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Abstract

The main result of this paper is an intersection representation for a class of anisotropic vector-valued
unction spaces in an axiomatic setting à la Hedberg and Netrusov (2007), which includes weighted
nisotropic mixed-norm Besov and Lizorkin–Triebel spaces. In the special case of the classical Lizorkin–
riebel spaces, the intersection representation gives an improvement of the well-known Fubini property.
he main result has applications in the weighted Lq -L p-maximal regularity problem for parabolic

boundary value problems, where weighted anisotropic mixed-norm Lizorkin–Triebel spaces occur as
spaces of boundary data.
c⃝ 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The motivation for this paper comes from the Lq -L p-maximal regularity problem for
ully inhomogeneous parabolic boundary value problems, see [15,36,37]. In such problems,
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Lizorkin–Triebel spaces have turned out to naturally occur in the description of the sharp
regularity of the boundary data. This goes back to [59] in the special case that 1 < p ≤

< ∞ for second order problems with special boundary conditions and was later extended
n [15] to the full range q, p ∈ (1,∞) for the more general setting of vector-valued

parabolic boundary value problems with boundary conditions of Lopatinskii–Shapiro type. The
inevitability of Lizorkin–Triebel spaces for a correct description of the boundary data was
reaffirmed in [27,28], but in a different form on the function space theoretic side.

On the one hand, in [15,59] the parabolic anisotropic regularity of the boundary data
is described by means of an intersection of two function space-valued function spaces,
in which the Lizorkin–Triebel space appears as an isotropic vector-valued Lizorkin–Triebel
space describing the sharp temporal regularity. On the other hand, in [27,28] the anisotropic
structure is dealt with more directly through a Fourier analytic approach, leading to anisotropic
mixed-norm Lizorkin–Triebel spaces. A link between the two approaches was obtained in
[16, Proposition 3.23], by comparing the trace result [28, Theorem 2.2] with a trace result
from [5,6]: for every q, p ∈ (1,∞), a, b ∈ (0,∞) and s ∈ (0,∞), there is the intersection
representation

F s,(a,b)
(p,q),p(Rn

× R) = F s/b
q,p (R; L p(Rn)) ∩ Lq (R; Bs/a

p,p(Rn)). (1)

The anisotropic mixed-norm Lizorkin–Triebel space F s,(a,b)
(p,q),r (Rn

×R) for s ∈ R, r ∈ [1,∞],
s defined analogously to the classical isotropic Lizorkin–Triebel space F s

p,r (Rd ), but with an
nderlying Littlewood–Paley decomposition of Rn

×R that is adapted to the (a, b)-anisotropic
calings {δ

(a,b)
λ : λ ∈ (0,∞)} given by

δ
(a,b)
λ (ξ, τ ) = (λaξ, λbτ ), (ξ, τ ) ∈ Rn

× R. (2)

ntuitively the dilation structure (2) causes a decay behavior on the Fourier side at different
ates in the two components of Rn

×R in such a way that smoothness s ∈ (0,∞) with respect
o the anisotropy (a, b) corresponds to smoothness s/a in the spatial direction and smoothness
/b in the time direction. One way to look at the intersection representation (1) is as a way to
ake this intuition precise for F s,(a,b)

(p,q),r (Rn
× R) in the special case that r = p.

It is the goal of this paper to provide a more systematic approach to the intersection
epresentation (1) and obtain more general versions of it, covering the weighted Banach
pace-valued setting. In order to do so, we introduce a new class of anisotropic vector-
alued function spaces in an axiomatic setting à la Hedberg&Netrusov [24], which includes
anach space-valued weighted anisotropic mixed-norm Besov and Lizorkin–Triebel spaces (see
ection 3).

The main result of this paper is an intersection representation for this new class of
nisotropic function spaces (see Section 5), from which the following theorem can be obtained
s a special case (see Example 5.8):

heorem 1.1. Let a, b ∈ (0,∞), p, q ∈ (1,∞), r ∈ [1,∞] and s ∈ (0,∞). Then

F s,(a,b)
(p,q),r (Rn

× Rm) = Fs/b
q,r (Rm

; L p(Rn)) ∩ Lq (Rm
; F s/a

p,r (Rn)), (3)

here, for E = L p(Rn) and σ ∈ R,

Fσq,r (Rm
; E) =

{
f ∈ S ′(Rm

; E) : (2kσ Sk f )k ∈ Lq (Rn
; E[ℓr (N)])

}
ith (Sk)k∈N the Fourier multiplier operators induced by a Littlewood–Paley decomposition of
m and where

E[ℓr (N)] =
{
( fn)n ∈ EN

: ∥( fn)n∥ℓr (N) ∈ E
}
.

2
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In the case p = r , Fubini’s theorem yields Fs/b
q,p(Rm

; L p(Rn)) = F s/b
q,p (Rm

; L p(Rn)) and
F s/a

p,p (Rn) = Bs/a
p,p(Rn), and from (3) we obtain an extension of the intersection representation (1)

to decompositions Rd
= Rn

× Rm :

F s,(a,b)
(p,q),p(Rn

× Rm) = F s/b
q,p (Rm

; L p(Rn)) ∩ Lq (Rm
; Bs/a

p,p(Rn)).

In the special case that a = b and p = q, the latter can be viewed as a special instance of the
Fubini property. In fact, the main result of this paper, Theorems 5.1/5.4, extends the well-known
Fubini property for the classical Lizorkin–Triebel spaces F s

p,q (Rd ) (see [57, Section 4] and the
references given therein), see Remark 5.5. However, as seen in Theorem 1.1, the availability
of Fubini’s theorem is not required for intersection representations, it should just be thought
of as a powerful tool to simplify the function spaces that one has to deal with in the special
case that some of the parameters coincide.

As a special case of the general intersection representation from Section 5 we also obtain
intersection representations for anisotropic mixed-norm Besov spaces (see Example 5.9). An
intersection representation for anisotropic Besov spaces for which the integrability parameter
coincides with the microscopic parameter can be found in [1, Theorem 3.6.3].

Let us now give an alternative viewpoint of (3) in order to motivate and provide some
intuition for the function space theoretic framework of this paper. First of all, the isotropic
Fs/b

q,r and F s/a
p,r on the right-hand side of (3) could be viewed as the anisotropic Fs,b

q,r and F s,a
p,r :

F s,(a,b)
(p,q),r (Rn

× Rm) = Fs,b
q,r (Rm

; L p(Rn)) ∩ Lq (Rm
; F s,a

p,r (Rn)). (4)

s already mentioned above, in this paper we will introduce a new class of anisotropic vector-
alued function spaces in an axiomatic setting à la Hedberg&Netrusov [24]. This class of
unction spaces will be defined in such a way that each of the three spaces in (4) is naturally
ontained in it. In particular, this will allow us to treat the three function spaces in (4) in the
ame way from a conceptual point of view.

In order to elaborate a bit on the latter, let us write d = n + m, A = aIn , B = bIm ,
A = (A, B) and let Rd be (n,m)-decomposed, i.e. Rd

= Rn
× Rm , with (n,m)-anisotropy A

and the induced one-parameter group of expansive dilations (At )t∈R+
:

At (x, y) = (At x, Bt y) = (ta x, tb y), (x, y) ∈ Rn
× Rm

= Rd .

Let

E = L (p,q)(Rn
× Rm)[ℓs

r (N)]

=

{
( fn)n∈N ∈ L0(Rd

× N) :

( ∞∑
n=0

2ns
| fn|

r
)1/r

∈ L (p,q)(Rn
× Rm)

}
,

where we use the natural identification L0(Rd )N ≃ L0(Rd
× N); here, given a measure space

(S,A , µ), L0(S) stands for the space of equivalence classes of measurable functions from S
to C. Let E(n,m);1 and E(n,m);2 denote E viewed as Banach function space on Rm

× N × Rn

and Rn
× N × Rm , respectively. Let (S A

n )n∈N be a Littlewood–Paley decomposition of Rd

with respect to the dilation structure (At )t∈R+
induced by the anisotropy A, let (S A

n )n∈N be a
Littlewood–Paley decomposition of Rm with respect to the dilation structure (At )t∈R+

induced
by the anisotropy A and let (SB

n )n∈N be a Littlewood–Paley decomposition of Rn with respect
to the dilation structure (Bt )t∈R+

induced by the anisotropy B; see Definition 3.18 in the main
text.
3
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With the just introduced notation, F s,(a,b)
(p,q),r (Rn

× Rm) coincides with the space

Y A(E) = { f ∈ S ′(Rd ) : (S A
n f )n ∈ E},

s,b
q,r (Rm

; L p(Rn)) can be naturally identified with the space

Y B(E(n,m);2) = { f ∈ L0(Rn
;S ′(Rm)) : (SB

n f )n ∈ E(n,m);2},

nd Lq (Rm
; F s,a

p,r (Rn)) can be naturally identified with the space

Y A(E(n,m);1) = { f ∈ L0(Rm
;S ′(Rn)) : (S A

n f )n ∈ E(n,m);1},

o that (4) takes the form

Y A(E) = Y B(E(n,m);2) ∩ Y A(E(n,m);1). (5)

Each of the spaces Y A(E), Y B(E(n,m);2) and Y A(E(n,m);1) is defined as a subspace of
L0(S;S ′(RN )) for some σ -finite measure space (S,A , µ), in terms of an anisotropy on RN and

Banach function space on RN
×N× S, where we take the trivial measure space (S,A , µ) =

{0}, {∅, {0}}, #) in case of Y A(E) above. Furthermore, we view the Euclidean space RN as
eing decomposed as RN

= Rd1 × · · · × Rdℓ with ℓ ∈ N1 and d = (d1, . . . , dℓ) ∈ (N1)ℓ,
1 + · · · + dℓ = N , where we take ℓ = 2 in case of Y A(E) above and take ℓ = 1 in cases of

Y B(E(n,m);2) and Y A(E(n,m);1) above. This viewpoint naturally leads us to extend the axiomatic
pproach to function spaces by Hedberg&Netrusov [24] to the anisotropic mixed-norm setting
n which there additionally is some extra underlying measure space (S,A , µ). This will give us
general framework that is well suited for a systematic treatment of intersection representations
s in Theorem 1.1 as well as extensions to a Banach space-valued setting with Muckenhoupt
eights.
One of the main ingredients in the proof of Theorem 1.1 (and the more general intersection

epresentations) is a characterization by differences. For a function f ∈ Rd
→ C, h ∈ Rd and

n integer M ≥ 1, we write

∆h f (x) = f (x + h) − f (x), x ∈ Rd ,

nd

∆M
h f (x) = ∆h · · ·∆h  

M times

f (x) =

M∑
j=0

(−1) j
(

M
j

)
f (x + (M − j)h), x ∈ Rd .

For the special case of the anisotropic mixed-norm Lizorkin–Triebel space F s,a
p,q (Rd1 ×· · ·×

dℓ ), the difference norm characterization takes the form of Theorem 1.2.
Before we state it, let us introduce some notation. Let ℓ ∈ N1, d ∈ (N1)ℓ with d1+· · ·+dℓ =

, a ∈ (0,∞)ℓ, p ∈ (0,∞)ℓ, q ∈ [1,∞] and s ∈ R. We put

F s,(a;d )
p,q (Rd ) := F s,a

p,q (Rd1 × · · · × Rdℓ )

nd

L ( p;d )(Rd ) := L pℓ (R
dℓ )[. . . [L p1 (Rd1 )] . . .]

=

⎧⎪⎨⎪⎩ f ∈ L0(Rd ) :

⎛⎝ˆ
Rdℓ

(
. . .

(ˆ
Rd1

| f (x)|p1 dx1

)p2/p1

. . .

)pℓ/pℓ−1

dxℓ

⎞⎠1/pℓ

< ∞

⎫⎪⎬⎪⎭ .

4
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Theorem 1.2. Let ℓ ∈ N1, d ∈ (N1)ℓ with d1 + · · · + dℓ = d, a ∈ (0,∞)ℓ, p ∈ (1,∞)ℓ,
∈ [1,∞] and s ∈ (0,∞). Let ϕ ∈ [1,∞)ℓ and M ∈ N satisfy s >

∑ℓ
j=1 a j d j (1 − ϕ−1

j ) and
M min{a1d1, . . . , aℓdℓ} > s. For all f ∈ L ( p;d )(Rd ) there is the two sided estimate

∥ f ∥
Fs,(a;d )

p,q (Rd ) ≂ ∥ f ∥L( p;d )(Rd ) + ∥(2nsd (a;d ),ϕ
M,n ( f ))n≥1∥L( p;d )(Rd )[ℓq (N1)],

here

d (a;d ),ϕ
M,n ( f )(x) := 2n

∑ℓ
j=1 a j d jϕ

−1
j

h ↦→ 1B
Rd1 (0,2−na1 )×···×B

Rdℓ (0,2−naℓ )(h)∆M
h f (x)


L(ϕ;d )(Rd )

.

he implicit constants in this two-sided estimate, which is in (modified) Vinogradov notation
or estimates (see the end of this introduction on notation and conventions), only depends on
, a, p, q and s.

As a special case of the general difference norm results in this paper (see Section 4), we
lso have a corresponding version of Theorem 1.2 for Fs,(a;d )

p,q (Rd
; E). In connection to (the

roof of) Theorem 1.1, this especially includes Fs/b
q,r (Rm

; L p(Rn)).
Theorem 1.2 is an extension of the difference norm characterization contained in

24, Theorem 1.1.14] to the anisotropic mixed norm setting, restricted to the special case
f Lizorkin–Triebel spaces in the parameter range p ∈ (1,∞)ℓ, q ∈ [1,∞]. However, the
ange p ∈ (0,∞)ℓ, q ∈ (0,∞] are also covered by the general difference norm results
n Section 4 for the axiomatic setting considered in this paper. In fact, we cover weighted
nisotropic mixed-norm Banach space-valued Besov and Lizorkin–Triebel spaces (both in the
ormed and quasi-normed parameter ranges). Related estimates involving differences in the
sotropic case can be found in e.g. [53,55,56].

The following duality result is a special case of a more general duality result from this
aper for our abstract class of anisotropic vector-valued function spaces (see Theorem 6.3 and
xample 6.4).

heorem 1.3. Let X be a Banach space, d ∈ (N1)ℓ with d1 + · · · + dℓ = d, a ∈ (0,∞)ℓ,
p ∈ (1,∞)ℓ, q ∈ (1,∞) and s ∈ R. Viewing

[F s,(a,d )
p,q (Rd

; X )]∗ ↪→ S ′(Rd
; X∗)

nder the natural pairing (induced by S ′(Rd
; X∗) = [S(Rd

; X )]′, see [2, Theorem 1.3.1]),
here is the identity

[F s,(a,d )
p,q (Rd

; X )]∗ = F−s,(a,d )
p′,q ′ (Rd

; X∗)

ith an equivalence of norms.

Duality results for the classical isotropic Besov and Lizorkin–Triebel spaces can be found
n [55, Section 2.11.2]. In the Banach space-valued setting, [2, Theorem 2.3.1] is a duality
esult for Besov spaces. There the underlying Banach space is assumed to be reflexive or to
ave a separable dual space, except for the case p = ∞ (see [2, Remark 2.3.2]). In this paper
e obtain a partial extension of [2, Theorem 2.3.1] to the weighted mixed-norm setting with
o assumptions on the Banach space (see Example 6.4).

The following result is a sum representation for anisotropic mixed-norm Lizorkin–Triebel
paces of negative smoothness, which is a dual version to the intersection representation
heorem 1.1.
5
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Corollary 1.4. Let a, b ∈ (0,∞), p, q ∈ (1,∞), r ∈ (1,∞) and s ∈ (−∞, 0). Then

F s,(a,b)
(p,q),r (Rn

× Rm) = Fs/b
q,r (Rm

; L p(Rn)) + Lq (Rm
; F s/a

p,r (Rn)), (6)

here Fs/b
q,r (Rm

; L p(Rn)) is as defined in Theorem 1.1.

The above sum representation is an easy consequence of the intersection representation,
he duality results and some basic functional analysis on duals of intersections. A sum
epresentation for anisotropic Besov spaces for which the integrability parameter coincides
ith the microscopic parameter can be found in [1, Theorem 3.6.6].
Note that in the special case r = p, (6) reduces to

F s,(a,b)
(p,q),p(Rn

× Rm) = F s/b
q,p (Rm

; L p(Rn)) + Lq (Rm
; F s/a

p,p (Rn))

y Fubini’s theorem.

verview

This paper is organized as follows.

• Section 2: We discuss the necessary preliminaries on anisotropy and decomposi-
tion, quasi-Banach function spaces, vector-valued functions and distributions, and UMD
Banach spaces.

• Section 3: We introduce a new class of anisotropic vector-valued function spaces in
an axiomatic setting à la Hedberg&Netrusov [24] and discuss some basic properties of
these function spaces. In particular, in Definition 3.15 we define the spaces Y A(E; X ) ⊂

L0(S;S ′(Rd
; X )) for ‘admissable’ quasi-Banach function spaces E on Rd

× N × S in
the sense of Definition 3.1. Proposition 3.19 gives a characterization of Y A(E; X ) in
terms of Littlewood–Paley decompositions, which is how Besov and Lizorkin–Triebel
spaces are usually defined to begin with. Example 3.20 then subsequently gives some
concrete examples of Y A(E; X ), including Besov and Lizorkin–Triebel spaces in different
generalities.

• Section 4: We derive several estimates for the spaces of measurable functions Y L A(E; X )
and Ỹ L

A(E; X ), including estimates involving differences. The spaces Y L A(E; X ) and
Ỹ L

A(E; X ) are defined in Definitions 3.11 and 3.12, but coincide with Y A(E; X ) under
the conditions of Theorem 3.22. In particular, we obtain difference norm characterizations
for Y A(E; X ) in Corollary 4.7 and Theorem 4.8. The latter covers Theorem 1.2 as a
special case.

• Section 5: Using the difference norm estimates from Section 4, we obtain intersection
representations for Y A(E; X ) in the spirit of (5) in Corollary 5.3 and Theorem 5.4 (as
well as intersection representations for Y L A(E; X ) and Ỹ L

A(E; X )). In Examples 5.6
and 5.7 we formulate the intersection representations for concrete choices of E , which in
particular include the Besov and Lizorkin–Triebel cases. Example 5.6 covers Theorem 1.1
as a special case.

• Section 6: We present a duality result for Y A(E; X ) in Theorem 6.3, for which we give
concrete examples in Example 6.4. The latter includes Theorem 1.3.

• Section 7: Combining the intersection representation from Section 5 with the duality
result from Section 6, we obtain a sum representation for Y A(E; X ) in Corollary 7.1.
6
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Notation and convention.

We write: N = {0, 1, 2, 3, . . .}, Nk = {k, k + 1, k + 2, k + 3, . . .} for k ∈ N, f̂ = F f ,
Z<0 = {. . . ,−3,−2,−1}, f̌ = F−1 f , R+ = (0,∞), C+ = {z ∈ C : Re (z) > 0},
ℓs

p(N) = {(an)n∈N ∈ CN
:
∑

∞

n=0 2ns
|an|

p < ∞}. Furthermore, ⌊x⌋ ∈ N denotes the least
nteger part of x ∈ [0,∞). Given a quasi-Banach space Y , we denote by B(Y ) the space of
ounded linear operators on Y and we write BY = {y ∈ Y : ∥y∥ ≤ 1} for the closed unit ball
n Y . Throughout the paper, we work over the field of complex scalars and fix a Banach space
X and a σ -finite measure space (S,A , µ). Given two topological vector spaces X and Y , we

rite X ↪→ Y if X ⊂ Y and the linear inclusion mapping of X into Y is continuous and we
rite X

d
↪→ Y if X ↪→ Y and X is dense in Y .

We use (modified) Vinogradov notation for estimates: a ≲ b means that there exists a
onstant C ∈ (0,∞) such that a ≤ Cb; a ≲p,P b means that there exists a constant C ∈ (0,∞),
nly depending on p and P , such that a ≤ Cb; a ≂ b means a ≲ b and b ≲ a; a ≂p,P b
eans a ≲p,P b and b ≲p,P a.

We will frequently write something like
(∗)
≤ or

(∗)
≲, where (∗) for instance refers to an equation,

o indicate that we use (∗) to get ≤ or ≲, respectively.

. Preliminaries

.1. Anisotropy and decomposition

.1.1. Anisotropy on Rd

An anisotropy on Rd is a real d × d matrix A with spectrum σ (A) ⊂ C+. An anisotropy A
n Rd gives rise to a one-parameter group of expansive dilations (At )t∈R+

given by

At = t A
= exp[A ln(t)], t ∈ R+,

where R+ is considered as multiplicative group.
In the special case A = diag(a) with a = (a1, . . . , ad ) ∈ (0,∞)d , the associated

ne-parameter group of expansive dilations (At )t∈R+
is given by

At = exp[A ln(t)] = diag(ta1 , . . . , tad ), t ∈ R+

Given an anisotropy A on Rd , an A-homogeneous distance function is a Borel measurable
apping ρ : Rd

−→ [0,∞) satisfying

(i) ρ(x) = 0 if and only if x = 0 (non-degenerate);
(ii) ρ(At x) = tρ(x) for all x ∈ Rd , t ∈ R+ ((At )t∈R+

-homogeneous);
(iii) there exists c ∈ [1,∞) so that ρ(x+y) ≤ c(ρ(x)+ρ(y)) for all x, y ∈ Rd (quasi-triangle

inequality). The smallest such c is denoted cρ .

Any two homogeneous quasi-norms ρ1, ρ2 associated with an anisotropy A on Rd are
quivalent in the sense that

ρ1(x) ≂ρ1,ρ2 ρ2(x), x ∈ Rd .

If ρ is a quasi-norm associated with an anisotropy A on Rd and λ denotes the Lebesgue
easure on Rd , then (Rd , ρ, λ) is a space of homogeneous type.
Given an anisotropy A on Rd , we define the quasi-norm ρA associated with A as follows:

d
e put ρA(0) := 0 and for x ∈ R \ {0} we define ρA(x) to be the unique number

7
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ρA(x) = λ ∈ (0,∞) for which Aλ−1 x ∈ Sd−1, where Sd−1 denotes the unit sphere in Rd .
hen

ρA(x) := min{λ > 0 : |Aλ−1 x | ≤ 1}, x ̸= 0.

he quasi-norm ρA is C∞ on Rd
\ {0}. We write

B A(x, r ) := BρA (x, r ) = {y ∈ Rd
: ρA(x − y) ≤ r}, x ∈ Rd , r ∈ (0,∞).

e furthermore write cA := cρA .
Given an anisotropy A on Rd , we write

λA
min := min{Re (λ) : λ ∈ σ (A)}, λA

max := max{Re (λ) : λ ∈ σ (A)}.

ote that 0 < λA
min ≤ λA

max < ∞. Given ε ∈ (0, λA
min), it holds that

tλ
A
min−ε

|x | ≲ε |At x | ≲ε tλ
A
max+ε

|x |, |t | ≥ 1,
tλ

A
max+ε

|x | ≲ε |At x | ≲ε tλ
A
min−ε

|x |, |t | ≤ 1,

nd

t1/(λA
max+ε)ρA(x) ≲ε ρA(t x) ≲ε t1/(λA

min−ε)ρA(x), |t | ≥ 1,
t1/(λA

min−ε)ρA(x) ≲ε ρA(t x) ≲ε t1/(λA
max+ε)ρA(x), |t | ≤ 1.

urthermore,

ρA(x)λ
A
min−ε ≲ε |x | ≲ε ρA(x)λ

A
max+ε, |x | ≥ 1,

ρA(x)λ
A
max+ε ≲ε |x | ≲ε ρA(x)λ

A
min−ε, |x | ≤ 1,

.1.2. d -Decompositions and anisotropy
Let d = (d1, . . . , dℓ) ∈ (N1)ℓ be such that d = |d |1 = d1 + · · · + dℓ. The decomposition

Rd
= Rd1 × · · · × Rdℓ .

s called the d -decomposition of Rd . For x ∈ Rd we accordingly write x = (x1, . . . , xℓ) and
x j = (x j,1, . . . , x j,d j ), where x j ∈ Rd j and x j,i ∈ R ( j = 1, . . . , ℓ; i = 1, . . . , d j ). We also say
hat we view Rd as being d -decomposed. Furthermore, for each k ∈ {1, . . . , ℓ} we define the
nclusion map

ιk = ι[d ;k] : Rdk −→ Rn, xk ↦→ (0, . . . , 0, xk, 0, . . . , 0), (7)

nd the projection map

πk = π[d ;k] : Rn
−→ Rdk , x = (x1, . . . , xℓ) ↦→ xk .

A d -anisotropy is a tuple A = (A1, . . . , Aℓ) with each A j an anisotropy on Rd j . A
-anisotropy A gives rise to a one-parameter group of expansive dilations (At )t∈R+

given by

At x = (A1,t x1, . . . , Aℓ,t xl), x ∈ Rd , t ∈ R+,

here A j,t = exp[A j ln(t)]. Note that A⊕
:= ⊕

ℓ
j=1 A j is an anisotropy on Rd with A⊕

t = At

or every t ∈ R+. We define the A⊕-homogeneous distance function ρA by

ρA(x) := max{ρA1 (x1), . . . , ρAℓ (xℓ)}, x ∈ Rd .

e write

B A(x, R) := B (x, R), x ∈ Rd , R ∈ (0,∞),
ρA

8
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N

2

t

and

B A(x, R) := B A1 (x1, R1) × · · · × B Aℓ (xℓ, Rℓ), x ∈ Rd , R ∈ (0,∞)ℓ.

ote that B A(x, R) = B A(x, R) when R = (R, . . . , R).

.2. Quasi-Banach function spaces

For the theory of quasi-Banach spaces, or more generally, F-spaces, we refer the reader
o [29,30].

Let Y be a vector space. A semi-quasi-norm is a mapping p : Y −→ [0,∞) with the
following two properties:

• Homogeneity. p(λy) = |λ| · p(y) for all y ∈ Y and λ ∈ C.
• Quasi-triangle inequality. There exists a finite constant c ≥ 1 such that, for all y, z ∈ Y ,

p(y + z) ≤ c[p(y) + p(z)].

A quasi-norm is a semi-quasi-norm p that satisfies:

• Definiteness. If y ∈ Y satisfies p(y) = 0, then y = 0.

Let Y be a vector space and κ ∈ (0, 1]. A κ-norm is a function ||| · ||| : Y −→ [0,∞) with
the following three properties:

• Homogeneity. |||λy||| = |λ| · |||y||| for all y ∈ Y and λ ∈ C.
• κ-triangle inequality. For all y, z ∈ Y ,

|||y + z|||κ ≤ |||y|||
κ

+ |||z|||κ .

• Definiteness. If y ∈ Y satisfies |||y||| = 0, then y = 0.

Note that every κ-norm is a quasi-norm. The Aoki–Rolewitz theorem [3,46] says that,
conversely, given a quasi-normed space (Y, ∥ · ∥) there exist r ∈ (0, 1] and an r -norm ||| · ||| on
Y that is equivalent to ∥ · ∥.

Let Y be a quasi-Banach space with a quasi-norm that is equivalent to some κ-norm,
κ ∈ (0, 1]. If (yn)n ⊂ Y satisfies

∑
∞

n=0 ∥yn∥
κ
Y < ∞, then

∑
n∈N yn converges in Y and

∥
∑

∞

n=0 yn∥Y ≲
(∑

∞

n=0 ∥yn∥
κ
Y

)1/κ .
Let (T,B, ν) be a σ -finite measure space. A quasi-Banach function space F on T is an

order ideal in L0(T ) that has been equipped with a quasi-Banach norm ∥ · ∥ with the property
that ∥ | f | ∥ = ∥ f ∥ for all f ∈ F .

A quasi-Banach function space F on T has the Fatou property if and only if, for every
increasing sequence ( fn)n∈N in F with supremum f in L0(T ) and supn∈N ∥ fn∥F < ∞, it holds
that f ∈ F with ∥ f ∥F = supn∈N ∥ fn∥F .

Lemma 2.1. Let V be a quasi-normed space continuously embedded into a complete
topological vector space W . Suppose that V has the Fatou property with respect to W , i.e.
for all (vn)n∈N ⊂ V the following implication holds:

lim
n→∞

vn = v in W, lim inf
n→∞

∥vn∥V < ∞ H⇒ v ∈ V, ∥ f ∥V ≤ lim inf
n→∞

∥ fn∥V .

Then V is complete.
9
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2.3. Vector-valued functions and distributions

As general reference to the theory of vector-valued distributions we mention [2] and [51].
Let G be a topological vector space. The space of G-valued tempered distributions

′(Rd
; G) is defined as S ′(Rd

; G) := L(S(Rd ),G), the space of continuous linear operators
rom the Schwartz space S(Rd ) to G. In this chapter we equip S ′(Rd

; G) with the topology
f pointwise convergence. Standard operators (derivatives, Fourier transform, convolution, etc.)
n S ′(Rd

; G) can be defined as in the scalar case.
By a combination of [2, Theorem 1.4.3] and (the proof of) [2, Lemma 1.4.6], the space

of finite rank operators S ′(Rd ) ⊗ G is sequentially dense in S ′(Rd
; G). Furthermore, as a

onsequence of the Banach–Steinhaus Theorem (see [48, Theorem 2.8]), if G is sequentially
omplete, then so is S ′(Rd

; G).
Given a quasi-Banach space X , denote by OM(Rd

; X ) the space of slowly increasing smooth
unctions on Rd . This means that f ∈ OM(Rd

; X ) if and only if f ∈ C∞(Rd
; X ) and, for each

∈ Nd , there exist mα ∈ N and cα > 0 such that

∥Dα f (x)∥X ≤ cα(1 + |x |
2)mα , x ∈ Rd .

he topology of OM(Rd
; X ) is induced by the family of semi-quasi-norms

pφ,α( f ) := ∥φDα f ∥∞, φ ∈ S(Rd ), α ∈ Nd .

Let (T,B, ν) be a σ -finite measure space and let G be a topological vector space. We define
L0(T ; G) as the space as of all ν-a.e. equivalence classes of ν-strongly measurable functions
f : T → G. Suppose there is a system Q of semi-quasi-norms generating the topology of G.

e equip L0(T ; G) with the topology generated by the translation invariant pseudo-metrics

ρB,q ( f, g) :=

ˆ
B

(q( f − g) ∧ 1) dν, B ∈ B, ν(B) < ∞, q ∈ Q.

his topological vector space topology on L0(T ; G) is independent of Q and is called the
opology of convergence in measure. Note that L0(T ) ⊗ G is sequentially dense in L0(T ; G)
s a consequence of the dominated convergence theorem and the definitions.

If G is an F-space, then L0(T ; G) is an F-space as well. Here we could for example take
G = L r,d ,loc(Rd

; X ) with r ∈ (0,∞]ℓ and X a Banach space, where

L r,d ,loc(Rd ) =
{

f ∈ L0(Rd ) : f 1B ∈ L r,d (Rd ), B ⊂ Rd bounded Borel
}

nd

L r,d (Rd ) = Lrℓ (R
dℓ )[. . . [Lr1 (Rd1 )] . . .].

Let X be a Banach space. Then L0(T ) ⊗ S ′(Rd ) ⊗ X is sequentially dense in both of
L0(T ;S ′(Rd

; X )) and S ′(Rd
; L0(T ; X )), while the two induced topologies on L0(T )⊗S ′(Rd )⊗

X coincide. Therefore, we can naturally identify

L0(T ;S ′(Rd
; X )) ∼= S ′(Rd

; L0(T ; X )).

A function g : T −→ X∗ is called σ (X∗, X )-measurable (or X -weakly measurable) if
x, g⟩ : T −→ C is measurable for all x ∈ X . We denote by L0(T ; X∗, σ (X∗, X )) the vector
pace of all µ-a.e. equivalence classes of σ (X∗, X )-measurable functions g : T −→ X∗.

As in [44], we may define the abstract norm ϑ : L0(T ; X∗, σ (X∗, X )) −→ L0(T ) by

ϑ(g) := sup{ |⟨x, g⟩| : x ∈ BX }, g ∈ L0(T ; X∗, σ (X∗, X )).
∗ ∗ ∗

∗
∗
ote that L0(T ; X ) ⊂ L0(T ; X , σ (X , X )) and that ϑ(g) = ∥g∥X for all g ∈ L0(T ; X ).

10
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We equip L0(T ; X∗, σ (X∗, X )) with the topology generated by the system of translation
invariant pseudo-metrics

ρB( f, g) :=

ˆ
B

(ϑ( f − g) ∧ 1)dν, B ∈ B, ν(B) < ∞.

n this way, L0(T ; X∗, σ (X∗, X )) becomes a topological vector space.
For a Banach function space E on T we define E(X∗, σ (X∗, X )) by

E(X∗, σ (X∗, X )) := { f ∈ L0(T ; X∗, σ (X∗, X )) : ϑ( f ) ∈ E}.

Endowed with the norm

∥ f ∥E(X∗,σ (X∗,X )) := ∥ϑ( f )∥E ,

E(X∗, σ (X∗, X )) becomes a Banach space.
Let E be a Banach function space on T with an order continuous norm and a weak order

unit (i.e. an element ξ ∈ E with ξ > 0 pointwise a.e.). Then (see [44])

[E(X )]∗ = E×(X∗, σ (X∗, X ))

under the natural pairing, where E× is the Köthe dual of E given by

E×
= {g ∈ L0(T ) : ∀ f ∈ E, f g ∈ L1(T )}, ∥g∥E× = sup

f ∈E,∥ f ∥E ≤1

ˆ
T

f g dν.

Moreover, if X∗ has the Radon–Nykodým property with respect to ν, then

[E(X )]∗ = E×(X∗, σ (X∗, X )) = E×(X∗).

3. Definitions and basic properties

Suppose that Rd is d -decomposed with d ∈ (N1)ℓ and let A = (A1, . . . , Aℓ) be a d -
nisotropy. Let X be a Banach space, (S,A , µ) a σ -finite measure space, ε+, ε− ∈ R and

r ∈ (0,∞)ℓ.
For j ∈ {1, . . . , ℓ}, we define the maximal function operator M

A j
r j ;[d ; j] on L0(S × Rd ) by

M
A j
r j ;[d ; j]( f )(s, x) := sup

δ>0

 
B A j (0,δ)

| f (s, x + ι[d ; j] y j )| dy j ,

where ι[d ; j] : Rd j → Rd is the inclusion mapping from (7). We define the maximal function
operator M A

r by iteration:

M A
r ( f ) := M Aℓ

rℓ;[d ;ℓ](. . . (M A1
r1;[d ;1]( f )) . . .).

We write M A
:= M A

1 .
The following definition is an extension of [24, Definition 1.1.1] to the anisotropic setting

with some extra underlying measure space (S,A , µ). The extra measure space provides the
right setting for intersection representations, see Section 5.

Definition 3.1. We define S(ε+, ε−, A, r, (S,A , µ)) as the set of all quasi-Banach function
spaces E on Rd

× N × S with the Fatou property for which the following two properties are
fulfilled:

(a) S+, S−, the left respectively right shift on N, are bounded on E with

∥(S+)k
∥B(E) ≲ 2−ε+k and ∥(S−)k

∥B(E) ≲ 2ε−k, k ∈ N.
11
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(b) M A
r is bounded on E :

∥M A
r ( fn)∥E ≲ ∥( fn)∥E , ( fn) ∈ E .

e similarly define S(ε+, ε−, A, r) without the presence of (S,A , µ), or equivalently,
(ε+, ε−, A, r) = S(ε+, ε−, A, r, ({0}, {∅, {0}}, #)).

Remark 3.2. Note that ε+ ≤ ε− when E ̸= {0}, which can be seen by considering
(S+)k

◦ (S−)k , k ∈ N.

Remark 3.3. Note that

S(ε+, ε−, A, r, (S,A , µ)) ⊂ S(ε+, ε−, A, r̃, (S,A , µ)), r ≥ r̃.

Example 3.4. Suppose that ℓ = 1 and A = A = Id , so that we are in the classical isotropic
setting. Then r = r ∈ (0,∞) and

M A
r ( f ) (x) = Mr ( f ) (x) = sup

δ>0

( 
B(0,δ)

| f (x + y)|r dy
)1/r

on L0(Rd ). By the Fefferman–Stein vector-valued maximal inequality (see e.g. [55, Sec-
tion 1.2.3]) and the Hardy–Littlewood maximal inequality, we thus obtain the following
examples.

(i) Let p ∈ (0,∞), q ∈ (0,∞] and s ∈ R. If r ∈ (0,∞) is such that r < p ∧ q, then

E = L p(Rd )[ℓs
q (N)] ∈ S(s, s, Id , r ).

(ii) Let p ∈ (0,∞), q ∈ (0,∞] and s ∈ R. If r ∈ (0,∞) is such that r < p, then

E = ℓs
q (N)[L p(Rd )] ∈ S(s, s, Id , r ).

The following example generalizes the previous example to the anisotropic weighted mixed-
orm setting. Furthermore, it also goes beyond the case of a trivial underlying measure space
S,A , µ).

xample 3.5. Let us give some concrete choices of E ∈ S(ε+, ε−, A, r, (S,A , µ)).
ondition (b) in Definition 3.1 can be covered by means of the lattice Hardy–Littlewood
aximal function operator: if F is a UMD Banach function space on S, A an anisotropy,

p ∈ (1,∞), and w ∈ Ap(Rd , A) then (see [8,18,19,47,54])

M f (x) := sup
δ>0

 
B A(x,δ)

| f (y)| dy

efines a bounded sublinear operator on L p(Rd , w; F) = L p(Rd , w)[F]. The latter induces a
ounded sublinear operator on L p(Rd , w)[F[ℓ∞]] in the natural way. Let us furthermore remark
hat the mixed-norm space F[G] of two UMD Banach function spaces F and G is again a UMD
anach function space (see [47, page 214]). This leads to the following examples:

(i) Let p ∈ (0,∞)ℓ, q ∈ (0,∞], w ∈
∏ℓ

j=1 A∞(Rd j , A j ) and s ∈ R. If r ∈ (0,∞)ℓ is such
that r j < p1 ∧ · · · ∧ p j ∧ q for j = 1, . . . , ℓ and w ∈

∏ℓ
j=1 Ap j /r j (R

d j , A j ), then

E = L p(Rd ,w)[ℓs
q (N)] ∈ S(s, s, A, r).
12
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(ii) Let p ∈ (0,∞)ℓ, q ∈ (0,∞], w ∈
∏ℓ

j=1 A∞(Rd j , A j ) and s ∈ R. If r ∈ (0,∞)ℓ is such
that r j < p1 ∧ · · · ∧ p j for j = 1, . . . , ℓ and w ∈

∏ℓ
j=1 Ap j /r j (R

d j , A j ), then

E = ℓs
q (N)[L p(Rd ,w)] ∈ S(s, s, A, r).

(iii) Let p ∈ (0,∞)ℓ, q ∈ (0,∞] and w ∈
∏ℓ

j=1 A∞(Rd j , A j ), s ∈ R and F a quasi-Banach
function space on S. If r ∈ (0,∞)ℓ is such that r j < p1 ∧ · · · ∧ p j ∧ q for j = 1, . . . , ℓ
and w ∈

∏ℓ
j=1 Ap j /r j (R

d j , A j ) and F [rmax] is a UMD Banach function space, where

F [r ]
:= { f ∈ L0(S) : | f |

1/r
∈ F}, ∥ f ∥F [r ] := ∥| f |

1/r
∥

r
F ,

then

E = L p(Rd ,w)[F[ℓs
q (N)]] ∈ S(s, s, A, r, (S,A , µ)).

emark 3.6. Note that we can take r = 1 in Example 3.5 when, in each of the corresponding
xamples:

(i) p ∈ (1,∞)ℓ, q ∈ (1,∞] and w ∈
∏ℓ

j=1 Ap j (R
d j , A j );

(ii) p ∈ (1,∞)ℓ, q ∈ (0,∞] and w ∈
∏ℓ

j=1 Ap j (R
d j , A j );

(iii) p ∈ (1,∞)ℓ, q ∈ (1,∞], w ∈
∏ℓ

j=1 Ap j (R
d j , A j ) and F is a UMD Banach function

space.

For a quasi-Banach function space E on Rd
× N × S we define the quasi-Banach function

pace E A
⊗

on S by

∥ f ∥E A
⊗

:= ∥1B A(0,1)×{0} ⊗ f ∥E , f ∈ L0(S).

ote that E A
⊗

∼= C in case that (S,A , µ) = ({0}, {∅, {0}}, #).

xample 3.7. In the situation of Example 3.5(iii), E A
⊗

= F with

∥ f ∥E A
⊗

= ∥1B A(0,1)∥L p(Rd ,w)∥ f ∥F , f ∈ F.

Let p ∈ (0,∞)ℓ and w : [1,∞)ℓ → (0,∞). We define the quasi-Banach function space

B p,w
A :=

{
f ∈ L0(S) : sup

R∈[1,∞)ℓ
w(R)∥ f ∥L p,d (B A(0,R)) < ∞

}
(8)

hich is an extension of (a slight variant of) the space B p considered by Beurling in [7]
see [45]).

Let p, q ∈ (0,∞)ℓ. We define wA,q : [1,∞)ℓ → R+ by

wA,q(R) := R−tr(A)q−1
=

ℓ∏
j=1

R
−tr(A j )/q j
j , R ∈ [1,∞)ℓ.

he quasi-Banach function space B
p,wA,q
A ↪→ L p,d ,loc(Rd ) introduced in (8) will be convenient

o formulate some of the estimates we will obtain. Note that, if p ∈ [1,∞)ℓ, then

B
p,wA,q
A (X ) ↪→ S ′(Rd

; X ).

emma 3.8. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)) and λ ∈ (−∞, ε+). For F = ( fn)n ∈ E and
g :=

∑
∞

n=0 2nλ
| fn| we have
∥(δ0,ng)n∥E ≲ ∥F∥E . (9)

13
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Moreover, g ∈ E A
⊗

[B
r,wA,r
A ] ↪→ E A

⊗
[L r,d ,loc(Rd )] with

∥g∥
E A

⊗
[B

r,wA,r
A ]

≲ ∥F∥E . (10)

Remark 3.9. Suppose that ε+ > 0 and λ ∈ (0, ε+) in Lemma 3.8. Let κ ∈ (0, 1] with κ ≤ rmin
be such that ∥ · ∥E is a equivalent to a κ-norm. Then, in particular, 2nλ fn ∈ E A

⊗
[B

r,wA,r
A ] with

∥2nλ fn∥E A
⊗

[B
r,wA,r
A ]

≲ ∥F∥E , so that

∞∑
n=0

∥ fn∥
κ

E A
⊗

[B
r,wA,r
A ]

=

∞∑
n=0

2−nλκ
∥2nλ fn∥

κ

E A
⊗

[B
r,wA,r
A ]

≲
∞∑

n=0

2−nλκ
∥F∥E ≲ ∥F∥E .

emark 3.10. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)). Similarly to the proof of Lemma 3.8 (but
impler) it can be shown that

Ei ↪→ E A
⊗

[B
r,wA,r
A ].

roof of Lemma 3.8. This can be shown similarly to [24, Lemma 1.1.4]. Let us just provide the
etails for (10). As |B A j (x j , R j )| ≂ R

tr(A j )/r j
j , j = 1, . . . , ℓ, for any x ∈ Rd and R ∈ (0,∞)ℓ,

e have

1B A(0,R) ⊗ ∥g∥L r,d (B A(0,R)) ≲
ℓ∏

j=1

R
tr(A j )/r j
j M A

r (g), R ∈ [1,∞)ℓ.

herefore,

1B A(0,1) ⊗ wA,r (R)∥g∥L r,d (B A(0,R)) ≲ M A
r (g), R ∈ [1,∞)ℓ,

o that

1B A(0,1) ⊗ ∥g∥
B

r,wA,r
A

≲ M A
r (g).

t thus follows that

∥g∥
E A

⊗
[B

r,wA,r
A ]

=
1B A(0,1)×{0} ⊗ ∥g∥

B
r,wA,r
A


E ≲ ∥M A

r (δ0,ng)n∥E .

sing the boundedness of M A
r on E in combination with (9) we obtain the desired estimate

10). □

Having introduced the classes of ‘admissible’ quasi-Banach function spaces in Definition 3.1
nd having discussed some basic properties of these, let us now proceed with the associated
unction spaces. Let us for introductory purposes first have a look at the classical isotropic
izorkin–Triebel and Besov spaces.

In the setting of Example 3.4, we would like to associate to E = L p(Rd )[ℓs
q (N)] and

E = ℓs
q (N)[L p(Rd )] the classical Lizorkin–Triebel space Y (E) = F s

p,q (Rd ) and the classical
esov space Y (E) = Bs

p,q (Rd ), respectively.
A standard way to define the Lizorkin–Triebel and Besov spaces is by means of a smooth

esolution of unity/Littlewood–Paley decomposition, as in [55, Section 2.3.1, Definition 2].
owever, there are many other ways. For instance, F s

p,q (Rd ) and Bs
p,q (Rd ) could alternatively be

efined through the Nikol’skij representations as in [55, Section 2.5.2] (also see the references
herein), which may be characterized as a “decomposition of the given distribution by entire
nalytic functions of exponential type”. This decomposition is a representation as a series of
14
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entire analytic functions of exponential type whose spectra lie in dyadic annuli. The annuli
can be even replaced by balls when s > d( 1

r − 1)+, where r is as in Example 3.4, see
49, Section 2.3.2], [28, Section 3.6] or [24, Proposition 1.1.12]. Moreover, in the latter
ituation, F s

p,q (Rd ) and Bs
p,q (Rd ) consist of regular distributions and the series not only

onverges in a distributional sense (in S ′) but also in a measure theoretic sense (in L1,loc).
The characterization through the series representation with the dyadic ball condition and the
convergence in a measure theoretic sense, valid under the restriction s > d( 1

r −1)+, has turned
ut to be quite useful. Such a description is taken as the definition of the spaces of measurable
unctions F Ls

p,q (Rd ) and BLs
p,q (Rd ) for s ∈ (0,∞), so that F s

p,q (Rd ) = F Ls
p,q (Rd ) and

Bs
p,q (Rd ) = BLs

p,q (Rd ) when s > d( 1
r − 1)+. As is mentioned in [24, page 9], the spaces

F Ls
p,q (Rd ) and BLs

p,q (Rd ) have been less studied in the range s ≤ d( 1
r − 1)+, where they do

not coincide with the Lizorkin–Triebel and Besov spaces, but see [42,43].
We will associate to E = L p(Rd )[ℓs

q (N)] and E = ℓs
q (N)[L p(Rd )] the spaces of distributions

Y (E) = F s
p,q (Rd ) and Y (E) = Bs

p,q (Rd ), respectively, through the Nikol’skij representation
discussed above. We will furthermore associate to these choices of E , under the restriction
that s ∈ (0,∞), the respective spaces of measurable functions Y L(E) = F Ls

p,q (Rd ) and
Y L(E) = BLs

p,q (Rd ).
Let us now turn back to the general setting. In Definitions 3.11 and 3.12 we will define

the spaces Y L A(E; X ) and Ỹ L
A(E; X ), respectively, which are both generalizations of Y L(E)

from [24, Definition 1.1.15] to our setting. The difference between Y L A(E; X ) and Ỹ L
A(E; X )

will be a matter of the X -valued setting. Whereas Y L A(E; X ) will be defined in a more
straightforward way, simply replacing E by E(X ) compared to the scalar-valued setting, the
definition of Ỹ L

A(E; X ) will be more technical, involving testing with functionals x∗
∈ X∗

in combination with, and in interplay with, some kind of domination. The motivation for the
more technical space Ỹ L

A(E; X ) comes from Remark 4.5 on estimates involving differences.
In Definition 3.15 we will define the space Y A(E; X ) through a Nikol’skij representation

type of approach, which is a generalization of Y (E) from [24, Definition 1.1.16] to our
setting. The equivalent Littlewood–Paley description will follow in Proposition 3.19. Concrete
examples will be given Example 3.20, which includes the classical Lizorkin–Triebel and Besov
spaces discussed above. Furthermore, in Theorem 3.22 we will see that, under a suitable
restriction, Y A(E; X ) coincides with Y L A(E; X ) and Ỹ L

A(E; X ).

Definition 3.11. Suppose that ε+, ε− > 0 and let E ∈ S(ε+, ε−, A, r, (S,A , µ)). We define
Y L A(E; X ) as the space of all f ∈ L0(S; L r,d ,loc(Rd

; X )) which have a representation

f =

∞∑
n=0

fn in L0(S; L r,d ,loc(Rd
; X ))

with ( fn)n ⊂ L0(S;S ′(Rd
; X )) satisfying the spectrum condition

supp f̂n ⊂ B
A

(0, 2n+1), n ∈ N,

and ( fn)n ∈ E(X ). We equip Y L A(E; X ) with the quasinorm

∥ f ∥Y L A(E;X ) := inf ∥( fn)∥E(X ),

where the infimum is taken over all representations as above. We write Y L A(E) := Y L A(E;C).
15
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Definition 3.12. Suppose that ε+, ε− > 0 and let E ∈ S(ε+, ε−, A, r, (S,A , µ)). We define
Ỹ L

A(E; X ) as the space of all f ∈ L0(S; L r,d ,loc(Rd
; X )) for which there exists (gn)n ∈ E+

uch that, for all x∗
∈ X∗, ⟨ f, x∗

⟩ has a representation

⟨ f, x∗
⟩ =

∞∑
n=0

fx∗,n in L0(S; L r,d ,loc(Rd ))

ith ( fx∗,n)n ⊂ L0(S;S ′(Rd )) satisfying the spectrum condition

supp f̂x∗,n ⊂ B
A

(0, 2n+1), n ∈ N,

nd the domination | fx∗,n| ≤ ∥x∗
∥gn . We equip Ỹ L

A(E; X ) with the quasinorm

∥ f ∥
Ỹ L A(E;X ) := inf ∥(gn)∥E ,

here the infimum is taken over all (gn)n as above. We write Ỹ L
A(E) := Ỹ L

A(E;C).

emark 3.13. Note that Ỹ L
A(E) = Y L A(E).

emark 3.14. Suppose that ε+, ε− > 0 and let E ∈ S(ε+, ε−, A, r, (S,A , µ)). Then the
ollowing statements hold:

(i) Y L A(E; X ) ⊂ Ỹ L
A(E; X ) with equality of norms.

(ii) Let f ∈ Y L A(E; X ) with ( fn)n as in Definition 3.11 with ∥( fn)n∥E(X ) ≤ 2∥ f ∥Y L A(E;X ).
Let r̃ ∈ (0,∞)ℓ be such that

E ∈ S(ε+, ε−, A, r̃, (S,A , µ)). (11)

Then, by Remark 3.9, as

E A
⊗

(B
r̃,wA,r̃
A (X )) ↪→ L0(S; L r̃,d ,loc(Rd

; X )) ↪→ L0(S; L ˜r∧r,d ,loc(Rd
; X )),

there is the convergence f =
∑

∞

n=0 fn in E A
⊗

(B
r̃,wA,r̃
A (X )) with

∥ f ∥
E A

⊗
(B

r̃,wA,r̃
A (X ))

≲ ∥( fn)n∥E(X ) ≤ 2∥ f ∥Y L A(E;X ).

In particular, Y L A(E; X ) does not depend on r and

Y L A(E; X ) ↪→ E A
⊗

(B r,wA,r (X )).

(iii) Let f ∈ Ỹ L
A(E; X ) with (gn)n ∈ E+ and { fx∗,n}(x∗,n) as in Definition 3.12 with

∥(gn)n∥E ≤ 2∥ f ∥
Ỹ L A(E;X ). Let r̃ ∈ (0,∞)ℓ satisfy (11). Then ∥ f ∥X ≤

∑
∞

n=0 gn , so

that f ∈ E A
⊗

(B
r̃,wA,r̃
A (X )) ⊂ L0(S; L r̃,d ,loc(Rd

; X )) with

∥ f ∥
E A

⊗
(B

r̃,wA,r̃
A (X ))

≲ ∥(gn)n∥E ≤ 2∥ f ∥
Ỹ L A(E;X )

by Remark 3.9. By (ii) it furthermore holds that

⟨ f, x∗
⟩ =

∞∑
n=0

fx∗,n in L0(S; L r̃,d ,loc(Rd )).

Therefore, Ỹ L
A(E; X ) does not depend on r and

Ỹ L
A(E; X ) ↪→ E A

⊗
(B r,wA,r (X )).
16
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Definition 3.15. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)). We define Y A(E; X ) as the space of all
f ∈ L0(S;S ′(Rd

; X )) which have a representation

f =

∞∑
n=0

fn in L0(S;S ′(Rd
; X ))

with ( fn)n ⊂ L0(S;S ′(Rd
; X )) satisfying the spectrum condition

supp f̂0 ⊂ B
A

(0, 2)

supp f̂n ⊂ B
A

(0, 2n+1) \ B A(0, 2n−1), n ≥ 1,

nd ( fn)n ∈ E(X ). We equip Y A(E; X ) with the quasinorm

∥ f ∥Y A(E;X ) := inf ∥( fn)∥E(X ),

here the infimum is taken over all representations as above.

xample 3.16. In the setting of Example 3.4,

Y A(E) = Y Id (E) =

{
F s

p,q (Rd ), if E = L p(Rd )[ℓs
q (N)],

Bs
p,q (Rd ), if E = ℓs

q (N)[L p(Rd )],

ee for instance [55, Section 2.5.2].

More examples will be given in Example 3.20, after the Littlewood–Paley description given
n Proposition 3.19.

roposition 3.17. Suppose that ε+, ε− > 0 and let E ∈ S(ε+, ε−, A, r, (S,A , µ)). Then
Y L A(E; X ) and Ỹ L

A(E; X ) are quasi-Banach spaces with

Y L A(E; X ) ⊂ Ỹ L
A(E; X ) ↪→ E A

⊗
(B

r,wA,r
A ; X ),

here Y L A(E; X ) is a closed subspace of Ỹ L
A(E; X ).

roof. By Remark 3.14,

Y L A(E; X ), Ỹ L
A(E; X ) ↪→ E A

⊗
(B

r,wA,r
A ; X ). (12)

hat Y L A(E; X ) ⊂ Ỹ L
A(E; X ) with ∥ f ∥Y L A(E;X ) = ∥ f ∥

Ỹ L A(E;X ) for all f ∈ Y L A(E; X )

ollows easily from the definitions. So it remains to be shown that Y L A(E; X ) and Ỹ L
A(E; X )

re complete.
Let us first treat Y L A(E; X ). To this end, let the subspace E(X )A of E(X ) be defined by

E(X )A :=

{
( fn)n ∈ E(X ) : fn ∈ L0(S;S ′(Rd

; X )), supp f̂n ⊂ B
A

(0, 2n+1)
}

y Lemma 3.8,

Σ : E(X )A −→ E A
⊗

[L r (Rd ,w)](X ) ↪→ L0(S; L r,d ,loc(Rd
; X )), ( fn)n ↦→

∞∑
n=0

fn

s a well-defined continuous linear mapping. As

Y L A(E; X ) ≃ E(X )A⧸ker(Σ ) isometrically,

t suffices to show that E(X ) is complete.
A

17
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In order to show that E(X )A is complete, we prove that it is a closed subspace of the
uasi-Banach space E(X ). Put w(x) :=

∏ℓ
j=1(1 + ρA j (x j ))tr(A j )/r j . Then it is enough to show

that, for each k ∈ N,

E(X )A −→ L0(S; BC(Rd , w; X )), ( fn)n ↦→ fk, (13)

ontinuously, where BC(Rd , w; X ) = {h ∈ C(Rd
; X ) : wh ∈ L∞(Rd

; X )}. Indeed,
BC(Rd , w; X ) ↪→ S ′(Rd

; X ).
In order to establish (13), let ( fn)n ∈ E(X )A. By Corollary A.2,

sup
z∈B A(0,2−n )

∥ fn∥X ≲ M A
r (∥ fn∥x )(x),

o that

∥ fn(x)∥X ≲ inf
z∈B A(0,2−n )

M A
r (∥ fn∥X )(x + z)

≲ 2ntr(A)·r−1M A
r (∥ fn∥X )


L r,d (B A(x,2−n )).

or R ∈ [1,∞)ℓ we can thus estimate

sup
z∈B A(0,R)

∥ fn(x)∥X ≲ 2ntr(A)·r−1M A
r (∥ fn∥X )


L r,d (B A(0,cA[R+2−n1]))

≲ 2ntr(A)·r−1M A
r (∥ fn∥X )


L r,d (B A(0,2cA R))

≲ 2ntr(A)·r−1
inf

z∈B A(0,R)

M A
r (∥ fn∥X )


L r,d (B A(0,2cA(cA+1)R))

≲ 2ntr(A)·r−1
Rtr(A)r−1

inf
z∈B A(0,R)

M A
r (M A

r (∥ fn∥X ))(z). (14)

he latter implies that

1B A(0,R) ⊗ ∥ fn∥L∞(B A(0,R);X ) ≲ 2ntr(A)·r−1
Rtr(A)r−1

M A
r (M A

r (∥ fn∥X ))

or R ∈ [1,∞)ℓ. It thus follows that

∥ fn∥E A
⊗

(L∞(B A(0,R);X )) ≤

1B A(0,R)×{0} ⊗ ∥ fn∥L∞(B A(0,R);X )


E

≲ 2ntr(A)·r−1
Rtr(A)r−1

∥(δ0,k M A
r (∥ fn∥X ))k∥E

≲ 2n(tr(A)·r−1
−ε+) Rtr(A)r−1

∥(hk)k∥E(X ).

Let us finally prove that Ỹ L
A(E; X ) is complete. To this end, let κ ∈ (0, 1] with κ ≤ rmin

e such that ∥ · ∥E is equivalent to a κ-norm. Then ∥ · ∥
Ỹ L A(E;X ) and ∥ · ∥E A

⊗
[L r (Rd ,w)](X )

re equivalent to κ-norms as well. It suffices to show that, if ( f (k))k∈N ⊂ Ỹ L
A(E; X ) satisfies

∞

k=0 ∥ f (k)
∥
κ

Ỹ L A(E;X )
< ∞, then

∑
∞

k=0 f (k) is a convergent series in Ỹ L
A(E; X ). So fix such

( f (k))k∈N. As a consequence of (12),
∞∑

k=0

∥ f (k)
∥
κ

E A
⊗

[L r (Rd ,w)]
≲

∞∑
k=0

∥ f (k)
∥
κ

Ỹ L A(E;X )
< ∞.

s E A
⊗

[L r (Rd ,w)] is a quasi-Banach space with a κ-norm,
∑

∞

k=0 f (k) converges to some
F in E A

⊗
[L r (Rd ,w)]. To finish the proof, we show that F ∈ Ỹ L

A(E; X ) with convergence∑
∞ (k) ˜ A
F = k=0 f in Y L (E; X ).

18
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For each k ∈ N there exists (g(k)
n )n ∈ E+ with ∥(g(k)

n )n∥E ≤ 2∥ f (k)
∥

Ỹ L A(E;X ) such that, for
very x∗

∈ X∗, ⟨ f (k), x∗
⟩ has the representation

⟨ f (k), x∗
⟩ =

∞∑
n=0

f (k)
x∗,n in L0(S; L r,d ,loc(Rd ))

or some ( f (k)
x∗,n)n ∈ E A with | f (k)

x∗,n| ≤ ∥x∗
∥g(k)

n . By Remark 3.14,
∞∑

k=0

∞∑
n=0

∥ f (k)
x∗,n∥

κ

E A
⊗

[L r (Rd ,w)]
≲

∞∑
k=0

∥ f (k)
∥
κ

Ỹ L A(E;X )
< ∞.

s E A
⊗

[L r (Rd ,w)] ↪→ L0(S; L r,d ,loc(Rd )) ↪→ L0(S × Rd ) is a quasi-Banach space with a
-norm, we thus find that F =

∑
∞

n=0 Fx∗,n in L0(S; L r,d ,loc(Rd )) with Fx∗,n :=
∑

∞

k=0 f (k)
x∗,n in

L0(Rd
× S) satisfying |Fx∗,n| ≤

∑
∞

k=0 | f (k)
x∗,n| ≤ ∥x∗

∥
∑

∞

k=0 g(k)
n . As E A is a closed subspace of

he quasi-Banach function space E on Rd
× N × S with κ-norm, it follows from

∞∑
k=0

∥( f (k)
x∗,n)n∥

κ
E ≤ ∥x∗

∥
κ

∞∑
k=0

∥ f (k)
∥
κ

Ỹ L A(E;X )
< ∞

hat (Fx∗,n)n =
∑

∞

k=0 f (k)
x∗,n in E and thus that (Fx∗,n)n ∈ E A. Moreover, Gn :=

∑
∞

k=0 g(k)
n

efines (Gn)n ∈ E+ with

∥(Gn)n∥
κ
E ≤

∞∑
k=0

∥(gk
n)n∥

κ
E ≤ 2

∞∑
k=0

∥ f (k)
∥
κ

Ỹ L A(E;X )

nd |Fx∗,n| ≤ ∥x∗
∥Gn . This shows that F ∈ Ỹ L

A(E; X ) with convergence F =
∑

∞

k=0 f (k) in
Ỹ L

A(E; X ). □

The content of the following proposition is a Littlewood–Paley characterization for
Y A(E; X ). Before we state it, we first need to introduce the set Φ A(Rd ) of all A-anisotropic

ittlewood–Paley sequences ϕ = (ϕn)n∈N.

efinition 3.18. For 0 < γ < δ < ∞ we define Φ A
γ,δ(Rd ) as the set of all sequences

= (ϕn)n∈N ⊂ S(Rd ) that can be constructed in the following way: given ϕ0 ∈ S(Rd )
atisfying

0 ≤ ϕ̂0 ≤ 1, ϕ̂0(ξ ) = 1 if ρA(ξ ) ≤ γ, ϕ̂0(ξ ) = 0 if ρA(ξ ) ≥ δ,

ϕn)n≥1 ⊂ S(Rd ) is obtained through

ϕ̂n = ϕ̂1(A2−n+1 · ) = ϕ̂0(A2−n · ) − ϕ̂0(A2−n+1 · ), n ≥ 1.

We define Φ A(Rd ) :=
⋃

0<γ<δ<∞
Φ A
γ,δ(Rd ).

Let ϕ = (ϕn)n∈N ∈ Φ A
γ,δ(Rd ). Then

∑
∞

n=0 ϕ̂n = 1 in OM (Rd ) with

supp ϕ̂0 ⊂ {ξ : ρA(ξ ) ≤ γ }, supp ϕ̂n ⊂ {ξ : 2n−1γ ≤ ρA(ξ ) ≤ 2nδ}, n ≥ 1,

o ϕ we associate the family of convolution operators (Sn)n∈N = (Sϕn )n∈N ⊂ L
S ′(Rd

; X ), Ě ′(Rd
; X )) given by

Sn f = Sϕn f := ϕn ∗ f = F−1[ϕ̂n f̂ ].
19
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Proposition 3.19. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)) and ϕ = (ϕn)n∈N ∈ Φ A(Rd ) with
ssociated sequence of convolution operators (Sn)n∈N. Then

Y A(E; X ) = { f ∈ L0(S;S ′(Rd
; X )) : (Sn f )n ∈ E(X )}

ith

∥ f ∥Y A(E;X ) ≂ ∥(Sn f )n∥E(X ).

Before we go the proof of Proposition 3.19, let us first consider the following.

xample 3.20. In the following three points we let the notation be as in Examples 3.5(i),
.5(ii) and 3.5(iii), respectively. We define:

(i) F s,A
p,q (Rd ,w; X ) := Y A(E; X ) for E = L p(Rd ,w)[ℓs

q (N)];

(ii) Bs,A
p,q (Rd ,w; X ) := Y A(E; X ) for E = ℓs

q (N)[L p(Rd ,w)];

(iii) Fs,A
p,q (Rd ,w; F; X ) := Y A(E; X ) for E = L p(Rd ,w)[F[ℓs

q (N)]].

estricting to special cases we find, in view of Proposition 3.19, B- and F-spaces that have
een studied in the literature:

i)&(ii): (a) In case ℓ = 1, w = 1 and X = C, F s,A
p,q (Rd ,w; X ) and Bs,A

p,q (Rd ,w; X ) reduce
to the anisotropic Besov and Lizorkin–Triebel spaces considered in e.g. [14,17]. The
latter are special cases of the anisotropic spaces from the more general [4,9,10] by
taking 2A as the expansive dilation in the approach there.

(b) In case ℓ = d, A = diag(a) with a ∈ (0,∞), w = 1 and X = C, F s,A
p,q (Rd ,w; X ) and

Bs,A
p,q (Rd ,w; X ) reduce to the anisotropic mixed-norm Besov and Lizorkin–Triebel

spaces considered in e.g. [27,28].
(c) In case A = (a1 Id1 , . . . , aℓ Idℓ ) with a ∈ (0,∞), F s,A

p,q (Rd ,w; X ) and Bs,A
p,q (Rd ,w; X )

reduce to the anisotropic weighted mixed-norm Besov and Lizorkin–Triebel spaces
considered in [33,36].

(d) In case ℓ = 1 and A = I , F s,A
p,q (Rd ,w; X ) and Bs,A

p,q (Rd ,w; X ) reduce to the weighted
Besov and Lizorkin–Triebel spaces considered in e.g. [11–13,20–23,35,52] (X = C)
and [39–41] (X a general Banach space). In the case w = 1 these further reduces to
the classical Besov and Lizorkin–Triebel spaces (see e.g. [50,55,56]).

(iii): (a) In case ℓ = 1, A = I , p ∈ (1,∞), q ∈ [1,∞], w = 1, F is a UMD Banach
function space and X = C, Fs,A

p,q (Rd ,w; F; X ) reduces to a special case of the
generalized Lizorkin–Triebel spaces considered in [32].

(b) In case ℓ = 1, A = I , p ∈ (1,∞), q = 2, w ∈ Ap(Rd ), F is a UMD Banach
function space and X is a Hilbert space, Fs,A

p,q (Rd ,w; F; X ) coincides with the
weighted Bessel potential space H s

p(Rd , w; F(X )) (which can be seen as a special
case of [41, Proposition 3.2] through the use of the Khintchine–Maurey theorem
(see e.g. [26, Theorem 7.2.13])).

The proof of Proposition 3.19 basically only consists of proving the estimate in the following
emma. We have extracted it as a lemma as it is interesting on its own. A consequence of the
emma for instance is that the spectrum condition in Definition 3.15 could be slightly modified.

emma 3.21. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)), c ∈ (1,∞) and ϕ = (ϕn)n∈N ∈ Φ A(Rd )
′ d
ith associated sequence of convolution operators (Sn)n∈N. For all f ∈ L0(S;S (R ; X )) which

20
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have a representation

f =

∞∑
n=0

fn in L0(S;S ′(Rd
; X ))

ith ( fn)n ⊂ L0(S;S ′(Rd
; X )) satisfying the spectrum condition

supp f̂0 ⊂ B
A

(0, c)

supp f̂n ⊂ B
A

(0, c2n) \ B A(0, c−12n), n ≥ 1,

here is the estimate

∥(Sn f )n∥E(X ) ≲ ∥( fn)n∥E(X ).

roof. This can be established as in [33, Lemma 5.2.10] (also see [55, Section 2.3.2] and
58, Section 15.5]), using a combination of Corollary A.2 and Lemma A.3. □

roof of Proposition 3.19. Let f ∈ Y A(E; X ). Take ( fn)n as in Definition 3.15 with
( fn)n∥E(X ) ≤ 2∥ f ∥Y A(E;X ). Lemma 3.21 (with c = 2) then gives

∥(Sn f )n∥E(X ) ≲ ∥( fn)n∥E(X ) ≤ 2∥ f ∥Y A(E;X ).

For the reverse direction, let f ∈ L0(S;S ′(Rd
; X )) be such that (Sn f )n ∈ E(X ). Pick

= (ψn)n∈N ∈ Φ A(Rd ) such that

supp ψ̂0 ⊂ B
A

(0, 2), supp ψ̂n ⊂ B
A

(0, 2n+1) \ B A(0, 2n−1), n ≥ 1,

nd let (Tn)n∈N denote the associated sequence of convolution operators. Then

supp T̂0 f ⊂ B
A

(0, 2), supp T̂n f ⊂ B
A

(0, 2n) \ B A(0, 2n−1), n ≥ 1, (15)

icking c ∈ (1,∞) such that

supp ϕ̂0 ⊂ B
A

(0, c), supp ϕ̂n ⊂ B
A

(0, c2n) \ B A(0, c−12n), n ≥ 1,

e furthermore have

supp Ŝn f ⊂ B
A

(0, c), supp Ŝn f ⊂ B
A

(0, c2n) \ B A(0, c−12n), n ≥ 1.

s f =
∑

∞

n=0 Sn f in L0(S;S ′(Rd
; X )), Lemma 3.21 gives

∥(Tn f )n∥E(X ) ≲ ∥(Sn f )n∥E(X ).

ince f =
∑

∞

n=0 Sn f in L0(S;S ′(Rd
; X )) with (15), it follows that f ∈ Y A(E; X ) with

∥ f ∥Y A(E;X ) ≤ ∥(Tn f )n∥E(X ) ≲ ∥(Sn f )n∥E(X ). □

heorem 3.22. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)). Suppose that ε+ > tr(A) · (r−1
− 1)+,

here tr(A) is the component-wise trace of A given by tr(A) := (tr(A1), . . . , tr(Aℓ)). Then

Ỹ L
A(E; X ) ↪→ E A

⊗
(B

1,wA,r∧1
A (X )) ↪→ L0(S; L1∧r,d ,loc(Rd

; X )) (16)

nd

Y A(E; X ) ↪→ E A
⊗

(B
1,wA,r∧1
A (X )) ↪→ S ′(Rd

; E A
⊗

(X ))

↪→ S ′(Rd
; L (S; X )) = L (S;S ′(Rd

; X )) (17)
0 0

21



N. Lindemulder Journal of Approximation Theory 264 (2021) 105519

R
w

L

I

f

f

and there is the identity

Y A(E; X ) = Y L A(E; X ) = Ỹ L
A(E; X ). (18)

emark 3.23. Note that the condition ε+ > tr(A) · (r−1
− 1)+ is for instance fulfilled

hen r ≥ 1.

We will use the following lemma in the proof of Theorem 3.22.

emma 3.24. Let the notations and assumptions be as in Theorem 3.22. Let c ∈ (0,∞). If

( fn)n ∈ E(X )A,c :=

{
(hn)n ∈ E(X ) : hn ∈ L0(S;S ′(Rd

; X )), supp ĥn ⊂ B
A

(0, c2n+1)
}
,

then
∑

n∈N fn is a convergent series in L0(S; B
1,wA,r∧1
A (X )) with ∞∑

n=0

fn


E A
⊗

(B
1,wA,r∧1
A (X ))

≤

 ∞∑
n=0

∥ fn∥X


E A

⊗
(B

1,wA,r∧1
A )

≲ ∥( fn)n∥E(X ).

Proof. It suffices to prove the second estimate. We may without loss of generality assume
that r ∈ (0, 1]ℓ. Choose κ > 0 such that E A

⊗
has a κ-norm. For simplicity of notation we only

present the case ℓ = 2 and c = 1, the general case being the same.
Let ( fn)n ∈ E(X )A. Let R ∈ [1,∞)2. As a consequence of the Paley–Wiener–Schwartz

theorem,

Ě ′

B A(0,2n )
(Rd

; X ) ↪→ C∞(Rd2; Ě ′

B A1 (0,2n )
(Rd1; X )) ∩ C∞(Rd1; Ě ′

B A2 (0,2n )
(Rd2; X )).

n particular, as in (14) we find that

∥ fn(x1, z2)∥X ≲ (2n R1)tr(A1)/r1 M A1
r1;[d ;1](M A1

r1,[d ;1](∥ fn∥X ))(y1, z2) (19)

or all x1, y1 ∈ B A1 (0, R1) and z1 ∈ Rd1 , and

∥ fn(z1, x2)∥X ≲ (2n R2)tr(A2)/r2 M A2
r2;[d ;2](M A2

r2,[d ;2](∥ fn∥X ))(z1, y2) (20)

or all x2, y2 ∈ B A2 (0, R2) and z2 ∈ Rd2 .
Then, for z ∈ B A(0, R),ˆ

B A(0,R)
∥ fn(x)∥X dx

=

ˆ
B A2 (0,R2)

ˆ
B A1 (0,R1)

∥ fn(x1, x2)∥X dx1dx2

(19)
≲ ((2n R1)tr(A1)/r1 )1−r1

ˆ
B A2 (0,R2)

M A1
r1;[d ;1](M A1

r1;[d ;1](∥ fn( · , x2)∥X ))(z1)r1−1

·

ˆ
B A1 (0,R1)

∥ fn(x1, x2)∥r1
X dx1dx2

≲ 2ntr(A1)(1−r1)/r1 Rtr(A1)/r1
1

ˆ
B A2 (0,R2)

M A1
r1;[d ;1](M A1

r1;[d ;1](∥ fn( · , x2)∥X ))(z1)dx2

(20)
≲ 2n

(
tr(A1)(1−r1)/r1+tr(A2)(1−r2)/r2

)
Rtr(A)r−1

A1 A1 A2 A2 1−r2
· Mr1;[d ;1] Mr1;[d ;1] Mr2;[d ;2] Mr2;[d ;2](∥ fn∥X )(z1, z2)

22
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· M A2
r2;[d ;1] M

A2
r2;[d ;2] M

A1
r1;[d ;2] M

A1
r1;[d ;1](∥ fn∥X )(z1, z2)r2

≤ 2n(A)·(r−1
−1) Rtr(A)r−1

[M A
r ]4(∥ fn∥X )(z).

his implies that

1B A(0,R) ⊗

ˆ
B A(0,R)

∞∑
n=0

∥ fn(x)∥X dx ≲ Rtr(A)r−1
∞∑

n=0

2n(A)·(r−1
−1)[M A

r ]4(∥ fn∥X ).

ince ε+ > tr(A) · (r−1
− 1)+, it follows that ∞∑

n=0

∥ fn∥X


E A

⊗
(B

1,wA,r∧1
A )

(9)
≲ ∥([M A

r ]4(∥ fn∥X ))n∥E

≲ ∥( fn)∥E(X ). □

roof of Theorem 3.22. We may without loss of generality assume that r ∈ (0, 1]ℓ.
As L0(S; B

1,wA,r∧1
A (X )) ↪→ L0(S;S ′(Rd

; X )), the first inclusion in (17) follows from
emma 3.24. So in (17) it remains to prove the second inclusion. To this end, let us first
ote that

S(Rd ) ↪→ B(B
1,wA,r∧1
A (X ), X ), φ ↦→ ⟨ · , φ⟩.

his induces

S(Rd ) ↪→ B(E A
⊗

(B
1,wA,r∧1
A (X )), E A

⊗
(X )), φ ↦→ ⟨ · , φ⟩.

herefore, f ↦→ [φ ↦→ ⟨ f, φ⟩] is a continuous linear operator from E A
⊗

(B
1,wA,r∧1
A (X )) to

(S(Rd ); E A
⊗

(X )), which is a reformulation of the required inclusion.
As L0(S; B

1,wA,r∧1
A ) ↪→ L0(S; L r,d ,loc(Rd )), the inclusion

Y A(E) ↪→ E A
⊗

(B
1,wA,r∧1
A )

ollows from Lemma 3.24. We thus get a continuous bilinear mapping

Ỹ L
A(E, X ) × X∗

−→ Y L A(E) ↪→ L0(S;S ′(Rd )), ( f, x∗) ↦→ ⟨ f, x∗
⟩.

nd a continuous linear mapping

Ỹ L
A(E, X ) −→ L0(S;S ′(Rd

; X∗∗)), f ↦→ T f , (21)

efined by

⟨x∗, T f (φ)⟩ := ⟨ f, x∗
⟩(φ), φ ∈ S(Rd ), x∗

∈ X∗.

Let us now show that f ↦→ T f (21) restricts to a bounded linear mapping

Ỹ L
A(E, X ) −→ Y A(E; X∗∗), f ↦→ T f . (22)

o this end, let f ∈ Ỹ L
A(E; X ) and put F := T f . Let (gn)n and ( fx∗,n)(x∗,n) be as in

efinition 3.12 with ∥(gn)n∥E ≤ 2∥ f ∥
Ỹ L A(E;X ). It will convenient to put gn := 0 and fx∗,n := 0

or n ∈ Z<0. By Lemma 3.24, as ( fx∗,n)n ∈ E A and B
1,wA,r∧1
A ↪→ S ′(Rd ),

⟨ f, x∗
⟩ =

∞∑
fx∗,k in L0(S; B

1,wA,r∧1
A ) ↪→ L0(S;S ′(Rd )), x∗

∈ X∗.
k=0

23
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Now let (Sn)n∈N be as in Proposition 3.19. There exists h ∈ N independent of f such that
Sn fx∗,k = 0 for all x∗

∈ X∗, n ∈ N and k ∈ Z<n−h . Let x∗
∈ X∗. Then

⟨x∗, Sn F⟩ = Sn⟨x∗, F⟩ = Sn⟨ f, x∗
⟩ = Sn

∞∑
k=0

fx∗,k =

∞∑
k=0

Sn fx∗,k

=

∞∑
k=n−h

Sn fx∗,k =

∞∑
k=0

Sn fx∗,k+n−h

with convergence in L0(S;S ′(Rd )). Together with Corollary A.6, this implies the pointwise
estimates

|⟨x∗, Sn F⟩| ≤

∞∑
k=0

|Sn fx∗,k+n−h | ≲
∞∑

k=0

2(k−h)+tr(A)·(r−1
−1) M A

r ( fk+n−h,x∗ )

≤ ∥x∗
∥

∞∑
k=0

2(k−h)+tr(A)·(r−1
−1) M A

r (gk+n−h).

Taking the supremum over x∗
∈ X∗ with ∥x∗

∥ ≤ 1, we obtain

∥Sn F∥X∗∗ ≤

∞∑
k=0

2(k−h)+tr(A)·(r−1
−1) M A

r (gk+n−h).

Picking κ > 0 such that E has a κ-norm, we find that

∥(Sn F)n∥
κ
E(X∗∗) =

(∥Sn f ∥X∗∗ )n
κ

E

≲
∞∑

k=0

2κ(k−h)+tr(A)·(r−1
−1)
M A

r (gk+n−h)n
κ

E

Since M A
r (gk+n−h)n


E =

(gk+n−h)n


E ≲

{(S−)h−k(gn)n


E , k ≤ h,(S+)k−h(gk+n−h)n


E , k ≥ h,

≲
(
2ε−(h−k)+ + 2−ε+(k−h)+

)
∥(gn)n∥E

≲ 2−ε+(k−h)+∥ f ∥
Ỹ L A(E;X )

for all k ∈ N, it follows that

∥(Sn F)n∥
κ
E(X∗∗) ≲

∞∑
k=0

2κ(k−h)+
(

tr(A)·(r−1
−1)−ε+

)
∥ f ∥

κ

Ỹ L A(E;X )
.

As ε+ > tr(A) · (r−1
− 1), we find that ∥(Sn F)n∥E(X∗∗) ≲ ∥ f ∥

Ỹ L A(E;X ) and thus that
F ∈ Y A(E; X∗∗) with ∥F∥Y A(E;X∗∗) ≲ ∥ f ∥

Ỹ L A(E;X ) (see Proposition 3.19). So we obtain the
desired (22).

Next we prove that

Ỹ L
A(E; X ) ↪→ Y A(E; X ). (23)

So let f ∈ Ỹ L
A(E; X ). A combination of (22) and (17) gives that F := T f ∈ L0(S; X∗∗).

Since f ∈ L0(S; L r,d ,loc(Rd
; X )) with ⟨x∗, F⟩ = ⟨ f, x∗

⟩ for every x∗
∈ X∗, it follows that

f = F ∈ L (S; B
1,wA,r∧1 (X∗∗)) ∩ L (S; L (Rd

; X )) ⊂ L (S; B
1,wA,r∧1 (X )).
0 A 0 r,d ,loc 0 A

24
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Therefore, by boundedness of (22),

Ỹ L
A(E; X ) ↪→

{
g ∈ Y A(E; X∗∗) : g ∈ L0(S;S ′(Rd

; X ))
}

= Y A(E; X ). □

For a quasi-Banach function space E on Rd
× N × S and a number σ ∈ R we define the

quasi-Banach function space Eσ on Rd
× N × S by

∥( fn)n∥Eσ := ∥(2nσ fn)n∥E , ( fn)n ∈ L0(Rd
× N × S).

Note that Eσ
∈ S(ε+ + σ, ε− + σ, A, r, (S,A , µ)) when E ∈ S(ε+, ε−, A, r, (S,A , µ)).

roposition 3.25. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)) and σ ∈ R. Let ψ ∈ OM(Rd ) be
uch that ψ(ξ ) = ρA(ξ ) for ρA(ξ ) ≥ 1 and ψ(ξ ) ̸= 0 for ρA(ξ ) ≤ 1. Then φ(D) ∈

(L0(S;S ′(Rd
; X ))) restricts to an isomorphism

φ(D) : Y A(Eσ
; X )

≃
−→ Y A(E; X ).

roof. Using Proposition 3.19 and Lemma A.3, this can be proved as [33, Lemma 5.2.28]
also see [55, Theorem 2.3.8]). □

roposition 3.26. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)). Then

Y A(E; X ) ↪→ S ′(Rd
; E A

⊗
(X )) ↪→ S ′(Rd

; L0(S; X )) = L0(S;S ′(Rd
; X ))

nd Y A(E; X ), when equipped with an equivalent quasi-norm from Proposition 3.19, has the
atou property with respect to L0(S;S ′(Rd

; X )). As a consequence (see Lemma 2.1), Y A(E; X )
s a quasi-Banach space.

roof. The chain of inclusions follow from a combination of Theorem 3.22 and
roposition 3.25.

In order to establish the Fatou property, suppose that Y A(E; X ) has been equipped with
n equivalent quasi-norm from Proposition 3.19. Let fk → f in L0(S;S ′(Rd

; X )) with
im infk→∞ ∥ fk∥Y A(E;X ) < ∞. Then

Sn f = lim
k→∞

Sn fk in L0(S; OM (Rd
; X )) ↪→ L0(S; L1,loc(Rd

; X )) ↪→ L0(Rd
× S; X ),

o that

(Sn f )n∈N = lim
k→∞

(Sn fk)n∈N in L0(Rd
× S; X ).

y passing to a suitable subsequence we may without loss of generality assume that (Sn fk)n∈N
(Sn f )n∈N pointwise a.e. as k → ∞. Using the Fatou property of E , we find

∥ f ∥Y A(E;X ) =
(∥Sn f ∥X )n


E =

 lim inf
k→∞

(∥Sn fk∥X )n


E

≤ lim inf
k→∞

(∥Sn fk∥X )n


E = lim inf
k→∞

∥ fk∥Y A(E;X ). □

roposition 3.27. Let F ∈ S(0, 0, A, r, (S,A , µ)), s ∈ R and λ ∈ (0,∞). Suppose that there
xists a constant C ∈ [1,∞) such that, ∥( f j(n))n∈N∥F ≤ C∥( fn)n∈N∥F for all { fn}n∈N∪{∗} ⊂ F
ith f∗ = 0 and mappings j : N → N ∪ {∗} with the property that # j−1(k) ≤ 1 for every
∈ N. Then

Y A(F s
; X ) = Y λA(Fλs

; X )
ith an equivalence of quasi-norms.

25
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The following lemma constitutes the main step in the proof of Proposition 3.27.

emma 3.28. Let E ∈ S(ε+, ε−, 0, A, r, (S,A , µ)), s ∈ R and λ ∈ (0,∞). Set h := ⌊
1
λ
⌋+2.

or all f ∈ L0(S;S ′(Rd
; X )) of the form

f =

∞∑
n=0

fn in L0(S;S ′(Rd
; X ))

ith ( fn)n∈Z ⊂ L0(S;S ′(Rd
; X )) satisfying the spectrum condition{

supp f̂0 ⊂ B
λA

(0, 2),

supp f̂n ⊂ B
λA

(0, 2n+1) \ BλA(0, 2n−1), n ≥ 1,
(24)

nd fn = 0 for n ∈ Z<0, there is the estimate

∥ f ∥Y A(Es ;X ) ≲
h∑

m=−h

(2λs⌊ n
λ
⌋ fm+⌊

n
λ
⌋)n


E(X ).

roof. Let ϕ = (ϕn)n∈N ∈ Φ A
1,2(Rd ) with associated sequence of convolution operators (Sn)n∈N.

In view of the spectrum conditions of (ϕn)n∈N and ( fn)n∈N and the fact that ρλA = ρλA, it
olds true that Sn fk = 0 for every n ∈ N and k ∈ Z satisfying |k − ⌊

n
λ
⌋| ≤ ⌊

1
λ
⌋ + 2. Since

Sn f = Sn

(
∞∑

k=0

fk

)
=

∞∑
k=0

Sn fk in L0(S;S ′(Rd
; X )),

it follows that

Sn f =

h∑
m=−h

Sn fm+⌊
n
λ
⌋, n ∈ N.

s

supp ( f̂m+⌊
n
λ
⌋) ⊂ B

λA
(0, 2m+⌊

n
λ
⌋) ⊂ B

λA
(0, 2h+

n
λ ) = B

A
(0, 2λh+n)

for all n ∈ N and m ∈ {−h, . . . , h}, a combination of Proposition 3.19, Corollary A.2 and
emma A.3 thus yields that

∥ f ∥Y A(Es ;X ) ≲ ∥(Sn f )n∥Es (X ) ≲
h∑

m=−h

∥( fm+⌊
n
λ
⌋)n∥Es (X ).

he desired estimate finally follows from the observation that 2ns ≂ 2λ⌊
n
λ
⌋ for all n ∈ N. □

roof of Proposition 3.27. It suffices to show that Y λA(Fλs
; X ) ↪→ Y A(F s

; X ), the reverse
inclusion also being of this form (for suitable choices of parameters). Let f ∈ Y λA(Fλs

; X ).
Then f has a representation as a convergence series

f =

∞∑
n=0

fn in L0(S;S ′(Rd
; X ))

with ( fn)n∈N ⊂ L0(S;S ′(Rd
; X )) satisfying the spectrum condition (24) and ∥( fn)n∥Fλs (X ) ≤

∥ f ∥ . Set f := 0 for n ∈ Z . The assumptions on F and the observation that
YλA(Fλs ;X ) n <0

26
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#{n : ⌊
n
λ
⌋ = k} ≤ ⌊λ⌋ + 1 for all k ∈ N, give us the estimates(2λs⌊ n

λ
⌋ fm+⌊

n
λ
⌋)n


F(X ) ≤ C(⌊λ⌋ + 1)∥(2λsk fk)k∥F(X ), m ∈ Z.

n application of Lemma 3.28 finishes the proof. □

xample 3.29. In the setting of Example 3.20, Proposition 3.27 yields:

(i) F s,A
p,q (Rd ,w; X ) = Fλs,λA

p,q (Rd ,w; X ),

(ii) Bs,A
p,q (Rd ,w; X ) = Bλs,λA

p,q (Rd ,w; X ),

(iii) Fs,A
p,q (Rd ,w; F; X ) = Fλs,λA

p,q (Rd ,w; F; X ),

ith an equivalence of quasi-norms depending on λ ∈ (0,∞). In particular, in the special case
hat A = a I d = a(Id1 , . . . , Idℓ ) for some a ∈ (0,∞), taking λ = 1/a yields a description as
n isotropic space.

. Difference norms

In this section we derive several estimates for Y L A(E; X ) and Ỹ L
A(E; X ), as well as for

Y A(E; X ). The main interest lies in the estimates involving differences, as these form the basis
for the intersection representation in Section 5.

4.1. Some notation

Let X be a Banach space. For each M ∈ N1 and h ∈ Rd we define difference operator ∆M
h

on L0(Rd
; X ) by

∆M
h := (Lh − I )M

=

M∑
i=0

(−1)i
(

M
i

)
L (M−i)h,

where Lh denotes the left translation by h.
For N ∈ N we denote by Pd

N the space of polynomials of degree at most N on Rd . We
write Pd

N (Q) ⊂ Pd
N for the subset of polynomials having rational coefficients.

Let M ∈ N1. Let F = L p,d = L p,d (Rd ) with p ∈ (0,∞)ℓ. Let B ⊂ Rd be a bounded Borel
set of non-zero measure. For f ∈ L0(Rd ) we define

EM ( f, B, F) := inf
π∈Pd

M−1

∥( f − π )1B∥F = inf
π∈Pd

M−1(Q)
∥( f − π )1B∥F

nd

EM ( f, B, F) :=
EM ( f, B, F)
EM (1, B, F)

.

We define the collection of dyadic anisotropic cubes {Q A
n,k}(n,k)∈Z×Zd by

Q A
n,k := A2−n

(
[0, 1)d

+ k
)
.

or b ∈ (0,∞) we define {Q A
n,k(b)}(n,k)∈Z×Zd by

Q A
n,k(b) := A2−n

(
[0, 1)d (b) + k

)
,

here [0, 1)d (b) is the cube concentric to [0, 1)d with sidelength b:

[0, 1)d (b) :=

[
1 − b

,
1 + b

)d

.

2 2

27



N. Lindemulder Journal of Approximation Theory 264 (2021) 105519

{

˜

We furthermore define the corresponding families of indicator functions {χ A
n,k}(n,k)∈Z×Zd and

χ
A,b

n,k }(n,k)∈Z×Zd :

χ A
n,k := 1Q A

n,k
and χ

A,b
n,k := 1Q A

n,k (b).

Definition 4.1. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)). We define y A(E) as the space of all
(sn,k)(n,k)∈N×Zd ⊂ L0(S) for which (

∑
k∈Zd sn,kχ

A
n,k)n∈N ∈ E . We equip y A(E) with the

quasi-norm

∥(sn,k)(n,k)∥y A(E) :=

(∑
k∈Zd

sn,kχ
A

n,k

)
n


E
.

Definition 4.2. Let F be a quasi-Banach function space on the σ -finite measure space
(T,B, ν). We define FM(X∗

; F) as the space of all {Fx∗}x∗∈X∗ ⊂ L0(T ) for which there exists
G ∈ F+ such that |Fx∗ | ≤ ∥x∗

∥G for all x∗
∈ X∗. We equip FM(X∗

; F) with the quasi-norm

∥{Fx∗}x∗∥FM(X∗;F) := inf ∥G∥F ,

where the infimum is taken over all majorants G as above.

In the special case that F = E ∈ S(ε+, ε−, A, r, (S,A , µ)) in the above definition, it will
be convenient to view FM(X∗

; E) as the space of all {gx∗,n}(x∗,n)∈X∗×N ⊂ L0(S) for which
there exists (gn)n ∈ E+ such that |gx∗,n| ≤ ∥x∗

∥gn , equipped with the quasi-norm

∥{gx∗,n}(x∗,n)∥FM(X∗;E) := inf ∥(gn)n∥E ,

where the infimum is taken over all majorants (gn)n as above.
Note that the corresponding properties from Definition 3.1 for FM(X∗

; E) are inherited
from E .

Definition 4.3. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)). We define ỹ A(E; X ) as the space of all
(sx∗,n,k)(x∗,n,k)∈X∗×N×Zd ⊂ L0(S) for which (

∑
k∈Zd sx∗,n,kχ

A
n,k)n∈N ∈ FM(X∗

; E). We equip
y A(E; X ) with the quasi-norm

∥(sx∗,n,k)(n,k)∥ỹ A(E;X ) :=

(∑
k∈Zd

sx∗,n,kχ
A

n,k

)
n


FM(X∗;E)

.

4.2. Statements of the results

The first two main results of this section, Theorems 4.4 and 4.6, contain estimates for
Y L A(E; X ) and Ỹ L

A(E; X ), respectively, involving differences, as well as atoms and oscil-
lations, in the general case r ∈ (0,∞)ℓ. The third main result of this section, Theorem 4.8,
provides estimates for Y A(E; X ) = Y L A(E; X ) = Ỹ L

A(E; X ) involving differences in the
special case that r = 1 (in which case, indeed, Y A(E; X ) = Y L A(E; X ) = Ỹ L

A(E; X ) by
Theorem 3.22 (and Remark 3.23)); some things simplify here when r = 1.

Theorem 4.4. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)) and suppose that ε+, ε− > 0. Let
p ∈ (0,∞)ℓ and M ∈ N satisfy ε+ > tr(A) · (r−1

− p−1) and MλA
min > ε−, where

tr(A) = (tr(A1), . . . , tr(Aℓ)). Given f ∈ L0(S; L r,d (Rd
; X )), consider the following statements:

(i) f ∈ Y L A(E; X ).
28
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(ii) There exist (sn,k)(n,k) ∈ y A(E) and (bn,k)(n,k)∈N×Zd ⊂ L0(S; C M
c ([−1, 2]d )) with

∥bn,k∥C M
b

≤ 1 such that, setting an,k := bn,k(A2n · −k), f has the representation

f =

∑
(n,k)∈N×Zd

sn,kan,k in L0(S; L p,d ,loc(Rd
; X )). (25)

(iii) f ∈ E0(X ) ∩ L0(S; L p,d ,loc(Rd
; X )) and (d A, p

M ( f )n)n≥1 ∈ E(N1), where

d A, p
M,n ( f ) := 2ntr(A)· p−1z ↦→ ∆M

z f


L p,d (B A(0,2−n );X ), n ∈ N.

or these statements, there is the chain of implications (i) ⇔ (ii) ⇒ (iii). Moreover, there are
he following estimates:

∥ f ∥E0(X ) + ∥(d A, p
M,n ( f ))n≥1∥E(N1) ≲ ∥ f ∥Y L A(E;X ) ≂ ∥(sn,k)(n,k)∥y A(E).

emark 4.5. Theorem 4.4 is partial extension of [24, Theorem 1.1.14], which is concerned
ith Y L(E) with E ∈ S(ε+, ε−, I, r). That result actually extends completely to the anisotropic

calar-valued setting Y L A(E) with E ∈ S(ε+, ε−, A, r). However, in the general Banach
pace-valued case there arises a difficulty due to the unavailability of the Whitney inequality
24, (1.2.2)/Theorem A.1] (see [60,61]) and the derived Lemma 4.12. We overcome this issue
n Theorem 4.6 by extending [24, Theorem 1.1.14] to Ỹ L

A(E; X ) instead of Y L A(E; X ) (recall
emark 3.13). This was actually the motivation for introducing the space Ỹ L

A(E; X ), which
s connected to Y L A(E; X ) and Y A(E; X ) through Theorem 3.22.

heorem 4.6. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)) and suppose that ε+, ε− > 0. Let
p ∈ (0,∞)ℓ and M ∈ N satisfy ε+ > tr(A) · (r−1

− p−1) and MλA
min > ε−. Given

f ∈ L0(S; L r,d (Rd
; X )), consider the following statements:

(I) f ∈ Ỹ L
A(E; X ).

(II) There exist (sx∗,n,k)(n,k) ∈ ỹ A(E; X ) and (bx∗,n,k)(x∗,n,k)∈X∗×N×Zd ⊂ L0(S; C M
c ([−1, 2]d ))

with ∥bx∗,n,k∥C M
b

≤ 1 such that, setting ax∗,n,k := bx∗n,k(A2n · −k), for all x∗
∈ X∗,

⟨ f, x∗
⟩ has the representation

⟨ f, x∗
⟩ =

∑
(n,k)∈N×Zd

sx∗,n,kax∗,n,k in L0(S; L p,d ,loc(Rd )).

(III) f ∈ E0(X ) ∩ L0(S; L p,d ,loc(Rd
; X )) and

{d A, p
M,x∗,n( f )}(x∗,n)∈X∗×N≥1 ∈ FM(X∗

; E(N1)),

where

d A, p
M,x∗,n( f ) := 2ntr(A)· p−1z ↦→ ∆M

z ⟨ f, x∗
⟩


L p,d (B A(0,2−n )), n ∈ N.

(IV) f ∈ E0(X ) ∩ L0(S; L p,d ,loc(Rd
; X )) and

{E A, p
M,x∗,n( f )}(x∗,n)∈X∗×N1 ∈ FM(X∗

; E(N1)),

where

E A, p
M,x∗,n( f )(x) := EM (⟨ f, x∗

⟩, B A(x, 2−n), L p,d ), x∗
∈ X∗, n ∈ N.
29
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(V) f ∈ E0(X ) and there is {πx∗,n,k}(x∗,n,k)∈X∗×N1×Z ∈ Pd
M−1 such that

gx∗,n :=

∑
k∈Zd

|⟨ f, x∗
⟩ − πx∗,n,k | 1Q A

n,k (3), n ≥ 1,

satisfies {gx∗,n}(x∗,n)∈X∗×N1 ∈ FM(X∗
; E(N1)).

or f ∈ L0(S; L r,d (Rd
; X )) it holds that (V) ⇒ (I) ⇔ (II) ⇒ (III) & (IV) with corresponding

stimates

∥ f ∥E0(X ) + ∥(d A, p
M,x∗,n( f ))(x∗,n)∥FM(X∗;E) + ∥{E A, p

M,x∗,n( f )}(x∗,n)∈X∗×N1∥FM(X∗;E(N≥1))

≲ ∥ f ∥
Ỹ L A(E;X ) ≂ ∥(sx∗,n,k)(x∗,n,k)∥ỹ A(E)

≲ ∥ f ∥E0(X ) +
{gx∗,n}(x∗,n)∈X∗×N≥1


FM(X∗;E(N1)).

oreover, for f of the form f =
∑

i∈I 1Si ⊗ f [i] with (Si )i∈I ⊂ A a countable family of
utually disjoint sets and ( f [i])i∈I ∈ L r,d ,loc(Rd

; X ), it holds that (I), (II), (III), (IV), and (V)
re equivalent statements and there are the corresponding estimates

∥ f ∥
Ỹ L A(E;X ) ≂ ∥(sx∗,n,k)(x∗,n,k)∥ỹ A(E)

≂ ∥ f ∥E0(X ) +
{d A, p

M,x∗,n( f )}(x∗,n)∈X∗×N≥1


FM(X∗;E(N1))

≂ ∥ f ∥E0(X ) +
(E A, p

M,n ( f ))n


E

≂ ∥ f ∥E0(X ) +
{gx∗,n}(x∗,n)∈X∗×N≥1


FM(X∗;E(N1)).

orollary 4.7. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)) and suppose that ε+ > tr(A) · (r−1
− 1)+.

et p ∈ (0,∞]ℓ and M ∈ N satisfy ε+ > tr(A) · (r−1
− p−1) and MλA

min > ε−. Then, for each
f ∈ L0(S; L r,d (Rd

; X )) of the form f =
∑

i∈I 1Si ⊗ f [i] with (Si )i∈I ⊂ A a countable family
f mutually disjoint sets and ( f [i])i∈I ∈ L r,d ,loc(Rd

; X ),

∥ f ∥Y A(E;X ) ≂ ∥ f ∥Y L A(E;X ) ≂ ∥ f ∥E0(X ) + ∥(d A, p
M,n ( f ))n≥1∥E(N1).

Theorem 1.2 from the introduction can be obtained as a special case of the following
heorem.

heorem 4.8. Let E ∈ S(ε+, ε−, A, 1, (S,A , µ)) and suppose that ε+, ε− > 0. Let
p ∈ [1,∞]ℓ and M ∈ N satisfy ε+ > tr(A) · (1 − p−1) and MλA

min > ε−. Write

I A
M,n( f ) := 2ntr(A⊕)

ˆ
B A(0,2−n )

∆M
z f dz, f ∈ L0(S; L1,loc(Rd

; X )).

hen

∥ f ∥Y A(E;X ) ≂ ∥ f ∥Y L A(E;X ) ≂ ∥ f ∥
Ỹ L A(E;X )

≂ ∥ f ∥E0(X ) + ∥(I A
M,n( f ))n≥1∥E(N1;X )

≂ ∥ f ∥E0(X ) + ∥(d A, p
M,n ( f ))n≥1∥E(N1;X )

or all f ∈ E0(X ) ↪→ Ei ↪→ E A
⊗

[B
r,wA,r
A ](X ) (see Remark 3.10).

emark 4.9. Recall from Example 3.20 that, in case ℓ = 1, A = I , p ∈ (1,∞), q = 2,
∈ Ap(Rd ), F is a UMD Banach function space and X is a Hilbert space, Fs,A

p,q (Rd ,w;

F; X ) coincides with the weighted vector-valued Bessel potential space H s(Rd , w; F(X )).
p
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Theorem 4.8 thus especially gives a difference norm characterization for H s
p(Rd , w; F(X ))

cf. [34, Remark 4.10]).

roposition 4.10. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)) and suppose that ε+, ε− > 0. Let
∈ R. Let p ∈ (0,∞]ℓ and M ∈ N satisfy ε+ > tr(A) · (r−1

− p−1) and M > ε−. Then

∥{d A, p
M,c,n( f )}n∥E(X ) ≲ ∥ f ∥Y L A(E;X ), f ∈ L0(S; L r,d (Rd

; X )),

nd

∥{d A, p
M,c,x∗,n( f )}(x∗,n)∥FM(X∗;E) ≲ ∥ f ∥

Ỹ L A(E;X ), f ∈ L0(S; L r,d (Rd
; X )),

here

d A, p
M,c,n( f ) := 2ntr(A)· p−1z ↦→ Lcz∆

M
z f


L p,d (B A(0,2−n ;X ))

nd

d A, p
M,c,x∗,n( f ) := 2ntr(A)· p−1z ↦→ Lcz∆

M
z ⟨ f, x∗

⟩


L p,d (B A(0,2−n )).

.3. Some lemmas

emma 4.11. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)). Put C := maxx∈[0,1]d ρA(x) ∈ [1,∞).
hen, for each (sn,k)(n,k) ∈ y A(E),

∥sn,k∥E A
⊗
≲n,A,r (C + ρA(k))tr(A)·r−1

, (n, k) ∈ N × Zd .

roof. Fix (i, l) ∈ N × Zd . By Remark 3.10, Ei ↪→ E A
⊗

[B
r,wA,r
A ], so that

∥si,l∥E A
⊗
∥χ A

i,l∥B
r,wA,r
A

= ∥si,lχ
A

i,l∥E A
⊗

[B
r,wA,r
A ]

≲i ∥si,lχ
A

i,l∥Ei

≤

(∑
k∈Zd

sn,kχ
A

n,k

)
n


E

= ∥(sn,k)(n,k)∥y A(E). (26)

Let R = (R, . . . , R) ∈ [1,∞)ℓ be given by R := cA(C + ρA(l)). Then

ρA(x + l) ≤ cA(ρA(x) + ρA(l)) ≤ cA(C + ρA(l)) = R ≤ 2i R, x ∈ [0, 1]d .

herefore,

supp (χ A
i,l) = A2−i ([0, 1]d

+ l) ⊂ B A(0, R).

s a consequence,

[cA(C + ρA(l))]−tr(A)·r−1
∥χ A

i,l∥L r,d (Rd ) ≤ ∥χ A
i,l∥B

r,wA,r
A

(27)

Observing that ∥χ A
i,l∥L r,d (Rd ) = ci,A,r , a combination of (26) and (27) gives the desired

esult. □

emma 4.12. Let p ∈ (0,∞] and M ∈ N1. Then there is a constant C = CM,p,d such that, if
f ∈ L (Rd ) and Q = A ([0, 1)d

+ b) with λ ∈ (0,∞) and b ∈ Rd , then there is π ∈ Pd

p,loc λ M−1
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satisfying (with the usual modification if p = ∞):

| f − π | 1Q ≤ C
( 

B A(0,λ)
|∆M

z f |
p

dz
)1/p

+ C
( 

B A(0,λ)

 
Q(2)

|∆M
z f |

p
dy dz

)1/p

.

roof. The case λ = 1 is contained in [24, Lemma 1.2.1], from which the general case can
e obtained by a scaling argument. □

From Lemma 4.13 to Corollary 4.15 we will actually only use Corollary 4.15 in the scalar-
alued case in the proof of Theorem 4.6. However, although the scalar-valued case is easier,
e have decided to present it in this way as it could be useful for potential extensions of
heorem 4.4 along these lines. In the latter the main obstacle is Lemma 4.12.

We write Pd
N (X ) ≃ X MN ,d , where MN ,d := #{α ∈ Nd

: |α| ≤ M}, for the space of X -valued
olynomials of degree at most N on Rd .

emma 4.13. Let (T,B, ν) a measure space, F ⊂ L2(T ) a finite dimensional subspace,
⊂ L0(T ; X ) a topological vector space with F ⊗ X ⊂ E such that

F × X −→ E, (p, f ) ↦→ f ⊗ x,

nd

F × E −→ L1(T ; X ), ( f, g) ↦→ f g,

re well-defined bilinear mappings that are continuous with respect to the second variable.
hen F ⊗ X is a complemented subspace of E.

roof. Choose an orthogonal basis b1, . . . , bn of the finite dimensional subspace F of L2(T ).
hen

π : E −→ E, g ↦→

n∑
i=1

[ˆ
T

bi (t)g(t)dν(t)
]

⊗ bi ,

is a well-defined continuous linear mapping on E, which is a projection onto the linear subspace
F ⊗ X ⊂ E. □

Corollary 4.14. If E in Lemma 4.13 is an F-space, then so is (F⊗ X, τE). As a consequence,
f τ is a topological vector space topology on F⊗ X with (F⊗ X, τE) ↪→ (F⊗ X, τ ), then the
atter is in fact a topological isomorphism.

orollary 4.15. Let B = [−1, 2]d , N ∈ N and q ∈ [1,∞). Set Bn,k := A2−n (B + k) for
(n, k) ∈ N × Zd . Then

∥π (A2−n · +k)∥C N
b (B;X ) ≲ 2ntr(A⊕)/q

∥π∥Lq (Bn,k ;X ), π ∈ Pd
N (X ), (n, k) ∈ N × Zd .

roof. Let us first note that a substitution gives

−n
ntr(A⊕)/q
∥π (A2 · +k)∥Lq (B;X ) = 2 ∥π∥Lq (Bn,k ;X ),
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while π (A2−n · +k) ∈ Pd
N (X ). Applying Corollary 4.14 to F = Pd

N , viewed as finite
imensional subspace of L2(B), and E = C N

n (B; X ) and τ the topology on PN (X ) = F ⊗ X
nduced from Lq (B; X ), we obtain the desired result. □

emma 4.16. Let q, p ∈ (0,∞), q ≤ p, b ∈ (0,∞) and M ∈ N1. Let f ∈ L p,loc(Rd ) and
et {πn,k}(n,k)∈N×Zd ⊂ Pd

M−1 such that

∥ f − πn,k∥Lq (Q A
n,k (b)) ≤ 2EM ( f, Q A

n,k(b), Lq ),

nd let {φn,k}(n,k)∈N×Zd ⊂ L∞(Rd ) be such that suppφn,k ⊂ Q A
n,k(b),

∑
k∈Zd φn,k ≡ 1, and

φn,k∥L∞
≤ 1. Then, for ( fn)n∈N ⊂ L0(S) defined by

fn :=

∑
k∈Zd

πn,kφn,k,

here is the convergence f = limn→∞ fn almost everywhere and in L p,loc.

roof. This can be proved as in [24, Lemma 1.2.3]. □

emma 4.17. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)), b ∈ (0,∞) and suppose that ε+, ε− > 0.
et p ∈ (0,∞]ℓ satisfy ε+ > tr(A) · (r−1

− p−1). Define the sublinear operator

T A
p : L0(S)N×Zd

−→ L0(S; [0,∞])N×Zd
, (sn,k)(n,k) ↦→ (tn,k)(n,k),

y

tn,k := 2ntr(A)· p−1
∑

m,l

|sm,l |χ
A

m,l


L p,d

nd the sum is taken over all indices (m, l) ∈ N × Zd such that Q A
m,l ⊂ Q A

n,k(b) and m ≥ n.
hen T A

p restricts to a bounded sublinear operator on y A(E).

roof. Let (sn,k)(n,k) ∈ y A(E) and (tn,k)(n,k) = T A
p [(sn,k)(n,k)] ∈ L0(S; [0,∞])N×Zd

. We need
o show that ∥(tn,k)∥y A(E) ≲ ∥(sn,k)∥y A(E). Here we may without loss of generality assume that
n,k ≥ 0 for all (n, k).

Set

δ :=
1
2

(
ε+ − tr(A) · (r−1

− p−1)
)

∈ (0,∞).

Define

gm :=

∑
l∈Zd

sm,lχ
A

m,l ∈ L0(S), m ∈ N.

hen

tn,k ≤ 2ntr(A)· p−1
 ∞∑

m=n

gm


L p,d (Q A

n,k (b))
. (28)

s the right-hand side is increasing in p by Hölder’s inequality, it suffices to consider the case
p ≥ r .

Several applications of the elementary embedding

ℓs0 (N) ↪→ ℓs1 (N), s > s , q , q ∈ (0,∞],
q0 q1 0 1 0 1
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b
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w

in combination with Fubini’s theorem yield that ∞∑
m=n

gm


L p,d (Q A

n,k (b))
≲

∞∑
m=n

2(m−n)δ
∥gm∥L p,d (Q A

n,k (b)). (29)

In order to estimate the summands on the right-hand side of (28), we will use the
following fact. Let (T1,B1, ν1), . . . , (Tℓ,Bℓ, νℓ) be σ -finite measure spaces and let I1, . . . , Iℓ

e countable sets. Put T = T1 × · · · × Tℓ and I = I1 × · · · × Iℓ. Let (ci )i∈I ⊂ C and, for each
j ∈ {1, . . . , ℓ}, let (A( j)

i j ∈I j
) ⊂ B j be a sequence of mutually disjoint sets. Then

∑
i∈I

ci 1A(1)
i1

×···×A(ℓ)
iℓ


L p(T ) ≤

⎛⎝sup
i∈I

ℓ∏
j=1

|A( j)
i j

|

1
p j

−
1

r j

⎞⎠∑
i∈I

ci 1A(1)
i1

×···×A(ℓ)
iℓ


L r (T ). (30)

ndeed,∑
i∈I

ci 1A(1)
i1

×···×A(ℓ)
iℓ


L p(T )

=

⎛⎜⎝∑
iℓ∈Iℓ

|A(ℓ)
iℓ

|

⎛⎝. . .
⎛⎝∑

i1∈I1

|A(1)
i1

| |ci |
p1

⎞⎠p2/p1

. . .

⎞⎠pℓ/pℓ−1
⎞⎟⎠

1/pℓ

≤

⎛⎜⎝∑
iℓ∈Iℓ

|A(ℓ)
iℓ

|
rℓ/pℓ

⎛⎝. . .
⎛⎝∑

i1∈I1

|A(1)
i1

|
r1/p1

|ci |
r1

⎞⎠r2/r1

. . .

⎞⎠rℓ/rℓ−1
⎞⎟⎠

1/rℓ

≤

⎛⎝sup
i∈I

ℓ∏
j=1

|A( j)
i j

|

1
p j

−
1

r j

⎞⎠
⎛⎜⎝∑

iℓ∈Iℓ

|A(ℓ)
iℓ

|

⎛⎝. . .
⎛⎝∑

i1∈I1

|A(1)
i1

| |ci |
r1

⎞⎠r2/r1

. . .

⎞⎠rℓ/rℓ−1
⎞⎟⎠

1/rℓ

=

⎛⎝sup
i∈I

ℓ∏
j=1

|A( j)
i j

|

1
p j

−
1

r j

⎞⎠∑
i∈I

ci 1A(1)
i1

×···×A(ℓ)
iℓ


L r (T ),

here we used p ≥ r in the first inequality.
Let us now use the above fact to estimate ∥gm∥L p,d (Q A

n,k (b)):

∥gm∥L p,d (Q A
n,k (b)) ≤

 ∑
l∈Zd :Q A

m,l∩Q A
n,k (b)̸=∅

sm,lχ
A

m,l


L p,d (Rd )

(30)
≤ 2−mtr(A)·( p−1

−r−1)
 ∑

l∈Zd :Q A
m,l∩Q A

n,k (b)̸=∅

sm,lχ
A

m,l


L r,d (Rd )

≤ 2−mtr(A)·( p−1
−r−1)

∥gm∥L r,d (Q A
n,k (b+2))

= 2(m−n)((ε+−2δ))−ntr(A)·( p−1
−r−1)

∥gm∥L r,d (Q A
n,k (b+2)) (31)
34
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Putting (28), (29) and (31) together, we obtain

tn,kχ A
n,k ≤

∞∑
m=n

2(m−n)((ε+−δ))+ntr(A)·r−1
∥gm∥L r,d (Q A

n,k (b+2))χ
A

n,k

≲b,A,r

∞∑
m=n

2(m−n)(ε+−δ) M A
r (gm). (32)

ince(
∞∑

m=n

2(m−n)(ε+−δ) M A
r (gm)

)
n∈N

=

∞∑
i=0

2i(ε+−δ)(S+)i M A
r [(gn)n∈N] ,

t follows that (tn,k) ∈ y A(E) with

∥(tn,k)∥κy A(E) =

(∑
k∈Zd

tn,kχ A
n,k

)
n

κ
E

≲
∞∑

i=0

2κi((ε+−δ))
∥(S+)i M A

r [(gn)n] ∥
κ
E

≲
∞∑

i=0

2−κiδ
∥(gn)n∥

κ

E ≲ ∥(gn)n∥
κ
E

= ∥(sn,k)∥κy A(E), (33)

here κ is such that E has a κ-norm. □

orollary 4.18. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)) and suppose that ε+, ε− > 0. Let
p ∈ (0,∞]ℓ satisfy ε+ > tr(A)·(r−1

− p−1). Given (sn,k)(n,k) ∈ y A(E), set gn =
∑

k∈Zd sn,kχ
A

n,k .
hen

∑
∞

n=0 |gn| in L0(S; L p,d ,loc(Rd )) and the series
∑

∞

n=0 gn converges almost everywhere,
nd in L0(S; L p,d ,loc(Rd )) (when p ∈ (0,∞)ℓ).

roof. This follows from (33), see [24, Corollary 1.2.5] for more details. □

emma 4.19. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)), b ∈ (0,∞) and λ ∈ (ε−,∞). Define the
ublinear operator

Tλ : L0(S)N×Zd
−→ L0(S; [0,∞])N×Zd

, (sn,k)(n,k) ↦→ (tn,k)(n,k),

y

tn,k :=

∑
m,l

2λ(n−m)
|sm,l |,

he sum being taken over all indices (m, l) ∈ N × Zd such that Q A
m,l(b) ⊃ Q A

n,k and m < n.
hen Tλ restricts to a bounded sublinear operator from y A(E) to y A(E).

roof. This can be proved in the same way as [24, Lemma 1.2.6]. □

emma 4.20. Let r ∈ (0, 1]ℓ and ρ ∈ (0, 1) satisfy ρ < rmin. Let (γn)n∈N be a sequence of
easurable functions on Rd satisfying

n −tr(A⊕)/ρ
0 ≤ γn(x) ≲ (1 + 2 ρA(x)) .

35
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If (sn,k)(n,k) ∈ L0(S)N×Zd
, gn =

∑
k∈Zd sn,kχ

A
n,k and hn =

∑
k∈Zd |sn,k | γn( · − A2−n k), then

hn ≲ M A
r (gn), n ∈ N.

Proof. We may of course without loss of generality assume that r = (r, . . . , r ) with r ∈ (0, 1].
Now the statement can be established as in [24, Lemma 1.2.7]. □

Lemma 4.21. Let M ∈ N, λ ∈ (0,∞) and Φ ∈ C M (Rd
; X ) be such that

(1 + ρA(x))λ∥DβΦ(x)∥X ≲ 1, x ∈ Rd , |β| ≤ M,

and let Ψ ∈ S(Rd ) be such that Ψ ⊥ Pd
M−1. Set Ψt := t−tr(A⊕)Ψ (At−1 · ) for t ∈ (0,∞). Then,

given ε ∈ (0, λA
min),

∥Φ ∗ Ψt (x)∥X ≲ε

t (λA
min−ε)M

(1 + ρA(x))λ
, x ∈ Rd , t ∈ (0, 1].

Proof. As Ψ is a Schwartz function, there in particular exists C ∈ (0,∞) such that

|Ψ (x)| ≤ C(1 + ρA(x))−λ(1 + |x |)−(d+M+1), x ∈ Rd .

he desired inequality can now be obtained as in [24, Lemma 1.2.8]. □

Lemmas 4.22 and 4.23 are the corresponding versions of Lemmas 4.17 and 4.19, respec-
tively, for ỹ A(E; X ) instead of y A(E; X ).

emma 4.22. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)), b ∈ (0,∞) and suppose that ε+, ε− > 0.
et p ∈ (0,∞]ℓ satisfy ε+ > tr(A) · (r−1

− p−1). Define the sublinear operator

T A
p : L0(S)X∗

×N×Zd
−→ L0(S; [0,∞])X∗

×N×Zd
, (sx∗,n,k)(x∗,n,k) ↦→ (tx∗,n,k)(x∗,n,k),

by

tx∗,n,k := 2ntr(A)· p−1
∑

m,l

|sx∗,m,l |χ
A

m,l


L p,d

and the sum is taken over all indices (m, l) ∈ N × Zd such that Q A
m,l ⊂ Q A

n,k(b) and m ≥ n.
Then T A

p restricts to a bounded sublinear operator on ỹ A(E).

Proof. Let δ ∈ (0,∞) be as in the proof of Lemma 4.17. Let (sn,k)(x∗,n,k) ∈ ỹ A(E) and
(tx∗,n,k)(n,k) = T A

p [(sx∗,n,k)(x∗,n,k)] ∈ L0(S; [0,∞])X∗
×N×Zd

. Define

gx∗,m :=

∑
l∈Zd

sx∗,m,lχ
A

m,l ∈ L0(S), m ∈ N.

Then (gx∗,m)(x∗,m) ∈ FM(X∗
; E) with ∥(gx∗,m)(x∗,m)∥FM(X∗;E) = ∥(sx∗,n,k)(x∗,n,k)∥ỹ A(E). So there

exists (gm)m ∈ E+ with ∥(gm)m∥ ≤ 2∥(sx∗,n,k)(x∗,n,k)∥ỹ A(E) such that |gx∗,m | ≤ ∥x∗
∥gm . By (32)

from the proof of Lemma 4.17,

tx∗,n,kχ
A

n,k ≲b,A,r

∞∑
m=n

2(m−n)((ε+−δ)) M A
r (gx∗,m)

≤ ∥x∗
∥

∞∑
2(m−n)((ε+−δ)) M A

r (gm).

m=n
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As (33) in proof of Lemma 4.17, we find that (tx∗,n,k)(x∗,n,k) ∈ ỹ A(E; X ) with

∥(tx∗,n,k)(x∗,n,k)∥ỹ A(E;X ) ≲ ∥(gm)m∥ ≤ 2∥(sx∗,n,k)(x∗,n,k)∥ỹ A(E). □

emma 4.23. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)), b ∈ (0,∞) and λ ∈ (ε−,∞). Define the
ublinear operator

Tλ : L0(S)X∗
×N×Zd

−→ L0(S; [0,∞])X∗
×N×Zd

, (sx,∗,n,k)(x∗,n,k) ↦→ (tx∗,n,k)(x∗,n,k),

by

tx∗,n,k :=

∑
m,l

2λ(n−m)
|sx∗,m,l |,

the sum being taken over all indices (m, l) ∈ N × Zd such that Q A
m,l(b) ⊃ Q A

n,k and m < n.
Then Tλ restricts to a bounded sublinear operator on ỹ A(E; X ).

Proof. This can be proved in the same way as [24, Lemma 1.2.6]. □

Lemma 4.24. Let E ∈ S(ε+, ε−, A, 1, (S,A , µ)) and let k ∈ L1,c(Rd ) fulfill the Tauberian
condition

|k̂(ξ )| > 0, ξ ∈ Rd ,
ϵ

2
< ρA(ξ ) < 2ϵ,

or some ϵ ∈ (0,∞). Let ψ ∈ S(Rd ) be such that supp ψ̂ ⊂ {ξ : ϵ ≤ ρA(ξ ) ≤ B} for some
B ∈ (ϵ,∞). Define (kn)n∈N and (ψn)n∈N by kn := 2ntr(A⊕)k(A2n · ) and ψn := 2ntr(A⊕)ψ(A2n · ).
hen

∥(ψn ∗ fn)n∥E(X ) ≲ ∥(kn ∗ fn)n∥E(X ), f ∈ L0(S; L1,loc(Rd
; X )).

roof. Pick η ∈ C∞
c (Rd ) with supp η ⊂ B A(0, 2ϵ) and η(ξ ) = 1 for ρA(ξ ) ≤

3ϵ
2 . Define

∈ S(Rd ) by m(ξ ) := [η(ξ ) − η(A2ξ )]k̂(ξ )−1 if ϵ
2 < ρA(ξ ) < 2ϵ and m(ξ ) := 0 otherwise;

ote that this gives a well-defined Schwartz function on Rd because η − η(A2 · ) is a smooth
function supported in the set {ξ :

ϵ
2 < ρA(ξ ) < 2ϵ} on which the function k̂ ∈ C∞

L∞
(Rd ) does

ot vanish. Define (mn)n∈N by mn := m(A2−n · ). Then, by construction,
n+N∑
l=n

ml k̂l(ξ ) = η(A2−(n+N )ξ ) − η(A2−n+1ξ ) = 1

or 2nϵ ≤ ρA(ξ ) ≤ 2n+N−13ϵ, n ∈ N, N ∈ N. Since supp ψ̂n ⊂ {ξ : 2nϵ ≤ ρA(ξ ) < 2n B} for
very n ∈ N, there thus exists N ∈ N such that

∑n+N
l=n ml k̂l ≡ 1 on supp ϕ̂n for all n ∈ N. For

ach n ∈ N we consequently have

ψn = ψn ∗

(
n+N∑
l=n

m̌l ∗ kl

)
=

n+N∑
l=n

ψn ∗ m̌l ∗ kl =

N∑
l=0

ψn ∗ m̌n+l ∗ kn+l .

s ψ,m ∈ S(Rd ), we obtain the pointwise estimate

∥ψn ∗ f ∥X ≤

N∑
∥ψn ∗ m̌n+l ∗ kn+l ∗ f ∥X ≲

N∑
M A(M A(∥kn+l ∗ f ∥X )).
l=0 l=0
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It follows that

∥(ψn ∗ f )n∥E(X ) ≲
N∑

l=0

(M A(M A(∥kn+l ∗ f ∥X ))
)

n


E

≲
N∑

l=0

∥(kn+l ∗ f )n∥E(X ) ≲
N∑

l=0

2−ε+l
∥(kn ∗ f )n∥E(X )

≲ ∥(kn ∗ f )n∥E(X ). □

4.4. Proofs of the results in Section 4.2

Proof of Theorem 4.4. (i) ⇒ (ii): Fix ω ∈ C∞
c ((−1, 2)d ) with the property that∑

k∈Zd

ω(x − k) = 1, x ∈ Rd .

Let ( fn)n be as in Definition 3.11 with ∥( fn)n∥E(X ) ≤ 2∥ f ∥Y L A(E;X ). For each (n, k) ∈ N×Zd ,
e put

ãn,k := ω(A2n ( · − A2−n k)) fn, sn,k := ∥ãn,k(A2−n · )∥C M
b (Rd ;X ),

and

an,k :=
ãn,k

sn,k
1{sn,k ̸=0}.

ote that

|sn,k | = ∥ãn,k(A2−n · )∥C M
b (Rd ;X ) = ∥ω( · − k) fn(A2−n · )∥C M

b (Rd ;X )

≲ ∥ω( · − k)∥C M
b (Rd )∥ fn(A2−n · )∥C M

b ([−1,2]d+k;X )

≲ sup
|α|≤M

sup
y∈[−1,2]d+k

∥Dα[ fn(A2−n · )](y)∥X

iven x ∈ Q A
n,k and x̃ = A2n x ∈ [0, 1)d

+ k, for y ∈ [−1, 2]d
+ k we can write y = x̃ + z with

z = y − x̃ = (y − k) − (x̃ − k) ∈ [−1, 2]d
− [0, 1)d , so, in particular, ρA(z) ≤ Cd .

ombining the above and subsequently applying Lemma A.1 to fn(A2−n · ), whose spectrum
atisfies suppF[ fn(A2−n · )] ⊂ B A(0, 2), we find

|sn,k | ≲ sup
|α|≤M

sup
ρA(z)≤Cd

∥Dα[ fn(A2−n · )](x̃ + z)∥X

≲ M A
r [∥ fn(A2−n · )∥X ] (A2n x) = M A

r (∥ fn∥X )(x)

or x ∈ Q A
n,k . Therefore, (sn,k)(n,k) ∈ y A(E) with

∥(sn,k)(n,k)∥y A(E) ≲
(M A

r (∥ fn∥X ))n


E ≲ ∥( fn)n∥E(X ) ≤ 2∥ f ∥Y L A(E;X ).

inally, the convergence (25) follows from Corollary 4.18 and the observation that

f =

∞∑
fn =

∞∑∑
sn,kan,k in L0(S; L r,d ,loc(Rd

; X )).

n=0 n=0 k∈Zd
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(ii) ⇒ (i): Set gn :=
∑

k∈Zd |sn,k |χ
A

n,k for n ∈ N. For n ∈ Z<0, set fn := 0 and gn := 0.

ick κ ∈ (0, 1] such that E has a κ-norm. Pick ε ∈ (0, λA
min) such that (λA

min − ε)M > ε−. Pick
∈ (0,∞) such that tr(A⊕)/λ < rmin ∧ 1. Pick ψ = (ψn)n∈N ∈ Φ A(Rd ) such that

supp ψ̂0 ⊂ B A(0, 2), supp ψ̂n ⊂ B A(0, 2n+1) \ B A(0, 2n−1), n ≥ 1,

nd set Ψn := 2ntr(A⊕)ψ0(A2n · ) for each n ∈ N. Note that

an,k ∗ Ψn = [bn,k ∗ Ψ ](A2n · −k)

nd

an,k ∗ ψm = [bn,k ∗ ψm−n](A2n · −k), n < m.

n application of Lemma 4.21 thus yields that

∥an,k ∗ Ψn (x)∥X ≲
1

(1 + 2nρA(x − A2−n k))λ
(34)

nd

∥an,k ∗ ψm (x)∥X ≲
2−(m−n)(λA

min−ε)M

(1 + 2nρA(x − A2−n k))λ
, n < m. (35)

ow put

ãn,k,m :=

{
an,k ∗ Ψn, n = m,
an,k ∗ ψm, n < m.

Let LM(Rd
; X ) denote the Fréchet space of all equivalence classes of strongly measurable X -

alued functions on Rd that are of polynomial growth; this space can for instance be described
s

LM(Rd
; X ) :=

{
f ∈ L0(Rd

; X ) : ∀φ ∈ S(Rd ), φ f ∈ L∞(Rd
; X )

}
.

sing Lemma 4.11 together with the support condition of the an,k and ∥an,k∥L∞(Rd ;X ) ≤

, it can be shown that the series
∑

k∈Zd sn,kan,k converges in L0(S; LM(Rd
; X )). Since

LM(Rd
; X ) ↪→ S ′(Rd

; X ) and convolution gives rise to a separately continuous bilinear
apping S × S ′

→ OM, it follows that

fn,m :=

∑
k∈Zd

sn,k ãn,k,m =

(∑
k∈Zd

sn,kan,k

)
∗

{
Ψn, n = m,
ψm, n < m, in L0(S; OM(Rd

; X )) (36)

or each n,m ∈ N with m ≥ n.
It will be convenient to define

f +

n,m :=

∑
k∈Zd

|sn,k | ∥ãn,k,m∥X , n,m ∈ N,m ≥ n.

y a combination of (34), (35) and Lemma 4.20,

f +

m−l,m ≲ 2−l(λA
min−ε)M M A

r (gm−l), m, l ∈ N,m ≥ l.

rom this it follows that

∥( f +

m−l,m)m≥l∥E(N≥l ) ≲ 2−l(λA
min−ε)M

∥(M A
r (gm−l))m≥l∥E(N≥l )

= 2−l(λA
min−ε)M

(S )l(M A(g ))

− r m m∈N E

39
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≲ 2−l((λA
min−ε)M−ε−)

∥(gm)m∈N∥E

= 2−l((λA
min−ε)M−ε−)

∥(sn,k)(n,k)∥y A(E). (37)

Therefore, by Lemma 3.8 and the assumption (λA
min − ε)M > ε−,

∞∑
l=0

∞∑
m=l

f +

m−l,m =

∞∑
l=0

∞∑
m=l

∑
k∈Zd

|sm−l,k | ∥ãm−l,k,m∥X

belongs to E A
⊗

[B
r,wA,r
A ] ↪→ L0(S; L r,d ,loc(Rd )). By Lebesgue domination this implies that∑

∞

l=0
∑

∞

m=l
∑

k∈Zd sm−l,k ãm−l,k,m converges unconditionally in the space L0(S; L r,d ,loc(Rd
; X )).

In particular,
∞∑

l=0

∞∑
m=l

∑
k∈Zd

sm−l,k ãm−l,k,m =

∞∑
n=0

∑
k∈Zd

sn,k

∞∑
m=n

ãn,k,m in L0(S; L r,d ,loc(Rd
; X )).

Since

an,k = lim
N→∞

ΨN ∗ an,k = lim
N→∞

N∑
m=n

ãn,k,m in L0(S; L1(Rd
; X )),

nd since f has the representation (25), it follows that

f =

∞∑
l=0

∞∑
m=l

∑
k∈Zd

sm−l,k ãm−l,k,m in L0(S; L r∧ p,d ,loc(Rd
; X )).

ombining the latter with (36), we find

f =

∞∑
l=0

∞∑
m=l

fm−l,m in L0(S; L r∧ p,d ,loc(Rd
; X )). (38)

Note that

∥( fm−l,m)m≥l∥E(N≥l ;X ) ≲ 2−l((λA
min−ε)M−ε−)

∥(sn,k)(n,k)∥y A(E)

y (37). Since

supp f̂m−l,m ⊂

{
supp Ψ̂m, l = 0,
supp ψ̂m, l ≥ 1,

⊂ B̄ A(0, 2m+1), m ≥ l,

t follows that (see Remark 3.14)

Fl :=

∞∑
m=l

fm−l,m in L0(S; L r,d ,loc(Rd
; X )),

efines an element of Y L A(E; X ) with

∥Fl∥Y L A(E;X ) ≲ 2−l((λA
min−ε)M−ε−)

∥(sn,k)(n,k)∥y A(E).

s (λA
min − ε)M > ε−, we find that F :=

∑
l=0 Fl ∈ Y L A(E; X ) with

∥F∥Y L A(E;X ) ≲ ∥(sn,k)(n,k)∥y A(E).

ut f = F in view of (38) and Y L A(E; X ) ↪→ L0(S; L r,d ,loc(Rd
; X )) (see Remark 3.14),

ielding the desired result.
40
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(ii) ⇒ (iii): We will write down the proof in such a way that the proof of Proposition 4.10
only requires a slight modification. Combining the estimate corresponding to (ii) ⇒ (i) with
Y L A(E; X ) ↪→ E0(X ) (see (9)), we find

∥ f ∥E0(X ) ≲ ∥(sn,k)(n,k)∥y A(E).

o let us focus on the remaining part of the required inequality. To this end, fix c ∈ R and
hoose R ∈ [1,∞) such that

ρA(t z) ≤ RρA(z), z ∈ Rd , t ∈ [0, |c| + M].

ut

d A, p
M,c,n( f ) := 2ntr(A)· p−1z ↦→ Lcz∆

M
z f


L p,d (B A(0,2−n );X ), n ∈ N.

Now let f has a representation as in (ii) and write hn :=
∑

k∈Zd sn,kan,k . Then

d A, p
M,c,n( f )(x) ≲ 2ntr(A)· p−1

z ↦→

n−1∑
m=0

∥Lcz∆
M
z hm(x)∥X


L p,d (B A(0,2−n ))

+ 2ntr(A)· p−1
z ↦→

∞∑
m=n

∥Lcz∆
M
z hm(x)∥X


L p,d (B A(0,2−n ))

. (39)

We use the identity

Lcz∆
M
z hm(x) =

M∑
l=0

(−1)M−l
(

M
l

)
h j (x + (c + l)z)

o estimate the second term in (39) as follows

2ntr(A)· p−1
z ↦→

∞∑
m=n

∥Lcz∆
M
z hm(x)∥X


L p,d (B A(0,2−n ))

≲
M∑

l=0

2ntr(A)· p−1
z ↦→

∞∑
m=n

∥hm(x + (c + l)z)∥X


L p,d (B A(0,2−n ))

≲ 2ntr(A)· p−1
 ∞∑

m=n

∥hm∥X


L p,d (B A(x,R2−n ))

≲ 2ntr(A)· p−1
 ∞∑

m=n

∑
k∈Zd

∥sm,k∥X 1Q A
m,k (3)


L p,d (B A(x,R2−n ))

≲ 2ntr(A)· p−1
∑

m,l

∥sm,l∥X 1Q A
m,l (3)


L p,d

,

where the last sum is taken over all (m, l) such that Q A
m,l(3) intersects (B A(x, R2−n)) and

m ≥ n. From this it follows that

2ntr(A)· p−1
z ↦→

∞∑
m=n

∥Lcz∆
M
z hm∥X


L p,d (B A(0,2−n ))

≲
∑
k∈Zd

2ntr(A)· p−1
∑

m,l

∥sm,l∥X 1Q A
m,l (3)


L p,d

1Q A
n,k (3R), (40)

A A
where the sum is taken over all (m, l) such that Qm,l(3) ⊂ Qn,k(3R) and m ≥ n.

41
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In order to estimate the first term in (39), note that

∆M
z hm(x) =

ˆ
[0,1]M

DM hm(x + (t1 + · · · + tM )z)(z, . . . , z) d(t1, . . . , tM )

and thus that

∥∆M
z hm(x)∥X ≤ sup

t∈[0,M]
∥DM hm(x + t z)(z, . . . , z)∥X

= sup
t∈[0,M]

DM [hm ◦ A2−m ](A2m x + t A2m z)(A2m z, . . . , A2m z)


X

≲ sup
t∈[0,M]

sup
|α|≤M

Dα[hm ◦ A2−m ](A2m x + t A2m z)


X |A2m z|M ,

rom which it follows that

∥Lcz∆
M
z hm(x)∥X ≲ sup

t∈[0,M]
sup

|α|≤M

Dα[hm ◦ A2−m ](A2m x + (c + t)A2m z)


X |A2m z|M

≤ sup
y∈B A(0,RρA(z))

sup
|α|≤M

Dα[hm ◦ A2−m ](A2m [x + y])


X |A2m z|M .

iven ε ∈ (0, λA
min), for m ∈ {0, . . . , n − 1} and z ∈ B A(0, 2−n) this gives

∥Lcz∆
M
z hm (x)∥X ≲ε sup

y∈B A(0,R2−n )
sup

|α|≤M

Dα[hm ◦ A2−m ](A2m [x + y])


XρA(A2m z)(λA
min−ε)M

≲ sup
y∈B A(0,R2−n )

sup
|α|≤M

Dα[hm ◦ A2−m ](A2m [x + y])


X 2(λA
min−ε)M(m−n).

ince Dα[hm ◦ A2−m ](A2m [x + y])


X ≤

∑
l∈Zd

∥sm,l∥X 1[−1,2]d+l(A2m [x + y])

≤

∑
l∈Zd

∥sm,l∥X 1Q A
m,l (3)(x + y),

t follows that

2ntr(A)· p−1
z ↦→

n−1∑
m=0

∥Lcz∆
M
z hm(x)∥X


L p,d (B A(0,2−n ))

≲ε

n−1∑
m=0

sup
z∈B A(0,2−n )

∥Lcz∆
M
z hm(x)∥X 2(λA

min−ε)M(m−n)

≲
∑
m,l

2(λA
min−ε)M(m−n)

∥sm,l∥X ,

here the last sum is taken over all (m, l) such that Q A
m,l(3) intersects B A(x, R2−n) and m < n.

rom this it follows that

2ntr(A)· p−1
z ↦→

n−1∑
m=0

∥Lcz∆
M
z hm(x)∥X


L p,d (B A(0,2−n ))

≲
∑
m,l

∥sm,l∥X , (41)

here the last sum is taken over all (m, l) such that Q A
m,l(3R) ⊃ Q A

n,k(3) and m < n.
A combination of (39), (40), Lemma 4.17, (41) and Lemma 4.19 give the desired result. □
42



N. Lindemulder Journal of Approximation Theory 264 (2021) 105519

e
s
L
a
i

o

D

S

o

a
s

T

Proof of Theorem 4.6. The chain of implications (I) ⇔ (II) ⇒ (III) with corresponding
stimates for f ∈ L0(S; L r,d (Rd

; X )) can be obtained in the same way as Theorem 4.4 with
ome natural modifications; in particular, Lemmas 4.17 and 4.19 need to be replaced with
emmas 4.22 and 4.23, respectively. Furthermore, (II) ⇒ (IV) can be done in the same way
s [24, Theorem 1.1.14], similarly to the implication (II) ⇒ (III) (see the proof of (ii) ⇒ (iii)
n Theorem 4.4).

Fix q ∈ (0,∞) with q ≤ rmin ∧ pmin(III)∗q and let (IV)∗q be the statements (III) and (IV),
respectively, in which p gets replaced by q := (q, . . . , q) ∈ (0,∞)ℓ. Then, clearly, (III) ⇒

(III)∗q and (IV) ⇒ (IV)∗q .
To finish this proof, it suffices to establish the implication (V) ⇒ (IV)∗q for f ∈

L0(S; L r,d (Rd
; X )) and the implications (III)∗q ⇒ (V) and (IV)∗q ⇒ (II) for f of the form

f =
∑

i∈I 1Si ⊗ f [i] with (Si )i∈I ⊂ A a countable family of mutually disjoint sets and
( f [i])i∈I ∈ L r,d ,loc(Rd

; X ).
(V) ⇒ (IV)∗q : For this implication we just observe that, for x ∈ Q A

n,k and n ≥ 1,

E A,q
M,x∗,n( f )(x) ≲ EM (⟨ f, x∗

⟩, Q A
n,k(3), Lq ) ≲ M A

q (gx∗,n)(x) ≤ M A
r (gx∗,n)(x).

(III)∗q ⇒ (V) for f of the form f =
∑

i∈I 1Si ⊗ f [i] with (Si )i∈I ⊂ A a countable family
f mutually disjoint sets and ( f [i])i∈I ∈ L r,d ,loc(Rd

; X ): By Lemma 4.12, for each i ∈ I and
(x∗, n, k) ∈ X∗

× N≥1 × Zd there exists a π [i]
x∗,n,k ∈ Pd

M−1 such that

⏐⏐⟨ f [i], x∗
⟩ − π

[i]
x∗,n,k

⏐⏐ 1Q A
n,k (3) ≲ d A,q

M,x∗,n( f [i]) +

( 
Q A

n,k (6)
d A,q

M,x∗,n( f [i])(y)q dy

)1/q

.

efining πx∗,n,k ∈ L0(S;Pd
M−1) by πx∗,n,k :=

∑
i∈I 1Si ⊗ π

[i]
x∗,n,k , we obtain⏐⏐⟨ f, x∗

⟩ − πx∗,n,k
⏐⏐ 1Q A

n,k (3) ≲ d A,q
M,x∗,n( f ) + M A

q (d A,q
M,x∗,n( f )) ≤ 2M A

r (d A,q
M,x∗,n( f )).

ince

#
{
k ∈ Zd

: x ∈ Q A
n,k(3)

}
≲ 1, x ∈ Rd , n ∈ N,

it follows that{gx∗,n}(x∗,n)∈X∗×N≥1


FM(X∗;E(N1))

≲
{M A

r [d A, p
M,x∗,n( f )]}(x∗,n)∈X∗×N≥1


FM(X∗;E(N1))

≲
{d A, p

M,x∗,n( f )}(x∗,n)∈X∗×N≥1


FM(X∗;E(N1)).

(IV)∗q ⇒ (II) for f of the form f =
∑

i∈I 1Si ⊗ f [i] with (Si )i∈I ⊂ A a countable family
f mutually disjoint sets and ( f [i])i∈I ∈ L r,d ,loc(Rd

; X ): Let ω ∈ C∞
c ([−1, 2]d ) be such that∑

k∈Zd

ω(x − k) = 1, x ∈ Rd ,

nd put ωn,k := ω(A2n · −k) and Qω
n,k := A2−n ([−1, 2]d

+ k) for (n, k) ∈ N × Zd ; so
upp (ωn,k) ⊂ Qω

n,k . Define

In,k :=
{
l ∈ Zd

: Qω
n,k ∩ Qω

n−1,l ̸= ∅
}
, (n, k) ∈ N1 × Zd .

hen #In,k ≲ 1 and there exists b ∈ (1,∞) such that

Qω
⊂ Q A (b) ∩ Q A (b), l ∈ I , (n, k) ∈ N × Zd . (42)
n,k n,k n−1,l n,k 1

43
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Furthermore, there exists n0 ∈ N1 such that

Q A
n,k(b) ∪ Q A

n−1,l(b) ⊂ B A(x, 2−(n−n0)), x ∈ Qω
n,k, (n, k) ∈ N × Zd . (43)

For each i ∈ I , let us pick (π [i]
x∗,n,k)(x∗,n,k)∈X∗×N×Zd ⊂ Pd

M−1 with the property that

∥⟨ f [i], x∗
⟩ − πx∗,n,k∥Lq (Q A

n,k (b)) ≤ 2EM (⟨ f [i], x∗
⟩, Q A

n,k(b), Lq ) (44)

nd put πx∗,n,k :=
∑

i∈I 1Si ⊗ π
[i]
x∗,n,k ∈ L0(S;Pd

M−1). Define

ux∗,n,k :=

⎧⎨⎩ωn,k
∑

l∈Zd ωn−1,l[πx∗,n,k − πx∗,n−1,l], n > n0,

ωn,kπx∗,n,k, n = n0,

0, n < n0.

Let x∗
∈ X∗ and (n, k) ∈ N≥n0+1 × Zd . Let l ∈ In,k . For x ∈ Qω

n,k we can estimate

∥πx∗,n,k − πx∗,n−1,l∥Lq (Qωn,k )

(42)
≲ ∥⟨ f, x∗

⟩ − πx∗,n,k∥Lq (Q A
n,k (b))

+ ∥⟨ f, x∗
⟩ − πx∗,n−1,l∥Lq (Q A

n−1,l (b))

(43),(44)
≤ 4EM (⟨ f, x∗

⟩, B A(x, 2−(n−n0)), Lq ),

mplying

∥(πx∗,n,k − πx∗,n−1,l)(A2−n · +k)∥C M
b ([−1,2]M )

≲ 2ntr(A⊕)/qEM (⟨ f, x∗
⟩, B A(x, 2−(n−n0)), Lq )

n view of Corollary 4.15. Since #In,k ≲ 1, it follows that

∥ux∗,n,k(A2−n · +k)∥C M
b ([−1,2]M ) ≲ EM (⟨ f, x∗

⟩, B A(x, 2−(n−n0)), Lq )

= E A,q
M,x∗,n−n0

( f )(x), x ∈ Qω
n,k . (45)

For n = n0 we similarly have

∥ux∗,n0,k(A2−n0 · +k)∥C M
b ([−1,2]M ) ≲ ∥⟨ f, x∗

⟩∥Lq,d (B A(x,1))

≲ ∥x∗
∥ M A

q (∥ f ∥X )(x)

≤ ∥x∗
∥ M A

r (∥ f ∥X )(x), x ∈ Qω
n0,k
. (46)

Define sx∗,n,k := ∥ux∗,n,k(A2−n · +k)∥C M
b ([−1,2]M ),

ax∗,n,k :=

{ ux∗,n,k
sx∗,n,k

, sx∗,n,k ̸= 0,
0, sx∗,n,k = 0,

and bx∗,n,k := ux∗,n,k(A2−n · +k). Then bx∗,n,k ∈ C M
c ([−1, 2]d ) with ∥bx∗,n,k∥C M

b
≤ 1 and

(sx∗,n,k)(x∗,n,k) ∈ ỹ A(E; X ) with

∥(sx∗n,k)(x∗,n,k)∥ỹ A(E;X )

(45),(46)
≲ ∥M A

r (∥ f ∥X )∥E0

+
{E A,q

M,x∗,n−n0
( f )}(x∗,n)∈X∗×N≥n0


FM(X∗;E(N≥n0+1))

≲ ∥ f ∥E0(X ) + 2ε−n0
{E A,q

M,x∗,n( f )}(x∗,n)


FM(X∗;E(N≥1)).
44
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Note that, for n ≥ n0 + 1,∑
k∈Zd

sx∗,n,kax∗,n,k =

∑
k∈Zd

ux∗,n,k

=

∑
k∈Zd

πx∗,n,kωx∗,n,k

∑
l∈Zd

ωn−1,l −

∑
k∈Zd

ωn,k

∑
l∈Zd

πx∗,n−1,lωn−1,l

=

∑
k∈Zd

πx∗,n,kωn,k −

∑
l∈Zd

πx∗,n−1,lωn−1,l .

n combination with Lemma 4.16 and an alternating sum argument, this implies that

⟨ f, x∗
⟩ =

∞∑
n=0

∑
k∈Zd

sx∗,n,kax∗,n,k in L0(S; Lq,loc(Rd )).

he required convergence finally follows from this with an argument as in (the last part of) the
roof of the implication (i) ⇒ (ii) in Theorem 4.4. □

roof of Corollary 4.7. This is an immediate consequence of Theorems 3.22, 4.4, 4.6 and
he observation that

∥(d A, p
M,x∗,n( f ))(x∗,n)∥FM(X∗;E) ≤ ∥(d A, p

M,n ( f ))n≥1∥E(N1). □

roof of Theorem 4.8. The estimates

∥ f ∥Y A(E;X ) ≂ ∥ f ∥Y L A(E;X ) ≂ ∥ f ∥
Ỹ L A(E;X )

ollow from Theorem 3.22. Combining the inclusion

Y L A(E; X )
(9)
↪→ E0(X )

ith the estimate corresponding to the implication (i)⇒(iii) in Theorem 4.4 gives

∥ f ∥E0(X ) + ∥(d A, p
M,n ( f ))n≥1∥E(N1;X ) ≲ ∥ f ∥Y L A(E;X ).

s it clearly holds that

∥I A
M,n( f )∥X ≤ d A, p

M,n ( f ), n ∈ N,

t remains to be shown that

∥ f ∥Y A(E;X ) ≲ ∥ f ∥E0(X ) + ∥(I A
M,n( f ))n≥1∥E(N1;X ). (47)

Put K := 1B A(0, 1) and K∆M
:=

∑M−1
l=0 (−1)l

(M
l

)
K̃[M−l]−1 , where K̃t := td K (−t · ) for

∈ (0,∞). Furthermore, put

K A
M (t, f ) := t−tr(A⊕) K∆M

(At−1 · ) ∗ f + (−1)M K̂ (0) f, t ∈ (0,∞).

ote that

I A
M,n( f ) = K A

M (2−n, f ), n ∈ N. (48)

As K̂∆M (0) =
∑M−1

l=0 (−1)l
(M

l

)
K̂ (0) = (−1)M+1 K̂ (0) ̸= 0, we can pick ϵ, c ∈ (0,∞) such

hat K∆m
fulfills the Tauberian condition

|F K∆m
(ξ )| ≥ c, ξ ∈ Rd ,

ϵ
< ρA(ξ ) < 2ϵ.
2
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So there exists N ∈ N such that k := 2N tr(A⊕) K∆m
(A2N · ) − K∆m

∈ L1,c(Rd ) satisfies

|k̂(ξ )| ≥
c
2
> 0, ξ ∈ Rd ,

δ

2
< ρA(ξ ) < 2δ,

or δ := 2N ϵ > 0. Let ϕ = (ϕn)n∈N ∈ Φ A(Rd ) be such that supp ϕ̂1 ⊂ {ξ : 2ϵ ≤ ρA(ξ )} (see
efinition 3.18). Let (kn)n∈N be defined by kn := 2ntr(A⊕)k(A2n · ). Then, by construction,

kn ∗ f = K A
M (2−(n+N ), f ) − K A

M (2−n, f )
(48)
= I A

M,n+N ( f ) − I A
M,n( f ), n ∈ N.

n application of Lemma 4.24 thus yields that

∥(ϕn ∗ f )n≥1∥E(N1;X ) ≲ ∥(kn ∗ f )n≥1∥E(N1;X )

≲ ∥(I A
M,n+N ( f ))n≥1∥E(N1;X ) + ∥(I A

M,n( f ))n≥1∥E(N1;X )

≲ (2−ε+ N
+ 1)∥(I A

M,n( f ))n≥1∥E(N1;X ). (49)

s ∥ϕ0 ∗ f ∥X ≲ M A(∥ f ∥X ), it furthermore holds that

∥ϕ0 ∗ f ∥E0(X ) ≲ ∥ f ∥E0(X ). (50)

combination of Proposition 3.19, (49) and (50) finally gives (47). □

roof of Proposition 4.10. Using the estimate corresponding to the implication (i) ⇒ (ii)
n Theorem 4.4, the first estimate can be obtained as in the proof of the implication (ii) ⇒

iii) in Theorem 4.4. The second estimate can be obtained similarly, replacing Theorem 4.4 by
heorem 4.6. □

. An intersection representation

In this section we come to the main results of this paper, namely, intersection representations.
n particular, these include Theorem 1.1 from the introduction of this paper as a special case.
efore we can state the results, we need to introduce some notation.

Let E ∈ S(ε+, ε−, A, r, (S,A , µ)) with ε+, ε− > 0. Let J be a nonempty subset of
1, . . . , ℓ}, say J = { j1, . . . , jk} with 1 ≤ j1 ≤ · · · ≤ jk ≤ ℓ. Put dJ = (d j1 , . . . , d jk ),
J := |dJ |1 AJ := (A j1 , . . . , A jk ), r J := (r j1 , . . . , r jk ) and

(SJ ,AJ , µJ ) := (Rd−dJ ,B(Rd−dJ ), λd−dJ ) ⊗ (S,A , µ)

urthermore, define E[d ;J ] as the quasi-Banach space E viewed as quasi-Banach function space
n the measure space RdJ × N × SJ . Then

E[d ;J ] ∈ S(ε+, ε−, AJ , r J , (SJ ,AJ , µJ ))

y Remark 3.14,

Ỹ L
A(E; X ) ↪→ E A

⊗
(B

1,wA,r
A (X )) ↪→ L0(S; L r,d ,loc(Rd

; X )).

n the same way,

Ỹ L
AJ (E[d ;J ]; X ) ↪→ E A

⊗
(B

1,wA,r
A (X )) ↪→ L0(S; L r,d ,loc(Rd

; X )),

n particular, it makes sense to compare Ỹ L
AJ (E[d ;J ]; X ) with Ỹ L

A(E; X ).

heorem 5.1. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)) with ε+, ε− > 0. Let {J1, . . . , JL} be a

artition of {1, . . . , ℓ}.
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(i) There is the estimate

∥ f ∥
Ỹ L

AJl (E[d ;Jl ];X )
≤ ∥ f ∥

Ỹ L A(E;X ), l ∈ {1, . . . , L},

for all f ∈ L0(S; L r,d ,loc(Rd
; X )).

(ii) There is the estimate

∥ f ∥
Ỹ L A(E;X ) ≲

L∑
l=1

∥ f ∥
Ỹ L

AJl (E[d ;Jl ];X )

for all f ∈ L0(S; L r,d ,loc(Rd
; X )) of the form f =

∑
i∈I 1Si ⊗ f [i] with (Si )i∈I ⊂ A a

countable family of mutually disjoint sets and ( f [i])i∈I ∈ L r,d ,loc(Rd
; X ).

n particular, in case (S,A , µ) is atomic,

Ỹ L
A(E; X ) =

L⋂
l=1

Ỹ L
AJl (E[d ;Jl ]; X )

ith an equivalence of quasi-norms.

emark 5.2. The analogous estimate in Theorem 5.1(i) for Y L A(E; X ) holds as well, with a
lightly modified proof that actually is a little bit easier. However, we are not able to obtain a
ersion of Theorem 5.1(ii) for Y L A(E; X ) due to the unavailability of the crucial implication
iii) ⇒ (i) (plus a corresponding estimate of the involved quasi-norm) in Theorem 4.4, see
emark 4.5.

roof of Theorem 5.1. Let us start with (i). Fix l ∈ {1, . . . , L} and write J := Jl . Let
f ∈ Ỹ L

A(E; X ). Let ϵ > 0. Choose (gn)n and ( fx∗,n)(x∗,n) as in Definition 3.12 with
(gn)n∥E ≤ (1 + ϵ)∥ f ∥

Ỹ L A(E;X ). As fx∗,n ∈ L0(S;S ′(Rd )) with supp f̂x∗,n ⊂ B A(0, 2n+1), we
an naturally view fx∗,n as an element of L0(SJ ;S ′(Rd−dJ )) with supp f̂x∗,n ⊂ B AJ (0, 2n+1).
ince

L0(S; L r,d ,loc(Rd )) ↪→ L0(SJ ; L r J ,dJ ,loc(RdJ )),

t follows that f ∈ Ỹ L
AJ (E[d ;J ]; X ) with

∥ f ∥
Ỹ L AJ (E[d ;J ];X ) ≲ ∥(gn)n∥E[d ;J ] = ∥(gn)n∥E ≤ (1 + ϵ)∥ f ∥

Ỹ L A(E;X ).

Let us next treat (ii). We may without loss of generality assume that L = ℓ and that Jl = {l}
or each l ∈ {1, . . . , ℓ}. We will write E[d ; j] = E[d ;{ j}].

Let f ∈
⋂ℓ

j=1 Ỹ L
A j (E[d ; j]; X ) be of the form f =

∑
i∈I 1Si ⊗ f [i] with (Si )i∈I ⊂ A a

ountable family of mutually disjoint sets and ( f [i])i∈I ∈ L r,d ,loc(Rd
; X ). In order to establish

he desired inequality, we will combine the estimate corresponding to the implication (III) ⇒

I) from Theorem 4.6 for the space Ỹ L
A(E; X ) with the estimates from Proposition 4.10 for

ach of the spaces Ỹ L
A j (E[d ; j]; X ). To this end, pick M ∈ N with MλA

min > ε−. Now, let us
efine (gx∗,n)(x∗,n)∈X∗×N and (gc,x∗,n, j )(x∗,n)∈X∗×N, with j ∈ {1, . . . , ℓ} and c ∈ R, by

gx∗,n :=

{
d A,r

0,x∗,0( f ), n = 0,
A,r
dℓM,x∗,n( f ), n ≥ 1,
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and

gc,x∗,n, j :=

⎧⎨⎩d
[d ; j],A j ,r j
0,x∗,0 ( f ), n = 0,

d
[d ; j],A j ,r j
M,c,x∗,n ( f ), n ≥ 1,

here the notation is as in Theorem 4.6 and Proposition 4.10.
For n = 0 we have

gx∗,0 = d A,r
0,x∗,0( f ) ≲

[
⃝

ℓ
i=2 M [d ;i],Ai

ri

](
d [d ;1],A1,r1

0,x∗,0 ( f )
)

≤ M A
r
[
d [d ;1],A1,r1

0,x∗,0 ( f )
]

= M A
r
[
gc,x∗,0,1

]
, c ∈ R, (51)

where ⃝
ℓ
i=2 M [d ;i],Ai

ri stands for the composition M [d ;ℓ],Aℓ
rℓ ◦ . . . ◦ M [d ;2],A2

r2 .
Now let n ≥ 1. We will use the following elementary fact (cf. [57, 4.16]): there exist
∈ (0,∞), K ∈ N and {c[k]

j } j=1,...,ℓ;k=0,...,K ⊂ R such that

|∆ℓM
z h(x)| ≤ C

K∑
k=0

ℓ∑
j=1

⏐⏐⏐∆M
ι[d ; j]z j

h(x +

ℓ∑
i=1

c[k]
i ι[d ;i]zi )

⏐⏐⏐
or all h ∈ L0(Rd ). Applying this pointwise in S to ⟨ f, x∗

⟩, we find that

gx∗,n = d A,r
ℓM,x∗,n( f ) = 2ntr(A)·r−1z ↦→ ∆ℓM

z ⟨ f, x∗
⟩


L r,d (B A(0,2−n ))

≲
K∑

k=0

ℓ∑
j=1

2ntr(A)·r−1
z ↦→

[ ℓ∏
i=1

Lc[k]
i ι[d ;i]zi

]
∆M
ι[d ; j]z j

⟨ f, x∗
⟩


L r,d (B A(0,2−n ))

≲
K∑

k=0

ℓ∑
j=1

2ntr(A j )/r j
[
⃝i ̸= j M [d ;i],Ai

ri

] [z j ↦→ Lc[k]
j ι[d ; j]z j

∆M
ι[d ; j]z j

⟨ f, x∗
⟩


Lr j (B A j (0,2−n ))

]

≤

K∑
k=0

ℓ∑
j=1

M A
r

[
2ntr(A j )/r j

z j ↦→ Lc[k]
j ι[d ; j]z j

∆M
ι[d ; j]z j

⟨ f, x∗
⟩


Lr j (B A j (0,2−n ))

]

=

K∑
k=0

ℓ∑
j=1

M A
r

[
d

[d ; j],A j ,r j

M,c[k]
j ,x

∗,n
( f )
]

=

K∑
k=0

ℓ∑
j=1

M A
r

[
gc[k]

j ,x
∗,n, j

]
. (52)

A combination of (51) and (52) gives

gx∗,n ≲
K∑

k=0

ℓ∑
j=1

M A
r

[
d

[d ; j],A j ,r j

M,c[k]
j ,x∗,n

( f )
]

=

K∑
k=0

ℓ∑
j=1

M A
r

[
gc[k]

j ,x∗,n, j

]
or all (x∗, n) ∈ X∗

× N. Therefore,{gx∗,n}(x∗,n)


FM(X∗;E) ≲
K∑

k=0

ℓ∑
j=1

{M A
r
[
gc[k]

j ,x∗,n, j

]}
(x∗,n)


FM(X∗;E)

≲
K∑

k=0

ℓ∑
j=1

{gc[k]
j ,x∗,n, j }(x∗,n)


FM(X∗;E)

=

K∑
k=0

ℓ∑
j=1

{gc[k]
j ,x∗,n, j }(x∗,n)


FM(X∗;E[d ; j])

.

he desired result now follows from a combination of Theorem 4.6 and Proposition 4.10. □
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As an immediate corollary to Theorems 3.22 and 5.1 we have:

orollary 5.3. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)) with ε+, ε− > 0 and (S,A , µ) atomic.
et {J1, . . . , JL} be a partition of {1, . . . , ℓ}. If ε+ > tr(A) · (r−1

− 1)+, where tr(A) =

tr(A1), . . . , tr(Aℓ)), then

Y A(E; X ) = Y L A(E; X ) = Ỹ L
A(E; X ) =

L⋂
l=1

Ỹ L
AJl (E[d ;Jl ]; X )

=

L⋂
l=1

Y L AJl (E[d ;Jl ]; X ) =

L⋂
l=1

Y AJl (E[d ;Jl ]; X )

with an equivalence of quasi-norms.

In the case that r = 1, the above intersection representation simplifies a bit thanks to the
corresponding simplification in the crucial estimate involving differences, also see Remark ??.
In particular, we can drop the assumption of (S,A , µ) being atomic.

Theorem 5.4. Let E ∈ S(ε+, ε−, A, 1, (S,A , µ)) with ε+, ε− > 0. Let {J1, . . . , JL} be a
partition of {1, . . . , ℓ}. Then

Y A(E; X ) = Y L A(E; X ) = Ỹ L
A(E; X ) =

L⋂
l=1

Ỹ L
AJl (E[d ;Jl ]; X )

=

L⋂
l=1

Y L AJl (E[d ;Jl ]; X ) =

L⋂
l=1

Y AJl (E[d ;Jl ]; X )

with an equivalence of quasi-norms.

Proof. In view of Theorem 3.22, this can be proved in exactly the same way as Theorem 5.1,
using Theorem 4.8 instead of Theorem 4.6. □

Remark 5.5. In light of Example 3.20, the intersection representation

Y A(E; X ) =

L⋂
l=1

Y AJl (E[d ;Jl ]; X ) (53)

from Corollary 5.3 and Theorem 5.4 extends the well-known Fubini property for the classical
Lizorkin–Triebel spaces F s

p,q (Rd ) (see [57, Section 4] and the references given therein). It also
covers Theorem 1.1 and thereby (1), the intersection representation from [16, Proposition 3.23].
The intersection representation [33, Proposition 5.2.38] for anisotropic weighted mixed-norm
Lizorkin–Triebel is a special case as well. Furthermore, it suggests an operator sum theorem
for generalized Lizorkin–Triebel spaces in the sense of [32].

Example 5.6. Let us state the intersection representation (53) from Corollary 5.3 and
Theorem 5.4 for some concrete choices of E (see Examples 3.5 and 3.20) for the case that
ℓ = 2 with partition {{1}, {2}} of {1, 2}.

(I) Let p ∈ (0,∞)2, q ∈ (0,∞], w ∈ A∞(Rd1 , A1) × A∞(Rd2 , A2) and s ∈ R. Pick r ∈

(0,∞)2 such that r < p ∧q, r < p ∧p ∧q and w ∈ A (Rd1 , A )×A (Rd2 , A ).
1 1 2 1 2 p1/r1 1 p2/r2 2
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If s > tr(A) · (r−1
− 1)+, then

F s,A
p,q (Rd ,w; X ) = Fs,A2

p2,q
(Rd2 , w2; L p1 (Rd1 , w1); X )

∩ L p2 (Rd2 , w2; F s,A1
p1,q

(Rd1 , w1; X )).

(II) Let p ∈ (0,∞)2, q ∈ (0,∞], w ∈ A∞(Rd1 , A1) × A∞(Rd2 , A2) and s ∈ R. Pick r ∈

(0,∞)2 such that r1 < p1, r2 < p1 ∧ p2 ∧ q and w ∈ Ap1/r1 (Rd1 , A1) × Ap2/r2 (Rd2 , A2).
If s > tr(A) · (r−1

− 1)+, then

Y A (L p2 (Rd2 , w2)[[ℓs
q (N)]L p1 (Rd1 , w1)]; X

)
= F s,A2

p2,q
(Rd2 , w2; L p1 (Rd1 , w1; X )) ∩ L p2 (Rd2 , w2; Bs,A1

p1,q
(Rd1 , w1; X )).

To finish this section, let us finally state the Fubini property variants of the two examples
rom Example 5.6 (cf. Remark 5.5).

xample 5.7. Taking p = (p, q) in (I) and (II) of Example 5.6, an application of Fubini’s
heorem yields the following.

(I) Let p, q ∈ (0,∞), w ∈ A∞(Rd1 , A1) × A∞(Rd2 , A2) and s ∈ R. Pick r ∈ (0,∞)2 such
that r1, r2 < p ∧ q and w ∈ Ap/r1 (Rd1 , A1) × Aq/r2 (Rd2 , A2). If s > tr(A) · (r−1

− 1)+,
then

F s,A
(p,q),p(Rd ,w; X ) = F s,A2

q,p (Rd2 , w2; L p(Rd1 , w1; X ))

∩ Lq (Rd2 , w2; Bs,A1
p,p (Rd1 , w1; X )).

(II) Let p ∈ (0,∞), q ∈ (0,∞], w ∈ A∞(Rd1 , A1) × A∞(Rd2 , A2) and s ∈ R. Pick
r ∈ (0,∞)2 such that r1 < p, r2 < p ∧ q and w ∈ Ap/r1 (Rd1 , A1) × Aq/r2 (Rd2 , A2). If
s > tr(A) · (r−1

− 1)+, then

Bs,A
(p,q),q (Rd ,w; X ) = Bs,A2

q,q (Rd2 , w2; L p(Rd1 , w1; X ))

∩ Lq (Rd2 , w2; Bs,A1
p,q (Rd1 , w1; X )).

In applications to parabolic partial differential equations, one uses anisotropies of the form
A = (a1 Id1 , a2 Id2 ) with a1 = 2m, a2 = 1, d1 ∈ {n − 1, n} and d2 = 1, where 2m is the
rder of the elliptic operator under consideration and n is the dimension of the spatial domain
see e.g. [35,36]). So let us for convenience of reference state Examples 5.6 and 5.7 for such
nisotropies.

In view of Example 3.29 and the fact that Ap(Rn, λA) = Ap(Rn, A) for every λ ∈ (0,∞),
he following two examples are obtained as special cases of Examples 5.6 and 5.7.

xample 5.8. Let d ∈ (N1)2 and a ∈ (0,∞)2.

(I) Let p ∈ (0,∞)2, q ∈ (0,∞], w ∈ A∞(Rd1 ) × A∞(Rd2 ) and s ∈ R. Pick r ∈ (0,∞)2

such that r1 < p1 ∧ q, r2 < p1 ∧ p2 ∧ q and w ∈ Ap1/r1 (Rd1 ) × Ap2/r2 (Rd2 ). If
s > a1d1(r−1

1 − 1)+ + a2d2(r−1
2 − 1)+, then

F s,(a;d )
p,q (Rd ,w; X ) = Fs/a2

p2,q
(Rd2 , w2; L p1 (Rd1 , w1); X )

∩ L p2 (Rd2 , w2; F s/a1
p1,q

(Rd1 , w1; X )).

(II) Let p ∈ (0,∞)2, q ∈ (0,∞], w ∈ A∞(Rd1 ) × A∞(Rd2 ) and s ∈ R. Pick r ∈ (0,∞)2

such that r < p , r < p ∧ p ∧ q and w ∈ A (Rd1 ) × A (Rd2 ). If
1 1 2 1 2 p1/r1 p2/r2
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s > a1d1(r−1
1 − 1)+ + a2d2(r−1

2 − 1)+, then

Y (a;d ) (L p2 (Rd2 , w2)[[ℓs
q (N)]L p1 (Rd1 , w1)]; X

)
= F s/a2

p2,q
(Rd2 , w2; L p1 (Rd1 , w1; X )) ∩ L p2 (Rd2 , w2; Bs/a1

p1,q
(Rd1 , w1; X )).

xample 5.9. Let d ∈ (N1)2 and a ∈ (0,∞)2.

(I) Let p, q ∈ (0,∞), w ∈ A∞(Rd1 ) × A∞(Rd2 ) and s ∈ R. Pick r ∈ (0,∞)2 such that
r1, r2 < p ∧q and w ∈ Ap/r1 (Rd1 )× Aq/r2 (Rd2 ). If s > a1d1(r−1

1 −1)+ +a2d2(r−1
2 −1)+,

then

F s,(a;d )
(p,q),p(Rd ,w; X ) = F s/a2

q,p (Rd2 , w2; L p(Rd1 , w1; X ))

∩ Lq (Rd2 , w2; Bs/a1
p,p (Rd1 , w1; X )).

(II) Let p ∈ (0,∞), q ∈ (0,∞], w ∈ A∞(Rd1 ) × A∞(Rd2 ) and s ∈ R. Pick r ∈ (0,∞)2

such that r1 < p, r2 < p ∧ q and w ∈ Ap/r1 (Rd1 ) × Aq/r2 (Rd2 ). If s > a1d1(r−1
1 − 1)+ +

a2d2(r−1
2 − 1)+, then

Bs,(a;d )
(p,q),q (Rd ,w; X ) = Bs/a2

q,q (Rd2 , w2; L p(Rd1 , w1; X ))

∩ Lq (Rd2 , w2; Bs/a1
p,q (Rd1 , w1; X )).

Combining Example 5.8(I) together with a randomized Littlewood–Paley decomposition for
MD Banach space-valued Bessel potential spaces and type and cotype considerations (we

efer the reader to [26] for the notions of type and cotype), we find the following embedding.

xample 5.10. Let X be a UMD Banach space with type ρ0 ∈ [1, 2] and cotype ρ1 ∈ [2,∞].
et d ∈ (N1)2, a ∈ (0,∞)2, p ∈ (1,∞)2, q ∈ [ρ0, ρ1], w ∈ A∞(Rd1 ) × Ap2 (Rd2 ) and s ∈ R.
ick r ∈ (0,∞) such that r < p1 ∧ q and w1 ∈ Ap1/r (Rd1 ). If s > a1d1(r−1

− 1)+, then

F s,(a;d )
p,ρ0

(Rd ,w; X ) ↪→ H s/a2
p2

(Rd2 , w2; L p1 (Rd1 , w1; X ))

∩ L p2 (Rd2 , w2; F s/a1
p1,q

(Rd1 , w1; X ))

↪→ F s,(a;d )
p,ρ1

(Rd ,w; X ).

roof. By [41, Proposition 3.2] and the fact that L p1 (Rd1 , w1; X ) is a UMD Banach space
see e.g. [25, Proposition 4.2.15]),

H s/a2
p2

(Rd2 , w2; L p1 (Rd1 , w1; X )) = F s/a2
p2,rad(Rd2 , w2; L p1 (Rd1 , w1; X )). (54)

Let (Ω ,F ,P) be a probability space and (ϵk)k∈N a Rademacher sequence on (Ω ,F ,P). The
pace Radp(N; X ), where p ∈ [1,∞), is defined as the Banach space of sequences (xk)k∈N for
hich there is convergence of

∑
∞

k=0 ϵk xk in L p(Ω; X ), endowed with the norm

∥(xk)k∈N∥Radp(N;X ) := ∥

∞∑
k=0

ϵk xk∥L p(Ω;X ) = sup
K≥0

∥

K∑
k=0

ϵk xk∥L p(Ω;X ).

s a consequence of the Kahane–Khintchine inequalities (see e.g. [26, Proposition 6.3.1]),
adp(N; X ) = Rad p̃(N; X ) with an equivalence of norms for any p, p̃ ∈ [1,∞). We put
ad(N; X ) = Rad2(N; X ).

With the just introduced notation, the type and cotype assumptions on X can be reformulated
s

ℓρ0 (N; X ) ↪→ Rad(N; X ) ↪→ ℓρ1 (N; X ).
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Combining this with the identity

Rad(N; L p1 (Rd1 , w1; X )) = L p1 (Rd1 , w1; Rad(N; X ))

obtained from Fubine’s theorem and the Kahane–Khintchine inequalities, we find

L p1 (Rd1 , w1; ℓρ0 (N; X )) ↪→ Rad(N; L p1 (Rd1 , w1; X )) ↪→ L p1 (Rd1 , w1; ℓρ1 (N; X )). (55)

A combination of (54) and (55) yields

Fs/a2
p2,ρ1

(Rd2 , w2; L p1 (Rd1 , w1); X ) ↪→ H s/a2
p2

(Rd2 , w2; L p1 (Rd1 , w1; X ))

↪→ Fs/a2
p2,ρ2

(Rd2 , w2; L p1 (Rd1 , w1); X ).

he desired result now follows from Example 5.8(I) and ‘monotonicity’ of Lizorkin–Triebel
paces in the microscopic parameter. □

. Duality

efinition 6.1. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)). We define Y A(E; X∗, σ (X∗, X )) as the
pace of all f ∈ S ′(Rd

; L0(S; X∗, σ (X∗, X ))) which have a representation

f =

∞∑
n=0

fn in S ′(Rd
; L0(S; X∗, σ (X∗, X )))

ith ( fn)n ⊂ S ′(Rd
; L0(S; X∗, σ (X∗, X ))) satisfying the spectrum condition

supp f̂0 ⊂ B̄ A(0, 2)

supp f̂n ⊂ B̄ A(0, 2n+1) \ B A(0, 2n−1), n ∈ N,

nd ( fn)n ∈ E(X ). We equip Y A(E; X∗, σ (X∗, X )) with the quasinorm

∥ f ∥Y A(E;X∗,σ (X∗,X )) := inf ∥( fn)∥E(X∗,σ (X∗,X )),

here the infimum is taken over all representations as above.

Similarly to Proposition 3.19 we have the following Littlewood–Paley decomposition
escription for Y A(E; X∗, σ (X∗, X )):

roposition 6.2. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)). Let ϕ = (ϕn)n∈N ∈ Φ A(Rd ) with
ssociated sequence of convolution operators (Sn)n∈N. Then

Y A(E; X∗, σ (X∗, X ))

=
{

f ∈ S ′(Rd
; L0(S; X∗, σ (X∗, X ))) : (Sn f )n∈N ∈ E(X∗, σ (X∗, X ))

}
ith

∥ f ∥Y A(E;X∗,σ (X∗,X )) ≂ ∥(Sn f )n∈N∥E(X∗,σ (X∗,X )). (56)

Using the description from the above proposition it is easy to see that

Y A(E; X∗) = Y A(E; X∗, σ (X∗, X )) ∩ S ′(Rd
; L0(S; X )).

ith an equivalence of quasinorms.
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Theorem 6.3. Let E ∈ S(ε+, ε−, A, r, (S,A , µ)) be a Banach function space with an order
continuous norm and a weak order unit such that E×

∈ S(−ε−,−ε+, A, 1, (S,A , µ)). Assume
that there exists a Banach function space F on S with an order continuous norm and a weak
order unit such that S(Rd

; F(X ))
d
↪→ Y A(E; X ). Viewing

[Y A(E; X )]∗ ↪→ S ′(Rd
; [F(X )]∗) = S ′(Rd

; F×(X∗, σ (X∗, X )))

↪→ S ′(Rd
; L0(S; X∗, σ (X∗, X )))

via the natural pairing, we have

[Y A(E; X )]∗ = Y A(E×
; X∗, σ (X∗, X )).

Consequently, if X∗ has the Radon–Nikodým property with respect to µ, then

Y A(E×
; X∗) = [Y A(E; X )]∗ ↪→ S ′(Rd

; F×(X∗)) ↪→ S ′(Rd
; L0(S; X∗)).

Example 6.4. Let us consider the notation introduced in Example 3.20. For a weight vector

w and p ∈ (1,∞)ℓ we define the p-dual weight of w by w′
p := (w

−
1

p1−1
1 , . . . , w

−
1

pℓ−1
ℓ ) and

e write p′ for the Hölder conjugate vector of p.

(i) Let p ∈ (1,∞)ℓ, q ∈ [1,∞), w ∈
∏ℓ

j=1 Ap j (R
d j , A j ) and s ∈ R. Then

[F s,A
p,q (Rd ,w; X )]∗ = F−s,A

p′,q ′ (Rd ,w′

p; X∗).

(ii) Let p ∈ (1,∞)ℓ, q ∈ [1,∞), w ∈
∏ℓ

j=1 Ap j (R
d j , A j ) and s ∈ R. Then

[Bs,A
p,q (Rd ,w; X )]∗ = B−s,A

p′,q ′ (Rd ,w′

p; X∗).

(iii) Let F be a UMD Banach function space, p ∈ (1,∞)ℓ, q ∈ [1,∞), w ∈
∏ℓ

j=1 Ap j

(Rd j , A j ) and s ∈ R. If X∗ has the Radon–Nikodým property with respect to µ, then

[Fs,A
p,q (Rd ,w; F; X )]∗ = F−s,A

p′,q ′ (Rd ,w′

p; F×
; X∗).

Let E ∈ S(ε+, ε−, A, 1, (S,A , µ)) be a Banach function space. By Remark 3.10 we then
ave

Ei ↪→ E A
⊗

(B
1,wA,1
A ) ↪→ E A

⊗
[B

1,wA,1
A ],

rom which it follows that

Ei (X∗, σ (X∗, X )) ↪→ E A
⊗

[B
1,wA,1
A ](X∗, σ (X∗, X )) ↪→ S ′(Rd

; E A
⊗

(X∗, σ (X∗, X )))

↪→ S ′(Rd
; L0(S; X∗, σ (X∗, X ))).

emma 6.5. Let E ∈ S(ε+, ε−, A, 1, (S,A , µ)) be a Banach function space and let Z be
Banach space with Z ↪→ L0(S; X∗, σ (X∗, X )). Let ϕ = (ϕn)n∈N ∈ Φ A(Rd ) with associated

equence of convolution operators (Sn)n∈N be such that{
supp ϕ̂0 ⊂ B̄ A(0, 2)
supp ϕ̂ ⊂ B̄ A(0, 2n+1) \ B A(0, 2n−1), n ∈ N. (57)
n
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w

(

S

n

d
i

Then

Y A(E; X∗, σ (X∗, X )) ∩ S ′(Rd
; Z )

=

{
f ∈ S ′(Rd

; Z ) : ∃( fk)k ∈ E(X∗, σ (X∗, X )), f =

∞∑
k=0

Sk fk in S ′(Rd
; Z )

}
ith

∥ f ∥Y A(E;X∗,σ (X∗,X )) ≂ inf ∥( fk)k∥E(X∗,σ (X∗,X )).

Proof. Given f ∈ Y A(E; X∗, σ (X∗, X )) ∩S ′(Rd
; Z ), let fk := Tk f , where Tk := Sk−1 + Sk +

Sk+1. Then Sk fk = Sk f , so f =
∑

∞

k=0 Sk fk in S ′(Rd
; Z ). From

|⟨ fk, x⟩| = |Tk⟨Sk f, x⟩| ≲ M A
⟨Sk f, x⟩ ≤ M Aϑ(Sk f ), x ∈ BX ,

it follows that ϑ( fk) ≲ M Aϑ(Sk f ). Using that M A is bounded on E , we find

∥( fk)k∥E(X∗,σ (X∗,X )) ≲ ∥(Sk f )k∥E(X∗,σ (X∗,X ))
(56)
≂ ∥ f ∥Y A(E;X∗,σ (X∗,X )).

For the converse, let f =
∑

∞

k=0 Sk fk in S ′(Rd
; Z ) with ( fk)k ∈ E(X∗, σ (X∗, X )). Then

|⟨Sk fk, x⟩| = |Sk⟨ fk, x⟩| ≲ M A
⟨ fk, x⟩ ≤ M Aϑ( fk), x ∈ BX ,

so that ϑ(Sk f ) ≲ M Aϑ( fk). In view of

f =

∞∑
k=0

Sk fk S ′(Rd
; Z ) ↪→ S ′(Rd

; L0(S; X∗, σ (X∗, X ))),

57) and the boundedness of M A on E , it follows that f ∈ Y A(E; X∗, σ (X∗, X )) with

∥ f ∥Y A(E;X∗,σ (X∗,X )) ≲ ∥(Sk fk)k∥E(X∗,σ (X∗,X )) ≲ ∥( fk)k∥E(X∗,σ (X∗,X )). □

Proof of Theorem 6.3. By assumption and Proposition 3.26,

S(Rd
; F(X )) ↪→ Y A(E; X ) ↪→ S ′(Rd

; E A
⊗

(X )),

from which it follows that F ↪→ E A
⊗

, implying in turn that [E A
⊗

]× ↪→ F×. On the other hand
it holds that [E×]A

⊗
↪→ [E A

⊗
]×. Therefore, [E×]A

⊗
↪→ F×. By (a variant of) Proposition 3.26

we thus obtain

Y A(E×
; X∗, σ (X∗, X )) ↪→ S ′(Rd

; [E×]A
⊗(X∗, σ (X∗, X ))) ↪→ S ′(Rd

; F×(X∗, σ (X∗, X ))).

(58)

o we can use Lemma 6.5 with Z = F×(X∗, σ (X∗, X )) to describe Y A(E×
; X∗, σ (X∗, X )).

Let (Sk)k∈N be as in Lemma 6.5 and equip Y A(E; X ) with the corresponding equivalent
orm from Proposition 3.19. Then

ι : Y A(E; X ) −→ E(X ), f ↦→ (Sk f )k

efines an isometric linear mapping. By order continuity of E and F , there are the natural
dentifications

[E(X )]∗ = E×(X∗, σ (X∗, X )) and [F(X )]∗ = F×(X∗, σ (X∗, X )).
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As S(Rd
; F(X ))

d
↪→ Y A(E; X ), we may thus view

[Y A(E; X )]∗ ↪→ S ′(Rd
; [F(X )]∗) = S ′(Rd

; F×(X∗, σ (X∗, X ))).

enoting the adjoint of ι by j , we thus obtain the following commutative diagram:

E×(X∗, σ (X∗, X )) S ′(Rd
; F×(X∗, σ (X∗, X )))

E×(X∗, σ (X∗, X ))⧸ker j
[
Y A(E; X )

]∗
T

j

j̃
≃

.

ere T is explicitly given by

T ( fk)k =

∞∑
k=0

Sk fk in S ′(Rd
; F×(X∗, σ (X∗, X ))),

which can be seen by testing against φ ∈ S(Rd
; F(X )):

⟨T ( fk)k, φ⟩ = ⟨( fk)k, ιφ⟩ = ⟨( fk)k, (Skφ)k⟩ =

∞∑
k=0

⟨ fk, Skφ⟩ =

∞∑
k=0

⟨Sk fk, φ⟩.

he desired result follows by an application of Lemma 6.5 with Z = F×(X∗, σ (X∗, X )) (recall
58)). □

. A sum representation

In this section we combine the intersection representation for Y A(E; X ) from Theorem 5.4
nd the duality result Theorem 6.3 with the following fact on duality for intersection spaces:
iven an interpolation couple of Banach spaces (Y, Z ) for which Y ∩ Z is dense in both Y and

Z , it holds that (X∗, Y ∗) is an interpolation couple of Banach space and

[Y ∩ Z ]∗ = Y ∗
+ Z∗, [X + Y ]∗ = X∗

∩ Y ∗, (59)

old isometrically under the natural identifications (see [31, Theorem I.3.1]).
We let the notation be as in Section 5.

orollary 7.1. Let E ∈ S(ε+, ε−, A, 1, (S,A , µ)) be a Banach function space such that E×

as an order continuous norm and a weak order unit and E×
∈ S(−ε−,−ε+, A, r, (S,A , µ))

ith ε+, ε− < 0. Suppose that X is reflexive. Let F Banach function space on S with an order
ontinuous norm such that S(Rd

; F(X ))
d
↪→ Y A(E×

; X ). Let {J1, . . . , JL} be a partition of
1, . . . , ℓ} and, for each l ∈ {1, . . . , L}, let Fl be a Banach function space on SJl with an
rder continuous norm and a weak order unit such that

S(Rd
; F(X ))

d
↪→ S(Rd−dJl ; Fl(X ))

d
↪→ Y AJl (E×

[d ;Jl ]; X ).

hen

Y A(E; X ) =

L

+
l=1

Y AJl (E[d ;Jl ]; X )

ith an equivalence of norms.
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Proof. As E has the Fatou property, E = (E×)×. The desired result thus follows from a com-
ination of Theorems 5.4, 6.3, (59), the reflexivity of X and the fact that the Radon–Nikodým
roperty is implied by reflexivity (see [26, Theorem 1.3.21]). □
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ppendix. Some maximal function inequalities

Suppose that Rd is d -decomposed with d ∈ (N1)ℓ and let A = (A1, . . . , Aℓ) be a
-anisotropy.

emma A.1 (Anisotropic Peetre’s inequality). Let X be a Banach space, r ∈ (0,∞)ℓ, K ⊂ Rd

compact set and N ∈ N. For all α ∈ Nn with |α| ≤ N and f ∈ S ′(Rd
; X ) with supp ( f̂ ) ⊂ K ,

here is the pointwise estimate

sup
z∈Rd

∥Dα f (x + z)∥X∏ℓ
j=1(1 + ρA j (z j ))tr(A j )/r j

≲ sup
z∈Rd

∥ f (x + z)∥X∏ℓ
j=1(1 + ρA j (z j ))tr(A j )/r j

≲
[
M A

r (∥ f ∥X )
]

(x), x ∈ Rd .

roof. This can be obtained by combining the proof of [28, Proposition 3.11] for the case
= 1 with the proof of [10, Lemma 3.4] for the case ℓ = 1. Although it get quite technical,
e have decided to not provide the details. □

For f ∈ F−1E ′(Rd
; X ), r ∈ (0,∞)ℓ, R ∈ (0,∞)ℓ we define the maximal function of

eetre–Fefferman–Stein type f ∗(A, r, R; · ) by

f ∗(A, r, R; x) := sup
z∈Rd

∥ f (x + z)∥X∏ℓ
j=1(1 + R jρA j (z j ))tr(A j )/r j

.

orollary A.2. Let X be a Banach space and r ∈ (0,∞)ℓ. For all f ∈ S ′(Rd
; X ) and

R ∈ (0,∞)ℓ with supp ( f̂ ) ⊂ B A(0, R), there is the pointwise estimate

f ∗(A, r, R; x) ≲A,r
[
M A

r (∥ f ∥X )
]

(x), x ∈ Rd .

roof. By a dilation argument it suffices to consider the case R = 1, which is contained in
emma A.1. □

emma A.3. Let X and Y be Banach spaces. For all (Mn)n∈N ⊂ FL1(Rd
;B(X, Y )),

R(n))n∈N ⊂ (0,∞)ℓ, λ ∈ (0,∞)ℓ, c ∈ [1,∞) and ( fn)n∈N ⊂ F−1E ′(Rd
; X ), there is the

ointwise estimate[F(Mn f̂n)](x)


Y

≲ c
∑ℓ

j=1 λ j sup
k∈N

ˆ
Rd

∥M̌n(AR(n) y)∥B(X,Y )

ℓ∏
j=1

(1 + ρA j (y j ))λ j dy

· sup
z∈Rd

∥ fn(x + z)∥X∏ℓ
j=1(1 + cR(n)

j ρA j (y j ))λ j
.

56



N. Lindemulder Journal of Approximation Theory 264 (2021) 105519

s
o

P
a
a

f

L

f

P

F

T

w

Proof. This can be shown as the pointwise estimate in the proof of [33, Proposition 3.4.8],
which was in turn based on [39, Proposition 2.4]. □

The following proposition is an extension of [28, Proposition 3.13] to our setting, which is in
turn a version of the pointwise estimate of pseudo-differential operators due to Marschall [38].
In order to state it, we first need to introduce the anisotropic mixed-norm homogeneous Besov
space Ḃs,A

p,q (Rd
; Z ).

Let Z be a Banach space, p ∈ (1,∞)ℓ, q ∈ (0,∞] and s ∈ R. Fix (φk)k∈Z ⊂ S(Rd ) that
atisfies φ̂k = ψ̂(A2−k ·)−ψ̂(A2−(k+) · ) for some ψ ∈ FC∞

c (Rd ) with ψ̂ ≡ 1 on a neighborhood
f 0. Then Ḃs,A

p,q (Rd
; Z ) is defined as the space of all f ∈ [S ′/P](Rd

; Z ) for which

∥ f ∥Ḃs,A
p,q (Rd ;Z ) :=

(2skφk ∗ f )k∈Z

ℓq (Z)[L p,d (Rd )](Z ) < ∞.

roposition A.4. Let X and Y be Banach spaces and r ∈ (0, 1]ℓ. Put τ := rmin ∈ (0, 1]. For
ll b ∈ S(Rd

;B(X, Y )), u ∈ S ′(Rd
; X ), c ∈ (0,∞) and R ∈ [1,∞) with supp (b) ⊂ B A(0, c)

nd supp (û) ⊂ B A(0, cR), there is the pointwise estimate

∥b(D)u(x)∥Y ≲A,r (cR)tr(A)·(r−1
−1)

∥b∥
Ḃtr(A)·r−1,A

1,τ (Rd ;B(X,Y ))

[
M A

r (∥u∥X )
]

(x)

or each x ∈ Rd .

In the proof of Proposition A.4 we will use the following lemma.

emma A.5. Let X be a Banach space and p, q ∈ (0,∞)ℓ with p ≤ q. For every
f ∈ S ′(Rd

; X ) and R ∈ (0,∞)ℓ with supp ( f̂ ) ⊂ B A(0, R),

∥ f ∥Lq,d (Rd ;X ) ≲ p,q,d

ℓ∏
j=1

R
tr(A j )( 1

p j
−

1
q j

)

j ∥ f ∥L p,d (Rd ;X )

Proof. By a scaling argument we may restrict ourselves to the case R = 1. Now pick
φ ∈ S(Rd ) with φ̂ ≡ 1 on B A(0, 1). Then f = φ ∗ f and the desired inequality follows
rom an iterated use of Young’s inequality for convolutions. □

roof of Proposition A.4. It holds that

b(D)u(x) =

ˆ
Rd

b̌(y)u(x − y) dy, x ∈ Rd .

or fixed x ∈ Rd , by the quasi-triangle inequality for ρA (with constant cA),

supp (F[y ↦→ b̌(y)u(x − y)]) ⊂ BA(0, c) + BA(0, cR) ⊂ BA(0, cA(R + 1)c).

herefore,

∥b(D)u(x)∥Y ≤ ∥y ↦→ b̌(y)u(x − y)∥L1(Rd )

≲ (cA(R + 1)c)
∑ℓ

j=1 tr(A j )( 1
r j

−1)
∥y ↦→ b̌(y)u(x − y)∥L r,d (Rd )

≲ (Rc)
∑ℓ

j=1 tr(A j )( 1
r j

−1)
∥y ↦→ b̌(y)u(x − y)∥L r,d (Rd ), (60)

here we used Lemma A.5 for the second estimate.
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Let (φk)k∈Z be as in the definition of the anisotropic homogeneous Besov space Ḃs,A
p,q as

given preceding the proposition. Then
∑

∞

k=−∞
φ̂k(− · ) = 1 on Rd

\ {0}, so that

∥b̌ u(x − · )∥L r,d (Rd ) ≤

(∑
k∈Z

∥φ̂k(− · ) b̌ u(x − · )∥τL r,d (Rd )

)1/τ

. (61)

Since

sup
y∈Rd

∥φ̂k(−y)b̌(y)∥B(X,Y ) ≤ ∥F−1[φ̂k(− · ) b̌]∥L1(Rd ;B(X,Y ))

= (2π )−d
∥F−1[φ̂k b̂]∥L1(Rd ;B(X,Y ))

nd supp (φ̂k) ⊂ B A(0, 2k+1), it follows from a combination of (60) and (61) that

∥b(D)u(x)∥Y ≲ (Rc)
∑ℓ

j=1 tr(A j )( 1
r j

−1)
(∑

k∈Z

∥φ̂k(− · ) b̌ u(x − · )∥τL r,d (Rd )

)1/τ

≲ (Rc)
∑ℓ

j=1 tr(A j )( 1
r j

−1)
(∑

k∈Z

[
2

k
∑ℓ

j=1 tr(A j ) 1
r j ∥F−1[φ̂k b̂]∥L1

]τ)1/τ

sup
k∈Z

2
−(k+1)tr(A j ) 1

r j ∥1B A(0,2k+1)u(x − · )∥L r,d (Rd )

≤ (Rc)
∑ℓ

j=1 tr(A j )( 1
r j

−1)
∥b∥

Ḃ

∑ℓ
j=1 tr(A j ) 1

r j
,A

1,τ (Rd ;B(X,Y ))

[
M A

r (∥u∥X )
]

(x). □

orollary A.6. Let X and Y be Banach spaces, r ∈ (0, 1]ℓ and ψ ∈ C∞
c (Rd

;B(X, Y )). Put
ψk := ψ(A2−k · ) for each k ∈ N. Then, for all ( fk)k∈N ⊂ S ′(Rd

; X ) with supp f̂k ⊂ B A(0, r2k)
or some r ∈ [1,∞), there is the pointwise estimate

∥ψk(D) fk(x)∥Y ≲ r tr(A)·(r−1
−1) [M A

r (∥ fk∥X )
]

(x), x ∈ Rd .

roof. Set σ = tr(A)· r−1
=
∑ℓ

j=1 tr(A j ) 1
r j

. Let c ∈ [1,∞) be such that supp (ψ) ⊂ B A(0, c).
Applying Proposition A.4 to b = ψk , u = fk and R = r2k , we find that

∥ψk(D) fk(x)∥Y ≲ (cr2k)tr(A)·(r−1
−1)

∥ψk∥Ḃσ,A1,τ (Rd )

[
M A

r (∥ fk∥X )
]

(x).

bserving that

∥ψk∥Ḃσ,A1,τ (Rd ) = 2−ktr(A)·(r−1
−1)

∥ψ∥Ḃσ,A1,τ (Rd ),

we obtain the desired estimate. □
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