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Abstract

The main result of this paper is an intersection representation for a class of anisotropic vector-valued
function spaces in an axiomatic setting a la Hedberg and Netrusov (2007), which includes weighted
anisotropic mixed-norm Besov and Lizorkin—Triebel spaces. In the special case of the classical Lizorkin—
Triebel spaces, the intersection representation gives an improvement of the well-known Fubini property.
The main result has applications in the weighted Lg-Lp-maximal regularity problem for parabolic
boundary value problems, where weighted anisotropic mixed-norm Lizorkin—Triebel spaces occur as
spaces of boundary data.
© 2021 Elsevier Inc. All rights reserved.

MSC: primary 46E35; 46E40; secondary 46E30

Keywords: Anisotropic; Axiomatic approach; Banach space-valued functions and distributions; Difference norm; Fubini
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1. Introduction

The motivation for this paper comes from the L,-L,-maximal regularity problem for
fully inhomogeneous parabolic boundary value problems, see [15,36,37]. In such problems,
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Lizorkin—Triebel spaces have turned out to naturally occur in the description of the sharp
regularity of the boundary data. This goes back to [59] in the special case that 1 < p <
q < oo for second order problems with special boundary conditions and was later extended
in [15] to the full range ¢, p € (1,00) for the more general setting of vector-valued
parabolic boundary value problems with boundary conditions of Lopatinskii—Shapiro type. The
inevitability of Lizorkin-Triebel spaces for a correct description of the boundary data was
reaffirmed in [27,28], but in a different form on the function space theoretic side.

On the one hand, in [15,59] the parabolic anisotropic regularity of the boundary data
is described by means of an intersection of two function space-valued function spaces,
in which the Lizorkin—Triebel space appears as an isotropic vector-valued Lizorkin—Triebel
space describing the sharp temporal regularity. On the other hand, in [27,28] the anisotropic
structure is dealt with more directly through a Fourier analytic approach, leading to anisotropic
mixed-norm Lizorkin—Triebel spaces. A link between the two approaches was obtained in
[16, Proposition 3.23], by comparing the trace result [28, Theorem 2.2] with a trace result
from [5,6]: for every ¢, p € (1,00), a,b € (0,00) and s € (0, 00), there is the intersection
representation

FU0 @™ x R) = F/2(R: L(R") N Ly(R; BY4@R")). )

The anisotropic mixed-norm Lizorkin-Triebel space F(Yp(g)hr) (R*xR) fors e R, r €[1, o],
is defined analogously to the classical isotropic Lizorkin-Triebel space F), . (R9), but with an
underlying Littlewood—Paley decomposition of R” x R that is adapted to the (a, b)-anisotropic

scalings {5“” : 1 € (0, 00)} given by
5V T =00 M), (1) eR" xR, )

Intuitively the dilation structure (2) causes a decay behavior on the Fourier side at different
rates in the two components of R” x R in such a way that smoothness s € (0, oo) with respect
to the anisotropy (a, b) corresponds to smoothness s/a in the spatial direction and smoothness
s/b in the time direction. One Way to look at the intersection representation (1) is as a way to
make this intuition precise for F )r(R” x R) in the special case that r = p.

It is the goal of this paper to provide a more systematic approach to the intersection
representation (1) and obtain more general versions of it, covering the weighted Banach
space-valued setting. In order to do so, we introduce a new class of anisotropic vector-
valued function spaces in an axiomatic setting a la Hedberg&Netrusov [24], which includes
Banach space-valued weighted anisotropic mixed-norm Besov and Lizorkin—Triebel spaces (see
Section 3).

The main result of this paper is an intersection representation for this new class of
anisotropic function spaces (see Section 5), from which the following theorem can be obtained
as a special case (see Example 5.8):

Theorem 1.1. Let a,b € (0,00), p,qg € (1,00), r € [1,00] and s € (0, 00). Then
FLOD®R" x R™) = F/2(R™; L,(R™) N L(R"; F3/R")), 3)
where, for E = L,(R") and o € R,
FL R E)={f € S®R" E): QS ) € LyR"; E[¢,(N)])}

with (S;)ken the Fourier multiplier operators induced by a Littlewood—Paley decomposition of
R™ and where

E[6,(N)] = {(f)n € EN : (I(Fdull, v € EY.

2
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In the case p = r, Fubini’s theorem yields IFX/ b PR L,(R")) = E/ b(Rm L,(R")) and
5/ SR = ;,/ »(R™), and from (3) we obtain an extension of the 1ntersect10n representation (1)
to decomposmons R? = R x R™:

J(a,b) n m N m., n m, ps/a n
Foa R x R™) = F)/2(R™; L,(R") N Ly(R™; BY/5(R")).

In the special case that a = b and p = ¢, the latter can be viewed as a special instance of the
Fubini property. In fact, the main result of this paper, Theorems 5.1/5.4, extends the well-known
Fubini property for the classical Lizorkin-Triebel spaces F, q(Rd) (see [57, Section 4] and the
references given therein), see Remark 5.5. However, as seen in Theorem 1.1, the availability
of Fubini’s theorem is not required for intersection representations, it should just be thought
of as a powerful tool to simplify the function spaces that one has to deal with in the special
case that some of the parameters coincide.

As a special case of the general intersection representation from Section 5 we also obtain
intersection representations for anisotropic mixed-norm Besov spaces (see Example 5.9). An
intersection representation for anisotropic Besov spaces for which the integrability parameter
coincides with the microscopic parameter can be found in [1, Theorem 3.6.3].

Let us now give an alternative viewpoint of (3) in order to motivate and provide some
intuition for the function space theoretic framework of this paper. First of all, the isotropic
]F;/ b and F ;/ + on the right-hand side of (3) could be viewed as the anisotropic I b and F

FSUP(R" x R™) = FSP(R™; L,(RM) N Ly(R™; Fye(R™). 4)

As already mentioned above, in this paper we will introduce a new class of anisotropic vector-
valued function spaces in an axiomatic setting a la Hedberg&Netrusov [24]. This class of
function spaces will be defined in such a way that each of the three spaces in (4) is naturally
contained in it. In particular, this will allow us to treat the three function spaces in (4) in the
same way from a conceptual point of view.
In order to elaborate a bit on the latter, let us write d = n +m, A = al,, B = bl,,
= (A, B) and let RY be (n, m)-decomposed, i.e. R = R" x R™, with (n, m)-anisotropy A
and the induced one-parameter group of expansive dilations (A;);er, :

A, (x,y)=(Ax, By) = (t°x, tby), (x,y) eR" x R" = RY.
Let
E = Ly oR" x R")[£(N)]

0 1/r
(fodnen € Lo®? x M) = (32%1l") € Lipp®" % R’")} ,
n=0

where we use the natural identification Lo(RY)N ~ Lo(R? x N); here, given a measure space
(S, o, 1), Lo(S) stands for the space of equivalence classes of measurable functions from §
to C. Let E )1 and E, .2 denote E viewed as Banach function space on R" x N x R”
and R" x N x R™, respectively. Let (S,f‘)neN be a Littlewood—Paley decomposition of R
with respect to the dilation structure (A;),er, induced by the anisotropy A, let (S;l“),,eN be a
Littlewood—Paley decomposition of R™ with respect to the dilation structure (A,);cgr, induced
by the anisotropy A and let (S2),cn be a Littlewood-Paley decomposition of R" with respect
to the dilation structure (B;);er, induced by the anisotropy B; see Definition 3.18 in the main
text.
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s,(a,b)
F(M),r

YAE) = {f € SR : (S € E),
Ffl*’br(]R’"; L ,(R™)) can be naturally identified with the space

Y2 (Eumy2) = {f € Lo®R"; S'R™) : (5] ln € Eumy2}s
and L,(R™; F,#(IR")) can be naturally identified with the space

With the just introduced notation, (R™ x R™) coincides with the space

YA(E(n,m);l) = {f € LO(Rm; S/(Rn)) : (Sy?f)n € E(n,m);l}a
so that (4) takes the form
YA(E) = YB(E(n,m);Z) N YA(E(n,m);l)- (5)

Each of the spaces YA(E), YB(E(,,,m);z) and YA(E(,,,m);]) is defined as a subspace of
Lo(S; S'(RM)) for some o -finite measure space (S, <7, i), in terms of an anisotropy on R and
a Banach function space on RY x N x S, where we take the trivial measure space (S, &7, u) =
({0}, {@, {0}}, #) in case of Y4(E) above. Furthermore, we view the Euclidean space R" as
being decomposed as RY = R% x ... x R* with £ € Ny and 4 = (&, ..., d) € (N))’,
di +---+ 4y = N, where we take £ = 2 in case of Y4(E) above and take £ = 1 in cases of
Y B(E<,,,m);2) and Y A(E(,l,m);l) above. This viewpoint naturally leads us to extend the axiomatic
approach to function spaces by Hedberg&Netrusov [24] to the anisotropic mixed-norm setting
in which there additionally is some extra underlying measure space (S, <7, ). This will give us
a general framework that is well suited for a systematic treatment of intersection representations
as in Theorem 1.1 as well as extensions to a Banach space-valued setting with Muckenhoupt
weights.

One of the main ingredients in the proof of Theorem 1.1 (and the more general intersection
representations) is a characterization by differences. For a function f € R? — C, h € R? and
an integer M > 1, we write

Anf ()= fx+h)— f(x), x eRY,

and

M M
A%f(x>=Ah-~-Ahf<x>=Z(—l)f<j)f(x+<M—j>h>, x eR”
M times Jj=0

For the special case of the anisotropic mixed-norm Lizorkin-Triebel space F,¢ (R4 x - x
R%), the difference norm characterization takes the form of Theorem 1.2.

Before we state it, let us introduce some notation. Let £ € Ny, 4 € (N})¢ with £j+---+d; =
d, a € (0,00)", p e (0,00), g €[1,00] and s € R. We put

Fy@ORY) = FSORA x - - x RY)
and

Lip:eyRY) = L, R®)[...[L, (RM)]...]
1/pe

P2/ P pe/pPe—1
={f e LyR%: / <</ |f(x)|""dx1) ) dx, < o0
RY% R4

4
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Theorem 1.2. Let £ e N|, d e N)' withdi +---+d, =d, a € (0 o), p € (1 00)t,
q €[l,00] and s € (0,00). Let ¢ € [1, oo)( andMeNsatzsfys > Z] lajlf(l—goj ) and
Mmin{ady, ..., a¢de} > s. For all f € L, L{)(R ) there is the two sided estimate

ns (‘l ‘f)(ﬂ
10y gty = 1 s + 1V Dz gt v
where

dSDP(f)(x) = 2" T 4% Hh > Lp_, 02ty 02 W)(h)AMf(x)H N

Lg.a)®RY)
The implicit constants in this two-sided estimate, which is in (modified) Vinogradov notation
for estimates (see the end of this introduction on notation and conventions), only depends on
d,a, p,qands.

As a special case of the general difference norm results in this paper (see Section 4), we
also have a corresponding version of Theorem 1.2 for IE"S’(“”[)(R”[' E). In connection to (the
proof of) Theorem 1.1, this especially includes IE“/ PR L »(RM)).

Theorem 1.2 is an extension of the difference norm characterization contained in
[24, Theorem 1.1.14] to the anisotropic mixed norm setting, restricted to the special case
of Lizorkin-Triebel spaces in the parameter range p € (1,00)", ¢ € [1, oc]. However, the
range p < (0, 00)¢, qg € (0,00] are also covered by the general difference norm results
in Section 4 for the axiomatic setting considered in this paper. In fact, we cover weighted
anisotropic mixed-norm Banach space-valued Besov and Lizorkin—Triebel spaces (both in the
normed and quasi-normed parameter ranges). Related estimates involving differences in the
isotropic case can be found in e.g. [53,55,56].

The following duality result is a special case of a more general duality result from this
paper for our abstract class of anisotropic vector-valued function spaces (see Theorem 6.3 and
Example 6.4).

Theorem 1.3. Let X be a Banach space, & € (N\)* with di + --- + dy = d, a € (0, 00)’,
pe(, 00)¢, q € (1,00) and s € R. Viewing

[Fpg PR X)I" > S'®RY; X*)

under the natural pairing (induced by S'(R%; X*) = [S(R?; X), see [2, Theorem 1.3.1]),
there is the identity

[Fs a, J)(Rd X)]* _ —S (a tf)(Rd X* )
with an equivalence of norms.

Duality results for the classical isotropic Besov and Lizorkin—Triebel spaces can be found
in [55, Section 2.11.2]. In the Banach space-valued setting, [2, Theorem 2.3.1] is a duality
result for Besov spaces. There the underlying Banach space is assumed to be reflexive or to
have a separable dual space, except for the case p = oo (see [2, Remark 2.3.2]). In this paper
we obtain a partial extension of [2, Theorem 2.3.1] to the weighted mixed-norm setting with
no assumptions on the Banach space (see Example 6.4).

The following result is a sum representation for anisotropic mixed-norm Lizorkin—Triebel
spaces of negative smoothness, which is a dual version to the intersection representation
Theorem 1.1.
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Corollary 1.4. Leta,b € (0,00), p,g € (1,00), r € (1,00) and s € (—0o0, 0). Then

Fol /R x R™) = FY2(R™; Ly(R") + Ly (R™; FyA(R"), ©)

where IFS/ PR L L,(R")) is as defined in Theorem 1.1.

The above sum representation is an easy consequence of the intersection representation,
the duality results and some basic functional analysis on duals of intersections. A sum
representation for anisotropic Besov spaces for which the integrability parameter coincides
with the microscopic parameter can be found in [1, Theorem 3.6.6].

Note that in the special case r = p, (6) reduces to

(Vp(;l)bl))(Rn X Rm) — Fs/b(Rm p(Rn)) 4+ L (Rm Fs/a(Rn))

by Fubini’s theorem.
Overview

This paper is organized as follows.

e Section 2: We discuss the necessary preliminaries on anisotropy and decomposi-
tion, quasi-Banach function spaces, vector-valued functions and distributions, and UMD
Banach spaces.

e Section 3: We introduce a new class of anisotropic vector-valued function spaces in
an axiomatic setting a la Hedberg&Netrusov [24] and discuss some basic properties of
these function spaces. In particular, in Definition 3.15 we define the spaces Y4(E; X) C
Lo(S; S'(R?; X)) for ‘admissable’ quasi-Banach function spaces £ on R x N x S in
the sense of Definition 3.1. Proposition 3.19 gives a characterization of Y4(E; X) in
terms of Littlewood—Paley decompositions, which is how Besov and Lizorkin-Triebel
spaces are usually defined to begin with. Example 3.20 then subsequently gives some
concrete examples of Y AE; X), including Besov and Lizorkin—Triebel spaces in different
generalities.

e Section 4: We derive several estimates for the spaces of measurable functions Y LA(E; X)
and ﬁA(E : X), including estimates involving differences. The spaces Y LA(E; X) and
ﬁA(E; X) are defined in Definitions 3.11 and 3.12, but coincide with YA(E; X) under
the conditions of Theorem 3.22. In particular, we obtain difference norm characterizations
for YA(E; X) in Corollary 4.7 and Theorem 4.8. The latter covers Theorem 1.2 as a
special case.

e Section 5: Using the difference norm estimates from Section 4, we obtain intersection
representations for YA4(E; X) in the spirit of (5) in Corollary 5.3 and Theorem 5.4 (as
well as intersection representations for Y LA(E; X) and yL* (E; X)). In Examples 5.6
and 5.7 we formulate the intersection representations for concrete choices of E, which in
particular include the Besov and Lizorkin—Triebel cases. Example 5.6 covers Theorem 1.1
as a special case.

o Section 6: We present a duality result for YA(E; X) in Theorem 6.3, for which we give
concrete examples in Example 6.4. The latter includes Theorem 1.3.

e Section 7: Combining the intersection representation from Section 5 with the duality
result from Section 6, we obtain a sum representation for Y4(E; X) in Corollary 7.1.

6
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Notation and convention.

We write: N = {0,1,2,3,...}, Ny = {k,k+ 1,k +2,k+3,...} for k € N, f = Ff,
Zeg = {....=3,=2,—1}, f = F1f,Ry = (0,00), C, = {z € C : Re(z) > 0},
Ki(N) = {(an)nen € CN : Z;O:O 2™\ a,|? < oo}. Furthermore, |x] € N denotes the least
integer part of x € [0, 0c0). Given a quasi-Banach space Y, we denote by B(Y) the space of
bounded linear operators on Y and we write By = {y € Y : ||y|| < 1} for the closed unit ball
in Y. Throughout the paper, we work over the field of complex scalars and fix a Banach space
X and a o-finite measure space (S, 7, ). Given two topological vector spaces X and Y, we
write X < Y if X C Y and the linear inclusion mapping of X into Y is continuous and we

. d . . .
write X — Y if X < Y and X is dense in Y.

We use (modified) Vinogradov notation for estimates: ¢ < b means that there exists a
constant C € (0, co) such thata < Cb; a <, p b means that there exists a constant C € (0, 00),
only depending on p and P, such that a < Cb;a ~ b meansa S band b Sa;a <,p b
means a S, pband b Sy, p a.

. . L ¥ . .

We will frequently write something like < or <, where (x) for instance refers to an equation,
to indicate that we use (x) to get < or <, respectively.

2. Preliminaries

2.1. Anisotropy and decomposition
2.1.1. Anisotropy on R?

An anisotropy on R is a real d x d matrix A with spectrum o(A) C C,. An anisotropy A
on R? gives rise to a one-parameter group of expansive dilations (A,);cr , given by

A, =11 =exp[AlIn(r)], teR,,

where R is considered as multiplicative group.

In the special case A = diag(a) with a = (ai,...,ay) € (0,00)¢, the associated
one-parameter group of expansive dilations (A;);er, is given by
A; = exp[A In(t)] = diag(z, ..., t%), teR,

Given an anisotropy A on R?, an A-homogeneous distance function is a Borel measurable
mapping p : RY — [0, co) satisfying

(i) p(x) =0 if and only if x = 0 (non-degenerate);
(i) p(A;x) =tp(x) for all x e RY, t e Ry ((Ay)ier, -homogeneous);
(iii) there exists ¢ € [1, 00) so that p(x+y) < c(p(x)+p(y)) for all x, y € R (quasi-triangle
inequality). The smallest such c¢ is denoted c¢,.

Any two homogeneous quasi-norms p;, p, associated with an anisotropy A on R? are
equivalent in the sense that

01(X) =py pp p2(x),  x € R

If p is a quasi-norm associated with an anisotropy A on R and A denotes the Lebesgue
measure on R?, then (R, p, A) is a space of homogeneous type.

Given an anisotropy A on R¢, we define the quasi-norm p, associated with A as follows:
we put p4(0) = 0 and for x € R? \ {0} we define p4s(x) to be the unique number

7
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pa(x) = A € (0,00) for which A,—1x € S§9-1 where S?~! denotes the unit sphere in R4,
Then

pa(x) :=min{r > 0:|A,-1x| < 1}, x #£0.
The quasi-norm p4 is C* on RY \ {0}. We write
BA(x,r)=B,,(x,r) ={y e R : ps(x —y) <r}, xeR’re(0,o00).

We furthermore write ¢4 = ¢,,.
Given an anisotropy A on R¢, we write

Arﬁin =min{Re (1) : L € 6 (A)}, )Lfr“ax :=max{Re(A) : L € 6 (A)}.
Note that 0 < A2 < Ad < co. Given ¢ € (0, A4, ), it holds that

P e xS |Ax] Ko Pmetelx], i =1,

Pt |x] < JAx] Se fmnflxl, il <1,
and

R pa(x) S paltx) Se 10 pa0), e = 1,

0 pa(x) Ko paltx) e tV0matp (), Jr] < 1.
Furthermore,

paCeymin = ol Se palothett, x| > 1,

paCeite < x| S, paleytmnt, x| <1,

2.1.2. d-Decompositions and anisotropy
Let £ = (d,, ..., d;) € (N}) be such that d = |d]; = dy + - - - + d;. The decomposition

R =R% x ... x R%,

is called the &-decomposition of R9. For x € RY we accordingly write x = (xq, ..., x,) and
Xj =1, ..., Xj.q), Where x; € RYand x;; eR(j=1,...,6i=1,...,d;). We also say
that we view R? as being d-decomposed. Furthermore, for each k € {1, ..., £} we define the
inclusion map

=g R — R" x; > (0,...,0,x,0,...,0), (7)
and the projection map

T = T[d:k] R — RE[’", X =(X1,...,X0) > Xg.

A d-anisotropy is a tuple A = (Ay,..., Ay) with each A; an anisotropy on R%. A

d-anisotropy A gives rise to a one-parameter group of expansive dilations (A;);cr, given by

Aix = (Apx, ..., Apix)), xeRY reRy,

where A;; = exp[A; In(7)]. Note that A® := 69§:,Aj is an anisotropy on R? with A® = A,
for every t € R,. We define the A®-homogeneous distance function p4 by
pa(x) = max{pa, (x1), ..., pa,(x0)},  x € R%
We write
BA(x,R):=B,,(x,R), xeR? Re(0,o00),
8
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and
BA(x, R) := B (x;, Ry) x -+ x B™(xy, Ry), x € RY R € (0, 0)".
Note that B4(x, R) = BA(x, R) when R = (R, ..., R).

2.2. Quasi-Banach function spaces

For the theory of quasi-Banach spaces, or more generally, F-spaces, we refer the reader
to [29,30].

Let Y be a vector space. A semi-quasi-norm is a mapping p : ¥ —> [0, co) with the
following two properties:

e Homogeneity. p(Ly) = |A| - p(y) for all y € Y and A € C.
e Quasi-triangle inequality. There exists a finite constant ¢ > 1 such that, for all y,z € Y,

p(y+2) =clp(y)+ p@)]
A quasi-norm is a semi-quasi-norm p that satisfies:
e Definiteness. If y € Y satisfies p(y) =0, then y = 0.

Let Y be a vector space and k € (0, 1]. A k-norm is a function || - || : ¥ — [0, co) with
the following three properties:

e Homogeneity. ||Ay|| = |A| - ||yl for all y € Y and A € C.
e k-triangle inequality. For all y,z € Y,

ly +zl* < iyl + Nzl .
o Definiteness. If y € Y satisfies ||y|| = 0, then y = 0.

Note that every x-norm is a quasi-norm. The Aoki—Rolewitz theorem [3,46] says that,
conversely, given a quasi-normed space (Y, || - ||) there exist r € (0, 1] and an r-norm || - || on
Y that is equivalent to || - ||.

Let Y be a quasi-Banach space with a quasi-norm that is equivalent to some «-norm,
k € (0,11. If (yu), C Y satisfies > o llyall%y < oo, then Y, y» converges in Y and
1020 mlly S (2 nlly)

Let (T, %, v) be a o-finite measure space. A quasi-Banach function space F on T is an
order ideal in Ly(7T) that has been equipped with a quasi-Banach norm || - || with the property
that || | f| |l = || f]| for all f € F.

A quasi-Banach function space F on T has the Fatou property if and only if, for every
increasing sequence ( f)nen in F with supremum f in Lo(T) and sup, . || /x| F < 00, it holds
that £ € F with || fl|r = sup,cy Il full -

Lemma 2.1. Let V be a quasi-normed space continuously embedded into a complete
topological vector space W. Suppose that V has the Fatou property with respect to W, i.e.
for all (v,)neny C V the following implication holds:
lim v, = vin W, liminf ||v,|ly <oo = v eV, | fllv <liminf| f,|v.
oo n—oo

n—0oQ n—

Then V is complete.
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2.3. Vector-valued functions and distributions

As general reference to the theory of vector-valued distributions we mention [2] and [51].

Let G be a topological vector space. The space of G-valued tempered distributions
S'(R?; G) is defined as S'(RY; G) := L(S(R?), G), the space of continuous linear operators
from the Schwartz space S(R?) to G. In this chapter we equip S'(RY; G) with the topology
of pointwise convergence. Standard operators (derivatives, Fourier transform, convolution, etc.)
on S'(R?; G) can be defined as in the scalar case.

By a combination of [2, Theorem 1.4.3] and (the proof of) [2, Lemma 1.4.6], the space
of finite rank operators S'(R?) ® G is sequentially dense in S'(R?; G). Furthermore, as a
consequence of the Banach—Steinhaus Theorem (see [48, Theorem 2.8]), if G is sequentially
complete, then so is S'(RY; G).

Given a quasi-Banach space X, denote by Oy (R?; X) the space of slowly increasing smooth
functions on R?. This means that f € Oy(R?; X) if and only if f € C*®(R?; X) and, for each
o € N9, there exist m, € N and ¢, > 0 such that

ID* F)llx < ca(l + )™, x €R™
The topology of Oy(R?; X) is induced by the family of semi-quasi-norms
Po.a(f) = 16D flloos ¢ € SRY), @ € N,

Let (T, &, v) be a o-finite measure space and let G be a topological vector space. We define
Lo(T; G) as the space as of all v-a.e. equivalence classes of v-strongly measurable functions
f T — G. Suppose there is a system Q of semi-quasi-norms generating the topology of G.
We equip Lo(T'; G) with the topology generated by the translation invariant pseudo-metrics

pa(f8) = /B @f - Aldv,  BeBu(B) <oo.qeQ.

This topological vector space topology on Ly(T; G) is independent of Q and is called the
topology of convergence in measure. Note that Ly(7) ® G is sequentially dense in Ly(T'; G)
as a consequence of the dominated convergence theorem and the definitions.
If G is an F-space, then Lo(T'; G) is an F-space as well. Here we could for example take

G = L, ¢10(R%; X) with r € (0, 00]* and X a Banach space, where

Ly s10c@®R) ={f € LaR"): flp € L, «(R?), B C R’ bounded Borel }
and

Ly 4RY) = L, RO)[...[L,(RD)]...].

Let X be a Banach space. Then Ly(T) ® S'(RY) ® X is sequentially dense in both of
Lo(T; S'(R?; X)) and S'(R?; Lo(T; X)), while the two induced topologies on Lo(T)®S' (RY)®
X coincide. Therefore, we can naturally identify

Lo(T; S'R?; X)) = S'(RY; Lo(T; X)).

A function g : T — X* is called o(X*, X)-measurable (or X-weakly measurable) if
(x,g) : T —> C is measurable for all x € X. We denote by L°(T; X*, o(X*, X)) the vector
space of all u-a.e. equivalence classes of o(X*, X)-measurable functions g : T —> X*.

As in [44], we may define the abstract norm ¥ : Lo(T; X*, 0(X*, X)) —> Lo(T) by

*(g) = sup{ [{x, g)| : x € Bx}, g € Lo(T; X*, 0(X*, X)).
Note that Lo(T; X*) C Lo(T; X*, o(X*, X)) and that 9 (g) = ||g|lx+ for all g € Lo(T; X™).
10
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We equip Lo(T; X*, 0(X*, X)) with the topology generated by the system of translation
invariant pseudo-metrics

ps(f, 8) = /(ﬁ(f —g) A Ddv, B e %,v(B) < .
B

In this way, Lo(T; X*, 0 (X*, X)) becomes a topological vector space.
For a Banach function space E on T we define E(X*, o(X*, X)) by

E(X*, 0(X*, X)) ={f € Lo(T; X*,0(X*, X)) : 9(f) € E}.
Endowed with the norm

| fllEcxs,oxs,xy = 19 (e,

E(X*, 0(X*, X)) becomes a Banach space.
Let E be a Banach function space on 7 with an order continuous norm and a weak order
unit (i.e. an element £ € E with & > 0 pointwise a.e.). Then (see [44])

[E(X)]" = EX (X", o(X™, X))
under the natural pairing, where E* is the Kothe dual of E given by
={geLoT):VfekE, fgeLi(T), lgllgx= sup /fgdv-
fEE|fle=]

Moreover, if X* has the Radon—Nykodym property with respect to v, then
[EQOI" = EX(X*, 0(X", X)) = E™(X").

3. Definitions and basic properties

Suppose that RY is 4-decomposed with 4 € (N)* and let A = (A;,..., A;) be a d-
anisotropy. Let X be a Banach space, (S, <7, u) a o-finite measure space, ¢;,&e_ € R and
r € (0, co)t.

For j € {1, ..., ¢}, we define the maximal function operator M A on Lo(S x RY) by

JHES
A; "
Mr_{[r[:j](f)(s, x) = sup][A_ [f(s,x + a1y dy;,

S §>0 J B (0,8)

where (4 : R% — R? is the inclusion mapping from (7). We define the maximal function
operator M4 by iteration:

MrA(f) =M e [L{ []( rl [,[ 1](f))

We write M4 := MIA.

The following definition is an extension of [24, Definition 1.1.1] to the anisotropic setting
with some extra underlying measure space (S, .27, ). The extra measure space provides the
right setting for intersection representations, see Section 5.

Definition 3.1. We define S(ey,e_, A, r, (S, &7, 1)) as the set of all quasi-Banach function
spaces E on R? x N x S with the Fatou property for which the following two properties are
fulfilled:

(a) Sy, S_, the left respectively right shift on N, are bounded on E with
IS s S 27 and (S llse) S 277 kel

11



N. Lindemulder Journal of Approximation Theory 264 (2021) 105519

(b) M,A is bounded on E:

IMAGEOIE S Iflles  (fa) € E.

We similarly define S(ey,e_, A, r) without the presence of (S, .7, ), or equivalently,
Sley, e, A, r)=S(eq, e, A, r, ({0}, {2, {0}}, #).

Remark 3.2. Note that ¢, < e¢_ when E # {0}, which can be seen by considering
(S o (S_), ke N.

Remark 3.3. Note that
Sey,e_,A,r, (S, o, n) CSley,e_, A, F, (S, o, 1), r=>r.

Example 3.4. Suppose that £ =1 and A = A = I;, so that we are in the classical isotropic
setting. Then r = r € (0, co) and

A r r
MA@ =M =swp(f Il dy)
§>0 B(0,6)

on Lo(R?). By the Fefferman-Stein vector-valued maximal inequality (see e.g. [55, Sec-
tion 1.2.3]) and the Hardy-Littlewood maximal inequality, we thus obtain the following
examples.

(i) Let p € (0,00), g € (0,00] and s € R. If r € (0, o0) is such that »r < p A g, then
E = L,R)[LN)] € S(s. s, 1. r).
(i1) Let p € (0, 00), g € (0,00] and s € R. If r € (0, 00) is such that r < p, then
E = £;(N)[L,RY)] € S(s. s, 1, 7).
The following example generalizes the previous example to the anisotropic weighted mixed-

norm setting. Furthermore, it also goes beyond the case of a trivial underlying measure space
(S, <, ).

Example 3.5. Let us give some concrete choices of E € S(ey,e_, A, r, (S, o, 1)).
Condition (b) in Definition 3.1 can be covered by means of the lattice Hardy—Littlewood
maximal function operator: if F is a UMD Banach function space on S, A an anisotropy,
p € (l,00), and w € A,,(Rd, A) then (see [8,18,19,47,54])

Mf(x) = Sup][ lfO)ldy
8>0 BA(X,S)

defines a bounded sublinear operator on L p(Rd ,w; F)=1L p(Rd , w)[F]. The latter induces a
bounded sublinear operator on L ,,(]Rd , W)[F[€x]] in the natural way. Let us furthermore remark
that the mixed-norm space F[G] of two UMD Banach function spaces F and G is again a UMD
Banach function space (see [47, page 214]). This leads to the following examples:

(i) Let p € (0, 00)t, g € (0, 00], w € ]—[ﬁ:l Axx(R%,Aj)and s € R. If r € (0, 00)* is such
thatr; < piA---ApjAgforj=1,...,Land w € ]_[f.:1 Apj/,j(R‘[i,Aj), then

E =L,RY w)[t;(N)] € S(s.s, A, r).

12
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(i) Let p € (0, 00)%, ¢ € (0, 0], w € Hi’:l Ax(R%, Aj) and s € R. If r € (0, 00)* is such
that rj < py A+ Apjfor j=1,.... L and w € [[i_, A, (R%, A}), then
E = £(N)[L,[R?, w)] € S(s.s, A, r).
(iii) Let p € (0, 00)%, ¢ € (0,00] and w € ]_[ﬁ:l Ase(RY Aj), s € Rand F a quasi-Banach

function space on S. If r € (0, 00) is such that ri<piA---ApjAgforj=1,...,4

and w € [];_; A, (R, A;) and F'm) is a UMD Banach function space, where
FU'={f € Lo(S) : | fI"" € F}, L N eten = N1

then

E = Lp(Rd, w)[FI€,(N)]] € S(s, 5, A, r, (S, o, ).

Remark 3.6. Note that we can take r = 1 in Example 3.5 when, in each of the corresponding
examples:

(i) pe(l, 00t ge(l,00]and w e [[;_; A, (RY, A));
(i) p e (1,00)", g € (0,00l and w € [];_,; A, (R, A));

(i) p € (1,00)%, g € (1,00], w € ]_[i.zl A,,j(R‘{f, Aj) and F is a UMD Banach function
space.

For a quasi-Banach function space E on R? x N x S we define the quasi-Banach function
space E4 on S by

||f||Eg = [1ga@.1yxi0) ® fllEs S € Lo(S).
Note that Eg = C in case that (S, &7, u) = ({0}, {@, {0}}, #).

Example 3.7. In the situation of Example 3.5(iii), Eg = F with

1 lga = 1paonlle,@twl flF, f€eF.
Let p € (0,00)" and w : [1, 00)t — (0, 00). We define the quasi-Banach function space
By = {f e LoS): sup wBIflyL, zr0.r) <} ®)
Re[l,oo)k '

which is an extension of (a slight variant of) the space B? considered by Beurling in [7]
(see [45)).
Let p,q € (0, 00)". We define Waq (1, o0)t — R, by

¢
waq(R) = R = TTR™™ Rell,o0).
j=1
The quasi-Banach function space Bi’w*“” — L p’J’IOC(Rd ) introduced in (8) will be convenient

to formulate some of the estimates we will obtain. Note that, if p € [1, oo)@, then
BZ’wA’q(X) — S'(R?; X).
Lemma 3.8. Let E € S(ey,e_, A, r,(S, o, n) and A € (—o0, e,). For F = (f,), € E and
. o ni
g = 1"02"fu| we have

Bo.nnlle S IFIlE- ©)
13
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r,wp r

Moreover, g € Eg[BA ] — Eg[L,,,[,loc(Rd)] with
I8 payroar, S IF e (10)
Remark 3.9. Suppose thate; > Oand A € (0, &;) in Lemma 3.8. Let k € (0, 1] with ¥ < rpyy

be such that || - ||g is a equivalent to a k-norm. Then, in particular, 2"* f, € Eg[BZ’wA"] with

12" full ga g7war, S I1Fllg, so that
EAB, 71

o0 o0 [o.¢]

—ni A —n
DAy rwar, = D2 NS rwas S D 2N FllE S IF g
n=0 ®L7A

n=0 Eé[BA n=0
Remark 3.10. Let E € S(e4,6_, A, r, (S, o/, n)). Similarly to the proof of Lemma 3.8 (but
simpler) it can be shown that

E; — EA[B,"""1.

Proof of Lemma 3.8. This can be shown similarly to [24, Lemma 1.1.4]. Let us just provide the
details for (10). As [B4(x;, Rp)l = Ry™"", j=1,....¢, for any x € R* and R € (0, c0)’,
we have

[
tr(A;)/r; A
13A(0,R) by ”g”Lr,d(BA(OvR)) 5 HRj Y Mr (8), R €1, OO)Z‘
j=1

Therefore,

lgao @ war(®glL, ,3a0.r) S Mg, R € [1,00),
so that

Lgaon ® gl yrear S MA(9).

It thus follows that

A
I8l agroary = Naaoacio ® I8l yroar [ S M7 Gongdnle:

Using the boundedness of M;“ on E in combination with (9) we obtain the desired estimate
(10). O

Having introduced the classes of ‘admissible’ quasi-Banach function spaces in Definition 3.1
and having discussed some basic properties of these, let us now proceed with the associated
function spaces. Let us for introductory purposes first have a look at the classical isotropic
Lizorkin—Triebel and Besov spaces.

In the setting of Example 3.4, we would like to associate to £ = LP(R")[Z;(N)] and
E = E;(N)[L ,,(]Rd)] the classical Lizorkin—Triebel space Y(E) = F), q(Rd) and the classical
Besov space Y(E) = B), q(Rd), respectively.

A standard way to define the Lizorkin—Triebel and Besov spaces is by means of a smooth
resolution of unity/Littlewood—Paley decomposition, as in [55, Section 2.3.1, Definition 2].
However, there are many other ways. For instance, F' 4 q(Rd ) and B, q(Rd ) could alternatively be

defined through the Nikol’skij representations as in [55, Section 2.5.2] (also see the references
therein), which may be characterized as a “decomposition of the given distribution by entire
analytic functions of exponential type”. This decomposition is a representation as a series of

14
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entire analytic functions of exponential type whose spectra lie in dyadic annuli. The annuli
can be even replaced by balls when s > d(% — 1)4, where r is as in Example 3.4, see
[49, Section 2.3.2], [28, Section 3.6] or [24, Proposition 1.1.12]. Moreover, in the latter
situation, F;,q(]R{d) and B;’Q(Rd) consist of regular distributions and the series not only
converges in a distributional sense (in S’) but also in a measure theoretic sense (in Lj joc)-
The characterization through the series representation with the dyadic ball condition and the
convergence in a measure theoretic sense, valid under the restriction s > d (} —1)4, has turned
out to be quite useful. Such a description is taken as the definition of the spaces of measurable
functions FL;’q(Rd) and BLf,,’q(Rd) for s € (0, 00), so that F;’q(Rd) FLj)q(Rd) and
By ,(RY) = BL (R?) when s > d(} — 1)4. As is mentioned in [24, page 9], the spaces
FL';,q(]Rd) and BL‘;,,q(Rd) have been less studied in the range s < d(} — 1)4, where they do
not coincide with the Lizorkin—Triebel and Besov spaces, but see [42,43].

We will associate to £ = L p(]Rd )[Z;(N)] and E = E‘;(N)[L ,,(Rd )] the spaces of distributions
Y(E) = F,, q(Rd) and Y(E) = B, q(Rd), respectively, through the Nikol’skij representation
discussed above. We will furthermore associate to these choices of E, under the restriction
that s € (0, 00), the respective spaces of measurable functions YL(E) = F L, q(Rd) and
YL(E) = BL;!q(R").

Let us now turn back to the general setting. In Definitions 3.11 and 3.12 we will define
the spaces Y LA(E; X) and Y1 L (E; X), respectively, which are both generahzatlons of YL(E)
from [24, Definition 1.1.15] to our setting. The difference between Y LA(E; X) and yL* (E; X)
will be a matter of the X-valued setting. Whereas Y LA(E; X) will be defined in a more
straightforward way, simply replacing E by E(X) compared to the scalar-valued setting, the
definition of ﬁA(E ; X) will be more technical, involving testing with functionals x* € X*
in combination with, and in interplay with, some kind of domination. The motivation for the
more technical space ﬁA(E ; X) comes from Remark 4.5 on estimates involving differences.

In Definition 3.15 we will define the space Y4(E; X) through a Nikol’skij representation
type of approach, which is a generalization of Y(E) from [24, Definition 1.1.16] to our
setting. The equivalent Littlewood—Paley description will follow in Proposition 3.19. Concrete
examples will be given Example 3.20, which includes the classical Lizorkin—-Triebel and Besov
spaces discussed above. Furthermore, in Theorem 3.22 we will see that, under a suitable
restriction, YA(E; X) coincides with YLA(E; X) and ﬁA(E; X).

Definition 3.11. Suppose that ¢,,6_ > 0 and let E € S(e,e_, A, r, (S, &7, n)). We define
YLA(E; X) as the space of all f € Lo(S; L, s.10(R?; X)) which have a representation

00
F=>"f in Lo(S: Ly g10e(RY; X))
n=0
with (f,), C Lo(S; S'(R?; X)) satisfying the spectrum condition
supp /o € BY(0.2"*),  neN,
and (f,), € E(X). We equip YLA(E; X) with the quasinorm
||f||YLA(E;x) = inf [ (f)llecx)s
where the infimum is taken over all representations as above. We write ¥ LA(E) = YLA(E; C).

15
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Definition 3.12. Suppose that ¢,,e_ > 0 and let £ € S(e4,e_, A, r, (S, &7, n)). We define
YLA(E; X) as the space of all f € Ly(S; L,,L{JOC(Rd; X)) for which there exists (g,), € E
such that, for all x* € X*, (f, x*) has a representation

(ix*) =) ferm in Lo(S: Lr g 10c(R?))
n=0

with (fyx.)n C Lo(S; S'(RY)) satisfying the spectrum condition
supp fren C B (0,2""),  meN,

and the domination | fy+ ,| < [|x*| g,. We equip ﬁA(E ; X) with the quasinorm
1 574y = i @,

where the infimum is taken over all (g,), as above. We write ﬁ,A(E) = ﬁ,A(E ; O).
Remark 3.13. Note that YL.*(E) = YLA(E).

Remark 3.14. Suppose that ¢,,6_ > 0 and let E € S(e4,6_, A, r,(S, o/, n)). Then the
following statements hold:

() YLA(E; X) ¢ YL*(E; X) with equality of norms.
(i) Let f € YLA(E; X) with (f,), as in Definition 3.11 with ICSnllec) < 20 lyLae: x)-
Let 7 € (0, 00) be such that

E€8(8+78—7A7;7(Sv ’d! l’l/))' (11)
Then, by Remark 3.9, as

Fowg ;

ES(B, """ (X)) = Lo(S; L. 410c(RY; X)) <> Lo(S; Lyar 410eR?; X)),

f,wAv;

there is the convergence f = Z:o:o fn in Eg(B 4 (X)) with

||f||E§(B:wA,;(X)) S NCEnllec) <20 lyrac:x)-

In particular, Y LA(E; X) does not depend on r and
YLA(E; X) < E4(B""A7(X)).
(i) Let f € ﬁ,A(E; X) with (g,), € E4 and {fi* n}u+n as in Definition 3.12 with
18alle = 20774 5.5, Let 7 € (O, 00)" satisfy (11). Then || fllx < Y12 &n» O
that f € EA(B"*7(X)) C Lo(S; Li ¢ 10(R?; X)) with

< ~
£l o S1EllE < 208 a0,

by Remark 3.9. By (ii) it furthermore holds that

Fwy §

A
Eg(By

(ix*) =" feen in Lo(S; Li.g10c(RY)).

n=0
Therefore, )?ZA(E ; X) does not depend on r and
YL (E; X) < EAB™"Ar(X)).

16
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Definition 3.15. Let E € S(e,e_, A, r, (S, o7, ). We define YA(E; X) as the space of all
f € Lo(S; S'(R?; X)) which have a representation

f= i foin Lo(S; SR X))
n=0
with (f,), C Lo(S; S'(R?; X)) satisfying the spectrum condition
supp ﬁ) C EA(O, 2)
supp f, € B(0,27\ BA©0, 2", > 1,
and (f,), € E(X). We equip YA(E; X) with the quasinorm
1 fllyace.x) = inf [(f)ll ),

where the infimum is taken over all representations as above.

Example 3.16. In the setting of Example 3.4,

F5 (RY), if E = L,RH[e(N)],
YAE) = vue) = | B ITE = L @O M)
B) (R, ifE = €M[L,ER")],
see for instance [55, Section 2.5.2].
More examples will be given in Example 3.20, after the Littlewood—Paley description given
in Proposition 3.19.
Proposition 3.17. Suppose that ¢,,e_ > 0 and let E € S(e,e_, A, r, (S, o, u)). Then
YLA(E; X) and YLA(E; X) are quasi-Banach spaces with
YLAE: X) c YL*(E; X) — EABM; X),

where YLA(E; X) is a closed subspace of ﬁA(E; X).

Proof. By Remark 3.14,
YLAE; X), YL*(E; X) — EA(B}"*"; X). (12)
That YLA(E: X) € YL (E: X) with || flly ey = 1F 734y, for all f € YLACE: X)

follows easily from the definitions. So it remains to be shown that Y LA(E; X) and ﬁA(E ; X)
are complete.
Let us first treat Y LA(E; X). To this end, let the subspace E(X)4 of E(X) be defined by

E(X)4 = {(fn)n € E(X): f, € Lo(S; S/(Rd; X)), suppﬁl C EA(O, 211+1)}
By Lemma 3.8,
2 E(X)a — ESIL, R, w)(X) = Lo(S; Ly s10cRY X)), (fi)n an

n=0
is a well-defined continuous linear mapping. As

YLAE; X) ~ E(X)A/ker(Z‘) isometrically,
it suffices to show that E(X)4 is complete.
17
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In order to show that E(X)4 is complete, we prove that it is a closed subspace of the
quasi-Banach space E(X). Put w(x) = I—[f‘:l(] + pa, (x;)" 4777 Then it is enough to show
that, for each k € N,

E(X)a —> Lo(S; BCRY, w; X)), (fa = fi, (13)

continuously, where BC(RY, w; X) = {(h € CR%; X) : wh € Ly (@R X)}. Indeed,
BC(RY, w; X) — S'(R?; X).
In order to establish (13), let (f,), € E(X)4. By Corollary A.2,

sup [ fullx S MAUfullo)(),
z€BA(0,271)

so that
IAHIx < inf MAfull)G + 2)
z€BA(0,271)

ntr -r71
S 2 AT MA fallx)

L, ;(BA(x.27m)"

For R € [1, 00)" we can thus estimate

A)r! A
sup [l S 2V MAALNIO L, saoemsz-—ri
2€BA(O,R) '

5 2”"(A)"'71 H Mf(” fl’l ”X) ” Lr,d(BA(OvZCAR))

< nlr(A)-r_1 A
S2 E;,?(ﬁ ® | ;7 (”f"”X)||Lr,4<BA<0.2cA<cA+1)R>>

—1 -1 .
<A R inf MAMA fllx)(@) (14)
zeBA(0,R)

The latter implies that

A)er~! Ar~! A A
Lgao.r) ® Il full Losaorrxy S 27 RYA™ MMM fullx))

for R € [1, co)*. It thus follows that

||fn||Eg(Loo(BA(o,R);X)) = H Lpao.myx(0) @ fall Lo a0 ) HE
-1 -1
< 2T R So e MALf x| £
S 2O RO ) .
~ A . . .
Let us finally prove that YL (E; X) is complete. To this end, let x € (0, 1] with k < Fy;,
be such that || - ||g is equivalent to a x-norm. Then | - |IﬁA(E;X) and | - ||E§|Lr(Rd’w)](X)

are equivalent to k-norms as well. It suffices to show that, if (f®)eny C ﬁA(E ; X) satisfies
Yoo ”f(k)”;i*‘(EX) < oo, then Y 22, f%® is a convergent series in YL (E; X). So fix such
a (fP)en. As a éonsequence of (12),

oo o0
) i < ) i
kz 1/ ”Eg[L,(Rd,w)] ~ kX: L/ “fZA(E;X) =0
-0 =0

As ES[L,(RY, w)] is a quasi-Banach space with a «x-norm, Y .-, f* converges to some
F in E[L.(R?, w)]. To finish the proof, we show that F € YLA(E; X) with convergence
F=Y2,f%in YLA(E; X).

18
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For each k € N there exists (g)), € E; with [|[(g®), ]z < 2||f(k)||ﬁA(E_X) such that, for

every x* € X*, (f®, x*) has the representation

(0, x%) Zf(k) in Lo(S: Ly s10c(R))

n=0

for some (&), € E4 with | f&)| < [lx*||g. By Remark 3.14,

o0 o0
k) k)«
Zanx*,nnEg[Lr(Rd oy S an ot s <

k=0 n=0
As EA[L (R, w)] < Lo(S; L, ilOC(Rd)) > Lo(S x RY) is a quasi-Banach space with a
x-norm, we thus find that F = Y o0 Fyx, in Lo(S; Ly 4,10c(RY)) with Fyx, := Y 00, fo (k) in
Lo(RY x 8) satisfying | Fy | < Y pep |f(k) | < Ix* 1 Y2, 8%). As E4 is a closed subspace of
the quasi-Banach function space E on R? x N x § with «-norm, it follows from

o0
*) < ®«
kz;”(f Dnlll < ] Z”f 154y <

k=0

that (Fyx)n = 2 peo fx(ff?n in E and thus that (Fy«,), € E4. Moreover, G, = Y 0 g%
defines (G,), € E; with

IGwally < Z ICgnlls; < 22 1P

k=0 k=0

and |Fy+,| < |[x*||G,. This shows that F € YLA(E: X) with convergence F =Y oo f® in
YLYE: X). O

FLAE: X)

The content of the following proposition is a Littlewood—Paley characterization for
YA(E; X). Before we state it, we first need to introduce the set #4(R?) of all A-anisotropic
Littlewood—Paley sequences ¢ = (¢)nen-

Definition 3.18. For 0 < y < § < oo we define @ﬁs(Rd) as the set of all sequences
© = (Po)ueny C S(RY) that can be constructed in the following way: given ¢, € S(R?)
satisfying

0<@o <1, @o§)=11if pa§) <y, @o(§) =0 if pa(§) >3,
(@n)n=1 C S(RY) is obtained through
Pn = @1(Agntr ) = Qo(Ag=n - ) — Po(Ap-nt1 -), n>1
We define #4(RY) := Uy, 500 5 s([RY).
Let ¢ = (@u)nen € di]fg(Rd). Then Y 02 ¢, = 1 in Oy (R?) with
suppdo C {€ 1 pa€) < ¥}, supp@, C(§:2" 'y < pa§) <2'8). n=1,

To ¢ we avssociate the family of convolution operators (S,)sexn = (Sihen C L
(S'(R?; X), £'(R?; X)) given by

Sof =S0f =@ x f=F G f].
19



N. Lindemulder Journal of Approximation Theory 264 (2021) 105519

Proposition 3.19. Let E € S(ey,e_, A, r, (S, o, ) and ¢ = (¢p)nen € PARY) with
associated sequence of convolution operators (S,)nen. Then

YAE; X) = {f € Lo(S; S(RY; X)) : (S, /) € E(X)}
with
”f”YA(E;X) = CSn Ol e

Before we go the proof of Proposition 3.19, let us first consider the following.

Example 3.20. In the following three points we let the notation be as in Examples 3.5(i),
3.5(i1) and 3.5(iii), respectively. We define:

() FyARY, w; X) = YA(E; X) for E = Lp(RY, w)[€}(N)];
(i) BEARY, w; X) == YA(E; X) for E = €,(N)[L,R?, w)];
(iii) F34(RY, w; F; X) = YA(E; X) for E = L,(R?, w)[F[£;(N)]].

Restricting to special cases we find, in view of Proposition 3.19, B- and F-spaces that have
been studied in the literature:

(1)&(ii): (@) Incase =1, w=1and X =C, F;:;‘(Rd, w; X) and B;’;‘(Rd, w; X) reduce
to the anisotropic Besov and Lizorkin—-Triebel spaces considered in e.g. [14,17]. The
latter are special cases of the anisotropic spaces from the more general [4,9,10] by
taking 2% as the expansive dilation in the approach there.

(b) Incase £ =d, A = diag(a) witha € (0,00), w =1and X = C, Fls,zf]‘(Rd, w; X) and
B;”Q(Rd, w; X) reduce to the anisotropic mixed-norm Besov and Lizorkin—Triebel
spaces considered in e.g. [27,28].

(c) Incase A = (aily, ..., acly) witha € (0, 00), F;:;‘(Rd, w; X) and BIS,";[‘(R‘{, w; X)
reduce to the anisotropic weighted mixed-norm Besov and Lizorkin—Triebel spaces
considered in [33,36].

(d) Incase £ =1land A = I, F;:?(Rd, w; X) and B'I’;Y;‘(Rd, w; X) reduce to the weighted
Besov and Lizorkin—Triebel spaces considered in e.g. [11-13,20-23,35,52] (X = C)
and [39—41] (X a general Banach space). In the case w = 1 these further reduces to
the classical Besov and Lizorkin—Triebel spaces (see e.g. [50,55,56]).

(iii): (@) Incase £ =1, A=1,p € (1,00), g € [1,00], w = 1, F is a UMD Banach
function space and X = C, F;fl(Rd, w; F; X) reduces to a special case of the
generalized Lizorkin—Triebel spaces considered in [32].

M) Incase L =1,A=1,pe(l,00),qg=2,we A,,(Rd), F is a UMD Banach
function space and X is a Hilbert space, F;Q(Rd , w; F; X) coincides with the
weighted Bessel potential space H ;(Rd , w; F(X)) (which can be seen as a special
case of [41, Proposition 3.2] through the use of the Khintchine—Maurey theorem
(see e.g. [26, Theorem 7.2.13])).

The proof of Proposition 3.19 basically only consists of proving the estimate in the following
lemma. We have extracted it as a lemma as it is interesting on its own. A consequence of the
lemma for instance is that the spectrum condition in Definition 3.15 could be slightly modified.

Lemma 3.21. Let E € S(eq,6_, A, r, (S, 27, 1n), c € (1,00) and ¢ = (@u)peny € PARY)
with associated sequence of convolution operators (S,)nen. For all f € Ly(S; S'(R?; X)) which

20
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have a representation

f=)fu in Lo(S: SR X))

n=0

with (f)a C Lo(S; S'(RY; X)) satisfying the spectrum condition
suppfo - EA(O, c)
supp fo € B0, 2"\ BAQO, 712", =1,

there is the estimate

”(Snf)n”E(X) S ”(fn)n”E(X)-

Proof. This can be established as in [33, Lemma 5.2.10] (also see [55, Section 2.3.2] and
[58, Section 15.5]), using a combination of Corollary A.2 and Lemma A.3. O

Proof of Proposition 3.19. Let f € YA(E; X). Take (fi)n as in Definition 3.15 with
ISl ey < 201 f lyag.x)- Lemma 3.21 (with ¢ = 2) then gives

1CSn Ol S Nfnllexy < 20 fllyae.x)-

For the reverse direction, let f € Lo(S; S'(R?; X)) be such that (S, f), € E(X). Pick
¥ = (Ynen € PA(RY) such that

suppvo C B1(0,2),  supp, € B (0,27 \ BA©, 2", n> 1,
and let (7,,),en denote the associated sequence of convolution operators. Then

suppTof C B*(0,2),  suppT,f C B (0,2)\ BA©0,2""), n=>1, (15)
Picking ¢ € (1, co) such that

suppgo C B (0,¢),  supp@, C B (0,c2")\ BAO,c'2"), n> 1,
we furthermore have

supp S f € B (0,¢),  supp S, f C B(0,c2")\ BAO, 712", n > 1.
As f=30208,f in Lo(S; S'(R?; X)), Lemma 3.21 gives

1T Pl e S NCSa FnllEo)-
Since f = Z;’;O S, f in Lo(S; S'(R%; X)) with (15), it follows that f e YA(E; X) with

I fllyace:xy < W Pallecy S WS ullecn. B
Theorem 3.22. Let E € S(e4,6_, A, r, (S, o7, n). Suppose that e, > tr(A) - (r~' — 1),
where tr(A) is the component-wise trace of A given by tr(A) := (tr(Ay), ..., tr(Ay)). Then

VLAE; X) > EA(B" (X)) > Lo(S; Linr.atoe(RY X)) (16)
and

YA(E; X) < EABL""(X)) — S'(RY; EA(X))

— S'(R’; Lo(S: X)) = Lo(S: S'(R%; X)) a7
21
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and there is the identity
YAE: X) = YLAE: X) = YL*(E: X). (18)

Remark 3.23. Note that the condition &, > tr(4) - (r~' — 1), is for instance fulfilled
when r > 1.

We will use the following lemma in the proof of Theorem 3.22.

Lemma 3.24. Let the notations and assumptions be as in Theorem 3.22. Let ¢ € (0, 00). If

(fon € EX)ac = {(hn>n € E(X) : h, € Lo(S: S'(RY; X)), supph, C B (0, cz"“)} :

. . . 1, .
then )", fn is a convergent series in Lo(S; B, YA X)) with

(o] oo
12 ol pgiyrarmnny = | > 1l
n= n=

S Il
Lwg pal. ~ n)nllE(X)-
8By ")

Proof. It suffices to prove the second estimate. We may without loss of generality assume
that r € (0, 1]°. Choose « > 0 such that Eg has a k-norm. For simplicity of notation we only
present the case £ =2 and ¢ = 1, the general case being the same.

Let (f,)n € E(X)a. Let R € [1,00)%. As a consequence of the Paley—Wiener—Schwartz
theorem,

d. 0o (mdr. & 4. 00 (4] . &,
B o 2ﬂ)(R ; X) — CP(R%; & B 0.0m R™; X)) N CP (R, ’Az(oz )(R ; X)).
In particular, as in (14) we find that
IfaCer, 22)llx S @RV ME (M L)) 22) (19)
for all x;, y; € BA1(0, R)) and z; € R4, and
I fuer.x)llx S @ R (M2 (L fllO)zr . y2) (20)

for all x,, Y2 € BAZ(O, R») and 7, € R%.
Then, for z € B4(0, R),

/ | fn Gl x dx
BA(0,R)

=/ / Il fa(x1, x2) [l x dxydxs
BA2(0.Ry) J BA1(0.Ry)

(19)
S (@R /BAZ@R) et M (L x) o))

: / Il fu(x1, x2)Il'y dxydxs
BALO,Ry)

< 2ntr(A|)(17r1)/r1 R;r(Al)/rl /

BAZ(O,R ) rl [1 1](Mr1 [d; 1](||fn(' ’ x2)||X))(Zl)dx2

(0) .
< 211(tr(A1)(l—rl)/r1+tr(A2)(l—r2)/r2) Rtr(A)r
A A 1—
Mr;[‘{;z]Mr;[‘{;z](”fn”X)(Zl,Z2) "2
22

Ay Aj
- M Mrl;[tf:ll

ri;ld;1]
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Ay Ay Ay Ay r

MMy e M My (Ll 2207
-1 -1
< MO R IMAT( £ull ().
This implies that
o0 oo
Ayr! A)-(r~1-1 A4
Lgao.r) ® /B R D Al dx S RO 2@ EDIMAR () £ 1x).
=0

n=0
Since £, > tr(A) - (r ' — 1), it follows that

| 1]
n=0

9)
< A4
R (A (PN

S IUDlex. O

Proof of Theorem 3.22. We may without loss of generality assume that r € (0, 1]°.

As Lo(S; B/l"wA"“(X)) — Lo(S; S'(R?; X)), the first inclusion in (17) follows from
Lemma 3.24. So in (17) it remains to prove the second inclusion. To this end, let us first
note that

S®RY) < BB (X), X), ¢ > (-, ¢).
This induces

S(RY) <> BEABL " (X)), EAX)), ¢ — (-, ¢).

Therefore, f +— [¢p +— (f,¢)] is a continuous linear operator from Eg(B/l"wA"“(X)) to
L(S@RY); Eg(X )), which is a reformulation of the required inclusion.

As Lo(S; B;’wA”“) — Lo(S; L,,[[JOC(R")), the inclusion
YAE) < EABL"*™)
follows from Lemma 3.24. We thus get a continuous bilinear mapping
YLYE, X) x X* —> YLA(E) < Lo(S; S(RY), (f.x*) > (f, x*).
and a continuous linear mapping
YLY(E, X) — Lo(S: S'RY: X*™), f > Ty, @1)
defined by
(@ Tr(@) = (f.x") (@), ¢ e SR x" € X*.
Let us now show that f +— T, (21) restricts to a bounded linear mapping
YLAE, X) — YNE; X™), f > T (22)

To this end, let f € ﬁA(E; X) and put F = T,. Let (g,), and (f+ )+ n) be as in
Definition 3.12 with ||(g,)xllg < 2||f||Y~LA(E_x). It will convenient to put g, := 0 and fi«, :=0

for n € Z_o. By Lemma 3.24, as (fur)n € E4 and By "4 < S'(RY),

(fx*) = fou i Lo(S: By" ) < Lo(S: SRY), 1" e X*.
k=0
23
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Now let (S,).en be as in Proposition 3.19. There exists 4 € N independent of f such that
Snfixxg =0 forall x* € X*, ne Nand k € Z_,_;. Let x* € X*. Then

o0 oo
(X%, S, F) = Sy(x*, F) = S,(f,x) =8, ) e = ) Sufer
k=0 k=0

Z Sfx*k—ZSfx*k+n h

k=n—h

with convergence in Lo(S; S'(R%)). Together with Corollary A.6, this implies the pointwise
estimates

o0 o0
k—h) L t(A)-(r~1=1) s A
X S F § S fx*,k-&-n—hl S E 2( Ht(Arr )Mr (fk+n—h,x*)
k=0 k=0

o0
-1
< et Y 28T DM A (g ).
k=0
Taking the supremum over x* € X* with ||x*|| < 1, we obtain

o0
_ 1o
1Sy Fllxes < Y 20D pgA g0 ).
k=0
Picking x > 0 such that E has a k-norm, we find that

1S F ol ey = [ S £ = dn ||

5 i 2K(k7h)+ll‘(A)-(r—1 -1 || M:‘(g/«l—n—h)n ||’1;
k=0

Since
|’(S—)h7k(gn)l1| E° k <h,
“(SJr)kih(ngrnfh)n E
< @00 427 ) gl

S 27 ER p

“M:‘(ngﬁnfh)n ||E = H (ngrnfh)n ||E g {

VLAE: x)
for all k € N, it follows that

k(k—h)4 (tr(A)-r— 1 =1)—¢
(S F )l xey S ZZ + +)”f”‘)(’L (E:x)
k=0

As e, > tr(A) - (r~! — 1), we find that [|(S, F)ullecxey <

S Ifllgz4 .y, and thus that
F e YA(E; X*) with | Fllyacg,x= S £l (see Proposition 3.19). So we obtain the
desired (22).

Next we prove that

FLAE: X)

YLYE: X) < YAE: X). (23)

So let f € ﬁA(E; X). A combination of (22) and (17) gives that F := Ty € Lo(S; X™).
Since f € Lo(S; L,,L{JOC(R"; X)) with (x*, F) = (f, x*) for every x* € X*, it follows that

1w A 1w A
f=FeLyS; B,"*""(X™) N Lo(S; Ly s10c(R%; X)) C Lo(S; B4 (X)).
24
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Therefore, by boundedness of (22),
YL(E; X) — {g € YA(E; X™) : g € Lo(S; S(RE X))} = YAE; X). O

For a quasi-Banach function space E on R? x N x S and a number o € R we define the
quasi-Banach function space E® on R? x N x S by

I fdnllge = 12" fidnllEs (fidn € Lo@R? x N x ).
Note that E° € S(e;. +0,6_+0,A,r, (S, o/, u)) when E € S(ey,e_, A, r, (S, o, n)).

Proposition 3.25. Let E € S(eq,6_, A, r,(S, o7, n) and o € R. Let y € OuR?) be

such that Y (§) = pa(§) for pa§) = 1 and ¥ () # 0 for pa(§) < 1. Then ¢(D) €
L(Lo(S; S'(R?; X)) restricts to an isomorphism

#(D): YAE?; X) — YA(E; X).

Proof. Using Proposition 3.19 and Lemma A.3, this can be proved as [33, Lemma 5.2.28]
(also see [55, Theorem 2.3.8]). O

Proposition 3.26. Let E € S(ey,e_, A, r, (S, o, n)). Then
YAE; X) = S'RY EG(X)) > S'RY; Lo(S; X)) = Lo(S; S'(RY; X))
and YA(E; X), when equipped with an equivalent quasi-norm from Proposition 3.19, has the

Fatou property with respect to Lo(S; S'(RY; X)). As a consequence (see Lemma 2.1), YA(E; X)
is a quasi-Banach space.

Proof. The chain of inclusions follow from a combination of Theorem 3.22 and
Proposition 3.25.

In order to establish the Fatou property, suppose that Y4(E; X) has been equipped with
an equivalent quasi-norm from Proposition 3.19. Let f; — f in Lo(S; S'(R%; X)) with
liminfi oo || fkllya(g.x) < 00. Then

Suf = Jim S, fi in Lo(S; On(R"; X)) <> Lo(S; L1joce(R? X)) < Lo(R? x $; X),
—00
so that
(S fonery = 1im (S, fihwens in Lo(R? x S: X).

By passing to a suitable subsequence we may without loss of generality assume that (S, fi)nen
— (S, fnen pointwise a.e. as k — oo. Using the Fatou property of E, we find

Iy acex = |ASafllxn] = | tim inf([| Sy fie lx)n |z

= likfgiogf H(”Snfk”X)n ”E = likrizgf”fk”YA(E;X)' 0

Proposition 3.27. Let F € S(0,0, A, r, (S, &, 1)), s € Rand & € (0, 00). Suppose that there
exists a constant C € [1, 00) such that, |(fim)nenllr < Cll(fidnenllr for all { fu}penupy C F

with f,, = 0 and mappings j : N — N U {x} with the property that #j~'(k) < 1 for every
k € N. Then

YAF; X) = Y*(F™; X)
with an equivalence of quasi-norms.
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The following lemma constitutes the main step in the proof of Proposition 3.27.

Lemma 3.28. Let E € S(e4,6-,0, A, r, (S, #, ), s € Rand 1 € (0, 00). Set h := [ 1] +2.
For all f € Lo(S; S'(R?; X)) of the form

o
f=Y fa in Lo(S; S'R% X))
n=0
with (f)nez C Lo(S; S'(RY; X)) satisfying the spectrum condition
supp fo € B(0.2), o
supp £ € B0.27)\ B0, 2, a1,

and f, =0 for n € Z., there is the estimate

h
||f”YA(E5;X) S Z ”QML%meH%J)n ”E(X)'

m=—h

Proof. Let ¢ = (¢,)neN € @fz(Rd) with associated sequence of convolution operators (S,),en-
In view of the spectrum conditions of (¢,).en and (f,)nen and the fact that p,4 = ,0/”4, it
holds true that S, f; = 0 for every n € N and k € Z satisfying [k — |2]| < [ ] + 2. Since

Suf = Sy (Z fk) =Y Sufi in Lo(S; S'(RY; X)),

k=0 k=0
it follows that

h
S”f: Z Snfm+[’xlj, n € N.
m=—h
As
Supp(ferL%J) c B0, 23y c B0, 201y = B0, 2+
for all n € N and m € {—h,...,h}, a combination of Proposition 3.19, Corollary A.2 and

Lemma A.3 thus yields that

h
1 Iy agesxy S NSaHallesco S D M izl esco-

m=—h

The desired estimate finally follows from the observation that 2" <~ 23l foralln e N. O

Proof of Proposition 3.27. Tt suffices to show that Y*4(F*'; X) < YA(F*; X), the reverse
inclusion also being of this form (for suitable choices of parameters). Let f € ¥ rMF X).
Then f has a representation as a convergence series

o
F=Y f in Lo(S: S'(R'; X))
n=0
with (fi)nen C Lo(S; S'(RY; X)) satisfying the spectrum condition (24) and [|(fu)nll piscxy <
2| fllyracprs.x)- Set fn = 0 for n € Z_o. The assumptions on F and the observation that
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#{n: 7] =k} < |[A] +1forall k €N, give us the estimates

@55 foszn | iy < CAM + DI fdellp, m e Z.
An application of Lemma 3.28 finishes the proof. [

Example 3.29. In the setting of Example 3.20, Proposition 3.27 yields:
. s,A d . __ AS,AA d .
(1) prq(R 7w7X)_Fp’q (R 7w7X)’
(i) ByARY, w; X) = By RY, w X),
s, A d . . __ TeAS,AA d . .
(111) ]Fp,q(R , W3 Fa X) - ]Fp,q (R , WS Fa X)7
with an equivalence of quasi-norms depending on A € (0, 00). In particular, in the special case
that A =al; =a(ly, ..., 1) for some a € (0, 00), taking A = 1/a yields a description as
an isotropic space.
4. Difference norms

. . . . ~ A

In this section we derive several estimates for Y LA(E; X) and YL (E; X), as well as for
YA(E; X). The main interest lies in the estimates involving differences, as these form the basis
for the intersection representation in Section 5.

4.1. Some notation

Let X be a Banach space. For each M € N; and & € RY we define difference operator AM
on Lo(R%; X) by

M M
A =Ly — DM = Z(—l)’ < . )L(M—i)hs
i—0

where L; denotes the left translation by A.

For N € N we denote by 731‘{, the space of polynomials of degree at most N on R?. We
write ”P,{,(Q) C 73]‘{, for the subset of polynomials having rational coefficients.

Let M eNj. Let F =L, 4 = Lp,,{(]Rd) with p € (0, 00)*. Let B C R? be a bounded Borel
set of non-zero measure. For f € Lo(RY) we define

Eu(f, B, F):= inf |(f—m)lpllr= inf |I(f —m)lplF
TPy, TePY_ (@)
and
= 5M(.fv Ba F)
& VB, F) = —————.
ull: BB = e 0B )

We define the collection of dyadic anisotropic cubes {Q:;}, kyezxzd bY
024 = Ay ([0, 1) +k).
For b € (0, 00) we define {Q7,(b)}, 1)ezxze DY
0k (b) = Ag=n ([0, (D) + k) ,
where [0, 1)?(b) is the cube concentric to [0, 1)¢ with sidelength b:

don [1=b 14+b\*
[0, 1Y) = [—2 e ) .
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We furthermore define the corresponding families of indicator functions { XnAk}(n,k)erZd and

Ab .
Xz Yo ezxza:

ka = 1QZ‘J< and Xn k = lQA,k(b).
Definition 4.1. Let E € S(eq,6_, A, r, (S, o/, u)). We define yA(E) as the space of all

(Snk)npenxzd € Lo(S) for which Q rend sn,k)(;:k)neN € E. We equip yA(E) with the
quasi-norm

G, )i llya ey == H(Z Sn,erfk)n P

kezd

Definition 4.2. Let F be a quasi-Banach function space on the o-finite measure space
(T, B, v). We define Z(X*; F) as the space of all {Fy«},+cx+ C Lo(T) for which there exists
G € F, such that |Fy+| < ||x*||G for all x* € X*. We equip F#m(X*; F) with the quasi-norm

{Fubox | g x; 7y = Inf |Gl £,
where the infimum is taken over all majorants G as above.

In the special case that F = E € S(ey,e_, A, r, (S, &, i) in the above definition, it will
be convenient to view .Fy(X*; E) as the space of all {g+ ,}*mex*xny C Lo(S) for which
there exists (g,), € E+ such that |g« ,| < ||x*| g, equipped with the quasi-norm

g} oor | Zpxs; 2y = 10f [(g)nll £,

where the infimum is taken over all majorants (g,), as above.
Note that the corresponding properties from Definition 3.1 for %y (X*; E) are inherited
from E.

Definition 4.3. Let E € S(e;,s_, A, r, (S, o/, u)). We define y4(E; X) as the space of all

(Sx* ) ex mpyexxnxzd C Lo(S) for which (ZkeZd Sy ,n,an,k)neN € Fm(X*; E). We equip
yA(E; X) with the quasi-norm

e mPmilsaen = | (3 seninh),

kezd

Fn(X*E)

4.2. Statements of the results

The first two main results of this section, Theorems 4.4 and 4.6, contain estimates for
YLA(E; X) and ﬁA(E ; X), respectively, involving differences, as well as atoms and oscil-
lations, in the general case r € (0, c0)*. The third mam result of this section, Theorem 4.8,
provides estimates for YA(E; X) = YLA(E; X) = yi* (E; X) involving d1fferences in the
special case that r = 1 (in which case, indeed, YA(E; X) = YLA(E; X) = YLA(E: X) by
Theorem 3.22 (and Remark 3.23)); some things simplify here when r = 1.

Theorem 44. Let E € S(ey,e_,A,r,(S, o, n)) and suppose that ¢,,e_ > 0. Let
p € (0,00 and M € N satisfy e > t(A) - r™' — p™") and MIA._ > e_, where

min

tr(A) = (tr(Ay), ..., tr(Ay)). Given f € Lo(S; L,,,[(Rd, X)), consider the following statements:
(i) f € YLAE; X).
28



N. Lindemulder Journal of Approximation Theory 264 (2021) 105519

(ii) There exist (Spi)ni) € yA(E) and (bp i) penxzd € Lo(S; Cﬁ”([—l,Z]d)) with
||bn,k||cg4 < 1 such that, setting ay j == b, (A - —k), f has the representation

f= D swanx in Lo(Si Lpsioc(®'; X)), (25)
(n,k)eNx2zd

(iii) f € Eo(X) N Lo(S: Ly s10e(RY: X)) and (dyy? (f)uuz1 € E(NY), where

gt () = 2O 2 AV F] nel.

p.a(BAO2YX)
For these statements, there is the chain of implications (i) < (i) = (iii). Moreover, there are

the following estimates:

A _
I 1 2oy + 1pg (D=1l ey S WS yraexy = 1m0l Ay

Remark 4.5. Theorem 4.4 is partial extension of [24, Theorem 1.1.14], which is concerned
with YL(E) with E € S(e4, e_, I, r). That result actually extends completely to the anisotropic
scalar-valued setting YLA(E) with E € S(e4,e—, A, r). However, in the general Banach
space-valued case there arises a difficulty due to the unavailability of the Whitney inequality
[24, (1.2.2)/Theorem A.1] (see [60,61]) and the derived Lemma 4.12. We overcome this issue
in Theorem 4.6 by extending [24, Theorem 1.1.14] to ﬁ,A(E : X) instead of Y LA(E; X) (recall
Remark 3.13). This was actually the motivation for introducing the space YL (E; X), which
is connected to YLA(E; X) and YA(E; X) through Theorem 3.22.

Theorem 4.6. Let E € S(ey,e_,A,r,(S, <, n)) and suppose that ¢,,e_ > 0. Let
p € (0,00 and M € N satisfy ey > t(A) - (r™' — p~!) and MAA, > &_. Given
f € Lo(S; L,J[(Rd ; X)), consider the following statements:

() f e VL (E; X).

(I) There exist (e n i)k € YA(E; X) and (byr i) iyexxnxzd C Lo(S: CH([—1,2]%)
with ||bys pillem < 1 such that, setting ayr ,x = byrn k(Ao - —k), for all x* € X*,
(f, x*) has the representation

. d
(fs x*> = Z Sx* n,kQx* n,k mn Lo(S; Lp,zf,locGR ).
(n,k)eNxzd

(II) f € Eo(X) N Lo(S; Ly, 410(RY; X)) and
{diy e (s mexsxine, € Pu(X*3 E(ND)),
where

d}lé]l{r’*,n(f) = 2nlr(A)'P71 ||Z = Ay(f, X neN.

") “ Ly (BA®0,27m))
(IV) f € Eo(X) N Lo(S; Ly, .10c(RY; X)) and
e (P mexsxny € Pu(X*s EQND),
where
Enl (P = En((fix"), BAx. 27", Ly, x* €X' neN
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(V) f € Eo(X) and there is {Ty n i} nipex xn, xz € Poy_, such that

8x*n = Z |(f7 X*) - nx*,n,k| 1Q2k(3)’ n= l’
kezd

satisfies {gx*,n}(x*,n)eX*le € thM(X*; E(Np)).
For f € Ly(S; L,,,[(Rd; X)) it holds that (V) = (I) & (II) = (1) & (IV) with corresponding
estimates
| fllEqxy + ||(dM (D |z E) + ||{5M o D mexs v L2y Eqvz )
~ ||f||)7lA(E;X) ~ ”(Sx*,n,k)(x*,n,k)”yA(E)
5 ||f||E0(X) + “ {gx*.n}(x*,n)eX*xNzl ”yM(X*ZE(Nl)).
Moreover, for f of the form f = Y., 15 ® fU with (S;)ie; C @ a countable family of
mutually disjoint sets and (f);¢; € L,,L{,IOC(Rd; X), it holds that (1), (II), (III), (IV), and (V)
are equivalent statements and there are the corresponding estimates
||f||ﬁA(E;X) ~ NS n k) e* k)||~A(E)
=~ fllegx) + | {d s 2 ()b mexexn,, HEJM(X* EQN)
A
=~ fllegx) + [ €y p(f))n |

~ ”f”E()(X) + || {gx*,n}(x ,n)EX*XNzl ||yM(X*§E(Nl))'

Corollary 4.7. Let E € S(ey,e_, A, r, (S, o/, 1)) and suppose that e, > tr(A) - (r~' —1),.
Let p € (0,00]" and M € N satisfy e, > tr(A) - (r~' — p~") and M)\I’I‘lin > ¢_. Then, for each
f € Lo(S; Ly «(R?; X)) of the form f =3,.; 15, ® f1l with (S))ic; C o a countable family
of mutually disjoint sets and (f1);¢; € L,,,[’IOC(Rd; X),

||f||YA(E;X) ~ ||f||YLA(E;X) ~ I flggx) + ||(d;;:ﬁ(f))nzl||E(N])-

Theorem 1.2 from the introduction can be obtained as a special case of the following
theorem.

Theorem 4.8. Let E € S(ei,6_,A,1,(S, o, n)) and suppose that €.,e_ > 0. Let
p e[l,00]¢ and M € N satisfy e, > tr(A) - (1 — p~') and MAA, > s_. Write

min

I () = 24 / AVfds, f e Lo(S: Lie(RE: X)).
BA(O 2-1)
Then

||f||YA(E;X> ~ ||f||yLA(E;X) ~ ||f||Y~LA(E;X)
~ 1 Nz + 14 Dz 0
= 1 Izoc + sy 2 Du=1ll a0
for all f € Eo(X) < E; = EA[BY"*"1(X) (see Remark 3.10).

Remark 4.9. Recall from Example 3.20 that, incase £ = 1, A =1, p € (1,00), g = 2,
w € A,(RY), F is a UMD Banach function space and X is a Hilbert space, F% A(Rd
F; X) coincides with the weighted vector-valued Bessel potential space HS(Rd w; F (X))

30



N. Lindemulder Journal of Approximation Theory 264 (2021) 105519

Theorem 4.8 thus especially gives a difference norm characterization for H;(Rd, w; F(X))
(cf. [34, Remark 4.10]).

Proposition 4.10. Let E € S(ey,e_, A, r, (S, o/, u)) and suppose that ¢.,6_ > 0. Let
ceR. Let p € (0,00]" and M € N satisfy e, > tr(A) - (r~' — p~") and M > ¢_. Then

II{dﬁ’,f,n(f)}nllE(X) S Ifllyzacx) f € Lo(S; L, «(R%; X)),
and
Hdpy? e (Pl orsssy S I Ay, f € Lo(Si Ly (R X)),
where
A,p . Antr(A)-p~! M
dy () = 2P 2 L A f“prd(BA(o,z—n;X))

and

A,p . Antr(A)-p~! M
dM,c,x*,n(f) = 2" ”Z = LCZAZ (f, x*> ||Lp,l!(BA(O,27n)).

4.3. Some lemmas

Lemma 4.11. Let E € S(ey,e_, A, r, (S, o, 1) Put C = max, g 13d Pa(x) € [1, 00).
Then, for each (sy i)n.k) € yA(E),

-1
Isnkll ga Snar (€ + a7 (n.k) € Nx Z7.

Proof. Fix (i,/) € N x Z¢. By Remark 3.10, E; < EA[B},"*"], so that

A A A
il g sl grear = Nisit il paygrar, Si llsioxiil e
A
= | st |, = Nonodmsllace: (26)
kezd

Let R=(R,...,R) € [l,0)" be given by R := ca(C + pa(l)). Then
pa(x +1) < ca(pa(x) + pa() < ca(C+pa) =R <2'R,  x &[0, 1]
Therefore,
supp (x71) = A2-i(0, 11 +1) C BA(0, R).
As a consequence,

- . _1
[ca(C + pa(l)) AT ”X,‘f‘]”L,,l{(Rd) < IIX,-f‘lIIB;wAJ (27)

Observing that || Xl.f‘,|| L, (&) = CiAr, @ combination of (26) and (27) gives the desired
result. [ '

Lemma 4.12. Let p € (0, 00] and M € Ny. Then there is a constant C = Cy p 4 such that, if
f € Lyic@®?) and Q = A;([0, 1) + b) with 1 € (0, 00) and b € R?, then there is w € PY,_,
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satisfying (with the usual modification if p = 00):

1/p
If —7xllg<C (][ |A24f|”dz)
BA(0,))

1/p
+C (][ ][ |A§4f|”dydz) )
BAW0Y) JO@)

Proof. The case A = 1 is contained in [24, Lemma 1.2.1], from which the general case can
be obtained by a scaling argument. [

From Lemma 4.13 to Corollary 4.15 we will actually only use Corollary 4.15 in the scalar-
valued case in the proof of Theorem 4.6. However, although the scalar-valued case is easier,
we have decided to present it in this way as it could be useful for potential extensions of
Theorem 4.4 along these lines. In the latter the main obstacle is Lemma 4.12.

We write PI’{,(X) ~ XMNd, where My 4 :=#{a € N? : |a| < M}, for the space of X-valued
polynomials of degree at most N on R¢.

Lemma 4.13. Let (T, B, v) a measure space, ¥ C Ly(T) a finite dimensional subspace,
E C Lo(T; X) a topological vector space with F @ X C E such that
FxX —E (p,f)— fQx,
and
FxE— L(T;X),(f.8)— f&.
are well-defined bilinear mappings that are continuous with respect to the second variable.

Then T ® X is a complemented subspace of E.

Proof. Choose an orthogonal basis by, ..., b, of the finite dimensional subspace F of L,(T).
Then

7:E—E, g Z [/ bi(t)g(t)dv(t)] ® b;,
T

i=1
is a well-defined continuous linear mapping on [E, which is a projection onto the linear subspace
FeXCE O

Corollary 4.14. IfE in Lemma 4.13 is an F-space, then so is (F® X, tg). As a consequence,
if T is a topological vector space topology on F @ X with (F® X, tg) — (F® X, 1), then the
latter is in fact a topological isomorphism.

Corollary 4.15. Let B = [—1, 21% N € N and q € [1,00). Set B,y := Ay-(B + k) for
(n,k) € N x Z4. Then

ntri @
17 (Agn - A0l ey ipxy S 2" TNyt 00. T € PRX), (n.k) € N x 27

Proof. Let us first note that a substitution gives

A©®
7w (Ag—n - +k)llL,B:x) = P )/q”””Lq(B,Lk;X)»
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while 7(Ay-n - +k) € PEH(X). Applying Corollary 4.14 to F = P%, viewed as finite
dimensional subspace of Ly(B), and E = CY(B; X) and 7 the topology on Py(X) = F ® X
induced from L,(B; X), we obtain the desired result. []

Lemma 4.16. Let g, p € (0,00), ¢ < p, b € (0,00) and M € Ny. Let f € L, 1o(R?) and
let {70k} tyenixzd C Py, such that

1f = 7uillL 08,y = 2Em(f> QuiB). Ly),

and let {$n i} pyenxzd C Loo(R?) be such that supp ¢, C Q,ﬁk(b), Y kezd Oni = 1, and
@nillLe < 1. Then, for (f)nen C Lo(S) defined by

fo = Z 7Tn,k¢n,k»

kezd

there is the convergence f = lim,_. f, almost everywhere and in L .
Proof. This can be proved as in [24, Lemma 1.2.3]. O
Lemma 4.17. Let E € S(ey,e_, A, r, (S, o, 1)), b € (0, 00) and suppose that e, e_ > 0.
Let p € (0, 00]" satisfy e, > tr(A) - (r ' — p~"). Define the sublinear operator
x d x d
T3 2 Lo($)™® — Lo(S: [0, 00D)™ ™, (sudindy = (n i)
by

-1
tyy = 2"rAP H Z |Sm.t 1 X1 H

L
m,l p.d

and the sum is taken over all indices (m,1) € N x Z¢ such that Q2,1 - Qf:k(b) and m > n.
Then TI;“ restricts to a bounded sublinear operator on y4(E).

Proof. Let (s, 1)mi € YAE) and (tyt) k) = T;,“[(sn,k)(,,,k)] € Lo(S; [0, oo])NXZd. We need
to show that |[(7, )l ya(g) S NGl yA()- Here we may without loss of generality assume that
Sp.x = 0 for all (n, k).

Set
1
5= 5 (ex —t(A)- ' = p7h) € (0, 00).
Define
gm = Z Sm,lX,ﬁ_z e Lo(S), m € N.
lezd
Then

i <2 | 3 g el
As the right-hand side is increasing in p by Holder’s inequality, it suffices to consider the case
p=r.

Several applications of the elementary embedding

Ly (04, )

EON) <> 1N, s> 51,40, g1 € (0, 00],
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in combination with Fubini’s theorem yield that

o o0
< (m—n)é
” Z gm‘ Ly (04, (b)) ~ 22 ||gm||Lp‘a'(Q;?,k(b)). (29)
m=n A%, m=n

In order to estimate the summands on the right-hand side of (28), we will use the
following fact. Let (T}, %1, v1), - .., (Te, By, ve) be o-finite measure spaces and let Iy, ..., I,
be countable sets. Put T =T, x ---x Tyand I = I} x --- x I,. Let (¢;)ic; C C and, for each
jell,..., 2}, let (A(] ) el ) C #; be a sequence of mutually disjoint sets. Then

(30)

¢ L1
”ZC' A(I)x xA“)“L (T) glelpH|Af§)|”/ K ”ZC' A(])x xA“)i

I Lp(T)"
iel el j=1 iel

Indeed,

”Zc, A xA“) HLI,(T)

iel

P2/ 1 pe/pe—1\ /Pe

{4 1
= [ > iAai - D 1A el

igely irel

ra/r1 refre—i\ 1/

0y, "t/ pe 1,71/P1
> 1A A D 1A el

igely irel

IA

ry/r re/re— 1re

1
( ri 4 1
sup]"[|A”|‘”f YA - DD 1A el

161 igely irel

”ZC’ A(])X XA(K)i

iel

IA

<7

— Supl_[|A(])|l’ 7’7

tEI

Ly (T)

where we used p > r in the first inequality.
Let us now use the above fact to estimate | g, ”LIN[(Q;?,k(b)):

A
”ng ”LPJ{(Q;?J((b)) E H Z sm,IXm,[ HL J(]Rd)
1ez:04 N0t (D)% "

» A
‘ Sl Ko, 1 HL ®9)
r.d

lezd: QA ﬂQAk(b);&z

) 2 pomay(p!—r )

< p-mu(A)»(p~ ' =r71)
=2 lemllz, o, w42y

- —28))—ntr(A)-(p~ 1 —r~!
= 202 ET T O gl ot i (31)
) n,
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Putting (28), (29) and (31) together, we obtain

o0
A (n—n)((s4—8))+ntr(A)-r ! A
Xy < sz n)((e+ ntr(A)-r Hgm”Lr.d(Q,?k(bJrz))X”»k
m=n ’
00
fsb,A,r Z 2(m—n)(£+—8)MrA(gm). (32)

m=n

Since

oo oo
(Z 2<’”—”)<8+—5>M:‘<gm>> =) 2SS MA [(@nen]
neN

i=0

m=n

it follows that (z, ;) € yA(E) with

Wy = [ (D2 maxil),

kezd

oo
S 2L MA T8l I
i=0

oo
<Y 27PNl S (gl
i=0

K
E

= Gn )l ), (33)

where « is such that £ has a k-norm. [

Corollary 4.18. Let E € S(er,e_,A,r,(S, o, n)) and suppose that ¢,,e_ > 0. Let
p € (0, ool satisfy e, > tr(A)-(r~'— p~). Given Sn.i k) € yA(E), set g, = D kend s,,,kx,fk.
Then thio |gu| in Lo(S; L p,f[,loc(Rd)) and the series Zzozo gn converges almost everywhere,
and in Ly(S; LI,,,“OC(R”Z)) (when p € (0, 00)*).

Proof. This follows from (33), see [24, Corollary 1.2.5] for more details. [

Lemma 4.19. Let E € S(e,e_, A, r,(S, o, 1)), b € (0,00) and ) € (¢_, 0). Define the
sublinear operator

d d
T Lo — Lo(S; [0, o)™, (spu0)ny = (nk)ns
by
tn,k = Z 2Mn7m)|sm,l |7
m,l

the sum being taken over all indices (m,1) € N x Z¢ such that Q4 ,(b) D Q,‘:k and m < n.

m,l
Then T, restricts to a bounded sublinear operator from yA(E ) to YA(E).

Proof. This can be proved in the same way as [24, Lemma 1.2.6]. O

Lemma 4.20. Let r € (0, 11 and o € (0,1) satisfy p < Fmin. Let (V)nen be a sequence of
measurable functions on R satisfying

0 = yu(¥) S (142" pa () "4,
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d
If(sn,k)(n,k) € LO(S)NXZ » 8&n = ZkeZ‘/ Sn,kX;:k and h, = ZkeZd |Sn,k| V(- — Ap-nk), then
hy S MM, neN

Proof. We may of course without loss of generality assume that r = (r, ..., r) with r € (0, 1].
Now the statement can be established as in [24, Lemma 1.2.7]. O

Lemma 4.21. Let M € N, A € (0, 00) and & € CY(R?; X) be such that

(I + pa) IDP d)x S1. x €RY Bl < M,
and let W € S(RY) be such that ¥ 1 P, . Set ¥, := 1 ADG(A, ) for t € (0, 00). Then,
given ¢ € (0, Ar‘:ﬂn),

tPmin—)M

D x U, Se —————,
125 0 0)lx Se o

xeRY te(,1].

Proof. As ¥ is a Schwartz function, there in particular exists C € (0, co) such that
[ ()| < C(A+ pa(x) (1 + |x)~@HMHD, x e RY.
The desired inequality can now be obtained as in [24, Lemma 1.2.8]. O

Lemmas 4.22 and 4.23 are the corresponding versions of Lemmas 4.17 and 4.19, respec-
tively, for y4(E; X) instead of yA(E; X).

Lemma 4.22. Let E € S(ey,e_, A, r, (S, o, ), b € (0,0) and suppose that ¢, &_ > Q.
Let p € (0, 00]" satisfy e, > tr(A) - (r ' — p~"). Define the sublinear operator

T Lo(S)¥ ™2 — Lo(8:10, 00D ™2 (sp ity = (e ) n)s
by

Losmi = ntr(A)-p~! H Z ISx*,m,1|X,f,1 H

L
m,l r.d

and the sum is taken over all indices (m,l) € N x Z¢ such that Q,ﬁ’l - Q,ﬁk(b) and m > n.
Then TI;“ restricts to a bounded sublinear operator on yA(E).

Proof. Let § € (0,00) be as in the proof of Lemma 4.17. Let (sy t)ic* nk) € yA(E) and
* d
Eer D) = T;[(Sx*,n,k)(x*,n,k)] € Lo(S; [0, oo])* *N*Z% Define

. A
8x*.m = Z sx*,m,lxm,l S LO(S)» m € N.
lezd

Then (gx*,m)(x*,m) € <%\M(}(*; E) with ”(gx*,m)(x*,m)”L?M(X*;E) = ”(sx*,n,k)(x*,n,k)||)~;A(E)' So there
eXiStS (gm)m € E+ Wlth ”(gm)m” < 2||(Sx*,n,k)(x*,n,k)”yA(E) SUCh that |gx*,m| < ||X*||gm By (32)
from the proof of Lemma 4.17,

o)
A 2 : - -8 A
tx*,n,an,k Sb,A,r Z(m met ))Mr (gx*,m)

m=n

o0
< [l Y 2 e pAg,,).
m=n
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As (33) in proof of Lemma 4.17, we find that (f,« , &) x* n.k) € iA(E; X) with

”(tx*,n,k)(x*,n,k)”NvA E:X S ”(gm)m” =< 2||(Sx*,n,k)(x*,n,k)||~=/4 E)* g
YAE:X) YA(E)

Lemma 4.23. Let E € S(ey,6_, A, r, (S, 7, ), b € (0,00) and A € (¢_, 00). Define the
sublinear operator

. X*xNxZ4 . X*xNxZ4
TA . LO(S) e — L()(S, [O’ OO]) X s (Sx,*,n,k)(x*,n,k) = (tx*,n,k)(x*,n,k)»
by
. An—
tx*,n,k = Zz (n m)|sx*,m,l|v
m,l

the sum being taken over all indices (m,l) € N x Z4 such that Qﬁ’l(b) D Q;:k and m < n.
Then T, restricts to a bounded sublinear operator on YA(E; X).

Proof. This can be proved in the same way as [24, Lemma 1.2.6].

Lemma 4.24. Let E € S(ey,e_, A, 1, (S, o7, 1)) and let k € Ll,c(Rd) Sulfill the Tauberian
condition

k@) >0, &e R",g < pa®) < 2e,

for some € € (0,00). Let v € S(R?) be such that suppl/Af C {& : € < pa(§) < B} for some
B € (€, 00). Define (ky)per and (Yn)nen by ky = 2" ADk(Agn -) and , 1= 2"" AV Y (A -).
Then

(% fdull ey S Nk * fdall £ f € Lo(S; Ly j0e(RY; X)).

Proof. Pick n € Cf"(R") with suppn C BA(0,2¢) and n(&) = 1 for ps(§) < 37‘ Define
m € S(RY) by m(§) := [n(&) — n(AZS)]IQ(E)’l if % < pa(§) < 2¢€ and m(§) := O otherwise;

note that this gives a well-defined Schwartz function on R? because n — (A, -) is a smooth
€

function supported in the set {§ : § < pa(§) < 2¢} on which the function kec Lo (R%) does

not vanish. Define (m,),cy by m, := m(A,-» -). Then, by construction,

n+N
> miki(€) = n(Ay-wimE) — n(Ay-nni§) = 1
I=n
for 2" < pa(£) < 2"¥~13¢, n € N, N e N. Since supp 1},, C {&: 2" < pas(§) < 2"B} for

every n € N, there thus exists N € N such that Z?;N mik; =1 on supp @, for all n € N. For

each n € N we consequently have

n+N NN N
Yn = Y * E my % k; :E wn*mz*kzzg Y * My * kg
I=n I=n

=0

As ¥, m € S(R?), we obtain the pointwise estimate

N N
1% fllx < 3 % s % kur * fllx S > MAMAkss % f110).
=0 =0
37



N. Lindemulder Journal of Approximation Theory 264 (2021) 105519

It follows that

N
1 % Phalleco S Y [ (MAMA kg = 1)), |
=0

N N
Z||<kn+z*f>n e S D27 Ik % Pall )
=0 =0

kn * f)n||E(X)~ O
4.4. Proofs of the results in Section 4.2

Proof of Theorem 4.4. (i) = (ii): Fix @ € C((—1, 2)%) with the property that
Za)(x—k):l, x e RY.
kezd

Let (f,)n be as in Definition 3.11 with [|(fu)xllEx) < 2| fllyLag. x)- For each (n, k) € Nx 74,
we put

dn,k = w(AZ"( T AZ*”k))fns Spk = ”an,k(AZ*" . )||C£’1(Rd;x),
and
an,k
n g = Vs, 420)
n,
Note that
|sn,k| = ||gln,k(A2*" ')”Cé"l(Rd;X) = |lo(- — k)fn(A2*" ')”Cg’I(Rd;X)

5 ”a)( - k)”c}l)W(Rd)”fn(AZ*” : )||C}’,W([71,2]d+k;x)

Sosup osup  [[D[fa(Ag-n )I)x
le|<M ye[—1,2)4 +k

Given x € Qf, and ¥ = Ayx € [0, DY +k, for y € [—1,2]¢ + k we can write y = ¥ + z with
i=y—i=0U-k — @G-k e[-1,2]Y = [0, 1)?, so, in particular, p4(z) < C.

Combining the above and subsequently applying Lemma A.l to f,(A,-» -), whose spectrum
satisfies supp F[ f,(A,-n -)] C BA(0, 2), we find

Ikl S sup  sup [ID*[fu(Az—n )I(E + 2)llx

[a|<M pa(2)<Cq
S MALN fu(Ag=n HlIx] (Azx) = MA(| fullx)(x)

for x € Qf,. Therefore, (s, ).k € y*(E) with

IGndanllyace S [MAA L] ; S WCnlleco < 201 F lyLacex)-

Finally, the convergence (25) follows from Corollary 4.18 and the observation that

o o0
F=)F=>_ sukani in Lo(S: Ly s10e(R% X))
n= n=0 kezd
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(i) = (i): Set gy = ) tcpa |5n,k|X,fk for n € N. For n € Z_y, set f, =0 and g, = 0.
Pick « € (0, 1] such that E has a k-norm. Pick ¢ € (0, A4 ) such that (A4 —&)M > e_. Pick

min min

X € (0, 0o) such that tr(A®)/A < Fuin A 1. Pick ¥ = (Wp)wen € PA(R?) such that
supp o C B4(0,2),  suppy, C BA0,2")\ B40.2"), nz=1,
and set ¥, = 2”tr(A@)1ﬂ0(A2n -) for each n € N. Note that
ni ¥ Uy = [bpy * P](Aon - —k)
and
an i * Ym = [bp i * Ym—nl(Ap - —k), n<m.
An application of Lemma 4.21 thus yields that

1
" v, < 34
lans* T Olx S T3 Aoy (34)
and
—(m-m)(A —e)M
n m S . . 35
lani s ¥m Ollx S G5 < (35)
Now put

& — an,k * w]‘la n= ma
nk.m Ap i * Y, N <m.

Let Ly(R?; X) denote the Fréchet space of all equivalence classes of strongly measurable X -
valued functions on R¢ that are of polynomial growth; this space can for instance be described
as

Lu@®R?% X) = {f € Lo®R"; X) : Y € SR, ¢f € Lu(R?; X)}.

Using Lemma 4.11 together with the support condition of the a,; and |lan il ge.x) <
1, it can be shown that the series ZkeZd Sp.k@nk converges in Lo(S; Ly(RY; X)). Since
Ly(R?; X) — S'(RY; X) and convolution gives rise to a separately continuous bilinear
mapping S X &' — Oy, it follows that

Fom =Y Suklinkn = (an,kan,k)*{w"’ "M in Lo(S: OuRY X)) (36)

Iﬁm £ n<m k)
kezd kezd

for each n, m € N with m > n.
It will be convenient to define

Fbw = Isukl lankmlly,  n,meN,m>n.
kezd

By a combination of (34), (35) and Lemma 4.20,
T <ol M A mleN,m >

m—Il,m ~

From this it follows that
—I0A —eoM A
ICEE L omell S 27 i M (MA ()1 |
. E(N>)) E(Nx;)

= 2710 =M | (S_) (MA (g men |
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—I(\A —e)M—¢_
< 27 Cain= M= (g Y ment

- A. — —E—
= 271 O =M= (5 o (37)

yAE)

Therefore, by Lemma 3.8 and the assumption A — M > ¢_,

min
o0 o0 o0 o0
SN i =20 smetkl lam—tsemllx
1=0 m=I 1=0 m=l kezd

belongs to Eg[B;'wA"] — LS, L,,[[,IOC(R”’)). By Lebesgue domination this implies that
> e Y Y iezd Sm—1k@m—1k,m converges unconditionally in the space Lo(S; Ly ¢ 10c(R?; X)).
In particular,

00 oo o0 o)
Z Z Z Sm—l,kém—l,k,m = Z Z Sn,k Z an,k,m in  Lo(S; Lr,z{,loc(Rd; X)).

1=0 m=l ke7d n=0 kezd m=n
Since
N
apr = lim @y xa,;, = lim E:an,k,m in  Lo(S; L1(RY; X)),
N—oo N—o0
m=n

and since f has the representation (25), it follows that

F=Y3"  Swtklmrkm i Lo(S; Lrrp.aioc(®'; X)),

=0 m=l ecgzd
Combining the latter with (36), we find

o0 o0
F=Y fuctm in Lo(S: Lenp.cioc(R': X)). (38)
=0 m=I
Note that

—IOA —e)M—s_
IS nmtimdm=i | vy S 27 Cmin ™M= (5 )i |y )

by (37). Since

supp Awmv = 07 C BA(O, 2m+l), m > l,
supp Ym, =1,

it follows that (see Remark 3.14)

supp fm—l,m C {

o0
Fii=) factm  in Lo(S; Ly.gioc(RY: X)),
m=Il

defines an element of YLA(E; X) with

—I(OA —e)M—e_
”FIHYLA(E;X) S2 (i = )M = )”(Sn,k)(n,k)”yA(E)-

As AMA —e)M > ¢_, we find that F := Y_,_, F; € YLA(E; X) with
||F||YLA(E;X) < ||(Sn,k)(n,k)||yA(E)~

But f = F in view of (38) and YLA(E; X) — Lo(S; L,,J,IOC(R"; X)) (see Remark 3.14),
yielding the desired result.
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(i1) = (iii): We will write down the proof in such a way that the proof of Proposition 4.10
only requires a slight modification. Combining the estimate corresponding to (ii) = (i) with
YLA(E; X) — Eo(X) (see (9)), we find

£l Egx) S NGndniollyacey-

So let us focus on the remaining part of the required inequality. To this end, fix ¢ € R and
choose R € [1, co) such that

pa(tz) < Rpa(z),  zeRI 1 el0,|c] + M.
Put
tr(A)-p~! M
Mcn(f) 2" A ||Z = LCZAZ fHLp,:{(BA(O,Z*"ﬁX)’ neN.

Now let f has a representation as in (ii) and write h, := ZkeZd Sp.kan k- Then

n—1
-1
M r n(f)(x) < 2nlr(A) p HZ — Z ||LCZA2/Ihm(x)||X H

o Lp 4(BAQ.27)

+ 2O 2 s S LAY B (0 %
m=n

Ly ¢(BA©0.27m)

We use the identity

M
M
LAYy (x) = Z(—l)M’( )h J(x + (e +D2)
=0 !
to estimate the second term in (39) as follows

o0
p—1
2 s 3 L A Ol

m=n

M [e.¢]
< Zzntr(A).p—l HZ . Z m (x + (c + l)Z)”XH
=0

m=n

’LP,L{(BA(O,Z_”))

Lp,4(BA(0,271))

< 2ntr(A)-p_1

Z T
L d’(B (x,R271))

m=n

< ntr(A)-p_1
S2 Z Z s i llx 1 04,0 Ly «(BAG.R2)

m=n jc7d

A)-p~!
< nir4)-p E s llx 1 o4 (S)H ’
p.d

m,l

where the last sum is taken over all (m,[) such that Q2’1(3) intersects (B4(x, R27")) and
m > n. From this it follows that

[S)
—1
zntr(A)‘p HZ [N Z ||LCZA?/Ihm”X H

m=n

Z 2ntr(A) p!

kezd

Ly J(BA(O 271))

Z ”sm 1 ”X QA 3) H Qﬁk(gR)y (40)

where the sum is taken over all (m, [) such that QQ’I(S) C Q,ﬁk(SR) and m > n.
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In order to estimate the first term in (39), note that

AM () =/ DMy G 0D D, )
[0,1]

and thus that

IAY R, (Ollx < sup DY hyu(x +12)(z, . .., Dllx

te[0,M]

= Ssup ||DM[hm o Az—m](Azm,x =+ [Asz)(Asz, e, AZmZ)”X
tel0,M]

< sup sup [ D[h o Ap-n)(Agnx + 1Am2)| (| Axnz] ",
te[0,M] |a|<M

from which it follows that
ILe: AYhw(0)lIx S sup  sup | D[y © Ay-m](Agnx + (¢ + 1) Agn2) | | Agnz|M
tel0,M] |la|<M
< sup  sup | D[hy o Ayml(Agnlx + yD)| (| A2nzl™.
yeBA(0,Rpy (2)) lal=M

Given ¢ € (0, A4 ), for m € {0, ..., n — 1} and z € BA(0, 27") this gives

min

A _
ILezAMhm()lx S sup sup || D*[hm o Ag-m)(Agn[x + YD) ||y p.4(Agnz)Pmin =81
yeBA(0,R2—") la|<M
A
< sup sup || D [hm o Ag-m1(Agm [x + y])|| 5 2Hmin =M m =)

yeBA(0,R2—") le|<M

Since

| DU © Az-m1(Agnlx + ¥D| < D lsmallx 11 2p041(A2n [x + ¥1)
lezd
< D smallxlga 0+ ).
lezd ‘
it follows that
n—1
27 2 s N L AV B () x |

o Lp,4(BA(0,27))
n—1
M AA e )M(m—
Se D sup LAY Ry ()| 20min— M

m=02€B4(0,271)

< Y 2 OMO gy
m,l

where the last sum is taken over all (m, [) such that Qﬁ’ ,(3) intersects BA(x, R27") and m < n.
From this it follows that

n—1
.
pnt(A)-p Hz»—> E IILCZAéWhm(X)HX‘ N §§ ll$m.11lx @D
m=0 Lp.aBEQ270)

where the last sum is taken over all (m, [) such that Q4 (3R) D Q,‘:k(3) and m < n.

m,l

A combination of (39), (40), Lemma 4.17, (41) and Lemma 4.19 give the desired result. [J
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Proof of Theorem 4.6. The chain of implications (I) < (II) = (III) with corresponding
estimates for f € Lo(S; LN[(R‘J ; X)) can be obtained in the same way as Theorem 4.4 with
some natural modifications; in particular, Lemmas 4.17 and 4.19 need to be replaced with
Lemmas 4.22 and 4.23, respectively. Furthermore, (II) = (IV) can be done in the same way
as [24, Theorem 1.1.14], similarly to the implication (II) = (III) (see the proof of (ii) = (iii)
in Theorem 4.4).

Fix g € (0,00) with ¢ < Fuyin A pmm(lll)z and let (IV)Z be the statements (III) and (IV),
respectively, in which p gets replaced by ¢ = (¢, ...,q) € (0, 00)¢. Then, clearly, (II) =
(IID7 and (IV) = (IV)y.

To finish this proof, it suffices to establish the implication (V) = (IV)* for f €
Lo(S; L, +(R?; X)) and the implications (D7 = (V) and (IV); = () for f of the form
f =Y ls ® flil with (S)ic; C o a Countable family of mutually disjoint sets and
(fm)iel € Lr,a[,loc(Rd; X)

V) = (IV);: For this implication we just observe that, for x € Q;" cand n > 1,

EnLe (D) S Eu((fox), Qi(3), L) S MA(gern)(x) < MPA(ger ) ().

(IH)(’; = (V) for f of the form f = Zie[ Is, ® FU with (Si)ie; C &/ a countable family
of mutually disjoint sets and (f");¢c; € Lr’[[:IOC(Rd; X): By Lemma 4.12, for each i € I and
(x*,n,k) € X* x Noy x Z there exists a w!{ € P¢_, such that

1/q
[y =l o ) S dige (f“])+<][Q dy. (f[”)(y)qdy) :

n,k
Defining 7« ok € Lo(S; P§y_) bY T i i= Y ey Ls; ®n£i]nk, we obtain

[ x%) = Tk Lga o) S dage () + My 5 () < 2M Ayt ()
Since

#lkez':xe 03} <1, xeRYneN,
it follows that

” {gx*,n}(x*,n)EX*XNzl H Fm(X*;E(N}))
A A,p
S ”{M ,x*,n(f)]}(X*WGX*XNzl ||9M(X*;E(N1))
S Wy (D emmexssatiey |y om0,y
(IV); = (D) for f of the form f = D ls ® FUV with (S;)ie; C &/ a countable family
of mutually disjoint sets and (fi1);c; € L, oe®%: X): Let w € Ccx([—-1 ,2]¢) be such that

Zw(x—k):l, x e R4,

kezd

and put w, = w(Ay - —k) and QF, = Ayn([—1,2]? + k) for (n,k) € N x Z%; so
supp (wn k) C Oy ;- Define

Ly={eZ:0°,nQ% ,, #2},  (nk eN xZ°
Then #1I,,;, < 1 and there exists b € (1, 00) such that

02, COLBNQOL, (), €l (nk eN xZ (42)
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Furthermore, there exists ny € Ny such that
Q2,(D)U Q| (b) C BA(x, 27", x€ QY. (nk)eNxZ (43)
For each i € I, let us pick (nil;f],n,k)(x*,n,k)ex*XNXZ“’ C P¢,_, with the property that

I 2 = el o,y < 2E((F1, %), Q1Li(b), Ly) (44)

and put s 6 =D ., 1s, @ rr)[C"*]’n’k € Lo(S; Pf,lfl). Define

On ke Y jepd On—1,1[Tx n ke — Tex p_17], 1 > no,
Ux* nk = Y On kTTx* n ks n = ny,
0, n < ng.

Let x* € X* and (n, k) € N5, 41 X 7%, Letl € I, . For x € Qj,k we can estimate

@2)
Iz n e = e n-tillgoyy S WX = Tkl 08, i

+ “ (f’ X*) - ﬂx*,n—l,l ”Lq(Q;:‘—I.l(b))

(43),(44)
< AEu((f,x*), BA(x, 270 L),

implying
(T ke — T n—1,1)(Ag=n - +k)||c[/7W([71,2]M)
n & * —(n—n,
S2MADAE (f, x*), BA(x,27")), L)
in view of Corollary 4.15. Since #1,, ; < 1, it follows that
letorn e (Aan = +Rl ey oy S Em((f.x"), BAG, 2707"0), Ly)
=& (), x € 0%, (45)

— Y¥M ., x*,n—ng
For n = ny we similarly have

lltt% ng k (Ag=no - +k)”C},W([—1,2]M) S K, x*>”Lq_t{(BA(x,l))
A
S MG AL I

A
< I MEALf O, x € Qi (46)
Define Sx* pk = “ux*,n,k(AZ*" . +k)||cll7w([_l*2]M)’
Ux* p,
S*_,k7 Sx*,n,k 75 07
Ay* pk = x*,n,k
0, Sx*.nk = 07

and bx*,n,k = umn,k(Azfn . -I—k) Then bx*,n,k € Cy([—l,ZJd) with ||bx*'n,k||cl§u < 1 and
(Sx*,n,k)(x*,n,k) € yA(E; X) with

@s.@6)
G ot nillyaexy < IMZAL IO E,

A,
+ ” {SM:IC*’nfno (f)}(x*,n)eX* XN>pg

| e E g1
_ Agq
S I legen + 257" 163 3 (DY | gy -
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Note that, for n > ng + 1,

Z Sx*,n kAx* nk = Z Ux* n.k

kezd kezd
- E T x* n kDx* n,k E Wp—1,1 — E Wik E Tx* n—1,1Wn—1,1
kezd lezd kezd lezd
= E Tx* n kPnk — E Tx* n—1,1Wp—1,1-
kezd lezd

In combination with Lemma 4.16 and an alternating sum argument, this implies that

o0
= Z Z Sx* n,kAx* n.k in LO(S; Lq,loc(Rd))~
n=0 kezd
The required convergence finally follows from this with an argument as in (the last part of) the
proof of the implication (i) = (ii) in Theorem 4.4. [

Proof of Corollary 4.7. This is an immediate consequence of Theorems 3.22, 4.4, 4.6 and
the observation that

||(d s (PN Ly gy < ||(d P Dn=1lleqry. O

Proof of Theorem 4.8. The estimates
||f||YA(E;X) ~ ||f||YLA(E;X) ~ ||f||ﬁA(E;X)
follow from Theorem 3.22. Combining the inclusion
N ©)
YLA(E; X) — Ey(X)
with the estimate corresponding to the implication (i)=>(iii) in Theorem 4.4 gives
A,
If 1 2o + 1pg 2 D=1l eavyx) S I lypace.x)-
As it clearly holds that
173 ,(Dllx < dy (), neN,
it remains to be shown that
1 lyacex S 1 1Ewo + 1Pzl @y x)- (47)

Put K := 1,4(0,1) and K4" = SN 1)1( )K[M -1, Where K, = t*K(—t-) for
t € (0, 0o0). Furthermore, put

K;}(Z‘, f) = tiﬁ(A@)KAM(At—l ) % f + (_I)Mle(o)f’ t € (0, 00).
Note that
I[\él,n(f) = K}\[}[(z_nv f)y neN. (48)

As KAM(0) = Y (- 1)1( )K(O)—( DM+ (0) # 0, we can pick €, ¢ € (0, 00) such
that K2" fulfills the Tauberlan condltlon
| ZKA" @) =c, EeR? 5 < pa(€) < 2e.
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So there exists N € N such that k := 2V AH g A" (4 ) — KA" € L, (RY) satisfies

N c 8

k@1=2 >0, §eR’, 2 < pa®) <25,

for 8 := 2¥e > 0. Let ¢ = (@n)neny € PA(RY) be such that supp @; C {& : 2 < pa(£)} (see
Definition 3.18). Let (k,),cn be defined by k,, := 2”tr(A®)k(A2n -). Then, by construction,

kot f = KAQ N kg HE IS D= I8, nel

An application of Lemma 4.24 thus yields that

1(@n % Pz lleay:x) S Nkn % a1l Eav,;x)
SN v Dzt lEa 0 + 10 Dnz1 lEavy:x0)

S QN+ DI (Dnz1 2y x)- (49)
As |lgo * fllx < MA(|| fllx), it furthermore holds that
loo * fllegxy S I lEgx)- (50)

A combination of Proposition 3.19, (49) and (50) finally gives (47). O

Proof of Proposition 4.10. Using the estimate corresponding to the implication (i) = (ii)
in Theorem 4.4, the first estimate can be obtained as in the proof of the implication (ii) =
(ii1) in Theorem 4.4. The second estimate can be obtained similarly, replacing Theorem 4.4 by
Theorem 4.6. O

5. An intersection representation

In this section we come to the main results of this paper, namely, intersection representations.
In particular, these include Theorem 1.1 from the introduction of this paper as a special case.
Before we can state the results, we need to introduce some notation.

Let E € S(ey,e_,A,r, (S, o, un) with e,,6_ > 0. Let J be a nonempty subset of
{(1,....¢}, say J = {ji,....,jxp with 1 < j; < -+ < ji < L Put dy = (d,...,4d;),
dj = |£f_/|1 A] = (Ajl’ ey A.fk)’ rjy = (rjl, ey r_,-k) and

(Sy, oy, 1) = R BRIV), 297 @ (S, o, )

Furthermore, define E. ;) as the quasi-Banach space E viewed as quasi-Banach function space
on the measure space R/ x N x S;. Then

Eiy.y1€Sley,e—, Ay, 1y, (Sy, &), 1y))
By Remark 3.14,
~ A Lwg,
YL™(E; X) <> E5(B, """ (X)) = Lo(S; Lr.s10c(R%; X)).
In the same way,
~ A Lwg ,
YL (Ergp: X) <> ES(B, """ (X)) > Lo(S: Lr.g10cR?: X)),
In particular, it makes sense to compare I?I:AJ (E4.01; X) with ﬁA(E; X).

Theorem 5.1. Let E € S(ey,e_, A, r, (S, o/, n) with ep,e_ > 0. Let {Jy,...,J.} be a
partition of {1, ..., ¢}.

46



N. Lindemulder Journal of Approximation Theory 264 (2021) 105519

(i) There is the estimate

~ < ~
1P 0 < W Ipingy 1€ L,

Jorall f € Lo(S; Lr,d,loc(Rd; X)).
(ii) There is the estimate

~ <
1 Ay S 121: A FoR TP
for all f € Lo(S; Ly £10c(R?%; X)) of the form f =Y., 15, @ fUl with (S;)ie; C 7 a
countable family of mutually disjoint sets and (fi);c; € Lr,,{,loc(Rd; X).

In particular, in case (S, </, ) is atomic,

L

- A = A

YL(E; X) = (YL (Ejg.: X)
=1

with an equivalence of quasi-norms.

Remark 5.2. The analogous estimate in Theorem 5.1(i) for YLA(E; X) holds as well, with a
slightly modified proof that actually is a little bit easier. However, we are not able to obtain a
version of Theorem 5.1(ii) for Y LA(E; X) due to the unavailability of the crucial implication
(i1i)) = (i) (plus a corresponding estimate of the involved quasi-norm) in Theorem 4.4, see
Remark 4.5.

Proof of Theorem 5.1. Let us start with (i). Fix [ € {1,...,L} and write J := J,. Let
f € ﬁA(E; X). Let ¢ > 0. Choose (g,), and (fi*,)x*n as in Definition 3.12 with
I&nnlle < (14 O f 574y, AS Frrn € Lo(S: S'®RD) with supp fre, € BAD.2"1), we
can naturally view fs, as an element of Lo(S;; S'(R9~47)) with supp fi=, C BA7(0, 2",
Since

Lo(S; Ly 4,10c(R?)) < Lo(Ss; Lr .4 10c(RY)),
it follows that f € YL/ (Eyz.sp; X) with
”f”ﬁ,AJ(E[d;”;X) 5 ”(gn)n”E[,{;“ = ”(gn)n”E S (1 +6)||f||ﬁ,A(E,X)

Let us next treat (ii). We may without loss of generality assume that L = £ and that J; = {/}
for each [ € {1, ..., £}. We will write Es, ;1 = Eps,(jy-

Let f € ﬂf»:l ﬁAj(E[d;j]; X) be of the form f = ), , ls, ® flI with (Si)ies C & a
countable family of mutually disjoint sets and (f'1);c; € L, 4 10c(R%; X). In order to establish
the desired inequality, we will combine the estimate corresponding to the implication (III) =
(I) from Theorem 4.6 for the space ﬁA(E ; X) with the estimates from Proposition 4.10 for
each of the spaces ﬁAj(E[L{;j]; X). To this end, pick M € N with M)Lﬁin > e_. Now, let us
define (gyx ) mex*xn and (gex* n, j)x* mex*xn, With j € {1,..., £} and ¢ € R, by

- {d(f;*,o(f), n=0,
e =L
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and

[d]]A Ny
8 — 0,x*,0 (f), n=0,
c,x*n,j — [f[ JLAjr)
Mcx*nj(f) nZ]’

where the notation is as in Theorem 4.6 and Proposition 4.10.
For n = 0 we have

g0 = dite o () S [OLL MU AT (d L5 ()
= MA[dédxi]oAl O] = M gear0.1] ceR, (51)

where O/_,M!"""* stands for the composition M} "4 o .. o M2,
Now let n > 1. We will use the following elementary fact (cf. [57, 4.16]): there exist
C €(0,00), K € Nand {c!};_; _u=o...k C R such that

.....

|AMp(x) < € Z Z Ay h o+ Zc[ )

k=0 j=1 i=1

for all h € Lo(R?). Applying this pointwise in S to (f, x*), we find that

A gl
g = djy) o () =27 2 A (1, %) |

Ly 4(BA(0,27)
12

K ¢
ntr(A)er~! M *
SX 2 e [Tk JAN o 07

k=0 j=1 i=1

Ly ¢(BA(0,27)

K ¥4
tr(A;)/r; 401, A; M
sZZﬂMWDWMW1H«HM%MAWAMﬂ
k—Oj—l

L (B* <0,2">>}

M *
AR L k v/JZjAl[d;jlzj(f’x )

< ZZ MA |:2nlr(A D

Aj —n
= 0] 1 Ly;(B"/(0,2 )):|

K ¢
-3y mafa [ L f)] ~3 Y [gcg_k]’x*’n‘j} . (52)

k=0 j=I k=0 j=1
A combination of (51) and (52) gives

K 4
SN NATHEILI R 9 NI

k=0 j=1 k=0 j=1
for all (x*, n) € X* x N. Therefore,

K 4
” {gx*,n}(x*,n) ||9M(X*;E) S Z Z H {M;.4 [gC§k1’x*,n,j]}(x*,n)

— j_l FM(X*E)
< ZZ H {g X* n, ]}(X n) ”yM(X* E)

k= 0, 1
= ZZ ||{g [k] Xt j}(x RD) ||&7M(X* E[dj

k=0 j=1

The desired result now follows from a combination of Theorem 4.6 and Proposition 4.10. [
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As an immediate corollary to Theorems 3.22 and 5.1 we have:

Corollary 53. Let E € S(ey,e_, A, r, (S, o, ) with ey, e_ > 0 and (S, <7, 1) atomic.
Let {Ji,...,J.} be a partition of {1,...,£}. If e > tr(A) - r~' — 1), where tr(A) =
(tr(Ay), ..., tr(Ay)), then

L
YA(E; X) = YLA(E; X) = YLY(E: X) = () T2 (Egon: X)
=1

L
YLAJI(E[{[;JI]; X) = m YAJ’(E[J;JZ]; X)
1 I=1

I
DL

1
with an equivalence of quasi-norms.

In the case that r = 1, the above intersection representation simplifies a bit thanks to the
corresponding simplification in the crucial estimate involving differences, also see Remark ??.
In particular, we can drop the assumption of (S, <7, i) being atomic.

Theorem 54. Let E € S(eq,e_,A,1,(S, o, ) with e.,e_ > 0. Let {J1,...,JL} be a
partition of {1, ..., ¢}. Then

L
YA(E; X) = YLAE: X) = YL (E; X) = (| L™ (Ejgi: X)
=1
L
Y LA (E g X) = ()Y (B X)
1 =1

DL

1

with an equivalence of quasi-norms.

Proof. In view of Theorem 3.22, this can be proved in exactly the same way as Theorem 5.1,
using Theorem 4.8 instead of Theorem 4.6. [

Remark 5.5. In light of Example 3.20, the intersection representation
L
YAE:; X) = ()Y (Epg: X) (53)
I=1
from Corollary 5.3 and Theorem 5.4 extends the well-known Fubini property for the classical
Lizorkin—Triebel spaces F [S) q(]Rd ) (see [57, Section 4] and the references given therein). It also
covers Theorem 1.1 and thereby (1), the intersection representation from [16, Proposition 3.23].
The intersection representation [33, Proposition 5.2.38] for anisotropic weighted mixed-norm
Lizorkin—Triebel is a special case as well. Furthermore, it suggests an operator sum theorem
for generalized Lizorkin—Triebel spaces in the sense of [32].

Example 5.6. Let us state the intersection representation (53) from Corollary 5.3 and
Theorem 5.4 for some concrete choices of E (see Examples 3.5 and 3.20) for the case that
¢ = 2 with partition {{1}, {2}} of {1, 2}.
(D) Let p € (0,00)%, g € (0,00], w € Ago(R, A}) x Aio(R2, Ay) and s € R. Pick r €
(0, 00)? such that r; < PING, T2 < piApaAgandw € Ay, /) (R4, Al)xApz/,z(R‘[z, Ar).
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If s > tr(A) - (r ="' — 1), then
Fyd®RY, w; X) = Fy 2 (R, wy; Ly, (RY, wy); X)

N Ly, (R®, wy; FyAIRA, wy; X))

(II) Let p € (0,00)%, g € (0,00], w € Axo(R%, A}) x Axo(R%, A;) and s € R. Pick r €
(0,00)? such that r; < p1, 12 < prApaAgand w € A,/ (RT, A)) x Ap, ), (R%, Ay).
If s > tr(A) - (r ' — 1), then
Y4 (L, R, w)[[€)(N)IL,, (RD, w))]; X)

= F3 2R, wy; Ly, (R, wi; X)) N Ly, (R, wo; B LR, wy; X).

To finish this section, let us finally state the Fubini property variants of the two examples
from Example 5.6 (cf. Remark 5.5).

Example 5.7. Taking p = (p, ¢) in (I) and (II) of Example 5.6, an application of Fubini’s
theorem yields the following.

(D) Let p,q € (0,00), w € Axo(RA, A}) x Aio(R?2, A,) and s € R. Pick r € (0, 00)? such
that r;,r < pA g and w € A,,/,I(R‘{‘,Al) X Aq/rz(]R‘[Z, Ay). If s > tr(A) - (r~ ' = 1),
then

Fiolay p R w3 X) = Fpf2(R®, wo; Ly(RY, wy; X))
N Ly(R®, wy; BYANRA, wy; X)).

() Let p € (0,00), g € (0,00], w € A (R, A)) x Ax(R2, A5) and s € R. Pick
r € (0, 00)? such that r| < p, 12 <pAgqand we A,,/,l(IR{‘[l,Al) X Aq/,Z(R‘@, Ay). If
s > tr(A) - (r~! — 1), then

BiA SR w: X) = B AR, wy; LR, wy; X))
N Ly(R®, wy; By Y (RY, wy; X)).
In applications to parabolic partial differential equations, one uses anisotropies of the form
A = (aily,axly) with ay = 2m, a = 1, 4y € {n — 1,n} and &, = 1, where 2m is the
order of the elliptic operator under consideration and #n is the dimension of the spatial domain
(see e.g. [35,36]). So let us for convenience of reference state Examples 5.6 and 5.7 for such
anisotropies.

In view of Example 3.29 and the fact that A,(R", AA) = A,(R", A) for every A € (0, c0),
the following two examples are obtained as special cases of Examples 5.6 and 5.7.

Example 5.8. Let 4 € (N;)?> and a € (0, 00)>.

(D) Let p € (0,00)%, g € (0,00], w € Axo(R4) x Ayo(R%) and s € R. Pick r € (0, c0)?
such that ry < piAg, rn < ptAprAgand w € Ay (RY) x Ay, (R2). I
s > alz{l(rfl -1 +agzt§(r;1 — 1), then

Fyg V@R, w; X) = Ff2 (R, wa; Ly, (R, wn); X)
N Lp, (R, wy; FyIRA, wy; X).

(ID) Let p € (0,00)%, ¢ € (0,00], w € Axx(R%) x Axo(R%) and s € R. Pick r € (0, c0)?

such that r1 < p;, m» < pr A pr»ANqg and w € A,,]/,](R‘{l) X A,,z/,z(R‘[2). If
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s >ardi(r;' — Dy + axdo(r; ' — 1), then
YO (L, (R, wy)[[€,(NIL,, (RY, w))]; X)

= Fyl2(R® w1 Ly (R, wi; X)) N Ly, (R, wos By (RA, wy: X)).

Example 5.9. Let 4 € (N;)? and a € (0, 00)’.

(D) Let p,g € (0,00), w € Axo(R4) x Ax(R%2) and s € R. Pick r € (0, 00)? such that
riora < pAgand w € Ay (R x Ay, R2).If s > a1 di(ry ' — Dy +axdo(ry ' — 1),
then

Fo @R w: X) = FylexR®, wy; LR, wi; X))
N Ly(R?, wy; B4 (R, wy; X)).

() Let p € (0,00), ¢ € (0,00], w € Axo(R4) x Axx(R%) and s € R. Pick r € (0, 00)?
such that r; < p,rs < pAgand w € Ay, (RT) x AyyryR®). If s > ardy(ry' — 1)y +
ardy(ry' — 1), then

B o @Y w; X) = BY2(R®, wy; L,(RY, wy; X))
N Ly(R®, wy; B (RA, wy; X)).
Combining Example 5.8(I) together with a randomized Littlewood—Paley decomposition for

UMD Banach space-valued Bessel potential spaces and type and cotype considerations (we
refer the reader to [26] for the notions of type and cotype), we find the following embedding.

Example 5.10. Let X be a UMD Banach space with type py € [1, 2] and cotype p; € [2, 0o].
Let £ € (N})?, a € (0,00)%, p € (1,0)?, g € [po, p1], w € Axc(R) x A,,Z(R‘{Z) and 5 € R.
Pick r € (0, 0o) such that r < p; Ag and w; € Am/,(R‘['). If s > aydy(r~' — 1), then

FyeO®Y ws X) <> Hy @ R®, ws Ly, (RY, wy; X))
N Ly, (R®, wy; F3RY, wy; X))

— Fyl@O®R! w; X).
Proof. By [41, Proposition 3.2] and the fact that L ,,](]R‘fl, wy; X) is a UMD Banach space
(see e.g. [25, Proposition 4.2.15]),

HS (R, w): Ly, (R, wy; X)) = F)/2 (R, w): Ly, (R, wy; X)). (54)

pa.Ta
Let ({2, F, P) be a probability space and (¢, )reny @ Rademacher sequence on ({2, F, P). The
space Rad,(N; X), where p € [1, 00), is defined as the Banach space of sequences (x;)ien for
which there is convergence of > ;- €xxx in L,({2; X), endowed with the norm

o) K
(X kenllRag, v x) = || Zékxklle(Q;X) sup || ZékxkllL,,(n X)-
k=0 k=0 o

As a consequence of the Kahane—Khintchine inequalities (see e.g. [26, Proposition 6.3.1]),
Rad,(N; X) = Rad;(N; X) with an equivalence of norms for any p, p € [1,00). We put
Rad(N; X) = Rad,(N; X).

With the just introduced notation, the type and cotype assumptions on X can be reformulated
as

€,0(N; X) <> Rad(N; X) < ¢, (N; X).
51



N. Lindemulder Journal of Approximation Theory 264 (2021) 105519

Combining this with the identity
Rad(N; L, (R, wy; X)) = L, (R4, wy; Rad(N; X))
obtained from Fubine’s theorem and the Kahane—Khintchine inequalities, we find
L, (R, wy; £,,(N; X)) < Rad(N; L, (R, wy; X)) < L, (R, wy; €, (N; X)). (55)
A combination of (54) and (55) yields
B3/ (R, wa; Ly, (RY, wy); X) <> HY (R, wy; Ly, (RY, wy; X))
— B2 (R®, wy; Ly (RY, w)); X).

The desired result now follows from Example 5.8(I) and ‘monotonicity’ of Lizorkin—Triebel
spaces in the microscopic parameter. [

6. Duality

Definition 6.1. Let £ € S(s4,6_, A, r, (S, o7, n)). We define YA(E; X*, 0(X*, X)) as the
space of all f € S'(R?; Lo(S; X*, o(X*, X))) which have a representation

f= i fo in S'@RY: Lo(S: X*, 0(X*, X))
n=0
with (f,), C S'(RY; Lo(S; X*, 0(X*, X))) satisfying the spectrum condition
suppfo C B4(0,2)
supp f, C BA(0,2"tH)\ B4(0,2""),  neN,
and (f,), € E(X). We equip YA(E; X*, 0(X*, X)) with the quasinorm
I Fllyace: x*.000¢,xy) = If [(F) e o (x, x5

where the infimum is taken over all representations as above.

Similarly to Proposition 3.19 we have the following Littlewood—Paley decomposition
description for YA(E; X*, o(X*, X)):
Proposition 6.2. Let E € S(ey,e_, A, r, (S, o, ). Let ¢ = (@ )pen € DPAR?Y) with
associated sequence of convolution operators (S,)nen. Then
YA(E; X*, 0(X*, X))
= {f € SR Lo(S: X*, 0(X*, X)) : (Sy fhuent € E(X*, 0(X*, X))}
with
I llyace: x* oo xy) =~ 1(Sn fnenll Eex.ox* x))- (56)
Using the description from the above proposition it is easy to see that
YAE; X*) = YAE; X*, 0(X*, X)) NS’ (R Lo(S; X)).
with an equivalence of quasinorms.
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Theorem 6.3. Let E € S(ey,e_, A, r, (S, o, 1)) be a Banach function space with an order
continuous norm and a weak order unit such that E* € S(—s_, —e,, A, 1, (S, &, n)). Assume
that there exists a Banach function space F on S with an order continuous norm and a weak
order unit such that SRY; F(X)) Ld> YA(E; X). Viewing
[YAE; X = SR [FXOI) = S'RY FX(X*, 0(X*, X))
— S'(RY; Lo(S; X*, 0(X*, X)))

via the natural pairing, we have
[YA(E; XTI = YA(E™; X*, 0(X*, X)).
Consequently, if X* has the Radon—Nikodym property with respect to |, then

YAE™; X*) = [YAE; X)I* = SR FX(X*)) = S'(RY; Lo(S; X*)).

Example 6.4. Let us consider the notation introduced in Example 3.20.l For a weighlt vector

w and p € (1, 00)" we define the p-dual weight of w by w;, = (w;p“l e w;m) and

we write p’ for the Holder conjugate vector of p.
(i) Let p € (1,00), g € [1,00), w € ]_[ﬁ=1 Apj(R‘{-/, Aj) and s € R. Then

VA md . ¥ _ p—$.Amd PR
[Fyq R ws X)I" = F (R, wiy; X7,

(ii) Let p € (1,00), g € [1,00), w € [T{_; Ap;(R%, A;) and s € R. Then

s, A d . * _ p—s,A d /. ovk
[Bp’q(R 1w9 X)] - Bp/’q/ (R £ wpa X )'

(iii) Let F be a UMD Banach function space, p € (1, 00)¢, g € [1,00), w € ]_[f.z1 A,,j
R%, A ;) and s € R. If X* has the Radon-Nikodym property with respect to w, then

[F5ARY, w; F; X)I" =F 2 (RY, w)y; F*5 X).

Let E € S(eq,e_,A,1,(S, .o/, u)) be a Banach function space. By Remark 3.10 we then
have

E; = EABL"") — EA[B,"*"],
from which it follows that

E/(X*, 0(X*, X)) — Eg[B;’wA"](X*, o(X*, X)) = S'RY; ES(X*, 0(X*, X))
— S'(R?%; Lo(S; X*, 0(X*, X))).

Lemma 6.5. Let E € S(ey,e_,A,1,(S, o, u)) be a Banach function space and let Z be
a Banach space with Z — Lo(S; X*, 0(X*, X)). Let ¢ = (¢,)nen € PAR?Y) with associated
sequence of convolution operators (S,),en be such that

supp@o  C B*(0,2)
supp@d, C BA,2"1)\ BA©,2"" ),  neN.
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Then
YAE; X*, 0(X*, X)) NS'(R?; Z)

= {f e SR 2): 3(fin € EX* . o(X*. X)), f =Y SifiinS R’ Z)

k=0
with
||f||yA(E;x*,g(x*,x)) ~ inf |(frll eces,o 000, x))-
Proof. Given f € YA(E; X*, o(X*, X)NS'(RY; 2), let fr =T f, where Ty, = Sp—1 + Sk +
Sk+1. Then Skfk = Skf, SO f = Z,(:io Skfk in 8/(Rd; Z). From
|(fer X)] = | Te(Se fo x)] S MA(S £, x) < MAD (S f), X € By,
it follows that ¥ (f;) < MAD(S, f). Using that M4 is bounded on E, we find

(56)
ICfrll Ecxes o xn S NSl Exs o xy = 1f lyae xs oo x)-
For the converse, let f = Z/fio S fi in S'(R?; Z) with (fi)x € E(X*, 0(X*, X)). Then
(St fier )| = ISk fier )| S MA(fi, x) < MAD(f),  x € Bx,
so that 9(Sx f) < MAD(fi). In view of

f=Y _Sh  SREZ)— SR Lo(S; X7, 0(X*, X)),
k=0

(57) and the boundedness of M4 on E, it follows that f € YA(E; X*, o(X*, X)) with

I flyaEx o xy S NSk fOrllEoxsx) S Il B 0xs xy)- O

Proof of Theorem 6.3. By assumption and Proposition 3.26,
SRY F(X)) = YHE: X) = S'R’; Eg(X)),

from which it follows that F < Eg, implying in turn that [E g]x — F*. On the other hand
it holds that [Ex]g — [Eg]x. Therefore, [Ex]g < F*. By (a variant of) Proposition 3.26
we thus obtain

YAE™; X*, 0(X*, X)) = S'(RY [EX15(X*, 0(X*, X)) = S'(RY; F*(X*, 0(X*, X))).
(58)

So we can use Lemma 6.5 with Z = F*(X*, o(X*, X)) to describe YA(E*; X*, o0(X*, X)).
Let (Su)wen be as in Lemma 6.5 and equip YA(E; X) with the corresponding equivalent
norm from Proposition 3.19. Then

CYAE X) — EX), f > (Sif

defines an isometric linear mapping. By order continuity of E and F, there are the natural
identifications

[EXD] = EX(X*, 0(X*, X)) and [F(X)] = F*X(X*, o(X", X)).
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As S(R?: F(X)) <i> YA(E; X), we may thus view
[YAE: XTI = SR [F(XOT) = S'RY FX(X*, 0(X*, X))).
Denoting the adjoint of ¢ by j, we thus obtain the following commutative diagram:
EX(X*,0(X*, X)) —— S'(RY; FX(X*, 0(X*, X))
EX(X*, o(X*, X J Al *
KoK j L [PAEs ]

Here T is explicitly given by

T(fir =Y Sfe in SRS FX(X*, 0(X*, X)),
k=0

which can be seen by testing against ¢ € S(RY; F(X)):

(T(fi 8) = (o 1) = (k> (k) = D _(fior Sk) = Y (Sk fier ).
k=0 k=0

The desired result follows by an application of Lemma 6.5 with Z = F*(X*, o0(X*, X)) (recall
(58)). O

7. A sum representation

In this section we combine the intersection representation for Y A(E; X) from Theorem 5.4
and the duality result Theorem 6.3 with the following fact on duality for intersection spaces:
given an interpolation couple of Banach spaces (Y, Z) for which ¥ N Z is dense in both Y and
Z, it holds that (X*, Y*) is an interpolation couple of Banach space and

[YNZ)* = Y*+ Z%, [X +Y]* = X*NY*, (59)

hold isometrically under the natural identifications (see [31, Theorem 1.3.1]).
We let the notation be as in Section 5.

Corollary 7.1. Let E € S(ey,e_, A, 1,(S, o, u)) be a Banach function space such that E*
has an order continuous norm and a weak order unit and E* € S(—e_, —ey, A, r, (S, &, 1))
with ., e_ < 0. Suppose that X is reflexive. Let F Banach function space on S with an order
continuous norm such that S(R%; F(X)) <i> YAE*; X). Let {Jy,...,J.} be a partition of
{1,...,4} and, for each | € {1,..., L}, let F; be a Banach function space on S; with an
order continuous norm and a weak order unit such that

SRY; F(X)) <5 SR™1; Fi(X)) <> YAu(EX | : X).

X .
[4; 01
Then

L
YA(E; X)= —I_ YAJ] (E[cf;Jz]§ X)
=1

with an equivalence of norms.
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Proof. As E has the Fatou property, E = (E*)*. The desired result thus follows from a com-
bination of Theorems 5.4, 6.3, (59), the reflexivity of X and the fact that the Radon—Nikodym
property is implied by reflexivity (see [26, Theorem 1.3.21]). [
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Appendix. Some maximal function inequalities

Suppose that RY is -decomposed with 4 € (N;)* and let A = (A;,...,A;) be a
d -anisotropy.

Lemma A.1 (Anisotropic Peetre’s inequality). Let X be a Banach space, r € (0, 00)", K C R4
a compact set and N € N. For all o € N" with || < N and f € S'(R?; X) with supp (f) C K,
there is the pointwise estimate

ID* f(x + 2)llx < sup I f£(x +2)llx
~ 2eRd Hle(l + ij (Zj))tr(Aj)/rj
S[MAUfIO] ), x eRL

sup -
cert [T5_ (14 pa, (2 )" A0/

Proof. This can be obtained by combining the proof of [28, Proposition 3.11] for the case
d =1 with the proof of [10, Lemma 3.4] for the case £ = 1. Although it get quite technical,
we have decided to not provide the details. [J

For f € FI1&MRY; X), r € (0,00), R € (0,00)" we define the maximal function of
Peetre—Fefferman—Stein type f*(A,r, R; -) by

f*(A,r,R; x) = sup —; If(x+2lx S
zeR ]_[j=1(1 + RjIOAj(Zj)) (A })/7j

Corollary A.2.  Let X be a Banach space and r € (0, o00)t. For all f € S'(R?; X) and
R < (0, 00)" with supp (f) C BA(0, R), there is the pointwise estimate

A r Ry x) Sar [MANFIO] ), x eRY

Proof. By a dilation argument it suffices to consider the case R = 1, which is contained in
Lemma A.1. O

Lemma A.3. Let X and Y be Banach spaces. For all (M) ey C FL'RY; B(X, Y)),
(R™),en C (0,00)f, A € (0,00), ¢ € [1,00) and (f)nen C F'E'RY; X), there is the
pointwise estimate

L7 M, f1)]

)4

£ . ~ .

< Zi=tsup /d IM(A g ) sex.yy [ [+ o4, 0)) dy

keN JR A
j=1

Il fulx + 2)lIx
Sup 7 o IV
zeRd njzl(l +CRj ij(yj)) J

56




N. Lindemulder Journal of Approximation Theory 264 (2021) 105519

Proof. This can be shown as the pointwise estimate in the proof of [33, Proposition 3.4.8],
which was in turn based on [39, Proposition 2.4]. [

The following proposition is an extension of [28, Proposition 3.13] to our setting, which is in
turn a version of the pointwise estimate of pseudo-differential operators due to Marschall [38].
In order to state it, we first need to introduce the anisotropic mixed-norm homogeneous Besov
space BA 2R 2).

Let Z be a Banach space, p € (1, 00)!, ¢ € (0,00] and s € R. Fix (¢p)rez C S(R?) that
satisfies ¢k W(Az k)— W(Az &+ - ) for some i € ]-"C°°(Rd) with 1# = 1 on a neighborhood
of 0. Then B;’;‘(Rd Z) is defined as the space of all f € [S'/P](R?; Z) for which

— sk
”f”B;-";(quz) = ||(2 Or * f)kEZ ||Zq(Z)[Lp1,f(Rd)](Z) < 0.

Proposition A.4. Let X and Y be Banach spaces and r € (0, 11 Put T := Fuin € (0, 1]. For
all b € S(RY; B(X,Y)), u € S'(R?; X), ¢ € (0,00) and R € [1, 00) with supp (b) C BA(0, c)
and supp (i) C BA(0, cR), there is the pointwise estimate

MA(lull )] ()

-1
D < R tr(A)-(r—' —1) ) B
I(DYElly Sar (R) |

for each x € RY.

In the proof of Proposition A.4 we will use the following lemma.

Lemma A.5. Let X be a Banach spaceAand p.q € (0,00)" with p < gq. For every
f eS'®RY; X) and R € (0, 00)¢ with supp (f) C BA(0, R),
¢

1Nz, cra;x) Spad HR

j=1

(A -
rY 1Az, qedix)

Proof. By a scaling argument we may restrict ourselves to the case R = 1. Now pick
¢ € S(RY) with ¢ = 1 on BA(0,1). Then f = ¢ * f and the desired inequality follows
from an iterated use of Young’s inequality for convolutions. [J

Proof of Proposition A.4. It holds that
b(D)u(x) = / I;(y)u(x —y)dy, x € RY.
R4

For fixed x € R?, by the quasi-triangle inequality for p4 (with constant cy),
supp (Fly = b(»u(x — ) C Ba(0, ¢) + Ba(0, cR) C Ba(0, ca(R + 1)c).
Therefore,
1Dy < lly = bulx = iz, @)
< (ea(® + DO N5y s Boute = Wi, e
< R s Bt = W, o (60)
where we used Lemma A.5 for the second estimate.
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Let (¢r)rez be as in the definition of the anisotropic homogeneous Besov space B;*j]‘ as
given preceding the proposition. Then ) ;o dr(—-) =1 on R\ {0}, so that

1/t
1o ute = I, ety < | D= D bux = I} )] (61)
keZ
Since
sup Ipe(=bNIBex.v) < I1F (=) b1l we.3ex.v)
yeR

= Q@) N F [¢eb 1w 50x. vy
and supp () C BA(0, 25+1), it follows from a combination of (60) and (61) that

1/t
Yh_ wAHGE - A .
D)y S (ReY== 0 (=) bule = DI, ga
keZ '
1/t
A G- kYl wapk i
< (ReY™I" o2 =T F T ebll
keZ
(k+l)tr(A )
up2 ||lBA(02k+1)M(x_ )”Lr J(Rd)
keZ
¢ (A (L =1
S(Rc)z,_l ) >||b|| S wapikoa [MAlull0] ). O
B~ I (R4 B(X,Y))

Corollary A.6. Let X and Y be Banach spaces, r € (0, 11 and ¥ € C °°(Rd B(X,Y)). Put
Y = Y (Ay—k -) for each k € N. Then, for all (fi)ren C S'(R?; X) with supp fk C BA(0, r2b)
for some r € [1, 00), there is the pointwise estimate

(D) fe)lly < r™ @D [MA fill o] ). x eR’

Proof. Seto =tr(A)-r~!' = ZZ (r(A; ) L Let ¢ € [1, 00) be such that supp (¥) C BA(0, c).
Applying Proposition A4 to b = Y, u = fk and R = r2F, we find that

1W(D) i)y S (er2)s e =Dy, | goaga, [ME U fil 0] (0.

Observing that

_ 2—ktr(A)-(r1

-1
no, A = Ho, A )
Ill//k||Bl,r (]Rd) ”I//”Bl.r (]Rd)

we obtain the desired estimate. [
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