulated using the built-in capabilities of TUDAT. An observational error has to be
simulated as well, which should be as close as possible to the real situation as encountered in the mission. In
this appendix, an explanation will be given how the observations and errors are simulated.

The basis of the observation construction is given by the geometry between Earth, Mercury and a Mercury
orbiter of which a schematic drawing is given in figure B.1. The position of planet Mercury over time with re-
spect to Earth (rE−M) is what is of interest for the experiments on gravity such as the one in this report, but
this vector cannot be directly determined using spacecraft data. Range measurements between the space-
craft with respect to Earth (rE−S/C) is what is provided in the spacecraft tracking data, as well as range-rate
(Doppler) measurements. The position of the orbiter with respect to Mercury (rS/C−M) can be determined
through orbit determination.

Figure B.1: Schematic overview of the geometry between Earth, Mercury an orbiter around Mercury

The standard in the field is to perform simultaneous numerical integration of planet Mercury and its
orbiter, and subsequently determine the orbit of the spacecraft around Mercury and the orbit of Mercury
around the Solar System Barycentre (SSB) in one estimation (e.g. [21] for MESSENGER and [27, 49] for Bepi-
Colombo). Because of the short orbital period of the spacecraft around Mercury, the integration step size
has to be small for such a simultaneous integration (in the order of 1 minute), while for Mercury around the
SSB it can be much larger (in the order of hours). On an average laptop it is unfeasible to perform such an
integration for a period of 20 years, both in terms of processing speed and RAM. Therefore, in this project, the
simplification is made to only numerically integrate planet Mercury.

The consequence of this simplification is that the spacecraft is taken out of the equation entirely. The
range observations are simulated to be between the Earth and the centre of gravity of Mercury (rE−M). When
simply changing the source of the range tracking data to the centre of gravity of Mercury, the errors intro-
duced by the orbit determination of the spacecraft with respect to Mercury are ignored. To compensate, an
analysis was performed of what the errors typically are of the spacecraft with respect to Mercury, with the
goal of artificially adding to the simulated observations of the centre of gravity of Mercury to mimic the errors
encountered in the real process.

This process wil be explained in a few steps. First, in section B.1, a brief overview is given of the charac-
teristics of the tracking data, and the variables used in this work. In section B.2, the method and results of
this analysis is explained. In section B.3 it is explained how observation errors are simulated in the gravity
experiment.
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B.1. MESSENGER and BepiColombo tracking characteristics
For the missions, all relevant parameters to describe the tracking is taken from literature and presented in
table B.1.

Table B.1: Characteristics of the tracking data of MESSENGER and BepiColombo

MESSENGER BepiColombo

Mercury flyby’s during cruise
14/1/2008
6/10/2008
29/9/2009

1/10/2021
23/6/2022
20/6/2023
5/9/2024
2/12/2024
9/1/2015

tracking arc duration per day 6 h [36] 8 h (Ka only) [8]
tracking start 1/4/2011 1/4/2026
tracking end 1/3/2015 1/4/2018

maximum number of tracking days 900 [21] -
two-way range accuracy 0.5 - 3.0 m [21] 0.3 m [49]

range measurement frequency 300 s [21] 300 s [49]
two-way range-rate accuracy 0.1 mm/s [36] 0.003 mm/s [49]

range-rate integration time 60 s [36] 1000 s [49]

A few notes concerning these tracking settings:

• For the range accuracy of the MESSENGER tracking system, the Sun-Probe-Earth (SPE) angle plays an
important role. The accuracy gets worse the closer the path of the signal comes to the Sun. For the
range measurements the error level is at its minimum of 0.5 meters at SPE angle of 180 degrees and at
its maximum of 3 meters at SPE angle of 35 degrees [36]. For the error construction in our simulations,
the angle is calculated at each step and the error level is determined based on a linear trend between
these two extremes. For SPE angles lower than 35 degrees, range errors rise drastically [36] and are not
considered useful anymore [21, 43]. The MORE instrument does not suffer from this error increase at
low SPE angle due to its multi-frequency tracking capabilities, and therefore its range error is constant.

• For BepiColombo, data is transmitted in both Ka-band and X-band frequencies, and received by two
ground stations for a total of 15 hours per day. However, only one has Ka-band downlink capabilities
which receives data for 8 hours each day [8]. The X-band data has an error ten times larger for both
the range and range-rate measurements [49]. Because the value of X-band tracking data is much less in
this work but does mean twice the processing power, X-band tracking data is ignored.

• Even though over 1000 tracking days are identified for MESSENGER, it was identified by [21] that a
maximum of 900 tracking tracking days are useful due to spacecraft operations or anomalies on other
days. This will be adopted in our simulation, and tracking days are taken out at random to end up with
a maximum of 900 days.

B.2. Orbiter error with respect to Mercury
To analyse what the orbit determination errors of the spacecraft around Mercury are, several spacecraft track-
ing arcs are simulated along the lifetime of each mission. In these arcs, the spacecraft is numerically inte-
grated around Mercury. The spacecraft initial state and the every state of Mercury are taken from SPICE ker-
nels. Subsequently it is attempted to estimate the initial state of the spacecraft to get an idea of the position
error of the spacecraft with respect to Mercury.

The orbit determination of the spacecraft during these arcs is done in a least-squares estimation. As ob-
servations, simulated range-rate tracking data is used. In the gravity experiment only simulated two-way
range data will be used and range-rate data will be ignored. This decoupling of the tracking data is not un-
usual for orbit determination and navigation of interplanetary missions [52]. In the simultaneous estimation,
range-rate data will provide the most important information of the spacecraft relative to the planet, while the
range between Earth and the spacecraft will not change considerably over one spacecraft orbit but will change
considerably over one Mercury orbit around the Sun [21]. Therefore it is not expected that much quality will



B.2. Orbiter error with respect to Mercury 35

be lost by doing the two estimations separately with separate data products instead of estimating simultane-
ously.

For each mission 24 arcs were simulated, spaced evenly between the start and end date. In addition
to the state of the spacecraft, also the largest sources of perturbations on the trajectory are included in the
numerical integration of the spacecraft in each arc: the perturbations by the planets, the spherical harmonic
gravity field of Mercury up to degree and order 8 and the solar radiation pressure. The initial states of all arcs
are then estimated using a least-squares estimation. Gravity field coefficients Cn,m and the radiation pressure
coefficient are also included in the parameter estimation.

After the formal errors of the initial states are determined, the errors are propagated along the arc by using
the state transition matrix in order to get the error at each point in time for the error, which is the goal of this
analysis. An example of the result for one arc and the maximum error for all arcs are seen in respectively the
left and right side of figure B.2. All errors are given in a Mercury-centric reference frame. When studying the
results was discovered that there are two types of modulation in the formal error level of state coordinates:

• A modulation that is visible within one tracking arc, with the period of the orbit of the spacecraft around
Mercury. The errors are smallest when the spacecraft is at its perihermion. As output of the analysis,
for every arc a table is made what the average error is at a certain true anomaly.

• When comparing the maximum errors, the behaviour seems somewhat random. It is however expected
that this is caused by the geometry of the spacecraft around Mercury, and Mercury and Earth around
the Sun. This effect is e.g. also be seen in [2, 21]. The exact period of this variation is hard to determine
due to the low number of samples, but it is clear that the accuracy of the orbit determination varies
along the mission duration.

Figure B.2: The results of the orbit determination of BepiColombo for selected tracking arcs. On the left, propagated spacecraft position
errors during one BepiColombo tracking arc. On the right, the maximum error of each of the 24 simulated BepiColombo arcs during the
mission duration.

This information will help to achieve the goal of getting an estimate of the spacecraft orbit determination
errors to simulate our observations. Unfortunately the simulated arcs only cover a small portion of the total
mission duration, and in between the arcs the spacecraft errors are unknown. The following algorithm is set
up to get an estimate for each coordinate at a given in time:

1. Through SPICE it is retrieved what the true anomaly of the spacecraft is at the input time.
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2. For the arc before and after the input time, it is retrieved what the typical error level is at the retrieved
true anomaly from the tabulated data mentioned above.

3. By setting a linear interpolator using the two times of the arcs as independent variables and the error
levels as dependent value, the error level at the input time is calculated.

B.3. Simulated error construction
In the situation presented in figure B.1, the vector from Earth to Mercury rE−M is constructed through simple
geometry:

rE−M = rE−S/C + rS/C−M (B.1)

The range measurements are simulated using the built-int capabilities of TUDAT and are provided as a
distance d (one-dimensional). Using the tools presented so far in this appendix, an error sample for each
observation is generated in the following way:

1. The typical error level of the range measurement from an Earth ground station to the spacecraftσdE−S/C

is calculated according to the information given in section B.1.

2. The typical error level of the spacecraft with respect to Mercury is determined according to the infor-
mation given in section B.2. The error is determined in three dimensions: σxS/C−M , σyS/C−M , σzS/C−M .
This three-dimensional error is projected onto the unit vector of rE−M to retrieve the typical error on
the range measurement due to the orbit determination of the spacecraft around Mercury: σdS/C−M .

3. The typical error level of the range between Earth and Mercury is then achieved by taking the root mean
square of these two error levels:

σ2
dE−M

=σ2
dE−S/C

+σ2
dS/C−M

4. Using a normal distribution with mean 0 and standard deviation σ2
dE−M

, a random sample is generated
for the noise error.

The knowledge of the typical error level at certain points in time can also be used help the estimation al-
gorithm in the gravity experiment, by using observation weighting matrix W in the least-squares calculation.
This approach is also done in reality because it is usually known what the relative quality between observa-
tions is (depending on e.g. SPE, true anomaly). The weight of each observation is calculated as 1/σ2

dE−M
.

B.4. Validity of simulated errors
The formal errors of the initial states of the arcs are in the order of 10-100 meters for MESSENGER and in the
order of 0.1-1 metres BepiColombo. Only a few examples could be found of what typical errors are for the
initial states in reality (or in the case of BepiColombo, expectations):

• [21, 54] show range residuals for MESSENGER in the order of meters to hundreds of meters, but the
error levels are very dependent on the Mercury ephemeris used.

• [54] shows that the state of MESSENGER has 1σ errors of up to 30 meters for each state, which matches
well with our estimates.

• [2] expects errors in the initial condition of BepiColombo tracking arcs in the order of 0.1-1 meters.

Roughly our errors seem to be equal or a bit higher than encountered in the examples that could be found.
Therefore the errors used in the gravity experiment are assumed to be slightly on the conservative side.

A critical note should be added based on the fact that for different arcs along the mission lifetime, the
state errors look different (the second type of modulation that was mentioned in section B.2). Because of
computational limits only a limited amount of arcs could be simulated, and therefore it is unknown what
exactly the period of this modulation is because of a scarce number of samples. Therefore interpolation had
to be used, and it can be expected that at certain times in the missions the error samples can be incorrect.
The important result of the simulation of various arcs along the missions, is to get an idea of what typical
errors along the missions lifetime are: with 20+ arcs it is assumed that the maximum and minimum errors
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that are encountered during the missions are captured. To conclude, while at specific points in time it is not
expected that the error samples are spot on compared to reality, this method does provide a distribution of
errors along the mission of which we can be confident that they occur in reality.

To judge whether our simplifications lead to observation errors as close to the real situation as possible,
most of all the validation procedures were used as explained in appendix D. In spite of the simplifications, the
reproduction of the results in the papers is successful, and therefore it is concluded that this approach does
not introduce any problems of considerable size in this research.





C
Verification

C.1. Numerical integrator and propagator
In this study, the orbit of Mercury is numerically integrated from the time of the first MESSENGER flyby (Jan-
uary 2008) until the final day of the nominal BepiColombo mission (March 2027). In this time span of almost
20 years, the accuracy of the position of Mercury is expected play a role in the order of centimetres. The
BepiColombo range measurements have an uncertainty of 30 centimetres [49]. If the estimation performs as
desired, it is expected that Mercury’s position coordinates can be estimated to this level. Therefore, a suit-
able numerical integrator and propagator should be chosen that ideally has a numerical error that is low with
respect to these values.

In addition, it should be taken into account that the correction of the position of the Sun due to a violation
of the Strong Equivalence Principle (section A.3) is in the order of a centimetres for a typical value of |η| ≈ 10−5.
If this correction in position of the Sun is in the order of the numerical error, it will become impossible to
estimate η correctly.

To test the numerical integration of Mercury’s orbit, as a first step different numerical integrators with
different step sizes have been tested. All possible accelerations (relativistic effects, dynamic J2¯ and J4¯) are
included such that the complexity of the acceleration model is at the maximum that will be encountered in
this study. As numerical propagators the following options were considered:

• Runge-Kutta 4 (RK4), a multi-stage integrator which is known less suitable for orbital mechanics due to
the linearisation that is performed, but is included to provide a reference for the other integrators.

• Runge-Kutta-Fehlberg 7(8) (RK78), a multi-stage integrator which is a straightforward integrator and
known to work well for a wide range of orbital dynamics [41].

• Adam-Bashford Moulton of order 8 and 12 (ABM8, ABM12), two multi-step integrators which are often
used in numerical integration of Solar System bodies for generating planetary ephemerides [14, 42].

the RK7(8) and ABM integrators provide the option to implement variable step size and variable order.
This is especially beneficial for eccentric orbits, but the integrator is more complex and harder to control and
understand. With the eccentricity of Mercury’s orbit being 0.21, perhaps the step size could be relatively larger
at its aphelion with respect to its perihelion and some computation time can be saved, but the difference is
not expected to be large. To simplify the choice for an integrator, only constant step sizes and orders are
considered in this work.

This analysis was first performed with double precision (15 digits) for the state of Mercury, which turned
out to be insufficient: the numerical rounding errors that occurred early in the integration were propagated
over 20 years, causing the minimum error at the end to be in the order of 1 meter. For integration results
accurate to centimetres, additional precision was required. It was chosen to integrate the orbit with long
double precision (18 digits), of which the results are presented in this section.

The integration was performed for a range of step sizes from a maximum of 12 hours to a minimum of
5 minutes (which is when the limit is hit in terms of RAM). After the integration is done, the orbits are also
integrated backwards, and the maximum error between the forward integration and backward integration
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is computed. The results can be seen on the left of figure C.1. Because RK7(8) is a multi-stage method,
more function evaluations are needed per step compared to the other integrators. To make a fair comparison
of performance vs computational effort, the maximum errors are plotted against the number of function
evaluations in the right of figure C.1.

Figure C.1: Comparison of integrators: maximum error after subtracting results from forward integration minus backward integration,
plotted against the time step (left) and function evaluations (right)

At high step sizes, the truncation error is dominant, indicated by the linear part of the plot. For each
integrator except RK4, the numerical limit is reached, as can be seen in the erratic behaviour for low step sizes.
While the last digit in Mercury’s coordinates around the Solar System Barycentre is in the order of 10−8 meters,
the integration duration of 20 years causes the numerical rounding errors to propagate to maximum values
that are just around or below the centimetre level. This comes very close to our requirements. Therefore,
optimising for computational effort is seen as less of a priority and the integrator with the best performance
is chosen, which is the RK7(8) integrator with a step size of 3000 seconds. The maximum error between
forward and backward integration is 1.87 millimetres.

In an attempt to decrease errors by numerical integration even further, the different propagators that are
implemented in Tudat are compared. In the development of the simulation the Cowell propagator was used,
which is the default in Tudat and also used in the analysis in the previous section. However, the orbit of
Mercury in this thesis can be characterised by a distinct two-body problem between the Sun and Mercury
(O(10−2) m/s), and many perturbations by planets (≤ O(10−7) m/s), relativistic effects (≤ O(10−9) m/s)) and
the zonal spherical harmonics of the Sun (≤ O(10−12) m/s). Therefore, a propagator that models the orbit
as a two-body problem with perturbations can be expected to yield better result compared to the Cowell
integrator.

In this section, the Cowell integrator is compared with the other options in TUDAT that use 6 parameters
to describe the state1: Encke, Gauss-Keplerian and Gauss-Modified-Equinoctial. For the integrator, the result
of the previous section is used: RK7(8) with a step size of 3000 seconds. Similarly to previous section, the
integration is also performed backwards and the forward and backward integration are compared.

Because the integrator is already in the regime of numerical rounding errors, the propagator analysis was
ran twice (once the initial state was slightly perturbed) to see if behavior of a propagator was not based purely
on rounding luck. The results of the two runs can be seen in figures C.2 and C.3.

1https://tudat.tudelft.nl/tutorials/tudatFeatures/propagationSetup/propagatorSettingsCoordinates.html#
tudatfeaturespropagatorsettingscoordinates

https://tudat.tudelft.nl/tutorials/tudatFeatures/propagationSetup/propagatorSettingsCoordinates.html##tudatfeaturespropagatorsettingscoordinates
https://tudat.tudelft.nl/tutorials/tudatFeatures/propagationSetup/propagatorSettingsCoordinates.html##tudatfeaturespropagatorsettingscoordinates
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Figure C.2: Comparison of propagators: maximum error after subtracting results from forward integration minus backward integration

Figure C.3: Comparison of propagators: maximum error after subtracting results from forward integration minus backward integration,
after the initial state was slightly perturbed

It is noticed between the two figures that the Encke propagator is especially unpredictable: once being the
best propagator and once being the worst. For this reason it is not considered a responsible choice. The other
choices all have a maximum error below 1 centimetre and are considered suitable. To maximise performance,
the Gauss-modified-equinoctial is chosen, as the increase in error over time seems the least compared to the
other two (outside of the regime of numerical rounding errors).

For the final choice for integrator and propagator, the forward minus backward error is compared with the
SEP violation correction of the position of the Sun. Both quantities are plotted for each of the position coor-
dinates in figure C.4 for a typical run of the parameter estimation, were a relatively small value was obtained
for a typical N7ordtvedt parameter η= 5 ·10−6 (formal errors are usually in the range 10−5 −10−6). While the
magnitude of the SEP correction is close to the numerical error level, the behaviour is very different (short
period versus long period), and therefore it is expected that the estimation algorithm will be able to properly
separate these two effects.
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Figure C.4: Forward minus backward propagation (blue) versus SEP violation correction of the Sun (orange)

C.2. Acceleration partial derivatives
For the acceleration partial derivatives given in appendix A, unit tests have been written to verify the deriva-
tion and implementation. Each acceleration partial is calculated with a central difference scheme, and the
result compared to the result of the derived partial derivative. The relative difference between each entry of
the partial derivative is calculated, and the partial derivatives were verified to be accurate until the relative
tolerances reported in table C.1.

Table C.1: Relative tolerances for which the acceleration partial matches with a central difference calculation.

Acceleration w.r.t. state w.r.t. parameters
Schwarzschild 10−4 10−4

Lense-Thirring 10−5 10−4

SEP Violation 10−6 10−5

Time varying gravitational parameter 10−5 10−5

Spherical harmonics w.r.t. J2¯ amplitude - 10−5

Considering that the partial derivatives will be used in a least-squares algorithm where a linearised ap-
proach is used, which is an approximation by definition, these partial derivatives are assumed to be suffi-
ciently accurate. Any errors that could be caused by slight offsets in the partial derivatives can be handled by
iteration in the estimation.

After this verification was done and results were generated, large true errors appeared of a factor 200
higher than the formal errors in the estimation of the amplitude of the J2¯ correction. Residuals of 1 order
of magnitude higher than the noise level were the result for the BepiColombo range measurements. Such
results are usually an indication that some kind of numerical integration errors cause high true errors in the
parameter estimation. Because the problem only occurred when including the amplitude in the estimation
it was also suspected that the partial derivative with respect to the amplitude had something to do with it,
perhaps it was not correctly derived or implemented. However, after long and careful investigation, it could
not be found what the source was of this error. This section verifies that the partial derivative is derived and



C.3. Consider Covariance 43

implemented correctly, and the previous section verifies that numerical errors are far below the BepiColombo
noise levels.

Because it was suspected that the source of the error was numerical errors, it was attempted to perform
the integration backwards. In this way, the numerical errors for the final years during the BepiColombo mis-
sion should be smaller, and due to propagation numerical errors should be largest at the beginning of the
MESSENGER mission. It was hoped that this method would prevent high numerical errors during the final
year which has the most accurate observations, while relatively higher numerical errors in the MESSENGER
phase might not matter as much because the observation errors are also higher.

Because the source of the problem could not be found, the backward-integration approach seemed to
provide a great work-around for the high true to false error ratio problem. The results for an estimation
where forward and backward integration were used are compared in table C.2. The estimation results with a
backward integration look successful and also the residuals were at the expected noise level.

Table C.2: Results of the parameter estimation when the state of Mercury is integrated forwards and backwards, when including ampli-
tude A J2¯ of the solar oblateness in the estimation.

γ β η J2¯
˙Gm¯

Gm¯
[
y−1

]
A J2¯

true errors 2.4 ·10−6 3.4 ·10−6 1.1 ·10−5 1.5 ·10−10 4.2 ·10−15 5.9 ·10−9

forward integration formal errors 1.8 ·10−6 7.5 ·10−7 4.7 ·10−6 3.7 ·10−10 1.3 ·10−15 2.6 ·10−11

t/f error ratio 1.3 4.5 2.4 0.4 3.3 227.3
true errors 3.6 ·10−7 1.7 ·10−6 7.0 ·10−6 3.3 ·10−10 2.1 ·10−15 1.4 ·10−11

backward integration formal errors 1.8 ·10−6 7.5 ·10−7 4.7 ·10−6 3.7 ·10−10 1.3 ·10−15 2.6 ·10−11

t/f error ratio 0.2 2.2 1.5 0.9 1.7 0.55

While integration backwards in time might not be intuitive, it does not matter which way the integration
is performed for the parameter estimation. Only the result of the integration is used: the state of Mercury at
certain points in time. Therefore by using this method no side effects are expected. To verify, a test is per-
formed with the estimation without the amplitude, which does not suffer from the numerical error problem
that is spoken of in this section. Results when using forward and backward integration are compared in table
C.3, the formal are equal in both cases.

Table C.3: Results of the parameter estimation when the state of Mercury is integrated forwards and backwards, not including the am-
plitude A J2¯ of the solar oblateness in the estimation.

γ β η J2¯
˙Gm¯

Gm¯
[
y−1

]
forward integration true errors 6.6 ·10−6 2.3 ·10−6 2.4 ·10−6 1.3 ·10−9 1.6 ·10−16

formal errors 1.8 ·10−6 7.5 ·10−7 4.7 ·10−6 3.7 ·10−10 4.9 ·10−16

t/f error ratio 3.7 3.0 0.5 3.5 0.3
backward integration true errors 7.0 ·10−6 1.4 ·10−6 1.4 ·10−6 1.4 ·10−9 2.1 ·10−15

formal errors 1.8 ·10−6 7.5 ·10−7 4.7 ·10−6 3.7 ·10−10 4.9 ·10−16

t/f error ratio 3.8 1.8 0.3 3.7 4.3

Note: results in tables C.2 and C.3 are better than those in the journal article because results are shown without consider

covariance added. This is because the formal errors increase after adding consider covariance, after which a comparison

between true and formal error is no longer representative for having a good or bad estimation result..

C.3. Consider Covariance
The goal of the consider covariance analysis is to consider the uncertainty of certain parameters without
having to actually include them in the estimation. To verify the implementation of the consider covariance
analysis, a comparison is made between including a parameter as an estimated parameter and a consider
parameter. Specifically, it is desired to know if the consider covariance addition to covariance matrix P , as
given by equation C.1 [41], is the same as the uncertainty increase that would be seen when including the
parameter in the estimation.

P c = P + (
PH T

x W
)(

HcC H T
c

)(
PH T

x W
)T

(C.1)
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As a case study, the angular momentum S¯ of the Sun is taken, one of the consider parameters that will
be used in this study. The value of 190 ·1039 kgm2s-1 and an apriori uncertainty of 1.5 ·1039 kgm2s-1 is used
in all simulations performed, which come from [45]. For an estimation of parameters using the MESSENGER
mission, the resulting formal errors are given in table C.4 for when S¯ is estimated (column 1) and when it
is not estimated (column 2). The difference between the two is given (column 3), and finally the consider
covariance addition, the second term in equation C.1 (column 4).

Table C.4: verification of formal errors when using the Solar angular momentum as consider parameter

S¯ estimated S¯ not estimated difference consider covariance
x [m] 0.446 0.446 1.572·10−7 1.568·10−7

y [m] 0.451 0.451 4.148·10−8 4.150·10−8

z [m] 0.718 0.718 1.670·10−5 1.670·10−5

Vx [m/s] 3.05·10−7 3.05·10−7 6.912·10−13 6.912·10−13

Vy [m/s] 3.28·10−7 3.28·10−7 1.045·10−12 1.045·10−12

Vz [m/s] 5.85·10−7 5.85·10−7 8.474·10−11 8.476·10−11

γ [-] 1.63·10−5 1.63·10−5 1.273·10−9 1.273·10−9

β [-] 3.53·10−5 3.53·10−5 4.571·10−9 4.572·10−9

η [-] 3.00·10−4 3.00·10−4 2.076·10−15 2.094·10−15

µ̇¯/µ¯ [y-1] 1.73·10−14 1.73·10−14 9.345·10−21 9.373·10−21

µ¯ [m3s-2] 1.36·108 1.36·108 1.064·102 1.065·102

J2¯ [-] 1.27·10−9 1.27·10−9 1.146·10−14 1.146·10−14

S [kgm2s-1] 1.50·1039 - - -

The formal errors of both estimations are very similar, indicating that the influence of S¯ on the estima-
tion is not very significant. The estimation is also not able to find an improvement for the uncertainty on S¯.
The difference between the two estimations matches very well with the consider covariance addition to the
formal errors. This verifies the consider covariance approach.

The consider covariance analysis has been attempted for a number of other parameters as well, yielding
the same results. It should be noted that once an improvement can be found in the formal error of a parameter
with respect to its apriori uncertainty, the covariance of this parameter and other parameters goes down as
well, resulting in lower errors for all parameters (except when correlation is zero). For this reason, including
something as a consider parameter instead of estimatable parameter can harm the results across the board.
This finding has been taken into careful consideration when selecting the consider parameters as mentioned
in section 2.3 of the journal article (chapter 2).
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Validation

To validate the simulation and estimation in TUDAT, it is attempted to reproduce papers that use either MES-
SENGER or BepiColombo (simulated) tracking data to estimate relativistic parameters. The strategy is to try
to set up the simulation and estimation as close as possible to how it is done by other authors, and get out
the same results, validating that our software is at least as good as the software used in peer-reviewed journal
papers.

First, let us set some expectations for this strategy. Setting up a simulation and estimation requires many
design choices, and usually very few choices are disclosed in the journal articles where the results are pre-
sented. For BepiColombo, many simulations of experiments similar to this thesis work have already been
performed. Even though they all try to simulate exact same physical experiment, results can be far apart. As
an example various results for the formal error of PPN parameter β, one of the main goals of such publica-
tions, is shown in table D.1. Most of all this is indicative that the results of such an experiment should be
taken with a grain of salt, and that in our results and discussion the exact numbers of an outcome should not
be used for detailed discussion, but rather the order of magnitude of the results or relative results. Besides,
because the implementation in the TUDAT software as well as custom made additions for this thesis work
will differ from the methods used in the other publications, the validation cannot be expected to be entirely
accurate. If any formal errors can be reproduced within a factor two, we will already consider it a good result.

Table D.1: Formal errors of PPN parameter β from publications that simulated an experiment using BepiColombo tracking data.

publication formal error on β
Milani et al. 2002 [39] 7.6 ·10−5

Ashby et al. 2007 [4] 5.7 ·10−4

Iess et al. 2009 [26] 2.5 ·10−6

Schettino et al. 2015 [49] 3.8 ·10−7

Schettino et al. 2016 [50] 6.7 ·10−7

Imperi et al. 2018 [27] 1.0 ·10−6

The choices for papers to reproduce is based on the considerations above: those are used that disclose
as much as possible about their setup, such that the reproduction can be done as close as possible to the
original. For MESSENGER, the paper of Antonio Genova et al. in 2018 is used [21], as the methods are very well
explained in the paper, some of the derived acceleration models are even adopted in this work. It is expected
that the reproduction is able to match very well with the original if done correctly. For BepiColombo, a source
where the methods are explained in such detail is unfortunately not available. Two papers are chosen which
are the best candidates: by Giulia Schettino et al. in 2015 [49] and by Luigi Imperi et al. in 2018 [27].

The next sections present the results for each of the papers. The results and comparisons with the paper
are given in tables. The meaning of each column is clarified below:

• parameter: the parameter for which the results are given. "η (nv-eq)" indicates that the Nordtvedt
parameter and its errors are calculated through the Nordtvedt equation (eq. A.14), which is the case if
the Nordtvedt equation is assumed to be true.
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• apriori σ: the apriori value that is used as input for the estimation.

• true σ: the true error of the estimated parameter.

• formal σ: the formal error of the estimated parameter, calculated with the covariance matrix P that is
output of the least-squares estimation.

• t/f ratio: ratio between absolute true error (column 3) and formal error (column 4). For a successful
estimation this ratio should be around or lower than 1.

• f/a improv.: ratio between the apriori error (column 2) and the formal error (column 4), i.e. how much
the uncertainty on the parameter has improved with respect to the apriori value.

• paper formal σ: the formal error of the estimated parameter that is reported in the publication.

• f/p ratio: the ratio between the formal error of our estimation (column 4) and the formal error reported
in the publication (column 7). The aim of this validation is to get this ratio as close to 1 as possible,
which is an indicator that the papers results can be perfectly reproduced.

D.1. Genova et al. 2018
This publication tries to estimate various relativity parameters using the MESSENGER tracking data set. Many
acceleration models described in this paper have been adopted in this work (see appendix A). Because the
acceleration models are the same for both simulations, trying to reproduce this paper is a reliable indicator if
our script is able to simulate the MESSENGER tracking data and its errors well. It is also the only comparison
made in this chapter where the results are based on actual data (as BepiColombo is still cruising towards
Mercury).

Some noteworthy settings of estimation described by the paper:

• The Nordtvedt equation is assumed to be true.

• γ is implemented as a consider parameter, therefore it is not included in the estimation results.

• PPN parameters α1 and α2 are neglected in this paper.

The results of the reproduction can be seen in table D.2.

Table D.2: Validation results of the reproduction of Genova et al. 2018 [21].

parameter apriori σ true σ formal σ t/f ratio f/a improv. paper formal σ f/p ratio
β 6.90e-05 9.28e-06 2.02e-05 0.70 3.41 1.80e-05 1.125
µ̇¯/µ¯ 2.90e-14 6.65e-14 2.12e-14 3.13 1.37 1.47e-14 1.444
µ¯ 1.40e+08 -1.34e+09 1.37e+08 9.93 1.03 3.50e+08 0.390
J2¯ 3.00e-09 -1.90e-09 3.43e-09 0.95 0.88 2.00e-09 1.714
η (nv-eq) 3.00e-04 3.71e-05 8.42e-05 0.64 3.56 7.20e-05 1.169

The ratio’s between the papers results and our results match very well, better than initially expected, and
it can definitely concluced that the validation is succesful. One stands out: the gravitational parameter of
the Sun. In the paper, the formal uncertainty of µ¯ increases with respect to the apriori information. The
apriori uncertainty of the gravitational parameter of the Sun is taken from INPOP13c [16], an ephemeris, and
apparently the MESSENGER data alone is not enough to improve the uncertainty. In our simulation this is
also the case as portrayed by the relatively high true error. It however seems to be a characteristic of TUDAT
that the formal error does not go higher than the apriori level but as a maximum stays on the same level. This
causes the difference in the comparison with the paper in the last column.
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D.2. Schettino 2015
This publication is a full-cycle simulation of BepiColombo tracking data, and the estimation of parameters
that can be done with it. While the effects that are taken into account are described, their explicit imple-
mentation is not named, and therefore it is not possible to know what assumptions and approximations were
made when constructing the acceleration model. Therefore it can be expected that there are some differences
between the models which could affect the validation results.

Some noteworthy settings of estimation described by the paper:

• The Nordtvedt equation is assumed to be true.

• It is assumed that during the BepiColombo cruise phase, an improvement for γ can be found in a supe-
rior solar conjunction experiment. The current precision of γ is also based on such an experiment with
the Cassini spacecraft [6]. The assumed result of γ from the experiment for BepiColombo are taken as
apriori uncertainty.

• PPN parametersα1 andα2 are estimated, however it is not disclosed if they are only used in the Nordtvedt
equation or also play a role in the acceleration model. The latter is true in our acceleration model (see
section A.4).

• Flyby’s during the cruise phase are not included in the tracking data.

The results of the validation can be seen in table D.3.

Table D.3: Validation results of the reproduction of Schettino et al. 2015 [49].

parameter apriori σ true σ formal σ t/f ratio f/a improv. paper formal σ f/p ratio
γ 2.00e-06 7.13e-06 1.95e-06 3.66 1.03 8.90e-07 2.191
β 1.10e-04 1.84e-04 1.26e-06 145.70 87.23 3.80e-07 3.319
α1 4.00e-06 7.26e-04 3.99e-06 181.68 1.00 4.80e-07 8.321
α2 8.00e-10 -2.85e-11 8.00e-10 0.04 1.00 6.90e-08 0.012
µ̇¯/µ¯ 4.10e-14 3.30e-14 1.42e-14 2.33 2.89 2.00e-14 0.708
µ¯ 1.40e+08 8.47e+08 5.75e+07 14.73 2.43 4.00e+07 1.437
J2¯ 3.00e-09 -1.91e-08 3.95e-10 48.46 7.59 3.70e-10 1.068
η (nv-eq) 4.50e-04 2.22e-06 2.00e-06 1.11 224.98 2.00e-06 1.000

Unlike the paper, no improvements could be found for the uncertainties of PPN parameters α1 and α2.
The cause for this difference between the paper and our results is unclear. Instead, high true errors are present
in the results of our simulation with respect to the formal errors . This disturbs the estimation of all parame-
ters, and while the results in the last columns match well except for α1 and α2, the high true to formal error
ratio means the result cannot be trusted. As no improvements could be found for α1 and α2, perhaps the
consider covariance analysis could provide an alternative. The results of this adjusted approach can be seen
in table D.4.

Table D.4: Validation results of the reproduction of Schettino et al. 2015 [49], with PPN parameters α1 and α2 as consider parameters.

parameter apriori σ true σ formal σ t/f ratio f/a improv. paper formal σ f/p ratio
γ 2.00e-06 5.93e-06 1.95e-06 3.04 1.03 8.90e-07 2.191
β 1.10e-04 1.17e-06 7.69e-07 1.52 143.13 3.80e-07 2.023
µ̇¯/µ¯ 4.10e-14 9.10e-15 1.42e-14 0.64 2.89 2.00e-14 0.708
µ¯ 1.40e+08 1.35e+08 5.74e+07 2.35 2.44 4.00e+07 1.436
J2¯ 3.00e-09 1.15e-09 3.79e-10 3.04 7.91 3.70e-10 1.025
η (nv-eq) 4.50e-04 -1.25e-06 4.47e-06 0.28 100.62 2.00e-06 2.236

In these results the high true to formal error ratios are gone, and the ratios in the final column also match
well. The fact that we take into account the uncertainties of α1 and α2 but do not estimate them seems to al-
low the other parameters to be estimated very well in comparison to the paper. It is a pity that improvements
on α1 and α2 cannot be reported in this work, but as the focus of the research question lies mainly on β and
J2¯, it is seen as a valid approach for our purposes.
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D.3. Imperi 2018
For the BepiColombo mission, it is attempted to reproduce a second paper. This publication is a full simula-
tion of BepiColombo tracking data, and the writers simulate all the experiments that can be performed with
it, one of which is the estimation of relativity parameters.

Some noteworthy settings of estimation described by the paper:

• Two configurations are tested: one where the Nordtvedt equation is true, and one where the Nordtvedt
equation is false.

• Again, it is assumed that during the BepiColombo cruise phase, an improvement for γ can be found in a
superior solar conjunction experiment. The current precision of γ is also based on such an experiment
with the Cassini spacecraft [6]. The assumed result of γ from the experiment for BepiColombo are taken
as apriori uncertainty.

• PPN parametersα1 andα2 are estimated, and they show up in the acceleration model [27, eq. 1] similar
to ours but instead expressed in orbital elements (see section A.4), (it is shown that they are the same
in [55, sec. 7.3].

• It is uncertain whether flyby’s are included in the tracking data. It is assumed no flyby’s are included (it
has been tested with flyby’s, the difference is minimal anyway)

The results are given when the Nordtvedt equation is set to true in table D.5 and false in D.6.

Table D.5: Validation results of the reproduction of Imperi et al. 2018 [27], Nordtvedt equation set to be true.

parameter apriori σ true σ formal σ t/f ratio f/a improv. paper formal σ f/p ratio
γ 1.10e-06 -4.38e-05 1.10e-06 39.91 1.00 1.10e-06 0.999
β 3.90e-05 -1.10e-02 1.24e-06 8863.28 31.37 1.00e-06 1.243
α1 4.00e-06 -4.42e-02 4.00e-06 11051.41 1.00 6.10e-07 6.553
α2 8.00e-10 1.74e-09 8.00e-10 2.17 1.00 1.30e-07 0.006
µ̇¯/µ¯ 4.30e-14 2.02e-13 4.65e-15 43.34 9.25 2.80e-14 0.166
µ¯ 1.00e+10 -3.79e+10 2.92e+07 1298.79 342.66 5.30e+07 0.551
J2¯ 9.00e-09 1.24e-06 2.65e-10 4662.96 33.98 5.50e-10 0.482
η (nv-eq) 4.50e-04 1.39e-04 2.67e-06 52.08 168.83 3.00e-06 0.888

Table D.6: Validation results of the reproduction of Imperi et al. 2018 [27], Nordtvedt equation set to be false.

parameter apriori σ true σ formal σ t/f ratio f/a improv. paper formal σ f/p ratio
γ 1.10e-06 0.00e+00 1.10e-06 0.00 1.00 1.10e-06 0.999
β 3.90e-05 0.00e+00 2.64e-05 0.00 1.48 2.80e-05 0.942
η 4.50e-04 1.00e-10 2.69e-06 0.00 166.99 3.30e-06 0.817
α1 4.00e-06 -2.22e-01 4.00e-06 55387.28 1.00 6.60e-07 6.061
α2 8.00e-10 8.68e-09 8.00e-10 10.85 1.00 1.30e-07 0.006
µ̇¯/µ¯ 4.30e-14 0.00e+00 4.67e-15 0.00 9.20 2.80e-14 0.167
µ¯ 1.00e+10 0.00e+00 9.44e+07 0.00 105.89 9.90e+07 0.954
J2¯ 9.00e-09 0.00e+00 2.98e-09 0.00 3.02 3.20e-09 0.932

A very similar conclusion can be drawn compared to last section. Even with the acceleration model being
similar in terms of effects caused by α1 and α2, the same problem as the previous section occurs, meaning
it is not a problem related to a specific paper. Again, because no improvement can be found, implementing
α1 and α2 as consider parameters could be a better approach. The results are given when the Nordtvedt
equation is set to true in table D.7 and false in D.8. Again, this approach seems to work very well and will be
adopted to generate results.
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Table D.7: Validation results of the reproduction of Imperi et al. 2018 [27], Nordtvedt equation set to be true, with PPN parameters α1
and α2 as consider parameters.

parameter apriori σ true σ formal σ t/f ratio f/a improv. paper formal σ f/p ratio
γ 1.10e-06 1.40e-06 1.10e-06 1.28 1.00 1.10e-06 0.999
β 3.90e-05 1.93e-07 7.45e-07 0.26 52.33 1.00e-06 0.745
µ̇¯/µ¯ 4.30e-14 3.36e-14 2.30e-14 1.46 1.87 2.80e-14 0.823
µ¯ 1.00e+10 1.72e+08 8.91e+07 1.93 112.26 5.30e+07 1.681
J2¯ 9.00e-09 3.37e-10 2.45e-10 1.38 36.80 5.50e-10 0.445
η (nv-eq) 4.50e-04 -6.31e-07 4.81e-06 0.13 93.58 3.00e-06 1.603

Table D.8: Validation results of the reproduction of Imperi et al. 2018 [27], Nordtvedt equation set to be false, with PPN parameters α1
and α2 as consider parameters.

parameter apriori σ true σ formal σ t/f ratio f/a improv. paper formal σ f/p ratio
γ 1.10e-06 2.71e-07 1.10e-06 0.25 1.00 1.10e-06 0.999
β 3.90e-05 -1.50e-04 2.74e-05 5.47 1.42 2.80e-05 0.980
η 4.50e-04 -1.88e-06 2.70e-06 0.70 166.41 3.30e-06 0.819
µ̇¯/µ¯ 4.30e-14 2.55e-14 2.34e-14 1.09 1.84 2.80e-14 0.836
µ¯ 1.00e+10 -4.18e+08 1.20e+08 3.49 83.49 9.90e+07 1.210
J2¯ 9.00e-09 1.74e-08 3.11e-09 5.60 2.89 3.20e-09 0.972
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