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ABSTRACT The increasing application of composite materials in various industrial sectors is driven by
their lightweight nature, high strength-to-stiffness ratio, and corrosion resistance. Effective monitoring
of the curing process is crucial for ensuring quality and performance. Electro-Mechanical Impedance
(EMI) offers promising, non-destructive, real-time monitoring, but the complexity of EMI signals poses
challenges. Convolutional Neural Networks (CNNs) have the potential to enhance EMI-based monitoring
accuracy. However, training CNNs on multi-modal EMI signals requires addressing data heterogeneity,
class imbalance, and computational complexity at present. This study develops the Importance Sampling
Algorithm-optimized Multi-Modal CNNs (ISA-MM-CNNs) paradigm for EMI-based evaluation of com-
posite curing processes. By prioritizing informative samples and capturing complementary information from
diverse EMI signal modalities, we aim to improve the robustness and efficiency of CNNs in evaluating curing
degrees. This study outlines EMImonitoring challenges, details the ISA-MM-CNNs paradigm, and discusses
data preprocessing, network architecture, and training optimization. Experimental results demonstrate the
superiority of the developed ISA-MM-CNNs and suggest further studies for the curing monitoring of
composites.

INDEX TERMS Composite curing, convolutional neural networks, electro-mechanical impedance, impor-
tance sampling algorithm, multi-modal learning.

I. INTRODUCTION
The employment of composite materials in various indus-
trial sectors has garnered increasing attention due to their
lightweight, high strength-to-stiffness ratio, and corrosion-
resistant properties [1], [2]. Evaluating the curing process of
composite structures is essential to ensure their quality and
service performance. Electro-Mechanical Impedance (EMI)

The associate editor coordinating the review of this manuscript and

approving it for publication was Ghufran Ahmed .

has emerged as a promising approach for evaluating the cur-
ing process [3], offering advantages such as non-destructive
evaluation and sensitivity to changes in material proper-
ties [4]. However, the complex and multi-modal attribute of
EMI signals poses a significant challenge to accurate and
efficient monitoring.

Recent advancements in the integration of EMI, convo-
lutional neural networks (CNNs), and composite structures
have significantly facilitated the development of the struc-
tural health monitoring (SHM) community [5], [6]. The EMI
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method, utilizing piezoelectric sensors, is effective for early
damage detection bymeasuring electrical impedance changes
in structures [5]. This technique has been enhanced by incor-
porating deep learning models, such as the CNNs mentioned
above, to analyze data collected from sensors and predict
structural signatures [7], [8], [9], [10]. For instance, EMI
data processed with deep learning models are capable of
assessing structural strength and detecting pitting corrosion
damage [11], [12], [13]. CNNs are particularly valuable in
SHM due to their ability to extract and classify features from
raw sensor data automatically. They have been used to convert
ultrasonic signals from impact events on composite struc-
tures into 2D images, achieving high accuracy in detecting
and localizing impacts [14], [15], [16], [17]. Additionally,
composite materials, like fiber-reinforced polymers (FRPs),
benefit from SHM systems that use embedded sensors and
advanced data analysis techniques to detect barely visible
impact damage (BVID) [18], [19], [20], [21], [22]. A notable
development is the convolutional neural networks Long
Short-Term Memory (CNN-LSTM) hybrid model, which
combines the spatial feature extraction of CNNs with the
temporal sequence learning of LSTMs to predict EMI signals
and monitor bond strength in composite structures [23], [24],
[25], [26], [27]. This integration of EMI with CNNs offers
enhanced capabilities for damage detection, localization, and
characterization, ensuring the reliability and safety of com-
posite structures in various engineering applications.

To address the above-mentioned challenges and further
promote the development of the field based on the existing
academic efforts, this study proposes an ensemble approach,
which is the Importance Sampling Algorithm (ISA)-
optimized Multi-Modal Convolutional Neural Networks
(ISA-MM-CNNs) paradigm for EMI-based curing process
monitoring of composite structures. The proposed paradigm
integrates the advantages of importance sampling algorithms,
which focus training efforts on informative samples [28],
[29], [30], with multi-modal learning methods to cap-
ture complementary information from different EMI signal
modalities effectively. By exploiting the inherent structure of
EMI signals and optimizing the training process driven by
the importance sampling algorithm, the proposed paradigm
aims to improve the robustness and efficiency of CNNs for
the application of curing degree evaluation.

In this study, an overview of EMI-based deep learning and
the challenges associated with multi-modal signal analysis is
provided and employed in the field of composite structures.
The proposed ISA-MM-CNNs paradigm is then introduced,
and its key components, including data preprocessing, net-
work architecture design, and training optimization strate-
gies, are discussed. Furthermore, results demonstrating the
effectiveness and superiority of the proposed paradigm com-
pared to existing approaches are presented. Finally, this paper
discusses further studies in the field of composite structures
monitoring by integrating ISA-MM-CNNs with the EMI
method.

II. METHODOLOGY OF ISA—OPTIMIZED MM-CNNs
A. FUNDAMENTAL OF IMPORTANCE SAMPLING
ALGORITHM
Importance sampling is a statistical method employed to
estimate properties of a target probability distribution by
leveraging samples generated from a distinct, more tractable
distribution, often referred to as the proposal distribution.
This technique proves particularly useful in situations where
direct sampling from the target distribution is either computa-
tionally burdensome or impractical. The underlying principle
of importance sampling involves reweighting the samples
drawn from the proposal distribution to approximate expec-
tations with respect to the target distribution [31], [32].

Given a target probability density function p(x) and a
proposal probability density function q(x), the goal of impor-
tance sampling is to estimate the expected value of a function
f (x) with respect to p(x), as given by (1):

EP[f (x)] =

∫
f (x)p(x)dx (1)

Since directly sampling from p(x) may be difficult,
we instead draw samples x1, x2, . . . , xn from the proposal
distribution q(x). To account for the fact that these samples
are not drawn from p(x), the importance weights w(x) is
employed, defined as (2):

w(x) =
p(x)
q(x)

(2)

The samples from q(x) can be reweighted to approximate
the expectation under p(x) by applying the (3):

Ep [f (x)] =

∫
f (x) p (x) dx

=

∫
f (x)

p (x)
q (x)

q (x) dx

=

∫
f (x)w (x) q (x) dx (3)

The steps involved in importance sampling are straight-
forward. First of all, select a proposal distribution q(x) from
which it is easy to draw samples. This distribution should
have support that covers the support of the target distribution
p(x). Secondly, generate a set of samples x1, x2, . . . , xn from
the proposal distribution q(x). Then, the importance weights
w (xi) = p (xi) /q (xi) for each sample are to be calculated.
Lastly, employing the weighted average of the function f (x)
over the samples can estimate the expectation with respect to
p(x), as described by (4):

Ep [f (x)] ≈
1
n

∑n

i=1
f (x)w (xi) (4)

Importance sampling has several benefits and challenges.
It can be more efficient than direct sampling from the target
distribution, especially in the case of a complex target distri-
bution. Additionally, themethod is flexible and can be applied
to various types of integrals and distributions. However, it is
crucial to select an appropriate proposal distribution. A poor

VOLUME 13, 2025 49631



X. Zhao et al.: Importance Sampling and Feature Fusion Paradigm-Boosted MM-CNNs

choice can lead to high variance in the importance weights,
making the estimator unreliable. To eliminate this problem,
it is helpful to normalize the weights to prevent numerical
instability, as shown in (5):

ŵ (xi) =
w (xi)∑n
j=1 w

(
xj

) (5)

By employing normalized weights, the expectation esti-
mate is yielded as (6):

Ep [f (x)] ≈

∑n

i=1
ŵ (xi) f (xi) (6)

To sum up, importance sampling is a powerful statisti-
cal technique used in various fields to approximate difficult
integrals and estimate posterior distributions. It is essential
in Monte Carlo integration, Bayesian inference, and simula-
tions of complex systems in physics and engineering [31].
By sampling from an easier distribution and reweighting
those samples to reflect the target distribution, importance
sampling effectively approximates expectations and integrals.
The broad application of the importance sampling method
depends on carefully choosing the proposal distribution and
managing the variance of the importance weights, making it a
robust method across diverse applications [33]. The flowchart
of the importance sampling algorithm is depicted in

B. FUNDAMENTALS OF MULTI-MODAL CONVOLUTIONAL
NEURAL NETWORK
Multi-Modal Convolutional Neural Networks (MM-CNNs)
are specialized neural network architectures designed to inte-
grate and process multiple image datasets that share a similar
nature or domain, such as different kinds of data from various
sources [34], [35]. However, in this study, a homogeneous
multi-modal learning framework is designed, which employs
image datasets from different scenarios. The approach devel-
oped in this study aims to leverage the complementary
information inherent in these similar but distinct datasets

to improve the overall performance of image recognition,
classification, or other image-processing tasks [20].

Specifically, the classification of images is the objective
task mentioned in this study. The core components of
MM-CNNs include feature extraction pipelines for each
image dataset, feature fusion mechanisms to combine the
extracted features, and attention mechanisms to dynamically
weigh the importance of features from different datasets.
Feature extraction typically involves convolutional layers tai-
lored to the characteristics of each dataset. For each image
dataset X (i), the convolutional layers extract feature maps
F(i) via (7):

F (i)
i,j,k

= σ

(∑M−1

m=0

∑N−1

n=0

∑C−1

c=0
W (i)
m,n,c,k · X (i)

i+m,j+n,c + b(i)
k

)
(7)

where Fis the output feature map for the i-th dataset, σ is the
activation function,W (i) and b(i) are the convolutional filters
and biases for the i-th dataset, andX (i) is the input image from
the i-th dataset.

The mathematical formulation of MM-CNNs designed in
this study involves several key steps. For each image dataset,
convolutional layers extract feature maps, which can then
be fused using techniques such as concatenation, addition,
or more complex operations. In this study, the fusion occurs
at the late stage in terms of the design of the network. The
combined feature maps can be represented as (8):

Ffused = Fusion(F (1),F (2), . . . ,F (N )) (8)

where N is the number of image datasets. Private layers
can be used to capture dataset-specific features, as expressed
in (9):

F (i)
private = σ

(
W (i)

private · F (i)
+ b(i)private

)
(9)

FIGURE 1. Flowchart of the importance sampling algorithm.
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while shared layers promote common feature learning across
datasets, as presented in (10):

Fshared = σ (Wshared · Ffused + bshared) (10)

An attention mechanism can be applied to dynamically
weigh the importance of features from each dataset, enhanc-
ing the fusion process. This attention mechanism calculates
weights for the features of each dataset based on their rele-
vance, as given by (11):

α(i)
=

escore
(
F (i))∑N

j=1 e
score(F (j))

(11)

The fused features Ffused_att with attention can be given
by (12):

Ffused_att =

∑N

i=1
α(i)F (i) (12)

The result is a set of fused features that integrate information
from all datasets, leveraging their complementary strengths to
improve the model performance. MM-CNNs have significant
applications and benefits across various fields. By effectively
extracting and fusing features from multiple image datasets,
MM-CNNs achieve superior performance in diverse image
processing tasks, demonstrating the importance of proper fea-
ture extraction pipelines, fusion mechanisms, and attention
mechanisms.

C. FRAMEWORK OF MULTI-MODAL CONVOLUTIONAL
NEURAL NETWORKS
From the perspective of building the MM-CNNs model, the
framework of the proposed model includes the convolutional
layers, pooling layers, flattened layers, concatenation layers,
attention layers, dropout layers, and fully connected layers.
Specifically, the framework of the MM-CNNs is designed
to effectively integrate multi-modal data, allowing the model
to capture and leverage the unique features from different

data sources. The framework of the proposed MM-CNNs
model is depicted in. The convolutional layers are employed
to extract spatial hierarchies of features from the input data
automatically. Pooling layers are incorporated to reduce the
dimensionality of feature maps, thereby controlling overfit-
ting and enhancing computational efficiency. After the above
operations, the data is passed through flattened layers to
transform the pooled feature maps into a vector form that
is suitable for further processing. Concatenation layers play
a critical role in the MM-CNNs framework, enabling the
integration of features extracted from multiple modalities.
This integration facilitates a comprehensive understanding
of the data by combining complementary information from
different sources.

Following concatenation, the data is processed through
fully connected layers accompanied by the inserted dropout
layers, which perform high-level reasoning and ultimately
produce the output of themodel. These layers are essential for
learning complex patterns and relationships within the data.
Additionally, regularization techniques such as dropout can
be applied in these layers to prevent overfitting. Overall, the
MM-CNNs framework is meticulously designed to harness
the power of convolutional neural networks for multi-modal
data, ensuring robust feature extraction, integration, and inter-
pretation, which leads to the promoted performance on tasks
requiring the fusion of diverse data types.

D. DEPLOYING ISA TO OPTIMIZE THE
HYPERPARAMETERS OF MM-CNNs
As aforementioned, importance sampling is a technique used
to optimize the hyperparameters of MM-CNNs by improv-
ing the efficiency of the training process. The core idea is
to sample hyperparameter values from a distribution that
emphasizes more promising regions of the hyperparameter
space rather than sampling uniformly. This helps in focusing

FIGURE 2. Schematic of the proposed MM-CNNs framework.
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computational resources on hyperparameters that are more
likely to yield better performance. The probability density
function (PDF) used for sampling is adjusted iteratively based
on the performance of previously sampled hyperparameters.

Optimizing MM-CNNs using the importance sampling
algorithm involves several critical steps aimed at enhanc-
ing the efficiency and effectiveness of the training process.
Initially, the weights of the model and hyperparameters are
set, and the multi-modal data is preprocessed to ensure com-
patibility with the network. This data is then split into training
and testing sets, with the training set employed to teach the
model and the testing set reserved for performance evalu-
ation. The key to this approach is computing importance
sampling weights based on the losses from previous epochs,
assigning higher weights to more informative samples. For-
mally, the importance sampling weight wi for a sample i is
computed by (13):

wi =
Lα
i∑
j L

α
j

(13)

where Li represents the loss for sample i from a previous
epoch, and α is a hyperparameter that controls the degree of
prioritization. By focusing on samples with higher weights,
the model can learn more effectively from data that has a
greater impact on reducing overall error, thereby optimizing
the learning process.

During the training process, the model undergoes iterative
forward and backward passes. In the forward pass, predic-
tions ŷ are made, and the loss Lfor each sample is calculated
using a suitable loss function, such as cross-entropy loss for
classification tasks, as shown in (14)(14)(14):

L = −

∑
c
yclog

(
ŷc

)
(14)

where yc is the true label and ŷc is the predicted probability
for class c. In the backward pass, gradients of the loss with
respect to the model parameters θ are computed, and the
parameters are updated using the weighted losses, as given
by (15):

θt+1 = θt − η
∑wi∇θLi

i
(15)

where η is the learning rate, and ∇θLi is the gradient of
the loss for sample I with respect to the parameters. The
importance sampling weights wi ensure that the updates are
more influenced by the samples that have the most significant
losses, thus directing the model learning focus towards the
most critical data points.

Regular evaluation of the testing set helps monitor the
model performance and detect overfitting. If the model has
not yet converged, the importance sampling weights are
recalculated, and training continues. Importance sampling
method significantly accelerates convergence by focusing
the learning process on the most impactful samples, thereby
improving the overall effectiveness and efficiency of the
MM-CNNs model. This approach leverages the principle that
not all samples contribute equally to the learning process,

allowing the model to allocate its learning resources more
judiciously.

III. EXPERIMENTAL SETUP AND DATASET DESCRIPTION
A. EXPERIMENTAL SETUP AND ORIGINAL DATA
ACQUISITION
Experiments are devised and executed to authenticate the
proposed methodology outlined in this study. The specimens
comprise ten plies with the stacking sequence [(0,90)]10. The
composite patch dimensions are 100 mm×100 mm×2 mm,
alongside a 300 mm×300 mm×3 mm aluminum plate uti-
lized in both setups. Sensor-wise, the specimens integrated a
piezoelectric wafer with 6 mm in diameter and 0.5 mm in
thickness. Table 1 outlines the specifications for an exper-
imental configuration involving composite materials and
sensor instrumentation.

TABLE 1. Specification of samples used in experiments.

Experiments carried out in the laboratory are aimed at
assessing the curing process of composite structures utilizing
EMI. This specimen represents a co-cured structure, combin-
ing both composite and metallic components. For clarity, the
setup for EMI measurement and the fabricated samples are
depicted in Fig. 4. Fig.4 (a) depicts a testing platform, which
is composed of a WK6500B impedance analyzer made by
Wayne Kerr Electronics Ltd, London, a PC controller, and a
heating device. The impedance analyzer is connected to the
piezoelectric wafer via heat-resistant wires, which facilitates
data acquisition throughout the entire curing process. The
PC controller is employed to modulate the frequency scope
with a step of 1 kHz. Fig.4 (b) shows the overall size of
the specimen used in the experiment, which is integrated
with a piezoelectric wafer. The curing process duration spans
approximately 240 minutes, with data sampling conducted
at intervals of 2 minutes, resulting in the acquisition of
121 groups of raw data.

In the end, the dataset is constructed in our laboratory,
which is composed of original data measured by the
EMI method in the curing process of the co-cured
structure. Specifically, the authors named this dataset
‘‘CS_CURE_EMI700’’, which means the upper and the
lower frequencies ranging from 100 to 700 kHz in
the process of composite fabrication. The curve plots
using the ‘‘CS_CURE_EMI700’’ are shown in Fig.5.
For the purpose of the intelligent model application, the
‘‘CS_CURE_EMI700’’ is divided into ten classes, ranging
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from C01 to C10 in terms of the curing degree indicator,
which is the Root Mean Square Deviation (RMSD).

B. IMAGES CONVERTED FROM ORIGINAL DATA
Considering the proposed ISA-MM-CNNs approach
deployed in this study is based on the two-dimensional
CNNs, thus the input shape of the proposed approach requires
the image format. In this section, the numeric data in the
‘‘CS_CURE_EMI700’’ dataset is converted to images with
the methods of Recurrence Plots (RP), Markov Transition
Field (MTF), and Gramian Angular Field (GAF). Trans-
forming numeric data into image representations using the
above three methods can bring the advantages of capturing
nonlinear features, state transitions, and global information
for intuitive pattern recognition and analysis.

Owing to the difficulty of showing all the transformedGAF
images in one paper at the same time, only the GAF, RP,
and MTF images using the dataset of ‘‘CS_CURE_EMI700’’
at the initial and final stages during the curing process are
represented in Fig. 6. Comparatively, the subgraphs of Fig. 6
illustrate that the transformed images exhibit distinct features.
The constructed ‘‘CS_CURE_EMI700’’ dataset, comprising
data with a dimensionality of 700, yields a visual representa-
tion with 700 pixels in both horizontal and vertical directions
in GAF images. Notably, an inspection of the GAF images
discloses a distinct cruciform pattern, which correlates with
the peak frequency observed in Fig. 5, suggesting the associ-
ation between these two phenomena.

Similarly, RP images are a visualization method used to
analyze the behavior of one system over time, while MTF
images visualize the dynamics of one system with discrete
states by showing how likely it is for the system to transi-
tion from one state to another. Therefore, both methods can
help identify patterns and attractors in the curing process
of composite structures, providing valuable insights into the
behavior of the curing process. The RP and MTF images are
presented in Fig. 6 with distinct features at the initial and
final states of the curing process. According to these RP and
MTF images shown in Fig. 6 (a) and (b), it can be inferred
that the curing process induces notable transformations in
thematerial composition and arrangement from these images,
influencing its mechanical properties and performance char-
acteristics.

C. DATASET CONSTRUCTION AND SPLITTING
Although substantial effort has been made in CNNs-related
studies for composites in previous studies, the scarcity of
high-quality data remains a significant impediment to the
development of sophisticated models capable of achieving
accurate predictions. To address this limitation, the Synthetic
Minority Over-sampling Technique (SMOTE) is employed
in this study. This theoretically grounded and empirically
validated methodology utilizes the originally obtained EMI
data to synthetically generate additional samples, augmenting
the size of the training dataset. This study ultimately enables
the development of more robust and reliable ISA-MM-CNNs

FIGURE 3. Flowchart of optimizing MM-CNNs hyperparameters using
importance sampling algorithm.

by enhancing the quality and quantity of available training
data.

As previously noted, the initially acquired resistance data
are subject to an initial expansion phase, followed by a
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FIGURE 4. Platform for EMI testing in curing monitoring: (a) overall view, (b) co-cured specimen.

TABLE 2. Hyperparameters to evaluate the influence on ISA-MM-CNNs performance.

FIGURE 5. Curve plots using the original data in the ‘‘CS_CURE_EMI700’’
dataset.

transformation process yielding a comprehensive dataset with
multi-modal features, including GAFs, RP, and MTF images.
The resultant image dataset comprised a total of 681 sam-
ples, enriching the data and facilitating subsequent analysis.

Notably, the transformed image dataset is subsequently cat-
egorized into 10 distinct classes, each corresponding to a
specific impact energy level.

Within the image dataset converted from the
‘‘CS_CURE_EMI700’’ dataset, a stratified sampling strategy
is employed, wherein 80% of the total samples are des-
ignated for model training and 10% for model validation,
while the remaining 10% are reserved for testing purposes,
as depicted in Fig. 7. Furthermore, to ensure optimal model
performance and alleviate potential biases in the training
process, all samples, utilized for both ISA-MM-CNNs fitting,
are randomly shuffled and re-ordered to enhance trainability,
foster convergence, and ultimately optimize the fitting of the
customized ISA-MM-CNNs model to the underlying data
distribution.

IV. RESULTS AND DISCUSSION
A. IMPACT OF HYPERPARAMETERS ON ISA-MM-CNNs
PERFORMANCE
The performance of ISA-MM-CNNs with optimal architec-
ture is heavily influenced by the choice of hyperparameters,
such as the number of modalities used, the size and number
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FIGURE 6. Converted images using the ‘‘CS_CURE_EMI700’’ dataset: (a) initial state, (b) final state.

FIGURE 7. Splitting of the converted image dataset for ISA-MM-CNNs
fitting.

of filters in convolutional layers, the number of fully con-
nected layers, and the learning rate. These hyperparameters
can significantly impact the ability of the model to classify
images from multiple modalities accurately. In addition to
these individual hyperparameters, the interplay between them
can have a compounding effect on the overall performance of
the ISA-MM-CNNs.

Considering that optimizing the massive hyperparameters
is a great challenge for our desktop-level workstation, only
three hyperparameters are selected for the demonstration in
this study. Particularly, it should be pointed out that the
optimization of hyperparameters facilitated by ISA is also
suitable for scenarios with more types of hyperparameters,
which involves expanding the final hyperparameter space to
include more parameters. For demonstration, the hyperpa-
rameters chosen to be optimized are dropout ratio, learning

rate, and batch size for the model fitting of ISA-MM-CNNs
in the case presented in this paper. The method for hyperpa-
rameter optimization is ISA, which has been mentioned in
the above section. The influence of different combinations
of hyperparameters on model fitting is investigated compara-
tively, as presented in Fig. 8, with the annotation, which have
been demonstrated in Table 2 in detail, of the representative
hyperparameters for ISA-MM-CNNs training.

From Fig. 8 it can be observed that different combinations
of the hyperparameters have an obvious influence on the
model fitting performance according to the accuracy and loss
curves in the process of training and testing. In particular,
it is easy to notice that the choice of batch size and learning
rate has a significant impact on the ability of ISA-MM-CNNs
to generalize well on unseen data using CS_CURE_EMI700.
For instance, a higher learning rate can speed up convergence
but may also increase the risk of oscillations and divergence.
Furthermore, the selection of batch size and dropout ratio
appears to play a crucial role in determining the capacity of
intelligent models to capture complex patterns of the dataset.
Therefore, it is essential to carefully tune these hyperparame-
ters in a principled and effectivemanner, such as the ISAmen-
tioned in this study. Results of this section suggest that careful
consideration of these factors can significantly improve the
overall performance of the model, allowing it to better adapt
to unseen data and make more accurate predictions.

To compare the performance of the ISA-MM-CNNs using
the various combinations of the hyperparameters in a more
intuitive way, a histogram diagram is plotted, as presented
in Fig. 9. In this figure, indicators of the horizontal axis
are Accuracy, Precision, Recall, and F1-score, which are
employed to evaluate the model performance. The height
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FIGURE 8. Fitting history of ISA-MM-CNNs using CS_CURE_EMI700 dataset with various hyperparameters: (a) HC1,
(b) HC2, (c) HC3, (d) HC4, (e) HC5, (f) HC6, (g) HC7, (h) OHP.

FIGURE 9. Comparison by the histogram including various combinations
of hyperparameters.

of the histogram directly corresponds to the score of the
trained ISA-MM-CNNsmodel with different hyperparameter
combinations.

The histogram in Fig. 9 provides an intuitive comparison
of the ISA-MM-CNNs performance using various hyperpa-
rameter combinations, evaluated across Accuracy, Precision,
Recall, and F1-score. The results highlight that optimized
configurations, such as a learning rate of 7×10−4 and a batch
size of 64, consistently deliver superior performance across
all metrics, indicating an effective balance between learn-
ing efficiency and stability. This comprehensive evaluation
reveals that the most effective hyperparameter combinations
are those that perform well across all four metrics, guid-
ing future experiments toward configurations that ensure
high accuracy, precise predictions, comprehensive recall, and
robust overall performance.

B. CONFUSION MATRIX OF ISA-MM-CNNs FOR CURING
PROCESS EVALUATION
The confusion matrix (CM) is one heatmap used to evalu-
ate the performance of a classification algorithm by showing
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FIGURE 10. Diagram of classification results applying ISA-MM-CNNs to CS_CURE_EMI700 dataset:
(a) Non-normalized CM, (b) Normalized CM.

the actual versus predicted classifications. It helps iden-
tify not only the accuracy of the model but also the errors
it makes. This study employs the CM plots to depict
the classification result of ISA-MM-CNNs on the dataset
‘‘CS_CURE_EMI700’’, as shown in Fig. 10.

Fig. 10 shows two CM plots labeled (a) and (b), which
illustrate the performance of a classification model across ten
categories, ranging from C01 to C10. Fig. 10 (a) presents
the raw sample counts for true versus predicted labels. The
diagonal entries represent the number of correctly classified
samples for each category, such as 14 samples for C01,
whereas off-diagonal entries indicate misclassifications, like
1 sample of C01 being misclassified as C02. Fig. 10 (b) con-
veys classification accuracy and error rates. Diagonal values
denote the accuracy for each class, with C01 achieving 100%
accuracy (1.00) and C03 achieving 92% accuracy (0.92).
Off-diagonal values represent the proportion of misclassified
samples, exemplified by 8% of C03 samples being misclas-
sified as C04 (0.08). These CM plots collectively reveal
that the model performs well, with most errors occurring
between adjacent categories. Overall, Fig. 10 (a) provides
detailed counts of correct and incorrect classifications, while
Fig. 10 (b) offers a clearer perspective on the accuracy of
ISA-MM-CNNs and error distribution, facilitating a compre-
hensive evaluation of its performance.

From the perspective of evaluating the curing degree,
Fig. 10 reveals that the proposed ISA-MM-CNNs model per-
forms exceptionally well in accurately assessing the degree of
cure for composite materials, particularly in the mid to fully
cured stages (C04 to C10), where it shows perfect accuracy,
which indicates that the characteristics of composite materi-
als in these stages are distinct and easily recognized by the
proposed ISA-MM-CNNs model. However, a slight decrease
in accuracy for early cure stages (C02 and C03) is also
observed, with some misclassification occurring between
adjacent stages. This suggests that the features of composite

materials in the early stages are less distinct, leading to over-
lap. Additionally, there is minor misclassification in the late
cure stage (C09) with the fully cured stage (C10), which is
expected as the material properties in these stages become
very similar. Overall, the ISA-MM-CNNs model is highly
effective in assessing the cure degree, with opportunities for
minor improvements in the early and late stages to enhance
accuracy further.

C. COMPARISON BETWEEN ISA-MM-CNNS AND
OPEN-SOURCE MODELS
In order to demonstrate the performance and effectiveness
of the proposed ISA-MM-CNNs approach in the application
of evaluating the composite curing degree, the comparison
between ISA-MM-CNNs with the open-source models is
conducted, as presented in Fig. 11. This figure comprises
three bar charts, which are Fig. 11 (a), (b), and (c), comparing
the performance across four key evaluation indicators: Accu-
racy, Precision, Recall, and F1-score. To be more specific,
the networks for comparison are ISA-MM-CNNs, Incep-
tionResNetV2, InceptionV3, MobileNetV2, ResNet50V2,
ResNet152V2, VGG16, VGG19, and Xception. Each model
is represented by a distinct color, as indicated in the legend
on the right side of each chart. Across all three subfigures of
Fig. 11, ISA-MM-CNNs consistently outperform the other
models in all metrics. In Fig. 11 (a), ISA-MM-CNNs achieve
the highest scores in the above-mentioned four indices,
implying fewer false positives and negatives. Fig. 11 (b)
reinforces this trend, with ISA-MM-CNNs demonstrating
superior performance, although the gap in precision is
slightly narrower compared to Fig. 11 (a). Fig. 11 (c) shows
ISA-MM-CNNs achieving near-perfect accuracy and excep-
tional recall, highlighting their effectiveness across different
tasks or datasets.
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FIGURE 11. Comparison between the proposed ISA-MM-CNNs and the open-source models.

Overall, on the dataset of ‘‘CS_CURE_EMI700’’ built in
our laboratory, the high performance of the proposed ISA-
MM-CNNs across all indicators and figures underscores their
robustness and reliability when employed in the scenarios
relevant to the composite curing. Besides, InceptionRes-
NetV2 and InceptionV3 also perform well but often rank
just below ISA-MM-CNNs, particularly in accuracy and
precision. Other models, including MobileNetV2, ResNet
variants, VGG16, VGG19, and Xception, show competitive
performance but consistently lag behind ISA-MM-CNNs
and the Inception variants. These observations indicate that
ISA-MM-CNNs are highly effective for tasks requiring high
accuracy and precision, making the proposed approach a
preferred choice in these scenarios.

V. CONCLUSION
This study developed an ISA-MM-CNNs paradigm designed
for EMI-based monitoring of the composite curing process.
The findings highlight that integrating importance sampling
with the multi-modal learning method significantly enhances
the accuracy and efficiency of CNN models in processing
complex EMI signals.

The proposed ISA-MM-CNNs paradigm effectively
addresses critical challenges such as data heterogeneity,
class imbalance, and computational complexity, demonstrat-
ing superior performance compared to existing approaches.
By focusing training efforts on informative samples and

capturing complementary information from different EMI
signal modalities, the ISA-MM-CNNs provide a robust
and efficient solution for real-time, non-destructive eval-
uation of composite curing processes. Nevertheless, this
study also has limitations, including the reliance on syn-
thetic datasets and the necessity for further validation using
diverse, real-world data. Future research should explore the
application of ISA-MM-CNNs in various industrial settings
and investigate the integration of additional sensor modal-
ities to further enhance the robustness of the monitoring
system.

Summarily, this study offers a promising solution for
enhancing the quality and efficiency of composite struc-
ture manufacturing processes, paving the way for inno-
vative advancements in composite structure monitoring.
It suggests that ISA-MM-CNNs hold significant potential
in addressing the limitations of conventional methods
and exploiting the synergies between different signal
modalities.
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