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Signal Integrity in Pulse-train Excited Array
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Abstract—Signal integrity in the far-field radiation from
pulse-train excited array antennas is studied via full time-
domain instruments. The disturbance in the received signal is
related to the fidelity factor. At any point in our analysis, the
disturbance is evaluated based on a reduced, well defined set
of parameters: pulse parameters and pulse repetition rate –
temporal dependence, and elementary radiator location – spatial
dependence. Their effect is examined by means of illustrative
numerical experiments. These results are expedient for enhancing
the detectability of the signals radiated by pulse-train excited
array antennas, as needed in wireless digital transfer.

I. INTRODUCTION

Signal integrity is the cornerstone to the error-free recover-
ing of the received binary values in wireless digital transfer [1].
Ensuring this feature in the ultra-high data-rate communication
systems that are currently developed [2] becomes increasingly
difficult and demands increasingly sophisticated design pro-
cedures. A conditional aspect for the successful application
of these procedures is the accurate characterisation of the
received signals. To this end, electromagnetic (EM) models
can opportunely predict the system performance under certain
simple, but relevant conditions. Since (ultra-high rate) digital
signal transfer is best supported by pulsed electromagnetic
(EM) field transfer, such models are most adequately built by
means of time-domain (TD) instruments.

Wireless digital transmitting and receiving trains of pulses.
All pulses in EM models should have analytical expressions
that, moreover, should characterised by generally accepted
parameters such pulse amplitude, pulse rise time, pulse time
width, pulse fall time [3], [4]. Furthermore, the (coded) pulses
are sent at regular intervals, this inducing a pulse repetition
rate. These pulse-trains undergo alterations during the trans-
mitter → receiver transfer:

1) Temporal dependence: For a receiver to be located in
the far-field region [5, pp. 762–768], the received EM field
is the time-derivative of the electric current that excites the
Kirchhoff port of the emitter. Furthermore, depending on the
pulse repetition rate, pulses can partially overlap the tail of
the preceding ones, this further deteriorates the information
content in the signal. Such effects constitute the received
signal’s temporal dependence on the exciting current and
manifest themselves even for isolated elements.

2) Spatial dependence: For increasing the energy of the
received signals and, thus, improving their detection in back-
ground noise, wireless systems often resort to energy focussing
by means of array antennas on the transmit and/or receive side.
The conjunction of elements’ locations and time delays of the

feeding signals yields constructive/destructive interference in
different directions (see the TD study in [6]). Additionally, the
element spreading results into different path lengths for the
elementary signals that, in turn, may yield additional pulse
overlapping, with both possible deleterious effects (further
deterioration of the signal integrity in desired directions) and
possible beneficial effects (drastic disturbance of the received
signal in other directions – favourable for security purposes).
The element spreading induced pulse overlapping constitutes
the received signal’s spatial dependence on the exciting current
and is specific to array configurations.

In this paper we examine the signal integrity’s spatial
dependence in the case of pulse-train excited array antennas.
To this end, we opt for an analytic TD modelling of the EM
field, the excitation being taken as short trains of monocycle
pulses [3]. The radiated field signatures are used for evaluating
the system’s fidelity factor, [7] a widely employed quantitative
measure to characterise the performance of high-speed digital
data transmission. As has been demonstrated in [7], this fidelity
factor is composed out of the signal fidelity factors of the
constituting subsystems in the relevant transmission chain.
From this perspective, we analyse the directional signal fidelity
factor that also accounts for the array antenna’s beam-steering
properties. The resulting signal fidelity factor is a purely
directional quantity.

Our study starts by recapitulating the results in [6] con-
cerning the TD far-field EM radiation from arbitrary array
antennas. These results will be then employed for examining
this radiation in the case of isolated radiators and linear arrays.
Our account will end with conclusions.

II. RADIATION OF ARRAY ANTENNAS COMPOSED OF
PULSED ELECTRIC-CURRENT EXCITED ELEMENTS

A. Examined configuration

The antenna is composed of N +1, N = 0, 1, 2 . . . , iden-
tical, mutually translationally shifted, pulsed electric-current
excited elements (Fig. 1). Position in the examined configura-
tion is specified by the position vector x ∈ R3 and the time
coordinate is t ∈ R.

Let D0 denote the spatial support of the reference element
and let χ0(x) be its characteristic set, i.e., χ0(x) = {0, 1/2, 1}
for x ∈ {D0, ∂D0,D∞

0 }, where ∂D0 is the piecewise smooth
boundary of D0 and D∞

0 is the (unbounded) complement
of D0 ∪ ∂D0 in R3. The spatial support Dn of the by rn
with respect to D0 translationally shifted element has the
characteristic set χn(x) = χ0(x + rn). The support of the
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Fig. 1. Antenna array composed of identical, translationally shifted elements.

entire array is then

D =

N⋃
n=0

Dn. (1)

The elements carry electric currents with volume density
J(x, t). Each element of is accessible via a one-port Kirchhoff
circuit that is available for excitation. The volume densities of
electric current in Dn are J

δ
n(x, t) in case its Kirchhoff circuit

port is excited with a Dirac delta pulse δ(t) and

Jn(x, t) = IGn (t)
(t)
∗ Jδ

n(x, t) (2)

in case its Kirchhoff circuit port is excited with the electric cur-

rent IGn (t), with
(t)
∗ denoting time convolution. By neglecting

mutual coupling, it then follows that

Jδ
n(x, t) = Jδ

0(x+ rn, t), for n = 1, . . . , N. (3)

The array radiates into free space, withelectric permittivity
ε0, magnetic permeability μ0 and corresponding wavespeed
c0 = (ε0μ0)

−½.

B. The radiated field

The radiated field is expressed in terms of the electric-
current potential A(x, t) that satisfies the vector wave equa-
tion

(∇·∇)A− c−2
0 ∂2

tA = −J (4)

with

J(x, t) =

N∑
n=0

Jn(x, t)χn(x, t) (5)

being the volume density of electric current in D. With

G(x, t) =
δ(t− |x|/c0)

4π|x| for x �= 0 (6)

as the Green’s function of the scalar wave equation

(∇·∇)G− c−2
0 ∂2

tG = −δ(x, t) (7)

it follows that

A(x, t) =

N∑
n=0

An(x, t) (8)

with

An(x, t) = G(x, t)
(x)
∗

(t)
∗ Jn(x, t) for x ∈ R3, (9)

in which
(x)
∗ denotes spatial convolution (which, in this case, is

extended over D). From Maxwell’s equations, the correspond-
ing electric and magnetic field strengths are [5, Eqs. (26.3-1)
and (26.3-2)]

E = −μ0∂tA+ ε−1
0 It∇(∇·A) (10)

H = ∇×A, (11)

where It denotes the time integration operator defined as

It[f(x, t)] =
∫ t

τ=−∞
f(x, τ)dτ. (12)

C. The TD far-field radiation characteristics

Let the TD far-field expression

{A,E,H}(x, t) =
{A∞,E∞,H∞}(ξ, t− |x|c−1

0 )

4π|x|
[
1 +O(|x|−1)

]
as |x| → ∞ (13)

with O as the reference center and ξ = x/|x| as the unit
vector in the direction of observation. The far-field radiation
characteristics {A∞,E∞,H∞}(ξ, t) are interrelated by [5,
Eqs. (26.3-13) and (26.3-16)]

E∞ = −μ0[∂tA
∞ − ξ(ξ·∂tA∞)] (14)

H∞ = −c−1
0 ξ×∂tA

∞. (15)

D. Beam shaping and beam steering

For a given positioning of the elements in the array,
the standard practice for its beam steering is to select a
reference pulse IG0 (t) for exciting D0 and taking {IGn (t);n =
1, 2, 3, . . . , N} to be time-shifted versions of it IGn (t) =
IG0 (t − Tn), with Tn the relevant time delays. With (2) and
(3), it then follows that

A∞ =

N∑
n=0

A∞
n , (16)

in which

A∞
n =

IG0 (t− Tn)
(t)
∗
∫
Dn

Jδ
0[x

′, t+ c−1
0 ξ·(x′ + rn)]dV (x′). (17)

By rewriting this time convolution, it follows that constructive
interference of the element contributions occurs if

Tn = c−1
0 ξst·rn, for n = 1, 2, 3, . . . , N. (18)

The resulting ξst specifies the direction of the main beam
(’direction of steering’).



E. The area density of radiated energy

The energy W rad radiated by the array is expressed as

W rad =

∫
ξ·ξ=1

Φrad(ξ)·ξ dΩ, (19)

in which Φrad(ξ) is the area density of radiated energy in the
direction ξ. For free space radiation, it is found that [6]

Φrad(ξ) =
Z0

16π2 c20
ξ

∫
t∈R

[
∂t (ξ×A∞) · ∂t (ξ×A∞)

]
dt

(20)
with Z0 = (μ/ε0)

½ denoting the free space electromagnetic
wave impedance.

III. ILLUSTRATIVE NUMERICAL EXPERIMENTS

The overall quality of an antenna is given by the directional
distribution of radiated energy and the signal fidelity as it
contributes to the overall system fidelity factor. In this section,
the directional distribution of radiated energy and the signal
integrity in pulse-train excited array antennas is analysed by
examining the quantities defined in Section III-C.

A. Excitation electric current shapes

The shapes of the electric current IGn (t) exciting the
Kirchhoff circuit ports of the array elements are taken as short
trains of monocycle (dtPE) pulses. Their expression follows
from the normalised power exponential (PE) pulse [3] of pulse
rise time tr > 0 and pulse rising power ν > 1 (with ν being
confined to integer values in this study) as

dtPE(t) = N(ν) ∂tPE(t)

= N(ν)
(
t′ν−1 − t′ν

)
exp [−ν (t′ − 1)]H(t) (21)

where t′ = t/tr,

N(ν) =
tr
ν½

(
ν½

ν½ − 1

)ν−1

exp(−ν½) (22)

ensures a unit amplitude for dtPE and H(·) is the Heaviside
unit step function. Since dtPE(tr) = 0, tr is also denoted in
the case of dtPE as the zero-crossing time t0x. In line with [3,
Eq. (23)], the pulse time width tw is

tw =

∫ tr

0

dtPE(t) dt = N(ν)

∫ tr

0

∂tPE(t) dt = N(ν). (23)

The electric current injected at the Kirchhoff port of the
reference element in the array is then taken as

IGref(t) =
M∑

m=0

I0 dtPE(t+mRr) (24)

in which I0 is the electric current amplitude and Rr the pulse
repetition rate, with the current excitations of the remaining
elements being time delayed according to (18).

x
y

z

O
αR

L R

n0

IG0 (t)

Fig. 2. Rhombic antenna element. Its geometric parameters are the opening
angle αR and the side length LR. The reference element is represented; its
orientations are taken as n0·iz = 0 or n0·iz = 1.

B. Examined configurations

The array antennas are taken in this paper to consist
of rhombic wire antennas (see Fig. 2). In all experiments,
αR = 90◦ and LR = c0tw/20. Our investigations will concern
isolated elements and uniform, linear arrays, the location of
the elements being taken as rn ‖ iz . As indicated in the
Introduction, the elements in the array are identical, mutually
translationally shifted. The reference element (n = 0) is taken
to have two possible orientations, i.e., n0·iz = 0 or n0·iz = 1.

C. Examined quantities

The main analysis in this paper concerns the system’s
fidelity factor. To this end, we start from the fidelity factor’s
expression in [8]

F (Ssys, Sref) = max
τ

∫ ∞

t=−∞

Ssys(t)

‖Ssys(t)‖
Sref(t− τ)

‖Sref(t)‖
dt (25)

in which Ssys and Sref are scalar signals and the maximum
of the normalised cross-correlation integral is obtained empir-
ically. Since we aim at examining the fidelity of a subsystem
of the transmission chain, namely that pertaining to the array
configuration, we define the array’s directional signal fidelity
factor as

Ff(ξ) = max
τ

∫ ∞

t=−∞

A∞(ξ, t)·A∞
0 (ξ, t− τ)

‖A∞(ξ, t)‖ ‖A∞
0 (ξ, t)‖dt (26)

A∞
0 (ξ, t) being the electric-current potential corresponding to

the reference element. With these choices, the resulting signal
fidelity factor is a purely directional quantity that we term as
the directional signal fidelity factor

We also examine the area density of radiated energy via
polar diagrams of the quantity

DdB(ξ) = 10 log10

[
Φrad(ξ)·ξ/4πW rad

]
(27)

namely the area density of the radiated energy normalised with
respect to the one corresponding to an isotropic radiator.

D. Single element experiments

We start by studying isolated rhombic antennas. The
DdB(ξ) pattern (see Fig. 3) has the ‘doughnut’ shape that
is characteristic for dipoles, with the nulls in the direction
perpendicular to the rhomb’s plane. As expected, Ff(ξ) (see



Fig. 4) is one in all directions (except, of course, in the ones
corresponding to the radiation nulls).
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Fig. 3. DdB(ξ) pattern for a rhombic antenna rotated by ϕR = 90◦;
excitation: a train of 5 dtPE pulses with a Rr pulse repetition rate.
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Fig. 4. Fidelity factor pattern for the rhombic antenna examined in Fig. 3.

E. Uniform linear array experiments

We now investigate the case of uniform linear array anten-
nas consisting of 8 elements located at rn = zniz , in which
zn = n (c0Rr/2) , n = 0, 1, 2, . . . , 7.

Firstly, we consider the case of broadside scanning.DdB(ξ)
patterns are given in Fig. 5. The main beam is clearly visible.
As for the sidelobes: (i) The largest ones follow from the
superposition of delayed elementary contributions originating
from a part of the array elements – a phenomenon that was
also highlighted in [9]. (ii) There are, also, sidelobes that are
not related to correspondences between the pulse repetition
rate and element locations, such as the ones pointing in the
iz − direction in Fig. 5.a. Such lobes have also been observed
in the patterns reported in [6] for single-pulse excitations. The
Ff(ξ) patters are shown in Fig. 6. From these plots it is clear
that the fidelity factor is, practically, one in the main beam
(except in the directions of the radiation nulls) and drops
rapidly outside it. We can now conclude that the radiated
signal’s fidelity significantly increases the spatial selectivity
offered by the array’s focusing (with an additional gain of at
least 3dB). This observation is important for high data-rate
transfers, both from the point of view of transfer effectiveness
and from that of communication security.

Secondly, we consider the case of the beam being steered
at ξ̂st, iz = 30◦. The DdB(ξ) patterns are given in Fig. 7.
The bean scanning is adequately illustrated. As expected, the
sidelobes are displaced, with the pertaining observations made
for broadside scanning maintaining their validity The Ff(ξ)
patters are shown in Fig. 8. The unit fidelity factor follows
the beam scanning. Note that in the case of the array with
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Fig. 5. DdB(ξ) pattern for a uniform, linear array consisting of 8 rhombic
antennas; excitation: a train of 5 dtPE pulses with a Rr pulse repetition rate;
inter-element spacing: c0Rr/2; broadside beam steering.

y

x

z

 

 

0.52

0.56

0.6

0.64

0.68

0.72

0.76

0.8

0.84

0.88

0.92

0.96

1

Ff(ξ)

n0·iz = 0
a

y

x

z

 

 

0.52

0.56

0.6

0.64

0.68

0.72

0.76

0.8

0.84

0.88

0.92

0.96

1

Ff(ξ)

n0·iz = 1
b

rn ‖ iz

Fig. 6. Fidelity factor pattern for the array examined in Fig. 5.

n0·iz = 0 oriented elements, the fact that the beam is steered
away from the radiation null results in a unit fidelity factor
in the complete main beam. All other observations made for
broadside scanning are still applicable.

IV. CONCLUSIONS

The signal integrity in the far-field radiation from pulse-
train excited array antennas was studied via full time-domain
instruments. The directive fidelity factor was employed as a
quantitative measure to characterise the disturbance in the ra-
diated EM field. Furthermore, the angular variation of the area
density of radiated energy was employed for characterising the
spatial dependence of the radiated field levels (the arrays’ beam
scanning properties). The study demonstrated that the signal’s
fidelity improves the spatial selectivity offered by the arrays’
focusing properties, with an additional 3dB sidelobes reduction
being evidenced. This higher spatial selectivity is beneficial for
both focusing the EM signals in desired directions, this enhanc-
ing the detectability of signals in the inherently signal-to-noise
limited receiver units, and for improving the communication
security. In this manner, our results are expedient in the field
of high data-rate wireless transfer.

APPENDIX

A. The TD field radiated by array antennas consisting of
rhombic elements

For evaluating the TD field radiated by the array anten-
nas considered in this paper, we observe that A∞

n in (16)
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Fig. 7. DdB(ξ) pattern for a uniform, linear array consisting of 8 rhombic
antennas; excitation: a train of 5 dtPE pulses with a Rr pulse repetition rate;
inter-element spacing: c0Rr/2; beam steered at ξ̂st, iz = 30◦ .
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Fig. 8. Fidelity factor pattern for the array examined in Fig. 7.

correspond to fields radiated by straight wire segments of
length LR. Let such a segment be oriented from the point
with position vector xP to the point with position vector xQ
(with τPQ = (xQ − xP)/LR denoting the unit vector along
the tangent to the wire segment) and let In(t) be the electric
current carried by it. The relevantA∞

n is then expressed as [6]

∂tA
∞
n,⊥(ξ, t) = (τPQLR) ∂tIn(t+ c−1

0 ξ·xP) (28)

in case ξ·τPQ = 0 or as

∂tA
∞
n, �⊥(ξ, t)

= (τPQLR)
In

(
t+ c−1

0 ξ·xQ
)
− In

(
t+ c−1

0 ξ·xP
)

(ξ·τPQ) c−1
0 LR

(29)

in case ξ·τPQ �= 0. Note that for deriving (28) and (29) it was
assumed that In(t) has a linear spatial variation along the wire
segment, this being consistent with the choice LR 	 c0tw (see
Section III-B).
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