
Ultra Low Power
Sensor Readout
and Data Logger
For a battery-less system

Alec Reunis
Kjell de Wit
In collaboration with
BSc Electrical Engineering
Bachelor Graduation Thesis

Preface

This thesis is written as part of the requirements for the Bachelor Graduation Project at TU Delft, Electri-
cal Engineering. It documents the work on the design and implementation of a batteryless temperature
logger for cold-chain logistics.

We would like to express our gratitude to our supervisors Prof.Dr. K.A.A. Makinwa and Dr. Sijun Du
for their guidance and support. We also like to thank our daily supervisors Floris van Mourik and Teije
Onstein for their knowledge and support and we would like to extend special thanks to Martin Schu-
macher for his valuable assistance throughout the project. Finally, we are grateful for our colleagues:
Rolando Russel, Waris Ibrahimi, Brian Joemmankhan, and Stoyan Dinev.

Alec Reunis & Kjell de Wit
Delft, June 2025

ii

Abstract

Cold-chain logistics demand precise temperature monitoring to ensure the safety and quality of per-
ishable goods during transport. Conventional solutions rely on battery-powered temperature loggers,
which contribute significantly to electronic waste due to limited reusability. This thesis addresses this
environmental concern by contributing to the development of a fully batteryless, wireless temperature
logger designed for long-duration cold-chain monitoring. Focusing on the sensing and data logging
subsystem, this work presents the design and implementation of an ultra-low-power system capable of
accurate temperature readout and multi-week data storage under strict energy constraints. The sys-
tem integrates a microwatt-level temperature sensor, a power-optimized microcontroller, and energy-
efficient logging strategies to balance measurement accuracy, memory use, and power consumption.
The final implementation is shown to have an idle power draw of <1µW and an energy use of 14µJ
over the measurement and storage period, with a peak power of 411µW . The temperature measure-
ments were found to be accurate within ±0.5°C . This accuracy and energy efficiency, demonstrates
its potential as a sustainable alternative to traditional battery-powered loggers.

iii

Contents

1 Introduction 1
1.1 Problem Justification . 1
1.2 State of the Art . 1
1.3 Project Objective . 2
1.4 Thesis Outline . 2

2 Programme of requirements 4
2.1 General project requirements . 4
2.2 Subsystem requirements. 4

2.2.1 Operational requirements . 4
2.2.2 Power requirements . 5
2.2.3 Performance/memory requirements . 5

3 System Design 6
3.1 Design overview . 6
3.2 Component Selection . 6

3.2.1 Microcontroller unit . 6
3.2.2 Temperature sensor . 8

3.3 Firmware . 11
3.4 Power Saving . 13

3.4.1 I2C pull-up resistors . 13
3.4.2 MCU clock speed. 15
3.4.3 Low power modes . 17
3.4.4 GPIO power gating . 17

4 Testing and verification 18
4.1 Test setup . 18

4.1.1 Current draw . 18
4.1.2 Temperature Accuracy . 18
4.1.3 Memory Verification . 19

4.2 Results . 19
4.3 Discussion of results . 21

4.3.1 Power . 21
4.3.2 System Operation . 21
4.3.3 Performance/memory . 22

5 Conclusion 23
5.1 Conclusion . 23
5.2 Recommendations . 23

A Appendix A: Firmware (C code) 26

B Appendix B: Testing Software (Python) 32
B.1 Current measurement for power and energy calculations 32
B.2 Temperature sensor comparison . 34
B.3 I2C Pull-up resistor current model . 35
B.4 Temperature sensor accuracy . 36

C Appendix C: Device technical information 38
C.1 STM32U083C-DK board and layout . 38
C.2 TMP75B functional block diagram . 41

iv

1
Introduction

1.1. Problem Justification
Cold-chain logistics, such as the transport of perishable foods or pharmaceutical items, require
precise temperature monitoring to preserve product quality and safety [1], [2]. Ensuring that these
items stay within safe temperature ranges during transport is critical to ensure the quality at arrival.
Even short-term deviations from the optimal temperature range during transport can lead to spoilage,
significantly reducing shelf life and contributing to global food waste. For example, bananas must be
kept between 13.2°C and 14°C to maintain their four-week shelf life [3]. Slight deviations can trigger
premature ripening or chilling injury, both of which diminish the product’s value upon arrival [4].

To manage this, temperature loggers are commonly used to continuously record temperatures
throughout the shipment. These devices allow post-transport evaluations and help predict remaining
shelf life, ultimately reducing waste due to spoilage [2]. However, their widespread use comes with a
downside. Many temperature loggers are powered by disposable batteries and are built for single or
limited reuse. As the number of shipments grows, so too does the contribution of the loggers to
electronic waste, which is a fast growing environmental problem [5], [6].

1.2. State of the Art
Current cold chain monitoring systems primarily focus on tracking temperature during food
transportation using a variety of sensing and data recording technologies. Companies such as
Sensitech, LogTag, and Coldstream offer reliable commercial temperature loggers capable of
monitoring conditions throughout the shipping process [7]–[10]. These devices typically sample
temperature at intervals of 30 to 60 minutes and can log data over several days to weeks. Data is
retrieved post-transport via USB, PDF export, or wireless transmission, depending on the model.
These systems offer temperature tracking using onboard data storage, but they are all
battery-dependent which limits their sustainability.

Several academic efforts have explored batteryless sensor systems, often powered by RFID, NFC, or
ambient energy harvesting [11], [12]. These designs eliminate batteries, making them more
environmentally friendly and maintenance-free. However, these systems provide only real-time
temperature readout and cannot store temperature histories over time. Their functionality is limited in
scenarios where unattended monitoring is required.

Recent developments in ultra-low-power temperature sensors have significantly contributed to efforts
toward batteryless or energy-harvested sensing systems. Commercially available digital sensors
such as the Texas Instruments TMP75B [13] and the Microchip AT30TS75A [14] provide accurate
temperature measurements (±0.5°C typical) over a wide range while consuming microampere-level
current during active operation and nanoampere-level standby currents. In academic research,
sensor designs have pushed power consumption even lower. Makinwa’s survey compares various
state-of-the-art CMOS temperature sensors achieving power consumptions below the nanowatt range

1

2 Introduction

with resolutions below 0.1°C, showing even more potential for fully batteryless sensing platforms [15].

Despite progress, a key challenge remains: integrating batteryless operation, local data storage, and
reliable wireless readout into a single autonomous platform. Current solutions tend to trade off one
capability for another, either supporting long-term storage with batteries or offering batteryless
operation with only on-demand sensing. However, ongoing advancements in ultra-low-power
electronics, energy-efficient memory technologies, and wireless protocols present promising
opportunities to develop integrated, fully autonomous cold chain monitoring devices that address
these limitations.

1.3. Project Objective
This thesis is part of a larger engineering project that aims to design and prototype a fully batteryless
and wireless temperature logger. The system is designed to autonomously sense and log
temperature data throughout cold-chain transport and to allow later retrieval of the data via a
contactless interface. The logger is composed of multiple subsystems:

1. Energy harvesting: Supply power from an external source. [16]

2. Temperature readout and storage: Capture and store temperature readings under tight power
constraints.

3. Data transmission and display: Wirelessly retrieve and display temperature data. [17]

Figure 1.1: Diagram of Full Temperature Logger System

This thesis focuses specifically on the second subsystem shown in figure 1.1: the design and
implementation of the temperature readout and storage. The goal is to achieve sensing and data
logging functionality that meets the reliability and usability standards of existing battery-powered
loggers, while operating under the tight power constraints of batteryless operation. This requires the
integration of an ultra-low-power temperature sensor into a power-optimized system, as well as
developing logging strategies that balance measurement accuracy, power consumption, and memory
usage within the limited energy budget provided by energy harvesting.

1.4. Thesis Outline
The remainder of the thesis is structured as follows:

• Chapter 2 describes the programme of requirements, defining the operational conditions, power
constraints, sampling needs, and memory limitations that shape the design of the subsystem.

• Chapter 3 describes the design and implementation of the sensing and logging subsystem. It
discusses the selection of the temperature sensor and microcontroller, memory strategies, and
the power-saving techniques used to ensure reliable operation under energy harvesting
conditions.

1.4. Thesis Outline 3

• Chapter 4 presents the evaluation of the system. It includes measurements of sensor accuracy,
energy consumption, and performance characterization of the key components, as well as
verification of the full subsystem. It also reflects on these results using the program of
requirements.

• Chapter 5 summarizes the key outcomes of the project and highlights possible directions for
future work.

Further technical information and supporting data are provided in Appendices A, B and C.

2
Programme of requirements

2.1. General project requirements
The system outlined in this thesis is a subsystem of the larger project as explained in the previous
chapter. To ensure the standalone readability of this document, the project’s general requirements are
outlined first, with the subsystem’s more specific requirements following after. In the general
requirements, all italicized entries are not applicable to this thesis, though they may influence the
generation of certain requirements.

[1.1] The device must operate solely from energy harvested from an external magnetic field.

[1.2] The device must not contain batteries.

[1.3] The device must measure temperature with a low power sensor.

[1.4] The device must store the measured data to be read out at a later time.

[1.5] The device must also support a one-time readout to verify its operation.

[1.6] The data must be readable wirelessly.

[1.7] The prototype must be built out of commercially available products.

[1.8] The prototype must be designed and built within 8 weeks.

[1.9] The cost of the prototype should not exceed €200.

2.2. Subsystem requirements
From the above requirements and the chosen scope outlined in the previous chapter, it is possible to
hone in on requirements specific to the subsystem. These have been divided into three categories:
Operational, Power, and Memory/Performance.

2.2.1. Operational requirements
The operational requirements as set out in this section outline demands for the functionality of the
device in a global sense. The non-italic requirements above can also be seen as part of this set. The
Agreement on the International Carriage of Perishable Foodstuffs and on the Special Equipment to be
Used for such Carriage (ATP Agreement) sets standards for temperature control and traceability in
international transport [18]. This motivates requirements such as minimum measurement frequency,
logging duration, and operating temperature range.

[2.1] The system must measure temperature at least every hour.

[2.2] The system must be capable of storing measurement data for a period of 4 weeks.

[2.3] The system must operate around a voltage of 2V DC.

4

2.2. Subsystem requirements 5

[2.4] The system must operate reliably in a temperature range of -30 to 50°C.

[2.5] The components used must be solderable by hand.

[2.6] The system should preferably store timestamps along with the temperature data

2.2.2. Power requirements
As the whole system needs to work off harvested energy, very little power will be available. The main
KPIs here are peak power (should be less than what the capacitor can deliver) and energy usage
(should be less than what the capacitor can store). As the performance of the energy harvester was
not known at the start of this project, and implementations of magnetic energy harvesting vary greatly
[19], any kind of hard boundary on both power and energy would be incredibly arbitrary. Nevertheless,
the goal of the project is to make an ultra low power device, so the maximum peak power was set at
1mW. Thus, this section consists mainly of trade-off requirements that all point to the same goal:
balance peak power with energy draw. Similar challenges in balancing power consumption and
energy availability have been highlighted in prior research on ultra-low power temperature sensors
and RFID-enabled cold chain monitoring systems [20]–[23]. The hardest boundary here is that of the
temperature sensor. As this project builds upon existing research, the goal is to select a sensor that
approaches the performance characteristics of research-grade sensors as closely as possible while
using commercially available products [15]. Energy is not a consideration in idle mode, since the
energy harvester is continually generating energy. However, the device should leave enough surplus
power so that the energy harvester can charge the capacitor in time for the hourly measurement.

[3.1] The temperature sensor peak power should be as close to 100nW as possible.

[3.2] The design must have a peak power draw of less than 1mW.

[3.3] The design should preferably minimise the peak power draw.

[3.4] The design should minimise the energy used per measurement.

[3.5] The design should minimise the power draw when in idle.

2.2.3. Performance/memory requirements
Finally, cold-chain management practices set certain conditions on the performance of the
temperature measurement. The main KPIs here are data resolution, which directly influences the
amount of bits needed to store the data, and temperature accuracy, which is a characteristic of the
chosen sensor. To ensure comparable performance to existing commercial systems, the system must
meet similar standards [7]–[10].

[4.1] The temperature data must have a resolution of 0.25°C per bit or less (10 or more bits).

[4.2] The temperature data must have an accuracy of ±1°C or less.

[4.3] In order to support 4 weeks of measurement data at 1 measurement per hour and at least 10
bits of resolution, the storage memory must have a size larger than 1344 Bytes.

[4.4] The temperature data should preferably have a resolution of 0.0625°C per bit (12 bits).

3
System Design

3.1. Design overview
The proposed design is the middle part of the three-part system outlined in chapter 1: temperature
readout and storage. It is comprised of a microcontroller unit (MCU) and a low-power temperature
sensor. The MCU expects about 2 volts at the input, and outputs temperature data to the non-volatile
memory of a low-power NFC module. The MCU is normally idle, woken up hourly by the onboard
real-time clock (RTC). After waking up, it performs an active cycle, whereby it reads the current
temperature value from the sensor and stores it in the memory. At the end of the cycle, the MCU
returns to its idle state.
The remainder of this chapter will describe the used components, an overview of the firmware,
implemented power-management techniques, and the data storage method.

Figure 3.1: Functional block diagram of the subsystem

3.2. Component Selection
3.2.1. Microcontroller unit
The requirements outlined in chapter 2 do not necessarily call for an MCU to be used. However, from
requirements [2.1] and [2.6], it follows that some kind of timekeeping device is needed. Furthermore,
storing the temperature data, as per requirement [1.4], is most easily done digitally. Therefore, the
temperature data must be converted to a digital value either natively inside the component, or via an
analog-to-digital converter. This, along with similar projects also using microcontrollers [21], lead to
the choice to use an MCU in this project.

6

3.2. Component Selection 7

As there are many different MCUs on the market, some base criteria were set up using the
requirements stated in chapter 2:

[5.1] Real-Time Clock (RTC) for periodic wakeup and timestamps (from requirement [2.6])

[5.2] Low power modes (from requirement [3.3] - [3.5]

[5.3] Around 2V operation (from requirement [2.3])

[5.4] Development board available (from requirement [2.5], [1.8])

This list served to narrow down the possible options and after careful consideration, the
STMicroelectronics STM32U083MC was selected, onboard the STM32U083C-DK development
board [24] [25]. This choice was made base on the provided features, available development board
and its price (requirement [1.9]). Hereafter, these will be referred to as the MCU and the development
board, respectively. Some of the most relevant features of the MCU are summarised in table 3.1,
everything else can be found in the datasheet [24]. A top-view picture and layout drawing of the
development board can be found in Appendix C.1.

Table 3.1: STM32U083MC main features from the datasheet.

Feature Value Unit

CPU 32-bit Arm Cortex M0+

Operating frequency 0.1 - 56 MHz

Operating voltage 1.7-3.6 V

Operating current (Run mode) 120 µA/MHz

Operating current (Stop 2 mode) 2.3 µA

Operating current (Standby mode) 900 nA

Those familiar with the technology might consider a 32-bit MCU overkill, and that would be a valid
concern. The MCU is overflowing with features not relevant to the project and could probably be used
to send someone into space. However, as of writing, the STM32U0 line is brand new (released
around March 2024 [26]) and has some of the lowest power 32-bit MCUs on the market. It does get
outclassed by some 16-bit and many 8-bit MCUs in terms of power draw, but none were found that
had both an RTC and a development board, or non-RTC counters able to count up to 1 hour. A
similar study used the Texas Instument MSP430 platform [21], but the models on available
development boards did not offer lower power consumption than the STM32U0 MCU.

The MCU’s system clock is highly configurable, with the following possible sources as per the
datasheet [24]:

• 4-+48 MHz high-speed oscillator with external crystal or ceramic resonator (HSE).

• 16 MHz high-speed internal RC oscillator (HSI16).

• Multispeed internal RC oscillator (MSI) able to generate 12 frequencies from 100 kHz to 48 MHz.

• System PLL (Phase Locked Loop), which can be fed by HSE, HSI16 or MSI. It provides a
system clock up to 56 MHz.

These clock signals can be downscaled by dividers before reaching their destination, allowing some
customisation of otherwise static oscillator frequencies. The RTC and select other peripherals can be
clocked by the 32kHz Low-Speed RC Oscillator (LSI), or the Low speed oscillator with external crystal
(LSE). Some peripherals can be configured to use a different clock than the system clock, and
oscillators can be enabled and disabled through software. As the MCU’s current draw is highly
dependent on the clock speed, this is an important piece of the power saving puzzle.

Another powerful power-saving measure is the inclusion of low-power modes. The MCU has many
different modes of operation, each providing a trade-off between the availability of features, power

8 System Design

draw, and wake-up time. In this project, the following modes were used:

• Run: Default mode after startup or wake-up from Standby mode.

• Low-power run: Slightly lower power usage than Run, CPU limited to 2MHz or lower.

• Stop 2: Lowest power consumption while still retaining the MCUS SRAM and register contents,
as well as GPIO states. All system clocks disabled, LSI and LSE still running and able to clock
timers. System can wake up from interrupts.

• Standby: Second lowest power consumption. SRAM contents (thus program data) lost. Only
LSI and LSE enabled, RTC can be enabled. System can wake up from interrupts.

How exactly these are used and configured will be explained in section 3.4.

Additionally the MCU features up to 68 GPIO pins, most of which are left unused. Two pins are used
as the respective voltage sources for the sensor and external memory module. This way, the devices
can be powered off completely when not in use, fully negating their shutdown current consumption.
This technique will be referred to as power gating for the remainder of this thesis. The consequence
of this technique is that the devices cannot be placed on the same I2C bus, because the VS line
source varies. Thus, four pins are used as I2C bus connectors, allowing the sensor and the memory
to be on different buses. As an open-drain system, the I2C buses require pull-up resistors, which are
the third large source of power draw for the system. This is also explored further in section 3.4

The development board features a configurable voltage regulator, allowing simulation of the final
operating conditions while powered by a USB Type-C cable. While useful for prototyping, this does
form an obstacle for eventually hooking the device up to the energy harvester. Through the provided
connectors, the board can only be powered by a 5V source, which is then down-converted by the
LDO regulator to feed the MCU. Fortunately, the board also features two header pins placed between
the regulator and the MCU. These are found at JP7 in figure C.2. The pins are normally connected by
a jumper and are intended for facilitating current measurements. Therefore, by removing the jumper,
the MCU is disconnected from the LDO regulator. Then it is possible to connect an external voltage
source to the MCU side of the header, completely bypassing the regulator and providing free choice
of supply voltage, like the 2 volts expected from the energy harvester.

3.2.2. Temperature sensor
The absolute most important requirement for the sensor, is requirement [3.1]: peak power as close to
100nW as possible. Combined with the requirement for hand-solderable components, two possible
options were identified: the Texas Instruments (TI) TMP75B [13] ATMEL (AT) AT30TS75A [14].
According to their respective datasheets, both sensors operate at maximum 170-180µW at 2V. This is
several orders of magnitude more than the research-level sensor, which shows the clear limitation of
working with commercial products. As with the MCU, some relevant characteristics are shown in table
3.2.

Due to some ambiguity in the datasheets, it was not immediately clear which sensor would perform
best. Therefore, both sensors were ordered and tested for peak power and total energy consumption
for a single temperature measurement. In the end, the TMP75B was chosen due to both a lower peak
power, as well as a lower energy consumption. A more detailed comparison can be found at the end
of this subsection.

3.2. Component Selection 9

Table 3.2: Most relevant features of the temperature sensors from the datasheets.

Feature AT30TS75A (AT) TMP75B (TI) Unit

Operating voltage 1.7 - 5.5 1.4 - 3.6 V

Current during conversion (typ - max) 60 - 85 45 - 89 µA

Conversion time (typ - max) 50 - 751
200-3002 27 - 35 ms

Shutdown mode current (typ - max) 0.4 - 2.5 0.3 - 8 µA

Accuracy (-25°C to 85°C) ±0.5 (typ) - ±2.0 (max) ±0.5 (typ) - ±2.0 (max) °C

Resolution 9 - 12 12 Bits

Data form factor Digital Digital

Communication protocol I2C I2C

Device form factor SOIC-8 SOIC-8

1At 10 bits resolution (0.25°C).
2At 12 bits resolution (0.0625°C).

Figure 3.2: Pinout of the TMP75B, from [13].

In order to understand the comparison, it is useful to first examine the operational characteristics of
the sensors. Since the TMP75B is used, this explanation will be limited to this sensor. Nevertheless,
both sensors are designed as drop-in replacements for the industry-standard LM75 and are thus very
similar.

The TMP75B used in this project is a low-voltage cousin of the TMP75, and the predecessor of the
newer TMP1075, however the latter was not available for purchase. It is packaged in the 8-lead SOIC
format, a schematic of the pinout can be found in figure 3.2. This package includes a BJT
bandgap-based temperature sensor, which generates a voltage Proportional To Absolute
Temperature (PTAT). This voltage is then digitised by an analog-to-digital converter and converted to
a 12-bit temperature value, allowing for a resolution of 0.0625°C per bit. The value is then stored in
two internal 8-bit registers. This conversion takes time and is the primary driver for the sensor’s
power and energy consumption. Figure C.4 in appendix C.2 shows the functional block diagram of
the sensor, taken from [13].

A serial interface allows access to the digitised data and configuration of the device. This interface
supports two-wire communication protocols and is specifically designed for I2C and SMBus. The I2C
interface operates in slave mode, with speeds up to High-speed mode, at 3.4Mbits/s. The
temperature data is stored in a left-justified format, with the most significant byte (MSB) storing 8 out

10 System Design

of the 12 bits, corresponding to a resolution of 1°C. The remaining 4 bits are stored in the 4 most
significant bits of the least significant byte (LSB). When reading out the temperature, the MSB is sent
first, followed by the LSB.

Using the serial interface, the device can also be configured by altering the configuration register.
Many features are unused in this project, like the alert function when crossing configurable maximum
and/or minimum temperatures, or the configurable measurement frequency. The features of interest
here are the shutdown mode, which lowers the sensor’s current draw when measurements are not
needed, and the one-shot feature. The latter allows the sensor to exit shutdown mode to perform a
one-time measurement before returning to shutdown mode. That is the ideal use case for this project.

However, the TMP75B offers an additional advantage: after power-up, it immediately starts a
conversion without the need for configuration. This is the main function that sets it apart from the AT
sensor, which requires the user to configure the measurement resolution. Combined with the
GPIO-based power gating, this means that the only serial communication necessary is that to read
out the temperature of the initial measurement. This allows the MCU to operate in a low-power mode
during the measurement period, lowering the power and energy consumption.

Now that a base understanding of the sensor functionality has been achieved, it is possible compare
both devices. From table 3.2, the TI sensor appears to be the more favourable option due to its lower
typical conversion current and faster conversion time. In theory, this should result in both lower power
consumption and lower energy used per measurement. The main drawback is its shutdown mode
current, which is higher than the AT sensor, but this is solved by the power gating. However, these
values are pulled from the datasheets and are based on characterisation, which does not always
reflect reality. This was especially true for the conversion time of the AT sensor. For a resolution of 10
bits, it was possible to reliably read accurate values after 20ms, promising the possibility of a lower
energy usage due to a faster execution time.

This highlights an important consideration. With all else being acceptable, the deciding factors were
the sensors’ respective peak power and total energy consumption. While these are connected, it is
possible that a high-power device can still use less energy due to a faster execution time, leading to a
trade-off situation. In consideration with the energy harvesting team, low energy was determined to
be a priority, so the device with the lowest total energy consumption was selected.

Figure 3.3: Current draw of the AT sensor vs the TI sensor, at 2V

The comparison was structured as follows: a program was written to the MCU, which simulated
end-of-project conditions. The MCU starts in Standby mode, wakes up, powers on the sensor, enters
Stop 2 mode if possible, reads data, and returns to Standby. The current drawn during this cycle was
measured over time using an oscilloscope and a shunt resistor. More information about this
measurement setup can be found in chapter 4, the Python code can be found in appendix B.2.

From figure 3.3, the TI sensor shows superior performance, which is also backed up by the numbers:

3.3. Firmware 11

The power can be calculating by multiplying the measured current with the static supply voltage of 2V.
With an approximate peak power of 343 µW and a total energy of 10.8 µJ, the TI sensor easily
outperforms the AT, which has a peak power of approximately 479 µW and total energy of 14.01 µJ.

3.3. Firmware
The firmware for this project was written entirely in C, leveraging the powerful HAL library included
with the STM32CubeIDE. This library provides high-level functions for most actions one would want to
take within a program, thereby avoiding tedious management of the MCU’s various registers. This
drastically speeds up program development. The code can be found in appendix A

As mentioned earlier, the MCU in Standby mode most of the time. Only the RTC is active, sending an
interrupt when the wake-up counter reaches 1 hour. This kicks off the active cycle, a diagram of which
can be found in figure 3.4.

Figure 3.4: High-level flowchart of an MCU active cycle.

Wake MCU:
When the RTC’s wake-up counter reaches 1 hour, an interrupt is generated which wakes up the
device from Standby mode. Because Standby mode powers down all system memory, the program
state and variable values are lost, and the MCU behaves as if it were just powered on. This also
means that it operates in Run mode after wake-up, with a frequency of 4MHz. As soon as possible
after waking up, the clock frequency is lowered to 800kHz, and the MCU enters Low Power Run
mode. Once in Low Power Run, the MCU is ready to perform its tasks.

Sensor readout:
The sensor readout function performs four steps:

1. Turn the sensor on. The GPIO pin connected to the VS of the sensor is turned on, providing
power to the sensor and the I2C bus.

2. Sleep until the measurement is done. The MCU enters Stop 2 mode for 15 ms to conserve
power while the sensor takes a measurement. This time was determined experimentally, as it
includes startup time of the sensor, which is not explicitly mentioned in the datasheet. A
low-power timer in the MCU is used to control this period, waking the MCU by interrupt.

3. Read the sensor data. The I2C bus is used to read the measured temperature. This consists of
writing the sensor’s device address 0x9E, followed by the address of the temperature register
0x01. Then, two sequential read requests transfer the data into a 16-bit signed integer. For
ease of debugging, this left-justified data was then right-shifted by 4 bits, so that the positive
value could just be multiplied by the resolution. This data format was kept for the final product,
even though this functionality was not strictly necessary.

4. Shut down the sensor. After obtaining the temperature value, the GPIO pin is switched back off,
cutting off power to the sensor and its I2C bus.

The function returns the right-shifted sensor data as a 16-bit signed integer. This was useful for
debugging, because this data could simply be multiplied by 0.0625 to obtain the measured
temperature, which could then be printed to the COM port of a computer via UART. The same is true
for the values in the memory, so this format was kept in the final design.

12 System Design

Memory operations
The memory module was provided by a different team, so will only be described briefly. It is the
STMicroelectronics ST25DV64KC, an NFC chip with 64kb of built-in EEPROM memory. As usual, the
most relevant features are listed in table 3.3 and more detailed information can be found in the
datasheet [27].

Table 3.3: Most relevant features of the memory module from the datasheet.

Feature Value Unit

Supply voltage 1.8 - 5.5 V

Address length 16 Bits

Block size 4 Bytes

Communication protocol I2C

Block write time 5 ms

Table 3.4: Data storage format in the memory module.

Block address Byte 0 Byte 1 Byte 2 Byte 3

0 Reserved

4 Reserved

8 MSB0 LSB0 MSB1 LSB1

12 MSB2 LSB2 MSB3 LSB3

16 MSB4 LSB4 MSB5 LSB5

... ...

Data can be written byte-per byte into the memory via I2C . Only the first byte address needs to be
given, after which the module auto-increments the write address for each consecutively received data
byte. Because the temperature data is 12 bits long, it is stored in 2-byte words, in big-endian format:
the MSB is stored at the lowest byte address. This results in a logical left-to-right legibility of the
number for easier debugging. Table 3.4 shows a diagram of how the data is stored. Byte address 0-7
are reserved by the readout team for NFC-specific features, so the temperature data starts at byte
address 8. The memory is assumed to be cleared via NFC before starting a logging period, and it
provides plenty of space for the four week target. Therefore, there is no need for any data
management.

In order to avoid overwriting previous measurement data, and to ensure all data is stored sequentially,
the MCU needs to keep track of the last-written address. However, program variables are lost when
entering Standby mode. Fortunately, the MCU provides nine so-called backup registers for this
express purpose. Where most other registers onboard the MCU return to their reset values upon
entering Standby mode, the backup registers are only reset upon a Tamper event. As long as all
Tamper pins are disabled, which they are for this project, these registers will not lose their value. The
exception to this is full system power loss, where the registers enter a latched state and the data is
neither lost nor reliably kept. Storing the last-written address, which corresponds to the address of the
MSB byte, in a backup register allows the program to read it back during the active cycle. This value
could alternatively be stored in the EEPROM of the external memory at a fixed address, but this
would add an extra read and write operation (reading the previous address and updating the new
one) to the active cycle, requiring the memory to be turned on for three times longer, causing
additional energy drain.

The memory write function takes the temperature data as an argument and carries out the following

3.4. Power Saving 13

five steps:

1. Read the last address. The last-written MSB address is read from backup register 0 and
incremented by 2 to obtain the new memory address. If the value of the backup register is zero,
the function assigns address 8 as the new memory address.

2. Turn the memory on. Just like the sensor, the GPIO pin connected to the VS pin of the memory
module is turned on, providing power to it and its I2C bus.

3. Write data. The previously obtained temperature data is placed into a write buffer consisting of
an array of two unsigned 8-bit integers. Via the I2C interface, the component’s I2C address is
sent first, followed by the target byte address, the MSB, and lastly the LSB.

4. Shut down memory. Once more, the GPIO pin is turned off, cutting power to the memory and its
I2C bus.

5. Update the last address. The memory address of the just-written MSB is saved back into
backup register 0.

With the active cycle complete, the MCU re-sets the RTC wake-up timer for 1 hour and enters
Standby mode.

3.4. Power Saving
A variety of techniques were used to bring the power consumption of the system down from the
default consumption of the components. This section will explain the techniques and their impact on
the power profile.

3.4.1. I2C pull-up resistors
The following section will assume basic knowledge about I2C . All relevant information can be found
in the I2C manual by NXP [28].

As touched upon briefly earlier, the size of the pull-up resistor has a large influence on the power
consumption of the I2C bus. This is due to the open drain design: normally, the bus is held high by a
pull-up resistor connected between the bus and the VS line. To perform a write, the bus is pulled to
ground, allowing current to flow through the resistor. The value of this current can easily be calculated
with Ohm’s law:

𝐼 = 𝑉
𝑅 (3.1)

Figure 3.5 shows a mathematical model of the current for different values of the pull-up resistor. To
stay within the 1mW peak power requirement ([3.2]), only values above 4kΩ were considered. The
model clearly shows the inverse relationship between the current and the resistance, the asymptotic
shape implies that each increase in resistance will give diminishing returns. Care must also be taken
not to increase the resistance so high that it cannot reliably pull the bus up to the level of VOH . The
Python code for the model can be found in appendix B.3.

14 System Design

Figure 3.5: Model for the current sunk during I2C communication, in function of the pull-up resistance.

Selecting the resistor value was done by calculating the gradient for each point and then finding the
point where this gradient is closest to -1. Past this point, an 1kΩ increase in resistance, results in a
decrease of less than 1µA and it becomes less and less impactful. The line tangent to this crossover
point is shown in red. For the current model, this point is at a resistance of 44kΩ , which corresponds
to a current of approximately 45µA . Mapping this to available components, a value of 47kΩ was
ultimately selected. This corresponds to a current of 42.5µA , which is well within the requirements.

Of course, using a pull-up resistor that is more than ten times larger than the standard size has a
profound effect on the data rate. This is directly linked to the bus frequency and thus the SCL period
𝑇𝑆𝐶𝐿. The resistor value influences the period by affecting the rise time of the bus voltage, given by
the following equation, from [28]:

𝑡𝑟 = 0.8473 ⋅ 𝑅𝑝 ⋅ 𝐶𝑝 (3.2)

With 𝑡𝑟, 𝑅𝑝 and 𝐶𝑝 the rise time, pull-up resistance and bus capacitance, respectively.
According to section 7.2 of the I2C manual, it is possible to calculate the new SCL frequency with the
following formula [28]:

𝑇𝑆𝐶𝐿 =
1

𝑇𝐿𝑂𝑊(𝑚𝑖𝑛) + 𝑇𝐻𝐼𝐺𝐻(𝑚𝑖𝑛) + 𝑡𝑟(𝑎𝑐𝑡𝑢𝑎𝑙) + 𝑡𝑓(𝑎𝑐𝑡𝑢𝑎𝑙)
(3.3)

With 𝑇𝐿𝑂𝑊 and 𝑇𝐻𝐼𝐺𝐻 being the Standard mode values of 4.7µs and 4.0µs , respectively. 𝑡𝑓 is
generally drastically faster than the other parameters, so it can be ignored. 𝑡𝑟 can either be calculated
with eq. 3.2, or measured on an oscilloscope. Because the bus capacitance was not known and the
manual also warns that the calculated value will be faster than reality, the frequency was determined
another way.

The I2C controller self-limits its frequency by reading back the value of the SCL and SDA lines before
modifying them. Therefore, it is possible to measure the SCL frequency associated with a 47kΩ
pull-up resistor. To do this, the SCL and SDA signals were measured using an oscilloscope, using the
cursors to determine the SCL frequency. Figure 3.6 shows a part of the oscilloscope display.

3.4. Power Saving 15

Figure 3.6: Screenshot of the oscilloscope display measuring the I2C signal with 47kΩ pull-up resistors. CH1 is SCL, CH2 is
SDA.

As seen in the figure, the measured frequency is about 66kHz. To ensure that the device always
operates as expected, the MCU’s I2C module was configured to run at a frequency of 60kHz. This
way, some margin is built in for any thermal deviations in the resistor. Using this value, the energy per
bit can be calculated with the following equations:

𝑇𝑆𝐶𝐿 =
1
𝑓𝑆𝐶𝐿

= 1
60𝑘𝐻𝑧 = 16.7𝜇𝑠 (3.4)

𝑃 = 𝐼 ⋅ 𝑉 = 42.5 𝜇𝐴 ⋅ 2𝑉 = 85𝜇𝑊 (3.5)

𝐸 = 𝑃 ⋅ 𝑇𝑆𝐶𝐿 = 85
𝜇𝐽
𝑠 ⋅ 16.7 𝜇𝑠 = 1.42 𝑛𝐽 (3.6)

This results in an energy per bit of 1.42 nJ. Every byte transmission consists of at least 9 bits (8 data
+ 1 ACK), so the energy per byte becomes 12.78nJ, ignoring start and stop signals. Through the
entire active cycle, a total of 8 bytes are sent and received by the MCU (device adresses and
temperature data to and from the sensor and external memory), which brings the energy cost of the
I2C communication to about 102nJ.
The calculation also shows the peak power draw of the bus in eq. 3.5. At 85µW , the peak power is
well below 1mW and sufficiently minimised, without sacrificing the reliability of the bus connection.

3.4.2. MCU clock speed
As mentioned in section 3.2, the MCU offers a wide range of clock sources with variable frequencies.
The choice of clock source and frequency greatly impacts the MCU’s current consumption, so with
energy and power being such important parameters in this project, choosing the right source and
frequency is paramount. Running the system at a lower frequency is an easy way to lower its power
consumption, but the slower execution time might lead to a higher energy usage over the course of
an active cycle.

Aside from the frequency, the actual clock source also plays a role in the current consumption. Every
clock has an associated draw, often inversely correlated to its accuracy. For example, the HSI16
clock runs at 15.88 - 16.08MHz, with a temperature drift of -1 to +1% at best and consumes about
170µA . The MSI on the other hand, can be configured for many different frequencies. The actual
frequency is then between -1% and +1% of the configured frequency. Its temperature drift is -3.5% to
+3% at best, and almost doubles when operating outside of the 0°C - 85°C range. In return, it only
consumes about 80µA at 16MHz, reaching as low as 1µA at 100kHz. Since the development board

16 System Design

does not include the resonator required to use HSE, the only other option is the PLL, which serves to
modify the existing clock signals, thus adding to the power consumption.

Since clock accuracy is not important for the active cycle, the choice to use the MSI is easily made.
However, determining the optimal frequency is not as straightforward. The datasheet gives a power
consumption estimate of 120 µA/MHz , but the actual number is dependent on many different
variables like temperature, enabled peripherals, low power modes, and much more. Therefore, the
optimal frequency was determined experimentally.

Just like the temperature sensor comparison, the MCU was loaded with the final program, complete
with low power modes. The current was measured using an oscilloscope, allowing calculation of the
peak power draw, as well as the total energy used. These values were compared, giving more weight
to a low energy consumption. Figure 3.7 shows the current graphs for all of the tested frequencies
and table 3.5 shows the respective power and energy. Because Low Power Run mode is only
available for clock speeds less than or equal to 2MHz, higher frequencies were not expected to
manage a lower energy use. 4MHz was included in the comparison to verify this hypothesis. 100kHz
was excluded from the figure due to a resulting execution time of 400ms, making the plot unreadable.
The associated energy use was also multiple times more than the other frequencies, so 100kHz was
dropped from consideration.

Figure 3.7: Combined plot of the current draw during an MCU active cycle for selected clock frequencies.

Table 3.5: Power and energy values for the different clock frequencies.

Frequency (MHz) Peak power (µW) Energy (µJ)

4 925 19.94

2 582 15.39

1 445 14.29

0.8 411 14.43

0.4 342 16.98

0.1 342 41.31

3.4. Power Saving 17

Figure 3.7 and table 3.5 show that the power decrease translates to an energy increase somewhere
between 800 kHz and 400kHz. The least difference is between 1MHz and 800kHz, these are also the
closest-spaced values. The 4MHz plot validates the earlier hypothesis with a drastically higher peak
power and higher energy consumption than 2MHz. Overall, the energy difference between 800kHz
and 1MHz is negligibly small, so 800kHz was chosen as the MCU clock frequency based on its lower
peak power.

The clock choice for the RTC was done purely based on power, because both the LSE and LSI run at
about 32kHz. The external oscillator offers an accuracy of 20 ppm, at the cost of 250-690 nA
depending on drive strength. The LSI is less accurate, but offers a current consumption of max. 180
nA. Because there are no time accuracy requirements for this project, the LSI was chosen for its
lower power draw.

3.4.3. Low power modes
The MCU features various modes of operation to further control its power consumption. Most of these
suspend the program until an interrupt or event occurs, with the exception of Low Power Run mode.
An overview of the used low power modes was already given in section 3.2.1, their usage is
explained in section 3.3. Their impacts on power will be discussed here.

Starting with Run mode, this mode is the default mode after startup and after wake-up from the
lowest-power modes. The MCU is powered through the main regulator (MR) and uses no
power-saving techniques. The power consumption corresponds to the approximate 120 µA/MHz
current consumption advertised in the datasheet.

Low Power Run mode allows the program to run while ensuring a lower power draw than Run mode.
This is achieved by powering the MCU with the low power regulator, which has a lower current
consumption than the MR. Furthermore, the CPU frequency is limited to 2MHz in this mode. The
power draw corresponds to about 100 µA/MHz in this mode.

Stop 2 mode halts the program until an interrupt or an event occurs. It provides the lowest power
consumption with SRAM retention, allowing it to resume the program from the point it halted after
serving the interrupt. In Stop 2 mode, the MCU consumes about 2-5 µA . After waking up from this
mode, the MCU is in Run mode, clocked by the MSI at the previously configured frequency. Thus,
after wake-up, the MCU must manually enter Low Power Run mode as soon as possible.

Finally, Standby mode is used in the period between active cycles. In this mode, all SRAM contents
are lost, so the program cannot use interrupt callbacks or resume from its previous state. Instead,
when waking up from Standby mode, the MCU acts as if it was just powered on, executing the
program from the beginning. Clocks and peripherals need to be reconfigured as only the backup
registers retain their contents. In return, this mode offers the second-lowest power consumption. With
the RTC active and clocked by the LSI, the current consumption is around 400nA.

3.4.4. GPIO power gating
Both the sensor and the memory have low-power modes to allow minimisation of their power
consumptions when idle. Taking the worst case scenario, the sensor has a maximum shutdown-mode
current of 8µA and the memory has a current of 1.5µA . Combined, this results in a shutdown mode
current of 9.5µA , which is 23 times more than the Standby mode current consumption of the MCU. To
eliminate this extra consumption, and to give the energy harvester as much surplus power as possible
to charge the capacitor, the devices needed to be powered down completely. This was achieved by
connecting the VS pins of the components to GPIO pins of the MCU. With this technique, the
components could be shut down fully, thereby eliminating their shutdown-mode consumption.

4
Testing and verification

4.1. Test setup
4.1.1. Current draw
To evaluate the system’s power consumption and operational behaviour, current measurements were
conducted using an oscilloscope in combination with a 500Ω resistor placed in series with the entire
circuit. The voltage drop across this resistor was captured using a high-resolution oscilloscope, and
instantaneous current was calculated using Ohm’s law. The system was powered from a regulated
2.0V supply during all tests to reflect operating conditions.

The choice of a 500Ω resistor provided a good balance between measurement sensitivity and
minimal impact on the circuit’s operation. Although the setup enabled accurate current waveform
capture, some measurement error remains due to noise and parasitic capacitance present in the
measurement setup.

With the MCU, and thus the sensor, powered at 2V, the peak instantaneous power and total energy
could be calculated using the Python libraries numpy and scipy [29][30], implementing the following
equations:

𝑝[𝑛] = 𝑉 ⋅ 𝑖[𝑛] (4.1)

𝑃𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑝[𝑛]) (4.2)

𝐸 = ∫
𝑡1

𝑡0
𝑃(𝑡)𝑑𝑡 (4.3)

Since 𝑝[𝑛] is an array of discrete values, equation 4.3 cannot be used directly. Therefore the scipy
function scipy.integrate.simpson() was used to approximate the integral using Simpson’s rule [31].
This approximation introduces some error, but for the purposes of the comparison negligible. The
code used to process the measurement data can be found in appendix B.1.

4.1.2. Temperature Accuracy
Temperature accuracy tests were conducted in a controlled thermal environment. A calibrated,
high-precision reference temperature sensor was placed in close proximity to the system to enable
comparison. Temperature measurements were taken from 5°C to 65°C in 10°C increments. Between
each temperature step, sufficient time was allowed for both the environment and the sensors to
stabilize. The measurement data was collected in MATLAB and exported to Python for further
processing. The Python code can be found in appendix B.4.

18

4.2. Results 19

4.1.3. Memory Verification
Memory verification was performed by reading out the stored data using a NFC reader to ensure data
integrity. Measurements were taken every 2 seconds in the same environment, causing the results of
each measurement to be quite similar. Each measurement is stored as a 2-byte value. The first 8
bytes were intentionally left empty to meet requirements from the readout and display subgroup,
however, this offset can easily be adjusted if needed.

4.2. Results
The power profile of the system during an active measurement cycle is shown in Figure 4.1. This
active state includes wake-up, sensor readout, data storage, and transition back to standby.

Figure 4.1: Power graph of the finished system. Operating voltage: 2V

The sensor measurements compared to a highly accurate reference temperature sensor across a
range of temperatures (5°C - 65°C) are shown in figure 4.2. This comparison is further shown in
figure 4.3, which is a plot of the difference between the two sensors.

20 Testing and verification

Figure 4.2: Temperature sensor comparison with ultra-accurate reference sensor.

Figure 4.3: Temperature difference between TI75B and reference sensor.

Figure 4.4 presents the readout of the first 64 bytes of memory using NFC. Each pair of hexadecimal
digits represents one byte, with 2 bytes being one measurements. The values shown are not related
to the above accuracy test, they are meant to verify that the data is stored successfully in the external
memory.

4.3. Discussion of results 21

Figure 4.4: Memory readout of first 64 bytes after running the system.

Summarizing these results into the following key measurements:

• Peak power: 411 µW

• Active cycle duration: 70 ms

• Energy usage per active cycle: 14 µJ

• Idle power consumption: Less than 1µW

• Sensor accuracy: Within ±0.5°C

4.3. Discussion of results
The experimental results demonstrate that the system meets the core requirements laid out in the
Programme of Requirements (PoR), particularly within the domains of power consumption, data
integrity, and measurement performance.

4.3.1. Power
Great progress has been made in minimizing both the peak power consumption and the energy
usage per measurement, in line with the requirements [3.3] and [3.4]. The system has a peak power
draw of just 411µW during the active measurement cycle, which takes about 70 ms. For the full cycle,
the total energy usage is around 14µJ per measurement. The idle power remains below 1µW ,
enabling significant power savings during periods without measurement. Although the sensor’s peak
power heavily exceeds the aspirational 100nW target ([3.1]), this trade-off was necessary to meet the
practical constraints of using hand-solderable, commercially available components ([1.7], [2.5]).

4.3.2. System Operation
Operational stability was verified by consistent microcontroller behaviour at 800 kHz throughout the
active cycle. Despite employing high-value pull-up resistors 47kΩ on the I²C lines, communication
with both the temperature sensor and memory remained stable. This approach lowers peak power
consumption while maintaining reliable operation and staying consistent with the system’s 2V
operating voltage constraint ([2.3]).

Temperature measurements and logging were performed every 2 seconds during testing, significantly
exceeding the minimum requirement of one measurement per hour ([2.1]). This demonstrates that the
system can operate at much higher logging frequencies than required, with the main limiting factor
becoming available energy rather than system capability. Additionally, the system was able to fill the

22 Testing and verification

entire memory without issue, confirming its ability to log sufficient data to meet the 4-week storage
requirement ([2.2]).

The system was partially tested across the specified temperature range of -30°C to 50°C ([2.4]). As
shown in figure 4.2, tests were performed from approximately 5°C up to 65°C, confirming stable
operation and accurate temperature readings within this subrange. Additional testing at lower
temperatures would be required to fully verify performance over the entire specified range.

4.3.3. Performance/memory
Regarding data storage, Figure 4.4 confirms correct operation of the non-volatile memory system.
Each 2-byte value represents one temperature measurement. For instance, the first value starting at
address 8, 0x019D, converts to a decimal value of 413. When multiplied by the resolution of
0.0625°C ([4.4] and [4.1]), this yields a temperature of approximately 25.8°C, which aligns with the
ambient conditions during testing. This confirms that the system correctly stores and retrieves
temperature data via NFC, fulfilling requirements [1.4] and [1.5]. The total available memory, defined
by another subgroup, combined with the 2-byte measurement format used in this thesis, allows at
least four weeks of hourly data logging. This satisfies the storage capacity requirement of exceeding
1344 bytes ([2.2] and [4.3]).

Validation of the temperature sensor accuracy ([4.2]) is shown in figure 4.2 and figure 4.3, which
compares the system’s sensor output to a reference sensor over a range of temperatures. The
measured deviations remained easily within ±1°C across the tested range, confirming compliance
with the specified accuracy.

5
Conclusion

5.1. Conclusion
This thesis presented the design and implementation of a batteryless temperature sensing and
logging subsystem intended for use in a wireless and batteryless data logger in cold-chain logistics.
The system was developed to operate reliably under extreme energy constraints, leveraging
ultra-low-power components to autonomously sample and store temperature data for later retrieval.

The final prototype successfully met the key performance objectives. It achieved accurate
temperature readings with deviations within ±1∘C when compared to a reference sensor and
demonstrated successful logging of the temperature data to non-volatile memory. The system’s peak
power consumption during active operation was measured at 411 𝜇W, with an active cycle duration of
70 ms. This resulted in an average energy use of 14 𝜇J for the full active cycle.
These results show that it is possible to design a low-power, autonomous logging subsystem using
commercially available components, which is suitable for batteryless operation. Such a system can
help reduce electronic waste by eliminating the need for disposable batteries in single-use
temperature loggers. The design presented here therefore contributes toward more sustainable
monitoring solutions for cold-chain logistics.

5.2. Recommendations
While the subsystem has demonstrated to work well within the intended scope, several areas offer
opportunities for future improvement.

Firstly, it is important to emphasize that this design represents a working prototype using
commercially available components. With the use of academic-level components, the efficiency of
this subsystem can be increased significantly. As component technologies continue to advance,
power consumption is expected to decrease while performance increases. This means that systems
like the one presented here will naturally benefit from these advancements.

One other recommendation is the replacement of the development board microcontroller with a
custom-designed PCB that implements all components. This would eliminate all unnecessary circuitry
associated with the MCU’s development board, reduce losses due to inefficient routing, and result in a
more compact design.

Due to requirement [2.5] the options in component choices were limited. For upcoming projects, other
options can be considered that are more power-efficient. It is advised to also look at options
containing other communication protocols, like I³C [32], since I2C plays a big role in the power
consumption during the active cycle.

Validating the subsystem through real-world field testing in refrigerated transport environments would
provide insight into its robustness and practical performance.

23

24 Conclusion

Small gains can still be made by exploring additional power-saving features of the microcontroller.
While the prototype already uses several low-power techniques, it may be beneficial to investigate
other features like Direct Memory Access (DMA), which could further reduce energy usage by
offloading data transfers from the CPU.

Another consideration is the choice of microcontroller. While the current implementation uses a 32-bit
MCU, this level of processing power is not strictly necessary for this type of application. Available
16-bit MCUs with development boards were not more power-efficient than the 32-bit option. However,
without the overhead of a development board, a 16-bit MCU could be a more efficient alternative in
future designs. 8-bit MCUs are generally even more power-efficient, but the onboard timers or RTCs
often lack the bit depth needed to count to one hour. To make use of an 8-bit MCU, alternative
strategies for hourly wake-up would be required, such as external timing components or shorter
wake-up intervals. While the system is capable of operating at a higher measurement frequency,
increasing the wake-up rate will also raise overall energy consumption. Therefore, careful balancing
between timer capability and power budget is essential when exploring lower-bit microcontrollers.

Finally, extending the sensing capabilities beyond temperature to include parameters such as
humidity or shock could make the system useful for a wider range of applications in logistics and
environmental monitoring.

Through these enhancements, the batteryless logging system could evolve into a fully autonomous,
multifunctional platform with significant impact on sustainable supply chain management.

Appendices

25

A
Appendix A: Firmware (C code)

The following code can also be found at the path: Firmware(C)/Core/Src/main.c, which is
available under the following GitHub link:
https://github.com/Kdw123woee/Firmware-Datalogger-BEP-thesis-/blob/main/.
This GitHub repository also contains the other files associated with the project.

/* Inc ludes
−−* /

#include ” main . h ”
#include <s t d i o . h>

/* Defines
−−−* /

#define STANDBY_WAIT_TIME_MIN 59 / / hour l y measurement
#define STANDBY_WAIT_TIME_S 3 / / Debug /demo purpose

/* Per iphe ra l Handles
−−−* /

I2C_HandleTypeDef hi2c2 ;
I2C_HandleTypeDef hi2c3 ;
LPTIM_HandleTypeDef h lp t im1 ;
RTC_HandleTypeDef h r t c ;

/* Funct ion Prototypes
−−* /

void SystemClock_Config (void) ;
s ta t i c void MX_GPIO_Init (void) ;
s ta t i c void MX_I2C2_Init (void) ;
s ta t i c void MX_RTC_Init (void) ;
s ta t i c void MX_I2C3_Init (void) ;
s ta t i c void MX_LPTIM1_Init (void) ;
void WriteToMem(I2C_HandleTypeDef *hi2c , u i n t16_ t data) ;
s ta t i c i n t 16_ t TI_ReadTemperature (I2C_HandleTypeDef *hi2c) ;

/* Read temperature from TI sensor * /
s ta t i c i n t 16_ t TI_ReadTemperature (I2C_HandleTypeDef *hi2c) {

const u i n t 8_ t TEMP_SENSOR_ADDR = 0x9E ; / / i 2c device address
const u i n t 8_ t TEMP_REG_ADDR = 0x00 ;

26

https://github.com/Kdw123woee/Firmware-Datalogger-BEP-thesis-/blob/main/

27

HAL_GPIO_WritePin (GPIOC, GPIO_PIN_5 , GPIO_PIN_SET) ; / / Sensor power
ON, sensor au toma t i ca l l y s t a r t s measurement

/ / 15ms stop2 mode dur ing wa i t f o r sensor measurement
HAL_LPTIM_TimeOut_Start_IT (& hlpt im1 , 15) ;
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU) ;
HAL_PWREx_EnterSTOP2Mode(PWR_STOPENTRY_WFI) ;
HAL_LPTIM_TimeOut_Stop_IT(& h lp t im1) ;

HAL_PWREx_EnableUltraLowPowerMode () ;
HAL_PWREx_EnableLowPowerRunMode () ; / / re −enable low power run mode

/ / rece ive data from sensor r e g i s t e r
u i n t 8_ t reg = TEMP_REG_ADDR;
u i n t 8_ t temp_raw [2] ;
i f (HAL_I2C_Master_Transmit (hi2c , TEMP_SENSOR_ADDR, ® , 1 ,

HAL_MAX_DELAY) == HAL_OK &&
HAL_I2C_Master_Receive (hi2c , TEMP_SENSOR_ADDR, temp_raw , 2 ,

HAL_MAX_DELAY) == HAL_OK) {
i n t 16_ t temp = (i n t 16_ t) ((temp_raw [0] << 8) | temp_raw [1]) ;
temp >>= 4; / / 12− b i t data , r i g h t − j u s t i f i e d
HAL_GPIO_WritePin (GPIOC, GPIO_PIN_5 , GPIO_PIN_RESET) ; / / Sensor

power OFF
return temp ;

} else {
return 0;

}
}

/* Wri te temperature data to ex te rna l EEPROM memory * /
void WriteToMem(I2C_HandleTypeDef *hi2c , u i n t16_ t data) {

const u i n t 8_ t devaddr = 0x53 << 1; / / i 2c device address
const u in t16_ t BASE_ADDRESS = 0x0008 ; / / op t i ona l o f f s e t o f 8 bytes f o r

subgroup 3 purposes , e lse 0x0000

u in t16_ t las t_addr = READ_REG(TAMP−>BKP0R) & 0xFFFF ; / / backup r e g i s t e r
which saves l a s t w r i t t e n address

/ / i f l a s t address = 0 , s t a r t w r i t i n g from byte 8
u in t16_ t next_addr = (las t_addr == 0) ? BASE_ADDRESS : las t_addr + 2 ;

HAL_GPIO_WritePin (GPIOB, GPIO_PIN_1 , GPIO_PIN_SET) ; / / Memory power
ON

/ / wa i t u n t i l the memory i s ready
while (HAL_I2C_IsDeviceReady (hi2c , devaddr , 5 , HAL_MAX_DELAY) !=

HAL_OK) { }

/ / w r i t e 2 data bytes
u i n t 8_ t data_buf [2] = { (u i n t 8_ t) (data >> 8) , (u i n t 8_ t) (data & 0xFF) } ;
i f (HAL_I2C_Mem_Write (hi2c , devaddr , next_addr , I2C_MEMADD_SIZE_16BIT ,

data_buf , 2 , HAL_MAX_DELAY) != HAL_OK) {
HAL_GPIO_WritePin (GPIOB, GPIO_PIN_1 , GPIO_PIN_RESET) ; / / Memory

power OFF
return ;

}

28 A. Appendix A: Firmware (C code)

while (HAL_I2C_IsDeviceReady (hi2c , devaddr , 5 , HAL_MAX_DELAY) !=
HAL_OK) { }

HAL_GPIO_WritePin (GPIOB, GPIO_PIN_1 , GPIO_PIN_RESET) ; / / Memory power
OFF

WRITE_REG(TAMP−>BKP0R, next_addr) ; / / s to re MSB address
}

/* Main program * /
i n t main (void) {

HAL_In i t () ;
SystemClock_Config () ;

HAL_PWREx_EnableUltraLowPowerMode () ;
HAL_PWREx_EnableLowPowerRunMode () ;

MX_GPIO_Init () ;
MX_I2C2_Init () ;
MX_RTC_Init () ;
MX_I2C3_Init () ;
MX_LPTIM1_Init () ;

i f (__HAL_PWR_GET_FLAG(PWR_FLAG_SB) != RESET) { / / Wake from standby
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_SB) ;
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU) ;
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(& hr tc , RTC_FLAG_WUTF) ;
HAL_RTCEx_DeactivateWakeUpTimer(& h r t c) ;

i n t 16_ t temperaturedata = TI_ReadTemperature (& hi2c2) ;
WriteToMem(&hi2c3 , temperaturedata) ;

} else { / / f i r s t s t a r t up
WRITE_REG(TAMP−>BKP0R, 0) ; / / i n i t i a l s t a r t up set backup r e g i s t e r (

used f o r l a s t address)
}

HAL_NVIC_ClearPendingIRQ (RTC_TAMP_IRQn) ; / / c l ea r i n t e r r u p t from wake−
up t imer

/ / se t RTC t imer f o r wake up from standby
i f (HAL_RTCEx_SetWakeUpTimer_IT(& hr tc , STANDBY_WAIT_TIME_MIN,

RTC_WAKEUPCLOCK_CK_SPRE_16BITS, 0) != HAL_OK) {
Error_Handler () ;

}

HAL_PWR_EnterSTANDBYMode () ; / / en ter standby mode
}

/* System Clock Con f i gu ra t i on * /
void SystemClock_Config (void) {

RCC_OscInitTypeDef RCC_OscIni tStruct = { 0 } ;
RCC_ClkInitTypeDef RCC_Clk In i tS t ruc t = { 0 } ;

HAL_PWREx_ControlVoltageScaling (PWR_REGULATOR_VOLTAGE_SCALE2) ;

29

RCC_OscIni tStruct . Osc i l l a to rType = RCC_OSCILLATORTYPE_LSI |
RCC_OSCILLATORTYPE_MSI ;

RCC_OscIni tStruct . LSIState = RCC_LSI_ON;
RCC_OscIni tStruct . MSIState = RCC_MSI_ON;
RCC_OscIni tStruct . MSICal ibra t ionValue = RCC_MSICALIBRATION_DEFAULT ;
RCC_OscIni tStruct . MSIClockRange = RCC_MSIRANGE_3; / / 800kHz
RCC_OscIni tStruct . PLL . PLLState = RCC_PLL_NONE;

i f (HAL_RCC_OscConfig(&RCC_OscIni tStruct) != HAL_OK) {
Error_Handler () ;

}

RCC_Clk In i tS t ruc t . ClockType = RCC_CLOCKTYPE_HCLK |
RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1;

RCC_Clk In i tS t ruc t . SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
RCC_Clk In i tS t ruc t . AHBCLKDivider = RCC_SYSCLK_DIV1 ;
RCC_Clk In i tS t ruc t . APB1CLKDivider = RCC_HCLK_DIV1 ;

i f (HAL_RCC_ClockConfig(&RCC_ClkIn i tSt ruct , FLASH_LATENCY_0) != HAL_OK
) {
Error_Handler () ;

}
}

/* I2C2 I n i t i a l i z a t i o n * /
s ta t i c void MX_I2C2_Init (void) {

h i2c2 . Ins tance = I2C2 ;
hi2c2 . I n i t . Timing = 0x00000000 ;
hi2c2 . I n i t . OwnAddress1 = 0;
hi2c2 . I n i t . AddressingMode = I2C_ADDRESSINGMODE_7BIT ;
hi2c2 . I n i t . DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c2 . I n i t . OwnAddress2 = 0;
hi2c2 . I n i t . OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c2 . I n i t . GeneralCallMode = I2C_GENERALCALL_DISABLE ;
hi2c2 . I n i t . NoStretchMode = I2C_NOSTRETCH_DISABLE ;

i f (HAL_I2C_Ini t (& hi2c2) != HAL_OK) {
Error_Handler () ;

}
i f (HAL_I2CEx_ConfigAnalogFi l ter (&hi2c2 , I2C_ANALOGFILTER_ENABLE) !=

HAL_OK) {
Error_Handler () ;

}
i f (HAL_I2CEx_Conf igD ig i ta lF i l te r (&hi2c2 , 0) != HAL_OK) {

Error_Handler () ;
}
i f (HAL_I2CEx_ConfigFastModePlus (&hi2c2 , I2C_FASTMODEPLUS_ENABLE) !=

HAL_OK) {
Error_Handler () ;

}
}

/* I2C3 I n i t i a l i z a t i o n * /
s ta t i c void MX_I2C3_Init (void) {

h i2c3 . Ins tance = I2C3 ;
hi2c3 . I n i t . Timing = 0x00000000 ;

30 A. Appendix A: Firmware (C code)

hi2c3 . I n i t . OwnAddress1 = 0;
hi2c3 . I n i t . AddressingMode = I2C_ADDRESSINGMODE_7BIT ;
hi2c3 . I n i t . DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c3 . I n i t . OwnAddress2 = 0;
hi2c3 . I n i t . OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c3 . I n i t . GeneralCallMode = I2C_GENERALCALL_DISABLE ;
hi2c3 . I n i t . NoStretchMode = I2C_NOSTRETCH_DISABLE ;

i f (HAL_I2C_Ini t (& hi2c3) != HAL_OK) {
Error_Handler () ;

}
i f (HAL_I2CEx_ConfigAnalogFi l ter (&hi2c3 , I2C_ANALOGFILTER_ENABLE) !=

HAL_OK) {
Error_Handler () ;

}
i f (HAL_I2CEx_Conf igD ig i ta lF i l te r (&hi2c3 , 0) != HAL_OK) {

Error_Handler () ;
}
i f (HAL_I2CEx_ConfigFastModePlus (&hi2c3 , I2C_FASTMODEPLUS_ENABLE) !=

HAL_OK) {
Error_Handler () ;

}
}

/* LPTIM1 I n i t i a l i z a t i o n * /
s ta t i c void MX_LPTIM1_Init (void) {

h lp t im1 . Instance = LPTIM1 ;
h lp t im1 . I n i t . Clock . Source = LPTIM_CLOCKSOURCE_APBCLOCK_LPOSC;
h lp t im1 . I n i t . Clock . Presca ler = LPTIM_PRESCALER_DIV32 ;
h lp t im1 . I n i t . T r i gge r . Source = LPTIM_TRIGSOURCE_SOFTWARE;
h lp t im1 . I n i t . Per iod = 20;
h lp t im1 . I n i t . UpdateMode = LPTIM_UPDATE_IMMEDIATE ;
h lp t im1 . I n i t . CounterSource = LPTIM_COUNTERSOURCE_INTERNAL;
h lp t im1 . I n i t . Input1Source = LPTIM_INPUT1SOURCE_GPIO;
h lp t im1 . I n i t . Input2Source = LPTIM_INPUT2SOURCE_GPIO;
h lp t im1 . I n i t . Repet i t ionCounter = 0 ;

i f (HAL_LPTIM_Init (& h lp t im1) != HAL_OK) {
Error_Handler () ;

}
HAL_LPTIM_TimeOut_Stop_IT(& h lp t im1) ;

}

/* RTC I n i t i a l i z a t i o n * /
s ta t i c void MX_RTC_Init (void) {

h r t c . Ins tance = RTC;
h r t c . I n i t . HourFormat = RTC_HOURFORMAT_24;
h r t c . I n i t . AsynchPrediv = 127;
h r t c . I n i t . SynchPrediv = 255;
h r t c . I n i t . OutPut = RTC_OUTPUT_DISABLE;
h r t c . I n i t . Ou tPu tPo la r i t y = RTC_OUTPUT_POLARITY_HIGH;
h r t c . I n i t . OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
h r t c . I n i t . OutPutRemap = RTC_OUTPUT_REMAP_NONE;

i f (HAL_RTC_Init (& h r t c) != HAL_OK) {
Error_Handler () ;

31

}
}

/* GPIO I n i t i a l i z a t i o n * /
s ta t i c void MX_GPIO_Init (void) {

__HAL_RCC_GPIOC_CLK_ENABLE() ;
__HAL_RCC_GPIOB_CLK_ENABLE() ;

GPIO_InitTypeDef GPIO_In i tS t ruc t = { 0 } ;

GPIO_In i tS t ruc t . Pin = GPIO_PIN_5 ; / / Sensor power con t r o l
GPIO_In i tS t ruc t .Mode = GPIO_MODE_OUTPUT_PP;
GPIO_In i tS t ruc t . Pu l l = GPIO_NOPULL;
GPIO_In i tS t ruc t . Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init (GPIOC, &GPIO_In i tS t ruc t) ;

GPIO_In i tS t ruc t . Pin = GPIO_PIN_1 ; / / Memory power con t r o l
HAL_GPIO_Init (GPIOB, &GPIO_In i tS t ruc t) ;

}

/* Er ro r Handler * /
void Error_Handler (void) {

__d i sab le_ i rq () ;
while (1) { }

}

B
Appendix B: Testing Software (Python)

The following codes can also be found at the path Testing Code (Python)/, which is available
under the following GitHub link:
https://github.com/Kdw123woee/Firmware-Datalogger-BEP-thesis-/blob/main/.

B.1. Current measurement for power and energy calculations
import ma t p l o t l i b . pyp lo t as p l t
import pandas as pd

import numpy as np
import sc ipy . i n t eg r a t e as s i

mu = chr (956)
Ohm = chr (937)

def conver tdata (data) :
ex t r a c t vo l tages and t ime po in t s from csv
vo l t s = np . asarray (data . i l o c [: , 3] . values)
t ime = np . asarray (data . i l o c [: , 2] . values)
read sample i n t e r v a l from csv
sample_ in te rva l = f l oa t (data . i l o c [0 , :] . values [1])
R = 467
amps = vo l t s / R # amps in A
amps *= 1e6 # amps in uA

uses sample i n t e r v a l to conver t l i nspace
to ac tua l timestamps s t a r t i n g a t 0ms

very rudimentary way to f i n d the s t a r t :
f i n d the f i r s t value where amps > 120 (a r b i t r a r y high enough)
f i n d the l a s t value where amps > 120
apply some o f f s e t
a = np . where (amps > 120) [0] [0]
b = np . where (amps > 120) [0] [−1]
amps = amps [a−10:b+50]
t ime = np . l i nspace (0 , len (amps) * sample_ in terva l , len (amps))

32

https://github.com/Kdw123woee/Firmware-Datalogger-BEP-thesis-/blob/main/

B.1. Current measurement for power and energy calculations 33

t ime *= 1000 # conver t to ms

return amps , t ime

def calc_energy (amps , t ime) :
wat ts = amps * 2
energy = s i . simpson (y=watts , x=t ime /1000)
return watts , energy

i f __name__ == ” __main__ ” :
read osc i l l oscope csv i n t o pandas da tabu f f e r
data1 = pd . read_csv (” 4MHz_47k . csv ” , usecols = [0 ,1 ,3 ,4])
data2 = pd . read_csv (’ 2MHz_47k .CSV ’ , usecols = [0 ,1 ,3 ,4])
data3 = pd . read_csv (” 1MHz_47k .CSV” , usecols =[0 , 1 , 3 , 4])
data4 = pd . read_csv (’ 800kHz_47k .CSV ’ , usecols =[0 , 1 , 3 , 4])
data5 = pd . read_csv (” 400kHz_47k .CSV” , usecols = [0 ,1 ,3 ,4])

data1_name = ” 4MHz”
data2_name = ” 2MHz”
data3_name = ” 1MHz”
data4_name = ” 800kHz ”
data5_name = ” 400kHz ”
data6_name = ” 100kHz ”

conver t vo l tage / t ime data to cu r ren t / t ime ,
normal ise s t a r t o f ac t i ve cyc le a t 0ms
amps1 , t ime1 = conver tdata (data1)
amps2 , t ime2 = conver tdata (data2)
amps3 , t ime3 = conver tdata (data3)
amps4 , t ime4 = conver tdata (data4)
amps5 , t ime5 = conver tdata (data5)

ca l cu l a t e the power a t every t ime po in t
and the t o t a l energy over the ac t i ve cyc le
watts1 , energy1 = calc_energy (amps1 , t ime1)
watts2 , energy2 = calc_energy (amps2 , t ime2)
watts3 , energy3 = calc_energy (amps3 , t ime3)
watts4 , energy4 = calc_energy (amps4 , t ime4)
watts5 , energy5 = calc_energy (amps5 , t ime5)

can be made p r e t t i e r but does the job j u s t f i n e
pr in t (f ’ energy , peak power { data1_name } : { energy1 } , {max(watts1) } ’)
pr in t (f ’ energy , peak power { data2_name } : { energy2 } , {max(watts2) } ’)
pr in t (f ’ energy , peak power { data3_name } : { energy3 } , {max(watts3) } ’)
pr in t (f ’ energy , peak power { data4_name } : { energy4 } , {max(watts4) } ’)
pr in t (f ’ energy , peak power { data5_name } : { energy5 } , {max(watts5) } ’)

p l o t a l l graphs at once
p l t . f i g u r e (1)
p l t . p l o t (time1 , amps1 , co l o r= ’ #0C2340 ’ , marker= ’ , ’)
p l t . p l o t (time2 , amps2 , co l o r= ’ #E03C31 ’ , marker= ’ , ’)
p l t . p l o t (time3 , amps3 , co l o r= ’ #6CC24A ’ , marker= ’ , ’)
p l t . p l o t (time4 , amps4 , co l o r= ’ #00A6D6 ’ , marker= ’ , ’)

34 B. Appendix B: Testing Software (Python)

p l t . p l o t (time5 , amps5 , co l o r= ’ #FFB81C ’ , marker= ’ , ’)

p l t . y l abe l (f ” Current ({mu}A) ”)
p l t . x l abe l (” Time (ms) ”)
p l t . t i t l e (” Ac t i ve cyc le cu r ren t draw f o r d i f f e r e n t c lock f requenc ies ”)
p l t . legend ([” 4MHz” , ” 2MHz” , ” 1MHz” , ” 800kHz ” , ” 400kHz ”])

p l o t power o f 800kHz , 2V
p l t . f i g u r e (3)
p l t . p l o t (time4 , watts4 , co l o r = ’ #00A6D6 ’)
p l t . y l abe l (f ” Power ({mu}W) ”)
p l t . x l abe l (” Time (ms) ”)
p l t . t i t l e (” Power dur ing MCU ac t i ve cyc le . ”)

p l t . show ()

B.2. Temperature sensor comparison
impor t ma t p l o t l i b . pyp lo t as p l t
impor t pandas as pd
impor t numpy as np
impor t sc ipy . i n t eg r a t e as s i

mu = chr (956)
deg = chr (176)

def conver tdata (data) :
ex t r a c t vo l tages and t ime po in t s from csv
vo l t s = np . asarray (data . i l o c [: , 3] . values)
t ime = np . asarray (data . i l o c [: , 2] . values)
read sample i n t e r v a l from csv
sample_ in te rva l = f l o a t (data . i l o c [0 , :] . values [1])
R = 467
amps = vo l t s / R # amps in A
amps *= 1000000 # amps in uA

uses sample i n t e r v a l to conver t l i nspace
to ac tua l timestamps s t a r t i n g a t 0ms
very rudimentary way to f i n d the s t a r t :
f i n d the f i r s t value where amps > 100 (a r b i t r a r y high enough)
f i n d the l a s t value where amps > 100
apply some o f f s e t
a = np . where (amps > 8 0) [0] [0]
b = np . where (amps > 80) [0] [−1]
amps = amps [a−10:b+50]
t ime = np . l i nspace (0 , len (amps) * sample_ in terva l , len (amps))
t ime *= 1000 # conver t to ms
re tu rn amps , t ime

def calc_energy (amps , t ime) :
wat ts = amps * 2
energy = s i . simpson (y=watts , x=t ime /1000)
re t u rn watts , energy

B.3. I2C Pull-up resistor current model 35

i f __name__ == ” __main__ ” :
read osc i l l oscope csv i n t o pandas da tabu f f e r
data_AT = pd . read_csv (’ AT_47k .CSV’ , usecols = [0 ,1 ,3 ,4])
data_TI = pd . read_csv (’ TI_47k .CSV’ , usecols = [0 ,1 ,3 ,4])

conver t vo l tage / t ime data to cu r ren t / t ime ,
normal ise s t a r t o f ac t i ve cyc le a t 0ms
amps_AT , time_AT = conver tdata (data_AT)
watts_AT , energy_AT = calc_energy (amps_AT , time_AT)
p r i n t (’ energy AT : ’ , energy_AT)
p r i n t (”max power AT : ” , max(watts_AT))

amps_TI , t ime_TI = conver tdata (data_TI)
watts_TI , energy_TI = calc_energy (amps_TI , t ime_TI)
p r i n t (” ”)
p r i n t (” energy TI : ” , energy_TI)
p r i n t (”max power TI : ” , max(wat ts_TI))

p l o t both sensor graphs
p l t . f i g u r e (1)
p l t . p l o t (time_AT , amps_AT , co lo r = ’#00A6D6 ’)
p l t . p l o t (t ime_TI , amps_TI , co l o r = ’#E03C31 ’)
p l t . y l abe l (f ” Current ({mu}A) ”)
p l t . x l abe l (” Time (ms) ”)
p l t . t i t l e (” Ac t i ve cyc le cu r ren t draw f o r d i f f e r e n t sensors ”)
p l t . legend ([” AT” , ” TI ”])
p l t . show ()

B.3. I2C Pull-up resistor current model
import ma t p l o t l i b . pyp lo t as p l t
import numpy as np
import pandas as pd

mu = chr (956)
Ohm = chr (937)
approx = chr (8773)

i f __name__ == ’ __main__ ’ :
V = 2
R = np . arange (4 , 200 , step =1) # R in kOhm
I = V / R # I i n mA
I *= 1000 # I i n uA

I _ d i f f = np . g rad ien t (I , R)
pr in t (I _ d i f f [4 0 : 5 0])
pr in t (R[4 0])

tangent l i n e f o r v i s u a l i s a t i o n
x = np . arange (15 , 75 , step =1)
y = (−1 * x) + 89

p l t . f i g u r e (1)
p l t . p l o t (R, I , co l o r = ” #00A6D6”)
p l t . p l o t (x , y , co l o r = ’ #E03C31 ’)

36 B. Appendix B: Testing Software (Python)

p l t . y l abe l (f ” Current ({mu}A) ”)
p l t . x l abe l (f ” Resistance (k {Ohm}) ”)
p l t . t i t l e (” Expected cu r ren t a t 2V f o r d i f f e r e n t pu l l −up values ”)
p l t . legend ([” Current ” , f ” Crossover po in t , dx / dy { approx } −1 ”])
p l t . show ()

B.4. Temperature sensor accuracy
import ma t p l o t l i b . pyp lo t as p l t
import pandas as pd
import numpy as np
import sc ipy . i o as i o

deg = chr (176)

i f __name__ == ” __main__ ” :

re f1 = i o . loadmat (” Ref_data . mat ”)
re f2 = i o . loadmat (”T2 . mat ”)
t i 1 = i o . loadmat (” TI_data . mat ”)
t i 2 = i o . loadmat (”num2 . mat ”)

reftemp1 = np . asarray (re f1 [’T ’] [0])
reftemp2 = np . asarray (re f2 [’T ’] [0]) [1 4 0 0 :]
t i temp1 = np . asarray (t i 1 [’num ’] [0])
t i temp2 = np . asarray (t i 2 [’num ’] [0]) [1 4 0 0 :]
combinedref = np . hstack ((reftemp1 , reftemp2))
combinedt i = np . hstack ((t i temp1 , t i temp2))

de le te samples to only keep the ones when oven s tab le
samples_to_keep = 400
samples_to_delete = 1800 − samples_to_keep + 1
sample_delete = np . arange (0 , samples_to_delete , 1)
for i in range (5) :

i += 1
index = 1800* i
sample_delete = np . append (sample_delete ,

np . arange (index , index+samples_to_delete , 1))

combinedref = np . de le te (combinedref , sample_delete)
combinedt i = np . de le te (combinedt i , sample_delete)

sample_delete = np . arange (300 , 401 , 1)
for i in range (5) :

i += 1
index = 400 * i
sample_delete = np . append (sample_delete ,

np . arange (index −100 , index +1 , 1))

combinedref = np . de le te (combinedref , sample_delete)
combinedt i = np . de le te (combinedt i , sample_delete)

ca l cu l a t e d i f f e r ence and s t a t i s t i c s
d i f f = abs (combinedt i − combinedref)
mean_dif f = np .mean(d i f f)

B.4. Temperature sensor accuracy 37

s t d _ d i f f = np . s td (d i f f)
max_di f f = np .max(d i f f)
m i n_d i f f = np .min (d i f f)

d i sp lay n i c e l y i n pd dataframe
a = np . column_stack ((mean_dif f , s t d _d i f f , max_di f f , m i n_d i f f))
d f = pd . DataFrame (a , columns =[’mean d i f f ’ , ’ s td ’ ,

’max d i f f ’ , ’ min d i f f ’])
pr in t (d f . t o _ s t r i n g (index=False))

p l t . f i g u r e (1)
p l t . p l o t (combinedref , co l o r = ” #00A6D6”)
p l t . p l o t (combinedt i , co l o r = ’ #E03C31 ’)
p l t . y l abe l (f ” Temperature ({ deg }C) ”)
p l t . x l abe l (” Samples ”)
p l t . t i t l e (”Measured temperature ”)
p l t . legend ([” Reference ” , ”TMP75B”])

p l t . f i g u r e (2)
p l t . p l o t (d i f f , co l o r = ’ #00A6D6 ’)
p l t . y l abe l (f ” Temperature ({ deg }C) ”)
p l t . x l abe l (” Samples ”)
p l t . t i t l e (” Absolute d i f f e r ence i n temperature ”)

p l t . show ()

C
Appendix C: Device technical

information

C.1. STM32U083C-DK board and layout

Figure C.1: Annotated top view of the development board, from [25]

38

C.1. STM32U083C-DK board and layout 39

Figure C.2: Development board layout top view, from [33]

40 C. Appendix C: Device technical information

Figure C.3: Development board layout bottom view, from [33]

C.2. TMP75B functional block diagram 41

C.2. TMP75B functional block diagram

Figure C.4: Functional block diagram of the TMP75B, from [13].

Bibliography

[1] “Post-harvest technologies and cold chain management: A review,” Plant Archives, vol. 25,
no. 1, pp. 3275–3283, Oct. 2024. DOI:
10.51470/plantarchives.2025.v25.supplement-1.447. [Online]. Available:
https://doi.org/10.51470/plantarchives.2025.v25.supplement-1.447.

[2] R. Badia-Melis, U. McCarthy, L. Ruiz-Garcia, J. Garcia-Hierro, and J. I. Robla Villalba, “New
trends in cold chain monitoring applications – a review,” Food Control, vol. 86, pp. 170–182,
2018, ISSN: 0956-7135. DOI: 10.1016/j.foodcont.2017.11.022.

[3] “Bananas.” cargohandbook.com. (n.d.), [Online]. Available:
https://www.cargohandbook.com/Bananas (visited on 10/05/2025).

[4] S. Ahmad, A. K. Thompson, I. A. Hafiz, and A. A. Asi, “Effect of temperature on the ripening
behavior and quality of banana fruit,” International Journal of Agriculture and Biology, vol. 3,
pp. 224–227, 2 2001, ISSN: 1560-8530.

[5] United Nations Institue for Training and Research. “Global e-waste monitor 2024: Electronic
waste rising five times faster than documented e-waste recycling,” United Nations. (2024),
[Online]. Available: https://unitar.org/about/news-stories/press/global-e-
waste-monitor-2024-electronic-waste-rising-five-times-faster-
documented-e-waste-recycling (visited on 06/12/2025).

[6] International Telecommunication Union. “Electronic waste rising five times faster than
documented e-waste recycling: UN,” International Telecommunication Union. (2024), [Online].
Available: https://www.itu.int/en/mediacentre/Pages/PR-2024-03-20-e-
waste-recycling.aspx (visited on 06/12/2025).

[7] “The ultimate guide to cold chain temperature monitoring,” sensitech.com. (n.d.), [Online].
Available: https://www.sensitech.com/en/blog/blog-articles/blog-ultimate-
guide-cold-chain-monitoring.html (visited on 05/15/2025).

[8] Usric-8: Usb pdf temperature recorder product user guide, LogTag Recorders, 2016. [Online].
Available: https://logtagrecorders.com/product/usric-8/.

[9] “Facility and equipment monitoring service for visibility and compliance.” shareddocs.com.
(2004), [Online]. Available: https:
//www.shareddocs.com/hvac/docs/2004/Public/05/Coldstream-site-food.pdf
(visited on 05/15/2025).

[10] Farnell, “Multi-use compact pdf temperature and humidity usb data logger specifications and
selection guide,” n.d. [Online]. Available:
https://www.farnell.com/datasheets/3164608.pdf.

[11] N. Khalid, R. Mirzavand, and A. K. Iyer, “A survey on battery-less RFID-based wireless
sensors,” Micromachines, vol. 12, no. 7, 2021, ISSN: 2072-666X. DOI:
10.3390/mi12070819. [Online]. Available:
https://www.mdpi.com/2072-666X/12/7/819.

[12] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith, “Design of an
RFID-based battery-free programmable sensing platform,” IEEE Transactions on
Instrumentation and Measurement, vol. 57, no. 11, pp. 2608–2615, Nov. 2008, ISSN:
0018-9456. DOI: 10.1109/TIM.2008.925019.

[13] Texas Instruments, “TMP75B 1.8-V Digital Temperature Sensor with Two-Wire Interface and
Alert,” SBOS706B, Rev. B, 2014. [Online]. Available:
https://www.ti.com/lit/gpn/tmp75b.

42

https://doi.org/10.51470/plantarchives.2025.v25.supplement-1.447
https://doi.org/10.51470/plantarchives.2025.v25.supplement-1.447
https://doi.org/10.1016/j.foodcont.2017.11.022
https://www.cargohandbook.com/Bananas
https://unitar.org/about/news-stories/press/global-e-waste-monitor-2024-electronic-waste-rising-five-times-faster-documented-e-waste-recycling
https://unitar.org/about/news-stories/press/global-e-waste-monitor-2024-electronic-waste-rising-five-times-faster-documented-e-waste-recycling
https://unitar.org/about/news-stories/press/global-e-waste-monitor-2024-electronic-waste-rising-five-times-faster-documented-e-waste-recycling
https://www.itu.int/en/mediacentre/Pages/PR-2024-03-20-e-waste-recycling.aspx
https://www.itu.int/en/mediacentre/Pages/PR-2024-03-20-e-waste-recycling.aspx
https://www.sensitech.com/en/blog/blog-articles/blog-ultimate-guide-cold-chain-monitoring.html
https://www.sensitech.com/en/blog/blog-articles/blog-ultimate-guide-cold-chain-monitoring.html
https://logtagrecorders.com/product/usric-8/
https://www.shareddocs.com/hvac/docs/2004/Public/05/Coldstream-site-food.pdf
https://www.shareddocs.com/hvac/docs/2004/Public/05/Coldstream-site-food.pdf
https://www.farnell.com/datasheets/3164608.pdf
https://doi.org/10.3390/mi12070819
https://www.mdpi.com/2072-666X/12/7/819
https://doi.org/10.1109/TIM.2008.925019
https://www.ti.com/lit/gpn/tmp75b

Bibliography 43

[14] Microchip Technology, “9- to 12-bit Selectable, ±0.5°C Accurate Digital Temperature Sensor,”
8839I-DTS, Rev. I, 2014. [Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8839-DTS-
AT30TS75A-Datasheet.pdf.

[15] K. A. A. Makinwa, “Smart temperature sensor survey.” [Online]. Available:
http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls.

[16] R. Russel and W. Ibrahimi, “A batteryless inductive energy harvesting system,” B.S. thesis,
Delft University of Technology, Delft, The Netherlands, 2025.

[17] B. Joemmankhan and S. Dinev, “Wireless RF transmission for a battery less temperature
logger,” B.S. thesis, Delft University of Technology, Delft, The Netherlands, 2025.

[18] United Nations Economic Commission for Europe, Agreement on the international carriage of
perishable foodstuffs and on the special equipment to be used for such carriage (ATP), 2022.
[Online]. Available:
https://unece.org/transport/road-transport/text-and-status-agreement.

[19] Y. K. Tan, Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical
Implementation. CRC Press, 2013.

[20] F. et al., “A low-power RFID enabled temperature sensor for cold chain management,” In Proc.
2015 IEEE International Symposium on Circuits and Systems (ISCAS), May 2015. DOI:
10.1109/iscas.2015.7169096. [Online]. Available:
https://doi.org/10.1109/iscas.2015.7169096.

[21] J. dos Santos, F. Gomes, M. A. ds Santos, et al., “Optimized ultra-low power sensor-enabled
rfid data logger for pharmaceutical cold chain,” In Proc. 2015 IEEE Brasil RFID, 2015, pp. 1–5.
DOI: 10.1109/BrasilRFID.2015.7523835.

[22] H.-J. Kim, H.-S. Song, K.-C. Lee, J.-W. Yu, D.-H. Lee, and M. Han, “Wireless temperature
monitoring with shape memory alloy-based antenna,” IEEE Internet of Things Journal, vol. 8,
no. 6, pp. 4680–4688, 2020, ISSN: 2327-4662. DOI: 10.1109/JIOT.2020.3029206.
[Online]. Available: https://ieeexplore.ieee.org/document/9312399.

[23] S. Lee, Y. Song, and H. Choi, “Wireless sensor network design for tactical military applications:
Remote large-scale environments,” In Proc. 2013 International Conference on ICT
Convergence (ICTC), Jeju Island, South Korea, Oct. 2013, pp. 366–370. [Online]. Available:
https://ieeexplore-ieee-
org.tudelft.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=6676819.

[24] STMicroelectronics, “Ultra-low-power Arm® Cortex®-M0+ 32-bit MCU, 256-Kbyte flash
memory, 40- Kbyte SRAM, USB, LCD, AES,” DS14463, Rev. 2, 2024. [Online]. Available:
https://www.st.com/en/microcontrollers-
microprocessors/stm32u083mc.html.

[25] STMicroelectronics, “Discovery kit with STM32U083MC MCU,” UM3292, Rev. 2, 2025. [Online].
Available: https://www.st.com/en/evaluation-tools/stm32u083c-dk.html.

[26] “STM32U0: Up to 50% energy saving, the new benchmark in entry-level ultra-low power MCUs
#STM32Summit,” st.com. (2024), [Online]. Available: https://blog.st.com/stm32u0
(visited on 06/14/2025).

[27] STMicroelectronics, “Dynamic NFC/RFID tag IC with 4-, 16-, or 64-Kbit EEPROM, fast transfer
mode capability, and optimized I2C,” DS13519, Rev. 8, 2024. [Online]. Available:
https://www.st.com/en/nfc/st25dv64kc.html.

[28] NXP Semiconductors, “I2C-bus specification and user manual,” UM10204, Rev. 7, 2021.
[Online]. Available: https://www.nxp.com/docs/en/user-guide/UM10204.pdf.

[29] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. DOI: 10.1038/s41586-020-2649-2. [Online].
Available: https://doi.org/10.1038/s41586-020-2649-2.

[30] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020. DOI:
10.1038/s41592-019-0686-2.

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8839-DTS-AT30TS75A-Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8839-DTS-AT30TS75A-Datasheet.pdf
http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls
https://unece.org/transport/road-transport/text-and-status-agreement
https://doi.org/10.1109/iscas.2015.7169096
https://doi.org/10.1109/iscas.2015.7169096
https://doi.org/10.1109/BrasilRFID.2015.7523835
https://doi.org/10.1109/JIOT.2020.3029206
https://ieeexplore.ieee.org/document/9312399
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=6676819
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=6676819
https://www.st.com/en/microcontrollers-microprocessors/stm32u083mc.html
https://www.st.com/en/microcontrollers-microprocessors/stm32u083mc.html
https://www.st.com/en/evaluation-tools/stm32u083c-dk.html
https://blog.st.com/stm32u0
https://www.st.com/en/nfc/st25dv64kc.html
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2

44 Bibliography

[31] K. Cartwright, “Simpson’s rule cumulative integration with ms excel and irregularly-spaced
data,” Journal of Mathematical Science and Mathematics Education, vol. 12, Sep. 2017.

[32] M. Cole, MIPI Alliance, “Introduction to the MIPI I3C Standardized Sensor Interface,” White
Paper, Aug. 2016.

[33] STMicroelectronics, “STM32U083C-DK Board Schematic,” MB1933, Rev. C-02, 2024. [Online].
Available: https://www.st.com/resource/en/schematic_pack/mb1933-u083c-
c02-schematic.pdf.

https://www.st.com/resource/en/schematic_pack/mb1933-u083c-c02-schematic.pdf
https://www.st.com/resource/en/schematic_pack/mb1933-u083c-c02-schematic.pdf

	Introduction
	Problem Justification
	State of the Art
	Project Objective
	Thesis Outline

	Programme of requirements
	General project requirements
	Subsystem requirements
	Operational requirements
	Power requirements
	Performance/memory requirements

	System Design
	Design overview
	Component Selection
	Microcontroller unit
	Temperature sensor

	Firmware
	Power Saving
	I2C pull-up resistors
	MCU clock speed
	Low power modes
	GPIO power gating

	Testing and verification
	Test setup
	Current draw
	Temperature Accuracy
	Memory Verification

	Results
	Discussion of results
	Power
	System Operation
	Performance/memory

	Conclusion
	Conclusion
	Recommendations

	Appendix A: Firmware (C code)
	Appendix B: Testing Software (Python)
	Current measurement for power and energy calculations
	Temperature sensor comparison
	I2C Pull-up resistor current model
	Temperature sensor accuracy

	Appendix C: Device technical information
	STM32U083C-DK board and layout
	TMP75B functional block diagram

