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We find that the statistics of electron transfer in a coherent quantum point contact driven by an arbitrary
time-dependent voltage is composed of elementary events of two kinds: unidirectional one-electron
transfers determining the average current and bidirectional two-electron processes contributing to the
noise only. This result pertains at vanishing temperature while the extended Keldysh-Green’s function
formalism in use also enables the systematic calculation of the higher-order current correlators at finite
temperatures.
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The most detailed description of the charge transfer in
coherent conductors is a statistical one. At constant bias,
the full counting statistics (FCS) of electron transfer [1]
can be directly interpreted in terms of elementary events
independent at different energies. The FCS approach is
readily generalized to the case of a time-dependent voltage
bias [2,3]. The current fluctuations in coherent systems
driven by a periodic voltage strongly depend on the shape
of the driving [4], which frequently is not apparent in the
average current [5]. The noise power, for instance, exhibits
at low temperatures a piecewise linear dependence on the
dc voltage with kinks corresponding to integer multiples
of the ac drive frequency and slopes which depend on
the shape and the amplitude of the ac component. This
dependence has been observed experimentally in normal
coherent conductors [6] and diffusive normal metal-
superconductor junctions [7].

The elementary events of charge transfer driven by a
general time-dependent voltage have not been identified so
far. The time dependence mixes the electron states at
different energies [5] which makes this question both
interesting and nontrivial. The first step in this research
has been made in [8] for a special choice of the time-
dependent voltage. The authors have considered a super-
position of overlapping Lorentzian pulses of the same sign
(’’solitons’’), with each pulse carrying a single charge
quantum. The resulting charge transfer is unidirectional
with a binomial distribution of transmitted charges. The
number of attempts per unit time for quasiparticles to
traverse the junction is given by the dc component of the
voltage, independent of the overlap between the pulses and
their duration [9]. It has been shown that such superposi-
tion minimizes the noise reducing it to that of a corre-
sponding dc bias. A microscopic picture behind the soliton
pulses has been revealed only recently [10]. In contrast to a
general voltage pulse which can in principle create a
random number of electron-hole pairs with random direc-
tions, a soliton pulse at zero temperature always creates a
single electron-hole pair with quasiparticles moving in
opposite directions. One of the quasiparticles (say, elec-

tron) comes to the contact and takes part in the transport
while the hole goes away. Therefore, soliton pulses can be
used to create minimal excitation states with ‘‘pure’’ elec-
trons excited from the filled Fermi sea and no holes left
below. The existence of such states can be probed by noise
measurements [10–12].

In this Letter, we do identify the independent elementary
events for an arbitrary time-dependent driving applied to a
generic conductor. Since generic conductor at low energies
can be represented as a collection of independent transport
channels, it is enough to specify elementary events for a
single channel of transmission T. The answer is surpris-
ingly simple. There are two kinds of such events: we call
them bidirectional and unidirectional. In the course of a
bidirectional event k, an electron-hole pair is created with
probability sin2��k=2�, with �k being determined by the
details of the time-dependent voltage. The electron and
hole move in the same direction reaching the scatterer. The
charge transfer occurs if the electron is transmitted and the
hole is reflected, or vice versa [Fig. 1(a) and 1(b)]. The
probabilities of both outcomes, TR (R being reflection
coefficient), are the same. Therefore, the bidirectional
events do not contribute to the average current and odd
cumulants of the charge transferred although they do con-

FIG. 1 (color online). Schematic representation of elementary
events: bidirectional (a), (b) and unidirectional (c). Shifts of the
effective chemical potential in the left lead due to time-
dependent voltage drive are indicated by shading. For periodic
drive, the dc voltage component [panel (d), dash-dotted line]
describes unidirectional charge transfer, while the ac component
(dashed curve) describes bidirectional events affecting the noise
and higher-order even cumulants.
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tribute to the noise and higher-order even cumulants. A
specific example of a bidirectional event for a soliton-
antisoliton pulse was given in [9].

The unidirectional events are the same as for a constant
bias or a soliton pulse. They are characterized by chirality
�l � �1 which gives the direction of the charge transfer.
An electron-hole pair is always created in the course of the
event, with electron and hole moving in opposite directions
[Fig. 1(c)]. Either electron (�l � 1) or hole (�l � �1)
passes the contact with probability T, thus contributing to
the current.

Mathematically, the above description corresponds to
the cumulant-generating function S��� � S1��� � S2���,
where

 S1 � 2
X
k

ln
�

1� TRsin2

�
�k
2

�
�ei� � e�i� � 2�

�
(1)

and

 S2 � 2
X
l

ln�1� T�e�i�l� � 1�� (2)

are the contributions of the bidirectional and unidirectional
events, respectively. Here � is the counting field, and �k
and �l are the parameters of the driving to be specified
later. The sum in both formulas is over the set of corre-
sponding events [13]. The elementary events have been
inferred from the form of the cumulant-generating func-
tion, as it has been done in [14,15].

The cumulant-generating function given by Eqs. (1) and
(2), together with the interpretation, is the main result of
this Letter. It holds at zero temperature only: since the
elementary events are the electron-hole pairs created by
the applied voltage, the presence of thermally excited pairs
will smear the picture. Equations (1) and (2) contain the
complete �-field dependence in explicit form which allows
for the calculation of higher-order cumulants and charge
transfer statistics for arbitrary time-dependent voltage.
The probability that N charges are transmitted within the
time of measurement is given by P�N� � �2���1	R
�
�� d� exp�S��� � iN��. Higher-order derivatives of S

with respect to � are proportional to the cumulants of
transmitted charge, or equivalently, to higher-order current
correlators at zero frequency. The details of the driving are
contained in the set of parameters f�kg and separated from
the �-field dependence. This opens an interesting possi-
bility to excite the specific elementary processes and de-
sign the charge transfer statistics by appropriate time
dependence of the applied voltage, with possible applica-
tions in production and detection of the many-body en-
tangled states [15–17].

Below we present the microscopic derivation of Eqs. (1)
and (2). We neglect charging effects and assume instanta-
neous scattering at the contact with quasiparticle dwell
times much smaller than the characteristic time scale of
the voltage variations. The approach we use is the non-
equilibrium Keldysh-Green’s function technique, extended

to access the full counting statistics [18–21]. The Green’s
functions of the left (1) and right (2) leads are given by
[20,21]

 

�G 1 � e�i� ��1=2 1 2~h
0 �1

 !
ei� ��1=2; �G2 �

1 2h
0 �1

� �
;

(3)

where ��i denote Pauli matrices in Keldysh (�) space.
Hereafter we use a compact operator notation in which
the time (or energy) indices are suppressed and the prod-
ucts are interpreted in terms of convolution over internal
indices, e.g., � �G1

�G2��t0; t00� �
R
dt1 �G1�t0; t1� �G2�t1; t00� (and

similar in the energy representation). The equilibrium
Green’s function �G2�t0 � t00� depends only on time differ-
ence. In the energy representation �G2�E

0; E00� is diagonal in
energy indices with h�E0; E00� � tanh�E0=2Te�2���E0 �
E00�. Here the quasiparticle energy E is measured with
respect to the chemical potential in the absence of the
bias and Te is the temperature. The Green’s function
�G1�t

0; t00� depends on two time (or energy) arguments. It
takes into account the effect of applied voltage V�t� across
the junction through the gauge transformation ~h � UhUy

which makes �G1 nondiagonal in energy representation.
The unitary operator U is given by U�t0; t00� � f�t0���t0 �
t00� in the time representation, where f�t0� �
exp��i

R
t0
0 eV�t�dt�. The cumulant-generating function

S��� of the charge transfer through the junction is given
by [21,22]

 S��� � Tr ln
�

�1�
T
2

�
f �G1; �G2g

2
� �1

��
: (4)

Here the trace and products of Green’s functions include
both summation in Keldysh indices and integration over
time (energy). For a dc voltage bias, �G1 and �G2 are
diagonal in energy indices and S��� is readily interpreted
in terms of elementary events independent at different
energies [21]. To deduce the elementary events in the
presence of time-dependent voltage drive it is necessary
to diagonalize f �G1; �G2gE0E00 . The diagonalization procedure
is described in the following.

For the anticommutator of the Green’s functions we find
f �G1; �G2g=2� �1 � �2 sin��=2�� �A� �B�, with �A �
�P� 
 A and �B � �P� 
 B. Here A � �1� h~h� sin��=2� �
i�h� ~h� cos��=2�, B � �1� ~hh� sin��=2� � i�h� ~h�	
cos��=2�, �P� � ��1� ��3�=2� b� ��1 � i ��2�=2, b �
�i cot��=2�, and 
 is the tensor product. Since �A �B �
�B �A � 0, the operators �A and �B commute and satisfy for
integer n: � �A� �B�n � �P� 
 An � �P� 
 Bn. Therefore,
S��� given by Eq. (4) reduces to

 S � Tr ln
�

1� T sin
�
�
2

�
A
�
� Tr ln

�
1� T sin

�
�
2

�
B
�
:

(5)

A further simplification of S��� is possible in the zero
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temperature limit, in which the hermitian h operators are
involutive: h2 � ~h2 � 1. The operators h~h and ~hh are
mutually inverse and commute with each other. Because
h~h is unitary, it has the eigenvalues of the form ei�k with
real �k and possesses an orthonormal eigenbasis fv�kg. The
typical eigenvalues of h~h (or ~hh) appear in pairs e�i� with
the corresponding eigenvectors v� and v�� � hv�. In the
basis (v�, v��) operators h~h and ~hh are diagonal and given
by h~h � diag �ei�; e�i�� and ~hh � diag �e�i�; ei��. The
eigensubspaces span �v�; v��� of the anticommutator
fh; ~hg are invariant with respect to h, ~h, and A because of
�h; fh; ~hg� � �~h; fh; ~hg� � 0. The operators h and ~h are
antidiagonal in the basis (v�, v��), with matrix compo-
nents h12 � 1, h21 � 1, ~h12 � e�i�, and ~h21 � ei�. The
operator A can be diagonalized in invariant subspaces, with
typical eigenvalues given by

 � � 2 sin��=2��sin��=2� sin��=2�

� i
�������������������������������������������������
1� sin2��=2�sin2��=2�

q
�: (6)

Similarly, we obtain the same eigenvalues of the operator
B. From Eq. (5) we recover the generating function S1

given by Eq. (1), which is associated with the paired
eigenvalues e�i�k .

There are, however, some special eigenvectors of h~h
which do not appear in pairs. The pair property discussed
above was based on the assumption that v� and hv� � v��
are linearly independent vectors. In the special case, these
vectors are the same apart from a coefficient. Therefore,
the special eigenvectors of h~h are the eigenvectors of both
h and ~h with eigenvalues �1. This means that the special
eigenvectors posses chirality, with positive (negative) chi-
rality defined by hv � v and ~hv � �v (hv � �v and ~hv �
v). From Eq. (5) we obtain the generating function S2���
given by Eq. (2), where l labels the special eigenvectors
and �l is the chirality.

In the following we focus on a periodic driving V�t�
�� � V�t� with the period � � 2�=!, for which the eigen-
values of h~h can be easily obtained by matrix diagonaliza-
tion. The operator ~h couples only energies which differ by
an integer multiple of !, which allows to map the problem
into the energy interval 0< E <! while retaining the
discrete matrix structure in steps of !. Therefore, the trace
operation in Eq. (4) becomes an integral over E and the
trace in discrete matrix indices. The operator h~h in the
energy representation is given by �h~h�nm�E� � sgn �E �

n!�
P
k

~fn�k ~f�m�ksgn �E � k!� e �V�, with ~fn � �1=��	R�=2
��=2 dte

�i
R
t

0
dt0e�V�t0�ein!t. Here �V � �1=��

R
V�t�dt is

the dc voltage offset and �V�t� � V�t� � �V is the ac
voltage component. The coefficients ~fn satisfyP
k

~fn�k ~f�m�k � �nm and
P
nnj~fnj

2 � 0.
To evaluate S��� for a given periodic voltage drive V�t�

it is necessary to diagonalize �h~h�nm�E�. First we analyze
the contribution of typical eigenvalues e�i�. The matrix

�h~h�nm�E� is piecewise constant for E 2 �0; !1� and E 2
�!1; !�, where !1 � e �V � N! and N � be �V=!c is the
largest integer less than or equal e �V=!. The eigenvalues
e�i�kL�R� of �h~h�nm are calculated for E 2 �0; !1� [E 2
�!1; !�] using finite-dimensional matrices, with the cutoff
in indices n and m being much larger than the character-
istic scale on which j~fnj vanish. Further increase of the size
of matrix just brings more eigenvalues with �k � 0 which
do not contribute to S���, and does not change the rest with
�k � 0. This is a signature that all important Fourier
components of the drive are taken into account. The ei-
genvalues e�i�kL�R� give rise to two terms, S1 � S1L � S1R,
with
 

S1L;R��� � ML;R

X
k

ln�1� TRsin2��kL;R=2�

	 �ei� � e�i� � 2��: (7)

Here ML � t0!1=�, MR � t0�!�!1�=�, and t0 is the
total measurement time which is much larger than � and
the characteristic time scale on which the current fluctua-
tions are correlated.

The special eigenvectors all have the same chirality
which is given by the sign of the dc offset �V. For e �V >
0, there are N1 � N � 1 special eigenvectors for E 2
�0; !1� and N2 � N for E 2 �!1; !�. Because e �V �
N1!1 � N2�!�!1�, the effect of the special eigenvectors
is the same as of the dc bias

 S2��� �
t0e �V
�

ln�1� T�e�i� � 1��: (8)

Comparing Eqs. (2) and (8) we see that unidirectional
events for periodic drive are uncountable. The summation
in Eq. (2) stands both for the energy integration in the
interval ! and the trace in the discrete matrix indices. In
the limit of a single pulse !! 0 unidirectional events
remain uncountable for a generic voltage, while being
countable, e.g., for soliton pulses carrying integer number
of charge quanta [9].

Equations (7) and (8) determine the charge transfer
statistics at zero temperature for an arbitrary periodic
voltage applied. The generating function consists of a
binomial part (S2) which depends on the dc offset �V only
and a contribution of the ac voltage component (S1)
[Fig. 1(d)]. The latter is the sum of two terms which depend
on the number of unidirectional attempts per period e �V=!.
The simplest statistics is obtained for an integer number of
attempts for which S1L vanishes [2]. The Fourier compo-
nents of the optimal Lorentzian pulses VL�t� �
�2�L=e�

P
k��t� k��

2 � �2
L�
�1 of width �L > 0 are given

by ~f�1 � �e�2��L=�, ~fn � e�2�n�L=� � e�2��n�2��L=� for
n � 0, and ~fn � 0 otherwise. In this case S1L � S1R � 0
and the statistics is exactly binomial with one electron-hole
excitation per period, in agreement with Refs. [9,10].

The elementary events at zero temperature can be
probed by noise measurements. For example, in the case
of an ac drive with �V � 0, only bidirectional events of

PRL 99, 076601 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
17 AUGUST 2007

076601-3



R-type remain [S��� � S1R���]. Both the number of events
and their probabilities increase with increasing the driving
amplitude V0, which results in the characteristic oscillatory
change of the slope of the current noise power PI �
�4e2!=��T�1� T�

P
ksin2��k=2�. The decomposition of

@PI=@V0 into contributions of elementary events for har-
monic drive is shown in Fig. 2.

Our method also enables the efficient and systematic
analytic calculation of the higher-order cumulants at finite
temperatures. They can be obtained directly from Eq. (5)
by expansion in the counting field to the certain order
before taking the trace. The trace of a finite number of
terms can be taken in the original basis in which �G1 and �G2

are defined. The details of this approach will be given
elsewhere. However, the formulas obtained (as a function
of f~fng) cannot be interpreted as elementary events term by
term. To identify the elementary events it is necessary to
find S��� which requires full expansion or diagonalization,
as presented above.

In conclusion, we have studied the statistics of the
charge transfer in a quantum point contact driven by
time-dependent voltage. We have deduced the elementary
transport processes at zero temperature from an analytical
result for the cumulant-generating function. The transport
consists of unidirectional and bidirectional charge transfer
events which can be interpreted in terms of electrons and
holes which move in opposite and the same directions,
respectively. Unidirectional events account for the net
charge transfer and are described by binomial cumulant-
generating function which depends on the dc voltage off-
set. Bidirectional events contribute only to even cumulants
of charge transfer at zero temperature. They are created
with probability which depends on the shape of the ac
voltage component. The statistics of charge transfer is

the simplest for an integer number of attempts for quasi-
particles to traverse the junction. This results in photon-
assisted effects in even-order cumulants as a function of a
dc offset. The approach we have used also allows for the
systematic calculation of higher-order cumulants at finite
temperatures.
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