
A Comparative Information
Visualization Approach to

Physically-Based Rendering

Master’s Thesis

Gerard Simons

A Comparative Information
Visualization Approach to

Physically-Based Rendering

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Gerard Simons
born in Weert, the Netherlands

Computer Graphics and Visualization Group
Department of Intelligent Systems
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Karlsruhe Institute of Technology
Hermann-von-Helmholtz-Platz 1

76344 Eggenstein-Leopoldshafen
Karlsruhe, Germany

www.kit.edu

www.ewi.tudelft.nl
www.kit.edu

c©2005 Gerard Simons. All rights reserved.

A Comparative Information
Visualization Approach to

Physically-Based Rendering

Author: Gerard Simons
Student id: 1358413
Email: g.j.c.simons@student.tudelft.nl

Abstract

In this work we present a novel information visualization framework to gain in-
sight into the light transport in a physically-based rendering setting. The framework
consists of a sampling-based data reduction technique, an extended interactive parallel
coordinates plot that provides an overview of the attributes linked to each light sample,
2D and 3D heat maps to represent different aspects of the rendering process, as well as
a three-dimensional view to display and animate the light path transportation through-
out the scene. Furthermore the interactivity of the visualizations enables users to guide
the rendering process. We show several applications that make use of the presented
framework, including differential light transport visualization to optimize lighting in
a scene, thereby improving the rendering times when changing scene properties and
finding and resolving rendering bottlenecks.

Thesis Committee:

Chair: Prof. Dr. E. Eisemann, Faculty EEMCS, TU Delft
University supervisor: Prof. Dr. M. Eisemann, Cologne University of Applied Sciences
Committee Member: Dr. K.V. Hindriks, Faculty EEMCS, TU Delft

g.j.c.simons@student.tudelft.nl

Preface

This work before you today is the culmination of my research done over the past year. It
would not have been possible without the participation of several key individuals.

First I want to thank Elmar Eisemann for making this thesis and my trip to Karlsruhe
possible. This brings me to Carsten Dachsbacher, who was very welcoming and kind in
receiving me for my stay in Karlsruhe and in getting me started. I also want to thank Marco
Ament and David Koerner, who helped me out in orienting on the problem at the start.
David, together with Sebastian Herholz were also great as reviewers of my thesis and in
generating new exciting ideas.

Undoubtedly, most of my thanks should go to Martin Eisemann, who was able to take
the time to meet with me through Skype almost every week and provide valuable feedback
on almost every aspect of the work involved. I am incredibly grateful for his effort, and will
surely miss our weekly meetings.

Gerard Simons
Delft, the Netherlands

June 5, 2015

iii

Contents

Preface iii

Contents v

List of figures vii

1 Introduction 1

2 Related Work 3
2.1 Physically-Based Rendering . 3
2.2 Information Visualization . 4
2.3 Visualization of Light Transport . 5

3 Overview 7
3.1 Data . 7
3.2 Data Reduction . 9
3.3 Parallel Coordinates Plot . 11
3.4 Render View . 13
3.5 Scene View . 15
3.6 User-guided Rendering . 18

4 Results 21
4.1 Light Distribution . 21
4.2 Light Transportation . 22
4.3 Gizmo . 23
4.4 User-guided Rendering . 24
4.5 Incremental Rendering . 26
4.6 Finding Rendering Bottlenecks . 27
4.7 Firefly Detection . 30

5 Conclusion and Future Work 33

v

CONTENTS

Bibliography 35

6 Glossary 39

7 Process & Implementation 41

vi

List of figures

2.1 (a) shows a 2D scatterplot, (b) a 3D scatterplot and finally (c) shows the same
data depicted in a parallel coordinates plot. 5

2.2 (a) shows the popular - but ineffective - rainbow color map. (b) shows a diver-
gent color map, and (c) shows the hot body color map 5

3.1 A schematic overview of path-tracing showing how a path starting from the eye
is reflected and refracted through the scene. 8

3.2 How parallel coordinates plots suffer from overdrawing when too many ele-
ments are added. (a) is a parallel coordinates plot with 500,000 data points and
(b) a parallel coordinates plot with 5,000 data points. 9

3.3 (a) shows the true distribution and its histogram, (b) and (c) are two inde-
pendent samples from the dataset in (a), where the data in (c) matches the
distribution in (a) most closely. 10

3.4 How brushing works in a parallel coordinates plot. In (a) we see all the data
displayed. in (b) we have clicked and dragged on an axis to brush some of the
data whose lines pass through the area indicated by red. (c) increases the size
of the brushed area, and as such the number of data points to be displayed. . . . 11

3.5 The parallel coordinates plot (marked in yellow) along with the other views :
the render views, marked in red and blue (the markings correspond to the colors
used in the parallel coordinates plot), and the scene view (highlighted in green).
(a) shows all the data associated, where in (b) we have brushed light paths
whose energy has a strong green component (indicated by the red rectangle on
the axis). 12

3.6 Heat map visualizations of the image-based distributions. Here the throughput,
depth, average radiance and selection are visualized in (a) - (d). 14

3.7 A diagram demonstrating the light path animation. Each red line segment indi-
cates a specific point in time as it is animated across its entire trajectory (indi-
cated by the dashed line). 15

3.8 The animation of light paths starting from a light source. (a)-(c) shows three
still frames of the light paths as they reflect of the wall unto the plant. 16

vii

List of figures List of figures

3.9 3D heat map visualization of the energy distribution in two scenes. (a) shows
the scene with a reflective wall, (b) without this wall and c) visualizes the dif-
ference in energy for these two scenes. The colored borders around (a) and (b)
correspond to the colors used in (c). 17

3.10 A simple example demonstrating how gizmos are able to select paths intersect-
ing with it. (a) displays all light paths, whereas (b) displays only those light
paths that intersect with the gizmos (the red and blue cubes).) 18

3.11 The incremental rendering technique applied to the Cornell box scene where
the tall box is added in the second scene. (a) displays the radiance difference
distribution which acts as a sampling distribution for new rays, (b) shows the
input image, a rendered image of the scene without the tall box. (c)-(e) shows
the result of our incremental rendering technique at 2,4 and 8 samples per pixel
respectively. (f) shows a naive blending of the two images with 8 samples per
pixel, as a comparison. 19

4.1 A 3D heat map visualization of two different lighting settings. The top row
shows a scene with two large light sources, whereas the bottom row shows the
result for five smaller light sources. (a) and (b) shows the rendered result, and
(c)-(f) the visualization of the energy distribution. 22

4.2 The greenhouse scenario where we use our tool to find the best placement for an
additional reflector. (a) displays the parallel coordinates plot with blue mark-
ings indicating the data brushing that was used. (b) and (f) shows the two
different scenarios, one with the additional reflector. (c) shows the intersec-
tion points of the paths selected by brushing by the parallel coordinates plot
and (d),(e),(g),(h),(i) shows the animation of the light paths with (blue) and
without (red) the reflector . 23

4.3 The use of gizmos to compare two possible candidate positions for a plant. (a)
displays the data associated with each gizmo. (b) - (e) shows the animation of
the paths interacting with the gizmo. 24

4.4 An example application of our user-guided rendering technique. (a) shows the
sampling distribution used to guide the rendering based on light paths whose
shadow rays intersect the glass sphere. (b) shows the result using a uniform
sampling strategy with 2048 samples per pixel, whereas (c) uses our user-
guided rendering technique, where 1024 samples were generated uniformly and
1024 samples using the distribution in (a). (c) shows a reference image using
uniform sampling with 16,834 samples per pixel. Several color-coded insets
are added and annotated with their MSE and SSIM results. 25

4.5 The steps involved when applying the incremental rendering technique to a
more complex scene. (a) shows the input image, where the red teapot is not
present. (b) is the rendered result of the new scene using only one sample per
pixel. (c) is a visualization of the (smoothed) difference in radiance when the
teapot is added. (d) is the result when sampling another 32 samples per pixel
according the radiance difference distribution. 26

viii

List of figures List of figures

4.6 A comparison between different parameterizations of the incremental render-
ing technique with uniformly sampled results. The first three columns show the
result of our technique with weights of 8,64 and 512 respectively after 32 sam-
ples, whereas the last two columns display the results for a uniformly sampled
rendering with 32 and 2048 samples respectively. Two graphs showing how the
MSE (a) and SSIM (b) metrics develop according to the number of samples
used per pixel are given an the bottom of the figure. 28

4.7 Using our heat map visualizations and path animation to find rendering bottle-
necks. (a) shows how the parallel coordinates plot was used to brush the data
about light paths that have a considerable amount of throughput and depth. (f)
and (g) shows the animation of these paths. (b) and (c) shows the average
depth of the scene with a glass lamp and a diffuse lamp, respectively. (d) and
(e) similarly shows the throughput of these two scenes. 29

4.8 Collecting and animating high-energy paths to determine possible causes of
fireflies. (a) shows the result of brushing light paths that are very bright. (b)
shows the selection distribution in the image view of these paths. (f)-(h shows
the animation of these paths (c) and (d) show the rendered result using 1024
samples per pixel with and without the changes in material, with two color-
coded insets. 31

ix

Chapter 1

Introduction

Physically-based rendering algorithms are able to synthesize realistic images of astonishing
beauty that are difficult to distinguish from actual photographs. While the theory of light
transport is well understood, and despite recent advancements, the complexity of a render-
ing task may lead to computation times ranging from minutes to hours or even days for a
single image. This makes it especially difficult for designers, architects and engineers to
quickly observe how changes to the scene, such as adding or removing objects, or changes
in the lighting or materials affect the light transport and how this eventually influences the
final appearance of the image and the computation time of the rendering algorithm. In other
scientific fields such as biology, visualizing light distribution has some concrete practical
applications, for example in determining how light is distributed between different lighting
settings so as to optimize the lights received by plants, which is important for photosynthe-
sis.

Although various visualization approaches to light transport have been developed, we
do not know of any that incorporate general information visualization techniques which also
allows a user to interact with the rendering process.

Recently, it has been shown how visualization techniques can increase scene under-
standing and the productivity of users faced with global illumination tasks [21]. Specialized
visualization tools, mostly based on light probes, provide local insight into the light trans-
port, how certain caustics are created and how much light is reached in a certain position.
The use of general and established visualization tools for rendering tasks is a research area
still in its infancy, but with promising initial results for rendering tasks such as parameter
optimization in photon mapping relaxation algorithms [1] or for debugging of rendering
systems [14].

Specifically, challenges faced by engineers such as finding out how light is distributed,
what the effect of certain objects is on the light distribution are questions we would like
to address. Other challenges include finding parts of the scene that require an inordinate
amount of computation time, called rendering bottlenecks or finding sources that cause a
significant amount of noise in the final image. Enhancing a user’s control over the rendering
process in order to improve the convergence is another challenge we want to address. We
feel that all these issues essentially stem from a lack of control and feedback in current ren-
derers. We aim to provide both of these qualities by augmenting a state-of-the-art renderer

1

Introduction

with interactive visualization tools.
To summarize, the main research questions this thesis addresses are:

• Can information visualization techniques improve the understanding of light trans-
port?

• Can these visualization techniques be used to guide and improve the rendering pro-
cess?

The main contribution to be made by this work is a comparative light path visualiza-
tion framework intended to improve the users understanding of the light transport within a
single scene and between different scenes. Our framework is also able to give a rapid and
comprehensive feedback to the user with only a fraction of the samples usually required
for a full render. These samples, which do not only contain the usual attribute of color, but
also additional relevant data, may be used for visualization purposes, but may also be used
to guide the rendering process. We make use of several general information visualization
techniques, such as parallel coordinate plots [8], with established interaction metaphors like
brushing and subset selection [25]. The parallel coordinates plot is used to summarize data
and enable quick user interaction. We also offer various 2D and 3D heat map visualiza-
tions that displays how information such as radiance, throughput and depth are distributed
throughout a scene. Furthermore a 3D view was conceived that allows a user to brush cer-
tain path trajectories and animate them to gain insight into how light is propagated. We have
placed additional emphasis on visualizing the differences of the data generated by two ren-
der instances. Finally, we will see how these various interaction techniques may guide the
rendering and we demonstrate an especially powerful rendering technique called incremen-
tal rendering, where rendering is focused according to the difference in radiance distribution
between two scenes.

2

Chapter 2

Related Work

Our work combines visualization techniques with state-of-the-art Monte Carlo rendering
techniques, which means that the related work falls within these two categories. Because
both fields are vast, we will only discuss the most relevant work done in each field in this
section.

2.1 Physically-Based Rendering

Simulating real-world light transport involves solving the rendering equation [10] which is
a comprehensive and very elegant description of the visually most important light-matter
interactions:

Lo(x,ωo) = Le(x,ωo)+
∫

Ω

fr(x,ωi,ωo)Li(x,wi)(ωi ·~n)dωi (2.1)

This is a slightly simplified version (omitting the wavelength and time parameter),
which describes the outgoing radiance Lo at position x into direction ωo, consisting of the
emitted light Le at position x and the reflected incoming light at x, which is described as the
integral over all sampling directions. Here, fr is the bidirectional reflectance distribution
function (BRDF) and Li is the incoming light from direction ωi scaled by the cosine of the
angle between ωi and the surface normal n at x.

Unfortunately, solving this equation analytically is considered impossible for non-trivial
scenes, which is why sampling techniques such as Monte Carlo (MC) [5] are used to approx-
imate the integral by taking point samples based on an appropriate probability distribution
function. One popular way of doing so is by using path-tracing algorithms, where rays are
shot from the eye to compute the final color value of a pixel. Another important improve-
ment called bi-directional path-tracing was made where rays were not only shot from the
eye, but also from the light source, which could increase the rate of convergence [12].

Despite the slow convergence of Monte Carlo rendering techniques, they proved to be
more or less efficient for most scenes. Nevertheless, alternatives to solving the rendering
equations were proposed, such as the photon mapping algorithm [9]. Photon mapping sim-
ulates the light transport by imitating real photons within the scene, which is beneficial for

3

2.2 Information Visualization Related Work

effects such as caustics, caused by light reflected or refracted at curved surfaces. Algorithms
based on Metropolis Light Transport [28] apply local mutations to the light paths to improve
the convergence in complex lighting situations.

The complexity of the light path simulations requires high amounts of computational
power to synthesize the final image. Since publishing their seminal work [29], the according
renderers have become highly efficient [30] but are still far from real-time for complex
scenes. This poses a problem to designers who want to optimize their scene before it is fully
rendered. Whenever changes to the scene or viewpoint are applied a costly re-rendering is
required. Our solution can visualize the main differences within a scene with a fraction of
the required samples, providing a much faster feedback mechanism, which also contains
more information than would be usually visible from a rendered result.

EMBREE [30] is a renderer employing various Intel-specific optimizations in order to
significantly reduce the computational cost per ray traced. Other advancements seek to
reduce the number of required paths for a suitable result. Adaptive importance sampling
[19] was an important work in trying to allocate sampling according to the regions of the
image which maintained the greatest variability. Another interesting approach proposed a
path re-using algorithms where paths do not contribute to a single pixel but rather to multiple
pixels [2]. Constructing polynomial filters able to construct suitable results using a much
lower sampling rate, was another approach [20]. See [31] for a comprehensive overview of
recent advancements in Monte Carlo rendering.

Other, more recent work, aims to improve the rendering times of specific effects such as
soft shadows [16] or depth of field [27]. Coherence exploiting solutions, such as [22] exploit
frame-to-frame coherence to improve interactivity by replacing objects by pseudo-objects
to improve rendering time. Research by [18] and [23] explained how coherence between
frames in animations is usually very high and devised a way of accelerating computation
by caching and re-using computation of certain scene objects. Similarly, our incremental
rendering technique can be thought of as exploiting frame coherence on a very general
level, without looking specifically at spatial or temporal coherence but rather at the radiance
recorded in two frames.

2.2 Information Visualization

The goal of information visualization is to convey as much information as effectively as
possible to humans. Humans, unlike computers, are not well equipped for parsing large
volumes of data. We are however much more adept at distinguishing patterns in graphical
primitives. Information visualization exploits this by encoding information using colors and
shapes.

Scatterplots [4] are a popular way of visualizing data, by plotting data points as glyphs
(typically circles or crosses) along two or three orthogonal axes. Each coordinate is there-
fore able to encode information about one data dimension. Furthermore we can add colors
and different glyph sizes to encode additional data dimensions. Eventually, however, every
useful encoding, which can still be effectively observed by humans, is exhausted and it will
be very difficult to display datasets of arbitrary dimensionality using scatter plots.

4

Related Work 2.3 Visualization of Light Transport

1 2 3 4 5 6 7 8 9 10 11
2

3

4

5

6

7

8

9

10

11

12

15

10

5

02
4

6
8

10
12

4

5

6

7

8

9

10

X ZY
X Y

Z

X

Y

(a) (b) (c)

Figure 2.1: (a) shows a 2D scatterplot, (b) a 3D scatterplot and finally (c) shows the same
data depicted in a parallel coordinates plot.

This is why parallel coordinates plots [8] are useful; a parallel coordinates plot depicts
N-dimensional data by displaying axes in parallel rather than orthogonally, allowing for
an arbitrary number of data dimensions. A data point is then plotted as a poly-line by
connecting the points on each axis.

Mapping scalar values to colors is another important aspect of information visualization
worth discussing. By applying colors to scalar fields we can distinguish differences in
values much more easily than we would by simply looking at numbers alone. A popular
color map often seen in scientific visualization tools is the rainbow color map. This color
map is based on the ordering of colors in the spectrum of visible light, ranging from blue
to red. Unfortunately this color map is considered ineffective as the the color range does
not constitute a natural ordering, and because the perceptual resolution is not uniformly
distributed across its range. A more suitable color map according to [17], is the divergent
color map which is especially effective to show differences for a data dimension with a
natural center, and the hot body color map, which unlike the rainbow colors, has a natural
ordering whose perceptive resolution is also more uniformly distributed. See 2.2 for a
comparison of the three color maps.

(a)

(c)

(b)

Figure 2.2: (a) shows the popular - but ineffective - rainbow color map. (b) shows a diver-
gent color map, and (c) shows the hot body color map

2.3 Visualization of Light Transport

The visualization of light transport is gaining popularity in the field of computer graphics
and visualization. Earlier approaches used a signal processing framework to visualize the

5

2.3 Visualization of Light Transport Related Work

frequency content of light and how it changes as it interacts with different materials [6], or
made use of visualization techniques to optimize the parameter space of photon mapping
algorithms [1]. A more general and more related work is the visual dynamic analysis frame-
work [14], that is able to visualize light paths, which is mainly intended for debugging and
academic purposes. Similarly, rtVTK [7], a collection of programming and layered visu-
alization tools, is aimed to help users explore the computational elements of a rendering
algorithm.

Other research in the field provides visualization tools together with editing techniques.
Light path visualization, clustering and modification [24] was employed to offer artists more
freedom in creating suitable lighting effects. By allowing for a brushing mechanism, users
could select and cluster light paths, as well as better comprehend them through visualiza-
tion. Users could also manipulate so-called proxy objects which existed only to influence
light transport, so that users could change shadows using manipulation mechanisms they
were already familiar with. Similarly BendyLights [11] is a light-editing tool that allows
progressive bending of light paths in free space, empowering artists with more artistic free-
dom, while sacrificing physically based correctness.

To our knowledge, Reiner et al.[21] were the first to primarily focus on the visualization
aspect of light transport. They created a suite of visualization tools aimed to help a general
audience of computer graphics consumers to understand light transport. By enriching pho-
tons in their photon mapping algorithm with additional information such as radiance and
object interactions, they made it possible to create meaningful visualizations of the light
transport within a scene. Other than false-color rendering, which colors surfaces according
to the received brightness, the visualization tools make use of light probes to collect data
about photons passing through it, which means that local data of the light transport is col-
lected, such as directional distribution, the overall path trajectory, specific photon paths and
volumetric properties. They also conducted a formal user study showing the usefulness of
visualizations as a way to help users solve different global illumination tasks.

In a way, our work is similar to theirs, but with a larger focus on using general infor-
mation visualization techniques to display comparative properties of two scenes whilst also
providing an immediate interaction with the renderer which may guide and improve the
rendering process.

6

Chapter 3

Overview

In this next section we will discuss the various aspects of our light path visualization ap-
proach. We will discuss the specifics of the relevant data in section 3.1 and how we deal
with its volume in section 3.2, after which we will explain the various techniques employed
to display this data: the parallel coordinates plot in section 3.3, the render view in section
3.4 and finally, the scene view in section 3.5. We will also exhibit our user-guided rendering
technique and the incremental rendering technique in section 3.6.

An important property of these visualizations tools is that they adhere to the the brushing-
and-linking paradigm [3], popular in information visualization, where the brushing of data
in one view is automatically reflected in other views. Our visualizations are also interactive
with respect to the renderer, which helps the user to guide the rendering process. The com-
parative nature of our tool stems from the possibility to compare two different scenes. The
visualizations for these scenes are then color-coded per renderer, or given a side-by-side
view of the data. This allows one to quickly observe the differences in data between two
scenes. An overview of our application with all its views can be seen in 3.5

3.1 Data

In this section we will discuss the data we decided to collect to make the proposed visual-
ization and interaction techniques possible. Our data is generated using the EMBREE [30]
renderer, which is a unidirectional path tracer that shoots rays from the eye into the scene
and recursively extends it in order to refine the final color associated with it. Averaging over
multiple paths gives us the final color value of the pixel. We sample and maintain several
of these light paths, its intersections with the scene and information about light collected at
each intersection. Below is an overview of the data which we maintain.

Figure 3.1 shows a schematic overview of unidirectional path-tracing and the data in-
volved. The solid line constitutes a light path, which is shot from the eye and is reflected and
refracted by various elements in the scene. The solid line denotes the entire path trajectory,
a black dot represents an intersection and light-related data is encoded by the dashed line.

Each path originates from the lens of the camera and intersects the image plane at a
certain position which defines the pixel to which it will contribute. The radiance of a path

7

3.1 Data Overview

Light
Eye

Refraction

Re�ection

Figure 3.1: A schematic overview of path-tracing showing how a path starting from the eye
is reflected and refracted through the scene.

is determined by the accumulation of energy received along its path. Depending on various
properties such as the angle at which a light path intersects various surfaces and the material
it intersects with, the degree to which it contributes to the final pixel value is determined.
This attribute is called the throughput of a light path.

The number of intersection points a path contains is denoted by its depth attribute. Each
intersection has information associated with it such as its order in the light path, called
the bounce number, its position, the radiance it received, the kind of material interaction it
underwent, such as a specular reflection or refraction, and an object ID that indicates the
object it interacts with. Data about light contains information about how much energy it
received from a particular light source. It also contains information about a possible object
that prevented it from reaching a light source, marked by the occluder ID. A complete
overview of the data is given below.

• Light Path

– Pixel Position

– Radiance

– Throughput

– Depth

• Intersection

– Bounce Number

– Position

– Radiance

– Object ID

– Interaction Type

• Light

8

Overview 3.2 Data Reduction

– Radiance

– Occluder ID

At this point, it is important to note that other data attributes are available, such as the
time when a ray was shot in terms of the camera’s shutter time, and two lens parameters.
These attributes might prove useful for other applications, but were not necessary for our
applications and were therefore omitted

3.2 Data Reduction

Ray-tracing techniques are known for the large volume of rays required to obtain a high
fidelity image, where often hundreds or even thousands of samples per pixel are necessary.
This also means that the volume of data about the light paths would become too excessive
very quickly, making our application unresponsive.Furthermore, too many samples would
clutter our visualizations, in particular the parallel coordinates plot, rendering it ineffective.
In figure 3.2 we see how sampling can reduce clutter. (a) shows a parallel coordinates plot
with 500,000 data points making individual lines impossible to see. By sampling 5,000 data
points in (b), individual lines are more clearly visible, showing their angular information as
well as giving the user a better sense of the density and distribution of the data.

(a) (b)

Figure 3.2: How parallel coordinates plots suffer from overdrawing when too many el-
ements are added. (a) is a parallel coordinates plot with 500,000 data points and (b) a
parallel coordinates plot with 5,000 data points.

3.2.1 Sampling

To obtain these samples, we use two possible sampling strategies. One method is by sam-
pling based on a certain property, for example by taking N paths that have the most radiance.

9

3.2 Data Reduction Overview

This sampling strategy is used in section 4.7 to gather possible fireflies. Another way is by
keeping a sample set of the data that is able to represent the whole corpus in the best pos-
sible way. To do this, we maintain a set of histograms, one for each data dimension, which
we update as the rendering processes generate new data. We then randomly sample (with
replacement) from a set of data accumulated from the rendering process and keep the set
whose histogram matches the true distribution most accurately. This strategy was inspired
by bootstrapping used in statistics [26], although we do not use it to infer any additional
statistics.

A histogram can be defined mathematically as having a function mi that counts the
number of observations that fall into each of its disjoint categories (called the bins). The
histogram mi, with n observations and k bins, meets the following condition:

n =
k

∑
i=1

mi (3.1)

A parameter N determines how many paths we actually sample and use for our visual-
izations. This value is typically set in the range of 5,000 to 10,000 so that the application
maintains responsiveness whilst also providing enough detail to the data. We maintain two
separate sets of data for each renderer, one which is used for the actual visualization and
one which acts as a buffer for new data. When the buffer reaches its capacity, we join the
two datasets and sample N new samples from it and determine how well it fits the true
distribution by comparing it to the full histogram using a distance metric:

D = ∑
i=1
|mi/M−ni/N| (3.2)

Where mi and ni is the number of occurrences for bin i and M and N denote the total
number of elements in the two histograms. By summing up these distances for every data
dimension, we get an estimate for the goodness of fit for the sampled data. If the value is
lower than before we found a better candidate, if not, we keep the previous set and con-
tinue. See a simple example of sampling and histogram matching in figure 3.3, where (a)
shows the true distribution, (b) and (c) show two different samples, where (c) more closely
matches (a) than (b).

(a)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

(b) (c)

{1,2,2,3,3,3,4,5} {2,4,4,5,5,5} {1,2,2,3,3,3}

Figure 3.3: (a) shows the true distribution and its histogram, (b) and (c) are two indepen-
dent samples from the dataset in (a), where the data in (c) matches the distribution in (a)
most closely.

10

Overview 3.3 Parallel Coordinates Plot

3.2.2 Distributions

In addition to a sampled set of light paths that most accurately represent the data’s distri-
bution we also maintain several higher dimensional distributions. First we maintain several
2D distributions in the image domain which describes data such as radiance, depth and
throughput. We will discuss these distributions in section 3.4. Another 3D distribution is
maintained that keeps track of the energy distribution within the scene. We will discuss this
further in 3.5.

3.3 Parallel Coordinates Plot

As mentioned above, parallel coordinates plots are very adept at displaying a high-dimensional
set of data in 2D space, as they do not suffer from a limitation on the number of axes that
can be used. In the previous sections we described our data and showed that it is indeed
high-dimensional, especially due to the radiance and positional triples. In order to still allow
the user an overall overview of the data we use the parallel coordinates plotting technique
[8]. Additionally brushing data is very conveniently done in a parallel coordinates plot by
clicking and dragging across an axis (see 3.4).

(a) (b) (c)

Figure 3.4: How brushing works in a parallel coordinates plot. In (a) we see all the data
displayed. in (b) we have clicked and dragged on an axis to brush some of the data whose
lines pass through the area indicated by red. (c) increases the size of the brushed area, and
as such the number of data points to be displayed.

From section 3.1 we recall that the data on our sampled light paths consists of multiple
intersections which may again have data associated with it from multiple light sources.
Because of these N-ary relationships, we use three separate parallel coordinates plots, one
for data on paths, one for its constituent intersections and one for the energy received by
each light source, which are then linked together. Poly-lines are color-coded according to
the renderer that generated the data. See figure 3.5 for an example, where the data about
paths, intersections and lights are displayed. Here the lines are color-coded according to the
renderer the data belongs to.

11

3.3 Parallel Coordinates Plot Overview

(b)

(a)

Figure 3.5: The parallel coordinates plot (marked in yellow) along with the other views :
the render views, marked in red and blue (the markings correspond to the colors used in
the parallel coordinates plot), and the scene view (highlighted in green). (a) shows all the
data associated, where in (b) we have brushed light paths whose energy has a strong green
component (indicated by the red rectangle on the axis).

As previously mentioned, over-drawing is a significant problem in parallel coordinates
plots, as too many poly-lines may clutter the visualization technique, making it ineffective.
Although this problem is already diminished by the sampling strategy, discussed in section
3.2, it is still possible that too many lines overlap, depending on the size of the sample set
and the nature of the data. Also, another problem arises when too many lines overlap, as
an incorrect impression may be given that fewer data points are present than is actually the
case. A possible improvement over traditional parallel coordinates plots which we have

12

Overview 3.4 Render View

employed in our current work, uses the process of binning [15] to show how many data
points lie within discrete regions of each axis.

Another reason for using this binning approach is that we often want to show data from
two renderers and compare them. This is why we use the bins to highlight the color of the
data most points in the bin belong to. This means, that the bins on each axis are color-
coded according to the ratio of membership of the data points in the bin. Bin membership is
defined as M1(b,x), or the number of data points in bin b for data dimension x belonging to
dataset one and M2(b,x) as the bin membership value for dataset two. The ratio of these two
bin membership values determines the color of the bin: Mratio(b,x) = M1(b,x)−M2(b,x)
where Mratio(b,x) ∈ [−1,1].

See figure 3.5 for an example, where we use a divergent color map (see figure 2.2)
to color code each bin according to the ratio of membership of the data points inside the
bin. A completely red bin for example, indicates that all data points belong to the renderer
corresponding to the red color, and blue corresponding to the complementary renderer. A
gray color is used to indicate a bin whose ratio is perfectly balanced between the two.
Additionally we encode the size of each bin to indicate how many data points reside in the
bin, regardless of membership.

The parallel coordinates plot is especially useful in our application to give an overview
of the data: Angular information may display certain correlational patterns and color high-
lights in the axis bins show subspaces of the regions most unique to a specific renderer.
Furthermore it allows for an intuitive way of brushing the data. By interacting with the axes
the visualizations automatically update to reflect information about the brushed data.

In 3.5 we see an example of the parallel coordinates plot (marked in yellow) along with
the other views in two scenes of two plants where in one scene we have added a highly
reflective wall. The parallel coordinates plots provides a convenient and quick overview of
the data in (a). In one scene a wall is placed between the two plants. in (b) we have brushed
the data of light paths that have a lot of green energy (highlighted in orange). We see how
the render views now highlights those parts of the image that match the selection as well as
the updated intersection points in the 3D view. The bins in the parallel coordinates plots are
also updated, and because in the red scene another plant is visible most bins then appear as
red.

3.4 Render View

The render views (highlighted in red and blue in figure 3.5) display the current result of the
rendering processes. As the rendering process progresses these views are kept up-to-date
with the latest state of the rendering process.

3.4.1 Heat Maps

We also mentioned the various 2D distributions that we maintain in addition to the sampled
set of data. The render view is able to display the distributions of various data dimensions
as heat maps on top of the image. Furthermore, the render view is able to display a heat
map visualization of the currently brushed light paths’ pixel positions. This can either be

13

3.4 Render View Overview

visualized using the hot body color map or as a monochromatic heat map with interpolated
opacity so as not to obstruct too much of the image. We also allow the user to smooth
the distributions, in order to get rid of noise. This can be especially useful when using the
distributions to guide the rendering (see sections 3.6, 4.5 and 4.4.)

In figure 3.6 we see the various heat map visualizations of distributions obtained by
rendering an instance of the Cornell box scene. The various distributions that may be visu-
alized as heat maps on top of the render preview. (a) shows the throughput distribution, note
the high throughput around the light source and the slightly higher throughput on the boxes.
(b) shows the depth distribution, note the lower depth distribution on the boxes and the very
low depth distribution at the light source, which is due to the lack of actual geometrical data
associated with the light source (paths simply pass through and terminate as they leave the
scene). Sub-figure (c) visualizes the average radiance distribution and (d) uses the overlaid
heat map to show a selection of paths whose energy is high in the green spectrum. Note
how the green wall is selected, but also other regions whose paths may at one point intersect
with the green wall. Later on we will revisit these heat maps to show how they can also be
used to guide the rendering process.

(c) (d)

(b)(a)

Figure 3.6: Heat map visualizations of the image-based distributions. Here the throughput,
depth, average radiance and selection are visualized in (a) - (d).

3.4.2 Interactivity

The render view also provides an interactive aspect. A user might often be interested in a
distinct region in the image, such as a specular highlight, the render view also allows for a
user to scribble on the image. The area enclosed by this scribble is then used to find paths

14

Overview 3.5 Scene View

that originate inside this region. A user might also brush a rectangular shaped part of the
image using the parallel coordinates plot, but by scribbling we can also use non-regularly
shaped regions. Also, because the data of the final image is present at the render view,
brushing data is often more intuitive than having to brush the separate pixel axes in the
parallel coordinates plot.

3.5 Scene View

Eye

1

2

3
4

Figure 3.7: A diagram demonstrating the light path animation. Each red line segment indi-
cates a specific point in time as it is animated across its entire trajectory (indicated by the
dashed line).

The scene view (marked in green in figure 3.5) aims to place data in its spatial context by
rendering it in three dimensions. Path-tracing consists of rays recursively hitting geometry
in the scene which makes displaying these paths along with its intersection points and the
geometrical data an intuitive way of giving the user insight into how light is transported
throughout a scene. Intersection points are colored according to the energy received at
that particular point, whereas paths are colored according to the gross accumulated energy.
Alternatively when we are more interested in how light is transported at each bounce, we
can color the points according to the number of bounces it is distant from the light source.

An obvious way of visualizing the light paths would be to render them as poly-lines
connecting the different intersection points. Unfortunately this would quickly cause too
much clutter. It also would not convey any information about the direction of light. We
have chosen to let the user animate the trajectory of the light path. A line segment is drawn
along the entire light path which may be animated along all intersection points. See 3.7 for
a schematic illustration of the animation and figure 3.8 for an example of the animation in
our application.

3.5.1 Selection Mechanisms

The scene view also allows for an intuitive way of brushing data in the object space. An
object ID in a scene description file is often associated with a group of vertices and faces
that have a certain semantic meaning, such as a teapot or a chair. By clicking one of these

15

3.5 Scene View Overview

(a) (b) (c)
Figure 3.8: The animation of light paths starting from a light source. (a)-(c) shows three
still frames of the light paths as they reflect of the wall unto the plant.

objects in the scene view the user may brush data regarding the selected object. We have
identified four different mechanisms of selection in the scene view:

1. Object

2. Path

3. Interaction

4. Shadow

The object selection mode simply selects all intersection points residing on the surface
on the selected object. The path selection mode is slightly more complex; it allows a user to
select different objects light paths should interact with along the way. For example when a
user is interested in light paths hitting object A and then hitting object B, the user selects ob-
ject A and B consecutively. Interaction selection mode is used to display paths that interact
with an object when the order of intersection is not important. For example, when selecting
object A, all paths that eventually intersect with this object are selected. This distinguishes
it from the object selection mode, because that mode only selects those intersection points
on the object, whereas the interaction mode allows the entire path to be selected as long
as at least one of its intersections lie on the object of interest. Lastly, we have the shadow
selection mode which selects rays that hit the shadow of an object. At each intersection a
shadow ray is cast to each light source to determine if the intersection point can be reached
from the light source. When it cannot be reached the point is said to be occluded, and the
energy for this light point is not taken into account. We will see in section 4.4 how this
particular piece of information can help guide the rendering.

3.5.2 3D Heat Map

Displaying the intersection points and animating the trajectory between these points is use-
ful in visualizing how light is transported in a scene. Something that is less obvious when
looking at the scene in this manner, is how energy in general is distributed. Knowing where
most of the energy of the scene ends up might be useful for various reasons, for example
when we want to place an object that should receive a lot of light in order to increase its

16

Overview 3.5 Scene View

luminance. Furthermore determining the energy distribution in a scene might also be useful
to users involved with additional engineering or scientific challenges involved with light.

We create a 3D heat map of the energy distribution by using a sparse voxel octree [13].
Octrees may be used to store three-dimensional data in an efficient hierarchical fashion
using a tree structure, where each node in the tree may consist of eight children. Voxels
are rectangular blocks, often used as an alternative to triangular meshes to store geometrical
data, which can be seen as a 3D version of pixels. Combining octrees and voxels allows for
a hierarchical 3D model where the resolution of the models varies with the information it
contains. An octree is often created by starting of with a single root node and recursively
splitting the node in eight new nodes as more data is added. Recursion halts when a certain
maximum depth is reached.

In our case we initialize the octree with a single node that encompasses the entire scene.
We then compute the energy for each new intersection as the average of the R,G,B channels.
We use the average rather than each channel separately so that we can easily observe how
energy is distributed in a single view. Energy is therefore computed as such:

E =
R+G+B

3
(3.3)

When new intersection data is received from the renderer, the correct node is found by
finding a leaf-node in the tree which contains the point. This makes the tree useful as we
can traverse the tree hierarchically starting from the top and only continue the search in
branches that contain the point.

We render the octree by using voxels, where the size of the node determines the size
of the voxel and the color is interpolated using a hot body color map. Alternatively, when
we are interested in differences in the energy between two renderers, we can visualize the
differences by subtracting the energies of the voxels of the two octrees and color coding this
value using the red-blue divergent color map we also use in the parallel coordinates plot.

(a) (c)(b)

Figure 3.9: 3D heat map visualization of the energy distribution in two scenes. (a) shows
the scene with a reflective wall, (b) without this wall and c) visualizes the difference in
energy for these two scenes. The colored borders around (a) and (b) correspond to the
colors used in (c).

In figure 3.9 we see an example of the 3D heat map used to demonstrate the difference
in energy distribution. In (a) we have placed a reflective wall. In (b) we see the energy
distribution when there is no such reflective wall. In (c) the difference in energy is explicitly

17

3.6 User-guided Rendering Overview

rendered using the divergent color map (see 2.2, where blue indicates energy a region where
the scene with the wall contains more energy and red areas indicate regions that receive
more energy when there is no wall configured. We can clearly see some of the leaves that
appear more blueish, especially the third from the left (marked by the yellow arrow). We
also see some energy in the blue scene reaching the shadow of the leaves, indicated by the
blue speckles in the shadow.

3.5.3 Gizmo

(a) (b)
Figure 3.10: A simple example demonstrating how gizmos are able to select paths inter-
secting with it. (a) displays all light paths, whereas (b) displays only those light paths that
intersect with the gizmos (the red and blue cubes).)

Sometimes information is not confined to a specific object but is confined to a certain
region in the scene, a so-called region of interest (ROI). Reiner et al. [21] introduced a
gizmo that could be placed in the scene to collect localized information about a specific
subspace of the scene. We extend the use of the gizmo into our comparative visualization
framework. By placing two gizmos, one for each renderer, and selecting only those paths
that intersect with the gizmo, we can compare data about two distinct regions of interest.
See figure 3.10 where (a) shows all sampled light paths and (b) shows only those light paths
interacting with the gizmo.

3.6 User-guided Rendering

By default our renderers use a uniform sampling strategy when spawning new rays. That
is to say, all parts of image receive a roughly equal amount of attention. When a user
interacts with the visualization, different pixel regions in the render images may become
highlighted. We have added the functionality that this distribution may be used to sample
where new paths originate from. As such the user is able to guide the rendering according
to the interest of the user, making the rendering process interactive. The reason why we
think this is useful is threefold:

18

Overview 3.6 User-guided Rendering

Firstly, we believe that by guiding the rendering through interaction with the visualiza-
tion gives the user intuitive control over the rendering process. As we will see in the results
section, it is able to improve the rendering by reducing noise locally, as well as give the user
valuable information through the resulting change in the rendered result.

Secondly, by guiding the rendering the user may obtain more light path samples for a
specific region, giving him or her more detailed information about this region.

Lastly, as we recall from section 3.4.1, we have several 2D distributions that can be
visualized as heat maps. We can use these distributions as the sampling distribution for new
rays. Using the radiance difference distribution can be especially effective. We call this
technique incremental rendering.

3.6.1 Incremental Rendering

(a) (b) (c) (d) (f)(e)

Figure 3.11: The incremental rendering technique applied to the Cornell box scene where
the tall box is added in the second scene. (a) displays the radiance difference distribution
which acts as a sampling distribution for new rays, (b) shows the input image, a rendered
image of the scene without the tall box. (c)-(e) shows the result of our incremental render-
ing technique at 2,4 and 8 samples per pixel respectively. (f) shows a naive blending of the
two images with 8 samples per pixel, as a comparison.

Incremental rendering can be seen as an especially useful instance of user-guided ren-
dering. It is effective when we have two scenes that are very similar to each other, except for
one or two objects that are either changed, added or removed, which causes the final image
to change. Normally we would have to re-render the entire scene, but incremental rendering
is designed to reuse samples for areas that were not affected by the change and resample
regions that were changed. We can use the information of the sampled paths, and the infor-
mation contained in the radiance distributions of the two scenes to compute a new sampling
strategy whose distribution is based on the difference in radiance of the two images which
may be deduced from only a few samples per pixel.

We see the steps involved with incremental rendering in figure 3.11, where it is applied
to the Cornell box scene, in which we have a base version without the tall box, which is then
introduced. We input the difference in radiance ((a)) and the high fidelity base version (b)
rendered with 128 samples per pixel. By continuing rendering we see the tall box slowly
appearing in (c)-(e) with 2,4 and 8 more samples per pixel, respectively. In (f) we have
added a naive blending of the base image with a uniform render of 8 samples per pixel
where the box appears opaque and more noise is introduced. We will see a more detailed
analytic comparison of this technique in the results section.

19

3.6 User-guided Rendering Overview

An important weighting parameter, the swapchain weight, determines how quickly the
old values of the base image should be blended with new values from the incremental ren-
dering. A low weight means the new values will mean results from the new scene will
become more quickly apparent, but might also introduce more noise. This parameter may
be set by the user depending on his or her desired outcome: a quick, but possibly noisy re-
sult or a slower but higher fidelity result. The optimal setting for this value may also depend
on scene specific parameters and how large the influence of the object is on the result. As
an additional improvement we use the data collected about our sampled paths to determine
which paths hit the new object on the first bounce so that we may set the swapchain weight
to zero for this region, to further increase convergence.

20

Chapter 4

Results

We have combined the previously proposed visualization techniques into a custom-built
C++ OpenGL application. All visualization tools are created in a single OpenGL window
where each sub-window displays a visualization view coupled with two instances of an
adapted EMBREE [30] renderer. In this section we will discuss various example applica-
tions of our tool and the results which we obtained.

4.1 Light Distribution

Due to the complex nature of global illumination, light paths may, through various inter-
actions with the scene, end up almost anywhere. Understanding light distribution is useful
for artists, engineers and scientists, but is often very difficult to understand without a useful
visualization tool.

In modern greenhouse environments, where artificial lighting is often employed to
mimic sun light, it is important that plants receive a roughly equal distribution of light
energy, so that they grow at roughly equal rates. Placement of these artificial light sources
is therefore very important. Below we have created an example scenario containing a row
of five plants that simulates a row of greenhouse plants. We compare two different versions
of a greenhouse setting; one where we use two intense light sources and the other where we
use five smaller light sources. We have taken care to ensure that the total sum of the energy
of the light sources is the same.

See the result of using our application in figure 4.1 where we investigate the difference
in energy distributions. The top row shows the results for two light sources, the bottom
the result for five. (a) and (b) show the rendered result. (c) and (d) show the energy
distribution using a hot body color map. The spheres on top are the light sources. Note the
strong highlight in the center of the plants in (c). (d) shows a more uniform distribution.
(e) and (f) show a close up of the three plants in the middle. The leaves of the plants in (f)
show a more uniform distribution.

21

4.2 Light Transportation Results

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.1: A 3D heat map visualization of two different lighting settings. The top row
shows a scene with two large light sources, whereas the bottom row shows the result for five
smaller light sources. (a) and (b) shows the rendered result, and (c)-(f) the visualization
of the energy distribution.

4.2 Light Transportation

When dealing with light, it is not only interesting to know how much light reaches certain
regions of a scene, it is also interesting to understand how light reaches these regions. In
addition to our previous greenhouse example, we now look at another greenhouse scenario
where we want to improve the light transportation. In greenhouse design, reflectors are
often placed at key locations in order to increase the light reflected onto plants.

In figure 4.2 we have applied our visualization tools to a simple model of a greenhouse,
which has a slanted roof with a reflector, where we want to place another reflector at a
optimal location. The front of the model is made of glass which also helps to catch light,
but it is not the light that we are interested in. In (a) we use the parallel coordinates to brush
data about secondary bounces, that have a lot of energy (see the brushed markings on the
“R” and “bounce nr” axes). Furthermore we want to exclude paths that go through the glass
window at the front, so we only brush bounces that are reflective rather than transmissive
(see the axis “interaction type”). (b) shows the intersection points that match the criterium
set in (a). (c)− (f) show a comparative path animation, where the red paths show the old
scenario without a reflector, and blue where we have added a reflector in order to reflect
the high energy bounces found in (b). The animation shows how red paths spread from
the back wall diffusely to the rest of the greenhouse whereas blue paths are focused more
towards the plant.

22

Results 4.3 Gizmo

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4.2: The greenhouse scenario where we use our tool to find the best placement for an
additional reflector. (a) displays the parallel coordinates plot with blue markings indicating
the data brushing that was used. (b) and (f) shows the two different scenarios, one with the
additional reflector. (c) shows the intersection points of the paths selected by brushing by
the parallel coordinates plot and (d),(e),(g),(h),(i) shows the animation of the light paths
with (blue) and without (red) the reflector

4.3 Gizmo

In addition to the previous example, where we showed how adding a reflector focuses the
light toward the ground, we want to show how the gizmo can be used to investigate two
regions of interest. When we have no plant present in the greenhouse yet, but we want to
find the most suitable location, we can use the gizmos to compare two distinct regions. We
can see how using the gizmos finds the most suitable location for a candidate plant in figure
4.3. One possible position is closer to the reflector (marked by the red gizmo), the other is
a bit further away (marked by the blue gizmo). By brushing the paths that intersect with
these gizmos we can observe in the parallel coordinates plots how the radiance of the paths
is greater by looking at the colors of the bins (highlighted in green). In (b) and (c) we see
the path animation for the red gizmo and for the blue gizmo in (d) and (e). Note how the
number of bright paths intersecting the blue gizmo is much lower than those intersecting
the red gizmo. From this we can conclude that a plant located at the region of the red gizmo
would receive more light from the reflectors.

23

4.4 User-guided Rendering Results

(a)

(e)(c) (d)(b)

Figure 4.3: The use of gizmos to compare two possible candidate positions for a plant. (a)
displays the data associated with each gizmo. (b) - (e) shows the animation of the paths
interacting with the gizmo.

4.4 User-guided Rendering

We mentioned earlier in section 3.6, that our application could be used to guide the render-
ing in a specific way. Techniques such as this often exist in 3D content creation software,
but are often limited to guiding the rendering to a rectangularly shaped region of the image
space. In reality, effects are rarely confined to such a regularly shaped area of the image.
Our visualization framework makes it possible to guide the rendering according to one of
its features, present in the samples we take.

In figure 4.4 we see the result of applying this technique to a caustic that is cast on a
bunny and on a textured wall. Most parts of the image, such as the grey walls, the floor
and most of the textured wall do not require many samples, but other effects like caustics
are more difficult to render and require more samples. This is also the case with the caustic
projected by the glass sphere unto the bunny and the textured wall.

By gathering light path samples and selecting those that intersect with the shadow of
the glass sphere (using the shadow selection described in section 3.5) we can use the distri-
bution of these paths (seen in (a)) to sample new paths that interact with the shadow of the
glass sphere. By combining uniform sampling with this guided sampling distribution we
can get a significantly better result, as more samples are directed towards this region. (c)
shows the result of using this distribution after 1024 uniform samples for an additional 1024
samples, whereas (b) shows the result of uniform sampling with 2048 samples and (d) is
the reference image: a uniformly rendered image with 16,384 samples per pixel. We have
also included various insets in the rows below. Overall the user-guided rendering performs
significantly better than the uniformly sampled one, as can be seen from the SSIM and MSE
metrics. Especially areas affected by the caustic perform much better (see blue and green

24

Results 4.4 User-guided Rendering

MSE = 0.953 * 10-3

SSIM = 0.950
MSE = 1.189 * 10-3

SSIM = 0.949

UNIFORM GUIDED REFERENCE

MSE = 1.543 * 10-3

SSIM = 0.826
MSE = 3.356 * 10-3

SSIM = 0.661

MSE = 20.550 * 10-3

SSIM = 0.472
MSE = 7.011 * 10-3

SSIM = 0.737

MSE = 1.088 * 10-3

SSIM = 0.926
MSE = 0.919 * 10-3

SSIM = 0.939

(a) (b) (c) (d)

Figure 4.4: An example application of our user-guided rendering technique. (a) shows
the sampling distribution used to guide the rendering based on light paths whose shadow
rays intersect the glass sphere. (b) shows the result using a uniform sampling strategy
with 2048 samples per pixel, whereas (c) uses our user-guided rendering technique, where
1024 samples were generated uniformly and 1024 samples using the distribution in (a). (c)
shows a reference image using uniform sampling with 16,834 samples per pixel. Several
color-coded insets are added and annotated with their MSE and SSIM results.

25

4.5 Incremental Rendering Results

inset), while areas unaffected perform only slightly worse (red inset).

4.5 Incremental Rendering

The reader may recall from section 3.6.1 our incremental rendering technique, where by
obtaining a coarse estimation of the difference in radiance distribution we can guide the
rendering towards those parts of the images where radiance differs most. As such we only
need one base image that we can then easily reuse to render different scene configurations
more rapidly. This exploits the information we have recorded in our distributions and our
sampled set of light paths.

We showed how this works in a Cornell Box scene but we want to show the results for
a more complex scene. For this we have created a scene where we have a green and blue
teapot with a glass sphere causing refractions and a distorted mirror that causes various
reflections of the scene. The alternate scene contains a new red teapot which causes various
additional reflections and refractions, as well as casting a new shadow.

See figure 4.5 for the results. (a) shows the input image rendered with 128 samples per
pixel. (b) shows our alternate version rendered at 1 sample per pixel, which is just enough
to get information about the radiance distribution (depicted in (c), smoothed five times with
a 3x3 rectangular uniform filter). (d) shows the result after rendering with 32 additional
samples using a swapchain weight of 64, using (c) as a sampling distribution. Note how not
only the teapot but also the various reflections, the refraction and its shadow have appeared.

(a) (c)(b) (d)

Figure 4.5: The steps involved when applying the incremental rendering technique to a
more complex scene. (a) shows the input image, where the red teapot is not present. (b) is
the rendered result of the new scene using only one sample per pixel. (c) is a visualization
of the (smoothed) difference in radiance when the teapot is added. (d) is the result when
sampling another 32 samples per pixel according the radiance difference distribution.

As mentioned before, different swapchain weights offer different results. A higher
weight often means less noise but also means it takes longer for the incremental render-
ing to have its full effect. This effect manifests itself often in a less pronounced appearance
of secondary effects such as shadows and reflections. Figure 4.6 shows a detailed compari-
son between different swapchain weights for this scene and a uniformly sampled rendering.
The last column is added as reference, showing an image rendered with 2048 samples per
pixel. The first row shows the overall image, with four additional rows showing insets of
the original image. For each image we have also added the MSE and SSIM metric used to
compare each image with the reference image. As can be seen, A weight of 64 performs

26

Results 4.6 Finding Rendering Bottlenecks

best in all of our test cases. The result derived from using a weight of 8 seems to reintroduce
noise, whereas a weight of 512 is too high and does not allow the effects to fully appear.
This is especially visible in the reflections and the refraction in the glass sphere. By using a
weight of 64 the effects are much more opaque while also largely avoiding the introduction
of new noise.

The MSE graph in (a) shows us that all weighted instances have a MSE value that is
much lower than the uniform example. Note also how the uniform instance slowly overtakes
the 8 and 512 weighted instance. The dimple in the blue line is also interesting, this can be
explained by the teapot which rapidly appears in this instance, but the resulting increase in
convergence is then quickly lost again as new noise accumulates. According to the SSIM
metric, which we see in (b), the 512-weighted instance and the 64-weighted instance are to
be regarded as roughly equal. Here the difference between these instances and the uniform
instance remains significant as the uniformly sampled instance gains fidelity more slowly.
The uniformly sampled instance also seems to gain on these two instances much more
slowly, and is only able to overtake the 8-weighted instance. The 8-weighted instance has
a much stronger decay when compared to the MSE metric and also recovers much more
slowly.

4.6 Finding Rendering Bottlenecks

Differences in scene geometry and materials have different effects on the computational
effort in creating a suitable rendered image. Some materials such as glass or metal are
more complex and may require more light paths to account for reflections and refractions.
Furthermore they may also require more depth, or number of rays, per light path. Scene
properties that have a seemingly small visual effect may therefore have a considerable im-
pact on the overall computation time. We call these elements rendering bottlenecks.

Usually, paths in ray-tracing algorithms are naturally terminated by a mechanism called
Russian roulette, where low throughput paths have more chance to be terminated than high
throughput paths. This allows for a variable depth in the scene which often increases perfor-
mance. In some cases however, such as in the case of GPU ray tracers it is often preferable
to know beforehand how much depth we will need rather than relying on this randomized
style of termination. Furthermore if we can assign a fixed depth to all parts of the image,
we can more easily pre-allocate memory and possibly apply other optimizations.

In practice this amounts to finding parts of the image that still have a lot of throughput
after a certain depth. In figure 4.7 we have such an example. In (a) we see the parallel
coordinates plot being used to find high throughput paths with a lot of depth. The ceiling
lamp seems to require a lot of depth to render. (d) and (e) show still shots of the animation
of the these high throughput paths, where we see it interacting with the lamp. When we
change the material of the lamp from glass to a diffuse surface (see (b) and (c)) the depth
of the rays hitting the lamps is much lower (see (f) and (g)) as well as the throughput ((h)
and (i)).

27

4.6 Finding Rendering Bottlenecks Results

Samples per pixel
0 10 20 30 40 50 60 70

SS
IM

0

0.05

0.1

0.15

0.2

0.25

uniform
w=8
w=64
w=512

Samples per pixel
0 10 20 30 40 50 60 70

SS
IM

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

uniform
w=8
w=64
w=512

w = 8 w = 64 w = 512

MSE = 19.898 * 10-3

SSIM = 0.481
MSE = 17.563 * 10-3

SSIM = 0.691
MSE = 8.083 * 10-3
SSIM = 0.695

MSE = 18.427 * 10-3

SSIM = 0.497

MSE = 21.142 * 10-3

SSIM = 0.217

MSE = 11.399 * 10-3

SSIM = 0.573

MSE = 15.019 * 10-3

SSIM = 0.811

MSE = 12.108 * 10-3

SSIM = 0.831
MSE = 9.391 * 10-3

SSIM = 0.938
MSE = 5.347 * 10-3

SSIM = 0.944
MSE = 7.020 * 10-3

SSIM = 0.938

32 samples
UNIFORM

2048 samples

MSE = 5.410 * 10-3

SSIM = 0.546
MSE = 4.939 * 10-3

SSIM = 0.578
MSE = 18.229 * 10-3

SSIM = 0.229

MSE = 9.562 * 10-3

SSIM = 0.828
MSE = 44.216 * 10-3

SSIM = 0.781
MSE = 20.449 * 10-3

SSIM = 0.48

MSE = 6.887 * 10-3

SSIM = 0.932
MSE = 10.413 * 10-3

SSIM = 0.924
MSE = 15.188 *
SSIM = 0.823

INCREMENTAL (32 samples)

(a) (b)

Figure 4.6: A comparison between different parameterizations of the incremental rendering
technique with uniformly sampled results. The first three columns show the result of our
technique with weights of 8,64 and 512 respectively after 32 samples, whereas the last two
columns display the results for a uniformly sampled rendering with 32 and 2048 samples re-
spectively. Two graphs showing how the MSE (a) and SSIM (b) metrics develop according
to the number of samples used per pixel are given an the bottom of the figure.

28

Results 4.6 Finding Rendering Bottlenecks

(a)

(g)(f)

(e)(d)

(c)(b)

Figure 4.7: Using our heat map visualizations and path animation to find rendering bottle-
necks. (a) shows how the parallel coordinates plot was used to brush the data about light
paths that have a considerable amount of throughput and depth. (f) and (g) shows the an-
imation of these paths. (b) and (c) shows the average depth of the scene with a glass lamp
and a diffuse lamp, respectively. (d) and (e) similarly shows the throughput of these two
scenes.

29

4.7 Firefly Detection Results

4.7 Firefly Detection

In the previous section we found that the material properties of the lamp shade caused a
rendering bottleneck when using a glass material. In the next scenario we show how we
can find a different kind of rendering issue, called fireflies. Fireflies are caused by objects
that, when hit by a light path, have a very small probability of sampling a large amount of
energy from a light source. Because the inverse of this probability is used in Monte Carlo
as a product to the energy received, this often results in a very bright pixels. Because these
effects are so bright, often 20-100 times brighter than other paths, they are very hard to get
rid off. Sometimes the cause of these effects are obvious, large glass or metallic surfaces
with high specular coefficients for example, but sometimes the cause is more subtle and
may not even be visible from the rendered image.

In figure 4.8 we show the results of such a scenario where we have created a gallery
containing various objects such as a teapot, a bunny, a dragon, a buddha and a spherical
object. Rather than sampling light paths uniformly, we employ the sampling strategy that
prefers high energy paths previously discussed in the main section. These high energy
paths are possible candidates for fireflies. After gathering enough of these samples we can
observe how these paths interact with the objects in the scene; these objects are likely to
be responsible for causing the fireflies. (a) shows the parallel coordinates plot selection for
high energy paths. (b) shows the selection in the image space, note how many of the firefly
pixels are selected. (e)-(g) shows the animation of the light paths of the fireflies. (e) shows
the first bounce, where paths primarily hit the blob on the left and its pedestal (see green
marking). In (f) and (g) we see the paths also interacting with the buddha statue in the
back (see blue marking). The full animation can also be seen in the video accompanying
this paper. By changing the material properties of the spherical object, its pedestal and the
buddha we greatly reduce the number of fireflies, as seen in (d), when compared to (c)
where we have used the original materials.

30

Results 4.7 Firefly Detection

PC PLOT

(a)

(g)

(f)

(e)

(c)

(d)

(b)

Figure 4.8: Collecting and animating high-energy paths to determine possible causes of
fireflies. (a) shows the result of brushing light paths that are very bright. (b) shows the
selection distribution in the image view of these paths. (f)-(h shows the animation of these
paths (c) and (d) show the rendered result using 1024 samples per pixel with and without
the changes in material, with two color-coded insets.

31

Chapter 5

Conclusion and Future Work

In this work we have shown how information visualization techniques can be of added value
to users involved with light transport. Engineers may discover how light is distributed in a
scene and how it gets there. Artists may obtain suitable results more effectively by using our
user-guided rendering technique so that they may may select parts of the image according
to its features. Furthermore significant efficiency gains may be obtained when rendering
small differences in scenes using our incremental rendering technique, where we utilize
information about radiance and light paths to improve the sampling strategy.

There are various limitations to the current work, some of which may constitute interest-
ing future challenges. We have tried to show how rendering may benefit from information
visualization techniques and have purposefully tried to maintain the most general version of
each visualization technique, with only a few specific optimizations. This was done to re-
tain a wide applicability. Nevertheless creating more customized visualizations may prove
useful for different applications.

There is also plenty of room for completely new visualization techniques. Techniques
that show information about light transport at a more abstract level might be useful. A pos-
sible direction in this research would be to add visualization on interactions between objects
to the scene. What are the relationships between two objects in terms of energy exchange
and how is this affected by changing for example the material of these objects? Although
these changes may become apparent in our visualization tool, a more direct visualization of
these relations might prove useful.

The user-guided rendering showed how convenient it can be to interact with the render-
ing process through interaction with the visualization tools. An interesting extension to this
idea would be to include further rendering manipulation constructs. For example, if it were
possible to change material PDFs by brushing light paths, we could increase convergence
of the scene even further.

The incremental rendering technique is an especially powerful instance of user-guided
rendering, and clearly shows the merit of exploiting the data associated with light paths.
We therefore feel that it warrants more research into its effectiveness in a wider range of
scenarios, its limitations, the influence of the different parameters and how it compares
to other adaptive rendering techniques. Furthermore, it might be possible to deduce the
optimal swap chain weight from the given scene parameters.

33

Bibliography

[1] M.W. Jones B. Spencer and I.S Lim. A visualization tool used to develop new photon
mapping techniques. 2014.

[2] Philippe Bekaert, Mateu Sbert, and John Halton. Accelerating path tracing by re-
using paths. In Proceedings of the 13th Eurographics workshop on Rendering, pages
125–134. Eurographics Association, 2002.

[3] Andreas Buja, John Alan McDonald, John Michalak, and Werner Stuetzle. Interactive
data visualization using focusing and linking. In Visualization, 1991. Visualization’91,
Proceedings., IEEE Conference on, pages 156–163. IEEE, 1991.

[4] William S Cleveland and Robert McGill. The many faces of a scatterplot. Journal of
the American Statistical Association, 79(388):807–822, 1984.

[5] Robert L Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. In ACM
SIGGRAPH Computer Graphics, volume 18, pages 137–145. ACM, 1984.

[6] Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X Sillion. A
frequency analysis of light transport. ACM Transactions on Graphics (TOG), 24(3):
1115–1126, 2005.

[7] Christiaan Gribble, Jeremy Fisher, Daniel Eby, Ed Quigley, and Gideon Ludwig. Ray
tracing visualization toolkit. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, pages 71–78. ACM, 2012.

[8] Alfred Inselberg and Bernard Dimsdale. Parallel coordinates. In Human-Machine
Interactive Systems, pages 199–233. Springer, 1991.

[9] Henrik Wann Jensen. Realistic image synthesis using photon mapping. AK Peters,
Ltd., 2001.

[10] James T Kajiya. The rendering equation. In ACM Siggraph Computer Graphics,
volume 20, pages 143–150. ACM, 1986.

35

BIBLIOGRAPHY

[11] William B Kerr and Fabio Pellacini. Toward evaluating lighting design interface
paradigms for novice users. In ACM Transactions on Graphics (TOG), volume 28,
page 26. ACM, 2009.

[12] Eric P Lafortune and Yves D Willems. Bi-directional path tracing. In Proceedings of
Third International Conference on Computational Graphics and Visualization Tech-
niques (Compugraphics 93), pages 145–153, 1993.

[13] Samuli Laine and Tero Karras. Efficient sparse voxel octrees. Visualization and Com-
puter Graphics, IEEE Transactions on, 17(8):1048–1059, 2011.

[14] Hristo Lesev and Alexander Penev. A framework for visual dynamic analysis of ray
tracing algorithms. Cybernetics and Information Technologies, 14(2):38–49, 2014.

[15] Stephen M Longshaw, Martin J Turner, and W Terry Hewitt. Interactive grid based
binning for information visualization. In TPCG, pages 35–42. Citeseer, 2008.

[16] Soham Uday Mehta, Brandon Wang, Ravi Ramamoorthi, and Fredo Durand. Axis-
aligned filtering for interactive physically-based diffuse indirect lighting. ACM Trans-
actions on Graphics (TOG), 32(4):96, 2013.

[17] Kenneth Moreland. Diverging color maps for scientific visualization. In Advances in
Visual Computing, pages 92–103. Springer, 2009.

[18] Diego Nehab, Pedro V Sander, Jason Lawrence, Natalya Tatarchuk, and John R
Isidoro. Accelerating real-time shading with reverse reprojection caching. In Graphics
hardware, volume 41, pages 61–62, 2007.

[19] Man-Suk Oh and James O Berger. Adaptive importance sampling in monte carlo in-
tegration. Journal of Statistical Computation and Simulation, 41(3-4):143–168, 1992.

[20] James Painter and Kenneth Sloan. Antialiased ray tracing by adaptive progressive
refinement, volume 23. ACM, 1989.

[21] Tim Reiner, Anton Kaplanyan, Marcel Reinhard, and Carsten Dachsbacher. Selective
inspection and interactive visualization of light transport in virtual scenes. In Com-
puter Graphics Forum, volume 31, pages 711–718. Wiley Online Library, 2012.

[22] Gernot Schaufler. Exploiting frame-to-frame coherence in a virtual reality system.
In Virtual Reality Annual International Symposium, 1996., Proceedings of the IEEE
1996, pages 95–102. IEEE, 1996.

[23] Daniel Scherzer, Stefan Jeschke, and Michael Wimmer. Pixel-correct shadow maps
with temporal reprojection and shadow test confidence. In Proceedings of the 18th
Eurographics conference on Rendering Techniques, pages 45–50. Eurographics Asso-
ciation, 2007.

36

BIBLIOGRAPHY

[24] Thorsten-Walther Schmidt, Jan Novak, Johannes Meng, Anton S Kaplanyan, Tim
Reiner, Derek Nowrouzezahrai, and Carsten Dachsbacher. Path-space manipulation
of physically-based light transport. ACM Transactions On Graphics (TOG), 32(4):
129, 2013.

[25] Harri Siirtola. Direct manipulation of parallel coordinates. In Information Visualiza-
tion, 2000. Proceedings. IEEE International Conference on, pages 373–378. IEEE,
2000.

[26] Kesar Singh and Minge Xie. Bootstrap: a statistical method. Unpublished
manuscript, Rutgers University, USA. Retrieved from http://www. stat. rutgers.
edu/home/mxie/RCPapers/bootstrap. pdf, 2008.

[27] Cyril Soler, Kartic Subr, Frédo Durand, Nicolas Holzschuch, and François Sillion.
Fourier depth of field. ACM Transactions on Graphics (TOG), 28(2):18, 2009.

[28] Eric Veach and Leonidas J Guibas. Metropolis light transport. In Proceedings of
the 24th annual conference on Computer graphics and interactive techniques, pages
65–76. ACM Press/Addison-Wesley Publishing Co., 1997.

[29] Ingo Wald, Timothy J Purcell, Jörg Schmittler, Carsten Benthin, and Philipp Slusallek.
Realtime ray tracing and its use for interactive global illumination. Eurographics State
of the Art Reports, 1(3):5, 2003.

[30] Sven Woop, Louis Feng, Ingo Wald, and Carsten Benthin. Embree ray tracing kernels
for cpus and the xeon phi architecture. In ACM SIGGRAPH 2013 Talks, page 44.
ACM, 2013.

[31] Lehtinen Moon Ramamoorthi Rouselle Sen Soler Zwicker, Jarosz and Yoon. Recent
advances in adaptive sampling and reconstruction for monte carlo rendering. 2015.

37

Appendix 6

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

The Rendering Equation The rendering equation is a mathematical description of the
light transport. It defines how the light at a particular position in time and space
should be evaluated. A slightly abbreviated version is listed below (omitting wave-
length and time).

Lo(x,ωo) = Le(x,ωo)+
∫

Ω

fr(x,ωi,ωo)Li(x,wi)(ωi ·~n)dωi (6.1)

BRDF The bi-directional reflectance distribution function defines how light is reflected at
a certain position on an opaque surface.

Monte Carlo Monte Carlo sampling is a sampling technique employed by rendering tech-
niques to approximate the rendering equation. It is especially useful in physically
based rendering because its performance does not depend on the dimensionality of
the integrals.

ROI Region of interest is a distinct region in space where a particularly interesting phe-
nomenon is thought to take place. This is often a reason to investigate it using gath-
ering and visualization techniques such as the placement of a gizmo.

Russian Roulette Russian roulette is used to stochastically terminate paths to prevent them
from continuing forever. The probability of a path being terminated depends on its
throughput, where paths with lower throughput are more likely to be terminated.

PDF The probability distribution function is used in physically based rendering to approx-
imate the reflectance of materials and distribution of light sources through sampling.

Brushing and Linking A common interacting paradigm employed in visualization soft-
ware. By combining several views and allowing a interaction, the brushing of data,
in one view to be immediately updated in the other views of the data.

39

Appendix 7

Process & Implementation

In this chapter we will discuss the technical decisions we made regarding our software
solution. We will not only discuss the implementation details, but also the reasoning behind
it and the various avenues researched that did not make the final implementation, these
include libraries, the language choice and visualization techniques proposed.

First and foremost is the choice of programming language: In our case it was immedi-
ately clear that performance would be important as rendering techniques are known to be
computationally intensive, so if we were to combine them with visualization techniques,
which are often resource intensive themselves we would require a language that is indeed
very efficient and fast. When thinking of a fast language, C and C++ often comes to mind.
C++ has a speed comparable to C, while also offering various higher level data structures
and algorithms (STL). Indeed when looking at popular rendering implementations, they are
often implemented in C++. A downside of C++ is its lack of portability, where each plat-
form has its own set of compilers with their own specific quirks. This was not thought to be
a big issue for this project as it was meant more as a proof of concept, than a piece of pro-
duction ready software. Another downside of C++ is its low productivity as the programmer
has to deal with many low-level memory management issues as well as type safety. The first
is still a big problem in C++, but can be alleviated by using new pointer classes introduced
in C++11. In order to deal with type safety efficiently in C++, one can use templates. Tak-
ing these issues in regard, it still seemed C++ was the right tool for the job, most notably
due to its performance and its use in available rendering software.

Having chosen C++, we set out investigating what would be the best choice for window
management as well as candidates for 2D and 3D manipulation and display software. A
popular combination in these two is the OpenGL-GLUT combination. GLUT is a low-
level cross-plaftorm window management solution, and OpenGL a multi-platform API for
rendering 2D and 3D graphics. Although other options exist, such as GLFW which also
allows for built-in texture loading we thought these additional features were probably not
going to be used, so we decided on GLUT. OpenGL was the obvious choice as it seemed
the only viable candidate for cross-platform 2D and 3D rendering.

Although in the final version of our solution we incorporated EMBREE[30] as our ren-
derer, we started out using PBRT, which is a very extensive and comprehensive physically
based rendering framework containing a variety of rendering techniques. It is also accom-

41

Process & Implementation

panied by a book, serving as its documentation, which makes it excellent as a first renderer
to work with. It implements various rendering techniques such as path-tracers and photon
mapping. We chose path tracer as our rendering technique as it is the most popular tech-
nique used and also because photon mapping was already investigated by Reiner et al. [21].
In order to quickly get some results, we used PBRT to generate datasets, files containing
all the data about light paths and its intersections. These files would then be read into our
visualization software.

There are also various other libraries whose usage we considered, such as VTK, a pop-
ular visualization framework. From various sources we learned however that it can often
be very costly in terms of time and effort to change it in such a way as to create com-
pletely customized visualisations. This is why we decided not to use VTK, but rather create
our own visualizaton techniques in OpenGL. As our solution grew more complex it was
also contemplated whether we should use QT, which is a popular and extensive application
framework. It offers various abstractions of the GUI and includes many UI elements that
can be incorporated, which are lacking in OpenGL and GLUT. This would be useful if we
were ever to make the software more useable by adding buttons and other UI elements, but
for now it seemed adding a framework this large would not be very useful and cost too
much overhead for too little a gain. It would be better to implement the few missing fea-
tures ourselves when we really needed them, or find some stand-alone solutions we could
incorporate.

Another library that was tried was the SQLite framework, which is a lighter version
of the well-known SQL database management software. It allows for great expressiveness
through its SQL queries. This might be useful to allow for example to query certain light
paths with various complex properties. Furthermore it would also provide us with various
general data structures that could store floats, ints and other data types we would need.
We also thought that the SQLite version would also perform well, but after comparison we
found that it did slow down our system considerably when iterating over result sets from
SQL queries. So this called for a tough decision; revert to our old system and improve
it considerably, but have it run fast, or deal with the loss of performance while gaining
expressiveness. We choose the former, and by refactoring our solution using templates we
created general data structures such as datasets, tables and records. This greatly improved
the code and allowed for easy extension of other datatypes. The issue of expressiveness was
resolved by adding various filtering classes, that are able to filter datasets according to some
specific data dimension and some operator. More complex group-based filtering operators
were not made generic, but rather left as custom filtering operations in parts of the software
that so required them.

The idea driving this thesis, was to extend the work done by [21] with general informa-
tion visualization techniques. A popular information visualization technique often used is
the parallel coordinates plot. Because our data was high-dimensional the use of the parallel
coordinates plot was especially useful. Further on the scene view that would display inter-
section points and animate paths, was added. A simple heat map that displayed the selection
of paths in the image was also added quickly. Soon we discovered that a heat map according
to the sampled paths was too sparse to accurately display data such as throughput, so we
implemented various distributions that would always be updated as the rendering process

42

Process & Implementation

progressed. This would allow for greater detail in the heat maps.
We also made the visualization more focused on comparative visualizations. For this

we designed and developed the membership view. This was intended as an extension to
the parallel coordinates plot with which the user could quickly see the greatest differences
between two datasets. By letting the user choose various data dimensions to compare, it
would sum over all the bins a row was part of and determine how unique this bin was. The
sum of these bins would then be the uniqueness value. The uniqueness values would then be
displayed as a sort of bar-chart which could be brushed by the user. Unfortunately we could
not really find a specific application for this visualization technique, and we also found that
often the same could be achieved by simply interacting with the parallel coordinates plot.

As our solution matured, its limitations became more and more apparent. Especially the
reliance on PBRT and its static data exchange was a problem. The data files were huge, as
a 256 x 256 image with a 500 samples would already generate almost 3 GB worth of data
in binary format. Furthermore, although PBRT was a nice introduction to the rendering
techniques, it was more geared towards academic use and was therefore not very optimized
for performance. At the time, EMBREE [30] was a renderer that was fairly new and gain-
ing considerable attention from the graphics community due to its high performance gains
made possible by various Intel-specific optimizations.We also wanted it to be dynamic, so
we modified it so that it would return data about light paths in real-time. The visualisa-
tion software would then decide which data to actually use for the visualization by way of
sampling, keeping those paths that fits the data in the best possible way.

43

	Preface
	Contents
	List of figures
	Introduction
	Related Work
	Physically-Based Rendering
	Information Visualization
	Visualization of Light Transport

	Overview
	Data
	Data Reduction
	Parallel Coordinates Plot
	Render View
	Scene View
	User-guided Rendering

	Results
	Light Distribution
	Light Transportation
	Gizmo
	User-guided Rendering
	Incremental Rendering
	Finding Rendering Bottlenecks
	Firefly Detection

	Conclusion and Future Work
	Bibliography
	Glossary
	Process & Implementation

