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Humans have a vital connection to planet Earth. This is something that I started understanding more 
and more by growing up, as I gained a lot of respect for the natural environment. Unfortunately, 
today it is more obvious than ever that human intervention on it has gone much too far. To realize 
this, it is in many cases not even necessary to read a scientific article. A look at the amount of 
rubbish on the streets or the smell of polluted air already give an idea about the extent to which the 
ecosystem is being destroyed. In modern society, everything is interpreted in terms of economic loss 
or profit, but we tend to forget that money is not edible. In my opinion, the basic human 
characteristic behind all this is arrogance. Nevertheless, significant efforts can be made in order to 
reduce the impact. 

These observations led me to study renewable energy, as it is one of the ways to combat the 
problems that arise from human activity on nature. As I have always been interested in water, I 
followed the track of ocean energy. This field has a huge potential. Luckily, I found an interesting 
thesis topic on a wave energy device and got a lot of help, both from my supervisor and from the 
company. Although the whole experience of studying for this MSc degree was not really pleasant, 
due to the excessive work load, I do not regret for making this choice. Apart from the valuable 
scientific knowledge that I obtained, I also learned some important life lessons, which will help me 
make the correct choices later on. 

However, I strongly believe that renewable energy should not be used as an ‘excuse’ to keep the 
system running the way it does. We should also put a lot of effort in reducing the energy 
consumption and waste. By this, I do not only mean to manufacture and use more energy efficient 
devices, but also to take some steps back from the modern, seemingly infinite, freedom of behaviour 
in a finite world. Moreover, technological innovations should not always be blindly admired and 
focused on, especially in cases when health concerns or environmental impacts are involved. It is 
high time to start reviewing and prioritizing our needs. To achieve these goals, proper education will 
play the most important role. We, as future engineers, carry a high degree of responsibility in 
teaching the younger generations how to act sustainably and respectfully, because, after all, there is 
no plan(et) B. 

In any case, I am glad to have contributed, even on a small scale, towards a cleaner future, by 
working on this topic. I hope you enjoy reading this thesis and be able to use the contained 
information in even more areas. 

Delft, January 2018 

Ilias Sfikas 
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Raising environmental concerns have stimulated the development of renewable energy, including 
energy from the oceans, which contain a huge potential. In this thesis, particular emphasis is given 
to wave energy, which can deliver up to 2 ܹܶ on a global scale. The aim of this thesis is to optimize 
the control system of the Symphony Wave Power Device, which is a point absorber, so that the 
energy that is being delivered to the electrical grid is maximal and the device functions in a stable 
way. 

The device is analytically described in terms of structural parts, operating principle and presentation 
of all the forces that act on the moving part, which is called the floater. The device is in fact a mass-
spring-damper system, for which the spring constant needs to be tuned according to the period of 
the incoming waves, so as to maximize the energy extraction. For this tuning, not only the actual 
mass of the floater, but also the added equivalent mass due to the inertia of the inner turbine need 
to be taken into account. 

The whole device is modelled with the help of a Matlab/Simulink programme, in which simulations 
can be performed, to observe the motion and make certain calculations. The already existing PI 
controller, which makes use of an energy error, is briefly described and the relevant calculations for 
the energy extraction are presented. The energy losses in the electrical parts also need to be taken 
into account. 

To evaluate the current controller, it is necessary to calculate the upper boundary of the energy that 
the Symphony can obtain from a certain wave. This is done with the help of the GAMS software. The 
code, as well as the necessary assumptions and approximations, are presented in a mathematical 
way. The results, both in numerical and graphical form, provide a good insight as to how the ideal 
theoretical control system looks like. 

Next, simulations are performed in the Matlab programme and comparisons with the GAMS results 
are made. The essential parts of the controller are tuned to their optimal values. Only a proportional 
part for the PI controller is needed and the energy should not flow in two directions.  

The results show that, with correct tuning of the proportional part, as well as of the spring constant, 
the Symphony operates very well in all realistic sea states at the location where it will be placed. A 
high percentage of the theoretical energy boundary is being extracted from the waves and the 
motion of the floater is close to the optimal pattern. It is thus concluded that the existing controller 
has a remarkable performance, if regulated correctly. Finally, recommendations for future research 
on many levels are given. 
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Symbol Description Unit 

ܽ Factor that determines the energy flow direction ܬ 

௕ܣ  Area related to the bottom of the floater ݉ଶ 

௜௥௢௡ܣ  Iron loss factor ܬ 

ܽ௜௥௢௡  Iron loss factor ܬ 

௠௕ܣ  Area related to the bottom of the membrane ݉ଶ 

 ௠௨ Area related to the top of the membrane ݉ଶܣ

 ௣௣ Area related to the pressure point ݉ଶܣ

 ଶ଴ Temperature coefficient of resistance of copper atߙ
 ଵିܥ° ܥ20°

௜௥௢௡ܤ  Iron loss factor ܬ ∙  ݏ

ܾ௜௥௢௡ Iron loss factor ܬ ∙  ݏ

஽ௗ௪ܥ  Drag coefficient in the downwards movement  − 

 −  ஽௨௣ Drag coefficient in the upwards movementܥ

ܿ௛௬ௗ Hydrodynamic damping coefficient 
݇݃
ݏ

 

݀௢௨௧  Outer diameter of the membrane ݉ 

 ܬ ௖௔௕௟௘௟௢௦௦ Cable loss energyܧ

௖௢௣௣௘௥௟௢௦௦ܧ  Copper loss energy ܬ 

 ܸ ௙ Machine excitation voltageܧ

 ܬ ௙௜௡௔௟ Final extracted energy from the wavesܧ

 ܬ  ௜௡௜௧௜௔௟ Initial energyܧ

 ܬ ௞௜௡ Kinetic energy of the floaterܧ



ix 
 

 ܬ ௠௔௫ Maximum mechanical energyܧ

 ܬ ௠௘௖௛ Mechanical energyܧ

 ܬ GAMS extracted energy/objective function ݕ݃ݎ݁݊݁

 ܬ Energy error ݎ݋ݎݎ݁

௦௣௥௜௡௚ܧ  Energy contained in spring ܬ 

݂ Frequency ݖܪ 

ௗ௥௔௚ܨ  Drag force ܰ 

௘݂௟  Electrical frequency of stator voltages ݖܪ 

௚ܨ  Gravitational force ܰ 

 ܰ ௚௔௦ Chamber air forceܨ

 ܰ ௛௦ Hydrostatic forceܨ

௜௥௢௡ܨ  Iron loss force ܰ 

௉்ைܨ  PTO force ܰ 

௥௔ௗܨ  Radiation force ܰ 

௦௣௥௜௡௚ܨ  Spring force ܰ 

 ܰ ௧ Force that the turbine blades exert on the liquidܨ

௧௢௣ܨ  Floater air force ܰ 

௪௔௩௘ܨ  Wave force ܰ 

଴݂ Peak frequency ݖܪ 

݃ Gravitational acceleration 
݉
 ଶݏ

௧௨௥௕ܩ  Factor related to the volume of the turbine ݉ିଷ 

 ݉ Wave height for monochromatic waves ܪ

௕ܪ  Distance related to the bottom of the floater ݉ 

௠௕ܪ  Distance related to the bottom of the membrane ݉ 
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௣௣ܪ  Distance related to the pressure point ݉ 

 ݉ ௦ Significant wave height for random wavesܪ

௔ܫ  Machine phase current ܣ 

݅஽஼ Cable DC current ܣ 

௧ܫ  Inertia of the turbine ݇݃ ∙ ݉ଶ 

݇ Spring constant 
ܰ
݉

 

ܸ Machine constant ܭ ∙  ݏ

௙݇௜௡ Final spring constant 
ܰ
݉

 

௜ܭ  Integrating constant of controller − 

݇௜௡௜  Initial spring constant 
ܰ
݉

 

݇௟௜௡ Linear region spring constant 
ܰ
݉

 

௣ܭ  Proportional constant of controller − 

݇௦௧௜௙௙  Stiff region spring constant 
ܰ
݉

 

݈ Cable length ݉ 

݉ Mass of the floater plus the mass of the moving liquid ݇݃ 

݉௔ௗௗ௘ௗ Added mass at infinity ݇݃ 

݉௘௤ Equivalent mass due to turbine inertia ݇݃ 

݉௙௟ Mass of the floater ݇݃ 

݉௜௡௡ Moving mass of the inner liquid ݇݃ 

݉௧௢௧ 
Total mass of the floater and the moving liquid plus 
added mass at infinity ݇݃ 

௔ܲ௠௕ Ambient air pressure at sea level ܲܽ 

௖ܲ௔௕௟௘௟௢௦௦  Cable loss power ܹ 

௖ܲ௢௣௣௘௥௟௢௦௦  Copper loss power ܹ 

௘ܲ௤ Pressure of chamber air at equilibrium ܲܽ 



xi 
 

௜ܲ௡௜௧௜௔௟ Initial power ܹ 

௜ܲ௥௢௡௟௢௦௦ Iron loss power ܹ 

௠ܲ௘௔௡ Average output power of the Symphony ܹ 

 − Probability of occurrence of a certain sea state ݎܲ

௢ܲ௨௧  Power output of the converter ܹ 

ܴ௖௔௕௟௘  Cable resistance ߗ 

ܴ௣௛௔௦௘  Resistance per phase ߗ 

ܴ௣௛௔௦௘,௜௡௜௧௜௔௟ Initial resistance per phase ߗ 

ܴ௣௛௔௦௘,௙௜௡௔௟  Final resistance per phase ߗ 

ܵ Cable cross-section area  ݉ଶ 

ܵ(݂) Wave spectrum ݉ଶ

ݖܪ
 

 ݏ Time ݐ

ܶ Total duration of wave ݏ 

௘ܶ Electromagnetic torque of the electrical machine ܰ ∙ ݉ 

ห ௘ܶ,௠௔௫ห Maximum electromagnetic torque ܰ ∙ ݉ 

௘ܶ௡ Wave energy period for random waves ݏ 

௜ܶ௡௜௧௜௔௟ Initial temperature of resistance °ܥ 

௜ܶ௥௢௡ Iron loss torque ܰ ∙ ݉ 

௠ܶ  Wave period for monochromatic wave ݏ 

௧ܶ  Inner liquid torque ܰ ∙ ݉ 

௙ܶ௜௡௔௟  Final temperature of resistance °ܥ 

଴ܶ Natural period ݏ 

௔ܸ௖  Factor related to the initial pressure − 

௔ܸ௜௥ Volume of air in the chamber ݉ଷ 



xii 
 

஽ܸ஼ Cable DC voltage ܸ 

௘ܸ௤  Volume of chamber air at equilibrium ݉ଷ 

௧ܸ௢௣ Volume of the hull at equilibrium position ݉ଷ 

 ݉ Position of the floater ݖ

௖௢௡௧௥௢௟ݖ  Control amplitude of oscillation ݉ 

 ௗ Velocity of the floaterݖ
݉
ݏ

 

ௗௗݖ  Acceleration of the floater 
݉
 ଶݏ

 ݉ ௠௔௫| Maximum oscillation amplitudeݖ|

଴௩௔௖ݖ  Distance related to the initial pressure ݉ 

 − Adiabatic constant ߛ

 ܽܲ Pressure difference on the turbine ܲ߂

߂ ௚ܸ௔௦ Volume of the membrane that is coming up ݉ଷ 

 Density of sea water ߩ
݇݃
݉ଷ 

ߗ ஼௨ Resistivity of copperߩ ∙ ݉ 

 ܰ Sum of forces on the floater ܨߑ

߮ Angle between excitation voltage and phase current 
phasors ݀ܽݎ 

߱௧  Rotor/turbine angular speed 
݀ܽݎ

ݏ
 

߱̇௧  Angular acceleration of the rotor/turbine 
݀ܽݎ
ଶݏ  

߱଴ Natural angular frequency of the system 
݀ܽݎ

ݏ
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1.1 Introduction 

In this chapter, the foundations of this thesis are set. Firstly, a discussion is made on renewable 
energy and, more specifically, on energy from the oceans. Particular emphasis is given to wave 
energy and the various relevant technologies are described. Next, the scope of this thesis is 
presented in terms of device to focus on, main objective and computer software. All this is 
expressed in the research questions. Finally, the content of the following chapters is summarized. 

1.2 Renewable energy 

Today, an effort is made on a global scale to reduce fossil fuel-based emissions and all their polluting 
consequences for the environment. One of the many solutions for a cleaner and more sustainable 
future is the use of renewable energy. This is defined as the energy obtained from natural, persistent 
flows of energy that occur in the immediate environment. This energy flow is present independent 
of whether it is intercepted by a device [1]. There are different forms of renewable energy, such as 
wind energy, solar energy, energy from biomass, ocean energy, geothermal energy and others. 

Ocean energy is of particular interest for this thesis. The oceans cover 71% of the Earth’s surface 
and contain a huge potential [2]. The main types of ocean energy are [3]: 

-Wave energy: The wind creates waves on the water surface, which contain kinetic energy. 

-Tidal energy: Due to the gravitational forces between the Earth, the sun and the moon, the water 
surface elevation varies constantly in time. If the water is captured, this results in potential energy 
due to height difference. At the same time, tidal currents contain kinetic energy. 

-Ocean thermal energy (OTEC): The temperature difference between the warm ocean surface water 
and the cold water deep down can be used to drive a turbine. This technology is appropriate for 
areas near the equator. 

-Aquatic biomass: Plants and animal materials that grow in the oceans, for example seaweed or 
algae, can be used as biomass for energy production [4]. 

-Salinity gradient: The mixture of fresh water, for example from rivers, with salty ocean water results 
in potential energy through electrochemical processes [5]. 

The main reasons why ocean energy technologies are not as developed as other renewable energy 
technologies are the high cost of energy, the lack of trained engineers and the hostile weather 
conditions [3];[6]. This thesis aims to contribute towards more ‘blue’ and less ‘dirty’ energy. 
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1.3 Wave energy 

A lot of energy can be extracted from ocean waves. On a worldwide scale, there is a potential of 
approximately 1 ܹܶ to 2 ܹܶ [6];[2]. The amount of wave power on a map is shown in Figure 1.1 
[7]. It can thus be seen that the northwest of Europe is an interesting location for developing the 
relevant technologies. 

 

Figure 1.1: Annual mean wave power per meter of wave front 

The basic categories of wave power systems are [3]: 

i) Attenuators: These are floating devices that operate parallel to the direction of the incoming 
waves and consist of several pieces connected to each other. As these pieces move due to the 
waves, energy is extracted with the help of hydraulic cylinders, which are located in between the 
pieces and are connected to electrical generators [8]. 

ii) Point absorbers: These devices are very small in comparison to one wavelength [9]. They can be a 
floating buoy or a fully submerged device. They can follow different ways of movement, such as 
heaving or surging. Submerged devices that oscillate in heaving mode because of the hydrostatic 
pressure difference between the crest and trough of the wave, are also called submerged pressure 
differential, which can be seen as a separate category. There are various power take-off mechanisms 
that convert this oscillating movement into electricity, for example an inner fluid is pumped through 
a system [10]. 

iii) Oscillating wave surge: Flaps that are fixed to the seabed move back and forth due to the 
incoming waves. With this movement, an inner liquid can be pumped to an onshore station, where it 
drives a hydraulic turbine, which is connected to an electrical generator [11]. 

iv) Oscillating water column: In a volume that contains air, an oscillating water height occurs due to 
the incoming waves, so the air is pressurised and flows through a tube to the atmosphere or vice 
versa. An air turbine, connected to an electrical generator, intercepts this air flow, so energy can be 
extracted [11]. 

v) Overtopping device: The waves run over a barrier and fill a tank. The water in the tank is then 
driven back to sea through an opening at the bottom of the tank, which contains a turbine that 
drives a generator [11]. 
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vi) Bulge wave: A snake-like device, in fact a rubber tube with openings on both ends, floats parallel 
to the direction of the waves. The sea water enters in the one end and the incoming wave causes 
differences in pressure along the length of the device, which result in a bulge that travels through 
the device and grows. The bulge exits the tube on the other end through a turbine, so energy can be 
extracted [10]. 

vii) Rotating mass: A floating device oscillates because of the waves. A mass contained in a chamber 
of this device rotates around an axis because of this oscillation. This axis is connected to an electrical 
generator [10]. 

Some examples of the above mentioned devices are shown in Figure 1.2 [12]. Wave energy 
converters can also be categorized according to their location, namely onshore, in shallow water or 
offshore [11]. 

Compared to other ocean energy technologies, the advantages of wave energy are the high 
potential and the fact that a long distance from the shore is not necessarily required. The 
disadvantages are the unpredictability of the waves and the unstable extreme conditions that can 
occur [13]. 

 

Figure 1.2: Different wave energy technologies (top left: point absorber, top middle: attenuator) 

1.4 Scope of thesis 

1.4.1 The device 

The subject of this thesis is the Symphony Wave Power Device, which is a point absorber. This device 
is developed by the company Teamwork Technology, located in Alkmaar, Netherlands. It is fully 
submerged and it is based on an earlier similar concept by the same company, namely the 
Archimedes Wave Swing (AWS). This device was tested successfully in Portugal in 2004 [11]. The 
Symphony is a significantly improved version of the AWS, because the inner geometry of the device 
has been changed and new materials have been used [14]. The Symphony is currently being 
developed at the company with the help of university students. Stability tests are also performed in 
special basins with a small-scale model. The realistic device should have a rated power of 
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approximately 20 ܹ݇ and will be placed off the coast of Leixões, Portugal [6]. Future scale-ups for 
power ratings in the order of MW are also planned. For the moment, subsidies, apart from the 
already existing ones such as WETFEET, are needed to finance the different parts of the project [11]. 
In general, the Symphony has innovative, breakthrough qualities, as will be clarified in this thesis. 

1.4.2 Main goal 

The main research objective of this thesis concerns the optimal control of the movement of the 
Symphony, in order to extract as much energy as possible from the incoming waves. This is a topic 
that has been addressed a lot in the literature, for various wave power systems. Different control 
strategies can be applied to make the movement of a device follow a desired pattern, in an 
environment that has the disadvantage of being mostly unpredictable, because of irregular waves. 
Here, with the help of computer programmes, significant observations and calculations can be 
made, in order to tune certain parameters of the Symphony to their optimal values. 

1.4.3 Modelling  

The realistic behaviour of the Symphony can be simulated with the help of a Matlab time domain 
model, which accurately represents the device in a mathematical way. Thus, different types of waves 
can be used as input and different control systems can be tested, to observe the response of the 
Symphony on many levels. 

Also, the GAMS software can be used to calculate the theoretical potential of the Symphony, in 
other words the energy that the ‘perfect’ control system would extract from a certain wave. This can 
then be used for comparison with the Matlab result, in order to evaluate a certain control system. 

1.4.4 Research questions 

To sum up the previous information, the main research question can be formulated as follows: 

“Which control method for the Symphony Wave Power Device results in optimal energy extraction 
from the incoming waves?” 

This main question can be divided into certain sub-questions: 

“Which calculations are relevant for the actual energy extraction from the waves?” 

“What is the maximum energy that can theoretically be obtained from a certain wave?” 

“Which assumptions and approximations need to be made in order to calculate this maximum 
energy?” 

“How good is the performance of the already developed controller?” 

“How sensitive is the Symphony to the various parameters?” 

All these questions will be analyzed extensively and answered throughout the report, so that a final 
statement can be made. 
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1.5 Structure of this report 

The structure of this report is as follows: 

In Chapter 2, the Symphony Wave Power Device is analytically presented. The structural parts are 
shown and their operational role is explained. The way the Symphony functions is clarified with 
pictures and a mathematical modelling, which leads to categorizing the device in the area of mass-
spring-damper systems. An analysis is made on the appropriate value of the spring constant. 

In Chapter 3, the time domain model, which is a representation of the Symphony in a 
Matlab/Simulink programme, is described. Particular emphasis is given to the control system, the 
principle of which is analytically explained. A discussion is made on the AC/DC converter. Finally, the 
calculations for the energy output and losses are presented.  

In Chapter 4, the subject of controlling a wave energy device is analyzed, with the help of an 
extensive literature overview. The relation of this subject to the Symphony is presented. The GAMS 
optimization software is described, as it is used as a tool to calculate the upper energy boundary. 
Next, the results of running the code are shown with graphs and a discussion is performed. Finally, a 
sensitivity analysis, concerning various parameters and factors, is made. 

In Chapter 5, the results of experimenting with the Matlab time domain model are analytically 
presented. An investigation is made on the necessity of an integrating part in the control system and 
on the direction in which the energy can flow. The model is then run for monochromatic and 
irregular waves and the results are presented in tables and graphs. The controller is optimally tuned 
and a comparison with the GAMS results is made on many levels. Finally, a sensitivity analysis, 
concerning some important parameters of the Symphony, is performed. 

In Chapter 6, the final conclusions of this thesis are drawn and recommendations for further 
research on the topic are presented. 
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2.1 Introduction 

In this chapter, an extensive description is given about the Symphony Wave Power Device. First of 
all, the structural parts are shown and their functional role is explained. Then, the principle of 
operation is presented with pictures, to understand the way the Symphony responds to the sea 
waves, in terms of movement of the various parts. For a better understanding, the forces that 
govern the movement are presented one by one in a mathematical way. In this way, it is proven that 
the Symphony is a mass-spring-damper system, with a special form of the spring force. Finally, a 
more in-depth investigation shows that, due to the impact of the turbine on the movement of the 
device, the spring needs to be stiffened in an appropriate way. 

2.2 Basic parts 

The Symphony consists of several pieces, as can be seen in Figure 2.1 [6]. 

 

Figure 2.1: Pieces of the Symphony 

There is a stationary part on the inside and a moving part on the outside, namely the floater, which 
can oscillate in the vertical direction. These two parts are connected through a rubber membrane. At 
the centre of the Symphony there is a chamber which contains a certain mass of air and a liquid 
below it. This liquid is also present in the membrane, thus, as the floater moves up and down, the 
liquid flows inside its variable given space. The flow of the liquid is intercepted by a specially 
designed positive displacement turbine [11], which adds resistance to the flow, so that energy can 
be extracted. The axis of the turbine is connected to the rotor of an electrical generator lower down 
the structure. An iron-cored permanent magnet synchronous generator has been chosen. Electronics 
are also present inside the stationary part. Everything, including the liquid, is watertight from the 
sea. The lower part of the Symphony is attached via a special structure to the sea bottom, so that it 
stays fixed. Finally, a mechanism to compensate for the tides has been designed, so that there is 
always the same vertical distance of approximately 6 ݉ between the top of the floater and the sea 
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surface when both these things are in their equilibrium position [15]. This vertical distance is needed 
for safety reasons, as the Symphony must always be completely submerged.  

2.3 Principle of operation  

The sea waves cause an excess or lack of hydrostatic force on the Symphony with respect to when 
the sea surface is at its equilibrium position and it is this force that sets the device in motion. In the 
following paragraph, an ideal sinusoidal wave is assumed. 

The incoming wave crest causes an extra hydrostatic force on the top of the Symphony, so the 
floater starts moving downwards. In this way, the volume inside the membrane decreases, so more 
liquid enters the chamber, while the liquid flow makes the turbine rotate in the one direction. This 
causes the volume of the air in the chamber to decrease, so pressure builds up. At some point, 
namely when the wave trough starts coming, this air pressure is high enough to push the liquid 
downwards and out of the chamber towards the membrane, so the turbine rotates now in the other 
direction due to the liquid flow. This means that the floater will start to move upwards, as the 
membrane expands in volume on its top side. These situations are depicted in Figure 2.2 [15], where 
the big arrows at the top show the direction of movement of the floater and the small arrows show 
the movement of the liquid. 

 

Figure 2.2: Directions of movement 

The sequence of events for this ideal particular case of a sinusoidal wave can be seen more clearly in 
Figure 2.3 [11]. It can be seen that there is a phase shift of 90° between the position of the floater 
and the sea surface elevation, because, for example, the wave crest corresponds to the 
middle/equilibrium position of the floater with maximum downwards velocity. In other words, the 
velocity of the floater is in phase with the wave excitation force. In general, the higher half of the 
wave causes downwards motion of the floater and the lower half of the wave causes upwards 
motion [15]. The sequence repeats itself constantly, so the floater performs an oscillation. In reality, 
the waves are not perfectly sinusoidal, so the sequence deviates from that shown in Figure 2.3. The 
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purpose of the control system is to keep the motion of the floater as close as possible to this 90° 
phase shift, as will be shown later on. This is because, as seen in the literature and as proven with 
the optimization software, this phase shift results in the optimal energy extraction from the waves. 

The acceleration of the floater, and consequently the velocity and position, are determined at every 
instant by the force balance. The dominating forces are the total hydrostatic force on top of the 
floater and the force that the air in the chamber exerts on the liquid, which are of course opposite in 
direction for the floater as a whole [6].  

 

Figure 2.3: Operation of the Symphony 

2.4 Mathematical modelling 

To better understand the previously explained mechanism, the forces that act on the floater as a 
whole are presented. The upwards direction is defined as positive. The force balance is presented in 
Equations 2.1 and 2.2, where ݖ ,ݖௗ and ݖௗௗ  are the position, the velocity and the acceleration of the 
floater, respectively, ݉ is the mass of the floater plus the mass of the moving inner liquid and ܨߑ is 
the sum of all the forces. The symbol ݐ represents time. 

݉ ∙ ௗௗݖ =  (2.1) ܨߑ
݉ ∙ ௗௗݖ = ௚ܨ + (ݖ)௛௦ܨ + (ݖ)௚௔௦ܨ + (ݖ)௧௢௣ܨ + (ௗݖ)ௗ௥௔௚ܨ + ௗݖ)௥௔ௗܨ , (ௗௗݖ + ,ݖ)௜௥௢௡ܨ (ௗݖ

+ (ݐ)௪௔௩௘ܨ + ,ݖ)௉்ைܨ ௗௗݖ ,  (2.2) (ݐ

Now, a short description is given for each of the forces. A more analytical explanation of these forces 
and the relevant parameters is given in [6]. For a better understanding, some of the forces are 
depicted in Figure 2.4 [15], which shows a cross section of the Symphony. 
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(i) Gravitational force, Fg: This is the force that the Earth acts upon the floater and is always negative, 
with a fixed value, independent of the position of the floater. The mass of the floater as well as the 
moving mass of the liquid are taken into account. Thus, the equation is: 

௚ܨ = −݉ ∙ ݃ = −(݉௙௟ + ݉௜௡௡) ∙ ݃ (2.3) 

where ݃ is the gravitational acceleration, ݉௙௟ is the mass of the floater and ݉௜௡௡ is the moving mass 
of the inner liquid. 

(ii) Hydrostatic force, Fhs: This is the force due to the fact that the Symphony is submerged. As seen 
in Figure 2.4, this force acts on the top of the floater (black arrow), on the bottom of the membrane 
(orange arrows) and also on the bottom of the floater (purple arrows). The total result is always 
negative, with an absolute value increasing when going deeper, which means that the definition of a 
negative spring is fulfilled. For the calculation of this force, the related distances are measured with 
respect to the equilibrium sea surface height, thus independently of whether there are waves. The 
equation for this force is: 

(ݖ)௛௦ܨ = ௣௣ܣ− ∙ ቀ ௔ܲ௠௕ + ߩ ∙ ݃ ∙ ൫ܪ௣௣ − ൯ቁݖ + ௠௕ܣ ∙ ቆ ௔ܲ௠௕ + ߩ ∙ ݃ ∙ ቀܪ௠௕ −
ݖ
2

ቁቇ + 

௕ܣ+ ∙ ൫ ௔ܲ௠௕ + ߩ ∙ ݃ ∙ ௕ܪ) −  ൯(ݖ
(2.4) 

where ௔ܲ௠௕ is the ambient air pressure at sea level, ߩ is the density of sea water and ܪ௣௣, ܪ௠௕  and 
௕ܪ  are the distances from the equilibrium sea surface to the pressure point, bottom of membrane 
and bottom of floater (all at equilibrium position of the floater), respectively. The factors ܣ௣௣, ܣ௠௕  
and ܣ௕  are related to these three distances and represent a corresponding area. See Figure 2.4 for 
the distances and locations of the corresponding areas. Note that in this figure, the floater is at its 
equilibrium position, ݖ = 0. When the actual position of the floater changes, the factors ܪ௣௣, ܪ௠௕  

and ܪ௕  remain the same. This is why ݖ or ௭
ଶ
 is being subtracted in the brackets in the previous 

equation. The result is that the hydrostatic force is linear with respect to the position of the floater.  

(iii) Chamber air force, Fgas: The pressurised air in the chamber has a tendency to push the liquid 
down (brown arrow in Figure 2.4). The total volume of the liquid must remain the same, so the liquid 
pushes the walls of the membrane (the force is transferred to the membrane via the pressure in the 
liquid, see the pink arrows). The upper part of the membrane (which is attached to the floater) can 
roll, so the total volume of the membrane expands. This extra volume that is being created is of 
course taken by the liquid. In this way, the force caused by the air in the chamber has always a 
tendency to push the floater up, so it is always in the positive direction, as seen in the central part of 
Figure 2.2. The lower the floater, the smaller the volume of the air in the chamber, thus the higher 
the resulting force is. This means that the definition of a positive spring is fulfilled. The equation for 
this force is: 

(ݖ)௚௔௦ܨ = (ݖ)௠௨ܣ) − (௠௕ܣ ∙ ௘ܲ௤ ∙ ൬ ௘ܸ௤

௔ܸ௜௥(ݖ)
൰

ఊ

 (2.5) 

where ܣ௠௨(ݖ) is related to the upper area of the membrane, ௔ܸ௜௥(ݖ) is the volume of the air in the 
chamber, ௘ܸ௤  and ௘ܲ௤ are the volume and pressure of this air, respectively, at equilibrium position of 
the floater and ߛ is the adiabatic constant. In other words, the ideal gas law is followed. 
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Figure 2.4: Some of the forces acting on the floater 

(iv) Floater air force, Ftop: The air inside the hull of the floater, above the membrane and chamber, 
has a certain pressure, which changes as the floater moves up and down. The resulting force on the 
floater as a whole is always in the positive direction, see the yellow arrow in Figure 2.4. The higher 
the position, the lower this force is, because the volume of the hull increases, so the pressure drops. 
Thus, again the definition of a positive spring is fulfilled. The equation for this force is: 

(ݖ)௧௢௣ܨ = ௔ܸ௖ ∙ ௔ܲ௠௕ ∙ ቌ ௧ܸ௢௣

௧ܸ௢௣ + ߨ
4 ∙ ݀௢௨௧

ଶ ∙ ݖ) − (଴௩௔௖ݖ − ߂ ௚ܸ௔௦(ݖ)
ቍ

ఊ

∙ ቆ
ߨ
4

∙ ݀௢௨௧
ଶ −  ቇ (2.6)(ݖ)௠௨ܣ

where ௔ܸ௖  and ݖ଴௩௔௖  are factors related to the initial pressure in the hull [6], ௧ܸ௢௣ is the volume of 
the hull at equilibrium position, ݀௢௨௧  is the outer diameter of the membrane and ߂ ௚ܸ௔௦(ݖ) is the 
volume of the membrane that is coming up. 

(v) Drag force, Fdrag: As the solid floater moves through the sea water, there is some resistance to 
this movement. The drag force is always opposite to the direction of the velocity and its absolute 
value depends on the square of the velocity, as well as on the drag coefficient, which is different in 
the upwards movement than in the downwards movement, because of the shape of the Symphony. 
Thus, this force is nonlinear. The expression is: 
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(ௗݖ)ௗ௥௔௚ܨ = ൞
−

1
2

∙ ߩ ∙ ௣௣ܣ ∙ ௗݖ ∙ |ௗݖ| ∙ ஽ௗ௪ܥ ௗݖ ݂݅      < 0

−
1
2

∙ ߩ ∙ ௣௣ܣ ∙ ௗݖ ∙ |ௗݖ| ∙ ஽௨௣ܥ ௗݖ ݂݅      > 0
� (2.7) 

where ܥ஽ௗ௪  and ܥ஽௨௣ are the drag coefficients in the downwards and upwards movement of the 
floater, respectively. 

(vi) Radiation force, Frad: The floater itself also radiates waves by oscillating in the sea. In this way, 
the sea water exerts a certain force on the floater, which has two components: one that depends 
linearly on the acceleration with a factor that is called added mass at infinity and one that is a 
convolution of the velocity with a so called retardation function, in other words there is some kind of 
‘memory’ [16]. As the second component is very small compared to the other forces and also 
complicated to integrate in the model, it is neglected. However, a term that is kept in this model is 
the hydrodynamic damping, which is linear with respect to the speed. So, it can simply be stated that 
the floater has a fixed extra mass when it moves plus a linear damping. Thus, the expression used 
here for the radiation force is: 

ௗݖ)௥௔ௗܨ , (ௗௗݖ = −݉௔ௗௗ௘ௗ ∙ ௗௗݖ − ܿ௛௬ௗ ∙  ௗ (2.8)ݖ

where ݉௔ௗௗ௘ௗ is the added mass at infinity and ܿ௛௬ௗ is the hydrodynamic damping coefficient. 

(vii) Iron loss force, Firon: The iron core of the electrical machine causes power losses when the rotor, 
thus also the turbine, rotates. These iron losses of the machine consist of hysteresis losses 
(proportional to the electrical frequency of the stator voltages, ௘݂௟) and eddy current losses 
(proportional to the square of the electrical frequency of the stator voltages) [2]. Thus, they are 
calculated as follows: 

௜ܲ௥௢௡௟௢௦௦ = ௜௥௢௡ܣ− ∙ | ௘݂௟| − ௜௥௢௡ܤ ∙ ௘݂௟
ଶ  (2.9) 

As the electrical frequency ௘݂௟  and the angular speed of the turbine ߱௧  are proportional, the 
previous equation can be rewritten as: 

௜ܲ௥௢௡௟௢௦௦ = −ܽ௜௥௢௡ ∙ |߱௧| − ܾ௜௥௢௡ ∙ ߱௧
ଶ (2.10) 

The absolute value is put, because power is lost regardless of the direction of movement. This means 
that there must be a sort of ‘braking torque’ on the axis of the rotor/turbine, which extracts energy 
from the system, as represented by the negative signs. By choosing: 

௜ܶ௥௢௡ = −ܽ௜௥௢௡ ∙ (௧߱)݊݃݅ݏ − ܾ௜௥௢௡ ∙ ߱௧  (2.11) 

it is easily verified that: 

௜ܲ௥௢௡௟௢௦௦ = ௜ܶ௥௢௡ ∙ ߱௧  (2.12) 

as expected. Note that this torque depends only on the speed of the turbine, thus it is independent 
of whether energy is being extracted or not from the system by a power take-off mechanism. This 
torque can be translated to a force on the floater as a whole with the following equation: 

,ݖ)௜௥௢௡ܨ (ௗݖ = ௜ܶ௥௢௡ ∙ (௠௕ܣ−(ݖ)௠௨ܣ) ∙ ௧௨௥௕ܩ  (2.13) 
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The factors (ܣ௠௨(ݖ)−ܣ௠௕) and ܩ௧௨௥௕, as well as the relation between ߱௧  and ݖௗ, will be explained 
in Section 2.5.2. 

It is not so easy to calculate the parameters ܽ௜௥௢௡  and ܾ௜௥௢௡, so an estimation needs to be made. In 
the datasheet of the machine [17], the efficiency is given at rated power, so the total iron losses at 
rated power can be calculated. This gives one linear equation for ܽ௜௥௢௡  and ܾ௜௥௢௡. The total iron 
losses for different types of iron core are given in [18]. By comparing the losses at different electrical 
frequencies, the ratio ܽ௜௥௢௡/ܾ௜௥௢௡ can be calculated. This ratio is approximately stable around 
 ଵ for the different types. Thus, with the linear equation and the ratio, the parameters areିݏ 33.5
calculated to be ܽ௜௥௢௡ = and ܾ௜௥௢௡ ܬ 6.44 = ܬ 0.19 ∙  This means that at the rated turbine angular .ݏ
velocity of 350 ݉݌ݎ, thus 36.65 ݏ/݀ܽݎ, the hysteresis losses and eddy current losses are 
approximately equal. 

(viii) Wave force, Fwave: The waves create more or less hydrostatic force on the floater, with respect 
to when the sea surface is at equilibrium. This wave force depends only on the wave and not on the 
position of the floater (because only the ‘extra’ or ‘missing’ water column is taken into account), in 
contrast to the hydrostatic force mentioned in (ii), which depends only on the position of the floater 
and not on the wave (because everything is measured from the sea surface equilibrium point). In 
this report, the waves will be modelled as either monochromatic waves, which implies a perfectly 
sinusoidal sea surface elevation over time with fixed frequency and amplitude, or random irregular 
waves that follow the Bretschneider spectrum and are of course closer to reality. The Matlab time 
domain model can generate such waves in the form of a time-series of a force. This force is then 
used as an input on the floater. A closer look at the waves will be taken in Chapter 4. 

(ix) Power take off (PTO) force, FPTO: By applying torque on the generator, this torque is transferred 
to the turbine, thus resistance to the flow of the inner liquid is created. In this way, energy can be 
extracted from the system. This force will be analyzed more extensively in the next section. 

It can be seen that forces (i) to (vii) are ‘internal’ in the Symphony, as they only depend on the 
position, velocity and acceleration of the floater and on intrinsic parameters of the Symphony that 
are already designed, such as the geometry and the mass. The wave force is ‘external’ to the 
Symphony and is the source of energy. The objective of this thesis is to make the PTO force follow a 
certain pattern, in order to optimally control the movement of the floater. 

2.5 The mass-spring-damper system 

2.5.1 Initial design 

It is obvious that forces (ii), (iii) and (iv), namely the hydrostatic, chamber air and floater air forces, 
depend only on the position, which fulfils the definition of a mechanical spring. The geometry of the 
device has been designed in such a way that the total of these three forces plus the gravitational 
force is linear with respect to the position of the floater when it is close to the equilibrium point and 
becomes nonlinear further away. The spring becomes much stiffer in the nonlinear region, so the 
floater cannot easily oscillate more than it should, even in high waves. This is also a form of built-in 
protection for the case of control system or generator failure [6]. 
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Figure 2.5: Spring force as a function of position, initial design 

This can be seen more clearly in Figure 2.5, which is generated from the Matlab time domain model. 
For positions |ݖ| < 1.12 ݉, thus in the linear region, the spring is positive, with a constant of 
݇௜௡௜ = 2574 ܰ/݉ in the initial design, prior to this thesis. This can be seen from the small negative 
slope in the figure (a negative slope means a positive spring). For positions 1.12 ݉ < |ݖ| < 1.3 ݉, 
the positive spring has a much higher constant of approximately ݇௦௧௜௙௙ = 200000 ܰ/݉. This can be 
seen from the fact that the slope suddenly increases very much. For positions 1.3 ݉ < |ݖ| < 2 ݉, 
the slope changes in sign, but the spring force has an opposite sign than the position, which means 
that the spring ‘pulls’ the floater back to the equilibrium point, but the magnitude of this ‘pulling’ 
decreases as the floater moves further away. In any case, the spring is very stiff for positions 
|ݖ| > 1.12 ݉. This special total form of the spring force is due to the combination of positive springs 
with a negative spring in the Symphony. The total mass of the floater and the moving liquid plus the 
added mass at infinity add up to ݉௧௢௧ = 6520 ݇݃. Thus, the natural frequency of the system is [19]: 

߱଴ = ඨ
݇௜௡௜

݉௧௢௧
=  (2.14) ݏ/݀ܽݎ 0.63

This corresponds to a period of ଴ܶ =  This is also the period of the sea waves in the arbitrary .ݏ 10
chosen reference case, so the Symphony has been tuned optimally. 

2.5.2 Influence of the turbine’s inertia 

A problem with this initial spring constant design in the linear region is that it did not take into 
account the inertia of the turbine. To understand this, a closer look at the PTO force is necessary. 
The torque balance on the turbine is: 

௧ܫ ∙ ߱̇௧ = ௧ܶ + ௘ܶ (2.15) 
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where ܫ௧  is the inertia of the turbine, ߱̇௧  is the angular acceleration of the turbine, ௧ܶ  is the torque 
that the inner liquid flow exerts on the turbine blades and ௘ܶ is the torque that the generator exerts 
on the turbine. Here, a lot of care needs to be taken with the signs. Throughout this thesis, the 
velocity of the floater and the angular velocity of the turbine have always the same sign. Thus, if, for 
example, the floater is moving upwards and the generator causes resistance to the rotational 
movement of the turbine, it is ݖௗ > 0, ߱௧ > 0 and ௘ܶ < 0. 

The torque ௧ܶ  is a result of the other forces that act on the floater and of the generator torque. In 
the next example, it will be assumed that there is no generator torque, thus ௘ܶ = 0. See Figure 2.6 
for better understanding, where a simplified turbine model is shown. Now, let’s imagine that the 
floater is moving upwards at constant speed (ݖௗ > 0, ߱௧ > 0) and at some point a force in the 
negative direction (downwards) is applied on the floater. This means that the volume flow of the 
inner liquid through the turbine will have a tendency to decrease, thus the angular speed of the 
turbine ߱௧  will also have a tendency to decrease (߱̇௧ < 0). As the turbine has some inertia, it will 
resist and have a tendency to keep the angular speed constant, by ‘pushing’ the liquid through. This 
means that a force ܨ௧ is exerted on the liquid (green arrow in Figure 2.6). This force causes a 
pressure difference at the turbine. This pressure is transferred through the liquid towards the 
membrane, where it becomes a force, which has a tendency to push the floater upwards. It is this 
force on the membrane that is defined as the PTO force.  

Of course, according to the 3rd law of Newton, a force equal in magnitude and opposite in direction 
to ܨ௧ will be exerted on the turbine (red arrow) and this is translated to a torque. This is the torque 

௧ܶ , thus the torque that the liquid exerts on the turbine blades. Thus, in this case it is ܨ௉்ை > 0 and 

௧ܶ < 0, because the PTO force in this case has a tendency to maintain the upwards (positive 
direction) movement of the floater.  

For the same direction of movement, a similar result is obtained if there is no external force, but the 
generator exerts a torque that has a tendency to speed up the turbine ( ௘ܶ > 0). This is because, in 
this case, the turbine ‘pushes’ the liquid in the direction that maintains the upwards movement of 
the floater (ܨ௉்ை > 0) and the liquid exerts a ‘braking’ torque on the turbine ( ௧ܶ < 0), according to 
the 3rd law of Newton. The opposite result, thus ܨ௉்ை < 0 and ௧ܶ > 0, is obtained if, with no 
generator torque, an external force has a tendency to lift the floater up (force in the positive 
direction) or if, with no external force, the generator acts as a brake on the turbine ( ௘ܶ < 0).  

In reality, the final sign of the PTO force is determined by the directions and magnitude of all the 
forces acting on the floater and of the generator torque, because all these affect the liquid flow. 
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Figure 2.6: Example of torque on turbine and force on liquid 

The torque on the turbine is translated to the PTO force on the floater as a whole with the following 
equations [6]: 

ܲ߂ = ௧௨௥௕ܩ ∙ ௧ܶ  (2.16) 
௉்ைܨ = (ݖ)௠௨ܣ)− − (௠௕ܣ ∙  (2.17) ܲ߂

where ܲ߂ is the pressure difference on the turbine and the difference ܣ௠௨(ݖ) − ௠௕ܣ  is related to 
the top and bottom areas of the membrane, as seen previously. This difference is slightly dependent 
on the floater position, but has always a positive value fluctuating around 0.11 ݉ଶ. This can be seen 
more clearly in Figure 2.7, which is generated from the Matlab time domain model and shows this 
difference as a function of the floater position. 

The factor ܩ௧௨௥௕, which is equal to 531.19 ݉ିଷ, is related to the volume of the turbine, which has 
been calculated by the fact that a liquid volume flow of approximately 69 ݈/ݏ occurs at the nominal 
speed of 350 [8] ݉݌ݎ. The result is that ௧ܶ  and ܨ௉்ை  will always have opposite signs, as expected. 
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Figure 2.7: Area difference as a function of floater position 

The ratio between the angular velocity of the turbine and the velocity of the floater, ఠ೟
௭೏

, which is 

equal to the ratio between the angular acceleration of the turbine and the acceleration of the 

Symphony, ఠ೟̇
௭೏೏

, is equal to ܩ௧௨௥௕ ∙ (ݖ)௠௨ܣ) −  ௠௕), as this reflects the design of the membranesܣ

and is related to the liquid flow.  

Thus, the final expression for the PTO force is: 

,ݖ)௉்ைܨ ௗௗݖ , (ݐ = (௠௕ܣ−(ݖ)௠௨ܣ)− ∙ ௧௨௥௕ܩ ∙ ௧ܫ) ∙ (ݖ)௠௨ܣ) − (௠௕ܣ ∙ ௧௨௥௕ܩ ∙ ௗௗݖ − ௘ܶ(ݐ)) (2.18) 

By taking the mean value of the difference ܣ௠௨(ݖ)−ܣ௠௕ and by inserting the value of the inertia, 
which has been calculated to be ܫ௧ = 4.87 ݇݃ ∙ ݉ଶ, the ‘mean’ PTO force can be written as follows: 

௉்ைതതതതതതܨ = −59.97 ݉ିଵ ∙ (292.15 ݇݃ ∙ ݉ ∙ ௗௗݖ − ௘ܶ)
= −17520.46 ݇݃ ∙ ௗௗݖ + 59.97 ݉ିଵ ∙ ௘ܶ (2.19) 

The first term in this equation denotes that there is in fact a sort of equivalent mass, which 
fluctuates around ݉௘௤ = 17520.46 ݇݃. This is very high compared to the original mass of 
݉௧௢௧ = 6520 ݇݃, so the turbine’s inertia makes the whole system much ‘heavier’ than expected. It 
is this equivalent mass that needs to be taken into account for the design of the spring constant, 
because the ‘total final mass’, ݉௧௢௧ + ݉௘௤, is more than 3 times higher than the original one, so the 
spring constant needs to adapt to this. As the natural frequency of the Symphony needs to remain at 
߱଴ =  in the standard case, the final spring constant ௙݇௜௡ in the linear region can be ݏ/݀ܽݎ 0.63
calculated from the following equation: 
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݇௜௡௜

݉௧௢௧
= ௙݇௜௡

݉௧௢௧ + ݉௘௤
 (2.20) 

This leads to ௙݇௜௡ = 9491 ܰ/݉, which makes a significant difference. This number can also be seen 
from the slope of the linear part in Figure 2.8. Note that it is only the linear region that changes, the 
stiff region remains as before. This means that the geometry of the membrane and the gas pressure 
in the chamber still need to be tuned in an appropriate way, so as to reach this final spring constant. 
The membrane can only be designed once, so it will be ‘tuned’ to this particular spring stiffness of 
9491 ܰ/݉, which corresponds to the reference case of 10 ݏ sea waves. For the gas pressure, a 
mechanism to alter it manually has been foreseen in the Symphony, so this can easily be adapted in 
an appropriate way to the period of the incoming waves (which changes over a long time), so as to 
keep the Symphony resonant. Of course, as the membrane geometry does not change, there will be 
an insignificant nonlinearity in the spring for wave periods (or, equally, natural periods of the 
Symphony) other than 10 ݏ. 

 

Figure 2.8: Spring force as a function of position, final design 

To sum up, the drag force, radiation force, iron loss force and PTO force damp the oscillation, 
‘internally’ and ‘externally’, but the former three are much smaller than the latter, as will be seen 
later on. Thus, the floater is in a fact a mass-spring-damper system that is forced to oscillate by the 
external, mostly unknown, wave force, and this oscillation needs to be controlled. 
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3.1 Introduction 

A model is needed to simulate in real time how the Symphony responds to an incoming wave. For 
this reason, Teamwork Technology has developed a code in Matlab/Simulink. In this chapter, a brief 
description is given of both the Matlab script and the Simulink model, to understand its basic role in 
representing the Symphony. The most important part of the model concerns the control system, 
which applies the desired torque on the turbine, by real-time measurements of certain quantities 
and calculations. Next, the equations that govern the necessary AC/DC converter are presented. 
Finally, the way, in which the final energy output of the Symphony is calculated, is shown. For this, 
the energy losses of the generator as well as of the cable that goes to shore need to be taken into 
account. 

3.2 Matlab script 

The Matlab script is very big and consists of various files, in which all the properties of the Symphony 
and the surrounding media are described with a very high detail. For example, the geometry is fully 
specified, so that the ‘internal’ forces acting on the floater can be calculated precisely for every value 
of position, speed and acceleration of the device. Also, the code can generate various time series of 
waves, which are then used as an input force on the floater. 

In this thesis, most of the code is left untouched, as it concerns fixed values and functions. Some 
parameters have been introduced or changed here and there, of course. The most important things 
that are varied by the user are:  

-The type of waves that are used: The user chooses whether the waves are monochromatic or 
random, their duration, their height, their period etc. Also, when concerning random waves, a new 
wave can be put on the Symphony every time or a saved wave, in other words a fixed time-series of 
wave force, can be used. The latter is needed for comparison of the Matlab, thus realistic, response 
of the Symphony with the GAMS optimal output, because in such a case the same wave must be 
used of course. 

-The output of Matlab: Some extra lines of code can be put to calculate the necessary results, such 
as the actual energy that the Symphony has obtained from the waves during the whole time period. 
Also, the results can be visualised with the help of figures, for example the position or a certain force 
can be plotted as a function of time.  

3.3 Simulink model 

The Matlab script is linked to a Simulink model, in order to implement the concept of time in the 
software. As seen in Figure 3.1, the model basically consists of several blocks, which represent 
subsystems. Most of the blocks contain calculations of the forces mentioned in Chapter 2. For these, 
some of the parameters mentioned in the script are used. By coupling either the block ‘Savedwave’ 
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or the block ‘Waves’ to the summation block, the choice between a certain saved wave or a newly 
generated wave, respectively, is made. In the block ‘Floater dynamic’, Equation 2.1 is in fact applied, 
so that the acceleration ݖௗௗ  of the floater is calculated. By using integrator blocks, the velocity ݖௗ 
and position ݖ of the floater are calculated. These three calculated quantities are the output of this 
block and are fed back as inputs to the force calculation blocks. The iron loss ‘torque’ is not viewable 
in this figure, because it is used inside the ‘Generator’ block. Finally, a block is used to stop the 
simulation if the position of the floater exceeds 2 ݉ in any direction from the equilibrium point. 

 

Figure 3.1: The Simulink model 

3.4 The existing controller 

The block ‘Generator’ is of particular interest for this thesis. There, the pressure difference on the 
turbine is calculated, which can then be used to calculate the PTO force further on. The most 
important part of this block for this thesis concerns the calculation of the electromagnetic torque 
that the generator has to apply on the rotor, and consequently on the turbine, with the help of the 
control system. 

The ideal control system would be to apply an amount of electromagnetic torque that represents 
the ‘internal’ damping of the system: the damping caused by the drag force and the radiation force 

(hydrodynamic damping), translated into torque via the factor ଵ
(஺೘ೠ(௭)ି஺೘್)∙ீ೟ೠೝ್

, as seen in 

Equation 2.18, plus the ‘damping’ caused be the iron losses. The reason why the electromagnetic 
torque is chosen to be equal to the ‘internal’ damping of the floater is that this is the condition for 
optimal energy absorption under no oscillation amplitude constraints [20]. This non-constrained 
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situation occurs in fact at really small waves, because then the ideal amplitude of oscillation (the 
amplitude for which the energy extraction is maximum) is in the linear spring region.  

However, at higher waves, the ideal amplitude of oscillation is far above the limits of the linear 
spring region, it is even above the ±2 ݉ limit that is allowed for the floater. Thus, in this case, which 
occurs most of the time, the previous method with the internal damping can no longer be used. For 
this reason, an innovative control system has been designed by Teamwork Technology. A picture of 
this system is shown in Figure 3.2. The actual position of the floater, its speed and the angular 
velocity of the turbine are used to calculate the energy contained in the spring, ܧ௦௣௥௜௡௚, and the 
kinetic energy of the device, ܧ௞௜௡, respectively, as shown in Equations 3.1 and 3.2. 

௦௣௥௜௡௚ܧ = 0.5 ∙ (ݖ)݇ ∙  ଶ (3.1)ݖ
௞௜௡ܧ = 0.5 ∙ ݉௧௢௧ ∙ ௗݖ

ଶ + 0.5 ∙ ௧ܫ ∙ ߱௧
ଶ (3.2) 

where ݇(ݖ) is the spring constant at every position. 

The sum of these two equals the mechanical energy, ܧ௠௘௖௛. Then, a subtraction is made between 
the actual mechanical energy and the ‘maximum mechanical energy’, which is the mechanical 
energy that the floater would have if it performed a desired sinusoidal oscillation with a period that 
is equal to the period of the incoming waves and an amplitude of 1.1 ݉, with a linear spring, 
optimally tuned to the period of the incoming waves. For the standard case of 10 ݏ waves, this 
maximum mechanical energy is equal to: 

௠௔௫ܧ = 0.5 ∙ ݇௟௜௡ ∙ ௖௢௡௧௥௢௟ݖ
ଶ = 0.5 ∙ 9491

ܰ
݉

∙ 1.1ଶ݉ଶ =  (3.3) ܬ 5742

The result of the subtraction is called the ‘energy error’ and is symbolized as ݁ݎ݋ݎݎ. When the 
energy error is positive, it means that the floater has an excess of energy with respect to the ideal 
sinusoidal operation described previously. This excess energy should be harvested from the floater. 
When the energy error is negative, it means that the floater has a lack of energy with respect to the 
ideal sinusoidal operation. This means that, in this case, the control method with the internal 
damping can be used. However, if this other control method is not used at all, then, for the case of a 
negative energy error, the lack of energy should be provided to the floater, only if this lack does not 
exceed a certain value. This implies that energy flows in both directions, which means that the 
electrical machine at the bottom of the Symphony will sometimes act as a generator and sometimes 
as a motor. It is desired that the generator action is dominant, as, in total, energy must be supplied 
to the grid. The amount of energy that may be provided to the floater, in the case of a negative 
energy error, is a subject that will be investigated in Chapter 5. 

The energy error signal is then passed through a simple PI controller, the parameters of which need 
to be tuned in this work. The result is multiplied with the speed and then reversed in sign. This is 
because, when the energy error is positive, a kind of brake on the floater is needed and not an 
accelerator. Similarly, when the energy error is negative, a kind of accelerator on the floater is 
needed and not a brake. In other words, the output of the controller and ݖௗ must always have 
opposite signs for positive errors and must always have the same sign for negative errors.  
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Figure 3.2: Close-up view of the controller 

Afterwards, a ‘switch’ block is used to choose between this torque signal from the PI controller 
output (signal1) and the torque signal that represents the ‘internal’ damping of the system (signal2). 
Signal1 passes through when it is bigger in absolute value than signal2, otherwise signal2 passes. 
This method is used to ensure that there will be a sufficient amount of electromagnetic torque on 
the generator in really small waves, when the energy error is too negative to be taken into account 
or when the output of the PI controller is quite small due to a small energy error. Otherwise, no 
energy or not enough energy would be harvested in this case.  

Finally, the signal is passed through a saturation block with limits ห ௘ܶ,௠௔௫ห and −ห ௘ܶ,௠௔௫ห. To sum up, 
the final output of the controller is the electromagnetic torque, which is described by:  

௘ܶ =

⎩
⎪
⎨

⎪
⎧

ௗݖ− ∙ ቌܭ௣ ∙ ݎ݋ݎݎ݁ + ௜ܭ ∙ න (߬)ݎ݋ݎݎ݁
௧

଴

∙ ݀߬ቍ = ,1݈ܽ݊݃݅ݏ |1݈ܽ݊݃݅ݏ| ݂݅ > |2݈ܽ݊݃݅ݏ|

(ௗݖ)ௗ௥௔௚ܨ − ܿ௛௬ௗ ∙ ௗݖ

(௠௕ܣ−(ݖ)௠௨ܣ) ∙ ௧௨௥௕ܩ
+ ௜ܶ௥௢௡ = |1݈ܽ݊݃݅ݏ| ݂݅              ,2݈ܽ݊݃݅ݏ < |2݈ܽ݊݃݅ݏ|

� (3.4) 

where 

ݎ݋ݎݎ݁ = ௠௘௖௛ܧ −  ௠௔௫ (3.5)ܧ

3.5 Converter 

The controller calculates the electromagnetic torque that needs to be developed in the generator. 
For this to happen in reality, some current must flow through the stator windings. This is why the 
output of the controller is connected to an AC/DC converter, which makes sure the current is as 
desired. The precise function and choice of the converter is the subject of further research on the 
Symphony. The only thing needed here is the calculation of the current.  

It can be assumed that the converter aligns the phasors of the stator current ܫ௔  and excitation 
voltage ܧ௙ of the synchronous machine. This is a commonly used practice, which results in the 
decoupling of the field flux and the flux caused by the stator currents [21]. The excitation voltage 
depends linearly on the angular velocity of the rotor/turbine [21]: 

௙ܧ = ܭ ∙ ߱௧  (3.6) 
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where ܭ is the machine constant. Note that RMS values are being used for ܫ௔  and ܧ௙. The 
electromagnetic torque is equal to [21]: 

௘ܶ = 3 ∙
௙ܧ ∙ ௔ܫ ∙ ߮ݏ݋ܿ

߱௧
 (3.7) 

where ߮ is the angle between the phasors of ܧ௙ and ܫ௔. If these phasors are aligned, it is ܿ߮ݏ݋ = 1, 
so, by using Equation 3.6, it is concluded that: 

௔ܫ = ௘ܶ

3 ∙ ܭ
 (3.8) 

which is a linear relation. The constant ܭ can be calculated from the datasheet of the machine used, 
so in this case it is equal to 4.12 ܸ ∙ ௔ܫ which means that the (per phase) current ,[17] ݏ  can also be 
calculated at every moment in Matlab. 

3.6 Energy calculations 

As stated previously, this thesis deals with the energy that the Symphony can extract from the waves 
and provide to the grid. Thus, the most important calculations concern energy absorption and losses. 

3.6.1 Initial energy 

The energy that is taken from the waves and flows to the stator windings is the integral of the power 
of the electromagnetic torque. This extracted energy is calculated as follows over a period of time ܶ, 
where the minus sign is put so that the result is positive: 

௜௡௜௧௜௔௟ܧ = න ௜ܲ௡௜௧௜௔௟(ݐ) ∙ ݐ݀
்

଴

= න − ௘ܶ(ݐ) ∙ ߱௧(ݐ) ∙ ݐ݀
்

଴

 (3.9) 

3.6.2 Copper losses 

Some energy is lost in the electrical machine, the converter and the electrical cable that goes to 
shore. The copper losses, because of the resistance of the stator windings, are calculated as follows 
over a period of time ܶ [2]: 

௖௢௣௣௘௥௟௢௦௦ܧ = න ௖ܲ௢௣௣௘௥௟௢௦௦(ݐ) ∙ ݐ݀
்

଴

= න 3 ∙ ௔ܫ
ଶ(ݐ) ∙ ܴ௣௛௔௦௘ ∙ ݐ݀

்

଴
 (3.10) 

where ܴ௣௛௔௦௘  is the resistance per phase of the stator windings, which is equal to ܴ௣௛௔௦௘,௜௡௜௧௜௔௟ =
at a temperature of ௜ܶ௡௜௧௜௔௟ ߗ 0.2 =  It can be assumed that the windings have a .[17] ܥ20°
temperature of ௙ܶ௜௡௔௟ = ܥ60°  during operation, thus the final value of the resistance is [22]: 

ܴ௣௛௔௦௘,௙௜௡௔௟ = ܴ௣௛௔௦௘,௜௡௜௧௜௔௟ ∙ (1 + ଶ଴ߙ ∙ ( ௙ܶ௜௡௔௟ − ௜ܶ௡௜௧௜௔௟) (3.11) 
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where ߙଶ଴ is the temperature coefficient of resistance of copper at 20°ܥ. By using the value 
ଶ଴ߙ = 3.86 ∙ 10ିଷ°ିܥଵ [22], it is calculated that ܴ௣௛௔௦௘,௙௜௡௔௟ =  which does not make a big ,ߗ 0.23
difference. 

3.6.3 Cable losses 

The cable that goes from the converter to shore will have a DC voltage of ஽ܸ஼ = 400 ܸ. A distance of 
200 ݉ is assumed, so the total length of the cable will be ݈ = 400 ݉ (back and forth). The DC 
current in this cable can be calculated with the help of the power output of the converter, ௢ܲ௨௧ . The 
calculation is as follows: 

݅஽஼ = ௢ܲ௨௧

஽ܸ஼
= ௜ܲ௡௜௧௜௔௟ − ௖ܲ௢௣௣௘௥௟௢௦௦

஽ܸ஼
 (3.12) 

Thus, the energy loss on the cable is: 

௖௔௕௟௘௟௢௦௦ܧ = න ௖ܲ௔௕௟௘௟௢௦௦(ݐ) ∙ ݐ݀
்

଴

= න ݅஽஼
ଶ (ݐ) ∙ ܴ௖௔௕௟௘ ∙ ݐ݀

்

଴
 (3.13) 

where ܴ௖௔௕௟௘  is the total resistance of the cable. 

It is not possible to have no losses on this cable. A reference case is chosen, where the energy losses 
on the cable do not exceed 2% in most waves. By experimenting in Matlab, it is calculated that for 
this reference case, the resistance of the cable needs to be ܴ௖௔௕௟௘ = 0.35 Ω. The equation for the 
resistance is: 

ܴ௖௔௕௟௘ = ஼௨ߩ ∙
݈
ܵ

 (3.14) 

where ߩ஼௨ = 1.72 ∙ ߗ 10ି଼ ∙ ݉ is the resistivity of copper [23]. The result is that ܵ = 19.44 ݉݉ଶ. 

The type of cable that will be used has not been chosen yet, so it is not possible at the moment to 
determine its price. However, a method is presented here to facilitate this future decision. The 
Symphony has an approximate annual energy yield of 16000 ܹ݇ℎ [6], which gives 240000 ܹ݇ℎ for 
15 years. This has been calculated for no cable losses. For this period, the feed-in tariff in Portugal is 

0.26 €/ܹ݇ℎ [2]. This means that the total income, for no losses, can be estimated at 0.26 €
௞ௐ௛

∙

240000 ܹ݇ℎ = 62400 €. In this way, each number of cable losses, as a percentage of the energy 
that flows to the converter, corresponds to a certain economical cost. For example, 1% extra/less 
energy losses on the cable correspond to an economic loss/profit of 1% ∙ 62400 € = 624 €.  

Experiments in Matlab are performed for cases of other percentages (than the reference case) that 
must not be exceeded in most waves. The results are shown in Table 3.1, where the corresponding 
necessary resistance and thickness of the cable are shown. Also, the economic loss or profit due to 
the more or less energy losses on the cable, as compared to the 2% reference case, is shown. 
Positive values indicate economic profit and negative values indicate economic loss. When the type 
of cable will be known, the economic loss or profit of buying a thicker or thinner cable, compared to 
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the thickness of the cable for 2% losses, can be calculated, thus a cost/benefit analysis can be made 
then, so as to choose the optimal cable thickness. 

Table 3.1: Energy cost and resistance calculations 

Cable losses 
as percentage 
of energy at 

converter 

Economic 
profit/loss as 
compared to 

reference case (€) 

Necessary resistance 
 (ࢹ) ࢋ࢒࢈ࢇࢉࡾ

Necessary cable 
thickness ࡿ (࢓࢓૛) 

૙. ૛૞% 1092 0.04 155.55 
૙. ૞% 936 0.09 77.78 

૚% 624 0.18 38.89 
૛% 

(reference) 0 0.35 19.44 

૜% −624 0.53 12.96 
૝% −1248 0.71 9.72 

For the rest of this thesis, the reference scenario of not more than 2% losses most of the time will 
be used, thus ܴ௖௔௕௟௘  is set in Matlab equal to 0.35 Ω. 

3.6.4 Final energy 

Thus, finally, the net energy that has been extracted from the waves is formulated as follows: 

௙௜௡௔௟ܧ = ௜௡௜௧௜௔௟ܧ − ௖௢௣௣௘௥௟௢௦௦ܧ −  ௖௔௕௟௘௟௢௦௦ (3.15)ܧ

All this can easily be calculated in Matlab, as long as the relevant parameters are known. The result 
can be used to evaluate the performance of the control system.  

Note that, as stated in Chapter 2, the iron losses have already been taken into account here as 
‘internal’ in the system. A separate calculation for them can be made of course, but they must not 
be subtracted from the initial or final energy. 
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4.1 Introduction 

In order to evaluate the previously described control system or, more generally, any control system 
for the Symphony, it is necessary to find out how the optimal control system looks like. This 
concerns various parameters, such as the type and amplitude of oscillation, dealing with the 
constraints and uncertainties, the extracted energy and the mathematical modelling. Such an 
investigation can be performed both on a theoretical level, with the help of the available literature, 
and on a practical level, by using specifically designed optimization software.  

This chapter starts with an extensive literature overview about optimal control of wave energy 
devices and how some of this knowledge can be applied to the Symphony. Then, the GAMS 
software, which is all about optimization and is used for this thesis, is shortly described. This is 
followed by a brief presentation, piece by piece, of the GAMS code used for the optimization 
problem concerning the Symphony and of the necessary assumptions made. Next, the code is run 
and the results, concerning the extracted energy and the movement of the Symphony, are 
presented. This is done both for regular and irregular waves. Finally, an analysis is performed, to 
observe how sensitive the GAMS result is to changes in certain parameters. 

4.2 Literature overview 

Control of the movement of wave energy converters is a topic that has been addressed a lot in the 
literature. In [9];[24];[25], the principles of wave energy capturing are described and it is proven that 
a wave energy converter oscillating only in heave mode, such as the Symphony, can extract up to 
50% of the incoming wave energy, if the phase and amplitude of oscillation are appropriate. 
Absorption of waves means generation of waves by the oscillation of the device and the interaction 
between the incoming and the radiated waves needs to be as destructive as possible. An efficiency 
of even 100% can be reached in some cases when there are multiple modes of oscillation. In [9], two 
upper limits are presented for the power that can be extracted from sinusoidal waves. 

In [26], the general principles for optimal control of wave energy devices are stated. Among other 
things, it is important that the velocity of the device is in phase with the wave excitation force and 
that the amplitude of oscillation has a certain optimal value, which increases as the wave height 
increases. Thus, when there are amplitude constraints, this optimal value cannot be reached at high 
waves. For this case, an upper limit to the power extraction is given, which depends on the volume 
of the device. In any case, the paper states that short-term future prediction of the wave or 
movement of the device is needed. In [27], an analysis is made of a simple control method with a 
feedback loop, with which the velocity of the oscillating wave energy device and the wave force are 
always in phase and at a stable ratio for all frequencies, without the need of prediction. In this 
method, a transfer function on the feedback signal (of the velocity) is designed, which takes into 
account the open-loop transfer function between the wave force and the velocity of the device, in 
such a way that the closed-loop transfer function between the wave force and the velocity of the 
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device is a constant number. By applying this method to the Symphony and by assuming a 
completely linear spring and linear damping, the result is a PTO force that is proportional to the 
velocity of the floater with a fixed proportionality constant. In [24], an analysis is made of the 
method of latching control, which implies locking the position of the device at some moments, in 
order to keep the phase of oscillation as desired.  In this way, the velocity is more ‘concentrated’ at 
the maximum values of the wave force, so the power increases. This method also requires future 
prediction of the waves. In [28], laboratory experiments are conducted with a floating wave energy 
converter, so as to examine, among other things, the influence of certain nonlinearities in the forces. 
In [29], control methods are presented for a point absorber that has a hydraulic power take off 
system, which can be connected to an electrical generator or to additional energy accumulators. 

For the Symphony, it is important to examine the literature about its predecessor, the Archimedes 
Wave Swing (AWS). In [30], internal model control is applied to the AWS. This is a method that uses 
a block diagram containing the system to control, the inverse of the system, a model of the system 
and a filter. It is concluded that with internal model control the energy absorption from the waves 
can be more than five times higher compared to the situation without control (where a residual 
force of the electrical generator extracts energy), which is a better result than the originally 
developed PID controller for the AWS. In [20], an analysis is made of the motion of the AWS in the 
frequency domain, as a Laplace transform is applied on the position and the forces. The concept of 
impedance is used, which is defined as the external force acting on the device divided by its velocity. 
Two control strategies are proposed, namely reactive control, which implies cancellation of the 
imaginary part of the impedance and phase and amplitude control, which implies making the 
velocity in phase with the wave force. Both strategies lead to much more extracted energy, however 
they deal with non-causal functions. In [31], eight different control methods are tested on the AWS, 
each having its advantages and disadvantages, and a comparison is made about the power that can 
be extracted from the waves. Feedback linearization seemed the best option, concerning the 
average extracted power during the whole year. 

Many control methods require prediction of future values. In [32], different methodologies are 
described for prediction some time into the future of the wave elevation, based only on past 
measurements. In [33], model predictive control (MPC), a method that includes estimation of future 
values of the wave elevation and uses a lot of matrices and vectors, is implemented on the point 
absorber named L10 and it is shown that this method works well under position, velocity and 
generator force constraints. The essence of MPC is to minimize a cost function, which includes the 
tracking error and the controller effort, by using the appropriate control action over a period of time 
that is called the prediction horizon. As the mooring system of the L10 is nonlinear, a comparison 
between the use of linear MPC and nonlinear MPC is performed in [34] and it is shown that the 
latter can maximize the energy absorption under the constraints. In [35], MPC is applied to a point 
absorber with linear behaviour. Vectors, matrices and an objective function to be minimized are 
used. The result is that the velocity of the device is in phase with the wave force and that the 
constraints are met, however in irregular waves the PTO force is too large and should be limited. A 
similar paper on MPC is [16], where a different, non-conventional objective function to be 
maximized is used: the absorbed energy from the waves. 

Concerning the Symphony, a conclusion that can be drawn from the literature is that keeping the 
velocity of the device in phase with the wave excitation force is a condition for optimal energy 
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extraction. The perfect controller should achieve this in some way. As for the position, the floater of 
the Symphony is not allowed to oscillate with a too high amplitude. If it exceeds ±2 ݉, the 
movement is blocked for safety reasons. Thus, only in relatively small waves can the Symphony 
extract the theoretical maximum energy out of a certain wave. For higher waves, the amplitude of 
oscillation should be as high as possible under the constraint. Here, because of the particular shape 
of the several parts of the Symphony, the nonlinearities play a crucial role. As seen previously, the 
spring stiffness changes a lot over the whole position range and the drag force depends on the 
square of the speed, as well as on the direction of movement. Thus, the linear equations seen in the 
literature cannot be applied in the same way. Finally, it can be seen that for many of the above 
mentioned methods to be applied, the issue concerning the unpredictability of the waves needs to 
be tackled. A system to measure in advance the waves that will act on the Symphony is not foreseen. 
A very complex and costly system would be needed for knowing accurately the exact wave elevation 
at every instant for a satisfyingly long future period, as this depends on many parameters. Thus, the 
controller needs to be designed only on the basis of what can be measured at the moment itself or 
on past measurements or, alternatively, a quite complex estimation method, such as MPC, should be 
used. 

In this chapter, a software-based innovative method to calculate, with a high precision, the 
maximum amount of energy that the Symphony can theoretically extract from a certain known wave 
will be presented. This method takes into account all the parameters and constraints of the 
Symphony and tackles the unpredictability issue, because the (fixed) wave is completely known in 
advance. The software can regulate the response of the Symphony, without taking the factor of time 
into account, while the equations that govern the movement are satisfied at all instants. The 
position, velocity, PTO force etc. at every moment can be adapted continuously, until the optimal 
movement as a whole is found. This is of course unrealistic, but gives an idea of how the perfect 
control system should be. This ideal response can then be used as a tool to evaluate the responses 
from other realistic control systems, such as the one with the energy error that is currently being 
used. 

4.3 The GAMS software 

4.3.1 General information 

The General Algebraic Modeling System (GAMS) is a software used specifically for determining, 
analyzing and solving optimization problems. It is in fact a programming language, as the user writes 
a code, which is then compiled. There is a variety of solvers available which can tackle the problem. 
The software can be used for linear programming, nonlinear programming, mixed-integer nonlinear 
programming and others. It is especially useful in solving big, difficult and complex optimization 
problems. GAMS has a wide range of applications on an academic and commercial level. 

As a mathematical tool, GAMS has many advantages. Firstly, a small and a big problem, in terms of 
number of variables and equations, can be solved with practically the same amount of code. This is 
because one parameterized equation in the code can represent many equations, one for each value 
of the parameter. Secondly, the modelling of the problem is independent of the solving technique, 
as the code is written first and then the user can choose a solver that is built-in in the software. In 
this way, the user does not need to write any piece of code that contains algorithmic solving 
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methods. Thirdly, the code is easy to write and user-friendly, as it gives a good visual interpretation 
of the problem and its form is very mathematical. Finally, sensitivity analysis can easily be performed 
[36];[37]. 

For these reasons, GAMS is really appropriate for solving the optimization problem concerning the 
response of the Symphony to a wave. Only a few lines of code are needed to represent the 
equations of Chapter 2, as well as the amplitude and generator torque restrictions. Everything is 
written in a parameterized way, because each equation is valid for all time moments. Also, it is not 
necessary to use difficult algorithms, as this is automatically done by the software. The objective is 
to determine the movement of the floater that results in maximum energy extraction from the input 
wave, which is viewed by GAMS as an array of values, without the concept of time. Thus, GAMS 
assigns values to the position, velocity, PTO force etc. (which are also arrays and each cell represents 
a time moment), until the movement during the whole time period is optimal in terms of total 
extracted energy. This procedure is done internally by the software, the user only needs to describe 
the model and determine the objective. 

4.3.2 Structure of the GAMS code 

In order to better understand the previously explained mechanism, a short description is given here 
of how a GAMS code looks like. It is important to obtain a rough overview of the basic elements in 
the code and their operational role, as the next parts of this chapter will be ‘in line’ with them. 

A typical GAMS code has certain elements. In the beginning, the Sets and their size are determined. 
These are letters/indices that can take different values and represent the ‘states’ at which the 
problem takes place. For example, the letter ݐ can be used as a Set with values ݐଵ , ଶݐ , ,ଷݐ ସݐ ,  ହ andݐ
the letter ݆ as a Set with values ݆ଵ, ݆ଶ, ݆ଷ.  

Next, the Parameters and Tables are given. These elements are closely linked with the Sets. For 
example, ܽ(݆) can be a 3-dimensional Parameter and ݒ(݆,  can be a 3x5 Table. Some Scalars can (ݐ
also be given, which means fixed numerical values. Then, the Variables are determined, which can 
be 1-dimensional, vectors or tables. Examples are (ݐ)ݑ ,(ݐ)ݕ ,ݔ and ݐ)ݖ, ݆). The content of the 
Variables is of course unknown and will be determined by GAMS after running the code. Here, extra 
code lines with upper/lower boundaries for some of the Variables or fixed values of one or more 
Variables at some ‘states’ can be put.  

The following piece of the code consists of the Equations. One of them is the objective function, 
which means that there is one specific Variable that needs to be minimized or maximized. The 
objective function is in fact an equality that shows the dependence of this one Variable on others. 
The other Equations are called constraints and can be equalities or inequalities. It is important to 
note that an Equation can represent one or more ‘states’. For example, the relation (ݐ)ݕ = (ݐ)ݑ + 3 
takes only one line of code, but means that the equality is valid for all five values of the Set ݐ. 

Afterwards, the solver is determined and some extra Options can be stated. This leads to the ‘solve’ 
command, where the type of programming, as well as the choice between minimization and 
maximization are determined by the user. Finally, the Variables, which will be displayed in the file 
with the results, are given.  
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The elements described here are the basic ones. Extra commands can be put in more complex 
problems, for example interaction with other software. By running the code, GAMS presents in a 
separate file the resulting value of the objective function’s Variable, the values of other things that 
were ordered to be displayed and also the type of solution. 

4.4 The developed code 

For this thesis, a code has been written in GAMS, so as to find the upper boundary of the energy that 
the Symphony can obtain from a certain, pre-determined wave. This code is presented in Appendix 
A, accompanied by comments, so that every command can be clearly understood. The benefits of 
GAMS are proven by the fact that only few lines of code are actually needed to describe the complex 
problem concerning the Symphony. 

4.4.1 Wave modelling/fixed inputs 

As mentioned previously, the Matlab time domain model generates time-series of waves. The type 
of waves (monochromatic or random) and their properties, such as the significant wave height and 
the energy period, can be chosen by the user. In this way, data is obtained that represents the wave 
force ܨ௪௔௩௘(ݐ) acting on the Symphony at every instant. This data is stored in a Microsoft Excel file. 
There are two conflicting parameters, for which a balance needs to be found. On the one hand, the 
duration of the wave must be long enough for realistic conclusions. On the other hand, the number 
of values of the Set that represents the time must not be too large, otherwise the optimization 
problem takes an extreme amount of time to be solved or cannot even be solved at all by GAMS. For 
these reasons, the time-series of waves that will be used in this chapter have a duration of 50 ݏ and 
a sample of the wave force is taken every 0.02 ݏ, thus there will be 2501 ‘states’/time segments. If 
the sampling rate were reduced, waves of longer duration could be used, however this would not 
give good numerical results. This will further be investigated at the end of the chapter. These 2501 
time segments will be represented in GAMS by the Set ݐ. In other words, ݐଵ represents the time 
segment ݐ = ݐ ଶ represents the time segmentݐ ,ݏ 0 =  ଷ represents the time segmentݐ ,ݏ 0.02
ݐ = ݐ ଶହ଴ଵ represents the time segmentݐ etc., until ݏ 0.04 =  Then, the appropriate wave force .ݏ 50
data is read from the Excel file and stored in a GAMS Parameter. Also, the Scalar values of the total 
mass, the hydrodynamic damping coefficient and the inertia of the turbine are defined. This is what 
concerns the fixed numerical inputs in GAMS. 

4.4.2 Variables 

There are six Variables in the model: the total ݁݊݁ݕ݃ݎ that is obtained from the wave during the 
 ,of the floater at every time segment (ݐ)ௗௗݖ and acceleration (ݐ)ௗݖ velocity ,(ݐ)ݖ the position ,ݏ 50
the PTO force ܨ௉்ை(ݐ) at every time segment and the electromagnetic torque of the generator ௘ܶ(ݐ) 
at every time segment. For a good initiation, the position, velocity and acceleration are fixed to 0 at 
the time segment ݐ = 0. Also, a lower and an upper boundary are put to the position at all time 
segments.  

The nominal power of the generator is 20 ܹ݇ and the nominal rotational speed of the turbine, thus 
also of the rotor of the generator, is 350 ݉݌ݎ, which is equivalent to 36.65 ݏ/݀ܽݎ. This means that 
the maximum electromagnetic torque ห ௘ܶ,௠௔௫ห that the generator can develop is: 
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ห ௘ܶ,௠௔௫ห =
20 ܹ݇

ݏ/݀ܽݎ 36.65
= 545.67 ܰ݉ (4.1) 

Thus, in GAMS, a lower and upper boundary of −546 ܰ݉ and 546 ܰ݉, respectively, are put to the 
electromagnetic torque at all time segments. 

4.4.3 Spring force modelling 

As seen in Figure 2.8, the total spring force is very nonlinear with respect to the position of the 
Symphony over the whole range. The force is fully linear for values of ݖ between −1.12 ݉ and 
1.12 ݉ and approximately linear in each of the other four parts, with a different slope each time. 
However, it is difficult to use a piecewise function in GAMS. A possible option is to approximate the 
spring force with a polynomial function. This can easily be done with the commands polyfit and 
polyval in a Matlab programme. An effort is made to keep the order of the polynomial not higher 
than 10, so that GAMS can function well. 

In Figure 4.1, which is generated by a Matlab programme, various approximations are presented. 
The blue line is the real spring force, as taken from the time domain model. The orange line is the 
approximation with a 10th degree polynomial function of ݖ, where equal importance is given to the 
whole range of ݖ. It can be seen that although the orange line has a tendency to follow the blue line 
as much as possible, there are quite a lot of fluctuations. 

 

Figure 4.1: Spring force and unsatisfying approximations 

Another method can be used, where more importance is given to the central linear region, less 
importance to the stiff spring regions and very little importance to the regions furthest from the 
equilibrium position. This is because in reality the Symphony oscillates mostly in the central linear 
region, especially at small waves, thus this area needs to be modelled more accurately than the 
others. The method consists of taking all the points of the real function in the linear region and only 
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few points in the other regions. If the polynomial approximation command is then applied, the result 
is the yellow line in Figure 4.1. A 7th degree polynomial function of ݖ is now used. It can be seen that 
the yellow line deviates more from the blue line than the orange line does far from the equilibrium 
position, but is closer to the blue line than the orange line does in the linear region. However, the 
deviation from the blue line is too big, even in some parts of the linear region, because the order of 
magnitude of this deviation is similar to the order of magnitude of the wave force.  

In other words, any approximation of the spring force results in too much deviation from the real 
values at some points. As the spring force is very important in the Symphony, it is not a good option 
to tolerate this. However, for the region from −1.3 ݉ to 1.3 ݉, the spring force can be 
approximated by a polynomial function of the form −ܽ ∙ ௞ݖ − ܾ ∙  where ܽ and ܾ are positive ,ݖ
numbers and ݇ is a positive odd number. The results for different values of ܽ, ܾ, ݇ are shown in 
Figure 4.2, which is made from a Matlab programme. A closer look shows that the deviations from 
the real spring force (blue line, as taken from the time domain model) can reach up to 10000 ܰ in 
some areas, which is the order of magnitude of the wave force and PTO force, thus this 
approximation is not perfect. In any case, these lines, especially the green one, are close enough to 
the real spring force (blue line) to be used as satisfying approximations. However, if these functions 
with a high power on ݖ are used in GAMS, the numerical result of the objective function is fine, but 
the electromagnetic torque has a peculiar unstable pattern. These approximations will be further 
investigated at the end of the chapter. 

 

Figure 4.2: Spring force and approximations in a certain region 

It is thus clear that it is not possible to calculate the exact maximum amount of energy that the 
Symphony can theoretically extract from a certain wave. However, clear upper boundaries to the 
possible energy extraction can be put.  
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First of all, the highest boundary is obtained by putting the maximum limits to the position, thus 
−2 ݉ and 2 ݉, and by putting no limit on the generator torque. This boundary will be defined as the 
‘Global Limit’. It cannot be reached with any control system, but one thing for sure is that it cannot 
be surpassed. For this case, the spring will be modelled as a linear one with the previously defined 
coefficient, so the GAMS equation becomes: 

௦௣௥௜௡௚ܨ = −݇ ∙ |ݖ|       ,ݖ ≤ 2 (4.2) 

where ݇ is equal to 9491 for the standard case of 10 ݏ waves. For other wave periods, it needs to be 
adapted accordingly. In the GAMS code, everything is of course dimensionless, because all 
Parameters, Scalars and Variables take simply numerical values.  

Next, a somehow lower and more realistic boundary is obtained by considering the fact that in most 
cases the uttermost position of the floater is not very far from the linear region. This is because the 
suddenly very stiff spring stops the floater from oscillating too much, thus it fulfils its safety role 
well. To have some margins, limits of −1.3 ݉ and 1.3 ݉ are put in GAMS and again a linear spring 
representation is used. Even if, in reality, the floater goes beyond this point, it will happen only very 
few times, so the impact is insignificant, which means that the GAMS result can well be considered 
an upper boundary. Another reason for this consideration is that, in order for the floater to 
frequently surpass these position limits in reality, either a generator of higher power would be 
needed, in order to provide enough accelerating torque to the turbine, or a very high wave would be 
needed, something which the Symphony cannot handle with the current generator torque 
constraint. Thus, by putting these position limits and also by keeping the limit on the generator 
torque, the GAMS output for this case will be called ‘Realistic Limit’. For this case, the GAMS 
equation becomes: 

௦௣௥௜௡௚ܨ = −݇ ∙ |ݖ|       ,ݖ ≤ 1.3 (4.3) 

where ݇ is also in this case equal to 9491 for the standard case of 10 ݏ waves and for other wave 
periods, it needs to be adapted accordingly. 

4.4.4 Drag force modelling 

The drag force can be modelled much more easily and accurately. This is because a function for the 
real drag force exists. However, as seen in Chapter 2, this function includes absolute values and a 
varying coefficient, so an approximation is needed. A similar method as previously is used and it is 
concluded that a 7th order polynomial function is sufficient. Equal importance is given to all the 
points of the real function. A speed range from −3 ݉/ݏ to 3 ݉/ݏ is taken, which is more than 
enough. 

In Figure 4.3, which is also generated by a Matlab programme, the real drag force (blue line, taken 
from the time domain model) and the polynomial approximation (orange line) are plotted together. 
It is obvious that the two lines almost collide, which is a very good result. In any case, the drag force 
is much smaller than the spring, wave and PTO forces, so the small deviations do not play any 
significant role. 

The equation represented by the orange line is: 
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ௗ௥௔௚ܨ = −1.00 ∙ ௗݖ
଻ + 20.93 ∙ ௗݖ

ହ − 217.38 ∙ ௗݖ
ଷ + 257.01 ∙ ௗݖ

ଶ − 177.92 ∙  ௗ (4.4)ݖ

A rounding has been done here with respect to the numbers actually used in GAMS, for readability. 

 

Figure 4.3: Drag force and approximation 

4.4.5 Iron loss torque modelling 

The ‘torque’ that causes the iron losses is also in fact a piecewise function, due to the ݊݃݅ݏ(߱௧) 
term, thus an approximation needs to be made for GAMS. A similar method with polyfit is used, with 
a 3rd order polynomial function, so as not to make things too complex. Equal importance is given to 
all the points of the real function. An angular speed range of the turbine from −90 ݏ/݀ܽݎ to 
 .is taken, which is more than enough ݏ/݀ܽݎ 90

In Figure 4.4, which is also generated by a Matlab programme, the real iron loss torque (blue line, 
taken from Equation 2.11) and the polynomial approximation (orange line) are plotted together. It 
can be seen that there is some difference between the two lines, but this is not really important, 
because the iron loss torque is very small compared to the electromagnetic torque of the generator, 
so these fluctuations do not have a serious impact on the whole movement of the floater. 
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Figure 4.4: Iron loss torque and approximation 

The equation represented by the orange line is: 

௜ܶ௥௢௡ = 1.93 ∙ 10ିହ ∙ ߱௧
ଷ − 0.39 ∙ ߱௧ (4.5) 

Again, a rounding has been done here with respect to the numbers actually used in GAMS, for 
readability. By using the mean numerical value of the ratio ఠ೟

௭೏
, which is equal to 59.97, Equation 4.5 

becomes: 

௜ܶ௥௢௡ = 4.17 ∙ ௗݖ
ଷ − 23.61 ∙  ௗ (4.6)ݖ

In Chapter 2, this iron loss torque was translated to a force on the floater as a whole. However, here 
in GAMS, it will be kept as a torque and make part of the PTO force, to avoid unnecessary 
calculations. This is realistic, because it is indeed a torque on the turbine, but any of the two 
approaches give of course the same result. 

4.4.6 Equations 

Now, the Equations can be presented. The GAMS model consists of one objective function and four 
constraints. The purpose of the GAMS code is to maximize the ݁݊݁ݕ݃ݎ, which is the final extracted 
energy from the waves that goes to the grid, in fact the same as ܧ௙௜௡௔௟ from Chapter 3. As a 
reminder, this is generally defined as: 

ݕ݃ݎ݁݊݁ = න(− ௘ܶ(ݐ) ∙ ߱௧(ݐ)) ∙ ݐ݀
்

଴

− න 3 ∙ ௔ܫ
ଶ(ݐ) ∙ ܴ௣௛௔௦௘ ∙ ݐ݀

்

଴

−  ௖௔௕௟௘௟௢௦௦ (4.7)ܧ

The first term, the integral of the electromagnetic torque of the generator multiplied by the angular 
speed of the turbine, is the ‘pure’ energy that comes out of the Symphony. The second term 
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represents the copper losses of the generator and the third term represents the losses on the cable 
that goes to shore. In GAMS, the integral is approximated by a sum, because the electromagnetic 
torque and speed are only defined at discrete time segments (Set ݐ). By using the mean numerical 
value of the ratio ఠ೟

௭೏
, which is equal to 59.97, by using the relation between the phase current ܫ௔  and 

electromagnetic torque ௘ܶ, as presented in Section 3.5, and by taking the cable losses as always 
being 2% of the energy at the converter, otherwise it is too complex for GAMS, the previous 
equation (objective function) becomes: 

ݕ݃ݎ݁݊݁ = 0.02 ∙ 0.98 ∙ ෍ (− ௘ܶ(ݐ) ∙ 59.97 ∙ (ݐ)ௗݖ − 3 ∙ ൬ ௘ܶ(ݐ)
3 ∙ ܭ

൰
ଶ

∙ ܴ௣௛௔௦௘)
௧మఱబభ

௧భ

 

 

(4.8) 

The first two constraints concern the relation between the position, the velocity and the 
acceleration. The real derivatives are approximated by differences as follows:  

(ݐ)ௗݖ =
(ݐ)ݖ − ݐ)ݖ − 1)

0.02
 

 

(4.9) 

(ݐ)ௗௗݖ =
(ݐ)ௗݖ − ݐ)ௗݖ − 1)

0.02
 

 

(4.10) 

The next constraint concerns the force balance: 

݉௧௢௧ ∙ (ݐ)ௗௗݖ = (ݐ)௦௣௥௜௡௚ܨ + (ݐ)ௗ௥௔௚ܨ − ܿ௛௬ௗ ∙ (ݐ)ௗݖ + (ݐ)௪௔௩௘ܨ +  (4.11) (ݐ)௉்ைܨ

where ܨ௦௣௥௜௡௚(ݐ) and ܨௗ௥௔௚(ݐ) are taken from Equations 4.2/4.3 and 4.4, as functions of (ݐ)ݖ and 
 is read from the (ݐ)௪௔௩௘ܨ respectively, ܿ௛௬ௗ is the hydrodynamic damping coefficient and ,(ݐ)ௗݖ
Excel file. 

The final constraint concerns the link between the PTO force, the acceleration, the generator torque 

and the speed. The mean value of the ratio ఠ೟̇
௭೏೏

, which is equal to 59.97 and the mean value of the 

factor (ܣ௠௨(ݖ)−ܣ௠௕) ∙  ௧௨௥௕, which is also equal to 59.97, are used. Thus, according to Equationܩ
2.18, the GAMS constraint is: 

(ݐ)௉்ைܨ = −59.97 ∙ (59.97 ∙ ௧ܫ ∙ (ݐ)ௗௗݖ − ௘ܶ(ݐ) − ௜ܶ௥௢௡(ݐ)) (4.12) 

Note that here the iron loss torque ௜ܶ௥௢௡ , which is a function of the speed, according to Equation 4.6, 
has been incorporated in the PTO force. 

4.4.7 Solving 

Finally, after some necessary options are put, the command is given to solve the optimization 
problem. Some of the results can be written on a different Excel file, in order to be able to make 
graphs. 
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4.5 Optimization results 

By running the GAMS code, interesting results are obtained. These will be shown for the two main 
categories of waves. In any case, only the ‘Realistic Limit’ will be used in this section, because, for 
the moment, only the GAMS behaviour is examined. Thus, all the previously mentioned constraints 
and equations will be used. 

4.5.1 Monochromatic waves 

The ideal regular waves are perfectly sinusoidal. The wave height, which is defined as the vertical 
distance between a crest and its successive trough and is, of course, two times the amplitude, as 
well as the wave period, which can either be defined as the time between two consecutive moments 
that a particle at a fixed location has zero elevation with upwards velocity (zero up-crossing period) 
or between two consecutive moments that it has zero elevation with downwards velocity (zero 
down-crossing period) [38], are fixed. This means that the wave force also has a sinusoidal form. An 
example of a monochromatic wave is shown in Figure 4.5 [39]. 

 

Figure 4.5: Basic properties of a regular wave 

The wave height and period are very easily tuned in the Matlab model, so that time-series of the 
wave force for a monochromatic wave are obtained. A sampling is made and the result is stored in 
the Excel file, to be read by GAMS as input wave force. Here, four examples with wave heights and 
periods that are realistic for the location where the Symphony will be placed will be presented: 

-Wave height ܪ = 2 ݉, wave period ௠ܶ =  The resulting value of the objective function (final :ݏ 10
energy extracted, which has been maximized) is ݁݊݁ݕ݃ݎ =  This number has not so much .ܬ 215340
significance by itself, but can be used for comparison with the following examples. The position, 
velocity, wave force and generator torque are plotted in Figure 4.6. In all the following figures, a 
scaling is performed on the position, velocity and electromagnetic torque, for visibility. Also, only a 
piece of the diagram is presented for readability and good incorporation in the page. All variables 
show a periodic pattern, which is as expected, because the wave is monochromatic. 
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The most important observation is that the velocity is perfectly in phase with the wave excitation 
force, which is the basic principle for optimal energy absorption, as mentioned in the literature. As 
there is restriction on the amplitude of oscillation, a form of latching control is applied, which can be 
seen by the fact that the position is locked for some time at the highest and lowest level at each 
cycle. At these moments, of course, the velocity is almost zero. This means that the optimal 
amplitude of oscillation, for this wave and under the assumption of a linear spring, is higher than 
1.3 ݉. The generator torque mostly has an opposite sign than the velocity, which means that the 
product − ௘ܶ(ݐ) ∙ ߱௧(ݐ) is mostly positive, thus the energy flows mostly from the Symphony to the 
grid. The generator torque in each half cycle has a peak, a dip and then again a longer peak. The 
most logical explanation for this is that the first peak corresponds with the top position, where the 
floater stays a short amount of time. The generator torque, and consequently the PTO force, needs 
to counteract the spring force, to keep the floater in that position. Then, the generator torque 
decreases, so that the floater can gain some speed. The second peak almost corresponds with the 
maximum velocity, so GAMS is probably doing this to maximize the product − ௘ܶ(ݐ) ∙ ߱௧(ݐ), as this 
increases the value of the objective function. 

 

Figure 4.6: GAMS result for monochromatic wave of 2 ݉ height and 10 ݏ period 

-Wave height ܪ = 4 ݉, wave period ௠ܶ =  The resulting value of the objective function is :ݏ 10
ݕ݃ݎ݁݊݁ =  .much higher than previously, as expected, because the wave force is higher ,ܬ 476984
The position, velocity, wave force and electromagnetic torque are plotted in Figure 4.7. The 
observations are similar as previously, with the difference that the generator torque is higher, which 
is because of the higher wave force that has to be handled. The torque limits are even reached 
during each cycle. Also, the floater stays at its furthest position from the equilibrium point for a 
longer time, thus there is more latching. This is because the unconstrained amplitude of oscillation is 
now higher than in the previous case (because of the higher wave), thus there is a larger ‘cutting-
off’. 
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Figure 4.7: GAMS result for monochromatic wave of 4 ݉ height and 10 ݏ period 

-Wave height ܪ = 2 ݉, wave period ௠ܶ =  The resulting value of the objective function is :ݏ 6
ݕ݃ݎ݁݊݁ =  which is quite similar to the first case. The position, velocity, wave force and ,ܬ 251223
electromagnetic torque are plotted in Figure 4.8. Again, the velocity is perfectly in phase with the 
wave force. The interesting thing to note is that now there is almost a perfect sinusoidal oscillation, 
without latching. This also makes the electromagnetic torque follow a somehow smoother pattern. 
The fact that the velocity is almost continuously non-zero and gets a bit higher values than in the 
first case of a 10 ݏ wave possibly explains why the obtained energy is a bit higher now, as the 
product − ௘ܶ(ݐ) ∙ ߱௧(ݐ) increases in this way. 

 

Figure 4.8: GAMS result for monochromatic wave of 2 ݉ height and 6 ݏ period 

-Wave height ܪ = 2 ݉, wave period ௠ܶ =  The resulting value of the objective function is :ݏ 14
ݕ݃ݎ݁݊݁ =  which is lower than in the first case. The position, velocity, wave force and ,ܬ 162807
generator torque are plotted in Figure 4.9. The locking in the outmost positions takes longer now 
because of the slower wave and this, among other things, possibly explains the less amount of 
energy that is extracted. The generator torque follows a similar pattern like in the 10 ݏ waves. 
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Figure 4.9: GAMS result for monochromatic wave of 2 ݉ height and 14 ݏ period 

It can generally be said that the GAMS result is very sensitive to the wave height and a bit sensitive 
to the wave period, for regular waves. 

4.5.2 Irregular waves 

The waves in reality do not have a fixed height or period. An example is given in Figure 4.10 [40], 
where the surface elevation is plotted as a function of time for a regular wave (top) and an irregular 
wave (bottom). An important statistical parameter is the significant wave height ܪ௦, which is defined 
as the average height of the highest 1/3rd of all the waves during a certain period. By applying 
Fourier Transform on irregular waves, the spectrum ܵ(݂) is obtained, which is related to the energy 
contained in each frequency ݂ [40]. An example of a wave spectrum is shown in Figure 4.11 [41]. 
Another important parameter is the energy period ௘ܶ௡, which is defined as [41]: 

௘ܶ௡ =
∫ ݂ିଵ ∙ ܵ(݂) ∙ ݂݀ஶ

଴

∫ ܵ(݂) ∙ ݂݀ஶ
଴

 (4.13) 

The Matlab model generates irregular waves that follow the so-called Bretschneider spectrum. The 
formula of such a spectrum is [42]: 

ܵ(݂) =
5

16
∙ ௦ܪ

ଶ ∙ ଴݂
ସ

݂ହ ∙ ݁ିହ
ସ∙ቀ ௙

௙బ
ቁ

షర

 (4.14) 

where ଴݂ is the peak frequency, thus the frequency at which ܵ(݂) has its maximum value [41]. 
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Figure 4.10: Comparison between regular and irregular waves 

 

Figure 4.11: Typical wave spectrum, frequency domain 

The only parameters that are varied by the user are ܪ௦ and ௘ܶ௡. A sampling is made and the result is 
stored in the Excel file, to be read by GAMS as input wave force. Here, four examples with significant 
wave heights and energy periods that are realistic for the location where the Symphony will be 
placed will be presented: 

-Significant wave height ܪ௦ = 1 ݉, wave energy period ௘ܶ௡ =  The resulting value of the :ݏ 10
objective function (final energy extracted, which has been maximized) is ݁݊݁ݕ݃ݎ =  This .ܬ 24349
number is quite insignificant by itself, but can be used for comparison with the other examples. The 
position, velocity, wave force and electromagnetic torque are plotted in Figure 4.12. In all the 
following figures, a scaling is performed on the position, velocity and electromagnetic torque, for 
visibility. Also, only a piece of the diagram is presented for readability and good incorporation in the 
page. It can be seen that also in this case of an irregular wave, the velocity is perfectly in phase with 
the wave excitation force. The oscillation of the floater is of course not sinusoidal anymore and there 
is practically no latching in this case. This is due to the small height of the wave, thus the optimal 
amplitude of oscillation does not exceed the limit of 1.3 ݉. The floater has no tendency to go further 
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than the limit (which would be the case in a higher wave), thus no latching is needed. The sign of the 
electromagnetic torque is mostly opposite to the sign of the velocity, thus the energy flows mostly 
from the Symphony to the grid. 

 

Figure 4.12: GAMS result for Bretschneider wave of 1 ݉ height and 10 ݏ period 

-Significant wave height ܪ௦ = 3 ݉, wave energy period ௘ܶ௡ =  The resulting value of the :ݏ 10
objective function is now ݁݊݁ݕ݃ݎ =  much higher than previously, as expected, because ,ܬ 260329
the wave is much higher, so it contains more energy. The position, velocity, wave force and 
electromagnetic torque are plotted in Figure 4.13. The results are similar as in the previous case 
concerning the fact that the velocity is in phase with the wave force, only now there is clearly 
latching. This is logical, because with this higher wave, the floater would normally oscillate with a 
higher amplitude, but it remains at the outmost positions due to the constraint. The electromagnetic 
torque shows a similar pattern as in the monochromatic waves: at every cycle, there is a peak, to 
keep the floater almost in the outmost position, counteracting the spring force, a dip, to let the 
floater gain some velocity and again a peak approximately at the point of maximum velocity, to 
maximize the product − ௘ܶ(ݐ) ∙ ߱௧(ݐ), as this increases the value of the objective function. The 
torque is higher than in the previous case and at some points the limits are even reached. The cycles 
are of course different, because this realistic wave does not have a fixed height or period, as in the 
ideal case. 

 

Figure 4.13: GAMS result for Bretschneider wave of 3 ݉ height and 10 ݏ period 
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-Significant wave height ܪ௦ = 2 ݉, wave energy period ௘ܶ௡ =  The resulting value of the :ݏ 6
objective function is ݁݊݁ݕ݃ݎ = ௦ܪ This is in between the two previous values (for .ܬ 121932 = 1 ݉ 
and ܪ௦ = 3 ݉, as expected. The position, velocity, wave force and electromagnetic torque are 
plotted in Figure 4.14. As in the fast monochromatic wave, the oscillation is smoother and there is 
no latching. The electromagnetic torque also follows a quite smoother pattern. The change in wave 
period does not affect the fact that the velocity is in phase with the wave force. 

 

Figure 4.14: GAMS result for Bretschneider wave of 2 ݉ height and 6 ݏ period 

-Significant wave height ܪ௦ = 2 ݉, wave energy period ௘ܶ௡ =  The resulting value of the :ݏ 14
objective function is ݁݊݁ݕ݃ݎ =  This exact value, like the value of the previous case, has .ܬ 118787
no particular meaning, because of the random character of this wave. In another wave with the 
same ܪ௦ and ௘ܶ௡, there will be some difference. The only remark is that these two values (for the 
two ܪ௦ = 2 ݉ waves) are in-between the values for a ܪ௦ = 1 ݉ wave and a ܪ௦ = 3 ݉ wave, as 
expected. The position, velocity, wave force and electromagnetic torque are plotted in Figure 4.15. 
Again, the velocity is in phase with the wave force. As in the monochromatic slow wave, the latching 
is longer compared to the case of a 10 ݏ wave. This probably means that the optimal oscillation 
amplitude increases as the wave period increases. 

 

Figure 4.15: GAMS result for Bretschneider wave of 2 ݉ height and 14 ݏ period 

Generally, it can be said that GAMS performs very well with irregular waves, as the velocity is kept 
perfectly in phase with the wave force, regardless of the height or period of the wave.  
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4.5.3 Special case 

It is interesting to see what would happen if there were no restrictions at all on the amplitude of 
oscillation. For this case, the input wave in GAMS is the previously used wave with significant wave 
height ܪ௦ = 3 ݉ and energy period ௘ܶ௡ =  .ݖ All equations are used, but there are no limits on .ݏ 10
The resulting value of the objective function is now ݁݊݁ݕ݃ݎ =  This is much higher than .ܬ 1322880
the value with restriction, as expected, because the floater can now oscillate with a very high 
amplitude. The position, velocity, wave force and electromagnetic torque are plotted in Figure 4.16. 
The fact that the phase of the velocity and the phase of the wave force are the same does not 
change. It is clear that the oscillation is completely smooth now concerning the position, as there is 
no latching. By looking at the GAMS results, it can be seen that the position can reach up to more 
than ±9 ݉ approximately, which is really high compared to the normal situation. In reality this is 
impossible for the Symphony, but this indicates what the optimal amplitude of oscillation 
theoretically is, at this certain wave and for the assumption of a linear spring. Another interesting 
observation is the very high generator torque, which even reaches its limits almost at every cycle. 
This happens mostly when the floater is at its outmost position, so the generator torque counteracts 
the quite high spring force there, so that the high amplitude of oscillation can be maintained. 

 

Figure 4.16: GAMS result for no amplitude restriction 

4.6 Sensitivity analysis 

4.6.1 Sensitivity to parameters 

Now, an investigation is done on how certain parameters affect the GAMS result. In all cases here, 
the same wave will be used. A choice is made for a Bretschneider wave with significant wave height 
௦ܪ = 3 ݉ and energy period ௘ܶ௡ =  for all ݕ݃ݎ݁݊݁ The resulting value of the objective function .ݏ 10
these cases is presented in Table 4.1. Note that in each case, all other parameters are kept constant 
at their reference values. The ‘Realistic Limit’ is used, which implies a spring force according to 
Equation 4.3.  
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Table 4.1: Sensitivity to parameters 

Case Original situation Lower mass, 
࢚࢕࢚࢓ = ૜૙૙૙ ࢍ࢑ 

Higher mass, 
࢚࢕࢚࢓ = ૚૙૙૙૙ ࢍ࢑ 

Weaker spring, 
࢑ = ૞૙૙ ࢓/ࡺ 

 264067 257425 263241 260329 (ࡶ) ࢟ࢍ࢘ࢋ࢔ࢋ

Case Stiffer spring, 
࢑ = ૚૜૙૙૙ ࢓/ࡺ 

Lower inertia, 
࢚ࡵ = ૚ ࢍ࢑ ∙  ૛࢓

Higher inertia, 
࢚ࡵ = ૚૙ ࢍ࢑ ∙  ૛࢓

Lower 
amplitude, 

|࢞ࢇ࢓ࢠ| = ૙. ૠ ࢓ 
 151500 244782 271656 256263 (ࡶ) ࢟ࢍ࢘ࢋ࢔ࢋ

Case 
Higher 

amplitude, 
|࢞ࢇ࢓ࢠ| = ૛ ࢓, 

Lower torque, 
ห࢞ࢇ࢓,ࢋࢀห = ૝૙૙ ࢓ࡺ 

Higher torque, 
ห࢞ࢇ࢓,ࢋࢀห = ૡ૙૙ ࢓ࡺ No drag force 

 269396 260661 259058 369216 (ࡶ) ࢟ࢍ࢘ࢋ࢔ࢋ

It is obvious that most of the parameters have very little to almost no effect on the GAMS result, 
concerning the extracted energy. This is because the electromagnetic torque is in GAMS a ‘free’ 
variable, in the sense that it can be given any value within the bounds, without depending on any 
other variable. Thus, GAMS can ‘compensate’ for the changes in the other forces that result from the 
parameter changes. Anyway, this is a positive conclusion, because it means that possible small 
mistakes and assumptions that have been made for the real parameters of the Symphony do not 
play any significant role in the calculation of the upper boundary for the energy that the Symphony 
can extract from a certain wave.  

The only parameter that has a serious impact on the result is the limit on the amplitude of 
oscillation. The possible energy yield increases a lot when the boundary becomes less strict, because 
then the amplitude of oscillation increases, getting closer to the optimal value. This is thus dominant 
and needs to be taken into account when the Symphony model will be up-scaled. 

4.6.2 Sensitivity to spring modelling 

For the sake of experimenting, the GAMS code is left to run with the functions of ܨ௦௣௥௜௡௚  that were 
shown in Figure 4.2 and the resulting value of the objective function is shown in Table 4.2. The 
previous Bretschneider wave with significant wave height ܪ௦ = 3 ݉ and energy period ௘ܶ௡ =  is ݏ 10
used. All other constraints, parameters and equations remain the same. It can be seen that the 
difference between the cases is insignificant concerning the extracted energy. Experiments have 
shown that the electromagnetic torque has an unstable pattern with these spring force functions, so 
it is not a good option to use them. See Figure 4.17, where the −9491 ∙ ݖ − 600 ∙  ଵହ function hasݖ
been used for the spring force. The position and velocity are fine, though.  

However, the good thing is that the resulting value of the objective function in all these cases is 
lower than the value with the assumption of a linear spring, which is as expected. Thus, the linear 
spring method can safely be used to calculate an upper energy boundary that cannot be reached 
with any control system, but can also not be surpassed for sure. 
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Table 4.2: Sensitivity to spring modelling 

Spring force function (ࡶ) ࢟ࢍ࢘ࢋ࢔ࢋ 
Linear, ࢍ࢔࢏࢘࢖࢙ࡲ = −ૢ૝ૢ૚ ∙  260329 ࢠ

ࢍ࢔࢏࢘࢖࢙ࡲ = −ૢ૝ૢ૚ ∙ ࢠ − ૚ૡ૙૙ ∙  ૚૚ 233058ࢠ
ࢍ࢔࢏࢘࢖࢙ࡲ = −ૢ૝ૢ૚ ∙ ࢠ − ૟૙૙ ∙  ૚૞ 236812ࢠ
ࢍ࢔࢏࢘࢖࢙ࡲ = −ૢ૝ૢ૚ ∙ ࢠ − ૛૙૙ ∙  ૚ૢ 239944ࢠ

 

Figure 4.17: Unstable torque pattern when using a nonlinear spring force in GAMS 

4.6.3 Sensitivity to sampling rate 

Finally, an analysis is made, to observe the sensitivity of the GAMS result to the number of samples 
that are taken from a wave. For a feasible problem with an acceptable running time in the case of 
the highest sampling (per 0.01 ݏ, which is the same as the Matlab time domain model time step), 
waves of total duration of 25 ݏ are taken. Two monochromatic waves are chosen here: a wave with 
height ܪ = 2 ݉ and period ௠ܶ = ܪ and a wave with height ݏ 10 = 2 ݉ and period ௠ܶ =   .ݏ 6

From table 4.3, it can be seen that the more samples of the wave force that are taken, the higher the 
resulting value of the objective function in GAMS becomes. This is especially obvious for the fast 
wave with a period of 6 ݏ. For waves with a much longer total duration than 25 ݏ, the differences in 
extracted energy for different sampling rates are expected to be very high. It is thus important to 
keep the sampling rate close to the Matlab time step, in order to obtain realistic and accurate results 
for the upper energy boundary. As there is only an insignificant difference between the results for 
the ‘real’ wave, which has points every 0.01 ݏ, and the results for the ‘half’ wave, sampled every 
 can safely be continued to be used in the next ݏ the previously used sampling rate per 0.02 ,ݏ 0.02
experiments. This sampling rate makes it possible to consider waves of total duration of 50 ݏ, 
otherwise, if the 0.01 ݏ rate were used, the total duration of the waves would have needed to be 
reduced to 25 ݏ. 
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Table 4.3: Sensitivity to sampling rate 

Sampling per / 
segments in GAMS 

ࡴ for (ࡶ) ࢟ࢍ࢘ࢋ࢔ࢋ = ૛ ࢓,
࢓ࢀ = ૚૙ ࢙ 

ࡴ for (ࡶ) ࢟ࢍ࢘ࢋ࢔ࢋ = ૛ ࢓,
࢓ࢀ = ૟ ࢙ 

૙. ૚ ࢙ / 251 segments 90594 74503 
૙. ૙૞ ࢙ / 501 segments 95602 99370 

૙. ૙૛ ࢙ / 1251 segments 99342 115938 
૙. ૙૚ ࢙ / 2501 segments 100797 122043 

 



47 
 

 

 

5.1 Introduction 

In the previous chapter, the theoretical potential of the Symphony was calculated. However, GAMS 
only performs an optimization process, many assumptions were made and knowledge in advance of 
the whole wave is required. It is important to see what happens in reality and this is done by 
performing simulations in the realistic Matlab time domain model. By running this model, the results 
represent the realistic behaviour of the Symphony. More specifically, information is obtained about 
the exact oscillation response to a certain wave. The values of the position, velocity, acceleration, 
electromagnetic torque, as well as of all the forces acting on the floater, can be calculated at every 
instant and plots can be made. Other quantities, such as the energy extracted from the waves or the 
energy losses, can also be calculated. Thus, experiments can be done in Matlab, to evaluate or 
regulate certain things. 

This chapter starts with an investigation about two important parameters of the controller for the 
Symphony. It is theoretically explained that only a proportional part of the PI controller should be 
used, thus no integrating part, due to an unwanted ‘memory’ effect. Also, it is experimentally proven 
that the energy should always flow only from the Symphony to the grid and not vice versa. Next, the 
most important part of this thesis is presented. The Matlab time domain model is run both for 
monochromatic and irregular waves as inputs. The realistic extracted energy, as well as the 
movement of the floater and the electromagnetic torque, are calculated and presented in tables and 
graphs. In this way, a comparison can be made with the optimal GAMS result. It is shown that the 
control system of the Symphony performs very well in all realistic sea states, because, when the 
proportional part of the controller is well tuned, the extracted energy is close to the theoretical 
maximum and the velocity of the floater is almost in phase with the wave force. Finally, a sensitivity 
analysis is made, to find out how important the impact of changes in some parameters is for the final 
result. It is shown that there is not much sensitivity to the proportional constant of the controller, 
but that the spring needs to be tuned correctly, for good results. Moreover, the Symphony can only 
keep operating without electrical components under low sea waves. 

From now on, for everything that concerns purely the Matlab model, waves with a total duration of 
 will be used, so as to obtain a better image. There is no restriction to the duration in ݏ or 200 ݏ 100
Matlab. However, when a comparison between Matlab and GAMS is made, only a duration of 50 ݏ 
will be used. 

5.2 Controller components investigation 

First of all, an investigation needs to be performed about the necessity of the integrating part of the 
PI controller, as well as about the direction in which the energy may flow. In Figure 5.1, which comes 
from the Simulink model and is a close-up view of the PI controller, the block that determines the 
direction in which the energy may flow is put at 3 different positions. Note that in reality it is put 
only in 1 of the 3 positions, but all of them are shown in the figure just to have a clear image. The 
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block has a function ݂(ݑ) which can be translated as ‘let the signal pass if the signal is bigger or 
equal than the value ܽ, otherwise make the output zero’. It is ܽ ≤ 0. This means that the value of ܽ, 
which is set by the user, determines whether the electrical machine can act only as a brake on the 
turbine (always a positive output of the PI controller, the energy can only flow from the Symphony 
to the grid) or can act both as a brake and an accelerator on the turbine (positive/negative output of 
the PI controller, the energy can flow from/to the Symphony). The signal that comes from the left of 
this figure is the energy error, which has been presented in Chapter 3, and the signal that leaves the 
figure on the right is the output of the PI controller, which will afterwards be multiplied with the 
velocity of the floater etc. To sum up, ܽ is the highest possible energy error that is allowed to pass. 
For example, if ܽ = 0, action is taken by the controller only when the energy error is positive and if 
ܽ =  .ܬ action is taken by the controller only when the energy error is more than −1000 ,ܬ 1000−
For lower values of the energy error, the output of the ݂(ݑ) block is zero. 

 

Figure 5.1: Close-up view of the PI controller, with various positions for energy flow direction 
determination block 

5.2.1 Integrating part 

To examine the impact of an integrating part, thus ܭ௜ > 0, each of the 3 possible positions of the 
 :block is analyzed (ݑ)݂

Blue position, before the PI controller: In this case, if ܽ = 0, it means that only positive error signals 
are allowed to pass to the PI controller. The output of the P-part will be sometimes zero and 
sometimes positive, but the output of the I-part will be continuously positive, with a constantly 
increasing value, due to the integrating action of a positive signal. Thus, after a certain amount of 
time, this output will be so big that it will be dominant and ‘overshadow’ the P-part. Negative error 
signals, which would normally result in no action to be taken (due to ܽ = 0), will now result in a 
strongly positive output of the PI controller, which means the generator will act as brake on the 
turbine. Thus, the amplitude of oscillation of the floater will be kept too low and the controller loses 
its function. Similar problems can occur if ܽ < 0, as negative error signals can result in a positive 
output of the PI controller or vice versa. So, it is not a good option to put the block in this position. 

Yellow position, only on the P-part: An advantage of this position compared to the blue position is 
that the error signal passes completely to the I-part, regardless of the value of the parameter ܽ. 
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However, again the controller carries a strong ‘memory’ of the past due to the integral. For example, 
let’s imagine that the energy error is negative most of the time. Suddenly a very high waves comes, 
thus the error will quickly become positive. Normally a braking action should be taken, but because 
of the strongly negative integral, an accelerating action is taken, which pushes the floater too far 
from the equilibrium position. The purpose of the control system is to act optimally on the instant 
situation, without being too much affected by past situations, especially in a stochastic, 
unpredictable environment. Thus, this position for the block is also not really desired. 

Green position, after the PI controller: In this case, parameter ܽ is not well-linked to the energy error 
anymore. The decision to brake or accelerate the turbine is taken on the basis of the output of the PI 
controller and not on the basis of the energy error. These two things can have a different sign, 
according to whether the P-action or I-action is dominant. This means that this position for the block 
is not at all a good option. 

It is thus shown that in all cases, a positive value of ܭ௜  causes a ‘memory’ effect, which disrupts the 
desired behaviour of the control system and may cause an unwanted response in the oscillation of 
the floater. Thus, for the rest of this thesis, ܭ௜ = 0 will be used. Another argument for this decision is 
that in regular PI control cases, a variable needs to reach a certain desired value as soon as possible, 
without too much overshoot. An integrating part is then used to make the error (the difference 
between the actual value of the variable and the desired value) zero in steady state. In the case of 
the Symphony, there is no parameter that needs to reach a fixed value and there is no steady state, 
especially in realistic irregular waves, as the oscillation needs to adapt constantly. 

5.2.2 Energy flow direction 

It was argued previously that there should be no integrating part (ܭ௜ = 0), thus there is no 
difference whether the ݂(ݑ) block is placed in the blue or yellow position. If the green position is to 
be used, an appropriate scaling needs to be made on the parameter ܽ, but the logic is the same. For 
ease, from now on, the block will stay on the yellow position, as can also be seen in Figure 3.2. Now, 
an investigation will be performed about the optimal value of the parameter ܽ. For this, two 
randomly chosen Bretschneider waves and one monochromatic wave, all with a duration of 100 ݏ, 
will be used. 

i) Bretschneider wave with significant wave height ܪ௦ = 2 ݉, wave energy period ௘ܶ௡ =  By :ݏ 10
temporarily setting ܽ = 0, the optimal value of ܭ௣, in other words the value for which the energy 
extraction is maximum, is found to be ܭ௣ = 0.2. This will be kept constant from now on in this 
example. Matlab is run for different values of ܽ and the values of ܧ௜௡௜௧௜௔௟ (energy output of the 
Symphony, without copper and cable losses), ܧ௖௢௣௣௘௥௟௢௦௦ ௖௔௕௟௘௟௢௦௦ܧ ,  and ܧ௙௜௡௔௟ (final energy output 
that goes to the grid) are calculated by the software. The results are shown in Table 5.1 (the same 
wave is used every time of course). Note that the more negative ܽ is, the more it is allowed for 
energy to flow from the grid to the Symphony. 
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Table 5.1: Energy output for different values of the parameter ܽ 

࢙࢙࢕࢒࢘ࢋ࢖࢖࢕ࢉࡱ (ࡶ) ࢒ࢇ࢏࢚࢏࢔࢏ࡱ (ࡶ) ࢇ  (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ (ࡶ) ࢙࢙࢕࢒ࢋ࢒࢈ࢇࢉࡱ (ࡶ) 
૙ 182237 2851 2127 177258 

−૛૙ 182237 2851 2127 177258 
−૚૞૙ 181683 2852 2128 176702 
−ૡ૙૙ 172800 2851 2090 167858 

−૚૛૙૙ 153082 3026 2186 147868 
−૛૙૙૙૙ 141067 3310 2257 135500 

It can be seen that the lower ܽ is, the lower the energy output of the Symphony is. For small 
absolute values of ܽ, there is none to very small difference. At higher absolute values of ܽ, a 
significant impact on the energy output is observed. This is clearly an undesirable situation. 

The copper losses seem to increase for lower values of ܽ. This is logical, because energy flows in two 
directions, in both of which there are losses on the internal resistance of the machine. The cable 
losses seem to be quite stable over the whole range. This indicates that the average of the absolute 
power at the converter is approximately the same. However, it is not the losses that are responsible 
for the less final energy obtained by decreasing the value of the parameter ܽ, because, firstly, they 
are very small compared to the extracted energy and, secondly, the initial energy also decreases as ܽ 
decreases. This means that, regardless of the machine and cable, letting the energy flow in both 
directions is not a good option for the Symphony. 

To understand why this happens, it is necessary to focus on the oscillation of the floater. In Figure 
5.2, the position of the floater is plotted for different values of ܽ. 

 

Figure 5.2: Position of the floater as a function of time, for different values of the parameter ܽ 
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It can be seen that, the more negative ܽ is, the more the oscillation becomes purely sinusoidal with a 
fixed amplitude of approximately 1.1 ݉, which is equal to the value of ݖ௖௢௡௧௥௢௟ , as stated in the 
Matlab script. This means that the absolute priority of the controller is to keep the energy error zero, 
by making the floater oscillate in a fixed pattern. In this way, less priority is given to the extracted 
energy, because this flows more and more in both directions. This can be seen more clearly in Figure 
5.3, where the power at the turbine ௜ܲ௡௜௧௜௔௟ = − ௘ܶ ∙ ߱௧  is plotted as a function of time, for the same 
values of ܽ as in the previous figure. Positive power means flow from the Symphony to the grid and 
negative power means the opposite. It is clear that, as ܽ becomes more negative, the power flows 
more frequently from the grid to the Symphony and it is this that causes the lower energy yield. 

 

Figure 5.3: Power as a function of time, for different values of the parameter ܽ 

ii) Bretschneider wave with significant wave height ܪ௦ = 4 ݉, wave energy period ௘ܶ௡ =  By :ݏ 10
choosing a higher wave, the same experiment is done. By temporarily setting ܽ = 0, the optimal 
value of ܭ௣  is found to be ܭ௣ = 0.2. This will be kept constant from now on in this example. The 
results of running the software are shown in Table 5.2. 

Table 5.2: Energy output for different values of the parameter ܽ 

࢙࢙࢕࢒࢘ࢋ࢖࢖࢕ࢉࡱ (ࡶ) ࢒ࢇ࢏࢚࢏࢔࢏ࡱ (ࡶ) ࢇ  (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ (ࡶ) ࢙࢙࢕࢒ࢋ࢒࢈ࢇࢉࡱ (ࡶ) 
૙ 266035 5926 4161 255947 

−૛૙ 266035 5926 4161 255947 
−૚૞૙ 265979 5926 4166 255886 
−ૡ૙૙ 253815 6014 4285 243515 

−૚૛૙૙ 247690 6080 4314 237295 
−૛૙૙૙૙ 211574 6637 4390 200545 
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The results are quite similar as previously: the lower ܽ is, the lower the energy output of the 
Symphony is. The extracted energy is of course higher than in the previous case, because the wave 
force is higher.  

 

Figure 5.4: Position of the floater as a function of time, for different values of the parameter ܽ 

 

Figure 5.5: Power as a function of time, for different values of the parameter ܽ 
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In Figure 5.4, the position of the floater is plotted for different values of ܽ. Similar observations as 
previously can be made. In Figure 5.5, the power at the turbine ௜ܲ௡௜௧௜௔௟ = − ௘ܶ ∙ ߱௧  is plotted as a 
function of time, for the same values of ܽ as in the previous figure. Positive power means flow from 
the Symphony to the grid and negative power means the opposite. It is clear that, as ܽ becomes 
more negative, the power flows more frequently from the grid to the Symphony and it is this that 
causes the lower energy yield. 

In any case, both wave examples show that it is not a good option to allow the energy to flow in 
both directions, because the energy yield decreases significantly. 

iii) Monochromatic wave with wave height ܪ = 1 ݉, wave period ௠ܶ =  This monochromatic :ݏ 7
wave is used to further prove the previous remark that a low value of ܽ implies that more focus is 
given to a fixed pattern oscillation than to the energy yield. The wave period is 7 ݏ, but the spring 
constant is not adapted, so the natural period of the Symphony remains at the standard value of 
௣ܭ The value of .ݏ 10  for this example will be arbitrarily chosen as ܭ௣ = 2. This is not important 
anyway. Only two cases are considered: for ܽ = 0, it is ܧ௙௜௡௔௟ = ܽ and for ܬ 23317 = −20000, it is 
௙௜௡௔௟ܧ =  Clearly, a low value for ܽ is not acceptable, because more energy has flown .ܬ 41349−
from the grid to the Symphony than the other way, which can be seen by the negative sign of the 
energy. The reason why this happens can be understood from Figure 5.6, where the wave force and 
the position of the floater are plotted for these two values of ܽ. The wave force is downscaled for 
visibility. 

 

Figure 5.6: Scaled wave force and position of the floater as a function of time, for different values of 
the parameter ܽ 
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At ܽ = 0, the floater oscillates with the period of the wave. This is observed by the fact that there is 
a constant phase shift between the position of the floater and the wave force. However, when ܽ is 
very negative, the period of oscillation is approximately 10 ݏ, thus not equal to the wave period 
anymore. This is observed by the constantly changing phase shift between the position of the floater 
and the wave force.  

This means that in a realistic irregular wave, the oscillation is adapted to the period of the wave only 
for ܽ = 0. This happens at the moments when the power is zero during each cycle, because then 
there is a short time interval, during which the floater gets no damping from the generator, thus the 
oscillation period becomes equal to the wave period. For lower values of ܽ, the controller has a 
tendency to keep the period of oscillation fixed at the natural period of the Symphony, regardless of 
the actual waves that are coming and have varying periods. Thus, the velocity of the floater cannot 
be kept in phase with the wave force, as would the ideal control system do, as shown by GAMS. In 
this way, the controller loses its correct function in some way, because the actual waves are not 
taken into account anymore. 

5.2.3 Conclusion 

It was shown that the best option is to not use an integrating part in the controller and to only let 
positive energy errors pass. If the energy error is negative, no action should be taken by the PI 
controller. Thus, for the rest of this thesis, ܭ௜ = 0 and ܽ = 0. The only tuning that needs to happen 
is on the proportional part of the controller, ܭ௣. 

5.3 Evaluation/optimization results for monochromatic waves 

Now that decisions have been made about the crucial components of the controller, an investigation 
can be made to find out how good this control system performs in the presence of monochromatic 
waves. For this, Matlab is left to run with various monochromatic waves that have heights and 
periods likely to occur at the location where the Symphony will be placed. These waves have a total 
duration of 100 ݏ, which is more than enough for the monochromatic case, as the sequence repeats 
itself constantly. For each of these waves, ܭ௣  is tuned to the value that maximizes the final energy 
output during these 100 ݏ. For the same waves, GAMS is also left to run for the first 50 ݏ of the 
wave and the upper boundary of the energy output is calculated by the software. Only the ‘Realistic 
Limit’ will be used in this chapter. Thus, a comparison can be made between the extracted energy in 
Matlab and GAMS, on the basis of the first 50 ݏ. Note again that GAMS does not take into account 
the idea of a controller, as it just freely assigns values to the electromagnetic torque ௘ܶ at every 
instant, within boundaries of course. Apart from the energy, the average power can also be 
calculated by the following equation: 

௠ܲ௘௔௡ =
௙௜௡௔௟ܧ

ܶ
 (5.1) 

where ܶ =  .in this case ݏ 50

The results are presented in Table 5.3. Some very important conclusions can be drawn from this. 
Firstly, the controller performs outstandingly, as in most cases the real energy output is very close to 
the energy output of the ideal controller, as calculated by GAMS. The numerical results of GAMS 
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should not be taken too strictly, due to all the assumptions and approximations, but a general idea is 
obtained as to where the optimal solution lies. Secondly, the Matlab realistic energy output 
increases at higher waves, as expected. It should be noted that, for the same wave period, the 
Matlab/GAMS ratio decreases a little bit at higher waves, but, again, this is not something that needs 
too much focus. Finally, the optimal value of ܭ௣  seems to be quite independent of the wave height, 
but slightly dependent on the wave period. As the wave period increases, the optimal value of ܭ௣  
increases. However, experiments have shown that, for a certain wave, the change in energy 
obtained is insignificant, when ܭ௣  varies between 0.5 and 3 approximately. This means that the 
optimal value of ܭ௣  that is presented in the table must also not be taken too strictly. 

Table 5.3: Matlab/GAMS comparison for monochromatic waves 

Wave parameters 
Optimal 
 for ࢖ࡷ
૚૙૙ ࢙ 

Matlab 
energy  

 (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ
for ૞૙ ࢙ 

Matlab 
average 
power 

 (ࢃ) ࢔ࢇࢋ࢓ࡼ
for ૞૙ ࢙ 

GAMS 
 (ࡶ) ࢟ࢍ࢘ࢋ࢔ࢋ

for ૞૙ ࢙ 

Matlab/GAMS 
ratio for ૞૙ ࢙ 

ܪ = 1 ݉  
௠ܶ =  %86 94124 1612 80619 0.2 ݏ 7

ܪ = 1 ݉  
௠ܶ =  %85 89731 1526 76301 0.5 ݏ 10

ܪ = 1 ݉  
௠ܶ =  %82 77962 1280 64037 1.2 ݏ 13

ܪ = 2 ݉  
௠ܶ =  %88 251223 4402 220123 0.1 ݏ 6

ܪ = 2 ݉  
௠ܶ =  %82 215340 3545 177294 0.7 ݏ 10

ܪ = 2 ݉  
௠ܶ =  %76 162807 2476 123845 2.1 ݏ 14

ܪ = 3 ݉  
௠ܶ =  %79 346328 5491 274553 0.8 ݏ 10

ܪ = 4 ݉  
௠ܶ =  %78 476984 7425 371286 0.8 ݏ 10

The previous observations can be better explained with the help of some figures made in Matlab. In 
Figures 5.7, 5.8 and 5.9, the (downscaled) wave force is plotted together with the speed of the 
floater, both for the GAMS and Matlab simulations, for three different waves. Matlab can easily read 
the GAMS results, which are stored in an Excel file. From these figures, it can clearly be seen to what 
extent the velocity of the floater in Matlab is in phase with the wave excitation force. As also seen in 
Chapter 4, the velocity in GAMS is always perfectly in phase with the wave force. The velocity in 
Matlab is very close to the GAMS velocity in all cases, concerning the phase. This remark, together 
with the values of the extracted energy, proves the outstanding performance of the control system 
in the presence of monochromatic waves. 

Another interesting remark is that there is some form of latching in GAMS, especially for higher 
waves, which can be seen by the fact that the velocity is zero for some time, twice during each cycle, 
whereas this does not occur in Matlab. This latching is needed to keep the velocity of the floater 
perfectly in phase with the wave force. GAMS can do this, because the wave is fully known in 
advance, so the floater is locked at the outmost position and released again at the right moment 
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concerning the wave. On the other hand, the realistic Matlab model relies only on present 
measurements, so there is no information as to which would be the right moment to release the 
floater.  

 

Figure 5.7: Scaled wave force, floater velocity when running GAMS and Matlab (realistic) floater 
velocity, for a monochromatic wave with ܪ = 2 ݉ and ௠ܶ =  ݏ 6

 

Figure 5.8: Scaled wave force, floater velocity when running GAMS and Matlab (realistic) floater 
velocity, for a monochromatic wave with ܪ = 2 ݉ and ௠ܶ =  ݏ 10
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Figure 5.9: Scaled wave force, floater velocity when running GAMS and Matlab (realistic) floater 
velocity, for a monochromatic wave with ܪ = 4 ݉ and ௠ܶ =  ݏ 10

 

Figure 5.10: Floater velocity and scaled electromagnetic torque, in GAMS and Matlab, for a 
monochromatic wave with ܪ = 2 ݉ and ௠ܶ =  ݏ 10
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example will be shown here, in Figure 5.10. It can be seen that there is some similarity between the 
torque that GAMS and Matlab give, as they are both approximately in counter phase with the speed. 
Both the velocity and torque are higher in GAMS and this partly explains the higher energy output. 
The most important difference is that the real torque, as calculated from Matlab, follows a smoother 
pattern than in GAMS, and this is because in Matlab the electromagnetic torque depends on the 
speed (it is equal to the controller constant, multiplied with the energy error, multiplied with the 
speed, so it follows approximately the speed pattern), whereas in GAMS the electromagnetic torque 
is just a variable, to which values are assigned, quite independently from the other variables. 

To sum up, the controller functions very well in monochromatic waves, something which was proven 
both by the energy output and by the movement of the floater. 

5.4 Evaluation/optimization results for irregular waves 

The previous section was made to gain a better understanding of the behaviour of the control 
system in the theoretical case of monochromatic waves. It is necessary to see what happens under 
realistic conditions. In Appendix B, the scatter diagram for Leixões, Portugal is presented [6]. This 
shows the probability of occurrence ܲݎ of a wave with a certain significant wave height ܪ௦ and a 
certain energy period ௘ܶ௡. For the next experiments, waves are chosen that follow the Bretschneider 
spectrum and have a set (ܪ௦, ௘ܶ௡) that has a high probability to occur. In other words, the most 
important blocks of the scatter diagram are chosen and the corresponding waves are generated by 
the Matlab model, to be used as input both in the Matlab and GAMS model. The waves that will be 
used here have a total duration of 200 ݏ, in order to draw better conclusions. For each of the chosen 
blocks in the scatter diagram, 3 wave examples will be generated, in order to have a good statistical 
sample. The parameter that needs to be tuned to its optimal value (for maximum energy) in the 
Matlab model is only ܭ௣. This is done on the basis of the full 200 ݏ wave. The results are presented 
in Table 5.4. In each example, the maximum energy that can be obtained in Matlab (at optimal ܭ௣), 
both at the total 200 ݏ and at the first 50 ݏ, the energy in GAMS at the first 50 ݏ and the ratio 
between the Matlab and GAMS energy are calculated and shown in the table. Then, for each of the 
selected blocks in the scatter diagram, thus for each set (ܪ௦, ௘ܶ௡), the mean value of ܭ௣, as well as 
the mean value of the Matlab/GAMS extracted energy ratio, are calculated, so as to have a more 
reliable overview. Note that at very low waves, ܭ௣  does not need to be tuned, because the Matlab 
result is the same for any value of ܭ௣. This is due to the switch in the controller, which was 
presented in Chapter 3. When the waves are so low, the energy error is always negative, so the 
electromagnetic torque is continuously calculated on the basis of the internal damping, not on the 
basis of the PI controller. 
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Table 5.4: Matlab/GAMS comparison for irregular Bretschneider waves 

Wave 
parameters Example # 

Optimal 
 for ࢖ࡷ
૛૙૙ ࢙ 

Matlab 
energy  

 (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ
for ૛૙૙ ࢙ 

Matlab 
energy  

 (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ
for ૞૙ ࢙ 

GAMS 
 (ࡶ) ࢟ࢍ࢘ࢋ࢔ࢋ

for ૞૙ ࢙ 

Matlab/ 
GAMS ratio 

for ૞૙ ࢙ 

௦ܪ = 0.75 ݉  
௘ܶ௡ =   ݏ 5.5

ݎܲ = 2.41% 

1 − 24843 8866 17220 51% 
2 − 21764 6374 12909 49% 
3 − 17079 2081 11196 19% 

Mean values − − − − 40% 

௦ܪ = 1.25 ݉  
௘ܶ௡ =   ݏ 6.5

ݎܲ = 10.14% 

1 0.2 123132 48926 88666 55% 
2 0.5 81452 11169 64356 17% 
3 0.4 97799 24402 81755 30% 

Mean values 0.4 − − − 34% 

௦ܪ = 1.25 ݉  
௘ܶ௡ =   ݏ 7.5

ݎܲ = 5.80% 

1 0.2 113158 9102 26346 35% 
2 0.03 140323 64763 90440 72% 
3 0.4 130102 25424 84355 30% 

Mean values 0.2 − − − 46% 

௦ܪ = 1.75 ݉  
௘ܶ௡ =   ݏ 6.5

ݎܲ = 7.04% 

1 0.06 198688 72587 138030 53% 
2 0.2 159972 20081 112191 18% 
3 0.2 170771 22714 81705 28% 

Mean values 0.2 − − − 33% 

௦ܪ = 1.75 ݉  
௘ܶ௡ =   ݏ 7.5

ݎܲ = 7.22% 

1 0.4 241320 44277 111656 40% 
2 0.3 216135 33427 95246 35% 
3 0.4 203395 33301 122744 27% 

Mean values 0.4 − − − 34% 

௦ܪ = 1.75 ݉  
௘ܶ௡ =   ݏ 8.5

ݎܲ = 5.39% 

1 0.6 259273 88134 145032 61% 
2 1.3 249611 58114 105801 55% 
3 0.5 273131 64366 120293 54% 

Mean values 0.8 − − − 57% 

௦ܪ = 2.25 ݉  
௘ܶ௡ =   ݏ 8.5

ݎܲ = 4.28% 

1 0.5 356815 66802 122918 54% 
2 0.9 363279 45056 84042 54% 
3 0.7 316938 35616 99383 36% 

Mean values 0.7 − − − 48% 

௦ܪ = 2.25 ݉  
௘ܶ௡ =   ݏ 9.5

ݎܲ = 3.78% 

1 2.2 425160 131193 179272 73% 
2 0.9 375907 49140 84555 58% 
3 2 338918 146354 216104 68% 

Mean values 1.7 − − − 66% 

௦ܪ = 2.75 ݉  
௘ܶ௡ =   ݏ 8.5

ݎܲ = 2.82% 

1 0.6 500404 110497 192406 57% 
2 0.5 429456 220134 310119 71% 
3 0.9 481828 116931 189014 62% 

Mean values 0.7 − − − 63% 

௦ܪ = 2.75 ݉  
௘ܶ௡ =   ݏ 10.5

ݎܲ = 1.88% 

1 0.5 441404 111255 163128 68% 
2 0.5 503274 84466 155820 54% 
3 1.7 441797 101195 178616 57% 

Mean values 0.9 − − − 60% 

௦ܪ = 3.25 ݉  
௘ܶ௡ =   ݏ 9.5

ݎܲ = 1.77% 

1 1.3 514146 145222 244123 59% 
2 1.2 536354 126817 206465 61% 
3 0.3 553000 118488 178596 66% 

Mean values 0.9 − − − 62% 
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௦ܪ = 3.75 ݉  
௘ܶ௡ =   ݏ 9.5

ݎܲ = 1.43% 

1 1.2 767762 228996 355598 64% 
2 2.5 670000 174748 263234 66% 
3 1.2 760434 189112 320375 59% 

Mean values 1.6 − − − 63% 

௦ܪ = 3.75 ݉  
௘ܶ௡ =   ݏ 11.5

ݎܲ = 0.70% 

1 0.2 541038 152449 241193 63% 
2 0.7 691852 137785 227218 61% 
3 0.4 677631 232683 334866 69% 

Mean values 0.4 − − − 64% 

௦ܪ = 4.25 ݉  
௘ܶ௡ =   ݏ 9.5

ݎܲ = 0.83% 

1 0.5 885637 200706 301123 67% 
2 0.2 891570 285717 425227 67% 
3 0.4 794385 180875 342435 53% 

Mean values 0.4 − − − 62% 

From these results, some significant observations can be made. The most important thing is that the 
control system of the Symphony shows a very good performance in realistic conditions. This can be 
seen from the fact that in most cases, the final extracted energy is between 50% − 70% of the 
theoretical limit, as calculated by GAMS. Of course, due to all the assumptions and approximations 
in GAMS, this percentage can be a bit lower or higher in reality. The Matlab/GAMS percentage can 
take lower values and has a lot of fluctuation at lower waves, though. At higher waves, there is more 
stability in the percentage. So, the question rises about how reliable and representative these 
percentages are. It can be seen that in many cases, especially in the cases that the percentage is low, 
the energy extracted during the total 200 ݏ is much more than four times the energy extracted 
during the first 50 ݏ. This means that the energy that can be extracted from these waves is unequally 
distributed over the whole duration, which is as expected, due to the irregularity. Also, 50 ݏ is a 
really short time to draw strong conclusions, especially when it is the beginning of the wave, because 
then the floater needs to be set in motion from standstill. If a method is found to make it possible 
for longer duration waves to be used in GAMS, the percentages are expected to rise and be more 
stable. Nevertheless, the table gives a general idea about how good the control system is, as the 
energy in Matlab and GAMS are of the same order of magnitude. Another observation is that the 
real extracted energy increases as the wave height increases, as expected, and does not really 
depend on the wave period. Finally, the optimal value of ܭ௣  seems to follow a random pattern, 
however it is always between 0.2 − 2.5 approximately. The sensitivity analysis in the next section 
will show whether these fluctuations have a large impact or not. 

To gain an even better image of the performance of the controller, some graphs are made. From all 
the previous waves, three are randomly chosen, namely example # 1 with ܪ௦ = 1.25, ௘ܶ௡ =  ,ݏ 6.5
example # 1 with ܪ௦ = 2.75, ௘ܶ௡ = ௦ܪ and example # 1 with ݏ 8.5 = 3.75, ௘ܶ௡ =  These .ݏ 11.5
examples provide a variety of wave heights and periods. For each wave, three plots are made: one 
plot that shows the downscaled wave force, the floater position in Matlab and the floater position in 
GAMS, one plot that shows the downscaled wave force, the floater velocity in Matlab and the floater 
velocity in GAMS and one plot that shows the velocity and electromagnetic torque in Matlab and the 
velocity and electromagnetic torque in GAMS. All this is shown in Figures 5.11 to 5.19. 
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Figure 5.11: Scaled wave force, floater position when running GAMS and Matlab (realistic) floater 
position, for a Bretschneider wave with ܪ௦ = 1.25 ݉ and ௘ܶ௡ =  ݏ 6.5

 

Figure 5.12: Scaled wave force, floater velocity when running GAMS and Matlab (realistic) floater 
velocity, for a Bretschneider wave with ܪ௦ = 1.25 ݉ and ௘ܶ௡ =  ݏ 6.5

0 5 10 15 20 25 30 35 40 45 50
Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po
si

tio
n 

(m
) /

 W
av

e 
fo

rc
e 

(N
)

Wave force
GAMS position
Matlab position

0 5 10 15 20 25 30 35 40 45 50
Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

Ve
lo

ci
ty

 (m
/s

) /
 W

av
e 

fo
rc

e 
(N

)

Wave force
GAMS velocity
Matlab velocity



62 
 

 

Figure 5.13: Floater velocity and scaled electromagnetic torque, in GAMS and Matlab, for a 
Bretschneider wave with ܪ௦ = 1.25 ݉ and ௘ܶ௡ =  ݏ 6.5

 

Figure 5.14: Scaled wave force, floater position when running GAMS and Matlab (realistic) floater 
position, for a Bretschneider wave with ܪ௦ = 2.75 ݉ and ௘ܶ௡ =  ݏ 8.5
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Figure 5.15: Scaled wave force, floater velocity when running GAMS and Matlab (realistic) floater 
velocity, for a Bretschneider wave with ܪ௦ = 2.75 ݉ and ௘ܶ௡ =  ݏ 8.5

 

Figure 5.16: Floater velocity and scaled electromagnetic torque, in GAMS and Matlab, for a 
Bretschneider wave with ܪ௦ = 2.75 ݉ and ௘ܶ௡ =  ݏ 8.5
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Figure 5.17: Scaled wave force, floater position when running GAMS and Matlab (realistic) floater 
position, for a Bretschneider wave with ܪ௦ = 3.75 ݉ and ௘ܶ௡ =  ݏ 11.5

 

Figure 5.18: Scaled wave force, floater velocity when running GAMS and Matlab (realistic) floater 
velocity, for a Bretschneider wave with ܪ௦ = 3.75 ݉ and ௘ܶ௡ =  ݏ 11.5
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Figure 5.19: Floater velocity and scaled electromagnetic torque, in GAMS and Matlab, for a 
Bretschneider wave with ܪ௦ = 3.75 ݉ and ௘ܶ௡ =  ݏ 11.5

It can be seen that the position and velocity of the floater are quite similar in Matlab and GAMS at 
some points and differ both in phase and magnitude at other points. The most important difference 
is that there no latching in Matlab, whereas there is some latching in GAMS. This can be explained by 
the fact that the Matlab controller only uses present inputs, whereas in GAMS the whole wave is 
known in advance, as mentioned previously too. In any case, the velocity in Matlab is mostly almost 
in phase with the wave force, which explains the good results concerning the energy output. 
Another interesting remark is that the position in Matlab is continuously within 1.2 ݉ approximately 
from the equilibrium point, thus not too far in the stiff spring region. This means that the controller 
fulfils its role well, because the point is to keep the mechanical energy of the floater equal to the 
mechanical energy that it would have in an ideal sinusoidal oscillation with an amplitude of 1.1 ݉, 
with a linear spring. This ideal situation is not achievable of course, due to the continuously changing 
irregular waves, but the controller works very well in this direction. 

Concerning the electromagnetic torque, it is clear from the figures that the torque in Matlab is quite 
lower than the torque in GAMS at many instants. This possibly partly explains the less amount of 
energy extracted by Matlab, as the instant power, − ௘ܶ ∙ ߱௧ , is lower (the Matlab floater velocity, 
thus also the angular speed of the turbine, is also a bit lower than in GAMS mostly). On the other 
hand, the electromagnetic torque in Matlab is perfectly in counter phase with the velocity of the 
floater, because these two quantities are proportional to each other, with a proportionality constant 
that depends on the energy error, of course. This is not always the case in GAMS, where arbitrary 
values can be given to the torque at each instant. Finally, another good characteristic of the 
controller is that the Matlab torque does not have a too ‘rough’ pattern, as it ‘follows’ the floater in 
some way. 
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To sum up, it can again be said that the controller functions very well in realistic irregular waves, 
something which was shown both by the energy output and by the movement of the floater. 

5.5 Sensitivity analysis 

It is important to see to what extent the changes in some parameters affect the behaviour of the 
Symphony. For this reason, a sensitivity analysis is performed. There are three parameters that will 
be examined: the linear spring constant, the value of ܭ௣  and the limits on the electromagnetic 
torque. In each of the three parameter sensitivity experiments, three randomly chosen 
Bretschneider waves from the previous section will be used, namely a wave with ܪ௦ = 1.25, ௘ܶ௡ =
௦ܪ a wave with ,ݏ 6.5 = 2.75, ௘ܶ௡ = ௦ܪ and a wave with ݏ 8.5 = 4.25, ௘ܶ௡ =  These waves .ݏ 9.5
provide a sample that covers sufficiently the range of wave heights and periods. From now on, only 
the Matlab time domain model will be used, not GAMS, so everything will be on the basis of the full 
duration of 200 ݏ. 

5.5.1 Sensitivity to the linear spring constant 

The thing that is examined here is how big the impact is on the final energy output, if the Symphony 
is not perfectly tuned to the energy period of the wave. For each of the three mentioned waves, ܭ௣  
is put and kept at the optimal value and the spring constant of the linear region is varied. All other 
parameters remain the same. By varying the linear spring constant ݇௟௜௡, the corresponding natural 
period of the mass-spring system ଴ܶ is calculated as follows: 

଴ܶ = ߨ2 ∙ ඨ
݉௧௢௧ + ݉௘௤

݇௟௜௡
 (5.2) 

The results of the sensitivity analysis are presented in Table 5.5. The green coloured boxes refer to 
the standard case for the wave under consideration. Only small variations are made in the natural 
period, because, in reality, a too bad tuning is not likely. 

Table 5.5: Sensitivity of the Symphony to the linear spring constant, for three different waves 

Spring 
constant ࢔࢏࢒࢑ 

/ natural 
period ࢀ૙ 

ૠૠ૝ૠ૞
ࡺ
࢓

 

૜. ૞ ࢙ 

૜ૠૢ૟૜
ࡺ
࢓

 

૞ ࢙ 

૛૛૝૟૜
ࡺ
࢓

 

૟. ૞ ࢙ 

૚૝ૡ૛ૢ
ࡺ
࢓

 

ૡ ࢙ 

૚૙૞૚૟
ࡺ
࢓

 

ૢ. ૞ ࢙ 

ૠૡ૝૜
ࡺ
࢓

 

૚૚ ࢙ 

Energy  
 for (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ
࢙ࡴ = ૚. ૛૞, 
࢔ࢋࢀ = ૟. ૞ ࢙ 

5286 33361 123132 139234 89810 55644 

Spring 
constant ࢔࢏࢒࢑ 

/ natural 
period ࢀ૙ 

૜૚૜ૠ૝
ࡺ
࢓

 

૞. ૞ ࢙ 

૚ૢ૜૟ૡ
ࡺ
࢓

 

ૠ ࢙ 

૚૜૚૜૟
ࡺ
࢓

 

ૡ. ૞ ࢙ 

ૢ૝ૢ૚
ࡺ
࢓

 

૚૙ ࢙ 

ૠ૚ૠ૟
ࡺ
࢓

 

૚૚. ૞ ࢙ 

૞૟૚૞
ࡺ
࢓

 

૚૜ ࢙ 

Energy  
 for (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ
࢙ࡴ = ૛. ૠ૞, 
࢔ࢋࢀ = ૡ. ૞ ࢙ 

135115 393934 429456 455356 432423 380591 
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Spring 
constant ࢔࢏࢒࢑ 

/ natural 
period ࢀ૙ 

૜ૠૢ૟૜
ࡺ
࢓

 

૞ ࢙ 

૛૛૝૟૜
ࡺ
࢓

 

૟. ૞ ࢙ 

૚૝ૡ૛ૢ
ࡺ
࢓

 

ૡ ࢙ 

૚૙૞૚૟
ࡺ
࢓

 

ૢ. ૞ ࢙ 

ૠૡ૝૜
ࡺ
࢓

 

૚૚ ࢙ 

૟૙ૠ૝
ࡺ
࢓

 

૚૛. ૞ ࢙ 

Energy  
 for (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ
࢙ࡴ = ૝. ૛૞, 
࢔ࢋࢀ = ૢ. ૞ ࢙ 

156799 552551 810061 891570 899816 898259 

It is clear that there is a significant impact on the energy output, when the spring is not well tuned to 
the energy period of the incoming wave, especially at low and fast waves. For a good performance of 
the Symphony, the natural period of the device should not differ more than 2 ݏ approximately from 
the energy period of the wave. Resonance is thus an important feature of the Symphony that needs 
to be taken into account as much as possible in real operating conditions. Another special remark 
from the table is that the energy output is less affected when the Symphony is tuned to a higher 
natural period than the energy period of the wave, compared to when the Symphony is tuned to a 
lower natural period than the energy period of the wave. In all examples, there is even a small 
increase in the energy output at a bit higher natural periods, compared to the energy output at the 
standard case. This can be explained by the fact that the power that can be extracted from a certain 
wave increases when the wave period increases [9]. Thus, by tuning the Symphony to a higher 
natural period, more significance is given to the slower components of the whole Bretschneider 
wave, which contain more energy. Thus, it is better to be tuned to a too high natural period than to 
a too low one. Of course, the optimal tuning is to the energy period of the incoming wave. 

5.5.2 Sensitivity to Kp 

Here, an examination is performed as to how much the energy output of the Symphony is affected 
by variations in the value of the proportional constant of the controller, ܭ௣. All other parameters 
remain at their standard values. The results of the sensitivity analysis are presented in Table 5.6. The 
green coloured boxes refer to the standard case for the wave under consideration. A range of ܭ௣  
between 0.01 − 3 is used, because, as seen from the results in Section 5.4, this is the normal range 
for optimal values of ܭ௣. 

 

Table 5.6: Sensitivity of the Symphony to ܭ௣, for three different waves 

.૙ ࢖ࡷ ૙૚ ૙. ૙૞ ૙. ૚ ૙. ૛ ૙. ૟ ૚. ૚ ૚. ૞ ૛ 
Energy  

 for (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ
࢙ࡴ = ૚. ૛૞, 
࢔ࢋࢀ = ૟. ૞ ࢙ 

105578 120621 122848 123132 121963 121201 120811 120438 

.૙ ࢖ࡷ ૙૜ ૙. ૙ૡ ૙. ૝ ૙. ૢ ૚. ૞ ૛ ૛. ૞ ૜ 
Energy  

 for (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ
࢙ࡴ = ૛. ૠ૞, 
࢔ࢋࢀ = ૡ. ૞ ࢙ 

408871 441716 479976 481828 481136 480436 479785 479197 

.૙ ࢖ࡷ ૙૞ ૙. ૙ૠ ૙. ૛ ૙. ૞ ૙. ૢ ૚. ૜ ૚. ૢ ૛. ૜ 
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Energy  
 for (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ
࢙ࡴ = ૝. ૛૞, 
࢔ࢋࢀ = ૢ. ૞ ࢙ 

863811 864165 874204 885637 880209 875052 869999 867707 

It can be seen that the energy output remains quite stable in most of the range of ܭ௣  under 
consideration, for all three wave examples. The differences are insignificant. This shows once more 
that the control system for the Symphony is very good, as it makes the device operate well, 
regardless of the variations is ܭ௣, the optimal value of which, as shown previously, follows a random 
pattern. Thus, a value for ܭ௣  somewhere between 0.2 − 2.5 can be chosen without problems, as any 
of the exact numbers in between this range will give, for a certain wave, an energy output that does 
not differ significantly from the maximum possible energy output (at optimal ܭ௣). The exact 
numerical choice is a subject of further research and can be made when the necessary hardware for 
the controller will be designed. 

5.5.3 Sensitivity to the electromagnetic torque 

Finally, an analysis is performed to see how much the energy output of the Symphony is affected by 
the lower and upper limits of the electromagnetic torque ห ௘ܶ,௠௔௫ห. The electrical machine that has 
been chosen now can give a torque ௘ܶ between −546 ܰ݉ and 546 ܰ݉. It is interesting to examine 
how the Symphony would perform with a less powerful machine or what would happen in case of 
failure of the electrical parts, thus when there is no torque at all. All other parameters remain at 
their standard values. The results of the sensitivity analysis are presented in Table 5.7. The green 
coloured boxes refer to the standard case for the wave under consideration. Only lower values of 
ห ௘ܶ,௠௔௫ห will be examined, because experiments have shown that the current limits of ±546 ܰ݉ are 
almost never reached, thus there would be no difference with a more powerful machine. Apart from 
the extracted energy, also the maximum distance from the equilibrium point that the floater reaches 
is presented, to see if the floater does not go too far, with this less electromagnetic torque, thus less 
PTO force, to stop it. 

 

 

 

Table 5.7: Sensitivity of the Symphony to ห ௘ܶ,௠௔௫ห, for three different waves 

ห࢞ࢇ࢓,ࢋࢀห (࢓ࡺ) ૞૝૟ ૝૞૙ ૜૙૙ ૚૞૙ ૚૙૙ ૞૙ ૙ 
Energy  

 for (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ
࢙ࡴ = ૚. ૛૞, 
࢔ࢋࢀ = ૟. ૞ ࢙ 

81452 81452 81452 81452 81256 78694 0 

Maximum 
position 

 (࢓) |࢞ࢇ࢓ࢠ|
1.12 1.12 1.12 1.12 1.12 1.23 1.47 

ห࢞ࢇ࢓,ࢋࢀห (࢓ࡺ) ૞૝૟ ૝૞૙ ૜૙૙ ૚૞૙ ૚૙૙ ૞૙ ૙ 
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Energy  
 for (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ
࢙ࡴ = ૛. ૠ૞, 
࢔ࢋࢀ = ૡ. ૞ ࢙ 

481828 481828 486884 514708 0 0 0 

Maximum 
position 

 (࢓) |࢞ࢇ࢓ࢠ|
1.17 1.17 1.24 1.88 STOP STOP STOP 

ห࢞ࢇ࢓,ࢋࢀห (࢓ࡺ) ૞૝૟ ૝૞૙ ૜૙૙ ૚૞૙ ૚૙૙ ૞૙ ૙ 
Energy  

 for (ࡶ) ࢒ࢇ࢔࢏ࢌࡱ
࢙ࡴ = ૝. ૛૞, 
࢔ࢋࢀ = ૢ. ૞ ࢙ 

885637 889990 0 0 0 0 0 

Maximum 
position 

 (࢓) |࢞ࢇ࢓ࢠ|
1.24 1.29 STOP STOP STOP STOP STOP 

It can be seen that at all waves, lowering the torque limit only a bit has no significant impact or no 
impact at all on the behaviour of the Symphony. This is more clear at low waves, because there the 
maximum electromagnetic torque that is reached during operation is far below the limit in any case, 
so only when the limit becomes very low, an impact is observed. Then, by lowering the limit a bit 
more, there is a difference in the extracted energy, as well as an increase in the maximum position 
that the floater reaches. As the machine cannot provide enough torque anymore to keep the floater 
in the linear spring region, the floater reaches well into the stiff spring region due to the wave force 
that is responsible for its motion. This increase in the outermost position causes higher speeds, so 
this explains the increase in energy extraction that is observed, especially in the second example. 
After some point in lowering the limits, the electromagnetic torque that the machine can provide is 
too low to keep the floater within the acceptable bounds of ±2 ݉, so the simulation stops. This is 
the meaning of the ‘STOP’ result. This effect is larger for higher waves of course, because they tend 
to push the floater further from the equilibrium point, due to the higher wave force. Only at low 
waves can the Symphony keep functioning without electromagnetic torque to act as a brake. 
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6.1 Introduction 

This chapter sums up the basic results and observations from this thesis. Firstly, the major 
conclusions are drawn. These concern the spring tuning, the method and results concerning the 
theoretical optimal case, the parameters of the controller, the realistic simulation results and the 
sensitivity analysis. Then, suggestions are given for future work, concerning the hardware to be 
developed, possible improvements in the controller and in the GAMS code and the usage of the 
correct form of the radiation force. 

6.2 Conclusions 

In this thesis, an important analysis was made about the control system of the Symphony Wave 
Power Device. The target was to extract as much energy as possible from the incoming waves and 
convert it into electrical energy. From the whole report, there are six major conclusions that can be 
drawn. They will be presented here in the same order as in the report. 

6.2.1 Spring tuning 

First of all, an important observation is that the turbine, because of its high inertia, which can be 
translated to an equivalent mass, increases significantly the total mass of the moving parts of the 
Symphony, which are in fact a mass-spring-damper system. This needs to be taken into account in 
the design of the membrane and in the determination of the air pressure in the chamber, as these 
affect the spring constant. In this way, the device can keep its natural frequency equal to a desired 
value. 

6.2.2 GAMS modelling 

Secondly, it is possible to determine the behaviour of a practically perfect controller for the 
Symphony, in terms of energy extraction from the waves, with the help of the GAMS optimization 
software. However, as there are significant nonlinearities in the forces that act on the floater, many 
assumptions and approximations are needed to model these forces in GAMS. More specifically, the 
spring force, drag force and iron loss torque are approximated by linear or polynomial functions. 
Also, mean values are taken for the relation between the velocity or acceleration of the floater and 
the angular velocity or angular acceleration of the turbine, respectively. Moreover, a sampling is 
needed and only short duration waves can be used, in order to have a feasible problem and 
acceptable running time. All these assumptions have as a result that an exact calculation of the 
maximum energy that can be extracted from a certain wave is not possible, however upper 
boundaries can be put and a satisfying idea is obtained as to where the optimal solution lies. 
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6.2.3 GAMS results 

Thirdly, the results of the optimization procedures with GAMS show that, in the ideal case, the 
velocity of the floater is kept constantly in phase with the wave excitation force, something which 
has also been discussed in the literature. This is thus a goal towards which a good control system 
should strive. The reason why this is easily possible in GAMS is because this software ‘knows’ the 
whole wave in advance, which is not the case in most realistic conditions, unless a prediction 
method is being used. Also, the GAMS results show that the only factor to which the theoretical 
boundary is really sensitive, is the allowed amplitude of oscillation. This should thus be taken into 
account in a larger model of the Symphony. Finally, if sampling is performed on the wave, it is 
necessary to have a high enough sampling rate. 

6.2.4 Controller parts 

Concerning the actual controller, based on the concept of an energy error, that is being used for the 
Symphony, an important conclusion is that only a proportional part should be used, as an integrating 
part would make it quite unreliable. Also, the energy must flow only from the Symphony to the grid 
and not the other way, otherwise the extracted energy decreases significantly. Moreover, the 
copper losses of the electrical machine, as well as the losses on the cable that goes to shore, are 
insignificant for the whole performance, but should be taken into account in the calculations. 

6.2.5 Matlab results 

By conducting simulations in the Matlab time domain model, the most important conclusion for this 
thesis can be drawn. This is that the actual controller performs very well in all sea states that are 
likely to occur at the location where the Symphony will be placed. The extracted energy from 
realistic irregular waves reaches up to 70% of the upper boundary, as calculated by GAMS. The 
controller manages to keep the oscillation of the floater close to the desired pattern, in the linear 
spring region. Additionally, the velocity of the floater is kept almost in phase with the wave 
excitation force. Moreover, the electrical generator provides a quite smooth electromagnetic torque 
pattern and the limits are not reached most of the time. Thus, it is a very good idea to keep this 
control system for the Symphony. 

6.2.6 Sensitivity 

Finally, a sensitivity analysis, which has also been performed with the help of the Matlab time 
domain model, provided an important insight for some parameters. The spring needs to be properly 
tuned to the energy period of the incoming waves, for optimal energy extraction. On the other hand, 
the proportional constant of the controller can be tuned in a wide range without problems. Also, the 
Symphony can keep operating in case of electrical failure only if the waves are sufficiently low. 

6.3 Recommendations 

From this thesis, it can be seen that a considerable amount of work has been done on the 
Symphony, mainly in the area of the control system. However, there are still a variety of things that 
need to or can be done, before the device is actually placed in the sea and starts providing 
renewable energy. Here, some suggestions for further work are given, which can be put into certain 
categories. 
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6.3.1 Hardware 

All the experiments and results so far have only been based on computer simulations with the 
appropriate software. Thus, the most important recommendation is to develop the necessary 
electronic hardware for the controller and the converter. The controller takes as inputs the position 
and velocity of the floater and the angular velocity of the turbine, so the appropriate sensors need 
to be chosen, too. It would be better to develop this hardware when the Symphony will be fully 
built, so that realistic tests can be made. Then, other parameters, such as the energy losses or 
imperfections of the converter, can also be taken into account, in order to obtain a better image of 
the performance of the controller. 

6.3.2 Other control systems 

This thesis has shown that the particular control system, which makes use of an energy error, 
performs very well. This does not mean that there is not an even better solution. It is theoretically 
possible to develop a control system that will extract even more than 70% of the theoretical energy 
limit, as calculated by GAMS. Various methods can be used for this, with the help of the available 
literature. Latching control, thus keeping the floater in its outmost positions for some time during 
each cycle, is a good option to test. In any case, it is most likely that some kind of prediction of 
future values of the wave elevation/force will be needed to achieve these higher percentages of the 
theoretical maximum. This can be done either by a measurement device at some distance from the 
Symphony, such as a floating buoy, or by mathematical methods, such as model predictive control. 

6.3.3 GAMS improvements 

Another useful recommendation is to improve the GAMS code, so as to obtain even more realistic 
results concerning the calculation of the upper limit of energy that can be extracted from a certain 
wave. This includes finding better functions to represent the spring force, drag force and iron loss 
torque, not just polynomial approximations, implementing the dependence of the ఠ೟

௭೏
 ratio on the 

position of the floater and using the real equation for the calculation of the cable losses, not just 
assuming 2% in all cases. Also, waves of longer duration than 50 ݏ should be used, to make a better 
comparison with the realistic Matlab model. For this, it will be necessary to find a way to make 
GAMS able to run with far more than 2501 time segments, as has been done now. This could include 
either making some more assumptions about the forces or using other available GAMS tools, which 
have not been explored in this thesis. In this way, the Matlab/GAMS ratios of extracted energy will 
be closer to reality and can possibly rise. Additionally, if other parameters or factors of the 
Symphony are to be taken into account in future work, they can also be added to the GAMS model 
easily. Finally, this GAMS model can even be used for optimization problems of other wave energy 
devices than the Symphony, if the necessary modifications are made in the code, of course. 

6.3.4 Radiation force 

Last but not least, the radiation force plays an important role in wave energy devices, as seen in the 
literature. It is difficult to be modelled and taken into account in the control system, because it 
contains an integral that carries a ‘memory’ effect. Now, this force was approximated only by an 
added mass and a hydrodynamic damping, because of the relatively small size of the Symphony. 
When, however, the Symphony will be scaled up, the full form of this force will need to be used and 
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implemented in the time domain model. This could bring up new challenges that will have to be 
tackled. 
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A. The GAMS code 

Here, the developed GAMS code for this thesis is presented. Everything after a * symbol is viewed as 
a comment. The way it is presented here, the Bretschneider wave with significant wave height 
௦ܪ = 3 ݉ and wave energy period ௘ܶ௡ =  is read from the first Excel file (beginning) and only ݏ 10
the wave force is written on the second Excel file (ending). 

$title wave 
sets 
t time segments /t1*t2501/ 
 
$CALL GDXXRW Monochromatic_GAMS.xlsx Set=t rng=AG2:AG2502 Rdim=1 Set=a 
rng=AH1:AH1 Cdim=1 Par=x rng=AG1:AH2502 Rdim=1 Cdim=1 
*Monochromatic H=3 T=10 
*Necessary commands to read from the Excel file 
 
$GDXIN Monochromatic_GAMS.gdx 
Set a(*); 
$LOAD a 
Parameter x(t,a); 
$LOAD x 
$GDXIN 
 
scalar 
m "total mass" /6520/ 
c "hydrodynamic damping" /25/ 
k "linear spring constant" /9491/ 
It "turbine inertia" /4.8715/; 
 
variables 
energy total energy extracted 
z(t) position 
zd(t) velocity 
zdd(t) acceleration 
fpto(t) pto force 
Te(t) electromagnetic torque 
y(t) wave force just for calculation; 
 
z.lo(t)=-1.3; 
z.up(t)=1.3; 
*Position limits 
 
z.fx('t1')=0; 
zd.fx('t1')=0; 
zdd.fx('t1')=0; 
*Fixed values for t=0 
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Te.lo(t)=-546; 
Te.up(t)=546; 
*Torque limits 
 
equations 
cost objective function 
vel(t) velocity calculation 
acc(t) acceleration calculation 
force(t) force balance 
pto(t) pto force calculation 
calculation(t) check equation; 
 
cost.. energy=e=0.02*0.98*sum(t,-Te(t)*59.971*zd(t)-
0.004531283*power(Te(t),2)); 
vel(t)$(ord(t) gt 1).. zd(t)=e=(z(t)-z(t-1))/0.02; 
acc(t)$(ord(t) gt 1).. zdd(t)=e=(zd(t)-zd(t-1))/0.02; 
force(t).. m*zdd(t)=e=-k*z(t)-
0.9961589168568*power(zd(t),7)+20.9262987445565*power(zd(t),5)-
217.3838722964995*power(zd(t),3)+257.013694990181*power(zd(t),2)-
177.9187064039331*zd(t)-c*zd(t)+x(t,'a1')+fpto(t); 
pto(t).. fpto(t)=e=-59.971*(59.971*zdd(t)*It-Te(t)-
4.170293771684*power(zd(t),3)+23.613697449688*zd(t)); 
calculation(t).. y(t)=e=x(t,'a1'); 
 
model owf /all/; 
 
option minlp=sbb; 
option nlp=snopt; 
 
option iterlim=1e9; 
option reslim=1e9; 
 
owf.optfile=1; 
owf.workspace=1000; 
*Necessary options for good code running 
 
solve owf using minlp maximizing energy; 
 
display energy.l,z.l,zdd.l,zd.l,y.l,Te.l; 
 
execute_unload "Results_GAMS.gdx" y.l z.l zd.l Te.l 
 
execute 'gdxxrw.exe Results_GAMS.gdx o=Results_GAMS.xlsx var=y.l 
rng=Bretschneider_3m_10s!B3:CRF4' 
*Necessary commands to write on another Excel file 
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B. Scatter diagram 

Here, the scatter diagram for the location where the Symphony will be placed, namely Leixões, 
Portugal, is presented. This diagram gives the probability of occurrence of a wave with a certain 
significant wave height ܪ௦ and a certain energy period ௘ܶ௡. 

 


